max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
tests/grafana_dashboards/client/test_connection.py
Rvhappen/grafana-dashboard-builder
131
11077368
# -*- coding: utf-8 -*- # Copyright 2015-2019 grafana-dashboard-builder contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import unicode_literals try: from urllib2 import Request except ImportError: from urllib.request import Request from mock import MagicMock, patch from requests_kerberos import HTTPKerberosAuth from grafana_dashboards.client.connection import KerberosConnection, BasicAuthConnection, BearerAuthConnection __author__ = '<NAME> <<EMAIL>>' class Capture(object): """ Class for use in method call verification that captures call argument that can be tested later on. """ def __eq__(self, other): """ Captures argument and always returns true to make verification successful. :return: True """ self.value = other return True def test_connection(): connection = BasicAuthConnection('username', 'password', 'https://host') connection._opener = MagicMock() # noinspection PyProtectedMember connection._opener.open().read.return_value = '{"hello":"world"}' assert connection.make_request('/uri', {'it\'s': 'alive'}) == {'hello': 'world'} request = Request('https://host/uri', '{"it\'s": "alive"}', headers={ 'Content-type': 'application/json', 'Accept': 'application/json', 'Authorization': b'Basic dXNlcm5hbWU6cGFzc3dvcmQ=' }) capture = Capture() # noinspection PyProtectedMember connection._opener.open.assert_called_with(capture) assert request.get_full_url() == capture.value.get_full_url() assert request.header_items() == capture.value.header_items() assert request.get_method() == capture.value.get_method() assert request.data.encode('utf-8') == capture.value.data def test_connection_with_token(): connection = BearerAuthConnection('token', 'https://host') connection._opener = MagicMock() # noinspection PyProtectedMember connection._opener.open().read.return_value = '{"hello":"world"}' assert connection.make_request('/uri', {'it\'s': 'alive'}) == {'hello': 'world'} request = Request('https://host/uri', '{"it\'s": "alive"}', headers={ 'Content-type': 'application/json', 'Accept': 'application/json', 'Authorization': 'Bearer token' }) capture = Capture() # noinspection PyProtectedMember connection._opener.open.assert_called_with(capture) assert request.get_full_url() == capture.value.get_full_url() assert request.header_items() == capture.value.header_items() assert request.get_method() == capture.value.get_method() assert request.data.encode('utf-8') == capture.value.data @patch('requests.post') def test_connection_with_kerberos(post): connection = KerberosConnection('https://host') post().json.return_value = {'hello': 'world'} assert connection.make_request('/uri', {'it\'s': 'alive'}) == {'hello': 'world'} capture = Capture() post.assert_called_with('https://host/uri', auth=capture, json={"it's": 'alive'}, verify=False) assert isinstance(capture.value, HTTPKerberosAuth)
src/france/utils/examples/qt_api_demo.py
ClementRolinat/covidtracker-data
314
11077380
<filename>src/france/utils/examples/qt_api_demo.py #!/usr/bin/env python import svg_stack as ss doc = ss.Document() layout1 = ss.HBoxLayout() layout1.addSVG('red_ball.svg',alignment=ss.AlignTop|ss.AlignHCenter) layout1.addSVG('blue_triangle.svg',alignment=ss.AlignCenter) layout2 = ss.VBoxLayout() layout2.addSVG('red_ball.svg',alignment=ss.AlignCenter) layout2.addSVG('red_ball.svg',alignment=ss.AlignCenter) layout2.addSVG('red_ball.svg',alignment=ss.AlignCenter) layout1.addLayout(layout2) doc.setLayout(layout1) doc.save('qt_api_test.svg')
all/agents/vqn.py
kcorder/autonomous-learning-library
584
11077384
import torch from torch.nn.functional import mse_loss from ._agent import Agent from ._parallel_agent import ParallelAgent from .dqn import DQNTestAgent class VQN(ParallelAgent): ''' Vanilla Q-Network (VQN). VQN is an implementation of the Q-learning algorithm found in the Sutton and Barto (2018) textbook. Q-learning algorithms attempt to learning the optimal policy while executing a (generally) suboptimal policy (typically epsilon-greedy). In theory, This allows the agent to gain the benefits of exploration without sacrificing the performance of the final policy. However, the cost of this is that Q-learning is generally less stable than its on-policy bretheren, SARSA. http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf Args: q (QNetwork): An Approximation of the Q function. policy (GreedyPolicy): A policy derived from the Q-function. discount_factor (float): Discount factor for future rewards. ''' def __init__(self, q, policy, discount_factor=0.99): self.q = q self.policy = policy self.discount_factor = discount_factor self._state = None self._action = None def act(self, state): self._train(state.reward, state) action = self.policy.no_grad(state) self._state = state self._action = action return action def eval(self, state): return self.policy.eval(state) def _train(self, reward, next_state): if self._state: # forward pass value = self.q(self._state, self._action) # compute target target = reward + self.discount_factor * torch.max(self.q.target(next_state), dim=1)[0] # compute loss loss = mse_loss(value, target) # backward pass self.q.reinforce(loss) class VQNTestAgent(Agent, ParallelAgent): def __init__(self, policy): self.policy = policy def act(self, state): return self.policy.eval(state)
src/einsteinpy/symbolic/predefined/ernst.py
bibek22/einsteinpy
485
11077395
from sympy import diag, exp, sin, sqrt, symbols from einsteinpy.symbolic import constants from einsteinpy.symbolic.metric import MetricTensor def Ernst(B=symbols("B"), M=symbols("M")): """ Black holes in a magnetic universe. J. Math. Phys., 17:54–56, 1976. <NAME>. Parameters ---------- M : ~sympy.core.basic.Basic or int or float Mass of the black hole. Defaults to ``M``. B : ~sympy.core.basic.Basic or int or float The magnetic field strength Defaults to ``B``. """ coords = symbols("t r theta phi") t, r, th, ph = coords # Helper functions lambd = 1 + ((B * r * sin(th)) ** 2) w = 1 - ((2 * M) / r) # define the metric metric = diag( -1 * (lambd ** 2) * w, (lambd ** 2) / w, ((r * lambd) ** 2), (((r * sin(th)) / lambd) ** 2), ).tolist() return MetricTensor(metric, coords, "ll", name="ErnstMetric")
tacker/tests/unit/objects/test_vnf_software_images.py
takahashi-tsc/tacker
116
11077405
# Copyright (c) 2019 NTT DATA # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from tacker.common import exceptions from tacker import context from tacker import objects from tacker.tests.unit.db.base import SqlTestCase from tacker.tests.unit.objects import fakes from tacker.tests import uuidsentinel class TestVnfSoftwareImages(SqlTestCase): def setUp(self): super(TestVnfSoftwareImages, self).setUp() self.context = context.get_admin_context() self.vnf_package = self._create_vnf_package() self.vnf_deployment_flavour = self._create_vnf_deployment_flavour() self.vnf_softwate_images = self._create_vnf_softwate_images() def _create_vnf_package(self): vnfpkgm = objects.VnfPackage(context=self.context, **fakes.vnf_package_data) vnfpkgm.create() return vnfpkgm def _create_vnf_deployment_flavour(self): flavour_data = fakes.vnf_deployment_flavour flavour_data.update({'package_uuid': self.vnf_package.id}) vnf_deployment_flavour = objects.VnfDeploymentFlavour( context=self.context, **flavour_data) vnf_deployment_flavour.create() return vnf_deployment_flavour def _create_vnf_softwate_images(self): software_image = fakes.software_image software_image.update( {'flavour_uuid': self.vnf_deployment_flavour.id}) vnf_soft_image_obj = objects.VnfSoftwareImage( context=self.context, **software_image) vnf_soft_image_obj.create() return vnf_soft_image_obj def test_create(self): software_image = fakes.software_image software_image.update( {'flavour_uuid': self.vnf_deployment_flavour.id}) vnf_soft_image_obj = objects.VnfSoftwareImage( context=self.context, **software_image) vnf_soft_image_obj.create() self.assertTrue(vnf_soft_image_obj.id) def test_software_image_create_with_id(self): software_image = fakes.software_image software_image.update({'id': uuidsentinel.id}) vnf_soft_image_obj = objects.VnfSoftwareImage( context=self.context, **software_image) self.assertRaises( exceptions.ObjectActionError, vnf_soft_image_obj.create) def test_get_by_id(self): vnf_software_images = objects.VnfSoftwareImage.get_by_id( self.context, self.vnf_softwate_images.id, expected_attrs=None) self.compare_obj(self.vnf_softwate_images, vnf_software_images) def test_get_by_id_with_no_existing_id(self): self.assertRaises( exceptions.VnfSoftwareImageNotFound, objects.VnfSoftwareImage.get_by_id, self.context, uuidsentinel.invalid_uuid) def test_attribute_with_valid_data(self): data = {'id': self.vnf_softwate_images.id} vnf_software_image_obj = objects.VnfSoftwareImage( context=self.context, **data) vnf_software_image_obj.obj_load_attr('name') self.assertEqual('test', vnf_software_image_obj.name) def test_invalid_attribute(self): self.assertRaises(exceptions.ObjectActionError, self.vnf_softwate_images.obj_load_attr, 'invalid') def test_obj_load_attr_without_context(self): data = {'id': self.vnf_softwate_images.id} vnf_software_image_obj = objects.VnfSoftwareImage(**data) self.assertRaises(exceptions.OrphanedObjectError, vnf_software_image_obj.obj_load_attr, 'name') def test_obj_load_attr_without_id_in_object(self): data = {'name': self.vnf_softwate_images.name} vnf_software_image_obj = objects.VnfSoftwareImage( context=self.context, **data) self.assertRaises(exceptions.ObjectActionError, vnf_software_image_obj.obj_load_attr, 'name')
kivy/tests/test_fbo_py2py3.py
Kolandiolaka/kivy
13,889
11077454
<reponame>Kolandiolaka/kivy import unittest from kivy.tests.common import GraphicUnitTest from kivy.uix.widget import Widget from kivy.graphics import Fbo, Color, Rectangle class FboTest(Widget): def __init__(self, **kwargs): super(FboTest, self).__init__(**kwargs) self.positions = [ (260.0, 260.0), (192.0, 192.0), (96.0, 192.0), (192.0, 96.0), (96.0, 96.0), (32.0, 192.0), (192.0, 32.0), (32.0, 32.0) ] self.fbo = Fbo(size=(256, 256)) with self.fbo: Color(0.56789, 0, 0, 1) Rectangle(size=(256, 64)) Color(0, 0.56789, 0, 1) Rectangle(size=(64, 256)) Color(0.56789, 0, 0, .5) Rectangle(pos=(64, 64), size=(192, 64)) Color(0, 0.56789, 0, .5) Rectangle(pos=(64, 64), size=(64, 192)) self.fbo.draw() class FBOPy2Py3TestCase(GraphicUnitTest): def test_fbo_get_pixel_color(self): fbow = FboTest() render_error = 2 values = [ # out of bounds of FBO (tuple, int, (0, 0, 0, 0)), # in FBO, black (list, int, [0, 0, 0, 0]), # Color(0, 0.56789, 0, .5) (list, int, [0, 72, 0, 128]), # Color(0.56789, 0, 0, .5) (list, int, [72, 0, 0, 128]), # overlap above 2 w/ alpha (list, int, [36, 72, 0, 255]), # Color(0, 0.56789, 0, 1) (list, int, [0, 145, 0, 255]), # Color(0.56789, 0, 0, 1) (list, int, [145, 0, 0, 255]), # overlap above 2 w/o alpha (list, int, [0, 145, 0, 255]), ] for i, pos in enumerate(fbow.positions): c = fbow.fbo.get_pixel_color(pos[0], pos[1]) # returned class self.assertTrue(isinstance(c, values[i][0])) # returned types in container for v in c: self.assertTrue(isinstance(v, values[i][1])) # returned values for j, val in enumerate(c): self.assertAlmostEqual( val, values[i][2][j], delta=render_error ) if __name__ == '__main__': unittest.main()
cv2/tkinter-CV - with buttons to start and stop/main.py
whitmans-max/python-examples
140
11077468
#!/usr/bin/env python3 import tkinter as tk from PIL import Image, ImageTk import cv2 # --- functions --- def play(): ''' start stream (run_camera and update_image) and change state of buttons ''' global run_camera if not run_camera: run_camera = True button_play['state'] = 'disabled' button_stop['state'] = 'normal' update_image() def stop(): ''' stop stream (run_camera) and change state of buttons ''' global run_camera if run_camera: run_camera = False button_play['state'] = 'normal' button_stop['state'] = 'disabled' def update_image(): '''executed frequencally, it updates frame/image on canvas''' # read one frame (and "return" status) ret, frame = cap.read() if ret is None: print("Can't read from camera") else: image = Image.fromarray(frame) photo.paste(image) if run_camera: root.after(10, update_image) def save_image(): '''save current frame in file''' image.save('output.png') # --- main --- # open stream cap = cv2.VideoCapture(0) # local (built-in) camera # check if opened if not cap.isOpened(): print("Can't open camera") cap.release() exit(1) # get first frame ret, frame = cap.read() if ret is None: print("Can't read from camera") cap.release() exit(1) # --- # control stream on canvas run_camera = False # --- root = tk.Tk() image = Image.fromarray(frame) photo = ImageTk.PhotoImage(image) canvas = tk.Canvas(root, width=photo.width(), height=photo.height()) canvas.pack(fill='both', expand=True) canvas.create_image((0,0), image=photo, anchor='nw') # --- buttons = tk.Frame(root) buttons.pack(fill='x') button_play = tk.Button(buttons, text="Play", command=play) button_play.pack(side='left') button_stop = tk.Button(buttons, text="Stop", command=stop, state='disabled') button_stop.pack(side='left') button_save = tk.Button(buttons, text="Save Image", command=save_image) button_save.pack(side='left') # --- root.mainloop() # --- # close stream cap.release()
examples/quicksqlviews/app/models.py
NeolithEra/Flask-AppBuilder
3,862
11077473
import datetime from flask_appbuilder import Model from sqlalchemy import Column, Date, ForeignKey, Integer, MetaData, String, Table from sqlalchemy.orm import relationship mindate = datetime.date(datetime.MINYEAR, 1, 1) _mt = MetaData() class ContactGroup(Model): id = Column(Integer, primary_key=True) name = Column(String(50), unique=True, nullable=False) def __repr__(self): return self.name class Gender(Model): id = Column(Integer, primary_key=True) name = Column(String(50), unique=True, nullable=False) def __repr__(self): return self.name class ContactGroupView(Model): """ First create the view on SQL: create view contact_group_view as select g.id as id, count(*) as group_count, g.name as group_name from contact_group as g, contact as c where c.contact_group_id=g.id group by g.name; """ __table__ = Table( "contact_group_view", _mt, Column("id", Integer, primary_key=True), Column("group_count", Integer), Column("group_name", String(150)), ) class Contact(Model): id = Column(Integer, primary_key=True) name = Column(String(150), unique=True, nullable=False) address = Column(String(564)) birthday = Column(Date, nullable=True) personal_phone = Column(String(20)) personal_celphone = Column(String(20)) contact_group_id = Column(Integer, ForeignKey("contact_group.id"), nullable=False) contact_group = relationship("ContactGroup") gender_id = Column(Integer, ForeignKey("gender.id"), nullable=False) gender = relationship("Gender") def __repr__(self): return self.name def month_year(self): date = self.birthday or mindate return datetime.datetime(date.year, date.month, 1) or mindate def year(self): date = self.birthday or mindate return datetime.datetime(date.year, 1, 1)
setup.py
andreubernadserra/cadquery
1,423
11077496
# Copyright 2015 Parametric Products Intellectual Holdings, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from setuptools import setup, find_packages # if we are building in travis, use the build number as the sub-minor version version = "2.1" if "TRAVIS_TAG" in os.environ.keys(): version = os.environ["TRAVIS_TAG"] setup( name="cadquery", version=version, url="https://github.com/dcowden/cadquery", license="Apache Public License 2.0", author="<NAME>", author_email="<EMAIL>", description="CadQuery is a parametric scripting language for creating and traversing CAD models", long_description=open("README.md").read(), packages=find_packages(exclude=("tests",)), include_package_data=True, zip_safe=False, platforms="any", test_suite="tests", classifiers=[ "Development Status :: 5 - Production/Stable", #'Development Status :: 6 - Mature', #'Development Status :: 7 - Inactive', "Intended Audience :: Developers", "Intended Audience :: End Users/Desktop", "Intended Audience :: Information Technology", "Intended Audience :: Science/Research", "Intended Audience :: System Administrators", "License :: OSI Approved :: Apache Software License", "Operating System :: POSIX", "Operating System :: MacOS", "Operating System :: Unix", "Programming Language :: Python", "Topic :: Software Development :: Libraries :: Python Modules", "Topic :: Internet", "Topic :: Scientific/Engineering", ], )
tensorlayer/layers/extend.py
Howdy-Personally/tensorlayer-master
4,484
11077502
<reponame>Howdy-Personally/tensorlayer-master<gh_stars>1000+ #! /usr/bin/python # -*- coding: utf-8 -*- import tensorflow as tf from tensorlayer import logging from tensorlayer.decorators import deprecated_alias from tensorlayer.layers.core import Layer __all__ = [ 'ExpandDims', 'Tile', ] class ExpandDims(Layer): """ The :class:`ExpandDims` class inserts a dimension of 1 into a tensor's shape, see `tf.expand_dims() <https://www.tensorflow.org/api_docs/python/tf/expand_dims>`__ . Parameters ---------- axis : int The dimension index at which to expand the shape of input. name : str A unique layer name. If None, a unique name will be automatically assigned. Examples -------- >>> x = tl.layers.Input([10, 3], name='in') >>> y = tl.layers.ExpandDims(axis=-1)(x) [10, 3, 1] """ def __init__( self, axis, name=None # 'expand_dims', ): super(ExpandDims, self).__init__(name) self.axis = axis self.build((None, )) self._built = True logging.info("ExpandDims %s: axis: %d" % (self.name, self.axis)) def __repr__(self): s = '{classname}(' s += 'axis={axis},' s += 'name={name}' s += ")" return s.format(classname=self.__class__.__name__, **self.__dict__) def build(self, inputs_shape): pass # @tf.function def forward(self, inputs): outputs = tf.expand_dims(inputs, axis=self.axis, name=self.name) return outputs class Tile(Layer): """ The :class:`Tile` class constructs a tensor by tiling a given tensor, see `tf.tile() <https://www.tensorflow.org/api_docs/python/tf/tile>`__ . Parameters ---------- multiples: tensor Must be one of the following types: int32, int64. 1-D Length must be the same as the number of dimensions in input. name : None or str A unique layer name. Examples -------- >>> x = tl.layers.Input([10, 3], name='in') >>> y = tl.layers.Tile(multiples=[2, 3])(x) [20, 9] """ def __init__(self, multiples=None, name=None): #'tile'): super(Tile, self).__init__(name) self.multiples = multiples self.build((None, )) self._built = True logging.info("Tile %s: multiples: %s" % (self.name, self.multiples)) def __repr__(self): s = '{classname}(' s += 'multiples={multiples},' s += 'name={name}' s += ")" return s.format(classname=self.__class__.__name__, **self.__dict__) def build(self, inputs_shape): pass # @tf.function def forward(self, inputs): outputs = tf.tile(inputs, multiples=self.multiples, name=self.name) return outputs
tests/test_async_cursor.py
jobteaser-oss/PyAthena
363
11077508
# -*- coding: utf-8 -*- import contextlib import time import unittest from datetime import datetime from random import randint from pyathena.async_cursor import AsyncCursor, AsyncDictCursor from pyathena.error import NotSupportedError, ProgrammingError from pyathena.model import AthenaQueryExecution from pyathena.result_set import AthenaResultSet from tests import WithConnect from tests.conftest import SCHEMA from tests.util import with_cursor class TestAsyncCursor(unittest.TestCase, WithConnect): @with_cursor(cursor_class=AsyncCursor) def test_fetchone(self, cursor): query_id, future = cursor.execute("SELECT * FROM one_row") result_set = future.result() self.assertEqual(result_set.rownumber, 0) self.assertEqual(result_set.fetchone(), (1,)) self.assertEqual(result_set.rownumber, 1) self.assertIsNone(result_set.fetchone()) self.assertIsNotNone(result_set.query_id) self.assertIsNotNone(result_set.query) self.assertEqual(result_set.state, AthenaQueryExecution.STATE_SUCCEEDED) self.assertIsNone(result_set.state_change_reason) self.assertIsNotNone(result_set.completion_date_time) self.assertIsInstance(result_set.completion_date_time, datetime) self.assertIsNotNone(result_set.submission_date_time) self.assertIsInstance(result_set.submission_date_time, datetime) self.assertIsNotNone(result_set.data_scanned_in_bytes) self.assertIsNotNone(result_set.engine_execution_time_in_millis) self.assertIsNotNone(result_set.query_queue_time_in_millis) self.assertIsNotNone(result_set.total_execution_time_in_millis) # self.assertIsNotNone(result_set.query_planning_time_in_millis) # TODO flaky test # self.assertIsNotNone(result_set.service_processing_time_in_millis) # TODO flaky test self.assertIsNotNone(result_set.output_location) self.assertIsNone(result_set.data_manifest_location) @with_cursor(cursor_class=AsyncCursor) def test_fetchmany(self, cursor): query_id, future = cursor.execute("SELECT * FROM many_rows LIMIT 15") result_set = future.result() actual1 = result_set.fetchmany(10) self.assertEqual(len(actual1), 10) self.assertEqual(actual1, [(i,) for i in range(10)]) actual2 = result_set.fetchmany(10) self.assertEqual(len(actual2), 5) self.assertEqual(actual2, [(i,) for i in range(10, 15)]) @with_cursor(cursor_class=AsyncCursor) def test_fetchall(self, cursor): query_id, future = cursor.execute("SELECT * FROM one_row") result_set = future.result() self.assertEqual(result_set.fetchall(), [(1,)]) query_id, future = cursor.execute("SELECT a FROM many_rows ORDER BY a") result_set = future.result() self.assertEqual(result_set.fetchall(), [(i,) for i in range(10000)]) @with_cursor(cursor_class=AsyncCursor) def test_iterator(self, cursor): query_id, future = cursor.execute("SELECT * FROM one_row") result_set = future.result() self.assertEqual(list(result_set), [(1,)]) self.assertRaises(StopIteration, result_set.__next__) @with_cursor(cursor_class=AsyncCursor) def test_arraysize(self, cursor): cursor.arraysize = 5 query_id, future = cursor.execute("SELECT * FROM many_rows LIMIT 20") result_set = future.result() self.assertEqual(len(result_set.fetchmany()), 5) @with_cursor(cursor_class=AsyncCursor) def test_arraysize_default(self, cursor): self.assertEqual(cursor.arraysize, AthenaResultSet.DEFAULT_FETCH_SIZE) @with_cursor(cursor_class=AsyncCursor) def test_invalid_arraysize(self, cursor): with self.assertRaises(ProgrammingError): cursor.arraysize = 10000 with self.assertRaises(ProgrammingError): cursor.arraysize = -1 @with_cursor(cursor_class=AsyncCursor) def test_description(self, cursor): query_id, future = cursor.execute("SELECT 1 AS foobar FROM one_row") result_set = future.result() self.assertEqual( result_set.description, [("foobar", "integer", None, None, 10, 0, "UNKNOWN")], ) future = cursor.description(query_id) description = future.result() self.assertEqual(result_set.description, description) @with_cursor(cursor_class=AsyncCursor) def test_query_execution(self, cursor): query = "SELECT * FROM one_row" query_id, future = cursor.execute(query) result_set = future.result() future = cursor.query_execution(query_id) query_execution = future.result() self.assertEqual(query_execution.database, SCHEMA) self.assertIsNotNone(query_execution.query_id) self.assertEqual(query_execution.query, query) self.assertEqual( query_execution.statement_type, AthenaQueryExecution.STATEMENT_TYPE_DML ) self.assertEqual(query_execution.state, AthenaQueryExecution.STATE_SUCCEEDED) self.assertIsNone(query_execution.state_change_reason) self.assertIsNotNone(query_execution.completion_date_time) self.assertIsInstance(query_execution.completion_date_time, datetime) self.assertIsNotNone(query_execution.submission_date_time) self.assertIsInstance(query_execution.submission_date_time, datetime) self.assertIsNotNone(query_execution.data_scanned_in_bytes) self.assertIsNotNone(query_execution.engine_execution_time_in_millis) self.assertIsNotNone(query_execution.query_queue_time_in_millis) self.assertIsNotNone(query_execution.total_execution_time_in_millis) # TODO flaky test # self.assertIsNotNone(query_execution.query_planning_time_in_millis) # self.assertIsNotNone(query_execution.service_processing_time_in_millis) self.assertIsNotNone(query_execution.output_location) self.assertIsNone(query_execution.encryption_option) self.assertIsNone(query_execution.kms_key) self.assertEqual(query_execution.work_group, "primary") self.assertEqual(result_set.database, query_execution.database) self.assertEqual(result_set.query_id, query_execution.query_id) self.assertEqual(result_set.query, query_execution.query) self.assertEqual(result_set.statement_type, query_execution.statement_type) self.assertEqual(result_set.state, query_execution.state) self.assertEqual( result_set.state_change_reason, query_execution.state_change_reason ) self.assertEqual( result_set.completion_date_time, query_execution.completion_date_time ) self.assertEqual( result_set.submission_date_time, query_execution.submission_date_time ) self.assertEqual( result_set.data_scanned_in_bytes, query_execution.data_scanned_in_bytes ) self.assertEqual( result_set.engine_execution_time_in_millis, query_execution.engine_execution_time_in_millis, ) self.assertEqual( result_set.query_queue_time_in_millis, query_execution.query_queue_time_in_millis, ) self.assertEqual( result_set.total_execution_time_in_millis, query_execution.total_execution_time_in_millis, ) self.assertEqual( result_set.query_planning_time_in_millis, query_execution.query_planning_time_in_millis, ) self.assertEqual( result_set.service_processing_time_in_millis, query_execution.service_processing_time_in_millis, ) self.assertEqual(result_set.output_location, query_execution.output_location) self.assertEqual( result_set.data_manifest_location, query_execution.data_manifest_location ) self.assertEqual( result_set.encryption_option, query_execution.encryption_option ) self.assertEqual(result_set.kms_key, query_execution.kms_key) self.assertEqual(result_set.work_group, query_execution.work_group) @with_cursor(cursor_class=AsyncCursor) def test_poll(self, cursor): query_id, _ = cursor.execute("SELECT * FROM one_row") future = cursor.poll(query_id) query_execution = future.result() self.assertIn( query_execution.state, [ AthenaQueryExecution.STATE_QUEUED, AthenaQueryExecution.STATE_RUNNING, AthenaQueryExecution.STATE_SUCCEEDED, AthenaQueryExecution.STATE_FAILED, AthenaQueryExecution.STATE_CANCELLED, ], ) @with_cursor(cursor_class=AsyncCursor) def test_bad_query(self, cursor): query_id, future = cursor.execute( "SELECT does_not_exist FROM this_really_does_not_exist" ) result_set = future.result() self.assertEqual(result_set.state, AthenaQueryExecution.STATE_FAILED) self.assertIsNotNone(result_set.state_change_reason) @with_cursor(cursor_class=AsyncCursor) def test_cancel(self, cursor): query_id, future = cursor.execute( """ SELECT a.a * rand(), b.a * rand() FROM many_rows a CROSS JOIN many_rows b """ ) time.sleep(randint(1, 5)) cursor.cancel(query_id) result_set = future.result() self.assertEqual(result_set.state, AthenaQueryExecution.STATE_CANCELLED) # self.assertIsNotNone(result_set.state_change_reason) # TODO flaky test self.assertIsNone(result_set.description) self.assertIsNone(result_set.fetchone()) self.assertEqual(result_set.fetchmany(), []) self.assertEqual(result_set.fetchall(), []) def test_open_close(self): with contextlib.closing(self.connect()) as conn: with conn.cursor(AsyncCursor): pass def test_no_ops(self): conn = self.connect() cursor = conn.cursor(AsyncCursor) self.assertRaises( NotSupportedError, lambda: cursor.executemany("SELECT * FROM one_row", []) ) cursor.close() conn.close() class TestAsyncDictCursor(unittest.TestCase, WithConnect): @with_cursor(cursor_class=AsyncDictCursor) def test_fetchone(self, cursor): query_id, future = cursor.execute("SELECT * FROM one_row") result_set = future.result() self.assertEqual(result_set.fetchone(), {"number_of_rows": 1}) @with_cursor(cursor_class=AsyncDictCursor) def test_fetchmany(self, cursor): query_id, future = cursor.execute("SELECT * FROM many_rows LIMIT 15") result_set = future.result() actual1 = result_set.fetchmany(10) self.assertEqual(len(actual1), 10) self.assertEqual(actual1, [{"a": i} for i in range(10)]) actual2 = result_set.fetchmany(10) self.assertEqual(len(actual2), 5) self.assertEqual(actual2, [{"a": i} for i in range(10, 15)]) @with_cursor(cursor_class=AsyncDictCursor) def test_fetchall(self, cursor): query_id, future = cursor.execute("SELECT * FROM one_row") result_set = future.result() self.assertEqual(result_set.fetchall(), [{"number_of_rows": 1}]) query_id, future = cursor.execute("SELECT a FROM many_rows ORDER BY a") result_set = future.result() self.assertEqual(result_set.fetchall(), [{"a": i} for i in range(10000)])
brainrender/gui/widgets/screenshot_modal.py
crsanderford/brainrender
226
11077513
<filename>brainrender/gui/widgets/screenshot_modal.py from qtpy.QtWidgets import QDialog, QLabel, QVBoxLayout from qtpy import QtCore from brainrender.gui.style import style, update_css class ScreenshotModal(QDialog): left = 250 top = 250 width = 400 height = 120 def __init__(self, main_window, palette): """ Creates a new window for user to input which regions to add to scene. Arguments: ---------- main_window: reference to the App's main window palette: main_window's palette, used to style widgets """ super().__init__() self.setWindowTitle("Add brain regions") self.ui() self.main_window = main_window self.setStyleSheet(update_css(style, palette)) # Start timer to autoclose self.timer = QtCore.QTimer(self) self.timer.setInterval(1500) self.timer.timeout.connect(self.close) self.timer.start() def ui(self): """ Define UI's elements """ self.setGeometry(self.left, self.top, self.width, self.height) layout = QVBoxLayout() label = QLabel(self) label.setStyleSheet("font-size: 18pt; font-weight: 700;") label.setObjectName("PopupLabel") label.setText("Screenshot saved") layout.addWidget(label) self.setLayout(layout) self.setModal(True) self.show()
lib/galaxy/jobs/runners/util/process_groups.py
rikeshi/galaxy
1,085
11077530
import errno import logging import os import signal from time import sleep log = logging.getLogger(__name__) def check_pg(pgid): """Check whether processes in process group pgid are still alive.""" try: (pid, exit_status) = os.waitpid(-pgid, os.WNOHANG) except OSError as e: if e.errno == errno.ECHILD: log.debug("check_pg(): No process found in process group %d", pgid) else: log.warning("check_pg(): Got errno %s when checking process group %d: %s", errno.errorcode[e.errno], pgid, e.strerror) return False # Since we are passing os.WNOHANG to os.waitpid(), pid is 0 if no process # status is available immediately. return pid == 0 def kill_pg(pgid): """Kill all processes in process group pgid.""" for sig in [signal.SIGTERM, signal.SIGKILL]: try: os.killpg(pgid, sig) except OSError as e: if e.errno == errno.ESRCH: return log.warning("Got errno %s when sending signal %d to process group %d: %s", errno.errorcode[e.errno], sig, pgid, e.strerror) sleep(1) if not check_pg(pgid): log.debug("Processes in process group %d successfully killed with signal %d", pgid, sig) return else: log.warning("Some process in process group %d refuses to die after signaling TERM/KILL", pgid)
src/azure-cli/azure/cli/command_modules/natgateway/tests/latest/test_natgateway_commands.py
YuanyuanNi/azure-cli
3,287
11077536
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from azure.cli.testsdk import ScenarioTest, ResourceGroupPreparer class NatGatewayScenarioTests(ScenarioTest): @ResourceGroupPreparer(location='eastus2') def test_natgateway(self, resource_group, resource_group_location): self.kwargs.update({ 'name': "ng1", 'idle_timeout': 4, 'sku': "Standard", 'ip_addr': "pip", 'ip_prefix': "prefix", 'idle_timeout_updated': 5, 'zone': 2, 'location': resource_group_location, 'resource_type': 'Microsoft.Network/NatGateways' }) # create public ip address self.cmd('az network public-ip create -g {rg} -n {ip_addr} --location {location} --zone {zone} --sku Standard ') # create public ip prefix self.cmd('az network public-ip prefix create --length 29 --location {location} --name {ip_prefix} --resource-group {rg} --zone {zone}') self.cmd('az network nat gateway create --resource-group {rg} --public-ip-prefixes {ip_prefix} --name {name} --location {location} --public-ip-addresses {ip_addr} --idle-timeout {idle_timeout} --zone {zone}', checks=[ self.check('resourceGroup', '{rg}'), self.check('idleTimeoutInMinutes', '{idle_timeout}'), self.check("contains(publicIpAddresses[0].id, '{ip_addr}')", True), self.check("contains(publicIpPrefixes[0].id, '{ip_prefix}')", True), self.check('sku.name', 'Standard'), self.check('location', '{location}'), self.check('zones[0]', '{zone}') ]) self.cmd('az network nat gateway update -g {rg} --name {name} --idle-timeout {idle_timeout_updated}', checks=self.check('idleTimeoutInMinutes', 5)) self.cmd('az network nat gateway list -g {rg}', checks=self.check('length(@)', 1)) self.cmd('az network nat gateway show --resource-group {rg} --name {name}', checks=self.check('name', '{name}')) # delete and verify item is removed self.cmd('az network nat gateway delete --resource-group {rg} --name {name}') self.cmd('az network nat gateway list -g {rg}', checks=self.check('length(@)', 0)) @ResourceGroupPreparer(location='eastus2') def test_natgateway_empty_create(self, resource_group, resource_group_location): self.kwargs.update({ 'name': "ng1", 'idle_timeout': 4, 'sku': "Standard", 'ip_addr': "pip", 'ip_prefix': "prefix", 'idle_timeout_updated': 5, 'zone': 2, 'location': resource_group_location, 'resource_type': 'Microsoft.Network/NatGateways' }) self.cmd( 'az network nat gateway create --resource-group {rg} --name {name} --location {location} --idle-timeout {idle_timeout} --zone {zone}', checks=[ self.check('resourceGroup', '{rg}'), self.check('idleTimeoutInMinutes', '{idle_timeout}'), self.check('sku.name', 'Standard'), self.check('location', '{location}'), self.check('zones[0]', '{zone}') ])
src/bindings/python/src/openvino/runtime/opset2/ops.py
artkuli/openvino
1,127
11077567
# -*- coding: utf-8 -*- # Copyright (C) 2018-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 """Factory functions for all openvino ops.""" from typing import Callable, Iterable, List, Optional, Set, Union import numpy as np from functools import partial from openvino.runtime import Node, Shape from openvino.runtime.op import Constant, Parameter from openvino.runtime.opset_utils import _get_node_factory from openvino.runtime.utils.decorators import binary_op, nameable_op, unary_op from openvino.runtime.utils.input_validation import ( assert_list_of_ints, check_valid_attributes, is_non_negative_value, is_positive_value, ) from openvino.runtime.utils.node_factory import NodeFactory from openvino.runtime.utils.types import ( NodeInput, NumericData, NumericType, ScalarData, TensorShape, as_node, as_nodes, get_dtype, get_element_type, get_element_type_str, make_constant_node, ) _get_node_factory_opset2 = partial(_get_node_factory, "opset2") # -------------------------------------------- ops ------------------------------------------------ @nameable_op def batch_to_space( data: NodeInput, block_shape: NodeInput, crops_begin: NodeInput, crops_end: NodeInput, name: Optional[str] = None, ) -> Node: """Perform BatchToSpace operation on the input tensor. BatchToSpace permutes data from the batch dimension of the data tensor into spatial dimensions. :param data: Node producing the data tensor. :param block_shape: The sizes of the block of values to be moved. :param crops_begin: Specifies the amount to crop from the beginning along each axis of `data`. :param crops_end: Specifies the amount to crop from the end along each axis of `data`. :param name: Optional output node name. :return: The new node performing a BatchToSpace operation. """ return _get_node_factory_opset2().create( "BatchToSpace", as_nodes(data, block_shape, crops_begin, crops_end), ) @unary_op def gelu(node: NodeInput, name: Optional[str] = None) -> Node: r"""Perform Gaussian Error Linear Unit operation element-wise on data from input node. Computes GELU function: \f[ f(x) = 0.5\cdot x\cdot(1 + erf( \dfrac{x}{\sqrt{2}}) \f] For more information refer to [Gaussian Error Linear Unit (GELU)](https://arxiv.org/pdf/1606.08415.pdf>) :param node: Input tensor. One of: input node, array or scalar. :param name: Optional output node name. :return: The new node performing a GELU operation on its input data element-wise. """ return _get_node_factory_opset2().create("Gelu", [node]) @nameable_op def mvn( data: Node, across_channels: bool = False, normalize_variance: bool = False, eps: float = 1e-9, name: str = None, ) -> Node: r"""Perform Mean Variance Normalization operation on data from input node. Computes MVN on the input tensor `data` (called `X`) using formula: \f[ Y = \dfrac{X-EX}{\sqrt{E(X-EX)^2}} \f] :param data: The node with data tensor. :param across_channels: Denotes if mean values are shared across channels. :param normalize_variance: Denotes whether to perform variance normalization. :param eps: The number added to the variance to avoid division by zero when normalizing the value. Scalar value. :param name: Optional output node name. :return: The new node performing a MVN operation on input tensor. """ return _get_node_factory_opset2().create( "MVN", [data], { "across_channels": across_channels, "normalize_variance": normalize_variance, "eps": eps, }, ) @nameable_op def reorg_yolo(input: Node, stride: List[int], name: Optional[str] = None) -> Node: """Return a node which produces the ReorgYolo operation. :param input: Input data. :param stride: Stride to reorganize input by. :param name: Optional name for output node. :return: ReorgYolo node. """ return _get_node_factory_opset2().create("ReorgYolo", [input], {"stride": stride}) @nameable_op def roi_pooling( input: NodeInput, coords: NodeInput, output_size: TensorShape, spatial_scale: NumericData, method: str, name: Optional[str] = None, ) -> Node: """Return a node which produces an ROIPooling operation. :param input: Input feature map `{N, C, ...}`. :param coords: Coordinates of bounding boxes. :param output_size: Height/Width of ROI output features (shape). :param spatial_scale: Ratio of input feature map over input image size (float). :param method: Method of pooling - string: "max" or "bilinear". :return: ROIPooling node. """ method = method.lower() return _get_node_factory_opset2().create( "ROIPooling", as_nodes(input, coords), { "output_size": Shape(output_size), "spatial_scale": spatial_scale, "method": method, }, ) @nameable_op def space_to_batch( data: NodeInput, block_shape: NodeInput, pads_begin: NodeInput, pads_end: NodeInput, name: Optional[str] = None, ) -> Node: """Perform SpaceToBatch operation on the input tensor. SpaceToBatch permutes data tensor blocks of spatial data into batch dimension. The operator returns a copy of the input tensor where values from spatial blocks dimensions are moved in the batch dimension :param data: Node producing the data tensor. :param block_shape: The sizes of the block of values to be moved. :param pads_begin: Specifies the padding for the beginning along each axis of `data`. :param pads_end: Specifies the padding for the ending along each axis of `data`. :param name: Optional output node name. :return: The new node performing a SpaceToBatch operation. """ return _get_node_factory_opset2().create( "SpaceToBatch", as_nodes(data, block_shape, pads_begin, pads_end), )
examples/python/markov_autoregression.py
CCHiggins/statsmodels
6,931
11077575
<gh_stars>1000+ #!/usr/bin/env python # coding: utf-8 # DO NOT EDIT # Autogenerated from the notebook markov_autoregression.ipynb. # Edit the notebook and then sync the output with this file. # # flake8: noqa # DO NOT EDIT # ## Markov switching autoregression models # This notebook provides an example of the use of Markov switching models # in statsmodels to replicate a number of results presented in Kim and # Nelson (1999). It applies the Hamilton (1989) filter the Kim (1994) # smoother. # # This is tested against the Markov-switching models from E-views 8, which # can be found at http://www.eviews.com/EViews8/ev8ecswitch_n.html#MarkovAR # or the Markov-switching models of Stata 14 which can be found at # http://www.stata.com/manuals14/tsmswitch.pdf. from datetime import datetime from io import BytesIO import matplotlib.pyplot as plt import numpy as np import pandas as pd import requests import statsmodels.api as sm # NBER recessions from pandas_datareader.data import DataReader usrec = DataReader("USREC", "fred", start=datetime(1947, 1, 1), end=datetime(2013, 4, 1)) # ### Hamilton (1989) switching model of GNP # # This replicates Hamilton's (1989) seminal paper introducing Markov- # switching models. The model is an autoregressive model of order 4 in which # the mean of the process switches between two regimes. It can be written: # # $$ # y_t = \mu_{S_t} + \phi_1 (y_{t-1} - \mu_{S_{t-1}}) + \phi_2 (y_{t-2} - # \mu_{S_{t-2}}) + \phi_3 (y_{t-3} - \mu_{S_{t-3}}) + \phi_4 (y_{t-4} - # \mu_{S_{t-4}}) + \varepsilon_t # $$ # # Each period, the regime transitions according to the following matrix of # transition probabilities: # # $$ P(S_t = s_t | S_{t-1} = s_{t-1}) = # \begin{bmatrix} # p_{00} & p_{10} \\ # p_{01} & p_{11} # \end{bmatrix} # $$ # # where $p_{ij}$ is the probability of transitioning *from* regime $i$, # *to* regime $j$. # # The model class is `MarkovAutoregression` in the time-series part of # `statsmodels`. In order to create the model, we must specify the number of # regimes with `k_regimes=2`, and the order of the autoregression with # `order=4`. The default model also includes switching autoregressive # coefficients, so here we also need to specify `switching_ar=False` to # avoid that. # # After creation, the model is `fit` via maximum likelihood estimation. # Under the hood, good starting parameters are found using a number of steps # of the expectation maximization (EM) algorithm, and a quasi-Newton (BFGS) # algorithm is applied to quickly find the maximum. # Get the RGNP data to replicate Hamilton dta = pd.read_stata("https://www.stata-press.com/data/r14/rgnp.dta").iloc[1:] dta.index = pd.DatetimeIndex(dta.date, freq="QS") dta_hamilton = dta.rgnp # Plot the data dta_hamilton.plot(title="Growth rate of Real GNP", figsize=(12, 3)) # Fit the model mod_hamilton = sm.tsa.MarkovAutoregression(dta_hamilton, k_regimes=2, order=4, switching_ar=False) res_hamilton = mod_hamilton.fit() res_hamilton.summary() # We plot the filtered and smoothed probabilities of a recession. Filtered # refers to an estimate of the probability at time $t$ based on data up to # and including time $t$ (but excluding time $t+1, ..., T$). Smoothed refers # to an estimate of the probability at time $t$ using all the data in the # sample. # # For reference, the shaded periods represent the NBER recessions. fig, axes = plt.subplots(2, figsize=(7, 7)) ax = axes[0] ax.plot(res_hamilton.filtered_marginal_probabilities[0]) ax.fill_between(usrec.index, 0, 1, where=usrec["USREC"].values, color="k", alpha=0.1) ax.set_xlim(dta_hamilton.index[4], dta_hamilton.index[-1]) ax.set(title="Filtered probability of recession") ax = axes[1] ax.plot(res_hamilton.smoothed_marginal_probabilities[0]) ax.fill_between(usrec.index, 0, 1, where=usrec["USREC"].values, color="k", alpha=0.1) ax.set_xlim(dta_hamilton.index[4], dta_hamilton.index[-1]) ax.set(title="Smoothed probability of recession") fig.tight_layout() # From the estimated transition matrix we can calculate the expected # duration of a recession versus an expansion. print(res_hamilton.expected_durations) # In this case, it is expected that a recession will last about one year # (4 quarters) and an expansion about two and a half years. # ### Kim, Nelson, and Startz (1998) Three-state Variance Switching # # This model demonstrates estimation with regime heteroskedasticity # (switching of variances) and no mean effect. The dataset can be reached at # http://econ.korea.ac.kr/~cjkim/MARKOV/data/ew_excs.prn. # # The model in question is: # # $$ # \begin{align} # y_t & = \varepsilon_t \\ # \varepsilon_t & \sim N(0, \sigma_{S_t}^2) # \end{align} # $$ # # Since there is no autoregressive component, this model can be fit using # the `MarkovRegression` class. Since there is no mean effect, we specify # `trend='n'`. There are hypothesized to be three regimes for the switching # variances, so we specify `k_regimes=3` and `switching_variance=True` (by # default, the variance is assumed to be the same across regimes). # Get the dataset ew_excs = requests.get( "http://econ.korea.ac.kr/~cjkim/MARKOV/data/ew_excs.prn").content raw = pd.read_table(BytesIO(ew_excs), header=None, skipfooter=1, engine="python") raw.index = pd.date_range("1926-01-01", "1995-12-01", freq="MS") dta_kns = raw.loc[:"1986"] - raw.loc[:"1986"].mean() # Plot the dataset dta_kns[0].plot(title="Excess returns", figsize=(12, 3)) # Fit the model mod_kns = sm.tsa.MarkovRegression(dta_kns, k_regimes=3, trend="n", switching_variance=True) res_kns = mod_kns.fit() res_kns.summary() # Below we plot the probabilities of being in each of the regimes; only in # a few periods is a high-variance regime probable. fig, axes = plt.subplots(3, figsize=(10, 7)) ax = axes[0] ax.plot(res_kns.smoothed_marginal_probabilities[0]) ax.set(title="Smoothed probability of a low-variance regime for stock returns") ax = axes[1] ax.plot(res_kns.smoothed_marginal_probabilities[1]) ax.set( title="Smoothed probability of a medium-variance regime for stock returns") ax = axes[2] ax.plot(res_kns.smoothed_marginal_probabilities[2]) ax.set( title="Smoothed probability of a high-variance regime for stock returns") fig.tight_layout() # ### Filardo (1994) Time-Varying Transition Probabilities # # This model demonstrates estimation with time-varying transition # probabilities. The dataset can be reached at # http://econ.korea.ac.kr/~cjkim/MARKOV/data/filardo.prn. # # In the above models we have assumed that the transition probabilities # are constant across time. Here we allow the probabilities to change with # the state of the economy. Otherwise, the model is the same Markov # autoregression of Hamilton (1989). # # Each period, the regime now transitions according to the following # matrix of time-varying transition probabilities: # # $$ P(S_t = s_t | S_{t-1} = s_{t-1}) = # \begin{bmatrix} # p_{00,t} & p_{10,t} \\ # p_{01,t} & p_{11,t} # \end{bmatrix} # $$ # # where $p_{ij,t}$ is the probability of transitioning *from* regime $i$, # *to* regime $j$ in period $t$, and is defined to be: # # $$ # p_{ij,t} = \frac{\exp\{ x_{t-1}' \beta_{ij} \}}{1 + \exp\{ x_{t-1}' # \beta_{ij} \}} # $$ # # Instead of estimating the transition probabilities as part of maximum # likelihood, the regression coefficients $\beta_{ij}$ are estimated. These # coefficients relate the transition probabilities to a vector of pre- # determined or exogenous regressors $x_{t-1}$. # Get the dataset filardo = requests.get( "http://econ.korea.ac.kr/~cjkim/MARKOV/data/filardo.prn").content dta_filardo = pd.read_table(BytesIO(filardo), sep=" +", header=None, skipfooter=1, engine="python") dta_filardo.columns = ["month", "ip", "leading"] dta_filardo.index = pd.date_range("1948-01-01", "1991-04-01", freq="MS") dta_filardo["dlip"] = np.log(dta_filardo["ip"]).diff() * 100 # Deflated pre-1960 observations by ratio of std. devs. # See hmt_tvp.opt or Filardo (1994) p. 302 std_ratio = (dta_filardo["dlip"]["1960-01-01":].std() / dta_filardo["dlip"][:"1959-12-01"].std()) dta_filardo[ "dlip"][:"1959-12-01"] = dta_filardo["dlip"][:"1959-12-01"] * std_ratio dta_filardo["dlleading"] = np.log(dta_filardo["leading"]).diff() * 100 dta_filardo["dmdlleading"] = dta_filardo["dlleading"] - dta_filardo[ "dlleading"].mean() # Plot the data dta_filardo["dlip"].plot( title="Standardized growth rate of industrial production", figsize=(13, 3)) plt.figure() dta_filardo["dmdlleading"].plot(title="Leading indicator", figsize=(13, 3)) # The time-varying transition probabilities are specified by the # `exog_tvtp` parameter. # # Here we demonstrate another feature of model fitting - the use of a # random search for MLE starting parameters. Because Markov switching models # are often characterized by many local maxima of the likelihood function, # performing an initial optimization step can be helpful to find the best # parameters. # # Below, we specify that 20 random perturbations from the starting # parameter vector are examined and the best one used as the actual starting # parameters. Because of the random nature of the search, we seed the random # number generator beforehand to allow replication of the result. mod_filardo = sm.tsa.MarkovAutoregression( dta_filardo.iloc[2:]["dlip"], k_regimes=2, order=4, switching_ar=False, exog_tvtp=sm.add_constant(dta_filardo.iloc[1:-1]["dmdlleading"]), ) np.random.seed(12345) res_filardo = mod_filardo.fit(search_reps=20) res_filardo.summary() # Below we plot the smoothed probability of the economy operating in a # low-production state, and again include the NBER recessions for # comparison. fig, ax = plt.subplots(figsize=(12, 3)) ax.plot(res_filardo.smoothed_marginal_probabilities[0]) ax.fill_between(usrec.index, 0, 1, where=usrec["USREC"].values, color="gray", alpha=0.2) ax.set_xlim(dta_filardo.index[6], dta_filardo.index[-1]) ax.set(title="Smoothed probability of a low-production state") # Using the time-varying transition probabilities, we can see how the # expected duration of a low-production state changes over time: # res_filardo.expected_durations[0].plot( title="Expected duration of a low-production state", figsize=(12, 3)) # During recessions, the expected duration of a low-production state is # much higher than in an expansion.
backend/data/hdmetor/text_generation/blob/a9b307ce9167b3d9fd40f61407ba6c912634889d/model.py
zhiiker/neural_complete
1,237
11077582
from keras.models import Sequential from keras.layers.recurrent import LSTM from keras.layers.core import Dense, Activation, Dropout def lstm_model(seq_len, total_char): model = Sequential() model.add(LSTM(512, return_sequences=True, input_shape=(seq_len, total_char))) model.add(Dropout(0.4)) model.add(LSTM(512, return_sequences=False)) model.add(Dropout(0.4)) model.add(Dense(total_char)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') return model
demos/imagetagger/setup.py
Ixyk-Wolf/aiohttp-demos
649
11077613
<reponame>Ixyk-Wolf/aiohttp-demos import os import re from setuptools import find_packages, setup REGEXP = re.compile(r"^__version__\W*=\W*'([\d.abrc]+)'") def read_version(): init_py = os.path.join( os.path.dirname(__file__), 'imagetagger', '__init__.py' ) with open(init_py) as f: for line in f: match = REGEXP.match(line) if match is not None: return match.group(1) msg = f'Cannot find version in ${init_py}' raise RuntimeError(msg) install_requires = ['aiohttp', 'aiohttp_jinja2', 'trafaret_config'] setup( name='imagetagger', version=read_version(), description='imagetagger', platforms=['POSIX'], packages=find_packages(), package_data={'': ['config/*.*']}, include_package_data=True, install_requires=install_requires, zip_safe=False, )
tests/orm/test_groups.py
aiidateam/aiida_core
153
11077623
<reponame>aiidateam/aiida_core # -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### # pylint: disable=no-self-use """Test for the Group ORM class.""" import pytest from aiida import orm from aiida.common import exceptions from aiida.tools.graph.deletions import delete_nodes @pytest.mark.usefixtures('aiida_profile_clean') class TestGroups: """Test backend entities and their collections""" def test_count(self): """Test the `count` method.""" node_00 = orm.Data().store() node_01 = orm.Data().store() nodes = [node_00, node_01] group = orm.Group(label='label', description='description').store() group.add_nodes(nodes) assert group.count() == len(nodes) def test_creation(self): """Test the creation of Groups.""" node = orm.Data() stored_node = orm.Data().store() group = orm.Group(label='testgroup') with pytest.raises(exceptions.ModificationNotAllowed): # group unstored group.add_nodes(node) with pytest.raises(exceptions.ModificationNotAllowed): # group unstored group.add_nodes(stored_node) group.store() with pytest.raises(ValueError): # node unstored group.add_nodes(node) group.add_nodes(stored_node) nodes = list(group.nodes) assert len(nodes) == 1 assert nodes[0].pk == stored_node.pk def test_node_iterator(self): """Test the indexing and slicing functionality of the node iterator.""" node_00 = orm.Data().store() node_01 = orm.Data().store() node_02 = orm.Data().store() node_03 = orm.Data().store() nodes = [node_00, node_01, node_02, node_03] group = orm.Group(label='label', description='description').store() group.add_nodes(nodes) # Indexing node_indexed = group.nodes[0] assert isinstance(node_indexed, orm.Data) assert node_indexed.uuid in [node.uuid for node in nodes] # Slicing nodes_sliced = group.nodes[1:3] assert isinstance(nodes_sliced, list) assert len(nodes_sliced) == 2 assert all(isinstance(node, orm.Data) for node in nodes_sliced) assert all(node.uuid in set(node.uuid for node in nodes) for node in nodes_sliced) def test_entry_point(self): """Test the :meth:`aiida.orm.groups.Group.entry_point` property.""" from aiida.plugins.entry_point import get_entry_point_from_string group = orm.Group('label') assert group.entry_point == get_entry_point_from_string('aiida.groups:core') assert orm.Group.entry_point == get_entry_point_from_string('aiida.groups:core') class Custom(orm.Group): pass group = Custom('label') assert group.entry_point is None assert Custom.entry_point is None def test_description(self): """Test the update of the description both for stored and unstored groups.""" node = orm.Data().store() group_01 = orm.Group(label='testgroupdescription1', description='group_01').store() group_01.add_nodes(node) group_02 = orm.Group(label='testgroupdescription2', description='group_02') # Preliminary checks assert group_01.is_stored assert not group_02.is_stored assert group_01.description == 'group_01' assert group_02.description == 'group_02' # Change group_01.description = 'new1' group_02.description = 'new2' # Test that the groups remained in their proper stored state and that # the description was updated assert group_01.is_stored assert not group_02.is_stored assert group_01.description == 'new1' assert group_02.description == 'new2' # Store group_02 and check that the description is OK group_02.store() assert group_02.is_stored assert group_02.description == 'new2' def test_add_nodes(self): """Test different ways of adding nodes.""" node_01 = orm.Data().store() node_02 = orm.Data().store() node_03 = orm.Data().store() nodes = [node_01, node_02, node_03] group = orm.Group(label='test_adding_nodes').store() # Single node group.add_nodes(node_01) # List of nodes group.add_nodes([node_02, node_03]) # Check assert set(_.pk for _ in nodes) == set(_.pk for _ in group.nodes) # Try to add a node that is already present: there should be no problem group.add_nodes(node_01) assert set(_.pk for _ in nodes) == set(_.pk for _ in group.nodes) def test_remove_nodes(self): """Test node removal.""" node_01 = orm.Data().store() node_02 = orm.Data().store() node_03 = orm.Data().store() node_04 = orm.Data().store() nodes = [node_01, node_02, node_03] group = orm.Group(label='test_remove_nodes').store() # Add initial nodes group.add_nodes(nodes) assert set(_.pk for _ in nodes) == set(_.pk for _ in group.nodes) # Remove a node that is not in the group: nothing should happen group.remove_nodes(node_04) assert set(_.pk for _ in nodes) == set(_.pk for _ in group.nodes) # Remove one orm.Node nodes.remove(node_03) group.remove_nodes(node_03) assert set(_.pk for _ in nodes) == set(_.pk for _ in group.nodes) # Remove a list of Nodes and check nodes.remove(node_01) nodes.remove(node_02) group.remove_nodes([node_01, node_02]) assert set(_.pk for _ in nodes) == set(_.pk for _ in group.nodes) def test_clear(self): """Test the `clear` method to remove all nodes.""" node_01 = orm.Data().store() node_02 = orm.Data().store() node_03 = orm.Data().store() nodes = [node_01, node_02, node_03] group = orm.Group(label='test_clear_nodes').store() # Add initial nodes group.add_nodes(nodes) assert set(_.pk for _ in nodes) == set(_.pk for _ in group.nodes) group.clear() assert list(group.nodes) == [] def test_name_desc(self): """Test Group description.""" group = orm.Group(label='testgroup2', description='some desc') assert group.label == 'testgroup2' assert group.description == 'some desc' assert group.is_user_defined group.store() # Same checks after storing assert group.label == 'testgroup2' assert group.is_user_defined assert group.description == 'some desc' # To avoid to find it in further tests orm.Group.collection.delete(group.pk) def test_delete(self): """Test Group deletion.""" node = orm.Data().store() group = orm.Group(label='testgroup3', description='some other desc').store() group_copy = orm.Group.collection.get(label='testgroup3') assert group.uuid == group_copy.uuid group.add_nodes(node) assert len(group.nodes) == 1 orm.Group.collection.delete(group.pk) with pytest.raises(exceptions.NotExistent): # The group does not exist anymore orm.Group.collection.get(label='testgroup3') def test_delete_node(self): """Test deletion of a node that has been assigned to a group.""" node = orm.Data().store() group = orm.Group(label='testgroup', description='some desc').store() group.add_nodes(node) assert len(group.nodes) == 1 delete_nodes([node.pk], dry_run=False) assert len(group.nodes) == 0 def test_rename(self): """Test the renaming of a Group.""" label_original = 'groupie' label_changed = 'nogroupie' group = orm.Group(label=label_original, description='I will be renamed') # Check name changes work before storing assert group.label == label_original group.label = label_changed assert group.label == label_changed # Revert the name to its original and store it group.label = label_original group.store() # Check name changes work after storing assert group.label == label_original group.label = label_changed assert group.label == label_changed def test_rename_existing(self): """Test that renaming to an already existing name is not permitted.""" label_group_a = 'group_a' label_group_b = 'group_b' orm.Group(label=label_group_a, description='I am the Original G').store() # Before storing everything should be fine group_b = orm.Group(label=label_group_a, description='They will try to rename me') # Storing for duplicate group name should trigger UniquenessError with pytest.raises(exceptions.IntegrityError): group_b.store() # Reverting to unique name before storing group_b.label = label_group_b group_b.store() # After storing name change to existing should raise with pytest.raises(exceptions.IntegrityError): group_b.label = label_group_a def test_group_uuid_hashing_for_querybuidler(self): """QueryBuilder results should be reusable and shouldn't brake hashing.""" group = orm.Group(label='test_group') group.store() # Search for the UUID of the stored group builder = orm.QueryBuilder() builder.append(orm.Group, project=['uuid'], filters={'label': {'==': 'test_group'}}) uuid = builder.first(flat=True) # Look the node with the previously returned UUID builder = orm.QueryBuilder() builder.append(orm.Group, project=['id'], filters={'uuid': {'==': uuid}}) # Check that the query doesn't fail builder.all() # And that the results are correct assert builder.count() == 1 assert builder.first(flat=True) == group.pk @pytest.mark.usefixtures('aiida_profile_clean') class TestGroupsSubclasses: """Test rules around creating `Group` subclasses.""" @staticmethod def test_creation_registered(): """Test rules around creating registered `Group` subclasses.""" group = orm.AutoGroup('some-label') assert isinstance(group, orm.AutoGroup) assert group.type_string == 'core.auto' group, _ = orm.AutoGroup.collection.get_or_create('some-auto-group') assert isinstance(group, orm.AutoGroup) assert group.type_string == 'core.auto' @staticmethod def test_loading(): """Test that loading instances from the database returns the correct subclass of `Group`.""" group = orm.Group('normal-group').store() loaded = orm.load_group(group.pk) assert isinstance(loaded, orm.Group) group = orm.AutoGroup('auto-group').store() loaded = orm.load_group(group.pk) assert isinstance(group, orm.AutoGroup) @staticmethod def test_creation_unregistered(): """Test rules around creating `Group` subclasses without a registered entry point.""" # Defining an unregistered subclas should issue a warning and its type string should be set to `None` with pytest.warns(UserWarning): class SubGroup(orm.Group): pass assert SubGroup._type_string is None # pylint: disable=protected-access # Creating an instance is allowed instance = SubGroup(label='subgroup') assert instance._type_string is None # pylint: disable=protected-access # Storing the instance, however, is forbidden and should raise with pytest.raises(exceptions.StoringNotAllowed): instance.store() @staticmethod def test_loading_unregistered(): """Test rules around loading `Group` subclasses without a registered entry point. Storing instances of unregistered subclasses is not allowed so we have to create one sneakily by instantiating a normal group and manipulating the type string directly on the database model. """ group = orm.Group(label='group') group.backend_entity.bare_model.type_string = 'unregistered.subclass' group.store() with pytest.warns(UserWarning): loaded = orm.load_group(group.pk) assert isinstance(loaded, orm.Group) # Removing it as other methods might get a warning instead group_pk = group.pk del group orm.Group.collection.delete(pk=group_pk) @staticmethod def test_querying(): """Test querying for groups with and without subclassing.""" orm.Group(label='group').store() orm.AutoGroup(label='auto-group').store() # Fake a subclass by manually setting the type string group = orm.Group(label='custom-group') group.backend_entity.bare_model.type_string = 'custom.group' group.store() assert orm.QueryBuilder().append(orm.AutoGroup).count() == 1 assert orm.QueryBuilder().append(orm.AutoGroup, subclassing=False).count() == 1 assert orm.QueryBuilder().append(orm.Group, subclassing=False).count() == 1 assert orm.QueryBuilder().append(orm.Group).count() == 3 assert orm.QueryBuilder().append(orm.Group, filters={'type_string': 'custom.group'}).count() == 1 # Removing it as other methods might get a warning instead group_pk = group.pk del group orm.Group.collection.delete(pk=group_pk) @staticmethod def test_querying_node_subclasses(): """Test querying for groups with multiple types for nodes it contains.""" group = orm.Group(label='group').store() data_int = orm.Int().store() data_str = orm.Str().store() data_bool = orm.Bool().store() group.add_nodes([data_int, data_str, data_bool]) builder = orm.QueryBuilder().append(orm.Group, tag='group') builder.append((orm.Int, orm.Str), with_group='group', project='id') results = [entry[0] for entry in builder.iterall()] assert len(results) == 2 assert data_int.pk in results assert data_str.pk in results assert data_bool.pk not in results @staticmethod def test_query_with_group(): """Test that querying a data node in a group works.""" group = orm.Group(label='group').store() data = orm.Data().store() group.add_nodes([data]) builder = orm.QueryBuilder().append(orm.Data, filters={ 'id': data.pk }, tag='data').append(orm.Group, with_node='data') loaded = builder.one()[0] assert loaded.pk == group.pk class TestGroupExtras: """Test the property and methods of group extras.""" @pytest.fixture(autouse=True) def init_profile(self, aiida_profile_clean): # pylint: disable=unused-argument """Initialize the profile.""" # pylint: disable=attribute-defined-outside-init self.group = orm.Group('test_extras') def test_extras(self): """Test the `Group.base.extras.all` property.""" original_extra = {'nested': {'a': 1}} self.group.base.extras.set('key', original_extra) group_extras = self.group.base.extras.all assert group_extras['key'] == original_extra group_extras['key']['nested']['a'] = 2 assert original_extra['nested']['a'] == 2 # Now store the group and verify that `extras` then returns a deep copy self.group.store() group_extras = self.group.base.extras.all # We change the returned group extras but the original extra should remain unchanged group_extras['key']['nested']['a'] = 3 assert original_extra['nested']['a'] == 2 def test_get_extra(self): """Test the `Group.get_extra` method.""" original_extra = {'nested': {'a': 1}} self.group.base.extras.set('key', original_extra) group_extra = self.group.base.extras.get('key') assert group_extra == original_extra group_extra['nested']['a'] = 2 assert original_extra['nested']['a'] == 2 default = 'default' assert self.group.base.extras.get('not_existing', default=default) == default with pytest.raises(AttributeError): self.group.base.extras.get('not_existing') # Now store the group and verify that `get_extra` then returns a deep copy self.group.store() group_extra = self.group.base.extras.get('key') # We change the returned group extras but the original extra should remain unchanged group_extra['nested']['a'] = 3 assert original_extra['nested']['a'] == 2 default = 'default' assert self.group.base.extras.get('not_existing', default=default) == default with pytest.raises(AttributeError): self.group.base.extras.get('not_existing') def test_get_extra_many(self): """Test the `Group.base.extras.get_many` method.""" original_extra = {'nested': {'a': 1}} self.group.base.extras.set('key', original_extra) group_extra = self.group.base.extras.get_many(['key'])[0] assert group_extra == original_extra group_extra['nested']['a'] = 2 assert original_extra['nested']['a'] == 2 # Now store the group and verify that `get_extra` then returns a deep copy self.group.store() group_extra = self.group.base.extras.get_many(['key'])[0] # We change the returned group extras but the original extra should remain unchanged group_extra['nested']['a'] = 3 assert original_extra['nested']['a'] == 2 def test_set_extra(self): """Test the `Group.set_extra` method.""" with pytest.raises(exceptions.ValidationError): self.group.base.extras.set('illegal.key', 'value') self.group.base.extras.set('valid_key', 'value') self.group.store() self.group.base.extras.set('valid_key', 'changed') assert orm.load_group(self.group.pk).base.extras.get('valid_key') == 'changed' def test_set_extra_many(self): """Test the `Group.base.extras.set_many` method.""" with pytest.raises(exceptions.ValidationError): self.group.base.extras.set_many({'illegal.key': 'value', 'valid_key': 'value'}) self.group.base.extras.set_many({'valid_key': 'value'}) self.group.store() self.group.base.extras.set_many({'valid_key': 'changed'}) assert orm.load_group(self.group.pk).base.extras.get('valid_key') == 'changed' def test_reset_extra(self): """Test the `Group.base.extras.reset` method.""" extras_before = {'extra_one': 'value', 'extra_two': 'value'} extras_after = {'extra_three': 'value', 'extra_four': 'value'} extras_illegal = {'extra.illegal': 'value', 'extra_four': 'value'} self.group.base.extras.set_many(extras_before) assert self.group.base.extras.all == extras_before self.group.base.extras.reset(extras_after) assert self.group.base.extras.all == extras_after with pytest.raises(exceptions.ValidationError): self.group.base.extras.reset(extras_illegal) self.group.store() self.group.base.extras.reset(extras_after) assert orm.load_group(self.group.pk).base.extras.all == extras_after def test_delete_extra(self): """Test the `Group.base.extras.delete` method.""" self.group.base.extras.set('valid_key', 'value') assert self.group.base.extras.get('valid_key') == 'value' self.group.base.extras.delete('valid_key') with pytest.raises(AttributeError): self.group.base.extras.delete('valid_key') # Repeat with stored group self.group.base.extras.set('valid_key', 'value') self.group.store() self.group.base.extras.delete('valid_key') with pytest.raises(AttributeError): orm.load_group(self.group.pk).base.extras.get('valid_key') def test_delete_extra_many(self): """Test the `Group.base.extras.delete_many` method.""" extras_valid = {'extra_one': 'value', 'extra_two': 'value'} valid_keys = ['extra_one', 'extra_two'] invalid_keys = ['extra_one', 'invalid_key'] self.group.base.extras.set_many(extras_valid) assert self.group.base.extras.all == extras_valid with pytest.raises(AttributeError): self.group.base.extras.delete_many(invalid_keys) self.group.store() self.group.base.extras.delete_many(valid_keys) assert orm.load_group(self.group.pk).base.extras.all == {} def test_clear_extras(self): """Test the `Group.base.extras.clear` method.""" extras = {'extra_one': 'value', 'extra_two': 'value'} self.group.base.extras.set_many(extras) assert self.group.base.extras.all == extras self.group.base.extras.clear() assert self.group.base.extras.all == {} # Repeat for stored group self.group.store() self.group.base.extras.clear() assert orm.load_group(self.group.pk).base.extras.all == {} def test_extras_items(self): """Test the `Group.base.extras.items` generator.""" extras = {'extra_one': 'value', 'extra_two': 'value'} self.group.base.extras.set_many(extras) assert dict(self.group.base.extras.items()) == extras def test_extras_keys(self): """Test the `Group.base.extras.keys` generator.""" extras = {'extra_one': 'value', 'extra_two': 'value'} self.group.base.extras.set_many(extras) assert set(self.group.base.extras.keys()) == set(extras)
crackq/logger.py
cah-antonia-vonoepen/crackq
908
11077645
<reponame>cah-antonia-vonoepen/crackq """Setup logging handler""" #!/usr/bin/env python import logging from logging.config import fileConfig # Setup logging fileConfig('log_config.ini') logger = logging.getLogger()
instascrape/scrapers/scrape_tools.py
code1dot/instascrape
445
11077675
<gh_stars>100-1000 from __future__ import annotations import json from typing import Any, Dict, Union, Callable, List from collections import deque import datetime from functools import partial import copy import time import requests from bs4 import BeautifulSoup from instascrape.core.json_algos import _JSONTree, _parse_json_str JSONDict = Dict[str, Any] def parse_data_from_json(json_dict, map_dict, default_value=float('nan')): """ Parse data from a JSON dictionary using a mapping dictionary that tells the program how to parse the data """ return_data = {} for key in map_dict: steps_to_value = map_dict[key] # Loop through all steps into the JSON dict that will give us our data first_step = steps_to_value.popleft() try: value = json_dict[first_step] except KeyError: value = default_value else: for step in steps_to_value: value = json_dict[step] finally: return_data[key] = value return return_data def flatten_dict(json_dict: JSONDict) -> JSONDict: """ Returns a flattened dictionary of data Parameters ---------- json_dict : dict Input dictionary for flattening Returns ------- flattened_dict : dict Flattened dictionary """ json_tree = _JSONTree(json_dict) flattened_dict = {} for leaf_node in json_tree.leaf_nodes: key_arr = deque([]) for key in leaf_node.prior_keys[::-1]: key_arr.appendleft(str(key)) new_key = "_".join(key_arr) if new_key not in flattened_dict: break flattened_dict[new_key] = list(leaf_node.json_data.values())[0] return flattened_dict def json_from_html(source: Union[str, "BeautifulSoup"], as_dict: bool = True, flatten=False) -> Union[JSONDict, str]: """ Return JSON data parsed from Instagram source HTML Parameters ---------- source : Union[str, BeautifulSoup] Instagram HTML source code to parse the JSON from as_dict : bool = True Return JSON as dict if True else return JSON as string flatten : bool Flatten the dictionary prior to returning it Returns ------- json_data : Union[JSONDict, str] Parsed JSON data from the HTML source as either a JSON-like dictionary or just the string serialization """ soup = BeautifulSoup(source, features="html.parser") json_data = json_from_soup(source=soup, as_dict=as_dict, flatten=flatten) return json_data def json_from_soup(source, as_dict: bool = True, flatten=False): json_data = _parse_json_str(source=source) if as_dict: json_data = [json.loads(json_str) for json_str in json_data] if flatten: json_data = [flatten_dict(json_dict) for json_dict in json_data] return json_data def determine_json_type(json_data: Union[JSONDict, str]) -> str: """ Return the type of Instagram page based on the JSON data parsed from source Parameters ---------- json_data: Union[JSONDict, str] JSON data that will be checked and parsed to determine what type of page the program is looking at (Profile, Post, Hashtag, etc) Returns ------- instagram_type : str Name of the type of page the program is currently parsing or looking at """ if not isinstance(json_data, dict): json_data = json.loads(json_data) try: instagram_type = list(json_data["entry_data"])[0] except KeyError: instagram_type = "Inconclusive" return instagram_type def json_from_url( url: str, as_dict: bool = True, headers={ "user-agent": "Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Mobile Safari/537.36 Edg/87.0.664.57" }, flatten=False ) -> Union[JSONDict, str]: """ Return JSON data parsed from a provided Instagram URL Parameters ---------- url : str URL of the page to get the JSON data from as_dict : bool = True Return JSON as dict if True else return JSON as string headers : Dict[str, str] Dictionary of request headers to be passed on the GET request flatten : bool Flatten the dictionary prior to returning it Returns ------- json_data : Union[JSONDict, str] Parsed JSON data from the URL as either a JSON-like dictionary or just the string serialization """ source = requests.get(url, headers=headers).text return json_from_html(source, as_dict=as_dict, flatten=flatten) def scrape_posts( posts: List["Post"], session: requests.Session = None, webdriver: "selenium.webdriver.chrome.webdriver.WebDriver" = None, limit: Union[int, datetime.datetime] = None, headers: dict = { "user-agent": "Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Mobile Safari/537.36 Edg/87.0.664.57" }, pause: int = 5, on_exception: str = "raise", silent: bool = True, inplace: bool = False ): # Default setup if not inplace: posts = copy.deepcopy(posts) if limit is None: limit = len(posts) scraped_posts = [] for i, post in enumerate(posts): temporary_post = copy.deepcopy(post) try: post.scrape(session=session, webdriver=webdriver, headers=headers) scraped_posts.append(post) except Exception as e: if on_exception == "raise": raise elif on_exception == "pass": if not silent: print(f"PASSING EXCEPTION: {e}") pass elif on_exception == "return": if not silent: print(f"{e}, RETURNING SCRAPED AND UNSCRAPED") break if not silent: output_str = f"{i}: {post.shortcode} - {post.upload_date}" print(output_str) if _stop_scraping(limit, post, i): break time.sleep(pause) unscraped_posts = list(set(posts) - set(scraped_posts)) if not isinstance(limit, int): scraped_posts.pop() unscraped_posts.insert(0, temporary_post) return scraped_posts, unscraped_posts if not inplace else None def _stop_scraping(limit, post, i): stop = False if isinstance(limit, int): if i == limit - 1: stop = True elif (isinstance(limit, datetime.datetime) or isinstance(limit, datetime.date)): if post.upload_date <= limit: stop = True return stop
msg/tools/genmsg/src/genmsg/gentools.py
sikuner/Firmware_Marine
742
11077688
#! /usr/bin/env python # Software License Agreement (BSD License) # # Copyright (c) 2008, <NAME>, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of <NAME>, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ Library for supporting message and service generation for all ROS client libraries. This is mainly responsible for calculating the md5sums and message definitions of classes. """ # NOTE: this should not contain any rospy-specific code. The rospy # generator library is rospy.genpy. import sys import hashlib try: from cStringIO import StringIO # Python 2.x except ImportError: from io import StringIO # Python 3.x from . import msgs from .msgs import InvalidMsgSpec, MsgSpec, bare_msg_type, is_builtin from .msg_loader import load_depends from .srvs import SrvSpec from . import names from . import base def compute_md5_text(msg_context, spec): """ Compute the text used for md5 calculation. MD5 spec states that we removes comments and non-meaningful whitespace. We also strip packages names from type names. For convenience sake, constants are reordered ahead of other declarations, in the order that they were originally defined. :returns: text for ROS MD5-processing, ``str`` """ package = spec.package buff = StringIO() for c in spec.constants: buff.write("%s %s=%s\n"%(c.type, c.name, c.val_text)) for type_, name in zip(spec.types, spec.names): msg_type = bare_msg_type(type_) # md5 spec strips package names if is_builtin(msg_type): buff.write("%s %s\n"%(type_, name)) else: # recursively generate md5 for subtype. have to build up # dependency representation for subtype in order to # generate md5 sub_pkg, _ = names.package_resource_name(msg_type) sub_pkg = sub_pkg or package sub_spec = msg_context.get_registered(msg_type) sub_md5 = compute_md5(msg_context, sub_spec) buff.write("%s %s\n"%(sub_md5, name)) return buff.getvalue().strip() # remove trailing new line def _compute_hash(msg_context, spec, hash): """ subroutine of compute_md5() :param msg_context: :class:`MsgContext` instance to load dependencies into/from. :param spec: :class:`MsgSpec` to compute hash for. :param hash: hash instance """ # accumulate the hash # - root file if isinstance(spec, MsgSpec): hash.update(compute_md5_text(msg_context, spec).encode()) elif isinstance(spec, SrvSpec): hash.update(compute_md5_text(msg_context, spec.request).encode()) hash.update(compute_md5_text(msg_context, spec.response).encode()) else: raise Exception("[%s] is not a message or service"%spec) return hash.hexdigest() def compute_md5(msg_context, spec): """ Compute md5 hash for message/service :param msg_context: :class:`MsgContext` instance to load dependencies into/from. :param spec: :class:`MsgSpec` to compute md5 for. :returns: md5 hash, ``str`` """ return _compute_hash(msg_context, spec, hashlib.md5()) ## alias compute_md5_v2 = compute_md5 def _unique_deps(dep_list): uniques = [] for d in dep_list: if d not in uniques: uniques.append(d) return uniques def compute_full_text(msg_context, spec): """ Compute full text of message/service, including text of embedded types. The text of the main msg/srv is listed first. Embedded msg/srv files are denoted first by an 80-character '=' separator, followed by a type declaration line,'MSG: pkg/type', followed by the text of the embedded type. :param msg_context: :class:`MsgContext` instance to load dependencies into/from. :param spec: :class:`MsgSpec` to compute full text for. :returns: concatenated text for msg/srv file and embedded msg/srv types, ``str`` """ buff = StringIO() sep = '='*80+'\n' # write the text of the top-level type buff.write(spec.text) buff.write('\n') # append the text of the dependencies (embedded types). Can't use set() as we have to preserve order. for d in _unique_deps(msg_context.get_all_depends(spec.full_name)): buff.write(sep) buff.write("MSG: %s\n"%d) buff.write(msg_context.get_registered(d).text) buff.write('\n') # #1168: remove the trailing \n separator that is added by the concatenation logic return buff.getvalue()[:-1] def compute_full_type_name(package_name, file_name): """ Compute the full type name of message/service 'pkg/type'. :param package_name: name of package file is in, ``str`` :file_name: name of the msg or srv file, ``str`` :returns: typename in format 'pkg/type' :raises: :exc:`MsgGenerationException` if file_name ends with an unknown file extension """ # strip extension for ext in (base.EXT_MSG, base.EXT_SRV): if file_name.endswith(ext): short_name = file_name[:-len(ext)] break else: raise base.MsgGenerationException("Processing file: '%s' - unknown file extension"% (file_name)) return "%s/%s"%(package_name, short_name)
mbrl/util/env.py
MansonX/mbrl-lib
592
11077709
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from abc import ABC, abstractmethod from typing import Dict, Optional, Tuple, Union, cast import gym import gym.wrappers import hydra import numpy as np import omegaconf import torch import mbrl.planning import mbrl.types def _get_term_and_reward_fn( cfg: Union[omegaconf.ListConfig, omegaconf.DictConfig], ) -> Tuple[mbrl.types.TermFnType, Optional[mbrl.types.RewardFnType]]: import mbrl.env term_fn = getattr(mbrl.env.termination_fns, cfg.overrides.term_fn) if hasattr(cfg.overrides, "reward_fn") and cfg.overrides.reward_fn is not None: reward_fn = getattr(mbrl.env.reward_fns, cfg.overrides.reward_fn) else: reward_fn = getattr(mbrl.env.reward_fns, cfg.overrides.term_fn, None) return term_fn, reward_fn def _handle_learned_rewards_and_seed( cfg: Union[omegaconf.ListConfig, omegaconf.DictConfig], env: gym.Env, reward_fn: mbrl.types.RewardFnType, ) -> Tuple[gym.Env, mbrl.types.RewardFnType]: if cfg.overrides.get("learned_rewards", True): reward_fn = None if cfg.seed is not None: env.seed(cfg.seed) env.observation_space.seed(cfg.seed + 1) env.action_space.seed(cfg.seed + 2) return env, reward_fn def _legacy_make_env( cfg: Union[omegaconf.ListConfig, omegaconf.DictConfig], ) -> Tuple[gym.Env, mbrl.types.TermFnType, Optional[mbrl.types.RewardFnType]]: if "dmcontrol___" in cfg.overrides.env: import mbrl.third_party.dmc2gym as dmc2gym domain, task = cfg.overrides.env.split("___")[1].split("--") term_fn, reward_fn = _get_term_and_reward_fn(cfg) env = dmc2gym.make(domain_name=domain, task_name=task) elif "gym___" in cfg.overrides.env: env = gym.make(cfg.overrides.env.split("___")[1]) term_fn, reward_fn = _get_term_and_reward_fn(cfg) else: import mbrl.env.mujoco_envs if cfg.overrides.env == "cartpole_continuous": env = mbrl.env.cartpole_continuous.CartPoleEnv() term_fn = mbrl.env.termination_fns.cartpole reward_fn = mbrl.env.reward_fns.cartpole elif cfg.overrides.env == "cartpole_pets_version": env = mbrl.env.mujoco_envs.CartPoleEnv() term_fn = mbrl.env.termination_fns.no_termination reward_fn = mbrl.env.reward_fns.cartpole_pets elif cfg.overrides.env == "pets_halfcheetah": env = mbrl.env.mujoco_envs.HalfCheetahEnv() term_fn = mbrl.env.termination_fns.no_termination reward_fn = getattr(mbrl.env.reward_fns, "halfcheetah", None) elif cfg.overrides.env == "pets_reacher": env = mbrl.env.mujoco_envs.Reacher3DEnv() term_fn = mbrl.env.termination_fns.no_termination reward_fn = None elif cfg.overrides.env == "pets_pusher": env = mbrl.env.mujoco_envs.PusherEnv() term_fn = mbrl.env.termination_fns.no_termination reward_fn = mbrl.env.reward_fns.pusher elif cfg.overrides.env == "ant_truncated_obs": env = mbrl.env.mujoco_envs.AntTruncatedObsEnv() term_fn = mbrl.env.termination_fns.ant reward_fn = None elif cfg.overrides.env == "humanoid_truncated_obs": env = mbrl.env.mujoco_envs.HumanoidTruncatedObsEnv() term_fn = mbrl.env.termination_fns.ant reward_fn = None else: raise ValueError("Invalid environment string.") env = gym.wrappers.TimeLimit( env, max_episode_steps=cfg.overrides.get("trial_length", 1000) ) env, reward_fn = _handle_learned_rewards_and_seed(cfg, env, reward_fn) return env, term_fn, reward_fn class Freeze(ABC): """Abstract base class for freezing various gym backends""" def __enter__(self, env): raise NotImplementedError def __exit__(self, env): raise NotImplementedError class EnvHandler(ABC): """Abstract base class for handling various gym backends Subclasses of EnvHandler should define an associated Freeze subclass and override self.freeze with that subclass """ freeze = Freeze @staticmethod @abstractmethod def is_correct_env_type(env: gym.wrappers.TimeLimit) -> bool: """Checks that the env being handled is of the correct type""" raise NotImplementedError @staticmethod def make_env( cfg: Union[Dict, omegaconf.ListConfig, omegaconf.DictConfig], ) -> Tuple[gym.Env, mbrl.types.TermFnType, Optional[mbrl.types.RewardFnType]]: """Creates an environment from a given OmegaConf configuration object. This method expects the configuration, ``cfg``, to have the following attributes (some are optional): - If ``cfg.overrides.env_cfg`` is present, this method instantiates the environment using `hydra.utils.instantiate(env_cfg)`. Otherwise, it expects attribute ``cfg.overrides.env``, which should be a string description of the environment where valid options are: - "dmcontrol___<domain>--<task>": a Deep-Mind Control suite environment with the indicated domain and task (e.g., "dmcontrol___cheetah--run". - "gym___<env_name>": a Gym environment (e.g., "gym___HalfCheetah-v2"). - "cartpole_continuous": a continuous version of gym's Cartpole environment. - "pets_halfcheetah": the implementation of HalfCheetah used in Chua et al., PETS paper. - "ant_truncated_obs": the implementation of Ant environment used in Janner et al., MBPO paper. - "humanoid_truncated_obs": the implementation of Humanoid environment used in Janner et al., MBPO paper. - ``cfg.overrides.term_fn``: (only for dmcontrol and gym environments) a string indicating the environment's termination function to use when simulating the environment with the model. It should correspond to the name of a function in :mod:`mbrl.env.termination_fns`. - ``cfg.overrides.reward_fn``: (only for dmcontrol and gym environments) a string indicating the environment's reward function to use when simulating the environment with the model. If not present, it will try to use ``cfg.overrides.term_fn``. If that's not present either, it will return a ``None`` reward function. If provided, it should correspond to the name of a function in :mod:`mbrl.env.reward_fns`. - ``cfg.overrides.learned_rewards``: (optional) if present indicates that the reward function will be learned, in which case the method will return a ``None`` reward function. - ``cfg.overrides.trial_length``: (optional) if presents indicates the maximum length of trials. Defaults to 1000. Args: cfg (omegaconf.DictConf): the configuration to use. Returns: (tuple of env, termination function, reward function): returns the new environment, the termination function to use, and the reward function to use (or ``None`` if ``cfg.learned_rewards == True``). """ # Handle the case where cfg is a dict cfg = omegaconf.OmegaConf.create(cfg) env_cfg = cfg.overrides.get("env_cfg", None) if env_cfg is None: return _legacy_make_env(cfg) env = hydra.utils.instantiate(cfg.overrides.env_cfg) env = gym.wrappers.TimeLimit( env, max_episode_steps=cfg.overrides.get("trial_length", 1000) ) term_fn, reward_fn = _get_term_and_reward_fn(cfg) env, reward_fn = _handle_learned_rewards_and_seed(cfg, env, reward_fn) return env, term_fn, reward_fn @staticmethod @abstractmethod def make_env_from_str(env_name: str) -> gym.Env: """Creates a new environment from its string description. Args: env_name (str): the string description of the environment. Returns: (gym.Env): the created environment. """ raise NotImplementedError @staticmethod @abstractmethod def get_current_state(env: gym.wrappers.TimeLimit) -> Tuple: """Returns the internal state of the environment. Returns a tuple with information that can be passed to :func:set_env_state` to manually set the environment (or a copy of it) to the same state it had when this function was called. Args: env (:class:`gym.wrappers.TimeLimit`): the environment. """ raise NotImplementedError @staticmethod @abstractmethod def set_env_state(state: Tuple, env: gym.wrappers.TimeLimit): """Sets the state of the environment. Assumes ``state`` was generated using :func:`get_current_state`. Args: state (tuple): see :func:`get_current_state` for a description. env (:class:`gym.wrappers.TimeLimit`): the environment. """ raise NotImplementedError def rollout_env( self, env: gym.wrappers.TimeLimit, initial_obs: np.ndarray, lookahead: int, agent: Optional[mbrl.planning.Agent] = None, plan: Optional[np.ndarray] = None, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Runs the environment for some number of steps then returns it to its original state. Works with mujoco gym and dm_control environments (with `dmc2gym <https://github.com/denisyarats/dmc2gym>`_). Args: env (:class:`gym.wrappers.TimeLimit`): the environment. initial_obs (np.ndarray): the latest observation returned by the environment (only needed when ``agent is not None``, to get the first action). lookahead (int): the number of steps to run. If ``plan is not None``, it is overridden by `len(plan)`. agent (:class:`mbrl.planning.Agent`, optional): if given, an agent to obtain actions. plan (sequence of np.ndarray, optional): if given, a sequence of actions to execute. Takes precedence over ``agent`` when both are given. Returns: (tuple of np.ndarray): the observations, rewards, and actions observed, respectively. """ actions = [] real_obses = [] rewards = [] with self.freeze(cast(gym.wrappers.TimeLimit, env)): # type: ignore current_obs = initial_obs.copy() real_obses.append(current_obs) if plan is not None: lookahead = len(plan) for i in range(lookahead): a = plan[i] if plan is not None else agent.act(current_obs) if isinstance(a, torch.Tensor): a = a.numpy() next_obs, reward, done, _ = env.step(a) actions.append(a) real_obses.append(next_obs) rewards.append(reward) if done: break current_obs = next_obs return np.stack(real_obses), np.stack(rewards), np.stack(actions)
sdk/python/tests/compiler/testdata/recur_cond.py
shrivs3/kfp-tekton
102
11077718
# Copyright 2021 kubeflow.org # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from kfp import dsl, components from kfp_tekton.tekton import CEL_ConditionOp from kfp_tekton.compiler import TektonCompiler class Coder: def empty(self): return "" TektonCompiler._get_unique_id_code = Coder.empty print_op = components.load_component_from_text(""" name: print-iter description: print msg inputs: - {name: msg, type: String} outputs: - {name: stdout, type: String} implementation: container: image: alpine:3.6 command: - sh - -c args: - | echo $0 > $1 - {inputValue: msg} - {outputPath: stdout} """) @dsl.graph_component def recur(i: int): decr_i = CEL_ConditionOp(f"{i} - 1").output print_op(f"Iter: {decr_i}") with dsl.Condition(decr_i != 0): recur(decr_i) @dsl.pipeline("recur-and-condition") def recur_and_condition(iter_num: int = 42): recur(iter_num) if __name__ == '__main__': from kfp_tekton.compiler import TektonCompiler as Compiler Compiler().compile(recur_and_condition, __file__.replace('.py', '.yaml'))
kAFL-Fuzzer/fuzzer/technique/redqueen/hash_fix.py
SafeBreach-Labs/hAFL2
102
11077741
<filename>kAFL-Fuzzer/fuzzer/technique/redqueen/hash_fix.py # Copyright (C) 2017-2019 <NAME>, <NAME>, <NAME> # Copyright (C) 2019-2020 Intel Corporation # # SPDX-License-Identifier: AGPL-3.0-or-later """ Redqueen Checksum Fixer """ import traceback from array import array from common.debug import log_redq from .parser import RedqueenRunInfo from .cmp import Cmp MAX_NUMBER_PERMUTATIONS = 100000 class HashFixer: def __init__(self, qemu, rq_state): self.qemu = qemu self.addrs = rq_state.get_candidate_hash_addrs() self.redqueen_state = rq_state self.blacklisted_addrs = set() def get_broken_cmps(self, data): broken_cmps = [] res, run_info = self.get_cmps(data) for addr in res: for cmp in res[addr]: if not cmp.was_true_in(run_info) and not cmp.addr in self.blacklisted_addrs: broken_cmps.append(cmp) return broken_cmps, run_info def get_cmps(self, data): # log_redq("runnning on %s"%repr("".join( map(chr, data) )) ) self.qemu.set_payload(data) # self.qemu.send_enable_patches() log_redq("hashfix run in rq mode") self.qemu.send_rq_set_whitelist_instrumentation() self.qemu.send_enable_redqueen() self.qemu.send_payload(timeout_detection=True, apply_patches=True) log_redq("hashfix run in non rq mode") self.qemu.send_disable_redqueen() self.qemu.send_payload(timeout_detection=True, apply_patches=True) log_redq("hashfix done running, now parsing") res = self.parse_redqueen_results(data) log_redq("hashfix done parsing") return res def mark_unfixable(self, cmp): log_redq("Unfixable cmp at: %x" % cmp.addr) self.blacklisted_addrs.add(cmp.addr) self.redqueen_state.blacklist_hash_addr(cmp.addr) def get_shape(self, redqueen_results): res = {} for addr in redqueen_results: res[addr] = len(redqueen_results[addr]) return res def try_fix_data(self, data): self.qemu.send_payload(timeout_detection=True, apply_patches=False) self.qemu.send_payload(timeout_detection=True, apply_patches=True) log_redq("PATCHES %s\n" % repr(list(map(hex, self.redqueen_state.get_candidate_hash_addrs())))) log_redq("BLACKLIST %s\n" % repr(list(map(hex, self.redqueen_state.get_blacklisted_hash_addrs())))) self.redqueen_state.update_redqueen_patches(self.qemu.redqueen_workdir) self.redqueen_state.update_redqueen_whitelist(self.qemu.redqueen_workdir, self.redqueen_state.get_candidate_hash_addrs()) fixed_data = array('B', data) orig_cmps, _ = self.get_cmps(fixed_data) shape = self.get_shape(orig_cmps) log_redq("shape of hashes: ") for addr in shape: log_redq("\t%x: %d" % (addr, shape[addr])) if len(shape) == 0: return fixed_data num_iters = min(len(orig_cmps) ** 2 + 1, len(orig_cmps) * 3 + 1) num_cmps = sum(shape.values()) + 1 if num_iters < num_cmps: num_iters = num_cmps log_redq("try fixing for %d iters" % num_iters) for i in range(num_iters): broken_checks, run_info = self.get_broken_cmps(fixed_data) log_redq("got %d broken checks\n" % len(broken_checks)) if not broken_checks: return fixed_data cmp = broken_checks.pop(-1); if not self.try_fix_cmp(shape, fixed_data, run_info, cmp): log_redq("cmp at %x unfixable:" % cmp.addr) self.mark_unfixable(cmp) broken_checks, run_info = self.get_broken_cmps(fixed_data) for cmp in broken_checks: self.mark_unfixable(cmp) return False def parse_redqueen_results(self, data): res = {} rq_res = parser.read_file(self.qemu.redqueen_workdir.redqueen()) data_string = "".join(map(chr, data)) run_info = RedqueenRunInfo(1, False, rq_res, data_string) for line in run_info.hook_info.splitlines(): addr, type, size, is_imm, lhs, rhs = parser.RedqueenInfo.parse_line(line) assert (type == "CMP") res[addr] = res.get(addr, []) cmp = Cmp(addr, type, size, is_imm) cmp.index = len(res[addr]) res[addr].append(cmp) cmp.add_result(run_info, lhs, rhs) return res, run_info @staticmethod def replace_data(data, offset, repl): for o in range(len(repl)): data[offset + o] = repl[o] def try_fix_cmp_with(self, shape, fixed_data, cmp, offsets, lhs, rhs, enc): log_redq("Trying mutation %s" % (repr((offsets, lhs, rhs, enc)))) if list(map(len, lhs)) != list(map(len, rhs)): return False self.redqueen_state.update_redqueen_whitelist(self.qemu.redqueen_workdir, self.redqueen_state.get_candidate_hash_addrs()) try: if self.try_fix_cmp_offset(shape, fixed_data, cmp, offsets, rhs): log_redq("Mutation fixed it") return True log_redq("Mutation didn't Fix it") return False except Exception as e: log_redq("fixing hash failed %s" % traceback.format_exc()) raise e def try_fix_cmp(self, shape, fixed_data, run_info, cmp): known_offsets = self.redqueen_state.get_candidate_file_offsets(cmp.addr) log_redq("known offsets for: %x = %s" % (cmp.addr, known_offsets)) mutations = [x for x in cmp.calc_mutations(run_info, 1)] for (offsets, lhs, rhs, enc) in cmp.calc_mutations(run_info, 1): if offsets in known_offsets: if self.try_fix_cmp_with(shape, fixed_data, cmp, offsets, lhs, rhs, enc): return True for (offsets, lhs, rhs, enc) in cmp.calc_mutations(run_info, 1): if not offsets in known_offsets: if self.try_fix_cmp_with(shape, fixed_data, cmp, offsets, lhs, rhs, enc): return True return False def does_data_fix_cmp(self, shape, data, cmp): res, run_info = self.get_cmps(data) return shape == self.get_shape(res) and res[cmp.addr][cmp.index].was_true_in(run_info) def try_fix_cmp_offset(self, shape, data, cmp, offsets, repls): # try: backup = {} for i, repl in zip(offsets, repls): backup[i] = data[i:i + len(repl)] HashFixer.replace_data(data, i, array('B', repl)) if self.does_data_fix_cmp(shape, data, cmp): log_redq("found candidate offset %x %s" % (cmp.addr, repr(offsets))) self.redqueen_state.add_candidate_file_offset(cmp.addr, tuple(offsets)) return True for i in offsets: HashFixer.replace_data(data, i, backup[i]) return False # except Exception as e: # log_redq("failed to fix %s with %s"%(cmp.addr,(offset_tuples,repls)) ) # raise e
datasets/nsmc/nsmc.py
WojciechKusa/datasets
10,608
11077745
<gh_stars>1000+ # coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Naver movie review corpus for binary sentiment classification""" import csv import datasets _CITATION = """\ @InProceedings{Park:2016, title = "Naver Sentiment Movie Corpus", author = "<NAME>", year = "2016", howpublished = {\\url{https://github.com/e9t/nsmc}} } """ _DESCRIPTION = """\ This is a movie review dataset in the Korean language. Reviews were scraped from Naver movies. The dataset construction is based on the method noted in Large movie review dataset from Maas et al., 2011. """ _HOMEPAGE = "https://github.com/e9t/nsmc/" _LICENSE = "CC0 1.0 Universal (CC0 1.0)" _URL = "https://raw.githubusercontent.com/e9t/nsmc/master/" _URLs = { "train": _URL + "ratings_train.txt", "test": _URL + "ratings_test.txt", } # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case class NSMC(datasets.GeneratorBasedBuilder): """Korean Naver movie review dataset.""" VERSION = datasets.Version("1.1.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "document": datasets.Value("string"), "label": datasets.ClassLabel(names=["negative", "positive"]), } ), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download_and_extract(_URLs) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": downloaded_files["train"], "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": downloaded_files["test"], "split": "test", }, ), ] def _generate_examples(self, filepath, split): with open(filepath, encoding="utf-8") as f: next(f) reader = csv.reader(f, delimiter="\t") for id_, row in enumerate(reader): yield id_, { "id": row[0], "document": row[1], "label": int(row[2]), }
Algorithm.Python/ShortableProviderOrdersRejectedRegressionAlgorithm.py
BlackBoxAM/Lean
6,580
11077779
<reponame>BlackBoxAM/Lean ### QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. ### Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. ### ### Licensed under the Apache License, Version 2.0 (the "License"); ### you may not use this file except in compliance with the License. ### You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 ### ### Unless required by applicable law or agreed to in writing, software ### distributed under the License is distributed on an "AS IS" BASIS, ### WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ### See the License for the specific language governing permissions and ### limitations under the License. from AlgorithmImports import * class RegressionTestShortableBrokerageModel(DefaultBrokerageModel): def __init__(self): self.ShortableProvider = LocalDiskShortableProvider(SecurityType.Equity, "testbrokerage", Market.USA) ### <summary> ### Tests that orders are denied if they exceed the max shortable quantity. ### </summary> class ShortableProviderOrdersRejectedRegressionAlgorithm(QCAlgorithm): def Initialize(self): self.ordersAllowed = [] self.ordersDenied = [] self.initialize = False self.invalidatedAllowedOrder = False self.invalidatedNewOrderWithPortfolioHoldings = False self.SetStartDate(2013, 10, 4) self.SetEndDate(2013, 10, 11) self.SetCash(10000000) self.spy = self.AddEquity("SPY", Resolution.Minute).Symbol self.aig = self.AddEquity("AIG", Resolution.Minute).Symbol self.SetBrokerageModel(RegressionTestShortableBrokerageModel()) def OnData(self, data): if not self.initialize: self.HandleOrder(self.LimitOrder(self.spy, -1001, 10000)) # Should be canceled, exceeds the max shortable quantity self.HandleOrder(self.LimitOrder(self.spy, -1000, 10000)) # Allowed, orders at or below 1000 should be accepted self.HandleOrder(self.LimitOrder(self.spy, -10, 0.01)) # Should be canceled, the total quantity we would be short would exceed the max shortable quantity. self.initialize = True return if not self.invalidatedAllowedOrder: if len(self.ordersAllowed) != 1: raise Exception(f"Expected 1 successful order, found: {len(self.ordersAllowed)}") if len(self.ordersDenied) != 2: raise Exception(f"Expected 2 failed orders, found: {len(self.ordersDenied)}") allowedOrder = self.ordersAllowed[0] orderUpdate = UpdateOrderFields() orderUpdate.LimitPrice = 0.01 orderUpdate.Quantity = -1001 orderUpdate.Tag = "Testing updating and exceeding maximum quantity" response = allowedOrder.Update(orderUpdate) if response.ErrorCode != OrderResponseErrorCode.ExceedsShortableQuantity: raise Exception(f"Expected order to fail due to exceeded shortable quantity, found: {response.ErrorCode}") cancelResponse = allowedOrder.Cancel() if cancelResponse.IsError: raise Exception("Expected to be able to cancel open order after bad qty update") self.invalidatedAllowedOrder = True self.ordersDenied.clear() self.ordersAllowed.clear() return if not self.invalidatedNewOrderWithPortfolioHoldings: self.HandleOrder(self.MarketOrder(self.spy, -1000)) # Should succeed, no holdings and no open orders to stop this spyShares = self.Portfolio[self.spy].Quantity if spyShares != -1000: raise Exception(f"Expected -1000 shares in portfolio, found: {spyShares}") self.HandleOrder(self.LimitOrder(self.spy, -1, 0.01)) # Should fail, portfolio holdings are at the max shortable quantity. if len(self.ordersDenied) != 1: raise Exception(f"Expected limit order to fail due to existing holdings, but found {len(self.ordersDenied)} failures") self.ordersAllowed.clear() self.ordersDenied.clear() self.HandleOrder(self.MarketOrder(self.aig, -1001)) if len(self.ordersAllowed) != 1: raise Exception(f"Expected market order of -1001 BAC to not fail") self.invalidatedNewOrderWithPortfolioHoldings = True def HandleOrder(self, orderTicket): if orderTicket.SubmitRequest.Status == OrderRequestStatus.Error: self.ordersDenied.append(orderTicket) return self.ordersAllowed.append(orderTicket)
tools/code-animation/main.py
lautalom/QuanticDev
141
11077794
<filename>tools/code-animation/main.py from manim import * """ $ manim code.py/js -p -p: preview: open vide file after rendering """ def highlight_line(code: Code, line_from, line_to): if not line_to: line_to = line_from lines = range(line_from, line_to) return [ApplyMethod(code.code[line_no].set_opacity, 1 if line_no in lines else .3) for line_no in range(len(code.code))] def create_code(code_src: str, ext: str = 'py', scale_factor: float = .7, insert_line_no=False): file = f'code.{ext}' with open(file, 'w') as f: f.write(code_src.replace(""" """, """ """)) # hack: not to get newlines trimmed by LaTex renderer, we replace '\n' with '\n ' code = Code(file, scale_factor=scale_factor, insert_line_no=insert_line_no) with open(file, 'w') as f: f.write('') return code # https://docs.manim.community/en/stable/reference.html class AnimatedCode(Scene): config['pixel_height'] = 2160 config['pixel_width'] = 3840 def animation_template(self): title = Tex('Title') title.to_corner(UP + LEFT) self.play(title) self.clear() code = create_code("""xxxxxx""") self.play(ShowCreation(code, run_time=10, rate_func=linear)) self.wait(5) self.play(*highlight_line(code, 2, 6)) self.wait(5) self.clear() code2 = create_code("""xxxxxx""") self.play(Transform(code, code2, run_time=2, rate_func=linear)) self.wait(5) def construct(self): code = create_code("""db.connect('postgresql://localhost/testdb') db.initialize() user = db.create_new_user('<NAME>', '<EMAIL>') user.give_permission('create_blog_post') post = user.new_blog_post('Test Blog Post Title', 'Lorem ipsum dolor sit amet...') post.upload_thumbnail('./test_thumbnail.jpg') post.publish()""") self.play(ShowCreation(code, run_time=10, rate_func=linear)) self.wait(5) self.clear() code2 = create_code("""db.connect('postgresql://localhost/testdb') \\ .initialize() \\ .create_new_user('<NAME>', '<EMAIL>') \\ .give_permission('create_blog_post') \\ .new_blog_post('Test Blog Post Title', 'Lorem ipsum dolor sit amet...') \\ .upload_thumbnail('./test_thumbnail.jpg') \\ .publish()""") self.play(Transform(code, code2, run_time=2, rate_func=linear)) self.wait(5) self.clear() code = create_code("""db.connect('postgresql://localhost/testdb') db.initialize()""") self.play(ShowCreation(code, run_time=5)) self.wait(5) self.clear() code2 = create_code("""db.connect('postgresql://localhost/testdb').initialize()""") self.play(Transform(code, code2, run_time=2, rate_func=linear)) self.wait(5) self.clear() code3 = create_code("""db.connect('postgresql://localhost/testdb') \\ .initialize() \\ .close()""") self.play(Transform(code2, code3, run_time=2, rate_func=linear)) self.wait(5) self.clear() code = create_code("""class DB: def connect(self, url): pass def initialize(self): pass def close(self): pass""") self.play(ShowCreation(code, run_time=10, rate_func=linear)) self.wait(5) self.clear() code2 = create_code("""class DB: def connect(self, url): # todo return self def initialize(self): # todo return self def close(self): # todo return self""") self.play(Transform(code, code2, run_time=2, rate_func=linear)) self.wait(5) self.clear() code = create_code("""db.connect('postgresql://localhost/testdb') log.info('Initializing the database.') db.initialize()""") self.play(ShowCreation(code, run_time=10, rate_func=linear)) self.wait(5) self.clear() code2 = create_code("""db.connect('postgresql://localhost/testdb') \\ .log_info('Initializing the database.') \\ .initialize()""") self.play(Transform(code, code2, run_time=2, rate_func=linear)) self.wait(5) self.clear() code = create_code("""subscribers .filter(p => p.liked_the_video === true) .sort(p => p.name) .pat_on_the_back()""", ext='js') self.play(ShowCreation(code, run_time=10, rate_func=linear)) self.wait(5)
test/test_custom_loss.py
ignatovmg/mhcflurry
113
11077824
import logging logging.getLogger('tensorflow').disabled = True logging.getLogger('matplotlib').disabled = True from nose.tools import eq_, assert_less, assert_greater, assert_almost_equal import numpy numpy.random.seed(0) import logging logging.getLogger('tensorflow').disabled = True import tensorflow.keras.backend as K from mhcflurry.custom_loss import CUSTOM_LOSSES, MultiallelicMassSpecLoss from mhcflurry.testing_utils import cleanup, startup teardown = cleanup setup = startup def evaluate_loss(loss, y_true, y_pred): y_true = numpy.array(y_true) y_pred = numpy.array(y_pred) if y_pred.ndim == 1: y_pred = y_pred.reshape((len(y_pred), 1)) if y_true.ndim == 1: y_true = y_true.reshape((len(y_true), 1)) assert y_true.ndim == 2 assert y_pred.ndim == 2 assert K.backend() == "tensorflow" import tensorflow.compat.v1 as v1 v1.disable_eager_execution() session = v1.keras.backend.get_session() y_true_var = K.constant(y_true, name="y_true") y_pred_var = K.constant(y_pred, name="y_pred") result = loss(y_true_var, y_pred_var) return result.eval(session=session) def test_mse_with_inequalities(loss_obj=CUSTOM_LOSSES['mse_with_inequalities']): y_values = [0.0, 0.5, 0.8, 1.0] adjusted_y = loss_obj.encode_y(y_values) print(adjusted_y) loss0 = evaluate_loss(loss_obj.loss, adjusted_y, y_values) print(loss0) eq_(loss0, 0.0) adjusted_y = loss_obj.encode_y(y_values, [">", ">", ">", ">"]) loss0 = evaluate_loss(loss_obj.loss, adjusted_y, y_values) eq_(loss0, 0.0) adjusted_y = loss_obj.encode_y(y_values, ["<", "<", "<", "<"]) loss0 = evaluate_loss(loss_obj.loss, adjusted_y, y_values) eq_(loss0, 0.0) adjusted_y = loss_obj.encode_y(y_values, ["=", "<", "=", ">"]) loss0 = evaluate_loss(loss_obj.loss, adjusted_y, y_values) eq_(loss0, 0.0) adjusted_y = loss_obj.encode_y(y_values, ["=", "<", "=", ">"]) loss0 = evaluate_loss(loss_obj.loss, adjusted_y, [0.0, 0.4, 0.8, 1.0]) eq_(loss0, 0.0) adjusted_y = loss_obj.encode_y(y_values, [">", "<", ">", ">"]) loss0 = evaluate_loss(loss_obj.loss, adjusted_y, [0.1, 0.4, 0.9, 1.0]) eq_(loss0, 0.0) adjusted_y = loss_obj.encode_y(y_values, [">", "<", ">", ">"]) loss0 = evaluate_loss(loss_obj.loss, adjusted_y, [0.1, 0.6, 0.9, 1.0]) assert_greater(loss0, 0.0) adjusted_y = loss_obj.encode_y(y_values, ["=", "<", ">", ">"]) loss0 = evaluate_loss(loss_obj.loss, adjusted_y, [0.1, 0.6, 0.9, 1.0]) assert_almost_equal(loss0, 0.02 / 4) adjusted_y = loss_obj.encode_y(y_values, ["=", "<", "=", ">"]) loss0 = evaluate_loss(loss_obj.loss, adjusted_y, [0.1, 0.6, 0.9, 1.0]) assert_almost_equal(loss0, 0.03 / 4) def test_mse_with_inequalities_and_multiple_outputs(): loss_obj = CUSTOM_LOSSES['mse_with_inequalities_and_multiple_outputs'] test_mse_with_inequalities(loss_obj) y_values = [0.0, 0.5, 0.8, 1.0] adjusted_y = loss_obj.encode_y( y_values, output_indices=[0, 1, 1, 1]) loss0 = evaluate_loss( loss_obj.loss, adjusted_y, [ [0.0, 1000], [2000, 0.5], [3000, 0.8], [4000, 1.0], ]) assert_almost_equal(loss0, 0.0) y_values = [0.0, 0.5, 0.8, 1.0] adjusted_y = loss_obj.encode_y( y_values, output_indices=[0, 1, 1, 0]) loss0 = evaluate_loss( loss_obj.loss, adjusted_y, [ [0.1, 1000], [2000, 0.6], [3000, 0.8], [1.0, 4000], ]) assert_almost_equal(loss0, 0.02 / 4) y_values = [0.0, 0.5, 0.8, 1.0] adjusted_y = loss_obj.encode_y( y_values, output_indices=[0, 1, 1, 0], inequalities=["=", ">", "<", "<"]) loss0 = evaluate_loss( loss_obj.loss, adjusted_y, [ [0.1, 1000], [2000, 0.6], [3000, 0.8], [1.0, 4000], ]) assert_almost_equal(loss0, 0.01 / 4) y_values = [0.0, 0.5, 0.8, 1.0] adjusted_y = loss_obj.encode_y( y_values, output_indices=[0, 1, 1, 0], inequalities=["=", "<", "<", "<"]) loss0 = evaluate_loss( loss_obj.loss, adjusted_y, [ [0.1, 1000], [2000, 0.6], [3000, 0.8], [1.0, 4000], ]) assert_almost_equal(loss0, 0.02 / 4) def test_multiallelic_mass_spec_loss(): for delta in [0.0, 0.3]: print("delta", delta) # Hit labels y_true = [ 1.0, 0.0, 1.0, -1.0, # ignored 1.0, 0.0, 1.0, ] y_true = numpy.array(y_true) y_pred = [ [0.3, 0.7, 0.5], [0.2, 0.4, 0.6], [0.1, 0.5, 0.3], [0.9, 0.1, 0.2], [0.1, 0.7, 0.1], [0.8, 0.2, 0.4], [0.1, 0.2, 0.4], ] y_pred = numpy.array(y_pred) # reference implementation 1 def smooth_max(x, alpha): x = numpy.array(x) alpha = numpy.array([alpha]) return (x * numpy.exp(x * alpha)).sum() / ( numpy.exp(x * alpha)).sum() contributions = [] for i in range(len(y_true)): if y_true[i] == 1.0: for j in range(len(y_true)): if y_true[j] == 0.0: tightest_i = max(y_pred[i]) for k in range(y_pred.shape[1]): contribution = max( 0, y_pred[j, k] - tightest_i + delta)**2 contributions.append(contribution) contributions = numpy.array(contributions) expected1 = contributions.sum() / len(contributions) # reference implementation 2: numpy pos = numpy.array([ max(y_pred[i]) for i in range(len(y_pred)) if y_true[i] == 1.0 ]) neg = y_pred[(y_true == 0.0).astype(bool)] term = neg.reshape((-1, 1)) - pos + delta expected2 = ( numpy.maximum(0, term)**2).sum() / ( len(pos) * neg.shape[0] * neg.shape[1]) numpy.testing.assert_almost_equal(expected1, expected2) computed = evaluate_loss( MultiallelicMassSpecLoss(delta=delta).loss, y_true, y_pred.reshape(y_pred.shape)) numpy.testing.assert_almost_equal(computed, expected1, 4)
atlas/foundations_events/src/test/consumers/jobs/queued/test_run_data_keys.py
DeepLearnI/atlas
296
11077831
<reponame>DeepLearnI/atlas<filename>atlas/foundations_events/src/test/consumers/jobs/queued/test_run_data_keys.py import unittest from mock import Mock from foundations_events.consumers.jobs.queued.run_data_keys import RunDataKeys class TestRunDataKeys(unittest.TestCase): def setUp(self): self._redis = Mock() self._consumer = RunDataKeys(self._redis) def test_call_saved_run_data_keys(self): input_data = {'project_name': 'here be dragons', 'job_parameters': {'number_of_neurons': 3434} } self._consumer.call(input_data, None, None) self._redis.sadd.assert_called_with('projects:here be dragons:job_parameter_names', 'number_of_neurons') def test_call_saved_run_data_keys_different_keys(self): input_data = {'project_name': 'here be dragons', 'job_parameters': {'hidden_layers': 7777} } self._consumer.call(input_data, None, None) self._redis.sadd.assert_called_with('projects:here be dragons:job_parameter_names', 'hidden_layers') def test_call_saved_run_data_keys_multiple_keys(self): input_data = {'project_name': 'here be dragons', 'job_parameters': {'shown_layers': 7777, 'neurons': 33} } self._consumer.call(input_data, None, None) self._redis.sadd.assert_any_call('projects:here be dragons:job_parameter_names', 'shown_layers') self._redis.sadd.assert_any_call('projects:here be dragons:job_parameter_names', 'neurons') def test_call_saved_run_data_keys_different_project_name(self): input_data = {'project_name': 'here be sheep', 'job_parameters': {'hidden_layers': 7777} } self._consumer.call(input_data, None, None) self._redis.sadd.assert_called_with('projects:here be sheep:job_parameter_names', 'hidden_layers')
packages/pytea/pylib/collections.py
Sehun0819/pytea
241
11077865
<filename>packages/pytea/pylib/collections.py<gh_stars>100-1000 import LibCall def namedtuple(typename, field_names, **kwargs): names = field_names if isinstance(field_names, str): names = [] LibCall.builtins.namedtuple_pushField(names, field_names) rev_names = dict() for i, name in enumerate(names): rev_names[name] = i class __TempTuple(tuple): def __init__(self, *args, **kwargs): for i, value in enumerate(args): LibCall.builtins.setIndice(self, i, value) LibCall.builtins.setAttr(self, names[i], value) for key, value in kwargs.items(): LibCall.builtins.setIndice(self, rev_names[key], value) LibCall.builtins.setAttr(self, key, value) def __len__(self): return len(names) __TempTuple.__name__ = typename return __TempTuple
slybot/slybot/starturls/__init__.py
hackrush01/portia
6,390
11077881
<reponame>hackrush01/portia from collections import OrderedDict as ODict from itertools import chain, product from scrapy.utils.spider import arg_to_iter import six from six.moves.urllib_parse import urlparse from .feed_generator import FeedGenerator from .fragment_generator import FragmentGenerator from .generated_url import GeneratedUrl from .generator import IdentityGenerator, UrlGenerator class StartUrlCollection(object): def __init__(self, start_urls, generators=None): self.generators = generators or [] self.start_urls = [self._from_type(url) for url in start_urls] def __iter__(self): generated = (self._generate_urls(url) for url in self.start_urls) for url in chain(*(arg_to_iter(g) for g in generated)): yield url def uniq(self): return list(ODict([(s.key, s.spec) for s in self.start_urls]).values()) @property def allowed_domains(self): domains = [start_url.allowed_domains for start_url in self.start_urls] return list(set(chain(*domains))) def normalize(self): return [start_url.normalized for start_url in self.start_urls] def _generate_urls(self, start_url): generator = self.generators[start_url.generator_type] return generator(start_url.generator_value) def _from_type(self, start_url): if isinstance(start_url, six.string_types): return StringUrl(start_url) if start_url.get('paths') or start_url.get('template'): return GeneratedUrl(start_url) return StartUrl(start_url, self.generators) class StartUrl(object): def __init__(self, spec, generators): self.spec = spec self.generators = generators self.generator_type = spec['type'] self.generator_value = self.spec if self._has_fragments else self.spec['url'] @property def key(self): fragments = self.spec.get('fragments', []) fragment_values = [fragment['value'] for fragment in fragments] return self.spec['url'] + ''.join(fragment_values) @property def allowed_domains(self): if self._has_fragments: return self._find_fragment_domains() return [self.spec['url']] @property def normalized(self): return self.spec def _find_fragment_domains(self): generator = self.generators[self.generator_type] fragment_lists = list(generator.process_fragments(self.spec)) while len(fragment_lists) > 0: fragment_list = fragment_lists.pop(0) if all(self._has_domain(fragment) for fragment in fragment_list): return fragment_list if len(fragment_lists) == 0: return [] augmented_first_fragments = product(fragment_list, fragment_lists[0]) fragment_lists[0] = self._join_fragments(augmented_first_fragments) return [] def _join_fragments(self, fragments): return [''.join([f, g]) for (f, g) in fragments] def _has_domain(self, url): parsed_url = urlparse(url) methods = ['path', 'params', 'query', 'fragment'] return any(getattr(parsed_url, method) != '' for method in methods) @property def _has_fragments(self): return self.spec.get('fragments') class StringUrl(object): def __init__(self, spec): self.key = spec self.spec = spec self.generator_value = spec self.generator_type = 'start_urls' @property def allowed_domains(self): return [self.spec] @property def normalized(self): return {'url': self.spec, 'type': 'url'}
applications/tensorflow/cnns/training/Models/resnet.py
payoto/graphcore_examples
260
11077888
<gh_stars>100-1000 # Copyright (c) 2019 Graphcore Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from . import resnet_base as rb from .model_base import ModelBase from functools import partial class ResNet(rb.ResNetBase): def __init__(self, opts, is_training=True): if opts['dataset'] == 'imagenet': definitions = {**rb.RESNETS_Imagenet, **rb.RESNETS_Bottleneck_Imagenet} else: definitions = {**rb.RESNETS_Cifar, **rb.RESNETS_Bottleneck_Cifar} definition = definitions[opts["model_size"]] super().__init__(opts, definition, is_training) def Model(opts, training, image): return ResNet(opts, training)(image) def staged_model(opts): splits = opts['pipeline_splits'] x = ResNet(opts, True) if splits is None or ( len(splits) != opts['shards'] - 1 and opts['shards'] > 1): possible_splits = [ s.keywords['name'] for s in x._build_function_list() if 'relu' in s.keywords['name'] ] raise ValueError( "--pipeline-splits not specified or wrong number of splits. Need {} of {}".format( opts['shards'] - 1, possible_splits)) splits.append(None) stages = [partial(x.first_stage, first_split_name=splits[0])] for i in range(len(splits) - 1): stages.append( partial(x.later_stage, prev_split_name=splits[i], end_split_name=splits[i + 1])) return stages def add_arguments(parser): group = parser.add_argument_group('ResNet') rb.add_resnet_base_arguments(group) return parser def set_defaults(opts): opts['summary_str'] += "ResNet-{model_size}\n" if opts["dataset"] == "imagenet": opts["shortcut_type"] = "B" elif "cifar" in opts["dataset"]: opts["shortcut_type"] = "A" # set ImageNet specific defaults if opts["dataset"] == "imagenet": if opts.get("weight_decay") is None: # value taken from tf_official_resnet - may not be appropriate for # small batch sizes wd_default = 0 if opts.get("optimiser") == "LARS" else 1e-4 opts["weight_decay"] = wd_default if opts.get("lars_weight_decay") is None: opts["lars_weight_decay"] = 1e-4 if not opts.get("base_learning_rate_exponent"): if opts["optimiser"] == "SGD": opts["base_learning_rate_exponent"] = -8 elif opts["optimiser"] == "momentum": opts["base_learning_rate_exponent"] = -11 if not opts.get("epochs") and not opts.get("iterations"): opts["epochs"] = 100 if not opts.get("learning_rate_schedule"): opts["learning_rate_schedule"] = [0.3, 0.6, 0.8, 0.9] if not opts.get("learning_rate_decay"): opts["learning_rate_decay"] = [1.0, 0.1, 0.01, 0.001, 1e-4] if not ( opts.get("group_norm") is True or opts.get("batch_norm") is True ): # set group norm as default for ImageNet opts["group_norm"] = True if opts.get("group_norm"): if not opts.get("groups"): opts["groups"] = 32 if not opts.get("model_size"): opts["model_size"] = 18 if not opts.get("micro_batch_size"): opts["micro_batch_size"] = 4 if opts.get("warmup") is None: # warmup on by default for ImageNet opts["warmup"] = True # exclude beta and gamma from weight decay calculation opts["wd_exclude"] = ["beta", "gamma"] # set CIFAR specific defaults elif "cifar" in opts["dataset"]: if opts.get("weight_decay") is None: # based on sweep with CIFAR-10 wd_default = 0 if opts.get("optimiser") == "LARS" else 1e-6 opts["weight_decay"] = wd_default if opts.get("lars_weight_decay") is None: opts["lars_weight_decay"] = 1e-6 if not opts.get("base_learning_rate_exponent"): opts["base_learning_rate_exponent"] = -6 if not opts.get("epochs") and not opts.get("iterations"): opts["epochs"] = 160 if not opts.get("learning_rate_schedule"): opts["learning_rate_schedule"] = [0.5, 0.75] if not opts.get("learning_rate_decay"): opts["learning_rate_decay"] = [1.0, 0.1, 0.01] if not ( opts.get("group_norm") is True or opts.get("batch_norm") is True ): # set batch norm as default for CIFAR opts["batch_norm"] = True if opts.get("group_norm"): if not opts.get("groups"): opts["groups"] = 16 if not opts.get("model_size"): opts["model_size"] = 20 if not opts.get("micro_batch_size"): opts["micro_batch_size"] = 32 if not opts["BN_decay"]: opts["BN_decay"] = 0.97 opts["name"] = "RN{}".format(opts["model_size"]) opts["name"] += "_bs{}".format(opts["micro_batch_size"]) if opts.get("replicas") > 1: opts["name"] += "x{}r".format(opts["replicas"]) if opts["pipeline"]: opts["name"] += "x{}p".format(opts["gradient_accumulation_count"]) elif opts.get("gradient_accumulation_count") > 1: opts["name"] += "x{}a".format(opts["gradient_accumulation_count"]) if not (opts["batch_norm"] or opts["group_norm"]): opts["name"] += "_noBN" opts["summary_str"] += " No Batch Norm\n" elif opts["group_norm"]: opts["name"] += "_GN{}".format(opts["groups"]) opts["summary_str"] += " Group Norm\n" " {groups} groups\n" else: opts["name"] += "_BN" opts["summary_str"] += " Batch Norm\n" if ( opts["BN_decay"] and opts["BN_decay"] != 0.97 ): # defined and not default opts["summary_str"] += " Decay: {}\n".format(opts["BN_decay"]) opts["name"] += "_{}{}".format( opts["precision"], "_noSR" if opts["no_stochastic_rounding"] else "" )
factory-ai-vision/EdgeSolution/modules/WebModule/backend/vision_on_edge/streams/models.py
kaka-lin/azure-intelligent-edge-patterns
176
11077891
"""App models. """ import logging import threading import time import cv2 from configs.general_configs import PRINT_THREAD from ..cameras.utils import normalize_rtsp, verify_rtsp from .exceptions import StreamOpenRTSPError logger = logging.getLogger(__name__) # Stream KEEP_ALIVE_THRESHOLD = 10 # Seconds # Stream Manager STREAM_GC_TIME_THRESHOLD = 5 # Seconds class Stream: """Stream Class""" def __init__(self, rtsp, camera_id, part_id=None): self.rtsp = normalize_rtsp(rtsp=rtsp) self.camera_id = camera_id self.part_id = part_id self.last_active = time.time() self.status = "init" self.cur_img_index = 0 self.last_get_img_index = 1 self.id = id(self) # test rtsp if not verify_rtsp(self.rtsp): raise StreamOpenRTSPError self.cap = cv2.VideoCapture(self.rtsp) self.last_img = self.cap.read()[1] def update_keep_alive(self): """update_keep_alive.""" self.last_active = time.time() def gen(self): """generator for stream.""" self.status = "running" logger.info("Start streaming with %s.", self.rtsp) while self.status == "running" and ( self.last_active + KEEP_ALIVE_THRESHOLD > time.time() ): if not self.cap.isOpened(): raise StreamOpenRTSPError has_img, img = self.cap.read() # Need to add the video flag FIXME if not has_img: self.cap = cv2.VideoCapture(self.rtsp) time.sleep(1) continue img = cv2.resize(img, None, fx=0.5, fy=0.5) self.last_active = time.time() self.last_img = img.copy() self.cur_img_index = (self.cur_img_index + 1) % 10000 yield ( b"--frame\r\n" b"Content-Type: image/jpeg\r\n\r\n" + cv2.imencode(".jpg", img)[1].tobytes() + b"\r\n" ) self.cap.release() logger.info("%s cap released.", self) def get_frame(self): """get_frame.""" logger.info("%s get frame.", self) # b, img = self.cap.read() time_begin = time.time() while True: if time.time() - time_begin > 5: break if self.last_get_img_index == self.cur_img_index: time.sleep(0.01) else: break self.last_get_img_index = self.cur_img_index img = self.last_img.copy() # if b: return cv2.imencode('.jpg', img)[1].tobytes() # else : return None return cv2.imencode(".jpg", img)[1].tobytes() def close(self): """close. close the stream. """ self.status = "stopped" logger.info("%s stopped.", self) def __str__(self): return f"<Stream id:{self.id} rtsp:{self.rtsp}>" def __repr__(self): return f"<Stream id:{self.id} rtsp:{self.rtsp}>" class StreamManager: """StreamManager""" def __init__(self): self.streams = [] self.mutex = threading.Lock() self.gc() def add(self, stream: Stream): """add stream""" self.mutex.acquire() self.streams.append(stream) self.mutex.release() def get_stream_by_id(self, stream_id): """get_stream_by_id""" self.mutex.acquire() for i in range(len(self.streams)): stream = self.streams[i] if stream.id == stream_id: self.mutex.release() return stream self.mutex.release() return None def gc(self): """Garbage collector IMPORTANT, autoreloader will not reload threading, please restart the server if you modify the thread """ def _gc(self): while True: self.mutex.acquire() if PRINT_THREAD: logger.info("streams: %s", self.streams) to_delete = [] for stream in self.streams: if stream.last_active + STREAM_GC_TIME_THRESHOLD < time.time(): # stop the inactive stream # (the ones users didnt click disconnect) logger.info("stream %s inactive", stream) logger.info("Time now %s", time.time()) logger.info("Stream alive through %s", stream.last_active) stream.close() # collect the stream, to delete later to_delete.append(stream) for stream in to_delete: self.streams.remove(stream) self.mutex.release() time.sleep(3) threading.Thread(target=_gc, args=(self,), daemon=True).start()
manila/policies/share_snapshot.py
openstack/manila
159
11077940
<reponame>openstack/manila # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_log import versionutils from oslo_policy import policy from manila.policies import base BASE_POLICY_NAME = 'share_snapshot:%s' DEPRECATED_REASON = """ The share snapshot API now supports system scope and default roles. """ deprecated_snapshot_get = policy.DeprecatedRule( name=BASE_POLICY_NAME % 'get_snapshot', check_str=base.RULE_DEFAULT, deprecated_reason=DEPRECATED_REASON, deprecated_since=versionutils.deprecated.WALLABY ) deprecated_snapshot_get_all = policy.DeprecatedRule( name=BASE_POLICY_NAME % 'get_all_snapshots', check_str=base.RULE_DEFAULT, deprecated_reason=DEPRECATED_REASON, deprecated_since=versionutils.deprecated.WALLABY ) deprecated_snapshot_force_delete = policy.DeprecatedRule( name=BASE_POLICY_NAME % 'force_delete', check_str=base.RULE_ADMIN_API, deprecated_reason=DEPRECATED_REASON, deprecated_since=versionutils.deprecated.WALLABY ) deprecated_snapshot_manage = policy.DeprecatedRule( name=BASE_POLICY_NAME % 'manage_snapshot', check_str=base.RULE_ADMIN_API, deprecated_reason=DEPRECATED_REASON, deprecated_since=versionutils.deprecated.WALLABY ) deprecated_snapshot_unmanage = policy.DeprecatedRule( name=BASE_POLICY_NAME % 'unmanage_snapshot', check_str=base.RULE_ADMIN_API, deprecated_reason=DEPRECATED_REASON, deprecated_since=versionutils.deprecated.WALLABY ) deprecated_snapshot_reset_status = policy.DeprecatedRule( name=BASE_POLICY_NAME % 'reset_status', check_str=base.RULE_ADMIN_API, deprecated_reason=DEPRECATED_REASON, deprecated_since=versionutils.deprecated.WALLABY ) deprecated_snapshot_access_list = policy.DeprecatedRule( name=BASE_POLICY_NAME % 'access_list', check_str=base.RULE_DEFAULT, deprecated_reason=DEPRECATED_REASON, deprecated_since=versionutils.deprecated.WALLABY ) deprecated_snapshot_allow_access = policy.DeprecatedRule( name=BASE_POLICY_NAME % 'allow_access', check_str=base.RULE_DEFAULT, deprecated_reason=DEPRECATED_REASON, deprecated_since=versionutils.deprecated.WALLABY ) deprecated_snapshot_deny_access = policy.DeprecatedRule( name=BASE_POLICY_NAME % 'deny_access', check_str=base.RULE_DEFAULT, deprecated_reason=DEPRECATED_REASON, deprecated_since=versionutils.deprecated.WALLABY ) share_snapshot_policies = [ policy.DocumentedRuleDefault( name=BASE_POLICY_NAME % 'get_snapshot', check_str=base.SYSTEM_OR_PROJECT_READER, scope_types=['system', 'project'], description="Get share snapshot.", operations=[ { 'method': 'GET', 'path': '/snapshots/{snapshot_id}' } ], deprecated_rule=deprecated_snapshot_get ), policy.DocumentedRuleDefault( name=BASE_POLICY_NAME % 'get_all_snapshots', check_str=base.SYSTEM_OR_PROJECT_READER, scope_types=['system', 'project'], description="Get all share snapshots.", operations=[ { 'method': 'GET', 'path': '/snapshots' }, { 'method': 'GET', 'path': '/snapshots/detail' }, { 'method': 'GET', 'path': '/snapshots?{query}' }, { 'method': 'GET', 'path': '/snapshots/detail?{query}' } ], deprecated_rule=deprecated_snapshot_get_all ), policy.DocumentedRuleDefault( name=BASE_POLICY_NAME % 'force_delete', check_str=base.SYSTEM_ADMIN_OR_PROJECT_ADMIN, scope_types=['system', 'project'], description="Force Delete a share snapshot.", operations=[ { 'method': 'DELETE', 'path': '/snapshots/{snapshot_id}' } ], deprecated_rule=deprecated_snapshot_force_delete ), policy.DocumentedRuleDefault( name=BASE_POLICY_NAME % 'manage_snapshot', check_str=base.SYSTEM_ADMIN, scope_types=['system'], description="Manage share snapshot.", operations=[ { 'method': 'POST', 'path': '/snapshots/manage' } ], deprecated_rule=deprecated_snapshot_manage ), policy.DocumentedRuleDefault( name=BASE_POLICY_NAME % 'unmanage_snapshot', check_str=base.SYSTEM_ADMIN, scope_types=['system'], description="Unmanage share snapshot.", operations=[ { 'method': 'POST', 'path': '/snapshots/{snapshot_id}/action' } ], deprecated_rule=deprecated_snapshot_unmanage ), policy.DocumentedRuleDefault( name=BASE_POLICY_NAME % 'reset_status', check_str=base.SYSTEM_ADMIN_OR_PROJECT_ADMIN, scope_types=['system', 'project'], description="Reset status.", operations=[ { 'method': 'POST', 'path': '/snapshots/{snapshot_id}/action', } ], deprecated_rule=deprecated_snapshot_reset_status ), policy.DocumentedRuleDefault( name=BASE_POLICY_NAME % 'access_list', check_str=base.SYSTEM_OR_PROJECT_READER, scope_types=['system', 'project'], description="List access rules of a share snapshot.", operations=[ { 'method': 'GET', 'path': '/snapshots/{snapshot_id}/access-list' } ], deprecated_rule=deprecated_snapshot_access_list ), policy.DocumentedRuleDefault( name=BASE_POLICY_NAME % 'allow_access', check_str=base.SYSTEM_ADMIN_OR_PROJECT_MEMBER, scope_types=['system', 'project'], description="Allow access to a share snapshot.", operations=[ { 'method': 'POST', 'path': '/snapshots/{snapshot_id}/action' } ], deprecated_rule=deprecated_snapshot_allow_access ), policy.DocumentedRuleDefault( name=BASE_POLICY_NAME % 'deny_access', check_str=base.SYSTEM_ADMIN_OR_PROJECT_MEMBER, scope_types=['system', 'project'], description="Deny access to a share snapshot.", operations=[ { 'method': 'POST', 'path': '/snapshots/{snapshot_id}/action' } ], deprecated_rule=deprecated_snapshot_deny_access ), ] def list_rules(): return share_snapshot_policies
008-osdev-01/build.py
gynvael/stream
152
11077995
<filename>008-osdev-01/build.py import os cmds_to_run = [ "nasm stage1.asm", "nasm stage2.asm" ] files_to_img = [ "stage1", "stage2" ] for cmd in cmds_to_run: os.system(cmd) buf = [] for fn in files_to_img: with open(fn, "rb") as f: buf.append(f.read()) # XXX: nie wyrownuje do wielkosci sektora with open("floppy.bin", "wb") as f: f.write(''.join(buf))
koalixcrm/crm/factories/factory_customer_group.py
Cataldir/koalixcrm
290
11077997
# -*- coding: utf-8 -*- import factory from koalixcrm.crm.models import CustomerGroup class StandardCustomerGroupFactory(factory.django.DjangoModelFactory): class Meta: model = CustomerGroup django_get_or_create = ('name',) name = factory.Sequence(lambda n: "Customer Group #%s" % n) class AdvancedCustomerGroupFactory(factory.django.DjangoModelFactory): class Meta: model = CustomerGroup name = factory.Sequence(lambda n: "Customer Group #%s" % n)
pgcontents/utils/sync.py
freedom079215/pgcontents
138
11078029
""" Utilities for synchronizing directories. """ from __future__ import ( print_function, unicode_literals, ) from ..checkpoints import PostgresCheckpoints from ..crypto import FallbackCrypto from ..query import ( list_users, reencrypt_user_content, ) def create_user(db_url, user): """ Create a user. """ PostgresCheckpoints( db_url=db_url, user_id=user, create_user_on_startup=True, ) def _separate_dirs_files(models): """ Split an iterable of models into a list of file paths and a list of directory paths. """ dirs = [] files = [] for model in models: if model['type'] == 'directory': dirs.append(model['path']) else: files.append(model['path']) return dirs, files def walk(mgr): """ Like os.walk, but written in terms of the ContentsAPI. Takes a ContentsManager and returns a generator of tuples of the form: (directory name, [subdirectories], [files in directory]) """ return walk_dirs(mgr, ['']) def walk_dirs(mgr, dirs): """ Recursive helper for walk. """ for directory in dirs: children = mgr.get( directory, content=True, type='directory', )['content'] dirs, files = map(sorted, _separate_dirs_files(children)) yield directory, dirs, files if dirs: for entry in walk_dirs(mgr, dirs): yield entry def walk_files(mgr): """ Iterate over all files visible to ``mgr``. """ for dir_, subdirs, files in walk_files(mgr): for file_ in files: yield file_ def walk_files_with_content(mgr): """ Iterate over the contents of all files visible to ``mgr``. """ for _, _, files in walk(mgr): for f in files: yield mgr.get(f, content=True) def all_user_ids(engine): """ Get a list of user_ids from an engine. """ with engine.begin() as db: return [row[0] for row in list_users(db)] def reencrypt_all_users(engine, old_crypto_factory, new_crypto_factory, logger): """ Re-encrypt data for all users. This function is idempotent, meaning that it should be possible to apply the same re-encryption process multiple times without having any effect on the database. Idempotency is achieved by first attempting to decrypt with the old crypto and falling back to the new crypto on failure. An important consequence of this strategy is that **decrypting** a database is not supported with this function, because ``NoEncryption.decrypt`` always succeeds. To decrypt an already-encrypted database, use ``unencrypt_all_users`` instead. It is, however, possible to perform an initial encryption of a database by passing a function returning a ``NoEncryption`` as ``old_crypto_factory``. Parameters ---------- engine : SQLAlchemy.engine Engine encapsulating database connections. old_crypto_factory : function[str -> Any] A function from user_id to an object providing the interface required by PostgresContentsManager.crypto. Results of this will be used for decryption of existing database content. new_crypto_factory : function[str -> Any] A function from user_id to an object providing the interface required by PostgresContentsManager.crypto. Results of this will be used for re-encryption of database content. This **must not** return instances of ``NoEncryption``. Use ``unencrypt_all_users`` if you want to unencrypt a database. logger : logging.Logger, optional A logger to user during re-encryption. See Also -------- reencrypt_user unencrypt_all_users """ logger.info("Beginning re-encryption for all users.") for user_id in all_user_ids(engine): reencrypt_single_user( engine, user_id, old_crypto=old_crypto_factory(user_id), new_crypto=new_crypto_factory(user_id), logger=logger, ) logger.info("Finished re-encryption for all users.") def reencrypt_single_user(engine, user_id, old_crypto, new_crypto, logger): """ Re-encrypt all files and checkpoints for a single user. """ # Use FallbackCrypto so that we're re-entrant if we halt partway through. crypto = FallbackCrypto([new_crypto, old_crypto]) reencrypt_user_content( engine=engine, user_id=user_id, old_decrypt_func=crypto.decrypt, new_encrypt_func=crypto.encrypt, logger=logger, ) def unencrypt_all_users(engine, old_crypto_factory, logger): """ Unencrypt data for all users. Parameters ---------- engine : SQLAlchemy.engine Engine encapsulating database connections. old_crypto_factory : function[str -> Any] A function from user_id to an object providing the interface required by PostgresContentsManager.crypto. Results of this will be used for decryption of existing database content. logger : logging.Logger, optional A logger to user during re-encryption. """ logger.info("Beginning re-encryption for all users.") for user_id in all_user_ids(engine): unencrypt_single_user( engine=engine, user_id=user_id, old_crypto=old_crypto_factory(user_id), logger=logger, ) logger.info("Finished re-encryption for all users.") def unencrypt_single_user(engine, user_id, old_crypto, logger): """ Unencrypt all files and checkpoints for a single user. """ reencrypt_user_content( engine=engine, user_id=user_id, old_decrypt_func=old_crypto.decrypt, new_encrypt_func=lambda s: s, logger=logger, )
sdk/netapp/azure-mgmt-netapp/azure/mgmt/netapp/models/_models_py3.py
praveenkuttappan/azure-sdk-for-python
2,728
11078043
<filename>sdk/netapp/azure-mgmt-netapp/azure/mgmt/netapp/models/_models_py3.py # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import datetime from typing import Any, Dict, List, Optional, Union import msrest.serialization from ._net_app_management_client_enums import * class AccountEncryption(msrest.serialization.Model): """Encryption settings. :param key_source: Encryption Key Source. Possible values are: 'Microsoft.NetApp'. :type key_source: str """ _attribute_map = { 'key_source': {'key': 'keySource', 'type': 'str'}, } def __init__( self, *, key_source: Optional[str] = None, **kwargs ): super(AccountEncryption, self).__init__(**kwargs) self.key_source = key_source class ActiveDirectory(msrest.serialization.Model): """Active Directory. Variables are only populated by the server, and will be ignored when sending a request. :param active_directory_id: Id of the Active Directory. :type active_directory_id: str :param username: Username of Active Directory domain administrator. :type username: str :param password: Plain text password of Active Directory domain administrator, value is masked in the response. :type password: str :param domain: Name of the Active Directory domain. :type domain: str :param dns: Comma separated list of DNS server IP addresses (IPv4 only) for the Active Directory domain. :type dns: str :ivar status: Status of the Active Directory. Possible values include: "Created", "InUse", "Deleted", "Error", "Updating". :vartype status: str or ~azure.mgmt.netapp.models.ActiveDirectoryStatus :ivar status_details: Any details in regards to the Status of the Active Directory. :vartype status_details: str :param smb_server_name: NetBIOS name of the SMB server. This name will be registered as a computer account in the AD and used to mount volumes. :type smb_server_name: str :param organizational_unit: The Organizational Unit (OU) within the Windows Active Directory. :type organizational_unit: str :param site: The Active Directory site the service will limit Domain Controller discovery to. :type site: str :param backup_operators: Users to be added to the Built-in Backup Operator active directory group. A list of unique usernames without domain specifier. :type backup_operators: list[str] :param administrators: Users to be added to the Built-in Administrators active directory group. A list of unique usernames without domain specifier. :type administrators: list[str] :param kdc_ip: kdc server IP addresses for the active directory machine. This optional parameter is used only while creating kerberos volume. :type kdc_ip: str :param ad_name: Name of the active directory machine. This optional parameter is used only while creating kerberos volume. :type ad_name: str :param server_root_ca_certificate: When LDAP over SSL/TLS is enabled, the LDAP client is required to have base64 encoded Active Directory Certificate Service's self-signed root CA certificate, this optional parameter is used only for dual protocol with LDAP user-mapping volumes. :type server_root_ca_certificate: str :param aes_encryption: If enabled, AES encryption will be enabled for SMB communication. :type aes_encryption: bool :param ldap_signing: Specifies whether or not the LDAP traffic needs to be signed. :type ldap_signing: bool :param security_operators: Domain Users in the Active directory to be given SeSecurityPrivilege privilege (Needed for SMB Continuously available shares for SQL). A list of unique usernames without domain specifier. :type security_operators: list[str] :param ldap_over_tls: Specifies whether or not the LDAP traffic needs to be secured via TLS. :type ldap_over_tls: bool :param allow_local_nfs_users_with_ldap: If enabled, NFS client local users can also (in addition to LDAP users) access the NFS volumes. :type allow_local_nfs_users_with_ldap: bool """ _validation = { 'dns': {'pattern': r'^(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)((, ?)(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?))*$'}, 'status': {'readonly': True}, 'status_details': {'readonly': True}, 'kdc_ip': {'pattern': r'^(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)((, ?)(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?))*$'}, 'ad_name': {'max_length': 64, 'min_length': 1}, 'server_root_ca_certificate': {'max_length': 10240, 'min_length': 1}, } _attribute_map = { 'active_directory_id': {'key': 'activeDirectoryId', 'type': 'str'}, 'username': {'key': 'username', 'type': 'str'}, 'password': {'key': 'password', 'type': 'str'}, 'domain': {'key': 'domain', 'type': 'str'}, 'dns': {'key': 'dns', 'type': 'str'}, 'status': {'key': 'status', 'type': 'str'}, 'status_details': {'key': 'statusDetails', 'type': 'str'}, 'smb_server_name': {'key': 'smbServerName', 'type': 'str'}, 'organizational_unit': {'key': 'organizationalUnit', 'type': 'str'}, 'site': {'key': 'site', 'type': 'str'}, 'backup_operators': {'key': 'backupOperators', 'type': '[str]'}, 'administrators': {'key': 'administrators', 'type': '[str]'}, 'kdc_ip': {'key': 'kdcIP', 'type': 'str'}, 'ad_name': {'key': 'adName', 'type': 'str'}, 'server_root_ca_certificate': {'key': 'serverRootCACertificate', 'type': 'str'}, 'aes_encryption': {'key': 'aesEncryption', 'type': 'bool'}, 'ldap_signing': {'key': 'ldapSigning', 'type': 'bool'}, 'security_operators': {'key': 'securityOperators', 'type': '[str]'}, 'ldap_over_tls': {'key': 'ldapOverTLS', 'type': 'bool'}, 'allow_local_nfs_users_with_ldap': {'key': 'allowLocalNfsUsersWithLdap', 'type': 'bool'}, } def __init__( self, *, active_directory_id: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, domain: Optional[str] = None, dns: Optional[str] = None, smb_server_name: Optional[str] = None, organizational_unit: Optional[str] = "CN=Computers", site: Optional[str] = None, backup_operators: Optional[List[str]] = None, administrators: Optional[List[str]] = None, kdc_ip: Optional[str] = None, ad_name: Optional[str] = None, server_root_ca_certificate: Optional[str] = None, aes_encryption: Optional[bool] = None, ldap_signing: Optional[bool] = None, security_operators: Optional[List[str]] = None, ldap_over_tls: Optional[bool] = None, allow_local_nfs_users_with_ldap: Optional[bool] = None, **kwargs ): super(ActiveDirectory, self).__init__(**kwargs) self.active_directory_id = active_directory_id self.username = username self.password = password self.domain = domain self.dns = dns self.status = None self.status_details = None self.smb_server_name = smb_server_name self.organizational_unit = organizational_unit self.site = site self.backup_operators = backup_operators self.administrators = administrators self.kdc_ip = kdc_ip self.ad_name = ad_name self.server_root_ca_certificate = server_root_ca_certificate self.aes_encryption = aes_encryption self.ldap_signing = ldap_signing self.security_operators = security_operators self.ldap_over_tls = ldap_over_tls self.allow_local_nfs_users_with_ldap = allow_local_nfs_users_with_ldap class AuthorizeRequest(msrest.serialization.Model): """Authorize request. :param remote_volume_resource_id: Resource id of the remote volume. :type remote_volume_resource_id: str """ _attribute_map = { 'remote_volume_resource_id': {'key': 'remoteVolumeResourceId', 'type': 'str'}, } def __init__( self, *, remote_volume_resource_id: Optional[str] = None, **kwargs ): super(AuthorizeRequest, self).__init__(**kwargs) self.remote_volume_resource_id = remote_volume_resource_id class Backup(msrest.serialization.Model): """Backup of a Volume. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param location: Required. Resource location. :type location: str :ivar id: Resource Id. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar type: Resource type. :vartype type: str :ivar backup_id: UUID v4 used to identify the Backup. :vartype backup_id: str :ivar creation_date: The creation date of the backup. :vartype creation_date: ~datetime.datetime :ivar provisioning_state: Azure lifecycle management. :vartype provisioning_state: str :ivar size: Size of backup. :vartype size: long :param label: Label for backup. :type label: str :ivar backup_type: Type of backup Manual or Scheduled. Possible values include: "Manual", "Scheduled". :vartype backup_type: str or ~azure.mgmt.netapp.models.BackupType :ivar failure_reason: Failure reason. :vartype failure_reason: str :ivar volume_name: Volume name. :vartype volume_name: str :param use_existing_snapshot: Manual backup an already existing snapshot. This will always be false for scheduled backups and true/false for manual backups. :type use_existing_snapshot: bool """ _validation = { 'location': {'required': True}, 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'backup_id': {'readonly': True, 'max_length': 36, 'min_length': 36, 'pattern': r'^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}$'}, 'creation_date': {'readonly': True}, 'provisioning_state': {'readonly': True}, 'size': {'readonly': True}, 'backup_type': {'readonly': True}, 'failure_reason': {'readonly': True}, 'volume_name': {'readonly': True}, } _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'backup_id': {'key': 'properties.backupId', 'type': 'str'}, 'creation_date': {'key': 'properties.creationDate', 'type': 'iso-8601'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'size': {'key': 'properties.size', 'type': 'long'}, 'label': {'key': 'properties.label', 'type': 'str'}, 'backup_type': {'key': 'properties.backupType', 'type': 'str'}, 'failure_reason': {'key': 'properties.failureReason', 'type': 'str'}, 'volume_name': {'key': 'properties.volumeName', 'type': 'str'}, 'use_existing_snapshot': {'key': 'properties.useExistingSnapshot', 'type': 'bool'}, } def __init__( self, *, location: str, label: Optional[str] = None, use_existing_snapshot: Optional[bool] = False, **kwargs ): super(Backup, self).__init__(**kwargs) self.location = location self.id = None self.name = None self.type = None self.backup_id = None self.creation_date = None self.provisioning_state = None self.size = None self.label = label self.backup_type = None self.failure_reason = None self.volume_name = None self.use_existing_snapshot = use_existing_snapshot class BackupPatch(msrest.serialization.Model): """Backup patch. Variables are only populated by the server, and will be ignored when sending a request. :param tags: A set of tags. Resource tags. :type tags: dict[str, str] :ivar backup_id: UUID v4 used to identify the Backup. :vartype backup_id: str :ivar creation_date: The creation date of the backup. :vartype creation_date: ~datetime.datetime :ivar provisioning_state: Azure lifecycle management. :vartype provisioning_state: str :ivar size: Size of backup. :vartype size: long :param label: Label for backup. :type label: str :ivar backup_type: Type of backup Manual or Scheduled. Possible values include: "Manual", "Scheduled". :vartype backup_type: str or ~azure.mgmt.netapp.models.BackupType :ivar failure_reason: Failure reason. :vartype failure_reason: str :ivar volume_name: Volume name. :vartype volume_name: str :param use_existing_snapshot: Manual backup an already existing snapshot. This will always be false for scheduled backups and true/false for manual backups. :type use_existing_snapshot: bool """ _validation = { 'backup_id': {'readonly': True, 'max_length': 36, 'min_length': 36, 'pattern': r'^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}$'}, 'creation_date': {'readonly': True}, 'provisioning_state': {'readonly': True}, 'size': {'readonly': True}, 'backup_type': {'readonly': True}, 'failure_reason': {'readonly': True}, 'volume_name': {'readonly': True}, } _attribute_map = { 'tags': {'key': 'tags', 'type': '{str}'}, 'backup_id': {'key': 'properties.backupId', 'type': 'str'}, 'creation_date': {'key': 'properties.creationDate', 'type': 'iso-8601'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'size': {'key': 'properties.size', 'type': 'long'}, 'label': {'key': 'properties.label', 'type': 'str'}, 'backup_type': {'key': 'properties.backupType', 'type': 'str'}, 'failure_reason': {'key': 'properties.failureReason', 'type': 'str'}, 'volume_name': {'key': 'properties.volumeName', 'type': 'str'}, 'use_existing_snapshot': {'key': 'properties.useExistingSnapshot', 'type': 'bool'}, } def __init__( self, *, tags: Optional[Dict[str, str]] = None, label: Optional[str] = None, use_existing_snapshot: Optional[bool] = False, **kwargs ): super(BackupPatch, self).__init__(**kwargs) self.tags = tags self.backup_id = None self.creation_date = None self.provisioning_state = None self.size = None self.label = label self.backup_type = None self.failure_reason = None self.volume_name = None self.use_existing_snapshot = use_existing_snapshot class BackupPoliciesList(msrest.serialization.Model): """List of Backup Policies. :param value: A list of backup policies. :type value: list[~azure.mgmt.netapp.models.BackupPolicy] """ _attribute_map = { 'value': {'key': 'value', 'type': '[BackupPolicy]'}, } def __init__( self, *, value: Optional[List["BackupPolicy"]] = None, **kwargs ): super(BackupPoliciesList, self).__init__(**kwargs) self.value = value class BackupPolicy(msrest.serialization.Model): """Backup policy information. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param location: Required. Resource location. :type location: str :ivar id: Resource Id. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar etag: A unique read-only string that changes whenever the resource is updated. :vartype etag: str :ivar type: Resource type. :vartype type: str :param tags: A set of tags. Resource tags. :type tags: dict[str, str] :ivar name_properties_name: Name of backup policy. :vartype name_properties_name: str :ivar backup_policy_id: Backup Policy Resource ID. :vartype backup_policy_id: str :ivar provisioning_state: Azure lifecycle management. :vartype provisioning_state: str :param daily_backups_to_keep: Daily backups count to keep. :type daily_backups_to_keep: int :param weekly_backups_to_keep: Weekly backups count to keep. :type weekly_backups_to_keep: int :param monthly_backups_to_keep: Monthly backups count to keep. :type monthly_backups_to_keep: int :ivar volumes_assigned: Volumes using current backup policy. :vartype volumes_assigned: int :param enabled: The property to decide policy is enabled or not. :type enabled: bool :ivar volume_backups: A list of volumes assigned to this policy. :vartype volume_backups: list[~azure.mgmt.netapp.models.VolumeBackups] """ _validation = { 'location': {'required': True}, 'id': {'readonly': True}, 'name': {'readonly': True}, 'etag': {'readonly': True}, 'type': {'readonly': True}, 'name_properties_name': {'readonly': True}, 'backup_policy_id': {'readonly': True}, 'provisioning_state': {'readonly': True}, 'volumes_assigned': {'readonly': True}, 'volume_backups': {'readonly': True}, } _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'name_properties_name': {'key': 'properties.name', 'type': 'str'}, 'backup_policy_id': {'key': 'properties.backupPolicyId', 'type': 'str'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'daily_backups_to_keep': {'key': 'properties.dailyBackupsToKeep', 'type': 'int'}, 'weekly_backups_to_keep': {'key': 'properties.weeklyBackupsToKeep', 'type': 'int'}, 'monthly_backups_to_keep': {'key': 'properties.monthlyBackupsToKeep', 'type': 'int'}, 'volumes_assigned': {'key': 'properties.volumesAssigned', 'type': 'int'}, 'enabled': {'key': 'properties.enabled', 'type': 'bool'}, 'volume_backups': {'key': 'properties.volumeBackups', 'type': '[VolumeBackups]'}, } def __init__( self, *, location: str, tags: Optional[Dict[str, str]] = None, daily_backups_to_keep: Optional[int] = None, weekly_backups_to_keep: Optional[int] = None, monthly_backups_to_keep: Optional[int] = None, enabled: Optional[bool] = None, **kwargs ): super(BackupPolicy, self).__init__(**kwargs) self.location = location self.id = None self.name = None self.etag = None self.type = None self.tags = tags self.name_properties_name = None self.backup_policy_id = None self.provisioning_state = None self.daily_backups_to_keep = daily_backups_to_keep self.weekly_backups_to_keep = weekly_backups_to_keep self.monthly_backups_to_keep = monthly_backups_to_keep self.volumes_assigned = None self.enabled = enabled self.volume_backups = None class BackupPolicyDetails(msrest.serialization.Model): """Backup policy properties. Variables are only populated by the server, and will be ignored when sending a request. :param location: Resource location. :type location: str :ivar id: Resource Id. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar type: Resource type. :vartype type: str :param tags: A set of tags. Resource tags. :type tags: dict[str, str] :ivar name_properties_name: Name of backup policy. :vartype name_properties_name: str :ivar backup_policy_id: Backup Policy Resource ID. :vartype backup_policy_id: str :ivar provisioning_state: Azure lifecycle management. :vartype provisioning_state: str :param daily_backups_to_keep: Daily backups count to keep. :type daily_backups_to_keep: int :param weekly_backups_to_keep: Weekly backups count to keep. :type weekly_backups_to_keep: int :param monthly_backups_to_keep: Monthly backups count to keep. :type monthly_backups_to_keep: int :ivar volumes_assigned: Volumes using current backup policy. :vartype volumes_assigned: int :param enabled: The property to decide policy is enabled or not. :type enabled: bool :ivar volume_backups: A list of volumes assigned to this policy. :vartype volume_backups: list[~azure.mgmt.netapp.models.VolumeBackups] """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'name_properties_name': {'readonly': True}, 'backup_policy_id': {'readonly': True}, 'provisioning_state': {'readonly': True}, 'volumes_assigned': {'readonly': True}, 'volume_backups': {'readonly': True}, } _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'name_properties_name': {'key': 'properties.name', 'type': 'str'}, 'backup_policy_id': {'key': 'properties.backupPolicyId', 'type': 'str'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'daily_backups_to_keep': {'key': 'properties.dailyBackupsToKeep', 'type': 'int'}, 'weekly_backups_to_keep': {'key': 'properties.weeklyBackupsToKeep', 'type': 'int'}, 'monthly_backups_to_keep': {'key': 'properties.monthlyBackupsToKeep', 'type': 'int'}, 'volumes_assigned': {'key': 'properties.volumesAssigned', 'type': 'int'}, 'enabled': {'key': 'properties.enabled', 'type': 'bool'}, 'volume_backups': {'key': 'properties.volumeBackups', 'type': '[VolumeBackups]'}, } def __init__( self, *, location: Optional[str] = None, tags: Optional[Dict[str, str]] = None, daily_backups_to_keep: Optional[int] = None, weekly_backups_to_keep: Optional[int] = None, monthly_backups_to_keep: Optional[int] = None, enabled: Optional[bool] = None, **kwargs ): super(BackupPolicyDetails, self).__init__(**kwargs) self.location = location self.id = None self.name = None self.type = None self.tags = tags self.name_properties_name = None self.backup_policy_id = None self.provisioning_state = None self.daily_backups_to_keep = daily_backups_to_keep self.weekly_backups_to_keep = weekly_backups_to_keep self.monthly_backups_to_keep = monthly_backups_to_keep self.volumes_assigned = None self.enabled = enabled self.volume_backups = None class BackupPolicyPatch(msrest.serialization.Model): """Backup policy Details for create and update. Variables are only populated by the server, and will be ignored when sending a request. :param location: Resource location. :type location: str :ivar id: Resource Id. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar type: Resource type. :vartype type: str :param tags: A set of tags. Resource tags. :type tags: dict[str, str] :ivar name_properties_name: Name of backup policy. :vartype name_properties_name: str :ivar backup_policy_id: Backup Policy Resource ID. :vartype backup_policy_id: str :ivar provisioning_state: Azure lifecycle management. :vartype provisioning_state: str :param daily_backups_to_keep: Daily backups count to keep. :type daily_backups_to_keep: int :param weekly_backups_to_keep: Weekly backups count to keep. :type weekly_backups_to_keep: int :param monthly_backups_to_keep: Monthly backups count to keep. :type monthly_backups_to_keep: int :ivar volumes_assigned: Volumes using current backup policy. :vartype volumes_assigned: int :param enabled: The property to decide policy is enabled or not. :type enabled: bool :ivar volume_backups: A list of volumes assigned to this policy. :vartype volume_backups: list[~azure.mgmt.netapp.models.VolumeBackups] """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'name_properties_name': {'readonly': True}, 'backup_policy_id': {'readonly': True}, 'provisioning_state': {'readonly': True}, 'volumes_assigned': {'readonly': True}, 'volume_backups': {'readonly': True}, } _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'name_properties_name': {'key': 'properties.name', 'type': 'str'}, 'backup_policy_id': {'key': 'properties.backupPolicyId', 'type': 'str'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'daily_backups_to_keep': {'key': 'properties.dailyBackupsToKeep', 'type': 'int'}, 'weekly_backups_to_keep': {'key': 'properties.weeklyBackupsToKeep', 'type': 'int'}, 'monthly_backups_to_keep': {'key': 'properties.monthlyBackupsToKeep', 'type': 'int'}, 'volumes_assigned': {'key': 'properties.volumesAssigned', 'type': 'int'}, 'enabled': {'key': 'properties.enabled', 'type': 'bool'}, 'volume_backups': {'key': 'properties.volumeBackups', 'type': '[VolumeBackups]'}, } def __init__( self, *, location: Optional[str] = None, tags: Optional[Dict[str, str]] = None, daily_backups_to_keep: Optional[int] = None, weekly_backups_to_keep: Optional[int] = None, monthly_backups_to_keep: Optional[int] = None, enabled: Optional[bool] = None, **kwargs ): super(BackupPolicyPatch, self).__init__(**kwargs) self.location = location self.id = None self.name = None self.type = None self.tags = tags self.name_properties_name = None self.backup_policy_id = None self.provisioning_state = None self.daily_backups_to_keep = daily_backups_to_keep self.weekly_backups_to_keep = weekly_backups_to_keep self.monthly_backups_to_keep = monthly_backups_to_keep self.volumes_assigned = None self.enabled = enabled self.volume_backups = None class BackupsList(msrest.serialization.Model): """List of Backups. :param value: A list of Backups. :type value: list[~azure.mgmt.netapp.models.Backup] """ _attribute_map = { 'value': {'key': 'value', 'type': '[Backup]'}, } def __init__( self, *, value: Optional[List["Backup"]] = None, **kwargs ): super(BackupsList, self).__init__(**kwargs) self.value = value class BackupStatus(msrest.serialization.Model): """Backup status. Variables are only populated by the server, and will be ignored when sending a request. :ivar healthy: Backup health status. :vartype healthy: bool :ivar relationship_status: Status of the backup mirror relationship. Possible values include: "Idle", "Transferring". :vartype relationship_status: str or ~azure.mgmt.netapp.models.RelationshipStatus :ivar mirror_state: The status of the backup. Possible values include: "Uninitialized", "Mirrored", "Broken". :vartype mirror_state: str or ~azure.mgmt.netapp.models.MirrorState :ivar unhealthy_reason: Reason for the unhealthy backup relationship. :vartype unhealthy_reason: str :ivar error_message: Displays error message if the backup is in an error state. :vartype error_message: str :ivar last_transfer_size: Displays the last transfer size. :vartype last_transfer_size: long :ivar last_transfer_type: Displays the last transfer type. :vartype last_transfer_type: str :ivar total_transfer_bytes: Displays the total bytes transferred. :vartype total_transfer_bytes: long """ _validation = { 'healthy': {'readonly': True}, 'relationship_status': {'readonly': True}, 'mirror_state': {'readonly': True}, 'unhealthy_reason': {'readonly': True}, 'error_message': {'readonly': True}, 'last_transfer_size': {'readonly': True}, 'last_transfer_type': {'readonly': True}, 'total_transfer_bytes': {'readonly': True}, } _attribute_map = { 'healthy': {'key': 'healthy', 'type': 'bool'}, 'relationship_status': {'key': 'relationshipStatus', 'type': 'str'}, 'mirror_state': {'key': 'mirrorState', 'type': 'str'}, 'unhealthy_reason': {'key': 'unhealthyReason', 'type': 'str'}, 'error_message': {'key': 'errorMessage', 'type': 'str'}, 'last_transfer_size': {'key': 'lastTransferSize', 'type': 'long'}, 'last_transfer_type': {'key': 'lastTransferType', 'type': 'str'}, 'total_transfer_bytes': {'key': 'totalTransferBytes', 'type': 'long'}, } def __init__( self, **kwargs ): super(BackupStatus, self).__init__(**kwargs) self.healthy = None self.relationship_status = None self.mirror_state = None self.unhealthy_reason = None self.error_message = None self.last_transfer_size = None self.last_transfer_type = None self.total_transfer_bytes = None class BreakReplicationRequest(msrest.serialization.Model): """Break replication request. :param force_break_replication: If replication is in status transferring and you want to force break the replication, set to true. :type force_break_replication: bool """ _attribute_map = { 'force_break_replication': {'key': 'forceBreakReplication', 'type': 'bool'}, } def __init__( self, *, force_break_replication: Optional[bool] = None, **kwargs ): super(BreakReplicationRequest, self).__init__(**kwargs) self.force_break_replication = force_break_replication class CapacityPool(msrest.serialization.Model): """Capacity pool resource. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param location: Required. Resource location. :type location: str :ivar id: Resource Id. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar etag: A unique read-only string that changes whenever the resource is updated. :vartype etag: str :ivar type: Resource type. :vartype type: str :param tags: A set of tags. Resource tags. :type tags: dict[str, str] :ivar pool_id: UUID v4 used to identify the Pool. :vartype pool_id: str :param size: Required. Provisioned size of the pool (in bytes). Allowed values are in 4TiB chunks (value must be multiply of 4398046511104). :type size: long :param service_level: Required. The service level of the file system. Possible values include: "Standard", "Premium", "Ultra", "StandardZRS". Default value: "Premium". :type service_level: str or ~azure.mgmt.netapp.models.ServiceLevel :ivar provisioning_state: Azure lifecycle management. :vartype provisioning_state: str :ivar total_throughput_mibps: Total throughput of pool in Mibps. :vartype total_throughput_mibps: float :ivar utilized_throughput_mibps: Utilized throughput of pool in Mibps. :vartype utilized_throughput_mibps: float :param qos_type: The qos type of the pool. Possible values include: "Auto", "Manual". :type qos_type: str or ~azure.mgmt.netapp.models.QosType :param cool_access: If enabled (true) the pool can contain cool Access enabled volumes. :type cool_access: bool :param encryption_type: Encryption type of the capacity pool, set encryption type for data at rest for this pool and all volumes in it. This value can only be set when creating new pool. Possible values include: "Single", "Double". Default value: "Single". :type encryption_type: str or ~azure.mgmt.netapp.models.EncryptionType """ _validation = { 'location': {'required': True}, 'id': {'readonly': True}, 'name': {'readonly': True}, 'etag': {'readonly': True}, 'type': {'readonly': True}, 'pool_id': {'readonly': True, 'max_length': 36, 'min_length': 36, 'pattern': r'^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}$'}, 'size': {'required': True, 'maximum': 549755813888000, 'minimum': 4398046511104}, 'service_level': {'required': True}, 'provisioning_state': {'readonly': True}, 'total_throughput_mibps': {'readonly': True}, 'utilized_throughput_mibps': {'readonly': True}, } _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'pool_id': {'key': 'properties.poolId', 'type': 'str'}, 'size': {'key': 'properties.size', 'type': 'long'}, 'service_level': {'key': 'properties.serviceLevel', 'type': 'str'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'total_throughput_mibps': {'key': 'properties.totalThroughputMibps', 'type': 'float'}, 'utilized_throughput_mibps': {'key': 'properties.utilizedThroughputMibps', 'type': 'float'}, 'qos_type': {'key': 'properties.qosType', 'type': 'str'}, 'cool_access': {'key': 'properties.coolAccess', 'type': 'bool'}, 'encryption_type': {'key': 'properties.encryptionType', 'type': 'str'}, } def __init__( self, *, location: str, size: int, service_level: Union[str, "ServiceLevel"] = "Premium", tags: Optional[Dict[str, str]] = None, qos_type: Optional[Union[str, "QosType"]] = None, cool_access: Optional[bool] = False, encryption_type: Optional[Union[str, "EncryptionType"]] = "Single", **kwargs ): super(CapacityPool, self).__init__(**kwargs) self.location = location self.id = None self.name = None self.etag = None self.type = None self.tags = tags self.pool_id = None self.size = size self.service_level = service_level self.provisioning_state = None self.total_throughput_mibps = None self.utilized_throughput_mibps = None self.qos_type = qos_type self.cool_access = cool_access self.encryption_type = encryption_type class CapacityPoolList(msrest.serialization.Model): """List of capacity pool resources. :param value: List of Capacity pools. :type value: list[~azure.mgmt.netapp.models.CapacityPool] :param next_link: URL to get the next set of results. :type next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[CapacityPool]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["CapacityPool"]] = None, next_link: Optional[str] = None, **kwargs ): super(CapacityPoolList, self).__init__(**kwargs) self.value = value self.next_link = next_link class CapacityPoolPatch(msrest.serialization.Model): """Capacity pool patch resource. Variables are only populated by the server, and will be ignored when sending a request. :param location: Resource location. :type location: str :ivar id: Resource Id. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar type: Resource type. :vartype type: str :param tags: A set of tags. Resource tags. :type tags: dict[str, str] :param size: Provisioned size of the pool (in bytes). Allowed values are in 4TiB chunks (value must be multiply of 4398046511104). :type size: long :param qos_type: The qos type of the pool. Possible values include: "Auto", "Manual". :type qos_type: str or ~azure.mgmt.netapp.models.QosType """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'size': {'maximum': 549755813888000, 'minimum': 4398046511104}, } _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'size': {'key': 'properties.size', 'type': 'long'}, 'qos_type': {'key': 'properties.qosType', 'type': 'str'}, } def __init__( self, *, location: Optional[str] = None, tags: Optional[Dict[str, str]] = None, size: Optional[int] = 4398046511104, qos_type: Optional[Union[str, "QosType"]] = None, **kwargs ): super(CapacityPoolPatch, self).__init__(**kwargs) self.location = location self.id = None self.name = None self.type = None self.tags = tags self.size = size self.qos_type = qos_type class CheckAvailabilityResponse(msrest.serialization.Model): """Information regarding availability of a resource. :param is_available: :code:`<code>true</code>` indicates name is valid and available. :code:`<code>false</code>` indicates the name is invalid, unavailable, or both. :type is_available: bool :param reason: :code:`<code>Invalid</code>` indicates the name provided does not match Azure App Service naming requirements. :code:`<code>AlreadyExists</code>` indicates that the name is already in use and is therefore unavailable. Possible values include: "Invalid", "AlreadyExists". :type reason: str or ~azure.mgmt.netapp.models.InAvailabilityReasonType :param message: If reason == invalid, provide the user with the reason why the given name is invalid, and provide the resource naming requirements so that the user can select a valid name. If reason == AlreadyExists, explain that resource name is already in use, and direct them to select a different name. :type message: str """ _attribute_map = { 'is_available': {'key': 'isAvailable', 'type': 'bool'}, 'reason': {'key': 'reason', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, } def __init__( self, *, is_available: Optional[bool] = None, reason: Optional[Union[str, "InAvailabilityReasonType"]] = None, message: Optional[str] = None, **kwargs ): super(CheckAvailabilityResponse, self).__init__(**kwargs) self.is_available = is_available self.reason = reason self.message = message class CloudErrorBody(msrest.serialization.Model): """An error response from the service. :param code: An identifier for the error. Codes are invariant and are intended to be consumed programmatically. :type code: str :param message: A message describing the error, intended to be suitable for display in a user interface. :type message: str """ _attribute_map = { 'code': {'key': 'code', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, } def __init__( self, *, code: Optional[str] = None, message: Optional[str] = None, **kwargs ): super(CloudErrorBody, self).__init__(**kwargs) self.code = code self.message = message class DailySchedule(msrest.serialization.Model): """Daily Schedule properties. :param snapshots_to_keep: Daily snapshot count to keep. :type snapshots_to_keep: int :param hour: Indicates which hour in UTC timezone a snapshot should be taken. :type hour: int :param minute: Indicates which minute snapshot should be taken. :type minute: int :param used_bytes: Resource size in bytes, current storage usage for the volume in bytes. :type used_bytes: long """ _attribute_map = { 'snapshots_to_keep': {'key': 'snapshotsToKeep', 'type': 'int'}, 'hour': {'key': 'hour', 'type': 'int'}, 'minute': {'key': 'minute', 'type': 'int'}, 'used_bytes': {'key': 'usedBytes', 'type': 'long'}, } def __init__( self, *, snapshots_to_keep: Optional[int] = None, hour: Optional[int] = None, minute: Optional[int] = None, used_bytes: Optional[int] = None, **kwargs ): super(DailySchedule, self).__init__(**kwargs) self.snapshots_to_keep = snapshots_to_keep self.hour = hour self.minute = minute self.used_bytes = used_bytes class Dimension(msrest.serialization.Model): """Dimension of blobs, possibly be blob type or access tier. :param name: Display name of dimension. :type name: str :param display_name: Display name of dimension. :type display_name: str """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, } def __init__( self, *, name: Optional[str] = None, display_name: Optional[str] = None, **kwargs ): super(Dimension, self).__init__(**kwargs) self.name = name self.display_name = display_name class ExportPolicyRule(msrest.serialization.Model): """Volume Export Policy Rule. :param rule_index: Order index. :type rule_index: int :param unix_read_only: Read only access. :type unix_read_only: bool :param unix_read_write: Read and write access. :type unix_read_write: bool :param kerberos5_read_only: Kerberos5 Read only access. To be use with swagger version 2020-05-01 or later. :type kerberos5_read_only: bool :param kerberos5_read_write: Kerberos5 Read and write access. To be use with swagger version 2020-05-01 or later. :type kerberos5_read_write: bool :param kerberos5_i_read_only: Kerberos5i Read only access. To be use with swagger version 2020-05-01 or later. :type kerberos5_i_read_only: bool :param kerberos5_i_read_write: Kerberos5i Read and write access. To be use with swagger version 2020-05-01 or later. :type kerberos5_i_read_write: bool :param kerberos5_p_read_only: Kerberos5p Read only access. To be use with swagger version 2020-05-01 or later. :type kerberos5_p_read_only: bool :param kerberos5_p_read_write: Kerberos5p Read and write access. To be use with swagger version 2020-05-01 or later. :type kerberos5_p_read_write: bool :param cifs: Allows CIFS protocol. :type cifs: bool :param nfsv3: Allows NFSv3 protocol. Enable only for NFSv3 type volumes. :type nfsv3: bool :param nfsv41: Allows NFSv4.1 protocol. Enable only for NFSv4.1 type volumes. :type nfsv41: bool :param allowed_clients: Client ingress specification as comma separated string with IPv4 CIDRs, IPv4 host addresses and host names. :type allowed_clients: str :param has_root_access: Has root access to volume. :type has_root_access: bool :param chown_mode: This parameter specifies who is authorized to change the ownership of a file. restricted - Only root user can change the ownership of the file. unrestricted - Non-root users can change ownership of files that they own. Possible values include: "Restricted", "Unrestricted". Default value: "Restricted". :type chown_mode: str or ~azure.mgmt.netapp.models.ChownMode """ _attribute_map = { 'rule_index': {'key': 'ruleIndex', 'type': 'int'}, 'unix_read_only': {'key': 'unixReadOnly', 'type': 'bool'}, 'unix_read_write': {'key': 'unixReadWrite', 'type': 'bool'}, 'kerberos5_read_only': {'key': 'kerberos5ReadOnly', 'type': 'bool'}, 'kerberos5_read_write': {'key': 'kerberos5ReadWrite', 'type': 'bool'}, 'kerberos5_i_read_only': {'key': 'kerberos5iReadOnly', 'type': 'bool'}, 'kerberos5_i_read_write': {'key': 'kerberos5iReadWrite', 'type': 'bool'}, 'kerberos5_p_read_only': {'key': 'kerberos5pReadOnly', 'type': 'bool'}, 'kerberos5_p_read_write': {'key': 'kerberos5pReadWrite', 'type': 'bool'}, 'cifs': {'key': 'cifs', 'type': 'bool'}, 'nfsv3': {'key': 'nfsv3', 'type': 'bool'}, 'nfsv41': {'key': 'nfsv41', 'type': 'bool'}, 'allowed_clients': {'key': 'allowedClients', 'type': 'str'}, 'has_root_access': {'key': 'hasRootAccess', 'type': 'bool'}, 'chown_mode': {'key': 'chownMode', 'type': 'str'}, } def __init__( self, *, rule_index: Optional[int] = None, unix_read_only: Optional[bool] = None, unix_read_write: Optional[bool] = None, kerberos5_read_only: Optional[bool] = False, kerberos5_read_write: Optional[bool] = False, kerberos5_i_read_only: Optional[bool] = False, kerberos5_i_read_write: Optional[bool] = False, kerberos5_p_read_only: Optional[bool] = False, kerberos5_p_read_write: Optional[bool] = False, cifs: Optional[bool] = None, nfsv3: Optional[bool] = None, nfsv41: Optional[bool] = None, allowed_clients: Optional[str] = None, has_root_access: Optional[bool] = True, chown_mode: Optional[Union[str, "ChownMode"]] = "Restricted", **kwargs ): super(ExportPolicyRule, self).__init__(**kwargs) self.rule_index = rule_index self.unix_read_only = unix_read_only self.unix_read_write = unix_read_write self.kerberos5_read_only = kerberos5_read_only self.kerberos5_read_write = kerberos5_read_write self.kerberos5_i_read_only = kerberos5_i_read_only self.kerberos5_i_read_write = kerberos5_i_read_write self.kerberos5_p_read_only = kerberos5_p_read_only self.kerberos5_p_read_write = kerberos5_p_read_write self.cifs = cifs self.nfsv3 = nfsv3 self.nfsv41 = nfsv41 self.allowed_clients = allowed_clients self.has_root_access = has_root_access self.chown_mode = chown_mode class FilePathAvailabilityRequest(msrest.serialization.Model): """File path availability request content - availability is based on the name and the subnetId. All required parameters must be populated in order to send to Azure. :param name: Required. File path to verify. :type name: str :param subnet_id: Required. The Azure Resource URI for a delegated subnet. Must have the delegation Microsoft.NetApp/volumes. :type subnet_id: str """ _validation = { 'name': {'required': True}, 'subnet_id': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'subnet_id': {'key': 'subnetId', 'type': 'str'}, } def __init__( self, *, name: str, subnet_id: str, **kwargs ): super(FilePathAvailabilityRequest, self).__init__(**kwargs) self.name = name self.subnet_id = subnet_id class HourlySchedule(msrest.serialization.Model): """Hourly Schedule properties. :param snapshots_to_keep: Hourly snapshot count to keep. :type snapshots_to_keep: int :param minute: Indicates which minute snapshot should be taken. :type minute: int :param used_bytes: Resource size in bytes, current storage usage for the volume in bytes. :type used_bytes: long """ _attribute_map = { 'snapshots_to_keep': {'key': 'snapshotsToKeep', 'type': 'int'}, 'minute': {'key': 'minute', 'type': 'int'}, 'used_bytes': {'key': 'usedBytes', 'type': 'long'}, } def __init__( self, *, snapshots_to_keep: Optional[int] = None, minute: Optional[int] = None, used_bytes: Optional[int] = None, **kwargs ): super(HourlySchedule, self).__init__(**kwargs) self.snapshots_to_keep = snapshots_to_keep self.minute = minute self.used_bytes = used_bytes class LogSpecification(msrest.serialization.Model): """Log Definition of a single resource metric. :param name: :type name: str :param display_name: :type display_name: str """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, } def __init__( self, *, name: Optional[str] = None, display_name: Optional[str] = None, **kwargs ): super(LogSpecification, self).__init__(**kwargs) self.name = name self.display_name = display_name class MetricSpecification(msrest.serialization.Model): """Metric specification of operation. :param name: Name of metric specification. :type name: str :param display_name: Display name of metric specification. :type display_name: str :param display_description: Display description of metric specification. :type display_description: str :param unit: Unit could be Bytes or Count. :type unit: str :param supported_aggregation_types: Support metric aggregation type. :type supported_aggregation_types: list[str or ~azure.mgmt.netapp.models.MetricAggregationType] :param supported_time_grain_types: The supported time grain types for the metrics. :type supported_time_grain_types: list[str] :param internal_metric_name: The internal metric name. :type internal_metric_name: str :param enable_regional_mdm_account: Whether or not the service is using regional MDM accounts. :type enable_regional_mdm_account: bool :param source_mdm_account: The source MDM account. :type source_mdm_account: str :param source_mdm_namespace: The source MDM namespace. :type source_mdm_namespace: str :param dimensions: Dimensions of blobs, including blob type and access tier. :type dimensions: list[~azure.mgmt.netapp.models.Dimension] :param aggregation_type: Aggregation type could be Average. :type aggregation_type: str :param fill_gap_with_zero: The property to decide fill gap with zero or not. :type fill_gap_with_zero: bool :param category: The category this metric specification belong to, could be Capacity. :type category: str :param resource_id_dimension_name_override: Account Resource Id. :type resource_id_dimension_name_override: str :param is_internal: Whether the metric is internal. :type is_internal: bool """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'display_description': {'key': 'displayDescription', 'type': 'str'}, 'unit': {'key': 'unit', 'type': 'str'}, 'supported_aggregation_types': {'key': 'supportedAggregationTypes', 'type': '[str]'}, 'supported_time_grain_types': {'key': 'supportedTimeGrainTypes', 'type': '[str]'}, 'internal_metric_name': {'key': 'internalMetricName', 'type': 'str'}, 'enable_regional_mdm_account': {'key': 'enableRegionalMdmAccount', 'type': 'bool'}, 'source_mdm_account': {'key': 'sourceMdmAccount', 'type': 'str'}, 'source_mdm_namespace': {'key': 'sourceMdmNamespace', 'type': 'str'}, 'dimensions': {'key': 'dimensions', 'type': '[Dimension]'}, 'aggregation_type': {'key': 'aggregationType', 'type': 'str'}, 'fill_gap_with_zero': {'key': 'fillGapWithZero', 'type': 'bool'}, 'category': {'key': 'category', 'type': 'str'}, 'resource_id_dimension_name_override': {'key': 'resourceIdDimensionNameOverride', 'type': 'str'}, 'is_internal': {'key': 'isInternal', 'type': 'bool'}, } def __init__( self, *, name: Optional[str] = None, display_name: Optional[str] = None, display_description: Optional[str] = None, unit: Optional[str] = None, supported_aggregation_types: Optional[List[Union[str, "MetricAggregationType"]]] = None, supported_time_grain_types: Optional[List[str]] = None, internal_metric_name: Optional[str] = None, enable_regional_mdm_account: Optional[bool] = None, source_mdm_account: Optional[str] = None, source_mdm_namespace: Optional[str] = None, dimensions: Optional[List["Dimension"]] = None, aggregation_type: Optional[str] = None, fill_gap_with_zero: Optional[bool] = None, category: Optional[str] = None, resource_id_dimension_name_override: Optional[str] = None, is_internal: Optional[bool] = None, **kwargs ): super(MetricSpecification, self).__init__(**kwargs) self.name = name self.display_name = display_name self.display_description = display_description self.unit = unit self.supported_aggregation_types = supported_aggregation_types self.supported_time_grain_types = supported_time_grain_types self.internal_metric_name = internal_metric_name self.enable_regional_mdm_account = enable_regional_mdm_account self.source_mdm_account = source_mdm_account self.source_mdm_namespace = source_mdm_namespace self.dimensions = dimensions self.aggregation_type = aggregation_type self.fill_gap_with_zero = fill_gap_with_zero self.category = category self.resource_id_dimension_name_override = resource_id_dimension_name_override self.is_internal = is_internal class MonthlySchedule(msrest.serialization.Model): """Monthly Schedule properties. :param snapshots_to_keep: Monthly snapshot count to keep. :type snapshots_to_keep: int :param days_of_month: Indicates which days of the month snapshot should be taken. A comma delimited string. :type days_of_month: str :param hour: Indicates which hour in UTC timezone a snapshot should be taken. :type hour: int :param minute: Indicates which minute snapshot should be taken. :type minute: int :param used_bytes: Resource size in bytes, current storage usage for the volume in bytes. :type used_bytes: long """ _attribute_map = { 'snapshots_to_keep': {'key': 'snapshotsToKeep', 'type': 'int'}, 'days_of_month': {'key': 'daysOfMonth', 'type': 'str'}, 'hour': {'key': 'hour', 'type': 'int'}, 'minute': {'key': 'minute', 'type': 'int'}, 'used_bytes': {'key': 'usedBytes', 'type': 'long'}, } def __init__( self, *, snapshots_to_keep: Optional[int] = None, days_of_month: Optional[str] = None, hour: Optional[int] = None, minute: Optional[int] = None, used_bytes: Optional[int] = None, **kwargs ): super(MonthlySchedule, self).__init__(**kwargs) self.snapshots_to_keep = snapshots_to_keep self.days_of_month = days_of_month self.hour = hour self.minute = minute self.used_bytes = used_bytes class MountTarget(msrest.serialization.Model): """Mount Target. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param location: Required. Resource location. :type location: str :ivar id: Resource Id. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar type: Resource type. :vartype type: str :param tags: A set of tags. Resource tags. :type tags: dict[str, str] :ivar mount_target_id: UUID v4 used to identify the MountTarget. :vartype mount_target_id: str :param file_system_id: Required. UUID v4 used to identify the MountTarget. :type file_system_id: str :ivar ip_address: The mount target's IPv4 address. :vartype ip_address: str :param smb_server_fqdn: The SMB server's Fully Qualified Domain Name, FQDN. :type smb_server_fqdn: str """ _validation = { 'location': {'required': True}, 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'mount_target_id': {'readonly': True, 'max_length': 36, 'min_length': 36, 'pattern': r'^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}$'}, 'file_system_id': {'required': True, 'max_length': 36, 'min_length': 36, 'pattern': r'^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}$'}, 'ip_address': {'readonly': True}, } _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'mount_target_id': {'key': 'properties.mountTargetId', 'type': 'str'}, 'file_system_id': {'key': 'properties.fileSystemId', 'type': 'str'}, 'ip_address': {'key': 'properties.ipAddress', 'type': 'str'}, 'smb_server_fqdn': {'key': 'properties.smbServerFqdn', 'type': 'str'}, } def __init__( self, *, location: str, file_system_id: str, tags: Optional[Dict[str, str]] = None, smb_server_fqdn: Optional[str] = None, **kwargs ): super(MountTarget, self).__init__(**kwargs) self.location = location self.id = None self.name = None self.type = None self.tags = tags self.mount_target_id = None self.file_system_id = file_system_id self.ip_address = None self.smb_server_fqdn = smb_server_fqdn class MountTargetProperties(msrest.serialization.Model): """Mount target properties. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar mount_target_id: UUID v4 used to identify the MountTarget. :vartype mount_target_id: str :param file_system_id: Required. UUID v4 used to identify the MountTarget. :type file_system_id: str :ivar ip_address: The mount target's IPv4 address. :vartype ip_address: str :param smb_server_fqdn: The SMB server's Fully Qualified Domain Name, FQDN. :type smb_server_fqdn: str """ _validation = { 'mount_target_id': {'readonly': True, 'max_length': 36, 'min_length': 36, 'pattern': r'^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}$'}, 'file_system_id': {'required': True, 'max_length': 36, 'min_length': 36, 'pattern': r'^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}$'}, 'ip_address': {'readonly': True}, } _attribute_map = { 'mount_target_id': {'key': 'mountTargetId', 'type': 'str'}, 'file_system_id': {'key': 'fileSystemId', 'type': 'str'}, 'ip_address': {'key': 'ipAddress', 'type': 'str'}, 'smb_server_fqdn': {'key': 'smbServerFqdn', 'type': 'str'}, } def __init__( self, *, file_system_id: str, smb_server_fqdn: Optional[str] = None, **kwargs ): super(MountTargetProperties, self).__init__(**kwargs) self.mount_target_id = None self.file_system_id = file_system_id self.ip_address = None self.smb_server_fqdn = smb_server_fqdn class NetAppAccount(msrest.serialization.Model): """NetApp account resource. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param location: Required. Resource location. :type location: str :ivar id: Resource Id. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar etag: A unique read-only string that changes whenever the resource is updated. :vartype etag: str :ivar type: Resource type. :vartype type: str :param tags: A set of tags. Resource tags. :type tags: dict[str, str] :ivar system_data: The system meta data relating to this resource. :vartype system_data: ~azure.mgmt.netapp.models.SystemData :ivar provisioning_state: Azure lifecycle management. :vartype provisioning_state: str :param active_directories: Active Directories. :type active_directories: list[~azure.mgmt.netapp.models.ActiveDirectory] :param encryption: Encryption settings. :type encryption: ~azure.mgmt.netapp.models.AccountEncryption """ _validation = { 'location': {'required': True}, 'id': {'readonly': True}, 'name': {'readonly': True}, 'etag': {'readonly': True}, 'type': {'readonly': True}, 'system_data': {'readonly': True}, 'provisioning_state': {'readonly': True}, } _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'system_data': {'key': 'systemData', 'type': 'SystemData'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'active_directories': {'key': 'properties.activeDirectories', 'type': '[ActiveDirectory]'}, 'encryption': {'key': 'properties.encryption', 'type': 'AccountEncryption'}, } def __init__( self, *, location: str, tags: Optional[Dict[str, str]] = None, active_directories: Optional[List["ActiveDirectory"]] = None, encryption: Optional["AccountEncryption"] = None, **kwargs ): super(NetAppAccount, self).__init__(**kwargs) self.location = location self.id = None self.name = None self.etag = None self.type = None self.tags = tags self.system_data = None self.provisioning_state = None self.active_directories = active_directories self.encryption = encryption class NetAppAccountList(msrest.serialization.Model): """List of NetApp account resources. :param value: Multiple NetApp accounts. :type value: list[~azure.mgmt.netapp.models.NetAppAccount] :param next_link: URL to get the next set of results. :type next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[NetAppAccount]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["NetAppAccount"]] = None, next_link: Optional[str] = None, **kwargs ): super(NetAppAccountList, self).__init__(**kwargs) self.value = value self.next_link = next_link class NetAppAccountPatch(msrest.serialization.Model): """NetApp account patch resource. Variables are only populated by the server, and will be ignored when sending a request. :param location: Resource location. :type location: str :ivar id: Resource Id. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar type: Resource type. :vartype type: str :param tags: A set of tags. Resource tags. :type tags: dict[str, str] :ivar provisioning_state: Azure lifecycle management. :vartype provisioning_state: str :param active_directories: Active Directories. :type active_directories: list[~azure.mgmt.netapp.models.ActiveDirectory] :param encryption: Encryption settings. :type encryption: ~azure.mgmt.netapp.models.AccountEncryption """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'provisioning_state': {'readonly': True}, } _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'active_directories': {'key': 'properties.activeDirectories', 'type': '[ActiveDirectory]'}, 'encryption': {'key': 'properties.encryption', 'type': 'AccountEncryption'}, } def __init__( self, *, location: Optional[str] = None, tags: Optional[Dict[str, str]] = None, active_directories: Optional[List["ActiveDirectory"]] = None, encryption: Optional["AccountEncryption"] = None, **kwargs ): super(NetAppAccountPatch, self).__init__(**kwargs) self.location = location self.id = None self.name = None self.type = None self.tags = tags self.provisioning_state = None self.active_directories = active_directories self.encryption = encryption class Operation(msrest.serialization.Model): """Microsoft.NetApp REST API operation definition. :param name: Operation name: {provider}/{resource}/{operation}. :type name: str :param display: Display metadata associated with the operation. :type display: ~azure.mgmt.netapp.models.OperationDisplay :param origin: The origin of operations. :type origin: str :param service_specification: One property of operation, include metric specifications. :type service_specification: ~azure.mgmt.netapp.models.ServiceSpecification """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'display': {'key': 'display', 'type': 'OperationDisplay'}, 'origin': {'key': 'origin', 'type': 'str'}, 'service_specification': {'key': 'properties.serviceSpecification', 'type': 'ServiceSpecification'}, } def __init__( self, *, name: Optional[str] = None, display: Optional["OperationDisplay"] = None, origin: Optional[str] = None, service_specification: Optional["ServiceSpecification"] = None, **kwargs ): super(Operation, self).__init__(**kwargs) self.name = name self.display = display self.origin = origin self.service_specification = service_specification class OperationDisplay(msrest.serialization.Model): """Display metadata associated with the operation. :param provider: Service provider: Microsoft NetApp. :type provider: str :param resource: Resource on which the operation is performed etc. :type resource: str :param operation: Type of operation: get, read, delete, etc. :type operation: str :param description: Operation description. :type description: str """ _attribute_map = { 'provider': {'key': 'provider', 'type': 'str'}, 'resource': {'key': 'resource', 'type': 'str'}, 'operation': {'key': 'operation', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, } def __init__( self, *, provider: Optional[str] = None, resource: Optional[str] = None, operation: Optional[str] = None, description: Optional[str] = None, **kwargs ): super(OperationDisplay, self).__init__(**kwargs) self.provider = provider self.resource = resource self.operation = operation self.description = description class OperationListResult(msrest.serialization.Model): """Result of the request to list Cloud Volume operations. It contains a list of operations and a URL link to get the next set of results. :param value: List of Storage operations supported by the Storage resource provider. :type value: list[~azure.mgmt.netapp.models.Operation] """ _attribute_map = { 'value': {'key': 'value', 'type': '[Operation]'}, } def __init__( self, *, value: Optional[List["Operation"]] = None, **kwargs ): super(OperationListResult, self).__init__(**kwargs) self.value = value class PoolChangeRequest(msrest.serialization.Model): """Pool change request. All required parameters must be populated in order to send to Azure. :param new_pool_resource_id: Required. Resource id of the pool to move volume to. :type new_pool_resource_id: str """ _validation = { 'new_pool_resource_id': {'required': True}, } _attribute_map = { 'new_pool_resource_id': {'key': 'newPoolResourceId', 'type': 'str'}, } def __init__( self, *, new_pool_resource_id: str, **kwargs ): super(PoolChangeRequest, self).__init__(**kwargs) self.new_pool_resource_id = new_pool_resource_id class Resource(msrest.serialization.Model): """Common fields that are returned in the response for all Azure Resource Manager resources. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts". :vartype type: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__( self, **kwargs ): super(Resource, self).__init__(**kwargs) self.id = None self.name = None self.type = None class ProxyResource(Resource): """The resource model definition for a Azure Resource Manager proxy resource. It will not have tags and a location. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts". :vartype type: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__( self, **kwargs ): super(ProxyResource, self).__init__(**kwargs) class QuotaAvailabilityRequest(msrest.serialization.Model): """Quota availability request content. All required parameters must be populated in order to send to Azure. :param name: Required. Name of the resource to verify. :type name: str :param type: Required. Resource type used for verification. Possible values include: "Microsoft.NetApp/netAppAccounts", "Microsoft.NetApp/netAppAccounts/capacityPools", "Microsoft.NetApp/netAppAccounts/capacityPools/volumes", "Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots". :type type: str or ~azure.mgmt.netapp.models.CheckQuotaNameResourceTypes :param resource_group: Required. Resource group name. :type resource_group: str """ _validation = { 'name': {'required': True}, 'type': {'required': True}, 'resource_group': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'resource_group': {'key': 'resourceGroup', 'type': 'str'}, } def __init__( self, *, name: str, type: Union[str, "CheckQuotaNameResourceTypes"], resource_group: str, **kwargs ): super(QuotaAvailabilityRequest, self).__init__(**kwargs) self.name = name self.type = type self.resource_group = resource_group class ReplicationObject(msrest.serialization.Model): """Replication properties. All required parameters must be populated in order to send to Azure. :param replication_id: Id. :type replication_id: str :param endpoint_type: Indicates whether the local volume is the source or destination for the Volume Replication. Possible values include: "src", "dst". :type endpoint_type: str or ~azure.mgmt.netapp.models.EndpointType :param replication_schedule: Schedule. Possible values include: "_10minutely", "hourly", "daily". :type replication_schedule: str or ~azure.mgmt.netapp.models.ReplicationSchedule :param remote_volume_resource_id: Required. The resource ID of the remote volume. :type remote_volume_resource_id: str :param remote_volume_region: The remote region for the other end of the Volume Replication. :type remote_volume_region: str """ _validation = { 'remote_volume_resource_id': {'required': True}, } _attribute_map = { 'replication_id': {'key': 'replicationId', 'type': 'str'}, 'endpoint_type': {'key': 'endpointType', 'type': 'str'}, 'replication_schedule': {'key': 'replicationSchedule', 'type': 'str'}, 'remote_volume_resource_id': {'key': 'remoteVolumeResourceId', 'type': 'str'}, 'remote_volume_region': {'key': 'remoteVolumeRegion', 'type': 'str'}, } def __init__( self, *, remote_volume_resource_id: str, replication_id: Optional[str] = None, endpoint_type: Optional[Union[str, "EndpointType"]] = None, replication_schedule: Optional[Union[str, "ReplicationSchedule"]] = None, remote_volume_region: Optional[str] = None, **kwargs ): super(ReplicationObject, self).__init__(**kwargs) self.replication_id = replication_id self.endpoint_type = endpoint_type self.replication_schedule = replication_schedule self.remote_volume_resource_id = remote_volume_resource_id self.remote_volume_region = remote_volume_region class ReplicationStatus(msrest.serialization.Model): """Replication status. :param healthy: Replication health check. :type healthy: bool :param relationship_status: Status of the mirror relationship. Possible values include: "Idle", "Transferring". :type relationship_status: str or ~azure.mgmt.netapp.models.RelationshipStatus :param mirror_state: The status of the replication. Possible values include: "Uninitialized", "Mirrored", "Broken". :type mirror_state: str or ~azure.mgmt.netapp.models.MirrorState :param total_progress: The progress of the replication. :type total_progress: str :param error_message: Displays error message if the replication is in an error state. :type error_message: str """ _attribute_map = { 'healthy': {'key': 'healthy', 'type': 'bool'}, 'relationship_status': {'key': 'relationshipStatus', 'type': 'str'}, 'mirror_state': {'key': 'mirrorState', 'type': 'str'}, 'total_progress': {'key': 'totalProgress', 'type': 'str'}, 'error_message': {'key': 'errorMessage', 'type': 'str'}, } def __init__( self, *, healthy: Optional[bool] = None, relationship_status: Optional[Union[str, "RelationshipStatus"]] = None, mirror_state: Optional[Union[str, "MirrorState"]] = None, total_progress: Optional[str] = None, error_message: Optional[str] = None, **kwargs ): super(ReplicationStatus, self).__init__(**kwargs) self.healthy = healthy self.relationship_status = relationship_status self.mirror_state = mirror_state self.total_progress = total_progress self.error_message = error_message class ResourceIdentity(msrest.serialization.Model): """Identity for the resource. Variables are only populated by the server, and will be ignored when sending a request. :ivar principal_id: Object id of the identity resource. :vartype principal_id: str :ivar tenant_id: The tenant id of the resource. :vartype tenant_id: str :param type: Type of Identity. Supported values are: 'None', 'SystemAssigned'. :type type: str """ _validation = { 'principal_id': {'readonly': True}, 'tenant_id': {'readonly': True}, } _attribute_map = { 'principal_id': {'key': 'principalId', 'type': 'str'}, 'tenant_id': {'key': 'tenantId', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__( self, *, type: Optional[str] = None, **kwargs ): super(ResourceIdentity, self).__init__(**kwargs) self.principal_id = None self.tenant_id = None self.type = type class ResourceNameAvailabilityRequest(msrest.serialization.Model): """Resource name availability request content. All required parameters must be populated in order to send to Azure. :param name: Required. Resource name to verify. :type name: str :param type: Required. Resource type used for verification. Possible values include: "Microsoft.NetApp/netAppAccounts", "Microsoft.NetApp/netAppAccounts/capacityPools", "Microsoft.NetApp/netAppAccounts/capacityPools/volumes", "Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots". :type type: str or ~azure.mgmt.netapp.models.CheckNameResourceTypes :param resource_group: Required. Resource group name. :type resource_group: str """ _validation = { 'name': {'required': True}, 'type': {'required': True}, 'resource_group': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'resource_group': {'key': 'resourceGroup', 'type': 'str'}, } def __init__( self, *, name: str, type: Union[str, "CheckNameResourceTypes"], resource_group: str, **kwargs ): super(ResourceNameAvailabilityRequest, self).__init__(**kwargs) self.name = name self.type = type self.resource_group = resource_group class RestoreStatus(msrest.serialization.Model): """Restore status. Variables are only populated by the server, and will be ignored when sending a request. :ivar healthy: Restore health status. :vartype healthy: bool :ivar relationship_status: Status of the restore SnapMirror relationship. Possible values include: "Idle", "Transferring". :vartype relationship_status: str or ~azure.mgmt.netapp.models.RelationshipStatus :ivar mirror_state: The status of the restore. Possible values include: "Uninitialized", "Mirrored", "Broken". :vartype mirror_state: str or ~azure.mgmt.netapp.models.MirrorState :ivar unhealthy_reason: Reason for the unhealthy restore relationship. :vartype unhealthy_reason: str :ivar error_message: Displays error message if the restore is in an error state. :vartype error_message: str :ivar total_transfer_bytes: Displays the total bytes transferred. :vartype total_transfer_bytes: long """ _validation = { 'healthy': {'readonly': True}, 'relationship_status': {'readonly': True}, 'mirror_state': {'readonly': True}, 'unhealthy_reason': {'readonly': True}, 'error_message': {'readonly': True}, 'total_transfer_bytes': {'readonly': True}, } _attribute_map = { 'healthy': {'key': 'healthy', 'type': 'bool'}, 'relationship_status': {'key': 'relationshipStatus', 'type': 'str'}, 'mirror_state': {'key': 'mirrorState', 'type': 'str'}, 'unhealthy_reason': {'key': 'unhealthyReason', 'type': 'str'}, 'error_message': {'key': 'errorMessage', 'type': 'str'}, 'total_transfer_bytes': {'key': 'totalTransferBytes', 'type': 'long'}, } def __init__( self, **kwargs ): super(RestoreStatus, self).__init__(**kwargs) self.healthy = None self.relationship_status = None self.mirror_state = None self.unhealthy_reason = None self.error_message = None self.total_transfer_bytes = None class ServiceSpecification(msrest.serialization.Model): """One property of operation, include metric specifications. :param metric_specifications: Metric specifications of operation. :type metric_specifications: list[~azure.mgmt.netapp.models.MetricSpecification] :param log_specifications: :type log_specifications: list[~azure.mgmt.netapp.models.LogSpecification] """ _attribute_map = { 'metric_specifications': {'key': 'metricSpecifications', 'type': '[MetricSpecification]'}, 'log_specifications': {'key': 'logSpecifications', 'type': '[LogSpecification]'}, } def __init__( self, *, metric_specifications: Optional[List["MetricSpecification"]] = None, log_specifications: Optional[List["LogSpecification"]] = None, **kwargs ): super(ServiceSpecification, self).__init__(**kwargs) self.metric_specifications = metric_specifications self.log_specifications = log_specifications class Snapshot(msrest.serialization.Model): """Snapshot of a Volume. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param location: Required. Resource location. :type location: str :ivar id: Resource Id. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar type: Resource type. :vartype type: str :ivar snapshot_id: UUID v4 used to identify the Snapshot. :vartype snapshot_id: str :ivar created: The creation date of the snapshot. :vartype created: ~datetime.datetime :ivar provisioning_state: Azure lifecycle management. :vartype provisioning_state: str """ _validation = { 'location': {'required': True}, 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'snapshot_id': {'readonly': True, 'max_length': 36, 'min_length': 36, 'pattern': r'^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}$'}, 'created': {'readonly': True}, 'provisioning_state': {'readonly': True}, } _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'snapshot_id': {'key': 'properties.snapshotId', 'type': 'str'}, 'created': {'key': 'properties.created', 'type': 'iso-8601'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, } def __init__( self, *, location: str, **kwargs ): super(Snapshot, self).__init__(**kwargs) self.location = location self.id = None self.name = None self.type = None self.snapshot_id = None self.created = None self.provisioning_state = None class SnapshotPoliciesList(msrest.serialization.Model): """List of Snapshot Policies. :param value: A list of snapshot policies. :type value: list[~azure.mgmt.netapp.models.SnapshotPolicy] """ _attribute_map = { 'value': {'key': 'value', 'type': '[SnapshotPolicy]'}, } def __init__( self, *, value: Optional[List["SnapshotPolicy"]] = None, **kwargs ): super(SnapshotPoliciesList, self).__init__(**kwargs) self.value = value class SnapshotPolicy(msrest.serialization.Model): """Snapshot policy information. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param location: Required. Resource location. :type location: str :ivar id: Resource Id. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar etag: A unique read-only string that changes whenever the resource is updated. :vartype etag: str :ivar type: Resource type. :vartype type: str :param tags: A set of tags. Resource tags. :type tags: dict[str, str] :param hourly_schedule: Schedule for hourly snapshots. :type hourly_schedule: ~azure.mgmt.netapp.models.HourlySchedule :param daily_schedule: Schedule for daily snapshots. :type daily_schedule: ~azure.mgmt.netapp.models.DailySchedule :param weekly_schedule: Schedule for weekly snapshots. :type weekly_schedule: ~azure.mgmt.netapp.models.WeeklySchedule :param monthly_schedule: Schedule for monthly snapshots. :type monthly_schedule: ~azure.mgmt.netapp.models.MonthlySchedule :param enabled: The property to decide policy is enabled or not. :type enabled: bool :ivar provisioning_state: Azure lifecycle management. :vartype provisioning_state: str """ _validation = { 'location': {'required': True}, 'id': {'readonly': True}, 'name': {'readonly': True}, 'etag': {'readonly': True}, 'type': {'readonly': True}, 'provisioning_state': {'readonly': True}, } _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'hourly_schedule': {'key': 'properties.hourlySchedule', 'type': 'HourlySchedule'}, 'daily_schedule': {'key': 'properties.dailySchedule', 'type': 'DailySchedule'}, 'weekly_schedule': {'key': 'properties.weeklySchedule', 'type': 'WeeklySchedule'}, 'monthly_schedule': {'key': 'properties.monthlySchedule', 'type': 'MonthlySchedule'}, 'enabled': {'key': 'properties.enabled', 'type': 'bool'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, } def __init__( self, *, location: str, tags: Optional[Dict[str, str]] = None, hourly_schedule: Optional["HourlySchedule"] = None, daily_schedule: Optional["DailySchedule"] = None, weekly_schedule: Optional["WeeklySchedule"] = None, monthly_schedule: Optional["MonthlySchedule"] = None, enabled: Optional[bool] = None, **kwargs ): super(SnapshotPolicy, self).__init__(**kwargs) self.location = location self.id = None self.name = None self.etag = None self.type = None self.tags = tags self.hourly_schedule = hourly_schedule self.daily_schedule = daily_schedule self.weekly_schedule = weekly_schedule self.monthly_schedule = monthly_schedule self.enabled = enabled self.provisioning_state = None class SnapshotPolicyDetails(msrest.serialization.Model): """Snapshot policy properties. Variables are only populated by the server, and will be ignored when sending a request. :param location: Resource location. :type location: str :ivar id: Resource Id. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar type: Resource type. :vartype type: str :param tags: A set of tags. Resource tags. :type tags: dict[str, str] :param hourly_schedule: Schedule for hourly snapshots. :type hourly_schedule: ~azure.mgmt.netapp.models.HourlySchedule :param daily_schedule: Schedule for daily snapshots. :type daily_schedule: ~azure.mgmt.netapp.models.DailySchedule :param weekly_schedule: Schedule for weekly snapshots. :type weekly_schedule: ~azure.mgmt.netapp.models.WeeklySchedule :param monthly_schedule: Schedule for monthly snapshots. :type monthly_schedule: ~azure.mgmt.netapp.models.MonthlySchedule :param enabled: The property to decide policy is enabled or not. :type enabled: bool :ivar provisioning_state: Azure lifecycle management. :vartype provisioning_state: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'provisioning_state': {'readonly': True}, } _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'hourly_schedule': {'key': 'properties.hourlySchedule', 'type': 'HourlySchedule'}, 'daily_schedule': {'key': 'properties.dailySchedule', 'type': 'DailySchedule'}, 'weekly_schedule': {'key': 'properties.weeklySchedule', 'type': 'WeeklySchedule'}, 'monthly_schedule': {'key': 'properties.monthlySchedule', 'type': 'MonthlySchedule'}, 'enabled': {'key': 'properties.enabled', 'type': 'bool'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, } def __init__( self, *, location: Optional[str] = None, tags: Optional[Dict[str, str]] = None, hourly_schedule: Optional["HourlySchedule"] = None, daily_schedule: Optional["DailySchedule"] = None, weekly_schedule: Optional["WeeklySchedule"] = None, monthly_schedule: Optional["MonthlySchedule"] = None, enabled: Optional[bool] = None, **kwargs ): super(SnapshotPolicyDetails, self).__init__(**kwargs) self.location = location self.id = None self.name = None self.type = None self.tags = tags self.hourly_schedule = hourly_schedule self.daily_schedule = daily_schedule self.weekly_schedule = weekly_schedule self.monthly_schedule = monthly_schedule self.enabled = enabled self.provisioning_state = None class SnapshotPolicyPatch(msrest.serialization.Model): """Snapshot policy Details for create and update. Variables are only populated by the server, and will be ignored when sending a request. :param location: Resource location. :type location: str :ivar id: Resource Id. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar type: Resource type. :vartype type: str :param tags: A set of tags. Resource tags. :type tags: dict[str, str] :param hourly_schedule: Schedule for hourly snapshots. :type hourly_schedule: ~azure.mgmt.netapp.models.HourlySchedule :param daily_schedule: Schedule for daily snapshots. :type daily_schedule: ~azure.mgmt.netapp.models.DailySchedule :param weekly_schedule: Schedule for weekly snapshots. :type weekly_schedule: ~azure.mgmt.netapp.models.WeeklySchedule :param monthly_schedule: Schedule for monthly snapshots. :type monthly_schedule: ~azure.mgmt.netapp.models.MonthlySchedule :param enabled: The property to decide policy is enabled or not. :type enabled: bool :ivar provisioning_state: Azure lifecycle management. :vartype provisioning_state: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'provisioning_state': {'readonly': True}, } _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'hourly_schedule': {'key': 'properties.hourlySchedule', 'type': 'HourlySchedule'}, 'daily_schedule': {'key': 'properties.dailySchedule', 'type': 'DailySchedule'}, 'weekly_schedule': {'key': 'properties.weeklySchedule', 'type': 'WeeklySchedule'}, 'monthly_schedule': {'key': 'properties.monthlySchedule', 'type': 'MonthlySchedule'}, 'enabled': {'key': 'properties.enabled', 'type': 'bool'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, } def __init__( self, *, location: Optional[str] = None, tags: Optional[Dict[str, str]] = None, hourly_schedule: Optional["HourlySchedule"] = None, daily_schedule: Optional["DailySchedule"] = None, weekly_schedule: Optional["WeeklySchedule"] = None, monthly_schedule: Optional["MonthlySchedule"] = None, enabled: Optional[bool] = None, **kwargs ): super(SnapshotPolicyPatch, self).__init__(**kwargs) self.location = location self.id = None self.name = None self.type = None self.tags = tags self.hourly_schedule = hourly_schedule self.daily_schedule = daily_schedule self.weekly_schedule = weekly_schedule self.monthly_schedule = monthly_schedule self.enabled = enabled self.provisioning_state = None class SnapshotPolicyVolumeList(msrest.serialization.Model): """Volumes associated with snapshot policy. :param value: List of volumes. :type value: list[any] """ _attribute_map = { 'value': {'key': 'value', 'type': '[object]'}, } def __init__( self, *, value: Optional[List[Any]] = None, **kwargs ): super(SnapshotPolicyVolumeList, self).__init__(**kwargs) self.value = value class SnapshotsList(msrest.serialization.Model): """List of Snapshots. :param value: A list of Snapshots. :type value: list[~azure.mgmt.netapp.models.Snapshot] """ _attribute_map = { 'value': {'key': 'value', 'type': '[Snapshot]'}, } def __init__( self, *, value: Optional[List["Snapshot"]] = None, **kwargs ): super(SnapshotsList, self).__init__(**kwargs) self.value = value class SubscriptionQuotaItem(ProxyResource): """Information regarding Subscription Quota Item. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts". :vartype type: str :ivar system_data: The system meta data relating to this resource. :vartype system_data: ~azure.mgmt.netapp.models.SystemData :ivar name_properties_name: Quota Item name. :vartype name_properties_name: str :ivar current: The current quota value. :vartype current: int :ivar default: The default quota value. :vartype default: int """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'system_data': {'readonly': True}, 'name_properties_name': {'readonly': True}, 'current': {'readonly': True}, 'default': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'system_data': {'key': 'systemData', 'type': 'SystemData'}, 'name_properties_name': {'key': 'properties.name', 'type': 'str'}, 'current': {'key': 'properties.current', 'type': 'int'}, 'default': {'key': 'properties.default', 'type': 'int'}, } def __init__( self, **kwargs ): super(SubscriptionQuotaItem, self).__init__(**kwargs) self.system_data = None self.name_properties_name = None self.current = None self.default = None class SubscriptionQuotaItemList(msrest.serialization.Model): """List of Subscription Quota Items. :param value: A list of SubscriptionQuotaItems. :type value: list[~azure.mgmt.netapp.models.SubscriptionQuotaItem] """ _attribute_map = { 'value': {'key': 'value', 'type': '[SubscriptionQuotaItem]'}, } def __init__( self, *, value: Optional[List["SubscriptionQuotaItem"]] = None, **kwargs ): super(SubscriptionQuotaItemList, self).__init__(**kwargs) self.value = value class SystemData(msrest.serialization.Model): """Metadata pertaining to creation and last modification of the resource. :param created_by: The identity that created the resource. :type created_by: str :param created_by_type: The type of identity that created the resource. Possible values include: "User", "Application", "ManagedIdentity", "Key". :type created_by_type: str or ~azure.mgmt.netapp.models.CreatedByType :param created_at: The timestamp of resource creation (UTC). :type created_at: ~datetime.datetime :param last_modified_by: The identity that last modified the resource. :type last_modified_by: str :param last_modified_by_type: The type of identity that last modified the resource. Possible values include: "User", "Application", "ManagedIdentity", "Key". :type last_modified_by_type: str or ~azure.mgmt.netapp.models.CreatedByType :param last_modified_at: The timestamp of resource last modification (UTC). :type last_modified_at: ~datetime.datetime """ _attribute_map = { 'created_by': {'key': 'createdBy', 'type': 'str'}, 'created_by_type': {'key': 'createdByType', 'type': 'str'}, 'created_at': {'key': 'createdAt', 'type': 'iso-8601'}, 'last_modified_by': {'key': 'lastModifiedBy', 'type': 'str'}, 'last_modified_by_type': {'key': 'lastModifiedByType', 'type': 'str'}, 'last_modified_at': {'key': 'lastModifiedAt', 'type': 'iso-8601'}, } def __init__( self, *, created_by: Optional[str] = None, created_by_type: Optional[Union[str, "CreatedByType"]] = None, created_at: Optional[datetime.datetime] = None, last_modified_by: Optional[str] = None, last_modified_by_type: Optional[Union[str, "CreatedByType"]] = None, last_modified_at: Optional[datetime.datetime] = None, **kwargs ): super(SystemData, self).__init__(**kwargs) self.created_by = created_by self.created_by_type = created_by_type self.created_at = created_at self.last_modified_by = last_modified_by self.last_modified_by_type = last_modified_by_type self.last_modified_at = last_modified_at class Vault(msrest.serialization.Model): """Vault information. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param location: Required. Resource location. :type location: str :ivar id: Resource Id. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar type: Resource type. :vartype type: str :param vault_name: Vault Name. :type vault_name: str """ _validation = { 'location': {'required': True}, 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'vault_name': {'key': 'properties.vaultName', 'type': 'str'}, } def __init__( self, *, location: str, vault_name: Optional[str] = None, **kwargs ): super(Vault, self).__init__(**kwargs) self.location = location self.id = None self.name = None self.type = None self.vault_name = vault_name class VaultList(msrest.serialization.Model): """List of Vaults. :param value: A list of vaults. :type value: list[~azure.mgmt.netapp.models.Vault] """ _attribute_map = { 'value': {'key': 'value', 'type': '[Vault]'}, } def __init__( self, *, value: Optional[List["Vault"]] = None, **kwargs ): super(VaultList, self).__init__(**kwargs) self.value = value class Volume(msrest.serialization.Model): """Volume resource. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param location: Required. Resource location. :type location: str :ivar id: Resource Id. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar etag: A unique read-only string that changes whenever the resource is updated. :vartype etag: str :ivar type: Resource type. :vartype type: str :param tags: A set of tags. Resource tags. :type tags: dict[str, str] :ivar file_system_id: Unique FileSystem Identifier. :vartype file_system_id: str :param creation_token: Required. A unique file path for the volume. Used when creating mount targets. :type creation_token: str :param service_level: The service level of the file system. Possible values include: "Standard", "Premium", "Ultra", "StandardZRS". Default value: "Premium". :type service_level: str or ~azure.mgmt.netapp.models.ServiceLevel :param usage_threshold: Required. Maximum storage quota allowed for a file system in bytes. This is a soft quota used for alerting only. Minimum size is 100 GiB. Upper limit is 100TiB. Specified in bytes. :type usage_threshold: long :param export_policy: Set of export policy rules. :type export_policy: ~azure.mgmt.netapp.models.VolumePropertiesExportPolicy :param protocol_types: Set of protocol types, default NFSv3, CIFS for SMB protocol. :type protocol_types: list[str] :ivar provisioning_state: Azure lifecycle management. :vartype provisioning_state: str :param snapshot_id: UUID v4 or resource identifier used to identify the Snapshot. :type snapshot_id: str :param backup_id: UUID v4 or resource identifier used to identify the Backup. :type backup_id: str :ivar baremetal_tenant_id: Unique Baremetal Tenant Identifier. :vartype baremetal_tenant_id: str :param subnet_id: Required. The Azure Resource URI for a delegated subnet. Must have the delegation Microsoft.NetApp/volumes. :type subnet_id: str :param network_features: Basic network, or Standard features available to the volume. Possible values include: "Basic", "Standard". Default value: "Basic". :type network_features: str or ~azure.mgmt.netapp.models.NetworkFeatures :ivar network_sibling_set_id: Network Sibling Set ID for the the group of volumes sharing networking resources. :vartype network_sibling_set_id: str :ivar storage_to_network_proximity: Provides storage to network proximity information for the volume. Possible values include: "Default", "T1", "T2". :vartype storage_to_network_proximity: str or ~azure.mgmt.netapp.models.VolumeStorageToNetworkProximity :ivar mount_targets: List of mount targets. :vartype mount_targets: list[~azure.mgmt.netapp.models.MountTargetProperties] :param volume_type: What type of volume is this. For destination volumes in Cross Region Replication, set type to DataProtection. :type volume_type: str :param data_protection: DataProtection type volumes include an object containing details of the replication. :type data_protection: ~azure.mgmt.netapp.models.VolumePropertiesDataProtection :param is_restoring: Restoring. :type is_restoring: bool :param snapshot_directory_visible: If enabled (true) the volume will contain a read-only snapshot directory which provides access to each of the volume's snapshots (default to true). :type snapshot_directory_visible: bool :param kerberos_enabled: Describe if a volume is KerberosEnabled. To be use with swagger version 2020-05-01 or later. :type kerberos_enabled: bool :param security_style: The security style of volume, default unix, defaults to ntfs for dual protocol or CIFS protocol. Possible values include: "ntfs", "unix". Default value: "unix". :type security_style: str or ~azure.mgmt.netapp.models.SecurityStyle :param smb_encryption: Enables encryption for in-flight smb3 data. Only applicable for SMB/DualProtocol volume. To be used with swagger version 2020-08-01 or later. :type smb_encryption: bool :param smb_continuously_available: Enables continuously available share property for smb volume. Only applicable for SMB volume. :type smb_continuously_available: bool :param throughput_mibps: Maximum throughput in Mibps that can be achieved by this volume. :type throughput_mibps: float :param encryption_key_source: Encryption Key Source. Possible values are: 'Microsoft.NetApp'. :type encryption_key_source: str :param ldap_enabled: Specifies whether LDAP is enabled or not for a given NFS volume. :type ldap_enabled: bool :param cool_access: Specifies whether Cool Access(tiering) is enabled for the volume. :type cool_access: bool :param coolness_period: Specifies the number of days after which data that is not accessed by clients will be tiered. :type coolness_period: int :param unix_permissions: UNIX permissions for NFS volume accepted in octal 4 digit format. First digit selects the set user ID(4), set group ID (2) and sticky (1) attributes. Second digit selects permission for the owner of the file: read (4), write (2) and execute (1). Third selects permissions for other users in the same group. the fourth for other users not in the group. 0755 - gives read/write/execute permissions to owner and read/execute to group and other users. :type unix_permissions: str :ivar clone_progress: When a volume is being restored from another volume's snapshot, will show the percentage completion of this cloning process. When this value is empty/null there is no cloning process currently happening on this volume. This value will update every 5 minutes during cloning. :vartype clone_progress: int :param avs_data_store: Specifies whether the volume is enabled for Azure VMware Solution (AVS) datastore purpose. Possible values include: "Enabled", "Disabled". Default value: "Disabled". :type avs_data_store: str or ~azure.mgmt.netapp.models.AvsDataStore :param is_default_quota_enabled: Specifies if default quota is enabled for the volume. :type is_default_quota_enabled: bool :param default_user_quota_in_ki_bs: Default user quota for volume in KiBs. If isDefaultQuotaEnabled is set, the minimum value of 4 KiBs applies . :type default_user_quota_in_ki_bs: long :param default_group_quota_in_ki_bs: Default group quota for volume in KiBs. If isDefaultQuotaEnabled is set, the minimum value of 4 KiBs applies. :type default_group_quota_in_ki_bs: long """ _validation = { 'location': {'required': True}, 'id': {'readonly': True}, 'name': {'readonly': True}, 'etag': {'readonly': True}, 'type': {'readonly': True}, 'file_system_id': {'readonly': True, 'max_length': 36, 'min_length': 36, 'pattern': r'^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}$'}, 'creation_token': {'required': True, 'max_length': 80, 'min_length': 1, 'pattern': r'^[a-zA-Z][a-zA-Z0-9\-]{0,79}$'}, 'usage_threshold': {'required': True, 'maximum': 109951162777600, 'minimum': 107374182400}, 'provisioning_state': {'readonly': True}, 'snapshot_id': {'max_length': 36, 'min_length': 36, 'pattern': r'^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}|(\\?([^\/]*[\/])*)([^\/]+)$'}, 'backup_id': {'max_length': 36, 'min_length': 36, 'pattern': r'^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}|(\\?([^\/]*[\/])*)([^\/]+)$'}, 'baremetal_tenant_id': {'readonly': True}, 'subnet_id': {'required': True}, 'network_sibling_set_id': {'readonly': True, 'max_length': 36, 'min_length': 36, 'pattern': r'^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}$'}, 'storage_to_network_proximity': {'readonly': True}, 'mount_targets': {'readonly': True}, 'throughput_mibps': {'maximum': 4500, 'minimum': 0}, 'coolness_period': {'maximum': 63, 'minimum': 7}, 'unix_permissions': {'max_length': 4, 'min_length': 4}, 'clone_progress': {'readonly': True}, } _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'file_system_id': {'key': 'properties.fileSystemId', 'type': 'str'}, 'creation_token': {'key': 'properties.creationToken', 'type': 'str'}, 'service_level': {'key': 'properties.serviceLevel', 'type': 'str'}, 'usage_threshold': {'key': 'properties.usageThreshold', 'type': 'long'}, 'export_policy': {'key': 'properties.exportPolicy', 'type': 'VolumePropertiesExportPolicy'}, 'protocol_types': {'key': 'properties.protocolTypes', 'type': '[str]'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'snapshot_id': {'key': 'properties.snapshotId', 'type': 'str'}, 'backup_id': {'key': 'properties.backupId', 'type': 'str'}, 'baremetal_tenant_id': {'key': 'properties.baremetalTenantId', 'type': 'str'}, 'subnet_id': {'key': 'properties.subnetId', 'type': 'str'}, 'network_features': {'key': 'properties.networkFeatures', 'type': 'str'}, 'network_sibling_set_id': {'key': 'properties.networkSiblingSetId', 'type': 'str'}, 'storage_to_network_proximity': {'key': 'properties.storageToNetworkProximity', 'type': 'str'}, 'mount_targets': {'key': 'properties.mountTargets', 'type': '[MountTargetProperties]'}, 'volume_type': {'key': 'properties.volumeType', 'type': 'str'}, 'data_protection': {'key': 'properties.dataProtection', 'type': 'VolumePropertiesDataProtection'}, 'is_restoring': {'key': 'properties.isRestoring', 'type': 'bool'}, 'snapshot_directory_visible': {'key': 'properties.snapshotDirectoryVisible', 'type': 'bool'}, 'kerberos_enabled': {'key': 'properties.kerberosEnabled', 'type': 'bool'}, 'security_style': {'key': 'properties.securityStyle', 'type': 'str'}, 'smb_encryption': {'key': 'properties.smbEncryption', 'type': 'bool'}, 'smb_continuously_available': {'key': 'properties.smbContinuouslyAvailable', 'type': 'bool'}, 'throughput_mibps': {'key': 'properties.throughputMibps', 'type': 'float'}, 'encryption_key_source': {'key': 'properties.encryptionKeySource', 'type': 'str'}, 'ldap_enabled': {'key': 'properties.ldapEnabled', 'type': 'bool'}, 'cool_access': {'key': 'properties.coolAccess', 'type': 'bool'}, 'coolness_period': {'key': 'properties.coolnessPeriod', 'type': 'int'}, 'unix_permissions': {'key': 'properties.unixPermissions', 'type': 'str'}, 'clone_progress': {'key': 'properties.cloneProgress', 'type': 'int'}, 'avs_data_store': {'key': 'properties.avsDataStore', 'type': 'str'}, 'is_default_quota_enabled': {'key': 'properties.isDefaultQuotaEnabled', 'type': 'bool'}, 'default_user_quota_in_ki_bs': {'key': 'properties.defaultUserQuotaInKiBs', 'type': 'long'}, 'default_group_quota_in_ki_bs': {'key': 'properties.defaultGroupQuotaInKiBs', 'type': 'long'}, } def __init__( self, *, location: str, creation_token: str, usage_threshold: int = 107374182400, subnet_id: str, tags: Optional[Dict[str, str]] = None, service_level: Optional[Union[str, "ServiceLevel"]] = "Premium", export_policy: Optional["VolumePropertiesExportPolicy"] = None, protocol_types: Optional[List[str]] = None, snapshot_id: Optional[str] = None, backup_id: Optional[str] = None, network_features: Optional[Union[str, "NetworkFeatures"]] = "Basic", volume_type: Optional[str] = None, data_protection: Optional["VolumePropertiesDataProtection"] = None, is_restoring: Optional[bool] = None, snapshot_directory_visible: Optional[bool] = True, kerberos_enabled: Optional[bool] = False, security_style: Optional[Union[str, "SecurityStyle"]] = "unix", smb_encryption: Optional[bool] = False, smb_continuously_available: Optional[bool] = False, throughput_mibps: Optional[float] = 0, encryption_key_source: Optional[str] = None, ldap_enabled: Optional[bool] = False, cool_access: Optional[bool] = False, coolness_period: Optional[int] = None, unix_permissions: Optional[str] = "0770", avs_data_store: Optional[Union[str, "AvsDataStore"]] = "Disabled", is_default_quota_enabled: Optional[bool] = False, default_user_quota_in_ki_bs: Optional[int] = 0, default_group_quota_in_ki_bs: Optional[int] = 0, **kwargs ): super(Volume, self).__init__(**kwargs) self.location = location self.id = None self.name = None self.etag = None self.type = None self.tags = tags self.file_system_id = None self.creation_token = creation_token self.service_level = service_level self.usage_threshold = usage_threshold self.export_policy = export_policy self.protocol_types = protocol_types self.provisioning_state = None self.snapshot_id = snapshot_id self.backup_id = backup_id self.baremetal_tenant_id = None self.subnet_id = subnet_id self.network_features = network_features self.network_sibling_set_id = None self.storage_to_network_proximity = None self.mount_targets = None self.volume_type = volume_type self.data_protection = data_protection self.is_restoring = is_restoring self.snapshot_directory_visible = snapshot_directory_visible self.kerberos_enabled = kerberos_enabled self.security_style = security_style self.smb_encryption = smb_encryption self.smb_continuously_available = smb_continuously_available self.throughput_mibps = throughput_mibps self.encryption_key_source = encryption_key_source self.ldap_enabled = ldap_enabled self.cool_access = cool_access self.coolness_period = coolness_period self.unix_permissions = unix_permissions self.clone_progress = None self.avs_data_store = avs_data_store self.is_default_quota_enabled = is_default_quota_enabled self.default_user_quota_in_ki_bs = default_user_quota_in_ki_bs self.default_group_quota_in_ki_bs = default_group_quota_in_ki_bs class VolumeBackupProperties(msrest.serialization.Model): """Volume Backup Properties. :param backup_policy_id: Backup Policy Resource ID. :type backup_policy_id: str :param policy_enforced: Policy Enforced. :type policy_enforced: bool :param vault_id: Vault Resource ID. :type vault_id: str :param backup_enabled: Backup Enabled. :type backup_enabled: bool """ _attribute_map = { 'backup_policy_id': {'key': 'backupPolicyId', 'type': 'str'}, 'policy_enforced': {'key': 'policyEnforced', 'type': 'bool'}, 'vault_id': {'key': 'vaultId', 'type': 'str'}, 'backup_enabled': {'key': 'backupEnabled', 'type': 'bool'}, } def __init__( self, *, backup_policy_id: Optional[str] = None, policy_enforced: Optional[bool] = None, vault_id: Optional[str] = None, backup_enabled: Optional[bool] = None, **kwargs ): super(VolumeBackupProperties, self).__init__(**kwargs) self.backup_policy_id = backup_policy_id self.policy_enforced = policy_enforced self.vault_id = vault_id self.backup_enabled = backup_enabled class VolumeBackups(msrest.serialization.Model): """Volume details using the backup policy. :param volume_name: Volume name. :type volume_name: str :param backups_count: Total count of backups for volume. :type backups_count: int :param policy_enabled: Policy enabled. :type policy_enabled: bool """ _attribute_map = { 'volume_name': {'key': 'volumeName', 'type': 'str'}, 'backups_count': {'key': 'backupsCount', 'type': 'int'}, 'policy_enabled': {'key': 'policyEnabled', 'type': 'bool'}, } def __init__( self, *, volume_name: Optional[str] = None, backups_count: Optional[int] = None, policy_enabled: Optional[bool] = None, **kwargs ): super(VolumeBackups, self).__init__(**kwargs) self.volume_name = volume_name self.backups_count = backups_count self.policy_enabled = policy_enabled class VolumeList(msrest.serialization.Model): """List of volume resources. :param value: List of volumes. :type value: list[~azure.mgmt.netapp.models.Volume] :param next_link: URL to get the next set of results. :type next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[Volume]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["Volume"]] = None, next_link: Optional[str] = None, **kwargs ): super(VolumeList, self).__init__(**kwargs) self.value = value self.next_link = next_link class VolumePatch(msrest.serialization.Model): """Volume patch resource. Variables are only populated by the server, and will be ignored when sending a request. :param location: Resource location. :type location: str :ivar id: Resource Id. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar type: Resource type. :vartype type: str :param tags: A set of tags. Resource tags. :type tags: dict[str, str] :param service_level: The service level of the file system. Possible values include: "Standard", "Premium", "Ultra", "StandardZRS". Default value: "Premium". :type service_level: str or ~azure.mgmt.netapp.models.ServiceLevel :param usage_threshold: Maximum storage quota allowed for a file system in bytes. This is a soft quota used for alerting only. Minimum size is 100 GiB. Upper limit is 100TiB. Specified in bytes. :type usage_threshold: long :param export_policy: Set of export policy rules. :type export_policy: ~azure.mgmt.netapp.models.VolumePatchPropertiesExportPolicy :param throughput_mibps: Maximum throughput in Mibps that can be achieved by this volume. :type throughput_mibps: float :param data_protection: DataProtection type volumes include an object containing details of the replication. :type data_protection: ~azure.mgmt.netapp.models.VolumePatchPropertiesDataProtection :param is_default_quota_enabled: Specifies if default quota is enabled for the volume. :type is_default_quota_enabled: bool :param default_user_quota_in_ki_bs: Default user quota for volume in KiBs. If isDefaultQuotaEnabled is set, the minimum value of 4 KiBs applies . :type default_user_quota_in_ki_bs: long :param default_group_quota_in_ki_bs: Default group quota for volume in KiBs. If isDefaultQuotaEnabled is set, the minimum value of 4 KiBs applies. :type default_group_quota_in_ki_bs: long """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'usage_threshold': {'maximum': 109951162777600, 'minimum': 107374182400}, 'throughput_mibps': {'maximum': 4500, 'minimum': 1}, } _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'service_level': {'key': 'properties.serviceLevel', 'type': 'str'}, 'usage_threshold': {'key': 'properties.usageThreshold', 'type': 'long'}, 'export_policy': {'key': 'properties.exportPolicy', 'type': 'VolumePatchPropertiesExportPolicy'}, 'throughput_mibps': {'key': 'properties.throughputMibps', 'type': 'float'}, 'data_protection': {'key': 'properties.dataProtection', 'type': 'VolumePatchPropertiesDataProtection'}, 'is_default_quota_enabled': {'key': 'properties.isDefaultQuotaEnabled', 'type': 'bool'}, 'default_user_quota_in_ki_bs': {'key': 'properties.defaultUserQuotaInKiBs', 'type': 'long'}, 'default_group_quota_in_ki_bs': {'key': 'properties.defaultGroupQuotaInKiBs', 'type': 'long'}, } def __init__( self, *, location: Optional[str] = None, tags: Optional[Dict[str, str]] = None, service_level: Optional[Union[str, "ServiceLevel"]] = "Premium", usage_threshold: Optional[int] = 107374182400, export_policy: Optional["VolumePatchPropertiesExportPolicy"] = None, throughput_mibps: Optional[float] = None, data_protection: Optional["VolumePatchPropertiesDataProtection"] = None, is_default_quota_enabled: Optional[bool] = False, default_user_quota_in_ki_bs: Optional[int] = 0, default_group_quota_in_ki_bs: Optional[int] = 0, **kwargs ): super(VolumePatch, self).__init__(**kwargs) self.location = location self.id = None self.name = None self.type = None self.tags = tags self.service_level = service_level self.usage_threshold = usage_threshold self.export_policy = export_policy self.throughput_mibps = throughput_mibps self.data_protection = data_protection self.is_default_quota_enabled = is_default_quota_enabled self.default_user_quota_in_ki_bs = default_user_quota_in_ki_bs self.default_group_quota_in_ki_bs = default_group_quota_in_ki_bs class VolumePatchPropertiesDataProtection(msrest.serialization.Model): """DataProtection type volumes include an object containing details of the replication. :param backup: Backup Properties. :type backup: ~azure.mgmt.netapp.models.VolumeBackupProperties :param snapshot: Snapshot properties. :type snapshot: ~azure.mgmt.netapp.models.VolumeSnapshotProperties """ _attribute_map = { 'backup': {'key': 'backup', 'type': 'VolumeBackupProperties'}, 'snapshot': {'key': 'snapshot', 'type': 'VolumeSnapshotProperties'}, } def __init__( self, *, backup: Optional["VolumeBackupProperties"] = None, snapshot: Optional["VolumeSnapshotProperties"] = None, **kwargs ): super(VolumePatchPropertiesDataProtection, self).__init__(**kwargs) self.backup = backup self.snapshot = snapshot class VolumePatchPropertiesExportPolicy(msrest.serialization.Model): """Set of export policy rules. :param rules: Export policy rule. :type rules: list[~azure.mgmt.netapp.models.ExportPolicyRule] """ _attribute_map = { 'rules': {'key': 'rules', 'type': '[ExportPolicyRule]'}, } def __init__( self, *, rules: Optional[List["ExportPolicyRule"]] = None, **kwargs ): super(VolumePatchPropertiesExportPolicy, self).__init__(**kwargs) self.rules = rules class VolumePropertiesDataProtection(msrest.serialization.Model): """DataProtection type volumes include an object containing details of the replication. :param backup: Backup Properties. :type backup: ~azure.mgmt.netapp.models.VolumeBackupProperties :param replication: Replication properties. :type replication: ~azure.mgmt.netapp.models.ReplicationObject :param snapshot: Snapshot properties. :type snapshot: ~azure.mgmt.netapp.models.VolumeSnapshotProperties """ _attribute_map = { 'backup': {'key': 'backup', 'type': 'VolumeBackupProperties'}, 'replication': {'key': 'replication', 'type': 'ReplicationObject'}, 'snapshot': {'key': 'snapshot', 'type': 'VolumeSnapshotProperties'}, } def __init__( self, *, backup: Optional["VolumeBackupProperties"] = None, replication: Optional["ReplicationObject"] = None, snapshot: Optional["VolumeSnapshotProperties"] = None, **kwargs ): super(VolumePropertiesDataProtection, self).__init__(**kwargs) self.backup = backup self.replication = replication self.snapshot = snapshot class VolumePropertiesExportPolicy(msrest.serialization.Model): """Set of export policy rules. :param rules: Export policy rule. :type rules: list[~azure.mgmt.netapp.models.ExportPolicyRule] """ _attribute_map = { 'rules': {'key': 'rules', 'type': '[ExportPolicyRule]'}, } def __init__( self, *, rules: Optional[List["ExportPolicyRule"]] = None, **kwargs ): super(VolumePropertiesExportPolicy, self).__init__(**kwargs) self.rules = rules class VolumeRevert(msrest.serialization.Model): """revert a volume to the snapshot. :param snapshot_id: Resource id of the snapshot. :type snapshot_id: str """ _attribute_map = { 'snapshot_id': {'key': 'snapshotId', 'type': 'str'}, } def __init__( self, *, snapshot_id: Optional[str] = None, **kwargs ): super(VolumeRevert, self).__init__(**kwargs) self.snapshot_id = snapshot_id class VolumeSnapshotProperties(msrest.serialization.Model): """Volume Snapshot Properties. :param snapshot_policy_id: Snapshot Policy ResourceId. :type snapshot_policy_id: str """ _attribute_map = { 'snapshot_policy_id': {'key': 'snapshotPolicyId', 'type': 'str'}, } def __init__( self, *, snapshot_policy_id: Optional[str] = None, **kwargs ): super(VolumeSnapshotProperties, self).__init__(**kwargs) self.snapshot_policy_id = snapshot_policy_id class WeeklySchedule(msrest.serialization.Model): """Weekly Schedule properties, make a snapshot every week at a specific day or days. :param snapshots_to_keep: Weekly snapshot count to keep. :type snapshots_to_keep: int :param day: Indicates which weekdays snapshot should be taken, accepts a comma separated list of week day names in english. :type day: str :param hour: Indicates which hour in UTC timezone a snapshot should be taken. :type hour: int :param minute: Indicates which minute snapshot should be taken. :type minute: int :param used_bytes: Resource size in bytes, current storage usage for the volume in bytes. :type used_bytes: long """ _attribute_map = { 'snapshots_to_keep': {'key': 'snapshotsToKeep', 'type': 'int'}, 'day': {'key': 'day', 'type': 'str'}, 'hour': {'key': 'hour', 'type': 'int'}, 'minute': {'key': 'minute', 'type': 'int'}, 'used_bytes': {'key': 'usedBytes', 'type': 'long'}, } def __init__( self, *, snapshots_to_keep: Optional[int] = None, day: Optional[str] = None, hour: Optional[int] = None, minute: Optional[int] = None, used_bytes: Optional[int] = None, **kwargs ): super(WeeklySchedule, self).__init__(**kwargs) self.snapshots_to_keep = snapshots_to_keep self.day = day self.hour = hour self.minute = minute self.used_bytes = used_bytes
toolkit/plugins/software/odex2jar.py
PleXone2019/IoT-Implant-Toolkit
147
11078052
<reponame>PleXone2019/IoT-Implant-Toolkit<filename>toolkit/plugins/software/odex2jar.py #!/usr/bin/python3 ''' odex2jar class defination not finish yet ''' import os from toolkit.core.basic import Plugin class Odex2Jar(Plugin): ''' inherit from class Plugin ''' def __init__(self): super().__init__(name = "odex2jar", description = "odex to jar for Android", classname = "Odex2Jar", author = "<NAME>", ref = "https://github.com/arthastang/IoT-Implant-Toolkit", category = "Software Analysis", usage = 'Run "run odex2jar --input [odex folder]" will convert odex file to jar file.Run "run odex2jar help" to see more parameters.') self.argparser.add_argument("--input", help="input odex file") self.argparser.add_argument("--output", default="./outputs/new.jar", help="output java file") def execute(self): #print("Run plugin with parameter {}".format(str(self.args))) os.system("java -jar oat2dex.jar -o outputs/ odex {}".format(self.args.input)) dexname = self.args.input.replace("odex", "dex") os.system("tookit/tools/dex-tools-2.1/d2j-dex2jar.sh {} -o {}".format(dexname, self.args.output))
experiments/bayesopt/run_cmaes_surrogate.py
lebrice/RoBO
455
11078057
import os import sys import cma import json import numpy as np from robo.initial_design import init_random_uniform from hpolib.benchmarks.ml.surrogate_svm import SurrogateSVM from hpolib.benchmarks.ml.surrogate_cnn import SurrogateCNN from hpolib.benchmarks.ml.surrogate_fcnet import SurrogateFCNet run_id = int(sys.argv[1]) benchmark = sys.argv[2] n_iters = 50 output_path = "./experiments/RoBO/surrogates/" if benchmark == "svm_mnist": b = SurrogateSVM(path="/ihome/kleinaa/devel/git/HPOlib/surrogates/") elif benchmark == "cnn_cifar10": b = SurrogateCNN(path="/ihome/kleinaa/devel/git/HPOlib/surrogates/") elif benchmark == "fcnet_mnist": b = SurrogateFCNet(path="/ihome/kleinaa/devel/git/HPOlib/surrogates/") info = b.get_meta_information() X = [] y = [] def wrapper(x): X.append(x.tolist()) y_ = b.objective_function(x)['function_value'] y.append(y_) return y_ # Dimension and bounds of the function bounds = np.array(info['bounds']) dimensions = len(bounds) lower = bounds[:, 0] upper = bounds[:, 1] start_point = init_random_uniform(lower, upper, 1)[0] # Evolution Strategy es = cma.CMAEvolutionStrategy(start_point, 0.6, {'bounds': [lower, upper], "maxfevals": n_iters}) es.optimize(wrapper, n_iters) X = X[:n_iters] y = y[:n_iters] fvals = np.array(y) incs = [] incumbent_val = [] curr_inc_val = sys.float_info.max inc = None for i, f in enumerate(fvals): if curr_inc_val > f: curr_inc_val = f inc = X[i] incumbent_val.append(curr_inc_val) incs.append(inc) # Offline Evaluation test_error = [] runtime = [] cum_cost = 0 results = dict() for i, inc in enumerate(incs): y = b.objective_function_test(np.array(inc))["function_value"] test_error.append(y) # Compute the time it would have taken to evaluate this configuration c = b.objective_function(np.array(X[i]))["cost"] cum_cost += c runtime.append(cum_cost) # Estimate the runtime as the optimization overhead + estimated cost results["runtime"] = runtime results["test_error"] = test_error results["method"] = "cmaes" results["benchmark"] = benchmark results["run_id"] = run_id results["incumbents"] = incs results["incumbent_values"] = incumbent_val results["X"] = X results["y"] = y print(test_error) p = os.path.join(output_path, benchmark, "cmaes") os.makedirs(p, exist_ok=True) fh = open(os.path.join(p, '%s_run_%d.json' % (benchmark, run_id)), 'w') json.dump(results, fh)
tests/caliban/platform/gke/test_util.py
Anon-Artist/caliban
425
11078060
<filename>tests/caliban/platform/gke/test_util.py<gh_stars>100-1000 #!/usr/bin/python # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """unit tests for gke utilities""" import random import unittest from typing import List, Optional, Dict from unittest import mock import uuid import json import os import tempfile import yaml import hypothesis.strategies as st from hypothesis import given, settings from kubernetes.client.api_client import ApiClient from kubernetes.client import V1Job import pytest import argparse import google import caliban.platform.cloud.types as ct import caliban.platform.gke.constants as k import caliban.platform.gke.util as util from caliban.platform.gke.types import NodeImage, OpStatus from caliban.platform.gke.util import trap # ---------------------------------------------------------------------------- def everything(): """hypothesis utility to generate, well, everything""" return st.from_type(type).flatmap(st.from_type) # ---------------------------------------------------------------------------- def everything_except(excluded_types): """hypothesis utility to generate everything but the types in excluded_types""" return everything().filter(lambda x: not isinstance(x, tuple(excluded_types))) # ---------------------------------------------------------------------------- class UtilTestSuite(unittest.TestCase): """tests for caliban.platform.gke.util""" # -------------------------------------------------------------------------- @given( st.lists(st.integers(min_value=0, max_value=4), min_size=len(ct.GPU), max_size=len(ct.GPU)), st.sampled_from(ct.GPU), st.integers(min_value=1, max_value=8)) def test_validate_gpu_spec_against_limits( self, limits: List[int], gpu_type: ct.GPU, count: int, ): """tests gpu validation against limits""" gpu_list = [g for g in ct.GPU] gpu_limits = dict([ (gpu_list[i], limits[i]) for i in range(len(limits)) if limits[i] ]) spec = ct.GPUSpec(gpu_type, count) valid = util.validate_gpu_spec_against_limits(spec, gpu_limits, 'test') if spec.gpu not in gpu_limits: self.assertFalse(valid) else: self.assertTrue(valid == (spec.count <= gpu_limits[spec.gpu])) return # -------------------------------------------------------------------------- def test_validate_gpu_spec_against_limits_deterministic(self): '''deterministic test to make sure we get full coverage''' # gpu not supported cfg = { 'gpu_spec': ct.GPUSpec(ct.GPU.K80, 1), 'gpu_limits': { ct.GPU.P100: 1 }, 'limit_type': 'zone', } assert not util.validate_gpu_spec_against_limits(**cfg) # request above limit cfg = { 'gpu_spec': ct.GPUSpec(ct.GPU.K80, 2), 'gpu_limits': { ct.GPU.P100: 1, ct.GPU.K80: 1, }, 'limit_type': 'zone', } assert not util.validate_gpu_spec_against_limits(**cfg) # valid request cfg = { 'gpu_spec': ct.GPUSpec(ct.GPU.K80, 1), 'gpu_limits': { ct.GPU.P100: 1, ct.GPU.K80: 1, }, 'limit_type': 'zone', } assert util.validate_gpu_spec_against_limits(**cfg) # -------------------------------------------------------------------------- def test_nvidia_daemonset_url(self): """tests nvidia driver daemonset url generation""" VALID_NODE_IMAGES = [NodeImage.COS, NodeImage.UBUNTU] for n in NodeImage: url = util.nvidia_daemonset_url(n) if n in VALID_NODE_IMAGES: self.assertIsNotNone(url) else: self.assertIsNone(url) return # -------------------------------------------------------------------------- @mock.patch('caliban.platform.gke.util.input', create=True) @given(st.lists(st.from_regex('^[^yYnN]+$'), min_size=0, max_size=8)) def test_user_verify( self, mocked_input, invalid_strings, ): """tests user verify method""" # verify different defaults for default in [True, False]: # default input mocked_input.side_effect = [''] self.assertEqual(util.user_verify('test default', default=default), default) # upper/lower true input for x in ['y', 'Y']: mocked_input.side_effect = invalid_strings + [x] self.assertTrue(util.user_verify('y input', default=default)) # upper/lower false input for x in ['n', 'N']: mocked_input.side_effect = invalid_strings + [x] self.assertFalse(util.user_verify('n input', default=default)) return # -------------------------------------------------------------------------- @given(everything()) def test_trap(self, return_val): """tests trap decorator""" def _raises(): raise Exception('exception!') # make sure the test function works..testing the tester with self.assertRaises(Exception) as e: _raises() valid_return = '42' def _no_raise(): return valid_return # ibid self.assertEqual(valid_return, _no_raise()) print('testing return_val = {}'.format(return_val)) @trap(return_val) def _test_raises(): _raises() @trap(return_val) def _test_no_raise(): return _no_raise() # test for types where we can't test equality try: if return_val != return_val: return except: return if valid_return == return_val: return self.assertEqual(return_val, _test_raises()) self.assertEqual(valid_return, _test_no_raise()) return # -------------------------------------------------------------------------- @given( st.lists(st.sampled_from(list(OpStatus)), min_size=1, max_size=8), st.sets(st.sampled_from(list(OpStatus)), min_size=1, max_size=len(OpStatus)), st.sets(st.from_regex('\A_[a-zA-Z0-9]+\Z'), min_size=1, max_size=4), ) @settings(deadline=1000) # in ms def test_wait_for_operation(self, results, conds, invalid_cond): """tests wait_for_operation method""" class mock_api: def projects(self): return self def locations(self): return self def operations(self): return self def get(self, name): return self def _raises(): raise Exception('exception') def _return_results(): for r in results: yield {'status': r.value} _raises() api = mock_api() api.execute = _raises # we run without the wait spinner here as it causes the tests # to take about a factor of 100 longer # empty condition list self.assertIsNone(util.wait_for_operation(api, 'name', [], spinner=False)) # exception self.assertIsNone( util.wait_for_operation(api, 'name', list(conds), 0, spinner=False)) # normal operation rsp_generator = _return_results() api.execute = lambda: next(rsp_generator) expected_response = None for r in results: if r in conds: expected_response = r.value break if expected_response is not None: self.assertEqual({'status': expected_response}, util.wait_for_operation(api, 'name', list(conds), 0, spinner=True)) else: self.assertIsNone( util.wait_for_operation(api, 'name', list(conds), 0, spinner=False)) return # -------------------------------------------------------------------------- @given( st.sets( st.tuples(st.integers(min_value=1, max_value=32), st.sampled_from(ct.TPU))), st.sets(st.from_regex('\A_[a-z0-9]+-[0-9]+\Z')), ) def test_get_zone_tpu_types(self, tpu_types, invalid_types): """tests get_zone_tpu_types""" tpus = ['{}-{}'.format(x[1].name.lower(), x[0]) for x in tpu_types] invalid_types = list(invalid_types) responses = tpus + invalid_types random.shuffle(responses) class mock_api: def projects(self): return self def locations(self): return self def acceleratorTypes(self): return self def list(self, parent): return self def _raises(): raise Exception('exception') def _response(): return {'acceleratorTypes': [{'type': x} for x in responses]} def _invalid_response(): return {'foo': 'bar'} api = mock_api() # exception handling api.execute = _raises self.assertIsNone(util.get_zone_tpu_types(api, 'p', 'z')) # invalid response api.execute = _invalid_response self.assertIsNone(util.get_zone_tpu_types(api, 'p', 'z')) # normal mode api.execute = _response self.assertEqual( sorted(tpus), sorted([ '{}-{}'.format(x.name.lower(), x.count) for x in util.get_zone_tpu_types(api, 'p', 'z') ])) return # -------------------------------------------------------------------------- @given(st.text()) def test_sanitize_job_name(self, job_name): """test job name sanitizer""" def valid(x): return k.DNS_1123_RE.match(x) is not None sanitized = util.sanitize_job_name(job_name) if valid(job_name): self.assertEqual(job_name, sanitized) else: self.assertTrue(valid(sanitized)) # idempotency check self.assertEqual(sanitized, util.sanitize_job_name(sanitized)) # ensure coverage, first char must be alnum, last must be alnum x = '_' + sanitized + '-' assert valid(util.sanitize_job_name(x)) return # -------------------------------------------------------------------------- @given( st.lists(st.integers(min_value=0, max_value=32), min_size=len(ct.GPU), max_size=len(ct.GPU)), st.sets( st.tuples(st.from_regex('\A[a-z0-9]+\Z'), st.integers(min_value=1, max_value=32))), ) def test_get_zone_gpu_types(self, gpu_counts, invalid_types): """tests get_zone_gpu_types""" gpu_types = ['nvidia-tesla-{}'.format(x.name.lower()) for x in ct.GPU] gpus = [{ 'name': gpu_types[i], 'maximumCardsPerInstance': c } for i, c in enumerate(gpu_counts) if c > 0] invalid = [{ 'name': x[0], 'maximumCardsPerInstance': x[1] } for x in invalid_types] class mock_api: def acceleratorTypes(self): return self def list(self, project, zone): return self def _raises(): raise Exception('exception') def _response(): return {'items': gpus + invalid} def _invalid_response(): return {'foo': 'bar'} api = mock_api() # exception handling api.execute = _raises self.assertIsNone(util.get_zone_gpu_types(api, 'p', 'z')) # invalid response api.execute = _invalid_response self.assertIsNone(util.get_zone_gpu_types(api, 'p', 'z')) # normal execution api.execute = _response self.assertEqual( sorted([ '{}-{}'.format(x["name"], x["maximumCardsPerInstance"]) for x in gpus ]), sorted([ 'nvidia-tesla-{}-{}'.format(x.gpu.name.lower(), x.count) for x in util.get_zone_gpu_types(api, 'p', 'z') ])) return # -------------------------------------------------------------------------- def test_get_region_quotas(self): """tests get region quotas""" class mock_api: def regions(self): return self def get(self, project, region): return self def _raises(): raise Exception('exception') def _normal(): return { 'quotas': [{ 'limit': 4, 'metric': 'CPUS', 'usage': 1 }, { 'limit': 1024, 'metric': 'NVIDIA_K80_GPUS', 'usage': 0 }] } def _invalid(): return {'foo': 'bar'} api = mock_api() # exception handling api.execute = _raises self.assertIsNone(util.get_region_quotas(api, 'p', 'r')) # invalid return api.execute = _invalid self.assertEqual([], util.get_region_quotas(api, 'p', 'r')) # normal execution api.execute = _normal self.assertEqual(_normal()['quotas'], util.get_region_quotas(api, 'p', 'r')) return # -------------------------------------------------------------------------- def test_generate_resource_limits(self): """tests generation of resource limits""" class mock_api: def regions(self): return self def get(self, project, region): return self def _raises(): raise Exception('exception') def _normal(): return { 'quotas': [{ 'limit': 4, 'metric': 'CPUS', 'usage': 1 }, { 'limit': 1024, 'metric': 'NVIDIA_K80_GPUS', 'usage': 0 }] } def _invalid(): return {'foo': 'bar'} api = mock_api() # exception handling api.execute = _raises self.assertIsNone(util.generate_resource_limits(api, 'p', 'r')) # invalid return api.execute = _invalid self.assertEqual([], util.generate_resource_limits(api, 'p', 'r')) # normal execution api.execute = _normal quotas = _normal()['quotas'] expected = ([{ 'resourceType': 'cpu', 'maximum': str(quotas[0]['limit']) }] + [{ 'resourceType': 'memory', 'maximum': str(quotas[0]['limit'] * k.MAX_GB_PER_CPU) }] + [{ 'resourceType': 'nvidia-tesla-k80', 'maximum': str(quotas[1]['limit']) }]) self.assertEqual(expected, util.generate_resource_limits(api, 'p', 'r')) return # -------------------------------------------------------------------------- @given(st.lists(st.from_regex('[a-zA-Z0-9]+')), st.from_regex('_[a-zA-Z0-9]+')) def test_get_gke_cluster(self, names, invalid): """test getting gke cluster""" class mock_cluster: def __init__(self, name): self.name = name return class mock_cluster_list: def __init__(self): self.clusters = [mock_cluster(x) for x in names] return class mock_api: self.throws = False def list_clusters(self, project_id, zone): if self.throws: raise Exception('exception') return mock_cluster_list() api = mock_api() api.throws = True # exception handling self.assertIsNone(util.get_gke_cluster(api, 'foo', 'p')) api.throws = False # single cluster if len(names) > 0: cname = names[random.randint(0, len(names) - 1)] self.assertEqual(cname, util.get_gke_cluster(api, cname, 'p').name) # name not in name list self.assertIsNone(util.get_gke_cluster(api, invalid, 'p')) return # -------------------------------------------------------------------------- def _validate_nonnull_dict(self, d: dict, ref: dict): """helper method for testing nonnull_dict, nonnull_list""" for k, v in d.items(): self.assertIsNotNone(v) self.assertTrue(k in ref) self.assertEqual(type(v), type(ref[k])) if trap(True)(lambda z: z != z)(v): continue elif type(v) == dict: self._validate_nonnull_dict(v, ref[k]) elif type(v) == list: self._validate_nonnull_list(v, ref[k]) else: self.assertEqual(v, ref[k]) # -------------------------------------------------------------------------- def _validate_nonnull_list(self, lst: list, ref: list): """helper method for testing nonnull_dict, nonnull_list""" ref = [x for x in ref if x is not None] self.assertEqual(len(lst), len(ref)) for i, x in enumerate(lst): self.assertIsNotNone(x) self.assertEqual(type(x), type(ref[i])) if trap(True)(lambda z: z != z)(x): continue elif type(x) == list: self._validate_nonnull_list(x, ref[i]) elif type(x) == dict: self._validate_nonnull_dict(x, ref[i]) else: self.assertEqual(x, ref[i]) # -------------------------------------------------------------------------- @given(st.dictionaries( keys=st.from_regex('\A[a-z]+\Z'), values=everything(), )) def test_nonnull_dict(self, input_dict): input_dict[str(uuid.uuid1())] = {'x': None, 'y': 7} # ensure coverage input_dict[str(uuid.uuid1())] = [1, 2, None, 3] self._validate_nonnull_dict(util.nonnull_dict(input_dict), input_dict) return # -------------------------------------------------------------------------- @given(st.lists(everything())) def test_nonnull_list(self, input_list): input_list.append({'x': None, 'y': 7}) # ensure coverage input_list.append([1, 2, None, 3]) # ensure coverage self._validate_nonnull_list(util.nonnull_list(input_list), input_list) return # -------------------------------------------------------------------------- @given( st.sampled_from( list(set.union(ct.US_REGIONS, ct.EURO_REGIONS, ct.ASIA_REGIONS))), st.sets(st.from_regex('\A[a-z]\Z'))) def test_get_zones_in_region(self, region, zone_ids): '''test get_zones_in_region''' class mock_api: def regions(self): return self def get(self, project, region): return self def _raises(): raise Exception('exception') url = 'https://www.googleapis.com/compute/v1/projects/foo/zones/' zones = ['{}-{}'.format(region, x) for x in zone_ids] def _normal(): return {'zones': ['{}{}'.format(url, x) for x in zones]} def _invalid(): return {'foo': 'bar'} api = mock_api() # exception handling api.execute = _raises self.assertIsNone(util.get_zones_in_region(api, 'p', region)) # invalid return api.execute = _invalid self.assertIsNone(util.get_zones_in_region(api, 'p', region)) # normal execution api.execute = _normal self.assertEqual(zones, util.get_zones_in_region(api, 'p', region)) # ---------------------------------------------------------------------------- def test_dashboard_cluster_url(): cfg = { 'cluster_id': 'foo', 'zone': 'us-central1-a', 'project_id': 'bar', } url = util.dashboard_cluster_url(**cfg) assert url is not None assert url == (f'{k.DASHBOARD_CLUSTER_URL}/{cfg["zone"]}/{cfg["cluster_id"]}' f'?project={cfg["project_id"]}') # ---------------------------------------------------------------------------- def test_get_tpu_drivers(monkeypatch): class MockApi(): def __init__(self, drivers: Optional[Dict[str, Dict[str, List[str]]]] = None): self._drivers = drivers def projects(self): return self def locations(self): return self def tensorflowVersions(self): return self def list(self, parent): return self def execute(self): return self._drivers # test no response behavior cfg = {'tpu_api': MockApi(), 'project_id': 'foo', 'zone': 'us-central1-a'} assert util.get_tpu_drivers(**cfg) is None # test valid response drivers = ['foo', 'bar'] cfg['tpu_api'] = MockApi( drivers={'tensorflowVersions': [{ 'version': x } for x in drivers]}) assert util.get_tpu_drivers(**cfg) == drivers # ---------------------------------------------------------------------------- def test_resource_limits_from_quotas(): # valid, all quota > 0 counts = {'cpu': 1, 'nvidia-tesla-p100': 2, 'memory': k.MAX_GB_PER_CPU} quotas = [('CPUS', counts['cpu']), ('NVIDIA_P100_GPUS', counts['nvidia-tesla-p100']), ('bogus', 5)] cfg = {'quotas': [{'metric': x[0], 'limit': x[1]} for x in quotas]} q = util.resource_limits_from_quotas(**cfg) assert len(q) == len(counts) for d in q: assert counts[d['resourceType']] == int(d['maximum']) # valid, gpu quota == 0 counts = {'cpu': 1, 'nvidia-tesla-p100': 0, 'memory': k.MAX_GB_PER_CPU} quotas = [('CPUS', counts['cpu']), ('NVIDIA_P100_GPUS', counts['nvidia-tesla-p100'])] cfg = {'quotas': [{'metric': x[0], 'limit': x[1]} for x in quotas]} q = util.resource_limits_from_quotas(**cfg) assert len(q) == len(counts) - 1 for d in q: assert d['resourceType'] != 'nvidia-tesla-p100' assert counts[d['resourceType']] == int(d['maximum']) # ---------------------------------------------------------------------------- def test_job_to_dict(): j = V1Job(api_version='abc', kind='foo') d = util.job_to_dict(j) assert d is not None assert isinstance(d, dict) assert d == ApiClient().sanitize_for_serialization(j) # ---------------------------------------------------------------------------- def test_job_str(): j = V1Job(api_version='abc', kind='foo') s = util.job_str(j) assert s is not None assert isinstance(s, str) # ---------------------------------------------------------------------------- def test_validate_job_filename(): for x in k.VALID_JOB_FILE_EXT: fname = str(uuid.uuid1()) + f'.{x}' s = util.validate_job_filename(fname) assert s == fname with pytest.raises(argparse.ArgumentTypeError): fname = str(uuid.uuid1()) + '.' + str(uuid.uuid1()) util.validate_job_filename(fname) # ---------------------------------------------------------------------------- def test_export_job(): with tempfile.TemporaryDirectory() as tmpdir: j = V1Job(api_version='abc', kind='foo') nnd = util.nonnull_dict(util.job_to_dict(j)) fname = os.path.join(tmpdir, 'foo.json') assert util.export_job(j, fname) assert os.path.exists(fname) with open(fname, 'r') as f: x = json.load(f) assert x == nnd fname = os.path.join(tmpdir, 'foo.yaml') assert util.export_job(j, fname) assert os.path.exists(fname) with open(fname, 'r') as f: x = yaml.load(f) assert x == nnd fname = os.path.join(tmpdir, 'foo.xyz') assert not util.export_job(j, fname) # ---------------------------------------------------------------------------- def test_application_default_credentials_path(monkeypatch): adc = 'foo' # monkeypatch can't set things in underscore-prefixed modules, so we # cheat a bit here monkeypatch.setattr(util, 'get_application_default_credentials_path', lambda: adc) assert util.application_default_credentials_path() == adc # ---------------------------------------------------------------------------- def test_default_credentials(monkeypatch): class MockCreds(): def refresh(self, req): pass creds = MockCreds() project_id = 'project-foo' def mock_default(scopes): return (creds, project_id) monkeypatch.setattr(google.auth, 'default', mock_default) monkeypatch.setattr(google.auth.transport.requests, 'Request', lambda: None) cd = util.default_credentials() assert cd.credentials == creds assert cd.project_id == project_id # ---------------------------------------------------------------------------- def test_credentials_from_file(monkeypatch): class MockCreds(): def refresh(self, req): pass creds = MockCreds() project_id = 'foo-project' def mock_from_service_account_file(f, scopes): return creds def mock_load_credentials_from_file(f): return (creds, project_id) monkeypatch.setattr(google.auth.transport.requests, 'Request', lambda: None) monkeypatch.setattr(google.oauth2.service_account.Credentials, 'from_service_account_file', mock_from_service_account_file) # ugh, I feel dirty, but monkeypatching google.auth._default.load_credentials_from_file # doesn't work monkeypatch.setattr(util, 'load_credentials_from_file', mock_load_credentials_from_file) # test service account file creds_type = util._SERVICE_ACCOUNT_TYPE with tempfile.TemporaryDirectory() as tmpdir: creds_dict = {'type': creds_type, 'project_id': project_id} creds_file = os.path.join(tmpdir, 'creds.json') with open(creds_file, 'w') as f: json.dump(creds_dict, f) cd = util.credentials_from_file(creds_file) assert cd.credentials == creds assert cd.project_id == project_id # test authorized user file creds_type = util._AUTHORIZED_USER_TYPE with tempfile.TemporaryDirectory() as tmpdir: creds_dict = {'type': creds_type, 'project_id': project_id} creds_file = os.path.join(tmpdir, 'creds.json') with open(creds_file, 'w') as f: json.dump(creds_dict, f) cd = util.credentials_from_file(creds_file) assert cd.credentials == creds assert cd.project_id == project_id # test invalid file creds_type = str(uuid.uuid1()) with tempfile.TemporaryDirectory() as tmpdir: creds_dict = {'type': creds_type, 'project_id': project_id} creds_file = os.path.join(tmpdir, 'creds.json') with open(creds_file, 'w') as f: json.dump(creds_dict, f) cd = util.credentials_from_file(creds_file) assert cd.credentials is None assert cd.project_id is None # ---------------------------------------------------------------------------- def test_credentials(monkeypatch): class MockCreds(): def refresh(self, req): pass creds = MockCreds() project_id = 'project-foo' def mock_default(scopes): return (creds, project_id) def mock_from_service_account_file(f, scopes): return creds monkeypatch.setattr(google.auth, 'default', mock_default) monkeypatch.setattr(google.auth.transport.requests, 'Request', lambda: None) monkeypatch.setattr(google.oauth2.service_account.Credentials, 'from_service_account_file', mock_from_service_account_file) # test default creds cd = util.credentials() assert cd.credentials == creds assert cd.project_id == project_id # test creds file creds_type = util._SERVICE_ACCOUNT_TYPE with tempfile.TemporaryDirectory() as tmpdir: creds_dict = {'type': creds_type, 'project_id': project_id} creds_file = os.path.join(tmpdir, 'creds.json') with open(creds_file, 'w') as f: json.dump(creds_dict, f) cd = util.credentials(creds_file) assert cd.credentials == creds assert cd.project_id == project_id # ---------------------------------------------------------------------------- def test_parse_job_file(): # test invalid file extension with tempfile.TemporaryDirectory() as tmpdir: cfg = {'foo': 1, 'bar': '2'} fname = os.path.join(tmpdir, f'job.{str(uuid.uuid1())}') with open(fname, 'w') as f: json.dump(cfg, f) assert os.path.exists(fname) d = util.parse_job_file(fname) assert d is None # test missing file d = util.parse_job_file(f'{str(uuid.uuid1())}.json') assert d is None # test json file with tempfile.TemporaryDirectory() as tmpdir: cfg = {'foo': 1, 'bar': '2'} fname = os.path.join(tmpdir, f'job.json') with open(fname, 'w') as f: json.dump(cfg, f) assert os.path.exists(fname) d = util.parse_job_file(fname) assert d == cfg # test yaml file with tempfile.TemporaryDirectory() as tmpdir: cfg = {'foo': 1, 'bar': '2'} fname = os.path.join(tmpdir, f'job.yaml') with open(fname, 'w') as f: yaml.dump(cfg, f) assert os.path.exists(fname) d = util.parse_job_file(fname) assert d == cfg # test bad formatting with tempfile.TemporaryDirectory() as tmpdir: fname = os.path.join(tmpdir, f'job.json') with open(fname, 'w') as f: f.write('this is invalid json') assert os.path.exists(fname) d = util.parse_job_file(fname) assert d is None
armi/utils/densityTools.py
celikten/armi
162
11078061
<filename>armi/utils/densityTools.py # Copyright 2019 TerraPower, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Tuple, List, Dict from armi.nucDirectory import nucDir, nuclideBases, elements from armi.utils import units from armi import runLog def getNDensFromMasses(rho, massFracs, normalize=False): """ Convert density (g/cc) and massFracs vector into a number densities vector (#/bn-cm). Parameters ---------- rho : float density in (g/cc) massFracs : dict vector of mass fractions -- normalized to 1 -- keyed by their nuclide name Returns ------- numberDensities : dict vector of number densities (#/bn-cm) keyed by their nuclide name """ if normalize: massFracs = normalizeNuclideList(massFracs, normalization=normalize) numberDensities = {} rho = rho * units.MOLES_PER_CC_TO_ATOMS_PER_BARN_CM for nucName, massFrac in massFracs.items(): atomicWeight = nuclideBases.byName[nucName].weight numberDensities[nucName] = massFrac * rho / atomicWeight return numberDensities def getMassFractions(numberDensities): """ Convert number densities (#/bn-cm) into mass fractions. Parameters ---------- numberDensities : dict number densities (#/bn-cm) keyed by their nuclide name Returns ------- massFracs : dict mass fractions -- normalized to 1 -- keyed by their nuclide name """ nucMassFracs = {} totalWeight = 0.0 for nucName, numDensity in numberDensities.items(): weightI = numDensity * nucDir.getAtomicWeight(nucName) nucMassFracs[nucName] = weightI # will be normalized at end totalWeight += weightI if totalWeight != 0: for nucName in numberDensities: nucMassFracs[nucName] /= totalWeight else: for nucName in numberDensities: nucMassFracs[nucName] = 0.0 return nucMassFracs def calculateMassDensity(numberDensities): """ Calculates the mass density. Parameters ---------- numberDensities : dict vector of number densities (atom/bn-cm) indexed by nuclides names Returns ------- rho : float density in (g/cc) """ rho = 0 for nucName, nDensity in numberDensities.items(): atomicWeight = nuclideBases.byName[nucName].weight rho += nDensity * atomicWeight / units.MOLES_PER_CC_TO_ATOMS_PER_BARN_CM return rho def calculateNumberDensity(nucName, mass, volume): """ Calculates the number density. Parameters ---------- mass : float volume : volume nucName : armi nuclide name -- e.g. 'U235' Returns ------- number density : float number density (#/bn-cm) See Also -------- armi.reactor.blocks.Block.setMass """ A = nucDir.getAtomicWeight(nucName) try: return units.MOLES_PER_CC_TO_ATOMS_PER_BARN_CM * mass / (volume * A) except ZeroDivisionError: if mass == 0 and volume == 0: return 0 raise ValueError( "Could not calculate number density with input.\n" "mass : {}\nvolume : {}\natomic weight : {}\n".format(mass, volume, A) ) def getMassInGrams(nucName, volume, numberDensity=None): """ Gets mass of a nuclide of a known volume and know number density. Parameters ---------- nucName : str name of nuclide -- e.g. 'U235' volume : float volume in (cm3) numberDensity : float number density in (at/bn-cm) Returns ------- mass : float mass of nuclide (g) """ if not numberDensity: return 0.0 A = nucDir.getAtomicWeight(nucName) return numberDensity * volume * A / units.MOLES_PER_CC_TO_ATOMS_PER_BARN_CM def formatMaterialCard( densities, matNum=0, minDens=1e-15, sigFigs=8, mcnp6Compatible=False, mcnpLibrary=None, ): """ Formats nuclides and densities into a MCNP material card. Parameters ---------- densities : dict number densities indexed by nuclideBase matNum : int mcnp material number minDens : float minimum density sigFigs : int significant figures for the material card Returns ------- mCard : list list of material card strings """ if all( isinstance(nuc, (nuclideBases.LumpNuclideBase, nuclideBases.DummyNuclideBase)) for nuc in densities ): return [] # no valid nuclides to write mCard = ["m{matNum}\n".format(matNum=matNum)] for nuc, dens in sorted(densities.items()): # skip LFPs and Dummies. if isinstance(nuc, (nuclideBases.LumpNuclideBase)): runLog.important( "The material card returned will ignore LFPs.", single=True ) continue elif isinstance(nuc, nuclideBases.DummyNuclideBase): runLog.info("Omitting dummy nuclides such as {}".format(nuc), single=True) continue mcnpNucName = nuc.getMcnpId() newEntry = (" {nucName:5d} {ndens:." + str(sigFigs) + "e}\n").format( nucName=int(mcnpNucName), ndens=max(dens, minDens) ) # 0 dens is invalid mCard.append(newEntry) if mcnp6Compatible: mCard.append(" nlib={lib}c\n".format(lib=mcnpLibrary)) return mCard def filterNuclideList(nuclideVector, nuclides): """ Filter out nuclides not in the nuclide vector. Parameters ---------- nuclideVector : dict dictionary of values indexed by nuclide identifiers -- e.g. nucNames or nuclideBases nuclides : list list of nuclide identifiers Returns ------- nuclideVector : dict dictionary of values indexed by nuclide identifiers -- e.g. nucNames or nuclideBases """ if not isinstance(list(nuclideVector.keys())[0], nuclides[0].__class__): raise ValueError( "nuclide vector is indexed by {} where as the nuclides list is {}".format( nuclideVector.keys()[0].__class__, nuclides[0].__class__ ) ) for nucName in list(nuclideVector.keys()): if nucName not in nuclides: del nuclideVector[nucName] return nuclideVector def normalizeNuclideList(nuclideVector, normalization=1.0): """ normalize the nuclide vector. Parameters ---------- nuclideVector : dict dictionary of values -- e.g. floats, ints -- indexed by nuclide identifiers -- e.g. nucNames or nuclideBases normalization : float Returns ------- nuclideVector : dict dictionary of values indexed by nuclide identifiers -- e.g. nucNames or nuclideBases """ normalizationFactor = sum(nuclideVector.values()) / normalization for nucName, mFrac in nuclideVector.items(): nuclideVector[nucName] = mFrac / normalizationFactor return nuclideVector def expandElementalMassFracsToNuclides( massFracs: dict, elementExpansionPairs: Tuple[elements.Element, List[nuclideBases.NuclideBase]], ): """ Expand elemental mass fractions to natural nuclides. Modifies the input ``massFracs`` in place to contain nuclides. Notes ----- This indirectly updates number densities through mass fractions. Parameters ---------- massFracs : dict(str, float) dictionary of nuclide or element names with mass fractions. Elements will be expanded in place using natural isotopics. elementExpansionPairs : (Element, [NuclideBase]) pairs element objects to expand (from nuclidBase.element) and list of NuclideBases to expand into (or None for all natural) """ # expand elements for element, isotopicSubset in elementExpansionPairs: massFrac = massFracs.pop(element.symbol, None) if massFrac is None: continue expandedNucs = expandElementalNuclideMassFracs( element, massFrac, isotopicSubset ) massFracs.update(expandedNucs) total = sum(expandedNucs.values()) if massFrac > 0.0 and abs(total - massFrac) / massFrac > 1e-6: raise ValueError( "Mass fractions not normalized properly {}!".format((total, massFrac)) ) def expandElementalNuclideMassFracs( element: elements.Element, massFrac: dict, isotopicSubset: List[nuclideBases.NuclideBase] = None, ): """ Return a dictionary of nuclide names to isotopic mass fractions. If an isotopic subset is passed in, the mass fractions get scaled up s.t. the total mass fraction remains constant. Parameters ---------- element : Element The element to expand to natural isotopics massFrac : float Mass fraction of the initial element isotopicSubset : list of NuclideBases Natural isotopes to include in the expansion. Useful e.g. for excluding O18 from an expansion of Oxygen. """ elementNucBases = element.getNaturalIsotopics() if isotopicSubset: expandedNucBases = [nb for nb in elementNucBases if nb in isotopicSubset] else: expandedNucBases = elementNucBases elementalWeightGperMole = sum(nb.weight * nb.abundance for nb in expandedNucBases) if not any(expandedNucBases): raise ValueError( "Cannot expand element `{}` into isotopes: `{}`" "".format(element, expandedNucBases) ) expanded = {} for nb in expandedNucBases: expanded[nb.name] = ( massFrac * nb.abundance * nb.weight / elementalWeightGperMole ) return expanded def getChemicals(nuclideInventory): """ Groups the inventories of nuclides by their elements. Parameters ---------- nuclideInventory : dict nuclide inventories indexed by nuc -- either nucNames or nuclideBases Returns ------- chemicals : dict inventory of elements indexed by element symbol -- e.g. 'U' or 'PU' """ chemicals = {} for nuc, N in nuclideInventory.items(): nb = nuc if isinstance(nuc, nuclideBases.INuclide) else nuclideBases.byName[nuc] if nb.element.symbol in chemicals: chemicals[nb.element.symbol] += N else: chemicals[nb.element.symbol] = N return chemicals def applyIsotopicsMix( material, enrichedMassFracs: Dict[str, float], fertileMassFracs: Dict[str, float] ): """ Update material heavy metal mass fractions based on its enrichment and two nuclide feeds. This will remix the heavy metal in a Material object based on the object's ``class1_wt_frac`` parameter and the input nuclide information. This can be used for inputting mixtures of two external custom isotopic feeds as well as for fabricating assemblies from two closed-cycle collections of material. See Also -------- armi.materials.material.FuelMaterial Parameters ---------- material : material.Material The object to modify. Must have a ``class1_wt_frac`` param set enrichedMassFracs : dict Nuclide names and weight fractions of the class 1 nuclides fertileMassFracs : dict Nuclide names and weight fractions of the class 2 nuclides """ total = sum(material.p.massFrac.values()) hm = 0.0 for nucName, massFrac in material.p.massFrac.items(): nb = nuclideBases.byName[nucName] if nb.isHeavyMetal(): hm += massFrac hmFrac = hm / total hmEnrich = material.p.class1_wt_frac for nucName in ( set(enrichedMassFracs.keys()) .union(set(fertileMassFracs.keys())) .union(set(material.p.massFrac.keys())) ): nb = nuclideBases.byName[nucName] if nb.isHeavyMetal(): material.p.massFrac[nucName] = hmFrac * ( hmEnrich * enrichedMassFracs.get(nucName, 0.0) + (1 - hmEnrich) * fertileMassFracs.get(nucName, 0.0) )
tests/server/scheduler/test_create.py
catherine917/cloudburst
174
11078108
# Copyright 2019 U.C. Berkeley RISE Lab # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest from anna.lattices import LWWPairLattice, SingleKeyCausalLattice from cloudburst.server.scheduler.create import ( create_dag, create_function, delete_dag ) from cloudburst.server.scheduler.policy.default_policy import ( DefaultCloudburstSchedulerPolicy ) from cloudburst.server.scheduler.utils import get_pin_address, get_unpin_address import cloudburst.server.utils as sutils from cloudburst.shared.proto.cloudburst_pb2 import ( Dag, Function, GenericResponse, NORMAL, MULTI, # Cloudburst's consistency modes DAG_ALREADY_EXISTS, NO_RESOURCES, NO_SUCH_DAG # Cloudburst's error modes ) from cloudburst.shared.proto.internal_pb2 import PinFunction from cloudburst.shared.serializer import Serializer from tests.mock import kvs_client, zmq_utils from tests.server.utils import create_linear_dag serializer = Serializer() class TestSchedulerCreate(unittest.TestCase): ''' This test suite ensures that the scheduler correctly creates individual functions by storing them in the KVS and also correctly creates DAGs by sending the correct pin messages to executors and updating the server-side metadata when appropriate. ''' def setUp(self): self.pusher_cache = zmq_utils.MockPusherCache() self.socket = zmq_utils.MockZmqSocket() self.pin_socket = zmq_utils.MockZmqSocket() self.kvs_client = kvs_client.MockAnnaClient() self.ip = '127.0.0.1' self.policy = DefaultCloudburstSchedulerPolicy(self.pin_socket, self.pusher_cache, self.kvs_client, self.ip, policy='random', random_threshold=0) ''' INDIVIDUAL FUNCTION CREATION TESTS ''' def test_create_function(self): ''' This test creates a new function and checks that it is persisted in the KVS in the expected format. ''' # Create a new function message and add it to our socket. def func(_, x): x + 1 function = Function() function.name = 'function' function.body = serializer.dump(func) self.socket.inbox.append(function.SerializeToString()) # Call the function creation script. create_function(self.socket, self.kvs_client, consistency=NORMAL) # Check that the function was created correctly. kvs_name = sutils.get_func_kvs_name(function.name) result = self.kvs_client.get(kvs_name) created = result[kvs_name] self.assertTrue(created is not None) self.assertEqual(type(created), LWWPairLattice) created = serializer.load_lattice(created) self.assertEqual(func('', 1), created('', 1)) def test_create_causal_function(self): ''' This test creates a new function and checks that it is persisted in the KVS in the expected format in causal mode. ''' # Create a new function message and add it to our socket. def func(_, x): x + 1 function = Function() function.name = 'function' function.body = serializer.dump(func) self.socket.inbox.append(function.SerializeToString()) # Call the function creation script. create_function(self.socket, self.kvs_client, consistency=MULTI) # Check that the function was created correctly. kvs_name = sutils.get_func_kvs_name(function.name) result = self.kvs_client.get(kvs_name) created = result[kvs_name] self.assertTrue(created is not None) self.assertEqual(type(created), SingleKeyCausalLattice) self.assertEqual(created.vector_clock, sutils.DEFAULT_VC) self.assertEqual(len(created.reveal()), 1) created = serializer.load_lattice(created)[0] self.assertEqual(func('', 1), created('', 1)) ''' DAG CREATION TESTS ''' def test_create_dag(self): ''' This test creates a new DAG, checking that the correct pin messages are sent to executors and that it is persisted in the KVS correctly. It also checks that the server metadata was updated as expected. ''' # Create a simple two-function DAG and add it to the inbound socket. source = 'source' sink = 'sink' dag_name = 'dag' dag = create_linear_dag([None, None], [source, sink], self.kvs_client, dag_name) self.socket.inbox.append(dag.SerializeToString()) # Add relevant metadata to the policy engine. address_set = {(self.ip, 1), (self.ip, 2)} self.policy.unpinned_cpu_executors.update(address_set) # Prepopulate the pin_accept socket with sufficient success messages. self.pin_socket.inbox.append(sutils.ok_resp) self.pin_socket.inbox.append(sutils.ok_resp) # Call the DAG creation method. dags = {} call_frequency = {} create_dag(self.socket, self.pusher_cache, self.kvs_client, dags, self.policy, call_frequency) # Test that the correct metadata was created. self.assertTrue(dag_name in dags) created, dag_source = dags[dag_name] self.assertEqual(created, dag) self.assertEqual(len(dag_source), 1) self.assertEqual(list(dag_source)[0], source) self.assertTrue(source in call_frequency) self.assertTrue(sink in call_frequency) self.assertEqual(call_frequency[source], 0) self.assertEqual(call_frequency[sink], 0) # Test that the DAG is stored in the KVS correctly. result = self.kvs_client.get(dag_name)[dag_name] created = Dag() created.ParseFromString(result.reveal()) self.assertEqual(created, dag) # Test that the correct response was returned to the user. self.assertTrue(len(self.socket.outbox), 1) response = GenericResponse() response.ParseFromString(self.socket.outbox.pop()) self.assertTrue(response.success) # Test that the correct pin messages were sent. self.assertEqual(len(self.pusher_cache.socket.outbox), 2) messages = self.pusher_cache.socket.outbox function_set = {source, sink} for message in messages: pin_msg = PinFunction() pin_msg.ParseFromString(message) self.assertEqual(pin_msg.response_address, self.ip) self.assertTrue(pin_msg.name in function_set) function_set.discard(pin_msg.name) self.assertEqual(len(function_set), 0) for address in address_set: self.assertTrue(get_pin_address(*address) in self.pusher_cache.addresses) # Test that the policy engine has the correct metadata stored. self.assertEqual(len(self.policy.unpinned_cpu_executors), 0) self.assertEqual(len(self.policy.pending_dags), 0) self.assertTrue(source in self.policy.function_locations) self.assertTrue(sink in self.policy.function_locations) self.assertEqual(len(self.policy.function_locations[source]), 1) self.assertEqual(len(self.policy.function_locations[sink]), 1) def test_create_dag_already_exists(self): ''' This test attempts to create a DAG that already exists and makes sure that the server correctly rejects the request. ''' # Create a simple two-function DAG and add it to the inbound socket. source = 'source' sink = 'sink' dag_name = 'dag' dag = create_linear_dag([None, None], [source, sink], self.kvs_client, dag_name) self.socket.inbox.append(dag.SerializeToString()) # Add this to the existing server metadata. dags = {dag.name: (dag, {source})} # Add relevant metadata to the policy engine. address_set = {(self.ip, 1), (self.ip, 2)} self.policy.unpinned_cpu_executors.update(address_set) # Attempt to create the DAG. call_frequency = {} create_dag(self.socket, self.pusher_cache, self.kvs_client, dags, self.policy, call_frequency) # Check that an error was returned to the user. self.assertEqual(len(self.socket.outbox), 1) response = GenericResponse() response.ParseFromString(self.socket.outbox[0]) self.assertFalse(response.success) self.assertEqual(response.error, DAG_ALREADY_EXISTS) # Check that no additional metadata was created or sent. self.assertEqual(len(self.pusher_cache.socket.outbox), 0) self.assertEqual(len(self.policy.unpinned_cpu_executors), 2) self.assertEqual(len(self.policy.function_locations), 0) self.assertEqual(len(self.policy.pending_dags), 0) def test_create_dag_insufficient_resources(self): ''' This test attempts to create a DAG even though there are not enough free executors in the system. It checks that a pin message is attempted to be sent, we run out of resources, and then the request is rejected. We check that the metadata is properly restored back to its original state. ''' # Create a simple two-function DAG and add it to the inbound socket. source = 'source' sink = 'sink' dag_name = 'dag' dag = create_linear_dag([None, None], [source, sink], self.kvs_client, dag_name) self.socket.inbox.append(dag.SerializeToString()) # Add relevant metadata to the policy engine, but set the number of # executors to fewer than needed. address_set = {(self.ip, 1)} self.policy.unpinned_cpu_executors.update(address_set) # Prepopulate the pin_accept socket with sufficient success messages. self.pin_socket.inbox.append(sutils.ok_resp) # Attempt to create the DAG. dags = {} call_frequency = {} create_dag(self.socket, self.pusher_cache, self.kvs_client, dags, self.policy, call_frequency) # Check that an error was returned to the user. self.assertEqual(len(self.socket.outbox), 1) response = GenericResponse() response.ParseFromString(self.socket.outbox[0]) self.assertFalse(response.success) self.assertEqual(response.error, NO_RESOURCES) # Test that the correct pin messages were sent. self.assertEqual(len(self.pusher_cache.socket.outbox), 2) messages = self.pusher_cache.socket.outbox # Checks for the pin message. pin_msg = PinFunction() pin_msg.ParseFromString(messages[0]) self.assertEqual(pin_msg.response_address, self.ip) self.assertEqual(pin_msg.name, source) # Checks for the unpin message. self.assertEqual(messages[1], source) address = random.sample(address_set, 1)[0] addresses = self.pusher_cache.addresses self.assertEqual(get_pin_address(*address), addresses[0]) self.assertEqual(get_unpin_address(*address), addresses[1]) # Check that no additional messages were sent. self.assertEqual(len(self.policy.unpinned_cpu_executors), 0) self.assertEqual(len(self.policy.function_locations), 0) self.assertEqual(len(self.policy.pending_dags), 0) # Check that no additional metadata was created or sent. self.assertEqual(len(call_frequency), 0) self.assertEqual(len(dags), 0) def test_delete_dag(self): ''' We attempt to delete a DAG that has already been created and check to ensure that the correct unpin messages are sent to executors and that the metadata is updated appropriately. ''' # Create a simple two fucntion DAG and add it to the system metadata. source = 'source' sink = 'sink' dag_name = 'dag' dag = create_linear_dag([None, None], [source, sink], self.kvs_client, dag_name) dags = {} call_frequency = {} dags[dag.name] = (dag, {source}) call_frequency[source] = 100 call_frequency[sink] = 100 # Add the correct metadata to the policy engine. source_location = (self.ip, 1) sink_location = (self.ip, 2) self.policy.function_locations[source] = {source_location} self.policy.function_locations[sink] = {sink_location} self.socket.inbox.append(dag.name) # Attempt to delete the DAG. delete_dag(self.socket, dags, self.policy, call_frequency) # Check that the correct unpin messages were sent. messages = self.pusher_cache.socket.outbox self.assertEqual(len(messages), 2) self.assertEqual(messages[0], source) self.assertEqual(messages[1], sink) addresses = self.pusher_cache.addresses self.assertEqual(len(addresses), 2) self.assertEqual(addresses[0], get_unpin_address(*source_location)) self.assertEqual(addresses[1], get_unpin_address(*sink_location)) # Check that the server metadata was updated correctly. self.assertEqual(len(dags), 0) self.assertEqual(len(call_frequency), 0) # Check that the correct message was sent to the user. self.assertEqual(len(self.socket.outbox), 1) response = GenericResponse() response.ParseFromString(self.socket.outbox.pop()) self.assertTrue(response.success) def test_delete_nonexistent_dag(self): ''' This test attempts to delete a nonexistent DAG and ensures that no metadata is affected by the failed operation. ''' # Make a request to delete an unknown DAG. self.socket.inbox.append('dag') delete_dag(self.socket, {}, self.policy, {}) # Ensure that an error response is sent to the user. self.assertEqual(len(self.socket.outbox), 1) response = GenericResponse() response.ParseFromString(self.socket.outbox[0]) self.assertFalse(response.success) self.assertEqual(response.error, NO_SUCH_DAG) # Check that no additional messages were sent and no metadata changed. self.assertEqual(len(self.pusher_cache.socket.outbox), 0) self.assertEqual(len(self.policy.function_locations), 0) self.assertEqual(len(self.policy.unpinned_cpu_executors), 0) def test_create_gpu_dag_no_resources(self): # Create a simple two-function DAG and add it to the inbound socket. dag_name = 'dag' dag = create_linear_dag([None], ['fn'], self.kvs_client, dag_name) dag.functions[0].gpu = True self.socket.inbox.append(dag.SerializeToString()) dags = {} call_frequency = {} create_dag(self.socket, self.pusher_cache, self.kvs_client, dags, self.policy, call_frequency) # Check that an error was returned to the user. self.assertEqual(len(self.socket.outbox), 1) response = GenericResponse() response.ParseFromString(self.socket.outbox[0]) self.assertFalse(response.success) self.assertEqual(response.error, NO_RESOURCES) # Test that the correct pin messages were sent. self.assertEqual(len(self.pusher_cache.socket.outbox), 0) # Check that no additional messages were sent. self.assertEqual(len(self.policy.unpinned_cpu_executors), 0) self.assertEqual(len(self.policy.function_locations), 0) self.assertEqual(len(self.policy.pending_dags), 0) # Check that no additional metadata was created or sent. self.assertEqual(len(call_frequency), 0) self.assertEqual(len(dags), 0) def test_create_gpu_dag(self): # Create a simple two-function DAG and add it to the inbound socket. dag_name = 'dag' fn = 'fn' dag = create_linear_dag([None], [fn], self.kvs_client, dag_name) dag.functions[0].gpu = True self.socket.inbox.append(dag.SerializeToString()) dags = {} call_frequency = {} address_set = {(self.ip, 1)} self.policy.unpinned_gpu_executors.update(address_set) self.pin_socket.inbox.append(sutils.ok_resp) create_dag(self.socket, self.pusher_cache, self.kvs_client, dags, self.policy, call_frequency) # Test that the correct metadata was created. self.assertTrue(dag_name in dags) created, dag_source = dags[dag_name] self.assertEqual(created, dag) self.assertEqual(len(dag_source), 1) self.assertEqual(list(dag_source)[0], fn) self.assertTrue(fn in call_frequency) self.assertEqual(call_frequency[fn], 0) # Test that the DAG is stored in the KVS correctly. result = self.kvs_client.get(dag_name)[dag_name] created = Dag() created.ParseFromString(result.reveal()) self.assertEqual(created, dag) # Test that the correct response was returned to the user. self.assertTrue(len(self.socket.outbox), 1) response = GenericResponse() response.ParseFromString(self.socket.outbox.pop()) self.assertTrue(response.success) # Test that the correct pin messages were sent. self.assertEqual(len(self.pusher_cache.socket.outbox), 1) messages = self.pusher_cache.socket.outbox function_set = {fn} for message in messages: pin_msg = PinFunction() pin_msg.ParseFromString(message) self.assertEqual(pin_msg.response_address, self.ip) self.assertTrue(pin_msg.name in function_set) function_set.discard(pin_msg.name) self.assertEqual(len(function_set), 0) for address in address_set: self.assertTrue(get_pin_address(*address) in self.pusher_cache.addresses) # Test that the policy engine has the correct metadata stored. self.assertEqual(len(self.policy.unpinned_cpu_executors), 0) self.assertEqual(len(self.policy.pending_dags), 0) self.assertTrue(fn in self.policy.function_locations) self.assertEqual(len(self.policy.function_locations[fn]), 1)
tests/test_provider_davidji99_ultradns.py
mjuenema/python-terrascript
507
11078128
<filename>tests/test_provider_davidji99_ultradns.py # tests/test_provider_davidji99_ultradns.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:29:41 UTC) def test_provider_import(): import terrascript.provider.davidji99.ultradns def test_resource_import(): from terrascript.resource.davidji99.ultradns import ultradns_dirpool from terrascript.resource.davidji99.ultradns import ultradns_probe_http from terrascript.resource.davidji99.ultradns import ultradns_probe_ping from terrascript.resource.davidji99.ultradns import ultradns_rdpool from terrascript.resource.davidji99.ultradns import ultradns_record from terrascript.resource.davidji99.ultradns import ultradns_tcpool # TODO: Shortcut imports without namespace for official and supported providers. # TODO: This has to be moved into a required_providers block. # def test_version_source(): # # import terrascript.provider.davidji99.ultradns # # t = terrascript.provider.davidji99.ultradns.ultradns() # s = str(t) # # assert 'https://github.com/davidji99/terraform-provider-ultradns' in s # assert '2.1.0' in s
src/sage/features/join_feature.py
UCD4IDS/sage
1,742
11078152
<gh_stars>1000+ r""" Join features """ from . import Feature, FeatureTestResult class JoinFeature(Feature): r""" Join of several :class:`~sage.features.Feature` instances. EXAMPLES:: sage: from sage.features import Executable sage: from sage.features.join_feature import JoinFeature sage: F = JoinFeature("shell-boolean", ....: (Executable('shell-true', 'true'), ....: Executable('shell-false', 'false'))) sage: F.is_present() FeatureTestResult('shell-boolean', True) sage: F = JoinFeature("asdfghjkl", ....: (Executable('shell-true', 'true'), ....: Executable('xxyyyy', 'xxyyyy-does-not-exist'))) sage: F.is_present() FeatureTestResult('xxyyyy', False) """ def __init__(self, name, features, spkg=None, url=None, description=None): """ TESTS: The empty join feature is present:: sage: from sage.features.join_feature import JoinFeature sage: JoinFeature("empty", ()).is_present() FeatureTestResult('empty', True) """ if spkg is None: spkgs = set(f.spkg for f in features if f.spkg) if len(spkgs) > 1: raise ValueError('given features have more than one spkg; provide spkg argument') elif len(spkgs) == 1: spkg = next(iter(spkgs)) if url is None: urls = set(f.url for f in features if f.url) if len(urls) > 1: raise ValueError('given features have more than one url; provide url argument') elif len(urls) == 1: url = next(iter(urls)) super().__init__(name, spkg=spkg, url=url, description=description) self._features = features def _is_present(self): r""" Test for the presence of the join feature. EXAMPLES:: sage: from sage.features.latte import Latte sage: Latte()._is_present() # optional - latte_int FeatureTestResult('latte_int', True) """ for f in self._features: test = f._is_present() if not test: return test return FeatureTestResult(self, True) def is_functional(self): r""" Test whether the join feature is functional. EXAMPLES:: sage: from sage.features.latte import Latte sage: Latte().is_functional() # optional - latte_int FeatureTestResult('latte_int', True) """ for f in self._features: test = f.is_functional() if not test: return test return FeatureTestResult(self, True)
tests/compat.py
azmeuk/webtest
239
11078175
import unittest # noqa try: unicode() except NameError: b = bytes def u(value): if isinstance(value, bytes): return value.decode('utf-8') return value else: def b(value): return str(value) def u(value): if isinstance(value, unicode): return value return unicode(value, 'utf-8')
bindings/python/cntk/train/__init__.py
shyamalschandra/CNTK
17,702
11078180
# Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE.md file in the project root # for full license information. # ============================================================================== """ Utilities for training. """ from .trainer import * from .training_session import * from .distributed import *
tests/torch/nn/parallel/tensor_parallel/_parallel_1d/_utils.py
lipovsek/oslo
249
11078183
<reponame>lipovsek/oslo import torch import torch.distributed as dist from oslo.torch.distributed import ParallelMode def split_1d(parallel_context, tensor, world_size, dim): tensor = tensor.chunk(world_size, dim=dim)[ parallel_context.get_local_rank(ParallelMode.TENSOR_1D) ] return tensor def gather_1d(parallel_context, tensor, world_size, dim): tensor_list = [torch.zeros_like(tensor) for _ in range(world_size)] dist.all_gather( tensor_list, tensor.contiguous(), parallel_context.get_group(ParallelMode.TENSOR_1D), ) tensor = torch.cat(tensor_list, dim=dim) return tensor
tests/resources/_kktpm/generate.py
jarreguit/pymoo
762
11078184
import numpy as np from pymoo.factory import get_problem from pymoo.optimize import minimize def generate_test_data(): for str_problem in ["osy"]: problem = get_problem(str_problem) X = [] # define a callback function that prints the X and F value of the best individual def my_callback(algorithm): pop = algorithm.pop _X = pop.get("X")[np.random.permutation(len(pop))[:10]] X.append(_X) minimize(problem, method='nsga2', method_args={'pop_size': 100}, termination=('n_gen', 100), callback=my_callback, pf=problem.pareto_front(), disp=True, seed=1) np.savetxt("%s.x" % str_problem, np.concatenate(X, axis=0), delimiter=",") generate_test_data()
spyne/util/tdict.py
edustaff/spyne
786
11078212
<reponame>edustaff/spyne # # spyne - Copyright (C) Spyne contributors. # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 # """The typed dict module""" from itertools import chain class tdict(dict): def __init__(self, kt=None, vt=None, data=None): """This is a typed dict implementation that optionally enforces given types on contained values on assignment.""" self._kt = kt self._vt = vt if kt is None and vt is None: self.check = self._check_noop elif kt is None: self.check = self._check_v elif vt is None: self.check = self._check_k else: self.check = self._check_kv if data is not None: self.update(data) def _check_noop(self, *_): pass def _check_k(self, key, _): if not isinstance(key, self._kt): raise TypeError(repr(key)) def _check_v(self, _, value): if not isinstance(value, self._vt): raise TypeError(repr(value)) def _check_kv(self, key, value): if not isinstance(key, self._kt): raise TypeError(repr(key)) if not isinstance(value, self._vt): raise TypeError(repr(value)) def __setitem__(self, key, value): self.check(key, value) super(tdict, self).__setitem__(key, value) def update(self, E=None, **F): try: it = chain(E.items(), F.items()) except AttributeError: it = chain(E, F) for k, v in it: self[k] = v def setdefault(self, k, d=None): self._check_k(k, d) if self._kt is None else None self._check_v(k, d) if self._vt is None else None super(tdict, self).setdefault(k, d) @classmethod def fromkeys(cls, S, v=None): kt = vt = None if len(S) > 0: kt, = set((type(s) for s in S)) if v is not None: vt = type(v) retval = tdict(kt, vt) for s in S: retval[s] = v return retval def repr(self): return "tdict(kt=%s, vt=%s, data=%s)" % \ (self._kt, self._vt, super(tdict, self).__repr__())
tests/components/abode/test_switch.py
andersop91/core
22,481
11078230
"""Tests for the Abode switch device.""" from unittest.mock import patch from homeassistant.components.abode import ( DOMAIN as ABODE_DOMAIN, SERVICE_TRIGGER_AUTOMATION, ) from homeassistant.components.switch import DOMAIN as SWITCH_DOMAIN from homeassistant.const import ( ATTR_ENTITY_ID, SERVICE_TURN_OFF, SERVICE_TURN_ON, STATE_OFF, STATE_ON, ) from homeassistant.helpers import entity_registry as er from .common import setup_platform AUTOMATION_ID = "switch.test_automation" AUTOMATION_UID = "47fae27488f74f55b964a81a066c3a01" DEVICE_ID = "switch.test_switch" DEVICE_UID = "0012a4d3614cb7e2b8c9abea31d2fb2a" async def test_entity_registry(hass): """Tests that the devices are registered in the entity registry.""" await setup_platform(hass, SWITCH_DOMAIN) entity_registry = er.async_get(hass) entry = entity_registry.async_get(AUTOMATION_ID) assert entry.unique_id == AUTOMATION_UID entry = entity_registry.async_get(DEVICE_ID) assert entry.unique_id == DEVICE_UID async def test_attributes(hass): """Test the switch attributes are correct.""" await setup_platform(hass, SWITCH_DOMAIN) state = hass.states.get(DEVICE_ID) assert state.state == STATE_OFF async def test_switch_on(hass): """Test the switch can be turned on.""" await setup_platform(hass, SWITCH_DOMAIN) with patch("abodepy.AbodeSwitch.switch_on") as mock_switch_on: assert await hass.services.async_call( SWITCH_DOMAIN, SERVICE_TURN_ON, {ATTR_ENTITY_ID: DEVICE_ID}, blocking=True ) await hass.async_block_till_done() mock_switch_on.assert_called_once() async def test_switch_off(hass): """Test the switch can be turned off.""" await setup_platform(hass, SWITCH_DOMAIN) with patch("abodepy.AbodeSwitch.switch_off") as mock_switch_off: assert await hass.services.async_call( SWITCH_DOMAIN, SERVICE_TURN_OFF, {ATTR_ENTITY_ID: DEVICE_ID}, blocking=True ) await hass.async_block_till_done() mock_switch_off.assert_called_once() async def test_automation_attributes(hass): """Test the automation attributes are correct.""" await setup_platform(hass, SWITCH_DOMAIN) state = hass.states.get(AUTOMATION_ID) # State is set based on "enabled" key in automation JSON. assert state.state == STATE_ON async def test_turn_automation_off(hass): """Test the automation can be turned off.""" with patch("abodepy.AbodeAutomation.enable") as mock_trigger: await setup_platform(hass, SWITCH_DOMAIN) await hass.services.async_call( SWITCH_DOMAIN, SERVICE_TURN_OFF, {ATTR_ENTITY_ID: AUTOMATION_ID}, blocking=True, ) await hass.async_block_till_done() mock_trigger.assert_called_once_with(False) async def test_turn_automation_on(hass): """Test the automation can be turned on.""" with patch("abodepy.AbodeAutomation.enable") as mock_trigger: await setup_platform(hass, SWITCH_DOMAIN) await hass.services.async_call( SWITCH_DOMAIN, SERVICE_TURN_ON, {ATTR_ENTITY_ID: AUTOMATION_ID}, blocking=True, ) await hass.async_block_till_done() mock_trigger.assert_called_once_with(True) async def test_trigger_automation(hass, requests_mock): """Test the trigger automation service.""" await setup_platform(hass, SWITCH_DOMAIN) with patch("abodepy.AbodeAutomation.trigger") as mock: await hass.services.async_call( ABODE_DOMAIN, SERVICE_TRIGGER_AUTOMATION, {ATTR_ENTITY_ID: AUTOMATION_ID}, blocking=True, ) await hass.async_block_till_done() mock.assert_called_once()
tests/management/commands/test_list_signals.py
KazakovDenis/django-extensions
4,057
11078253
<filename>tests/management/commands/test_list_signals.py # -*- coding: utf-8 -*- import re from io import StringIO from django.test import TestCase from django.core.management import call_command class ListSignalsTests(TestCase): """Tests for list_signals command.""" def setUp(self): self.out = StringIO() def test_should_print_all_signals(self): expected_result = '''django.contrib.sites.models.Site (site) pre_delete django.contrib.sites.models.clear_site_cache # pre_save django.contrib.sites.models.clear_site_cache # tests.testapp.models.HasOwnerModel (has owner model) pre_save tests.testapp.models.dummy_handler # ''' call_command('list_signals', stdout=self.out) # Strip line numbers to make the test less brittle out = re.sub(r'(?<=#)\d+', '', self.out.getvalue(), re.M) self.assertIn(expected_result, out)
simulation_research/traffic/point_process_model.py
deepneuralmachine/google-research
23,901
11078266
<filename>simulation_research/traffic/point_process_model.py # coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Point process model for the traffic flow fitting and generation. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging import numpy as np import scipy.interpolate # TODO(albertyuchen): Find better basis creation tools. def create_bspline_basis(knots, spline_order, dt=0.02): """Create B-spline basis.""" # The repeated boundary knots are appended as it is required for Cox de Boor # recursive algorithm. See https://math.stackexchange.com/questions/2817170/ # what-is-the-purpose-of-having-repeated-knots-in-a-b-spline and the link # https://en.wikipedia.org/wiki/De_Boor%27s_algorithm. knots = list(knots) knots = [knots[0]] * spline_order + knots + [knots[-1]] * spline_order num_basis = len(knots) - spline_order - 1 # Query token is in format: [knots, basis coefficients, spline order] # See https://docs.scipy.org/doc/scipy/reference/generated/ # scipy.interpolate.splev.html query_token = [0, 0, spline_order] query_token[0] = np.array(knots) time_line = np.linspace(knots[0], knots[-1], int(np.round(knots[-1]/dt)) + 1) # Add column for the constent term. basis_matrix = np.zeros((len(time_line), num_basis + 1)) basis_matrix[:, -1] = np.ones(len(time_line)) # Constant term. for basis_index in range(num_basis): basis_coefficients = np.zeros(num_basis) basis_coefficients[basis_index] = 1.0 query_token[1] = basis_coefficients.tolist() base = scipy.interpolate.splev(time_line, query_token) basis_matrix[:, basis_index] = base return basis_matrix, time_line class PointProcessModel(object): """Generates random traffic using inhomogeneous Poisson models.""" # def __init__(self): @classmethod def generator(cls, rates, time_step_size): """Generate events according to the rates. If we know the underlying event rate of a point process, the number of events in a certain time interval follows Poisson distribution with parameter lambda. The lambda is the integral of the event rate in the time interval. See reference: Args: rates: time_step_size: Returns: Number of events for each bin w.r.t. the `rates`. """ num_events = np.zeros(len(rates)) for t, rate in enumerate(rates): num_events[t] = np.random.poisson(time_step_size * rate, 1) return num_events @classmethod def fit_homo_poisson(cls, events, time_step_size): """Fit the homogeneous Poisson model. For homogeneous Poisson process, the maximum likelihood estimator for the event rate is the mean of the data. Args: events: An array of numbers of evetns in each time bin. time_step_size: Bin width. We assume the bin sizes are equal. Returns: Event rate. """ return np.mean(events) / time_step_size # TODO(albertyuchen): Bin the time points into the def time_bin_data(self, timestamps, time_step_size): """Bin the events timestamps into time bins. This function discretize the timestamps into different time bins, so that the model can be fitted using generalized linear models in this class. Args: timestamps: A list of observed events. time_step_size: The time step size. Returns: events: Time binned events count. """ # events, _ = np.histogram(timestamps, bins=xxx) # return events pass @classmethod def fit_inhomo_poisson(cls, events, time_step_size, spline_order=3, num_knots=5): """Fits the inhomogeneous Poisson model. Args: events: A sequence of number of events. time_step_size: Time step size. spline_order: The order of the spline. num_knots: Number of knots inbetween the two ends. The knots distribute uniformly. Returns: Estimated event rates. """ # Creates knots between [0, 1] knots = np.linspace(0, 1, num_knots + 2) # +2 to includes two ends. # The number of sampled pooints is the same as those in the basis. dt = 1 / (len(events) - 1) xx, _ = create_bspline_basis(knots, spline_order, dt) yy = events beta = np.zeros(xx.shape[1]) max_iterations = 300 for _ in range(max_iterations): negative_log_likelihoods = -yy.T @ (xx @ beta) + np.exp(xx @ beta) negative_log_likelihood = np.sum(negative_log_likelihoods) logging.info('Negative log likelihood: %s', negative_log_likelihood) gradient = -xx.T @ yy + xx.T @ np.exp(xx @ beta) # TODO(albertyuchen): Apply backtracking line search. # The method is described: https://www.stat.cmu.edu/~ryantibs/convexopt/ # lectures/grad-descent.pdf. beta -= gradient * 0.001 # TODO(albertyuchen): Apply Newton method here by multiplying the Hessian. # The Newton's method requires careful backtracking line search. # hessian = xx.T @ (np.exp(xx @ beta).reshape(-1, 1) * xx) # beta -= hessian @ gradient * 0.0001 # TODO(albertyuchen): Add convergence condition. # if |NLL(t) - NLL(t + 1)| < delta return np.exp(xx @ beta) / time_step_size
src/ecdsa/eddsa.py
592767809/python-ecdsa
130
11078277
<gh_stars>100-1000 """Implementation of Edwards Digital Signature Algorithm.""" import hashlib from ._sha3 import shake_256 from . import ellipticcurve from ._compat import ( remove_whitespace, bit_length, bytes_to_int, int_to_bytes, compat26_str, ) # edwards25519, defined in RFC7748 _p = 2 ** 255 - 19 _a = -1 _d = int( remove_whitespace( "370957059346694393431380835087545651895421138798432190163887855330" "85940283555" ) ) _h = 8 _Gx = int( remove_whitespace( "151122213495354007725011514095885315114540126930418572060461132" "83949847762202" ) ) _Gy = int( remove_whitespace( "463168356949264781694283940034751631413079938662562256157830336" "03165251855960" ) ) _r = 2 ** 252 + 0x14DEF9DEA2F79CD65812631A5CF5D3ED def _sha512(data): return hashlib.new("sha512", compat26_str(data)).digest() curve_ed25519 = ellipticcurve.CurveEdTw(_p, _a, _d, _h, _sha512) generator_ed25519 = ellipticcurve.PointEdwards( curve_ed25519, _Gx, _Gy, 1, _Gx * _Gy % _p, _r, generator=True ) # edwards448, defined in RFC7748 _p = 2 ** 448 - 2 ** 224 - 1 _a = 1 _d = -39081 % _p _h = 4 _Gx = int( remove_whitespace( "224580040295924300187604334099896036246789641632564134246125461" "686950415467406032909029192869357953282578032075146446173674602635" "247710" ) ) _Gy = int( remove_whitespace( "298819210078481492676017930443930673437544040154080242095928241" "372331506189835876003536878655418784733982303233503462500531545062" "832660" ) ) _r = 2 ** 446 - 0x8335DC163BB124B65129C96FDE933D8D723A70AADC873D6D54A7BB0D def _shake256(data): return shake_256(data, 114) curve_ed448 = ellipticcurve.CurveEdTw(_p, _a, _d, _h, _shake256) generator_ed448 = ellipticcurve.PointEdwards( curve_ed448, _Gx, _Gy, 1, _Gx * _Gy % _p, _r, generator=True ) class PublicKey(object): """Public key for the Edwards Digital Signature Algorithm.""" def __init__(self, generator, public_key, public_point=None): self.generator = generator self.curve = generator.curve() self.__encoded = public_key # plus one for the sign bit and round up self.baselen = (bit_length(self.curve.p()) + 1 + 7) // 8 if len(public_key) != self.baselen: raise ValueError( "Incorrect size of the public key, expected: {0} bytes".format( self.baselen ) ) if public_point: self.__point = public_point else: self.__point = ellipticcurve.PointEdwards.from_bytes( self.curve, public_key ) def __eq__(self, other): if isinstance(other, PublicKey): return ( self.curve == other.curve and self.__encoded == other.__encoded ) return NotImplemented def __ne__(self, other): return not self == other @property def point(self): return self.__point @point.setter def point(self, other): if self.__point != other: raise ValueError("Can't change the coordinates of the point") self.__point = other def public_point(self): return self.__point def public_key(self): return self.__encoded def verify(self, data, signature): """Verify a Pure EdDSA signature over data.""" data = compat26_str(data) if len(signature) != 2 * self.baselen: raise ValueError( "Invalid signature length, expected: {0} bytes".format( 2 * self.baselen ) ) R = ellipticcurve.PointEdwards.from_bytes( self.curve, signature[: self.baselen] ) S = bytes_to_int(signature[self.baselen :], "little") if S >= self.generator.order(): raise ValueError("Invalid signature") dom = bytearray() if self.curve == curve_ed448: dom = bytearray(b"SigEd448" + b"\x00\x00") k = bytes_to_int( self.curve.hash_func(dom + R.to_bytes() + self.__encoded + data), "little", ) if self.generator * S != self.__point * k + R: raise ValueError("Invalid signature") return True class PrivateKey(object): """Private key for the Edwards Digital Signature Algorithm.""" def __init__(self, generator, private_key): self.generator = generator self.curve = generator.curve() # plus one for the sign bit and round up self.baselen = (bit_length(self.curve.p()) + 1 + 7) // 8 if len(private_key) != self.baselen: raise ValueError( "Incorrect size of private key, expected: {0} bytes".format( self.baselen ) ) self.__private_key = bytes(private_key) self.__h = bytearray(self.curve.hash_func(private_key)) self.__public_key = None a = self.__h[: self.baselen] a = self._key_prune(a) scalar = bytes_to_int(a, "little") self.__s = scalar @property def private_key(self): return self.__private_key def __eq__(self, other): if isinstance(other, PrivateKey): return ( self.curve == other.curve and self.__private_key == other.__private_key ) return NotImplemented def __ne__(self, other): return not self == other def _key_prune(self, key): # make sure the key is not in a small subgroup h = self.curve.cofactor() if h == 4: h_log = 2 elif h == 8: h_log = 3 else: raise ValueError("Only cofactor 4 and 8 curves supported") key[0] &= ~((1 << h_log) - 1) # ensure the highest bit is set but no higher l = bit_length(self.curve.p()) if l % 8 == 0: key[-1] = 0 key[-2] |= 0x80 else: key[-1] = key[-1] & (1 << (l % 8)) - 1 | 1 << (l % 8) - 1 return key def public_key(self): """Generate the public key based on the included private key""" if self.__public_key: return self.__public_key public_point = self.generator * self.__s self.__public_key = PublicKey( self.generator, public_point.to_bytes(), public_point ) return self.__public_key def sign(self, data): """Perform a Pure EdDSA signature over data.""" data = compat26_str(data) A = self.public_key().public_key() prefix = self.__h[self.baselen :] dom = bytearray() if self.curve == curve_ed448: dom = bytearray(b"SigEd448" + b"\x00\x00") r = bytes_to_int(self.curve.hash_func(dom + prefix + data), "little") R = (self.generator * r).to_bytes() k = bytes_to_int(self.curve.hash_func(dom + R + A + data), "little") k %= self.generator.order() S = (r + k * self.__s) % self.generator.order() return R + int_to_bytes(S, self.baselen, "little")
boto3_type_annotations/boto3_type_annotations/snowball/client.py
cowboygneox/boto3_type_annotations
119
11078289
<gh_stars>100-1000 from typing import Optional from botocore.client import BaseClient from botocore.waiter import Waiter from typing import Union from typing import Dict from botocore.paginate import Paginator class Client(BaseClient): def can_paginate(self, operation_name: str = None): pass def cancel_cluster(self, ClusterId: str) -> Dict: pass def cancel_job(self, JobId: str) -> Dict: pass def create_address(self, Address: Dict) -> Dict: pass def create_cluster(self, JobType: str, Resources: Dict, AddressId: str, RoleARN: str, ShippingOption: str, Description: str = None, KmsKeyARN: str = None, SnowballType: str = None, Notification: Dict = None, ForwardingAddressId: str = None) -> Dict: pass def create_job(self, JobType: str = None, Resources: Dict = None, Description: str = None, AddressId: str = None, KmsKeyARN: str = None, RoleARN: str = None, SnowballCapacityPreference: str = None, ShippingOption: str = None, Notification: Dict = None, ClusterId: str = None, SnowballType: str = None, ForwardingAddressId: str = None) -> Dict: pass def describe_address(self, AddressId: str) -> Dict: pass def describe_addresses(self, MaxResults: int = None, NextToken: str = None) -> Dict: pass def describe_cluster(self, ClusterId: str) -> Dict: pass def describe_job(self, JobId: str) -> Dict: pass def generate_presigned_url(self, ClientMethod: str = None, Params: Dict = None, ExpiresIn: int = None, HttpMethod: str = None): pass def get_job_manifest(self, JobId: str) -> Dict: pass def get_job_unlock_code(self, JobId: str) -> Dict: pass def get_paginator(self, operation_name: str = None) -> Paginator: pass def get_snowball_usage(self) -> Dict: pass def get_waiter(self, waiter_name: str = None) -> Waiter: pass def list_cluster_jobs(self, ClusterId: str, MaxResults: int = None, NextToken: str = None) -> Dict: pass def list_clusters(self, MaxResults: int = None, NextToken: str = None) -> Dict: pass def list_compatible_images(self, MaxResults: int = None, NextToken: str = None) -> Dict: pass def list_jobs(self, MaxResults: int = None, NextToken: str = None) -> Dict: pass def update_cluster(self, ClusterId: str, RoleARN: str = None, Description: str = None, Resources: Dict = None, AddressId: str = None, ShippingOption: str = None, Notification: Dict = None, ForwardingAddressId: str = None) -> Dict: pass def update_job(self, JobId: str, RoleARN: str = None, Notification: Dict = None, Resources: Dict = None, AddressId: str = None, ShippingOption: str = None, Description: str = None, SnowballCapacityPreference: str = None, ForwardingAddressId: str = None) -> Dict: pass
sparse_operation_kit/unit_test/test_scripts/tf2/test_all_gather_dispatcher.py
xjqbest/HugeCTR
130
11078290
""" Copyright (c) 2021, NVIDIA CORPORATION. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from single_worker_base import SingleWorkerbase import numpy as np import tensorflow as tf from tensorflow.python.distribute.values import PerReplica import sys, os sys.path.append(os.path.abspath(os.path.join( os.path.dirname(os.path.abspath(__file__)), r"../../python/"))) import sok_unit_test_lib class TestAllGatherDispatcher_single(SingleWorkerbase): def __init__(self): self.global_batch_size = 65536 super(TestAllGatherDispatcher_single, self).__init__(global_batch_size=self.global_batch_size) def call(self): rows_num_per_sample = 26 max_nnz = 3 all_inputs = np.random.randint(low=1, high=100, size=[self.global_batch_size * rows_num_per_sample, max_nnz]) all_mask = np.random.randint(low=0, high=2, size=[self.global_batch_size * rows_num_per_sample, max_nnz]) all_inputs *= all_mask print("[INFO] original dense all inputs:\n", all_inputs) all_valid_indices = tf.where(all_inputs != 0) all_valid_values = tf.gather_nd(all_inputs, all_valid_indices) all_inputs_sparse_tensor = tf.sparse.SparseTensor(values=all_valid_values, indices=all_valid_indices, dense_shape=all_inputs.shape) print("[INFO] original inputs sparse tensor:\n", all_inputs_sparse_tensor) sparse_tensors = tf.sparse.split(sp_input=all_inputs_sparse_tensor, num_split=8, axis=0) sparse_tensors = PerReplica(sparse_tensors) print("[INFO] to each replica sparse tensors:\n", sparse_tensors) target_values = all_inputs_sparse_tensor.values # target_indices = tf.concat([tf.transpose(sparse_tensor.indices, perm=[1, 0])[0] # for sparse_tensor in sparse_tensors.values], # axis=0) target_indices = tf.transpose(all_inputs_sparse_tensor.indices, perm=[1, 0])[0] target_num_elements = tf.concat([tf.shape(sparse_tensor.indices, out_type=tf.int64)[0] for sparse_tensor in sparse_tensors.values], axis=0) target_total_valid_num = tf.size(target_values, out_type=tf.int64) print("[INFO] target_values: \n", target_values) print("[INFO] target_indcies: \n", target_indices) print("[INFO] target_num_elements: \n", target_num_elements) print("[INFO] target_total_valid_num: \n", target_total_valid_num) @tf.function def _step(sparse_tensor): if not isinstance(sparse_tensor, tf.sparse.SparseTensor): raise RuntimeError("sparse_tensor must be a tf.sparse.SparseTensor") values = sparse_tensor.values # [num_of_valids,] indices = sparse_tensor.indices row_indices = tf.transpose(indices, perm=[1, 0])[0] # [num_of_valids] replica_ctx = tf.distribute.get_replica_context() values_out, indices_out, num_elements, total_valid_num = sok_unit_test_lib.all_gather_dispatcher( replica_ctx.replica_id_in_sync_group, replica_ctx.num_replicas_in_sync, values, row_indices, global_batch_size=self.global_batch_size, rows_num_per_sample=rows_num_per_sample, max_nnz=max_nnz) return values_out, indices_out, num_elements, total_valid_num values_out, indices_out, num_elements, total_valid_num = self.strategy.run(_step, args=(sparse_tensors,)) print("[INFO]: after all gather dispatcher, values = \n", values_out) print("[INFO]: after all gather dispatcher, indices = \n", indices_out) print("[INFO]: after all gather dispatcher, num_elements = \n", num_elements) print("[INFO]: after all gather dispatcher, total_valid_num = \n", total_valid_num) for i in range(len(values_out.values)): tf.debugging.assert_equal(target_values, values_out.values[i][:target_values.shape[0]], message="values %d not meet target." %i) tf.debugging.assert_equal(target_indices, indices_out.values[i][:target_indices.shape[0]], message="indcies %d not meet target." %i) tf.debugging.assert_equal(target_num_elements, num_elements.values[i][:target_num_elements.shape[0]], message="num_elements %d not meet target." %i) tf.debugging.assert_equal(target_total_valid_num, total_valid_num.values[i], message="total_valid_num %d not meet target." %i) if __name__ == "__main__": TestAllGatherDispatcher_single()()
torchdistill/losses/__init__.py
AhmedHussKhalifa/torchdistill
576
11078298
<filename>torchdistill/losses/__init__.py from torchdistill.losses import custom, single
OnlineDB/SiStripESSources/python/test_FedCablingFromConfigDb_cfg.py
ckamtsikis/cmssw
852
11078302
<filename>OnlineDB/SiStripESSources/python/test_FedCablingFromConfigDb_cfg.py import FWCore.ParameterSet.Config as cms process = cms.Process("testFedCablingFromConfigDb") process.load("DQM.SiStripCommon.MessageLogger_cfi") process.load("OnlineDB.SiStripESSources.FedCablingFromConfigDb_cff") process.SiStripConfigDb.UsingDb = True process.SiStripConfigDb.ConfDb = '' process.SiStripConfigDb.Partitions.PrimaryPartition.PartitionName = '' process.SiStripConfigDb.Partitions.PrimaryPartition.RunNumber = 0 process.FedCablingFromConfigDb.CablingSource = 'UNDEFINED' process.load("IORawData.SiStripInputSources.EmptySource_cff") process.maxEvents.input = 2 process.test = cms.EDAnalyzer("test_FedCablingBuilder") process.p = cms.Path(process.test)
py/mazebase/items/MazeItem.py
fakeNetflix/facebook-repo-MazeBase
263
11078314
<reponame>fakeNetflix/facebook-repo-MazeBase<gh_stars>100-1000 from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import abc import six from copy import deepcopy from mazebase.utils.mazeutils import populate_kwargs @six.add_metaclass(abc.ABCMeta) class MazeItem(object): ''' Maze items should not share state PRIO determines priority of visibility when viewing the object, and has no effect on the game. A higher priority object is always diplayed first ''' __properties = dict( location=(0, 0), visible=True, passable=True, ) def __init__(self, **kwargs): populate_kwargs(self, self.__class__.__properties, kwargs) self.game = None self.PRIO = 0 def _get_display_symbol(self): ''' -> (text, foreground, background, attributes) text: should be 3 characters foreground: see termcolor.py background: see termcolor.py attributes: see termcolor.py ''' return (None, None, None, None) def clone(self): return deepcopy(self) def featurize(self): ''' Return a list of the features for this item ''' return [type(self).__name__] @classmethod def all_features(cls): ''' All possible features for this item. Must implement if subclass implements featurize() ''' return [cls.__name__]
custom_components/xiaomi_miot_raw/deps/xiaomi_cloud_new.py
easy8646/xiaomi_miot_raw
1,294
11078323
""" The base logic was taken from project https://github.com/squachen/micloud I had to rewrite the code to work asynchronously and handle timeouts for requests to the cloud. MIT License Copyright (c) 2020 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import asyncio import base64 import hashlib import hmac import json import locale import logging import os import random import string import time from aiohttp import ClientSession, ClientConnectorError _LOGGER = logging.getLogger(__name__) SERVERS = ['cn', 'de', 'i2', 'ru', 'sg', 'us'] UA = "Android-7.1.1-1.0.0-ONEPLUS A3010-136-%s APP/xiaomi.smarthome APPV/62830" class MiCloud: auth = None svr = None _fail_count = 0 def __init__(self, session: ClientSession): self.session = session self.device_id = get_random_string(16) async def login(self, username: str, password: str): try: payload = await self._login_step1() if isinstance(payload, Exception): return (-2, payload) data = await self._login_step2(username, password, payload) if isinstance(data, Exception): return (-2, data) if 'notificationUrl' in data: return (-1, data['notificationUrl']) elif not data['location']: return (-1, None) token = await self._login_step3(data['location']) if isinstance(token, Exception): return (-2, token) self.auth = { 'user_id': data['userId'], 'ssecurity': data['ssecurity'], 'service_token': token } return (0, None) except Exception as e: # There should be no exception here? _LOGGER.exception(f"Can't login to MiCloud: {e}") raise e from None def login_by_credientals(self, userId, serviceToken, ssecurity): self.auth = { 'user_id': userId, 'ssecurity': ssecurity, 'service_token': serviceToken } return True async def _login_step1(self): _LOGGER.debug(f"Logging in to Xiaomi Cloud (1/3)...") try: r = await self.session.get( 'https://account.xiaomi.com/pass/serviceLogin', cookies={'sdkVersion': '3.8.6', 'deviceId': self.device_id}, headers={'User-Agent': UA % self.device_id}, params={'sid': 'xiaomiio', '_json': 'true'}) raw = await r.read() resp: dict = json.loads(raw[11:]) return {k: v for k, v in resp.items() if k in ('sid', 'qs', 'callback', '_sign')} except ClientConnectorError as ex: return ex async def _login_step2(self, username: str, password: str, payload: dict): _LOGGER.debug(f"Logging in to Xiaomi Cloud (2/3)...") payload['user'] = username payload['hash'] = hashlib.md5(password.encode()).hexdigest().upper() try: r = await self.session.post( 'https://account.xiaomi.com/pass/serviceLoginAuth2', cookies={'sdkVersion': '3.8.6', 'deviceId': self.device_id}, data=payload, headers={'User-Agent': UA % self.device_id}, params={'_json': 'true'}) raw = await r.read() resp = json.loads(raw[11:]) return resp except ClientConnectorError as ex: return ex async def _login_step3(self, location): _LOGGER.debug(f"Logging in to Xiaomi Cloud (3/3)...") try: r = await self.session.get(location, headers={'User-Agent': UA}) service_token = r.cookies['serviceToken'].value return service_token except ClientConnectorError as ex: return ex async def get_total_devices(self, servers: list): total = [] for server in servers: devices = await self.get_devices(server) if devices is None: return None total += devices return total async def get_devices(self, server: str): assert server in SERVERS, "Wrong server: " + server baseurl = 'https://api.io.mi.com/app' if server == 'cn' \ else f"https://{server}.api.io.mi.com/app" url = '/home/device_list' data = '{"getVirtualModel":false,"getHuamiDevices":0}' nonce = gen_nonce() signed_nonce = gen_signed_nonce(self.auth['ssecurity'], nonce) signature = gen_signature(url, signed_nonce, nonce, data) try: loc = locale.getdefaultlocale()[0] or "en_US" except Exception: loc = "en_US" try: r = await self.session.post(baseurl + url, cookies={ 'userId': self.auth['user_id'], 'serviceToken': self.auth['service_token'], 'locale': loc }, headers={ 'User-Agent': UA, 'x-xiaomi-protocal-flag-cli': 'PROTOCAL-HTTP2' }, data={ 'signature': signature, '_nonce': nonce, 'data': data }, timeout=5) resp = await r.json(content_type=None) assert resp['code'] == 0, resp return resp['result']['list'] except asyncio.TimeoutError: _LOGGER.error("Timeout while loading MiCloud device list") except ClientConnectorError: _LOGGER.error("Failed loading MiCloud device list") except: _LOGGER.exception(f"Can't load devices list") return None async def request_miot_api(self, api, data = None, server: str = None): server = server or self.svr or 'cn' api_base = 'https://api.io.mi.com/app' if server == 'cn' \ else f"https://{server}.api.io.mi.com/app" url = api_base+api nonce = gen_nonce() signed_nonce = gen_signed_nonce(self.auth['ssecurity'], nonce) signature = gen_signature(api, signed_nonce, nonce, data) headers = { 'content-type': "application/x-www-form-urlencoded", 'x-xiaomi-protocal-flag-cli': "PROTOCAL-HTTP2", 'connection': "Keep-Alive", 'accept-encoding': "gzip", 'cache-control': "no-cache", } try: r = await self.session.post(url, cookies={ 'userId': self.auth['user_id'], 'serviceToken': self.auth['service_token'], }, headers={ 'User-Agent': UA, 'x-xiaomi-protocal-flag-cli': 'PROTOCAL-HTTP2' }, data={ 'signature': signature, '_nonce': nonce, 'data': data }, timeout=5) self._fail_count = 0 resp = await r.json(content_type=None) if resp.get('message') == 'auth err': _LOGGER.error("小米账号登录信息失效") return None elif resp.get('code') != 0: _LOGGER.error(f"Response of {api} from cloud: {resp}") return resp else: # 注意:此处成功只代表请求是成功的,但控制设备不一定成功, # 取决于 result 里的 code _LOGGER.info(f"Response of {api} from cloud: {resp}") return resp except (asyncio.TimeoutError, ClientConnectorError) as ex: if self._fail_count < 3 and api == "/miotspec/prop/get": self._fail_count += 1 _LOGGER.info(f"Error while requesting MIoT api {api} : {ex} ({self._fail_count})") else: _LOGGER.error(f"Error while requesting MIoT api {api} : {ex}") except: _LOGGER.exception(f"Can't request MIoT api") async def request_rpc(self, did, method, params: str = "", server: str = None): data = json.dumps({ "id": 1, "method": method, "params": params, }, separators=(',', ':')) return await self.request_miot_api(f'/home/rpc/{did}', data, server) async def get_props(self, params: str = "", server: str = None, *, use_rpc = False): if not use_rpc: return await self.request_miot_api('/miotspec/prop/get', params, server) else: p = json.loads(params).get('params') if p: _LOGGER.warn(p) if 'did' in p[0]: did = p[0]['did'] return await self.request_rpc(did, "get_properties", p, server) _LOGGER.error("Need did!") return None async def set_props(self, params: str = "", server: str = None, *, use_rpc = False): if not use_rpc: return await self.request_miot_api('/miotspec/prop/set', params, server) else: p = json.loads(params).get('params') if p: if 'did' in p[0]: did = p[0]['did'] return await self.request_rpc(did, "set_properties", p, server) _LOGGER.error("Need did!") return None async def call_action(self, params: str = "", server: str = None, *, use_rpc = False): return await self.request_miot_api('/miotspec/action', params, server) async def get_user_device_data(self, did: str, key, type_, server: str = None, *, limit=5): data = { "uid": self.auth['user_id'], "did": did, "time_end": 9999999999, "time_start": 0, "limit": limit, "key": key, "type": type_, } params = json.dumps(data, separators=(',', ':')) return await self.request_miot_api('/user/get_user_device_data', params, server) def get_random_string(length: int): seq = string.ascii_uppercase + string.digits return ''.join((random.choice(seq) for _ in range(length))) def gen_nonce() -> str: """Time based nonce.""" nonce = os.urandom(8) + int(time.time() / 60).to_bytes(4, 'big') return base64.b64encode(nonce).decode() def gen_signed_nonce(ssecret: str, nonce: str) -> str: """Nonce signed with ssecret.""" m = hashlib.sha256() m.update(base64.b64decode(ssecret)) m.update(base64.b64decode(nonce)) return base64.b64encode(m.digest()).decode() def gen_signature(url: str, signed_nonce: str, nonce: str, data: str) -> str: """Request signature based on url, signed_nonce, nonce and data.""" sign = '&'.join([url, signed_nonce, nonce, 'data=' + data]) signature = hmac.new(key=base64.b64decode(signed_nonce), msg=sign.encode(), digestmod=hashlib.sha256).digest() return base64.b64encode(signature).decode()
tests/test_dask_image/test_ndfilters/test_cupy_ndfilters.py
anlavandier/dask-image
144
11078351
#!/usr/bin/env python # -*- coding: utf-8 -*- import dask.array as da import numpy as np import pytest import dask_image.ndfilters cupy = pytest.importorskip("cupy", minversion="7.7.0") @pytest.fixture def array(): s = (10, 10) a = da.from_array(cupy.arange(int(np.prod(s)), dtype=cupy.float32).reshape(s), chunks=5) return a @pytest.mark.cupy @pytest.mark.parametrize("func", [ dask_image.ndfilters.convolve, dask_image.ndfilters.correlate, ]) def test_cupy_conv(array, func): """Test convolve & correlate filters with cupy input arrays.""" weights = cupy.ones(array.ndim * (3,), dtype=cupy.float32) result = func(array, weights) result.compute() @pytest.mark.cupy @pytest.mark.parametrize("func", [ dask_image.ndfilters.laplace, ]) def test_cupy_diff(array, func): result = func(array) result.compute() @pytest.mark.cupy @pytest.mark.parametrize("func", [ dask_image.ndfilters.prewitt, dask_image.ndfilters.sobel, ]) def test_cupy_edge(array, func): result = func(array) result.compute() @pytest.mark.cupy @pytest.mark.parametrize("func", [ dask_image.ndfilters.gaussian_filter, dask_image.ndfilters.gaussian_gradient_magnitude, dask_image.ndfilters.gaussian_laplace, ]) def test_cupy_gaussian(array, func): sigma = 1 result = func(array, sigma) result.compute() @pytest.mark.parametrize( "size, footprint", [ (1, None), ((1, 1), None), (None, np.ones((1, 1))), ] ) def test_cupy_generic(array, size, footprint): my_sum = cupy.ReductionKernel( 'T x', 'T out', 'x', 'a + b', 'out = a', '0', 'my_sum') result = dask_image.ndfilters.generic_filter(array, my_sum, size=size, footprint=footprint) result.compute() @pytest.mark.cupy @pytest.mark.parametrize("func, extra_arg, size", [ (dask_image.ndfilters.minimum_filter, None, 3), (dask_image.ndfilters.median_filter, None, 3), (dask_image.ndfilters.maximum_filter, None, 3), (dask_image.ndfilters.rank_filter, 5, 3), (dask_image.ndfilters.percentile_filter, 50, 3), ]) def test_cupy_order(array, func, extra_arg, size): if extra_arg is not None: result = func(array, extra_arg, size=size) else: result = func(array, size=size) result.compute() @pytest.mark.cupy @pytest.mark.parametrize("func", [ dask_image.ndfilters.uniform_filter, ]) def test_cupy_smooth(array, func): result = func(array) result.compute()
tool/msdf-atlas-gen/json-atlas-splitter.py
caogtaa/CCCustomVertexFomat
123
11078358
<filename>tool/msdf-atlas-gen/json-atlas-splitter.py ''' Author: GT<<EMAIL>> Date: 2020-12-24 11:14:35 LastEditors: GT<<EMAIL>> LastEditTime: 2021-08-28 17:10:57 ''' import os import shutil import cv2 import codecs import json import numpy as np import copy import fire from enum import IntEnum from os import mkdir, path, walk cur_dir = os.path.dirname(os.path.abspath(__file__)) root_dir = os.path.join(cur_dir, os.pardir, os.pardir) class Splitter(object): '''break atlas into standalone files''' def list_png_files(self, dir, output): root, sub_dirs, file_names = next(walk(dir)) output.extend([os.path.join(root, x) for x in file_names if os.path.splitext(x)[1] == '.png']) for sub_dir in sub_dirs: self.list_png_files(os.path.join(root, sub_dir), output) def dilate_dir(self, dir): # files = [] # for (dir_path, dir_names, file_names) in walk(dir): # files.extend(file_names) file_paths = [] self.list_png_files(dir, file_paths) print('\n'.join(file_paths)) for file_path in file_paths: self.dilate(file_path, file_path) def dilate(self, input_path, output_path): print("[DILATOR] Dilating %s" % input_path) # to support Unicode path, do not use cv2.imread directly origin_data = cv2.imdecode( np.fromfile(input_path, dtype=np.uint8), cv2.IMREAD_UNCHANGED) # origin_data = cv2.imread(input_path, -1) row, col, channel = origin_data.shape if channel == 3: # do not process if image has no alpha channel print("[DILATOR] Texture %s has no alpha channel, ignore" % input_path) return result = copy.deepcopy(origin_data) for i in range(0, row): for k in range(0, col): color = origin_data[i][k] if color[3] >= 3: # alpha already larger than threshold continue # pick colors from 8 directions, ignore colors whose alpha < 30 # 这么做对同一张图重复扩边不会使扩边增长 r = 0 g = 0 b = 0 count = 0 for x in range(-1, 2): i_x = i + x if i_x < 0 or i_x >= row: continue for y in range(-1, 2): if x == 0 and y == 0: # ignore center point continue k_y = k + y if k_y < 0 or k_y >= col: continue c2 = origin_data[i_x][k_y] if c2[3] < 30: continue # this color is considerable count += 1 r += c2[0] g += c2[1] b += c2[2] # end 8 directions check if count > 0: # use average color from neighbors # alpha = 3 out = result[i][k] out[0] = r / count out[1] = g / count out[2] = b / count out[3] = 3 # test code (blue outline) (BRG mode) # out[0] = 255 # out[1] = 0 # out[2] = 0 # out[3] = 128 old_size = os.path.getsize(input_path) # to support Unicode path, do not use cv2.imwrite directly # cv2.imwrite(output_path, result, [cv2.IMWRITE_PNG_COMPRESSION, 9]) is_success, result_buf = cv2.imencode(".png", result, [cv2.IMWRITE_PNG_COMPRESSION, 9]) if is_success: result_buf.tofile(output_path) print("[DILATOR] Dilate '%s'->'%s' finished" % (input_path, output_path)) new_size = os.path.getsize(output_path) print("[DILATOR] After dialtion file size %sK -> %sK" % (old_size / 1000, new_size / 1000)) else: print("[DIALTOR] Encode image %s failed" % input_path) def for_8_dirs(self, img_data, pred, dir_cb): row, col, channel = img_data.shape # 遍历图片,将遮罩的边缘r通道标红 for i in range(0, row): for k in range(0, col): color_c = img_data[i][k] if not pred(color_c): continue for x in range(-1, 2): i_x = i + x if i_x < 0 or i_x >= row: continue for y in range(-1, 2): if x == 0 and y == 0: # ignore center point continue k_y = k + y if k_y < 0 or k_y >= col: continue color_dir = img_data[i_x][k_y] dir_cb(color_c, color_dir) def sdf_bfs(self, img_data): row, col, channel = img_data.shape visited = np.zeros(shape=(row, col), dtype=np.uint8) qu = np.zeros(shape=(row * col, 2), dtype=np.uint16) # qu[k] = (x, y) qlen = 0 for i in range(0, row): for k in range(0, col): color_c = img_data[i][k] if color_c[2] > 0: # has red component, record it visited[i][k] = 1 qu[qlen][0] = i qu[qlen][1] = k qlen += 1 index = 0 # iterator while index < qlen: pos = qu[index] i = pos[0] k = pos[1] for x in range(-1, 2): i_x = i + x if i_x < 0 or i_x >= row: continue for y in range(-1, 2): if x == 0 and y == 0: # ignore center point continue k_y = k + y if k_y < 0 or k_y >= col: continue if img_data[i_x][k_y][3] <= 3: # transparent pixel, means not inside mask continue if visited[i_x][k_y] == 1: # already visited continue r_v = img_data[i][k][2] if r_v == 255: img_data[i_x][k_y][2] = 255 else: img_data[i_x][k_y][2] = r_v + 1 visited[i_x][k_y] = 1 qu[qlen][0] = i_x qu[qlen][1] = k_y qlen += 1 index += 1 # write back to img_data vvv = True def sdf(self, input_path, output_path): print("[DILATOR] Calculate SDF %s" % input_path) # to support Unicode path, do not use cv2.imread directly origin_data = cv2.imdecode( np.fromfile(input_path, dtype=np.uint8), cv2.IMREAD_UNCHANGED) # origin_data = cv2.imread(input_path, -1) row, col, channel = origin_data.shape if channel == 3: # do not process if image has no alpha channel print("[DILATOR] Texture %s has no alpha channel, ignore" % input_path) return result = copy.deepcopy(origin_data) def dye_red_edge(c0, c1): if c1[3] > 3: c1[2] = 128 # 128为基础值 # 对图像边缘染色 self.for_8_dirs(result, lambda c: c[3] <= 3, dye_red_edge) self.sdf_bfs(result) # def spread_red(c0, c1): # if c1[3] > 3 and c1[2] == 0: # c1[2] = c0[2] + 1 # for k in range(0, 20): # # 以r通道 > 0的像素为中心,蔓延红色 # self.for_8_dirs(result, lambda c: c[2] > 0, spread_red) is_success, result_buf = cv2.imencode(".png", result, [cv2.IMWRITE_PNG_COMPRESSION, 9]) if is_success: result_buf.tofile(output_path) else: print("[DIALTOR] Calculate SDF %s failed" % input_path) def split(self, json_path, atlas_path, out_dir): if not os.path.exists(out_dir): os.makedirs(out_dir) with open(json_path, "r") as input: content = input.read() atlas_data = cv2.imdecode( np.fromfile(atlas_path, dtype=np.uint8), cv2.IMREAD_UNCHANGED) # origin_data = cv2.imread(input_path, -1) row, col, channel = atlas_data.shape atlas_info = json.loads(content) glyphs = atlas_info["glyphs"] for c in glyphs: code = c["unicode"] bounds = c["atlasBounds"] self.pick_glyph_from_atlas(atlas_data, row, bounds, path.join(out_dir, "%s.png" % code)) def pick_glyph_from_atlas(self, atlas_data, height, bounds, out_path): # todo reverse Y l = int(bounds["left"]) r = int(bounds["right"]) t = int(height-bounds["top"]) b = int(height-bounds["bottom"]) glyph_data = atlas_data[t:b+1,l:r+1] is_success, result_buf = cv2.imencode(".png", glyph_data, [cv2.IMWRITE_PNG_COMPRESSION, 0]) if is_success: result_buf.tofile(out_path) if __name__ == "__main__": # fire.Fire(Splitter) Splitter().split( path.join(cur_dir, "msdf.json"), path.join(cur_dir, "msdf.png"), path.join(cur_dir, "out"))
tests/tmp.py
Pandinosaurus/d6tpipe
184
11078378
<reponame>Pandinosaurus/d6tpipe<filename>tests/tmp.py<gh_stars>100-1000 import d6tpipe api = d6tpipe.APIClient(profile='utest-local') api = d6tpipe.APIClient(profile='utest-d6tdev') api = d6tpipe.APIClient(profile='utest-dev', filecfg='~/d6tpipe/cfg-utest-dev.json') api2 = d6tpipe.APIClient(profile='utest-dev2', filecfg='~/d6tpipe/cfg-utest-dev.json')
rman_translators/rman_nurbs_translator.py
N500/RenderManForBlender
432
11078382
<reponame>N500/RenderManForBlender from .rman_translator import RmanTranslator from ..rman_sg_nodes.rman_sg_nurbs import RmanSgNurbs from ..rfb_utils import object_utils from ..rfb_utils import string_utils from ..rfb_utils import property_utils import bpy import math ''' Code reference from: https://blender.stackexchange.com/questions/34145/calculate-points-on-a-nurbs-curve-without-converting-to-mesh ''' def macro_knotsu(nu): return nu.order_u + nu.point_count_u + (nu.order_u - 1 if nu.use_cyclic_u else 0) def macro_segmentsu(nu): return nu.point_count_u if nu.use_cyclic_u else nu.point_count_u - 1 def makeknots(nu): knots = [0.0] * (4 + macro_knotsu(nu)) flag = nu.use_endpoint_u + (nu.use_bezier_u << 1) if nu.use_cyclic_u: calcknots(knots, nu.point_count_u, nu.order_u, 0) makecyclicknots(knots, nu.point_count_u, nu.order_u) else: calcknots(knots, nu.point_count_u, nu.order_u, flag) return knots def calcknots(knots, pnts, order, flag): pnts_order = pnts + order if flag == 1: k = 0.0 for a in range(1, pnts_order + 1): knots[a - 1] = k if a >= order and a <= pnts: k += 1.0 elif flag == 2: if order == 4: k = 0.34 for a in range(pnts_order): knots[a] = math.floor(k) k += (1.0 / 3.0) elif order == 3: k = 0.6 for a in range(pnts_order): if a >= order and a <= pnts: k += 0.5 knots[a] = math.floor(k) else: for a in range(pnts_order): knots[a] = a def makecyclicknots(knots, pnts, order): order2 = order - 1 if order > 2: b = pnts + order2 for a in range(1, order2): if knots[b] != knots[b - a]: break if a == order2: knots[pnts + order - 2] += 1.0 b = order c = pnts + order + order2 for a in range(pnts + order2, c): knots[a] = knots[a - 1] + (knots[b] - knots[b - 1]) b -= 1 def basisNurb(t, order, pnts, knots, basis, start, end): i1 = i2 = 0 orderpluspnts = order + pnts opp2 = orderpluspnts - 1 # this is for float inaccuracy if t < knots[0]: t = knots[0] elif t > knots[opp2]: t = knots[opp2] # this part is order '1' o2 = order + 1 for i in range(opp2): if knots[i] != knots[i + 1] and t >= knots[i] and t <= knots[i + 1]: basis[i] = 1.0 i1 = i - o2 if i1 < 0: i1 = 0 i2 = i i += 1 while i < opp2: basis[i] = 0.0 i += 1 break else: basis[i] = 0.0 basis[i] = 0.0 # this is order 2, 3, ... for j in range(2, order + 1): if i2 + j >= orderpluspnts: i2 = opp2 - j for i in range(i1, i2 + 1): if basis[i] != 0.0: d = ((t - knots[i]) * basis[i]) / (knots[i + j - 1] - knots[i]) else: d = 0.0 if basis[i + 1] != 0.0: e = ((knots[i + j] - t) * basis[i + 1]) / (knots[i + j] - knots[i + 1]) else: e = 0.0 basis[i] = d + e start = 1000 end = 0 for i in range(i1, i2 + 1): if basis[i] > 0.0: end = i if start == 1000: start = i return start, end def nurb_make_curve(nu, resolu, stride): EPS = 1e-6 coord_index = istart = iend = 0 coord_array = [0.0] * (3 * nu.resolution_u * macro_segmentsu(nu)) sum_array = [0] * nu.point_count_u basisu = [0.0] * macro_knotsu(nu) knots = makeknots(nu) resolu = resolu * macro_segmentsu(nu) ustart = knots[nu.order_u - 1] uend = knots[nu.point_count_u + nu.order_u - 1] if nu.use_cyclic_u else \ knots[nu.point_count_u] ustep = (uend - ustart) / (resolu - (0 if nu.use_cyclic_u else 1)) cycl = nu.order_u - 1 if nu.use_cyclic_u else 0 u = ustart while resolu: resolu -= 1 istart, iend = basisNurb(u, nu.order_u, nu.point_count_u + cycl, knots, basisu, istart, iend) #/* calc sum */ sumdiv = 0.0 sum_index = 0 pt_index = istart - 1 for i in range(istart, iend + 1): if i >= nu.point_count_u: pt_index = i - nu.point_count_u else: pt_index += 1 sum_array[sum_index] = basisu[i] * nu.points[pt_index].co[3] sumdiv += sum_array[sum_index] sum_index += 1 if (sumdiv != 0.0) and (sumdiv < 1.0 - EPS or sumdiv > 1.0 + EPS): sum_index = 0 for i in range(istart, iend + 1): sum_array[sum_index] /= sumdiv sum_index += 1 coord_array[coord_index: coord_index + 3] = (0.0, 0.0, 0.0) sum_index = 0 pt_index = istart - 1 for i in range(istart, iend + 1): if i >= nu.point_count_u: pt_index = i - nu.point_count_u else: pt_index += 1 if sum_array[sum_index] != 0.0: for j in range(3): coord_array[coord_index + j] += sum_array[sum_index] * nu.points[pt_index].co[j] sum_index += 1 coord_index += stride u += ustep return coord_array class RmanNurbsTranslator(RmanTranslator): def __init__(self, rman_scene): super().__init__(rman_scene) self.bl_type = 'SURFACE' def export(self, ob, db_name): sg_node = self.rman_scene.sg_scene.CreateNuPatch(db_name) rman_sg_nurbs = RmanSgNurbs(self.rman_scene, sg_node, db_name) return rman_sg_nurbs def export_deform_sample(self, rman_sg_nurbs, ob, time_sample): pass def update(self, ob, rman_sg_nurbs): spline = ob.data.splines[0] nu = spline.point_count_u nv = spline.point_count_v uorder = spline.order_u vorder = spline.order_v if uorder == 0 or vorder == 0: return P = [] for pt in spline.points: P.append(pt.co) ''' # we currently don't support use_cyclic_u and use_cuclic_v options pnts_order = spline.point_count_u + spline.order_u + (spline.order_u - 1 if spline.use_cyclic_u else 0) uknots = [0.0] * pnts_order if spline.use_cyclic_u: calcknots(uknots, spline.point_count_u, spline.order_u, 0) makecyclicknots(uknots, spline.point_count_u, spline.order_u) else: flag = spline.use_endpoint_u + (spline.use_bezier_u << 1) calcknots(uknots, spline.point_count_u, spline.order_u, flag) pnts_order = spline.point_count_v + spline.order_v + (spline.order_v - 1 if spline.use_cyclic_v else 0) vknots = [0.0] * pnts_order if spline.use_cyclic_v: calcknots(vknots, spline.point_count_v, spline.order_v, 0) makecyclicknots(vknots, spline.point_count_v, spline.order_v) else: flag = spline.use_endpoint_v + (spline.use_bezier_v << 1) calcknots(vknots, spline.point_count_v, spline.order_v, flag) ''' pnts_order = spline.point_count_u + spline.order_u uknots = [0.0] * pnts_order flag = spline.use_endpoint_u + (spline.use_bezier_u << 1) calcknots(uknots, spline.point_count_u, spline.order_u, flag) pnts_order = spline.point_count_v + spline.order_v vknots = [0.0] * pnts_order flag = spline.use_endpoint_v + (spline.use_bezier_v << 1) calcknots(vknots, spline.point_count_v, spline.order_v, flag) rman_sg_nurbs.sg_node.Define(nu, uorder, nv, vorder) primvar = rman_sg_nurbs.sg_node.GetPrimVars() primvar.SetHpointDetail(self.rman_scene.rman.Tokens.Rix.k_Pw, P, "vertex") primvar.SetFloatArray(self.rman_scene.rman.Tokens.Rix.k_Ri_uknot, uknots, len(uknots)) primvar.SetFloatArray(self.rman_scene.rman.Tokens.Rix.k_Ri_vknot, vknots, len(vknots)) rman_sg_nurbs.sg_node.SetPrimVars(primvar)
pyshtools/shclasses/shgradient.py
mjc87/SHTOOLS
251
11078388
<reponame>mjc87/SHTOOLS """ Class for grids of the two components of the horizontal gradient. """ import matplotlib as _mpl import matplotlib.pyplot as _plt import copy as _copy import xarray as _xr from .shgrid import SHGrid as _SHGrid class SHGradient(object): """ Class for grids of the two components of the horizontal gradient of a scalar function. The class is initialized from a class instance of SHCoeffs using the method gradient(). Attributes: theta : SHGrid class instance of the theta component of the horizontal gradient. phi : SHGrid class instance of the phi component of the horizontal gradient. units : The units of the gridded data. lmax : The maximum spherical harmonic degree resolvable by the grids. lmax_calc : The maximum spherical harmonic degree of the function used in creating the grids. nlat, nlon : The number of latitude and longitude bands in the grids. n : The number of samples in latitude. sampling : The longitudinal sampling for Driscoll and Healy grids. Either 1 for equally sampled grids (nlat=nlon) or 2 for equally spaced grids in degrees. extend : True if the grid contains the redundant column for 360 E and the unnecessary row for 90 S. Methods: plot() : Plot the two components of the horizontal gradient. plot_theta() : Plot the theta component of the horizontal gradient. plot_phi() : Plot the phi component of the horizontal gradient. to_xarray() : Return an xarray DataSet of all gridded data. copy() : Return a copy of the class instance. info() : Print a summary of the data stored in the SHGravGrid instance. """ def __init__(self, theta, phi, lmax, lmax_calc, units=None, pot_units=None, epoch=None): """ Initialize the SHGradient class. """ self.theta = _SHGrid.from_array(theta, grid='DH', units=units) self.phi = _SHGrid.from_array(phi, grid='DH', units=units) self.grid = self.theta.grid self.sampling = self.theta.sampling self.nlat = self.theta.nlat self.nlon = self.theta.nlon self.n = self.theta.n self.extend = self.theta.extend self.lmax = lmax self.lmax_calc = lmax_calc self.units = units def copy(self): """ Return a deep copy of the class instance. Usage ----- copy = x.copy() """ return _copy.deepcopy(self) def info(self): """ Print a summary of the data stored in the SHGradient class instance. Usage ----- x.info() """ print(repr(self)) def __repr__(self): str = ('grid = {:s}\n' 'nlat = {:d}\n' 'nlon = {:d}\n' 'n = {:d}\n' 'sampling = {:d}\n' 'extend = {}\n' 'lmax = {:d}\n' 'lmax_calc = {:d}\n' 'units = {:s}' .format(self.grid, self.nlat, self.nlon, self.n, self.sampling, self.extend, self.lmax, self.lmax_calc, repr(self.units))) return str def plot_theta(self, projection=None, tick_interval=[30, 30], minor_tick_interval=[None, None], xlabel=None, ylabel=None, title=None, titlesize=None, colorbar='right', cmap='viridis', cmap_limits=None, cmap_reverse=False, cb_triangles='neither', cb_label='$\\theta$ component', cb_tick_interval=None, grid=False, axes_labelsize=None, tick_labelsize=None, show=True, ax=None, cb_offset=None, cb_minor_tick_interval=None, ticks='WSen', cb_ylabel=None, fname=None, cb_width=None): """ Plot the theta component of the horizontal gradient. Usage ----- x.plot_theta([projection, tick_interval, minor_tick_interval, ticks, xlabel, ylabel, title, colorbar, cmap, cmap_limits, cmap_reverse, cb_triangles, cb_label, cb_ylabel, cb_tick_interval, cb_minor_tick_interval, cb_offset, cb_width, grid, titlesize, axes_labelsize, tick_labelsize, ax, show, fname]) Parameters ---------- projection : Cartopy projection class, optional, default = None The Cartopy projection class used to project the gridded data, for Driscoll and Healy sampled grids only. tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. minor_tick_interval : list or tuple, optional, default = [None, None] Intervals to use when plotting the minor x and y ticks. If set to None, minor ticks will not be plotted. ticks : str, optional, default = 'WSen' Specify which axes should have ticks drawn and annotated. Capital letters plot the ticks and annotations, whereas small letters plot only the ticks. 'W', 'S', 'E', and 'N' denote the west, south, east and north boundaries of the plot. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. title : str or list, optional, default = None The title of the plot. colorbar : str, optional, default = 'right' Plot a colorbar along the 'top', 'right', 'bottom', or 'left' axis. cmap : str, optional, default = 'viridis' The color map to use when plotting the data and colorbar. cmap_limits : list, optional, default = [self.min(), self.max()] Set the lower and upper limits of the data used by the colormap, and optionally an interval for each color band. If the interval is specified, the number of discrete colors will be (cmap_limits[1]-cmap_limits[0])/cmap_limits[2]. cmap_reverse : bool, optional, default = False Set to True to reverse the sense of the color progression in the color table. cb_triangles : str, optional, default = 'neither' Add triangles to the edges of the colorbar for minimum and maximum values. Can be 'neither', 'both', 'min', or 'max'. cb_label : str, optional, default = '$\\theta$ component' Text label for the colorbar. cb_ylabel : str, optional, default = None Text label for the y axis of the colorbar cb_tick_interval : float, optional, default = None Colorbar major tick and annotation interval. cb_minor_tick_interval : float, optional, default = None Colorbar minor tick interval. cb_offset : float or int, optional, default = None Offset of the colorbar from the map edge in points. If None, the offset will be calculated automatically. cb_width : float, optional, default = None Width of the colorbar in percent with respect to the width of the respective image axis. Defaults are 2.5 and 5 for vertical and horizontal colorbars, respectively. grid : bool, optional, default = False If True, plot major grid lines. titlesize : int, optional, default = None The font size of the title. axes_labelsize : int, optional, default = None The font size for the x and y axes labels. tick_labelsize : int, optional, default = None The font size for the x and y tick labels. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if ax is not specified, save the image to the specified file. """ return self.theta.plot(projection=projection, tick_interval=tick_interval, minor_tick_interval=minor_tick_interval, xlabel=xlabel, ylabel=ylabel, title=title, titlesize=titlesize, colorbar=colorbar, cmap=cmap, cmap_limits=cmap_limits, cmap_reverse=cmap_reverse, cb_offset=cb_offset, cb_triangles=cb_triangles, cb_label=cb_label, cb_tick_interval=cb_tick_interval, grid=grid, axes_labelsize=axes_labelsize, cb_ylabel=cb_ylabel, ticks=ticks, cb_minor_tick_interval=cb_minor_tick_interval, tick_labelsize=tick_labelsize, ax=ax, cb_width=cb_width, show=show, fname=fname) def plot_phi(self, projection=None, tick_interval=[30, 30], minor_tick_interval=[None, None], xlabel=None, ylabel=None, title=None, titlesize=None, colorbar='right', cmap='viridis', cmap_limits=None, cmap_reverse=False, cb_triangles='neither', cb_label='$\\phi$ component', cb_tick_interval=None, grid=False, axes_labelsize=None, tick_labelsize=None, show=True, ax=None, cb_offset=None, cb_minor_tick_interval=None, ticks='WSen', cb_ylabel=None, cb_width=None, fname=None): """ Plot the phi component of the horizontal gradient. Usage ----- x.plot_phi([projection, tick_interval, minor_tick_interval, ticks, xlabel, ylabel, title, colorbar, cmap, cmap_limits, cmap_reverse, cb_triangles, cb_label, cb_ylabel, cb_tick_interval, cb_minor_tick_interval, cb_offset, cb_width, grid, titlesize, axes_labelsize, tick_labelsize, ax, show, fname]) Parameters ---------- projection : Cartopy projection class, optional, default = None The Cartopy projection class used to project the gridded data, for Driscoll and Healy sampled grids only. tick_interval : list or tuple, optional, default = [30, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. minor_tick_interval : list or tuple, optional, default = [None, None] Intervals to use when plotting the minor x and y ticks. If set to None, minor ticks will not be plotted. ticks : str, optional, default = 'WSen' Specify which axes should have ticks drawn and annotated. Capital letters plot the ticks and annotations, whereas small letters plot only the ticks. 'W', 'S', 'E', and 'N' denote the west, south, east and north boundaries of the plot. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. title : str or list, optional, default = None The title of the plot. colorbar : str, optional, default = 'right' Plot a colorbar along the 'top', 'right', 'bottom', or 'left' axis. cmap : str, optional, default = 'viridis' The color map to use when plotting the data and colorbar. cmap_limits : list, optional, default = [self.min(), self.max()] Set the lower and upper limits of the data used by the colormap, and optionally an interval for each color band. If the interval is specified, the number of discrete colors will be (cmap_limits[1]-cmap_limits[0])/cmap_limits[2]. cmap_reverse : bool, optional, default = False Set to True to reverse the sense of the color progression in the color table. cb_triangles : str, optional, default = 'neither' Add triangles to the edges of the colorbar for minimum and maximum values. Can be 'neither', 'both', 'min', or 'max'. cb_label : str, optional, default = '$\\phi$ component' Text label for the colorbar. cb_ylabel : str, optional, default = None Text label for the y axis of the colorbar cb_tick_interval : float, optional, default = None Colorbar major tick and annotation interval. cb_minor_tick_interval : float, optional, default = None Colorbar minor tick interval. cb_offset : float or int, optional, default = None Offset of the colorbar from the map edge in points. If None, the offset will be calculated automatically. cb_width : float, optional, default = None Width of the colorbar in percent with respect to the width of the respective image axis. Defaults are 2.5 and 5 for vertical and horizontal colorbars, respectively. grid : bool, optional, default = False If True, plot major grid lines. titlesize : int, optional, default = None The font size of the title. axes_labelsize : int, optional, default = None The font size for the x and y axes labels. tick_labelsize : int, optional, default = None The font size for the x and y tick labels. ax : matplotlib axes object, optional, default = None A single matplotlib axes object where the plot will appear. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if ax is not specified, save the image to the specified file. """ return self.phi.plot(projection=projection, tick_interval=tick_interval, minor_tick_interval=minor_tick_interval, xlabel=xlabel, ylabel=ylabel, title=title, titlesize=titlesize, colorbar=colorbar, cmap=cmap, cmap_limits=cmap_limits, cmap_reverse=cmap_reverse, cb_offset=cb_offset, cb_triangles=cb_triangles, cb_label=cb_label, cb_tick_interval=cb_tick_interval, grid=grid, axes_labelsize=axes_labelsize, cb_ylabel=cb_ylabel, ticks=ticks, cb_width=cb_width, cb_minor_tick_interval=cb_minor_tick_interval, tick_labelsize=tick_labelsize, ax=ax, show=show, fname=fname) def plot(self, projection=None, tick_interval=[60, 30], minor_tick_interval=[None, None], xlabel='Longitude', ylabel='Latitude', colorbar='bottom', cmap='viridis', cmap_limits=None, cmap_reverse=False, cb_triangles='neither', cb_tick_interval=None, grid=False, axes_labelsize=9, tick_labelsize=8, show=True, cb_offset=None, cb_minor_tick_interval=None, ticks='WSen', cb_ylabel=None, cb_width=None, fname=None): """ Plot the two vector components of the horizontal gradient. Usage ----- x.plot([projection, tick_interval, minor_tick_interval, ticks, xlabel, ylabel, colorbar, cmap, cmap_limits, cmap_reverse, cb_triangles, cb_ylabel, cb_tick_interval, cb_minor_tick_interval, cb_offset, cb_width, grid, axes_labelsize, tick_labelsize, show, fname]) Parameters ---------- projection : Cartopy projection class, optional, default = None The Cartopy projection class used to project the gridded data, for Driscoll and Healy sampled grids only. tick_interval : list or tuple, optional, default = [60, 30] Intervals to use when plotting the x and y ticks. If set to None, ticks will not be plotted. minor_tick_interval : list or tuple, optional, default = [None, None] Intervals to use when plotting the minor x and y ticks. If set to None, minor ticks will not be plotted. ticks : str, optional, default = 'WSen' Specify which axes should have ticks drawn and annotated. Capital letters plot the ticks and annotations, whereas small letters plot only the ticks. 'W', 'S', 'E', and 'N' denote the west, south, east and north boundaries of the plot. xlabel : str, optional, default = 'longitude' Label for the longitude axis. ylabel : str, optional, default = 'latitude' Label for the latitude axis. colorbar : str, optional, default = 'bottom' Plot a colorbar along the 'top', 'right', 'bottom', or 'left' axis. cmap : str, optional, default = 'viridis' The color map to use when plotting the data and colorbar. cmap_limits : list, optional, default = [self.min(), self.max()] Set the lower and upper limits of the data used by the colormap, and optionally an interval for each color band. If the interval is specified, the number of discrete colors will be (cmap_limits[1]-cmap_limits[0])/cmap_limits[2]. cmap_reverse : bool, optional, default = False Set to True to reverse the sense of the color progression in the color table. cb_triangles : str, optional, default = 'neither' Add triangles to the edges of the colorbar for minimum and maximum values. Can be 'neither', 'both', 'min', or 'max'. cb_ylabel : str, optional, default = None Text label for the y axis of the colorbar cb_tick_interval : float, optional, default = None Colorbar major tick and annotation interval. cb_minor_tick_interval : float, optional, default = None Colorbar minor tick interval. cb_offset : float or int, optional, default = None Offset of the colorbar from the map edge in points. If None, the offset will be calculated automatically. cb_width : float, optional, default = None Width of the colorbar in percent with respect to the width of the respective image axis. Defaults are 2.5 and 5 for vertical and horizontal colorbars, respectively. grid : bool, optional, default = False If True, plot major grid lines. axes_labelsize : int, optional, default = None The font size for the x and y axes labels. tick_labelsize : int, optional, default = None The font size for the x and y tick labels. show : bool, optional, default = True If True, plot the image to the screen. fname : str, optional, default = None If present, and if ax is not specified, save the image to the specified file. """ if colorbar is not None: if colorbar in set(['bottom', 'top']): scale = 0.4 else: scale = 0.25 else: scale = 0.3 figsize = (_mpl.rcParams['figure.figsize'][0], _mpl.rcParams['figure.figsize'][0] * scale) fig, ax = _plt.subplots(1, 2, figsize=figsize) self.plot_theta(projection=projection, ax=ax.flat[0], tick_interval=tick_interval, minor_tick_interval=minor_tick_interval, xlabel=xlabel, ylabel=ylabel, title=None, titlesize=None, colorbar=colorbar, cmap=cmap, cmap_limits=cmap_limits, cmap_reverse=cmap_reverse, cb_triangles=cb_triangles, cb_tick_interval=cb_tick_interval, grid=grid, axes_labelsize=axes_labelsize, tick_labelsize=tick_labelsize, cb_offset=cb_offset, cb_ylabel=cb_ylabel, ticks=ticks, cb_minor_tick_interval=cb_minor_tick_interval, cb_width=cb_width, show=show, fname=None) self.plot_phi(projection=projection, ax=ax.flat[1], tick_interval=tick_interval, minor_tick_interval=minor_tick_interval, xlabel=xlabel, ylabel=ylabel, title=None, titlesize=None, colorbar=colorbar, cmap=cmap, cmap_limits=cmap_limits, cmap_reverse=cmap_reverse, cb_triangles=cb_triangles, cb_tick_interval=cb_tick_interval, grid=grid, axes_labelsize=axes_labelsize, tick_labelsize=tick_labelsize, cb_offset=cb_offset, cb_ylabel=cb_ylabel, ticks=ticks, cb_minor_tick_interval=cb_minor_tick_interval, cb_width=cb_width, show=show, fname=None) fig.tight_layout(pad=0.5) if fname is not None: fig.savefig(fname) return fig, ax def to_xarray(self, title='', description='', comment='pyshtools grid'): """ Return the horizontal gradient gridded data as an xarray DataSet. Usage ----- x.to_xarray([title, description, comment]) Parameters ---------- title : str, optional, default = '' Title of the dataset. description : str, optional, default = '' Description of the dataset ('Remark' in gmt grd files). comment : str, optional, default = 'pyshtools grid' Additional information about how the data were generated. """ attrs = {'title': title, 'description': description, 'comment': comment, 'nlat': self.nlat, 'nlon': self.nlon, 'lmax': self.lmax, 'grid': self.grid, 'lmax_calc': self.lmax_calc, 'sampling': self.sampling, 'n': self.n, 'extend': repr(self.extend) } if self.epoch is not None: attrs['epoch'] = self.epoch _theta = self.theta.to_xarray(title='gradient (theta)', long_name='theta component', units=repr(self.units)) _phi = self.phi.to_xarray(title='gradient (phi)', long_name='phi components', units=repr(self.units)) return _xr.Dataset({'theta': _theta, 'phi': _phi}, attrs=attrs)
third_party/spider/baselines/nl2code/nn/utils/__init__.py
chenyangh/tensor2struct-public
341
11078397
<filename>third_party/spider/baselines/nl2code/nn/utils/__init__.py __author__ = 'yinpengcheng'
alipay/aop/api/domain/AlipayMarketingActivityOrderRefundModel.py
antopen/alipay-sdk-python-all
213
11078402
<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.RefundActivityInfo import RefundActivityInfo class AlipayMarketingActivityOrderRefundModel(object): def __init__(self): self._buyer_id = None self._order_no = None self._out_biz_no = None self._refund_activity_info_list = None self._refund_type = None @property def buyer_id(self): return self._buyer_id @buyer_id.setter def buyer_id(self, value): self._buyer_id = value @property def order_no(self): return self._order_no @order_no.setter def order_no(self, value): self._order_no = value @property def out_biz_no(self): return self._out_biz_no @out_biz_no.setter def out_biz_no(self, value): self._out_biz_no = value @property def refund_activity_info_list(self): return self._refund_activity_info_list @refund_activity_info_list.setter def refund_activity_info_list(self, value): if isinstance(value, list): self._refund_activity_info_list = list() for i in value: if isinstance(i, RefundActivityInfo): self._refund_activity_info_list.append(i) else: self._refund_activity_info_list.append(RefundActivityInfo.from_alipay_dict(i)) @property def refund_type(self): return self._refund_type @refund_type.setter def refund_type(self, value): self._refund_type = value def to_alipay_dict(self): params = dict() if self.buyer_id: if hasattr(self.buyer_id, 'to_alipay_dict'): params['buyer_id'] = self.buyer_id.to_alipay_dict() else: params['buyer_id'] = self.buyer_id if self.order_no: if hasattr(self.order_no, 'to_alipay_dict'): params['order_no'] = self.order_no.to_alipay_dict() else: params['order_no'] = self.order_no if self.out_biz_no: if hasattr(self.out_biz_no, 'to_alipay_dict'): params['out_biz_no'] = self.out_biz_no.to_alipay_dict() else: params['out_biz_no'] = self.out_biz_no if self.refund_activity_info_list: if isinstance(self.refund_activity_info_list, list): for i in range(0, len(self.refund_activity_info_list)): element = self.refund_activity_info_list[i] if hasattr(element, 'to_alipay_dict'): self.refund_activity_info_list[i] = element.to_alipay_dict() if hasattr(self.refund_activity_info_list, 'to_alipay_dict'): params['refund_activity_info_list'] = self.refund_activity_info_list.to_alipay_dict() else: params['refund_activity_info_list'] = self.refund_activity_info_list if self.refund_type: if hasattr(self.refund_type, 'to_alipay_dict'): params['refund_type'] = self.refund_type.to_alipay_dict() else: params['refund_type'] = self.refund_type return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayMarketingActivityOrderRefundModel() if 'buyer_id' in d: o.buyer_id = d['buyer_id'] if 'order_no' in d: o.order_no = d['order_no'] if 'out_biz_no' in d: o.out_biz_no = d['out_biz_no'] if 'refund_activity_info_list' in d: o.refund_activity_info_list = d['refund_activity_info_list'] if 'refund_type' in d: o.refund_type = d['refund_type'] return o
DeepHash/model/dch/__init__.py
imhmhm/DeepHash
506
11078409
<reponame>imhmhm/DeepHash from .util import Dataset from .dch import DCH def train(train_img, database_img, query_img, config): model = DCH(config) img_database = Dataset(database_img, config.output_dim) img_query = Dataset(query_img, config.output_dim) img_train = Dataset(train_img, config.output_dim) model.train(img_train) return model.save_file def validation(database_img, query_img, config): model = DCH(config) img_database = Dataset(database_img, config.output_dim) img_query = Dataset(query_img, config.output_dim) return model.validation(img_query, img_database, config.R)
compiler_opt/rl/trainer_test.py
google/ml-compiler-opt
130
11078414
# coding=utf-8 # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for compiler_opt.rl.trainer.""" from absl.testing.absltest import mock import tensorflow as tf from tf_agents.agents.behavioral_cloning import behavioral_cloning_agent from tf_agents.networks import q_rnn_network from tf_agents.specs import tensor_spec from tf_agents.trajectories import time_step from tf_agents.trajectories import trajectory from compiler_opt.rl import trainer def _create_test_data(batch_size, sequence_length): test_trajectory = trajectory.Trajectory( step_type=tf.fill([batch_size, sequence_length], 1), observation={ 'inlining_default': tf.fill( [batch_size, sequence_length], tf.constant(10, dtype=tf.int64)) }, action=tf.fill( [batch_size, sequence_length], tf.constant(1, dtype=tf.int64)), policy_info=(), next_step_type=tf.fill([batch_size, sequence_length], 1), reward=tf.fill([batch_size, sequence_length], 2.0), discount=tf.fill([batch_size, sequence_length], 1.0), ) def test_data_iterator(): while True: yield test_trajectory return test_data_iterator() class TrainerTest(tf.test.TestCase): def setUp(self): observation_spec = { 'inlining_default': tf.TensorSpec(dtype=tf.int64, shape=(), name='inlining_default') } self._time_step_spec = time_step.time_step_spec(observation_spec) self._action_spec = tensor_spec.BoundedTensorSpec( dtype=tf.int64, shape=(), minimum=0, maximum=1, name='inlining_decision') self._network = q_rnn_network.QRnnNetwork( input_tensor_spec=self._time_step_spec.observation, action_spec=self._action_spec, lstm_size=(40,), preprocessing_layers={ 'inlining_default': tf.keras.layers.Lambda(lambda x: x) }) super(TrainerTest, self).setUp() def test_trainer_initialization(self): test_agent = behavioral_cloning_agent.BehavioralCloningAgent( self._time_step_spec, self._action_spec, self._network, tf.compat.v1.train.AdamOptimizer(), num_outer_dims=2) test_trainer = trainer.Trainer( root_dir=self.get_temp_dir(), agent=test_agent) self.assertEqual(0, test_trainer._global_step.numpy()) def test_training(self): test_agent = behavioral_cloning_agent.BehavioralCloningAgent( self._time_step_spec, self._action_spec, self._network, tf.compat.v1.train.AdamOptimizer(), num_outer_dims=2) test_trainer = trainer.Trainer( root_dir=self.get_temp_dir(), agent=test_agent) self.assertEqual(0, test_trainer._global_step.numpy()) dataset_iter = _create_test_data(batch_size=3, sequence_length=3) monitor_dict = {'default': {'test': 1}} with mock.patch.object( tf.summary, 'scalar', autospec=True) as mock_scalar_summary: test_trainer.train(dataset_iter, monitor_dict, num_iterations=10) self.assertEqual( 10, sum(1 for c in mock_scalar_summary.mock_calls if c[2]['name'] == 'test')) self.assertEqual(10, test_trainer._global_step.numpy()) def test_training_with_multiple_times(self): test_agent = behavioral_cloning_agent.BehavioralCloningAgent( self._time_step_spec, self._action_spec, self._network, tf.compat.v1.train.AdamOptimizer(), num_outer_dims=2) test_trainer = trainer.Trainer( root_dir=self.get_temp_dir(), agent=test_agent) self.assertEqual(0, test_trainer._global_step.numpy()) dataset_iter = _create_test_data(batch_size=3, sequence_length=3) monitor_dict = {'default': {'test': 1}} test_trainer.train(dataset_iter, monitor_dict, num_iterations=10) self.assertEqual(10, test_trainer._global_step.numpy()) dataset_iter = _create_test_data(batch_size=6, sequence_length=4) test_trainer.train(dataset_iter, monitor_dict, num_iterations=10) self.assertEqual(20, test_trainer._global_step.numpy()) def test_inference(self): test_agent = behavioral_cloning_agent.BehavioralCloningAgent( self._time_step_spec, self._action_spec, self._network, tf.compat.v1.train.AdamOptimizer(), num_outer_dims=2) test_trainer = trainer.Trainer( root_dir=self.get_temp_dir(), agent=test_agent) inference_batch_size = 1 random_time_step = tensor_spec.sample_spec_nest( self._time_step_spec, outer_dims=(inference_batch_size,)) initial_policy_state = test_trainer._agent.policy.get_initial_state( inference_batch_size) action_outputs = test_trainer._agent.policy.action(random_time_step, initial_policy_state) self.assertAllEqual([inference_batch_size], action_outputs.action.shape) action_outputs = test_trainer._agent.policy.action(random_time_step, action_outputs.state) self.assertAllEqual([inference_batch_size], action_outputs.action.shape) if __name__ == '__main__': tf.test.main()
agentnet/resolver/probabilistic.py
mraihan19/AgentNet
337
11078454
<gh_stars>100-1000 import theano.tensor as T import theano.tensor.shared_randomstreams as random_streams from .base import BaseResolver class ProbabilisticResolver(BaseResolver): """ instance, that: - determines which action should be taken given policy - samples actions with probabilities given by input layer """ def __init__(self, incoming, assume_normalized=False, seed=1234, output_dtype='int32', name='ProbabilisticResolver'): """ :param incoming: a lasagne layer that outputs action probability vectors WARNING! We assume that incoming probabilities are all nonnegative even if assume_normalized=False. :type incoming: lasagne.layers.Layer :param assume_normalized: if set to True, the incoming layer is assumed to return outputs that add up to 1 (e.g. softmax output) along last axis :type assume_normalized: bool :param seed: - random seed :type seed: int :action_dtype: type of action (usually (u)int 32 or 64) :type action_dtype: string or dtype :param name: layer name (using lasagne conventions) :type name: string """ # probas float[2] - probability of random and optimal action respectively self.assume_normalized = assume_normalized self.rng = random_streams.RandomStreams(seed) super(ProbabilisticResolver, self).__init__(incoming, name=name,output_dtype=output_dtype) def get_output_for(self, policy, greedy=False, **kwargs): """ picks the action with probabilities from policy :param policy: probabilities for all actions (e.g. a2c actor policy or standartized Q-values) :type policy: tensor of float[batch_id, action_id] :returns: actions ids of actions picked :rtype: vector of int[batch_id] """ if greedy: # greedy branch chosen_action_ids = T.argmax(policy, axis=-1).astype(self.output_dtype) else: # probabilistic branch batch_size, n_actions = policy.shape if self.assume_normalized: probas = policy else: probas = policy / T.sum(policy, axis=1, keepdims=True) # p1, p1+p2, p1+p2+p3, ... 1 cum_probas = T.cumsum(probas, axis=1) batch_randomness = self.rng.uniform(low=0., high=1., size=[batch_size, 1]) # idea: to compute the chosen action we count how many cumulative probabilities are # less than the random number [0,1]. # we deliberately exclude the LAST cumulative probability because it has to be equal to 1 # by definition (never being less than random[0,1]), but it can be less due to # inaccurate float32 computation, causing algorithm to pick action id = (n_actions)+1 # which results in IndexError chosen_action_ids = T.sum((batch_randomness > cum_probas[:, :-1]), axis=1, dtype=self.output_dtype) return chosen_action_ids
tests/commands/conftest.py
MitchellTesla/datasets
3,395
11078458
import pytest DATASET_LOADING_SCRIPT_NAME = "__dummy_dataset1__" DATASET_LOADING_SCRIPT_CODE = """ import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def dataset_loading_script_name(): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def dataset_loading_script_code(): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def dataset_loading_script_dir(dataset_loading_script_name, dataset_loading_script_code, tmp_path): script_name = dataset_loading_script_name script_dir = tmp_path / "datasets" / script_name script_dir.mkdir(parents=True) script_path = script_dir / f"{script_name}.py" with open(script_path, "w") as f: f.write(dataset_loading_script_code) return str(script_dir)
nameko/web/websocket.py
mohamedmehdigara/nameko
3,425
11078509
<reponame>mohamedmehdigara/nameko<gh_stars>1000+ import json import uuid from collections import namedtuple from functools import partial from logging import getLogger import six import werkzeug from eventlet.event import Event from eventlet.websocket import WebSocketWSGI from packaging import version from werkzeug.routing import Rule from nameko.exceptions import ( ConnectionNotFound, MalformedRequest, MethodNotFound, serialize ) from nameko.extensions import ( DependencyProvider, Entrypoint, ProviderCollector, SharedExtension ) from nameko.web.server import WebServer # in version 2.0.0, werkzeug started correctly identifying incoming websocket # requests, and only matching them to rules that are marked as being websocket targets. # see https://github.com/pallets/werkzeug/issues/2052. # all versions of werkzeug throw a 400 Bad Request error if no rules match, so we need # to make the explicit identification of a rule as a websocket target conditional # on the version of werkzeug. IDENTIFY_WEBSOCKET_RULES = version.parse(werkzeug.__version__) >= version.parse("2.0.0") _log = getLogger(__name__) SocketInfo = namedtuple('SocketInfo', ['socket', 'data']) class Connection(object): def __init__(self, socket_id, context_data): self.socket_id = socket_id self.context_data = context_data self.subscriptions = set() class WebSocketServer(SharedExtension, ProviderCollector): wsgi_server = WebServer() def __init__(self): super(WebSocketServer, self).__init__() self.sockets = {} def deserialize_ws_frame(self, payload): try: data = json.loads(payload) return ( data['method'], data.get('data') or {}, data.get('correlation_id'), ) except Exception: raise MalformedRequest('Invalid JSON data') def serialize_for_ws(self, payload): return six.text_type(json.dumps(payload)) def serialize_event(self, event, data): return self.serialize_for_ws({ 'type': 'event', 'event': event, 'data': data, }) def get_url_rule(self): return Rule('/ws', methods=['GET'], websocket=IDENTIFY_WEBSOCKET_RULES) def handle_request(self, request): context_data = self.wsgi_server.context_data_from_headers(request) return self.websocket_mainloop(context_data) def websocket_mainloop(self, initial_context_data): def handler(ws): socket_id, context_data = self.add_websocket( ws, initial_context_data) try: ws.send(self.serialize_event( 'connected', {'socket_id': socket_id}) ) while 1: raw_req = ws.wait() if raw_req is None: break ws.send(self.handle_websocket_request( socket_id, context_data, raw_req)) finally: self.remove_socket(socket_id) return WebSocketWSGI(handler) def handle_websocket_request(self, socket_id, context_data, raw_req): correlation_id = None try: method, data, correlation_id = self.deserialize_ws_frame( raw_req) provider = self.get_provider_for_method(method) result = provider.handle_message(socket_id, data, context_data) response = { 'type': 'result', 'success': True, 'data': result, 'correlation_id': correlation_id, } except Exception as exc: error = serialize(exc) response = { 'type': 'result', 'success': False, 'error': error, 'correlation_id': correlation_id, } return self.serialize_for_ws(response) def get_provider_for_method(self, method): for provider in self._providers: if ( isinstance(provider, WebSocketRpc) and provider.method_name == method ): return provider raise MethodNotFound() def setup(self): self.wsgi_server.register_provider(self) def stop(self): self.wsgi_server.unregister_provider(self) super(WebSocketServer, self).stop() def add_websocket(self, ws, initial_context_data=None): socket_id = str(uuid.uuid4()) context_data = dict(initial_context_data or ()) self.sockets[socket_id] = SocketInfo(ws, context_data) return socket_id, context_data def remove_socket(self, socket_id): self.sockets.pop(socket_id, None) for provider in self._providers: if isinstance(provider, WebSocketHubProvider): provider.cleanup_websocket(socket_id) class WebSocketHubProvider(DependencyProvider): hub = None server = WebSocketServer() def setup(self): self.hub = WebSocketHub(self.server) self.server.register_provider(self) def stop(self): self.server.unregister_provider(self) super(WebSocketHubProvider, self).stop() def get_dependency(self, worker_ctx): return self.hub def cleanup_websocket(self, socket_id): con = self.hub.connections.pop(socket_id, None) if con is not None: for channel in con.subscriptions: subs = self.hub.subscriptions.get(channel) if subs: subs.discard(socket_id) class WebSocketHub(object): def __init__(self, server): self._server = server self.connections = {} self.subscriptions = {} def _get_connection(self, socket_id, create=True): rv = self.connections.get(socket_id) if rv is not None: return rv rv = self._server.sockets.get(socket_id) if rv is None: if not create: return None raise ConnectionNotFound(socket_id) if not create: return None _, context_data = rv self.connections[socket_id] = rv = Connection(socket_id, context_data) return rv def get_subscriptions(self, socket_id): """Returns a list of all the subscriptions of a socket.""" con = self._get_connection(socket_id, create=False) if con is None: return [] return sorted(con.subscriptions) def subscribe(self, socket_id, channel): """Subscribes a socket to a channel.""" con = self._get_connection(socket_id) self.subscriptions.setdefault(channel, set()).add(socket_id) con.subscriptions.add(channel) def unsubscribe(self, socket_id, channel): """Unsubscribes a socket from a channel.""" con = self._get_connection(socket_id, create=False) if con is not None: con.subscriptions.discard(channel) try: self.subscriptions[channel].discard(socket_id) except KeyError: pass def broadcast(self, channel, event, data): """Broadcasts an event to all sockets listening on a channel.""" payload = self._server.serialize_event(event, data) for socket_id in self.subscriptions.get(channel, ()): rv = self._server.sockets.get(socket_id) if rv is not None: rv.socket.send(payload) def unicast(self, socket_id, event, data): """Sends an event to a single socket. Returns `True` if that worked or `False` if not. """ payload = self._server.serialize_event(event, data) rv = self._server.sockets.get(socket_id) if rv is not None: rv.socket.send(payload) return True return False class WebSocketRpc(Entrypoint): server = WebSocketServer() def setup(self): self.server.register_provider(self) def stop(self): self.server.unregister_provider(self) super(WebSocketRpc, self).stop() def handle_message(self, socket_id, data, context_data): self.check_signature((socket_id,), data) event = Event() self.container.spawn_worker(self, (socket_id,), data, context_data=context_data, handle_result=partial( self.handle_result, event)) return event.wait() def handle_result(self, event, worker_ctx, result, exc_info): event.send(result, exc_info) return result, exc_info rpc = WebSocketRpc.decorator
tests/test_lambda_runtime_client.py
keshayad/aws-lambda-python-runtime-interface-client
136
11078517
<gh_stars>100-1000 """ Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. """ import http import http.client import unittest.mock from unittest.mock import MagicMock, patch from awslambdaric import __version__ from awslambdaric.lambda_runtime_client import ( LambdaRuntimeClient, LambdaRuntimeClientError, InvocationRequest, _user_agent, ) class TestInvocationRequest(unittest.TestCase): def test_constructor(self): invocation_request = InvocationRequest( invoke_id="Lambda-Runtime-Aws-Request-Id", x_amzn_trace_id="Lambda-Runtime-Trace-Id", invoked_function_arn="Lambda-Runtime-Invoked-Function-Arn", deadline_time_in_ms="Lambda-Runtime-Deadline-Ms", client_context="Lambda-Runtime-Client-Context", cognito_identity="Lambda-Runtime-Cognito-Identity", content_type="Content-Type", event_body="response_body", ) equal_invocation_request = InvocationRequest( invoke_id="Lambda-Runtime-Aws-Request-Id", x_amzn_trace_id="Lambda-Runtime-Trace-Id", invoked_function_arn="Lambda-Runtime-Invoked-Function-Arn", deadline_time_in_ms="Lambda-Runtime-Deadline-Ms", client_context="Lambda-Runtime-Client-Context", cognito_identity="Lambda-Runtime-Cognito-Identity", content_type="Content-Type", event_body="response_body", ) different_invocation_request = InvocationRequest( invoke_id="Lambda-Runtime-Aws-Request-Id", x_amzn_trace_id="Lambda-Runtime-Trace-Id", invoked_function_arn="Lambda-Runtime-Invoked-Function-Arn", deadline_time_in_ms="Lambda-Runtime-Deadline-Ms", client_context="Lambda-Runtime-Client-Context", cognito_identity="Lambda-Runtime-Cognito-Identity", content_type="Content-Type", event_body="another_response_body", ) self.assertTrue(invocation_request == invocation_request) self.assertTrue(invocation_request == equal_invocation_request) self.assertFalse(invocation_request == different_invocation_request) class TestLambdaRuntime(unittest.TestCase): @patch("awslambdaric.lambda_runtime_client.runtime_client") def test_wait_next_invocation(self, mock_runtime_client): response_body = b"{}" headears = { "Lambda-Runtime-Aws-Request-Id": "RID1234", "Lambda-Runtime-Trace-Id": "TID1234", "Lambda-Runtime-Invoked-Function-Arn": "FARN1234", "Lambda-Runtime-Deadline-Ms": 12, "Lambda-Runtime-Client-Context": "client_context", "Lambda-Runtime-Cognito-Identity": "cognito_identity", "Content-Type": "application/json", } mock_runtime_client.next.return_value = response_body, headears runtime_client = LambdaRuntimeClient("localhost:1234") event_request = runtime_client.wait_next_invocation() self.assertIsNotNone(event_request) self.assertEqual(event_request.invoke_id, "RID1234") self.assertEqual(event_request.x_amzn_trace_id, "TID1234") self.assertEqual(event_request.invoked_function_arn, "FARN1234") self.assertEqual(event_request.deadline_time_in_ms, 12) self.assertEqual(event_request.client_context, "client_context") self.assertEqual(event_request.cognito_identity, "cognito_identity") self.assertEqual(event_request.content_type, "application/json") self.assertEqual(event_request.event_body, response_body) @patch("http.client.HTTPConnection", autospec=http.client.HTTPConnection) def test_post_init_error(self, MockHTTPConnection): mock_conn = MockHTTPConnection.return_value mock_response = MagicMock(autospec=http.client.HTTPResponse) mock_conn.getresponse.return_value = mock_response mock_response.read.return_value = b"" mock_response.code = http.HTTPStatus.ACCEPTED runtime_client = LambdaRuntimeClient("localhost:1234") runtime_client.post_init_error("error_data") MockHTTPConnection.assert_called_with("localhost:1234") mock_conn.request.assert_called_once_with( "POST", "/2018-06-01/runtime/init/error", "error_data" ) mock_response.read.assert_called_once() @patch("http.client.HTTPConnection", autospec=http.client.HTTPConnection) def test_post_init_error_non_accepted_status_code(self, MockHTTPConnection): mock_conn = MockHTTPConnection.return_value mock_response = MagicMock(autospec=http.client.HTTPResponse) mock_conn.getresponse.return_value = mock_response mock_response.read.return_value = b"" mock_response.code = http.HTTPStatus.IM_USED runtime_client = LambdaRuntimeClient("localhost:1234") with self.assertRaises(LambdaRuntimeClientError) as cm: runtime_client.post_init_error("error_data") returned_exception = cm.exception self.assertEqual(returned_exception.endpoint, "/2018-06-01/runtime/init/error") self.assertEqual(returned_exception.response_code, http.HTTPStatus.IM_USED) @patch("awslambdaric.lambda_runtime_client.runtime_client") def test_post_invocation_result(self, mock_runtime_client): runtime_client = LambdaRuntimeClient("localhost:1234") response_data = "data" invoke_id = "1234" runtime_client.post_invocation_result(invoke_id, response_data) mock_runtime_client.post_invocation_result.assert_called_once_with( invoke_id, response_data.encode("utf-8"), "application/json" ) @patch("awslambdaric.lambda_runtime_client.runtime_client") def test_post_invocation_result_binary_data(self, mock_runtime_client): runtime_client = LambdaRuntimeClient("localhost:1234") response_data = b"binary_data" invoke_id = "1234" content_type = "application/octet-stream" runtime_client.post_invocation_result(invoke_id, response_data, content_type) mock_runtime_client.post_invocation_result.assert_called_once_with( invoke_id, response_data, content_type ) @patch("awslambdaric.lambda_runtime_client.runtime_client") def test_post_invocation_result_failure(self, mock_runtime_client): runtime_client = LambdaRuntimeClient("localhost:1234") response_data = "data" invoke_id = "1234" mock_runtime_client.post_invocation_result.side_effect = RuntimeError( "Failed to post invocation response" ) with self.assertRaisesRegex(RuntimeError, "Failed to post invocation response"): runtime_client.post_invocation_result(invoke_id, response_data) @patch("awslambdaric.lambda_runtime_client.runtime_client") def test_post_invocation_error(self, mock_runtime_client): runtime_client = LambdaRuntimeClient("localhost:1234") error_data = "data" invoke_id = "1234" xray_fault = "xray_fault" runtime_client.post_invocation_error(invoke_id, error_data, xray_fault) mock_runtime_client.post_error.assert_called_once_with( invoke_id, error_data, xray_fault ) @patch("awslambdaric.lambda_runtime_client.runtime_client") def test_post_invocation_error_with_large_xray_cause(self, mock_runtime_client): runtime_client = LambdaRuntimeClient("localhost:1234") error_data = "data" invoke_id = "1234" large_xray_fault = ("a" * int(1024 * 1024))[:-1] runtime_client.post_invocation_error(invoke_id, error_data, large_xray_fault) mock_runtime_client.post_error.assert_called_once_with( invoke_id, error_data, large_xray_fault ) @patch("awslambdaric.lambda_runtime_client.runtime_client") def test_post_invocation_error_with_too_large_xray_cause(self, mock_runtime_client): runtime_client = LambdaRuntimeClient("localhost:1234") error_data = "data" invoke_id = "1234" too_large_xray_fault = "a" * int(1024 * 1024) runtime_client.post_invocation_error( invoke_id, error_data, too_large_xray_fault ) mock_runtime_client.post_error.assert_called_once_with( invoke_id, error_data, "" ) def test_connection_refused(self): with self.assertRaises(ConnectionRefusedError): runtime_client = LambdaRuntimeClient("127.0.0.1:1") runtime_client.post_init_error("error") def test_invalid_addr(self): with self.assertRaises(OSError): runtime_client = LambdaRuntimeClient("::::") runtime_client.post_init_error("error") def test_lambdaric_version(self): self.assertTrue(_user_agent().endswith(__version__)) class TestLambdaRuntimeClientError(unittest.TestCase): def test_constructor(self): expected_endpoint = "" expected_response_code = "" expected_response_body = "" lambda_runtime_client_error = LambdaRuntimeClientError( expected_endpoint, expected_response_code, expected_response_body ) self.assertIsInstance(lambda_runtime_client_error, Exception) self.assertEqual(lambda_runtime_client_error.endpoint, expected_endpoint) if __name__ == "__main__": unittest.main()
tools/convert_policy_yaml_to_heat_template.py
openstack/tripleo-heat-templates
135
11078521
<reponame>openstack/tripleo-heat-templates #!/usr/bin/env python3 # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import argparse import os import ruamel.yaml from ruamel.yaml import YAML # Not all policy variables across services in THT are consistent. This mapping # assoicates the service name to the right THT variable. _SERVICE_MAP = { 'barbican': 'BarbicanPolicies', 'cinder': 'CinderApiPolicies', 'designate': 'DesignateApiPolicies', 'glance': 'GlanceApiPolicies', 'ironic': 'IronicApiPolicies', 'keystone': 'KeystonePolicies', 'manila': 'ManilaApiPolicies', 'neutron': 'NeutronApiPolicies', 'nova': 'NovaApiPolicies', 'octavia': 'OctaviaApiPolicies', 'placement': 'PlacementPolicies' } _SCALAR = ruamel.yaml.scalarstring.DoubleQuotedScalarString parser = argparse.ArgumentParser() parser.add_argument( '-d', '--policy-dir', required=True, help=( 'Directory containing policy.yaml files for OpenStack services. ' 'This script expects files to be named $SERVICE.yaml. For example ' 'nova.yaml for nova\'s policies.' ) ) args = parser.parse_args() heat_template = {'parameter_defaults': {'EnforceSecureRbac': False}} for filename in os.listdir(args.policy_dir): service = filename.split('.')[0] tht_var_name = _SERVICE_MAP.get(service) filepath = os.path.join(args.policy_dir, filename) with open(filepath, 'r') as f: safe_handler = YAML(typ='safe') # A lot of policy files have duplicate keys, which violates YAML. Allow # duplicate keys for the time being. safe_handler.allow_duplicate_keys = True policies = safe_handler.load(f) template = {} for name, value in policies.items(): rule = name.split(':')[-1] rule = name.replace(':', '_') key = service + '-' + rule template[key] = {'key': _SCALAR(name), 'value': _SCALAR(value)} heat_template['parameter_defaults'][tht_var_name] = template print( ruamel.yaml.dump( heat_template, Dumper=ruamel.yaml.RoundTripDumper, width=500 ) )
bin/test_bsopt.py
hstenzel/yugabyte-db
3,702
11078553
<filename>bin/test_bsopt.py #!/usr/bin/env python3 """ A test for running tablet bootstrap with different combinations of options, and measuring time. """ import os import threading import time import urllib.request import json import sys import subprocess # YugaByte directories YUGABYTE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) YBSAMPLEAPPS_DIR = os.path.normpath(os.path.join(YUGABYTE_DIR, '..', 'yb-sample-apps')) # Number of tablets to use NUM_TABLETS = 2 # Time to run the CQL test for (seconds) CQL_TEST_TIME_SEC = 10 * 60 # Number of trials, both for the optimization on and off NUM_TRIALS = 15 def test_cluster(opt_on): # Start the CQL stress test args = [ "java", "-jar", YBSAMPLEAPPS_DIR + "/target/yb-sample-apps.jar", "--workload", "CassandraBatchKeyValue", "--nodes", "127.0.0.1:9042", "--num_threads_read", "1", "--num_threads_write", "1", "--num_unique_keys", "100000", "--nouuid", "--value_size", "1024", "--batch_size", "64"] proc = subprocess.Popen(args) # After time is up, kill the test timer = threading.Timer(CQL_TEST_TIME_SEC, lambda p: p.kill(), (proc,)) timer.start() proc.wait() timer.cancel() # Use yb-admin to flush all writes to RocksDB subprocess.check_call( YUGABYTE_DIR + "/build/latest/bin/yb-admin -master_addresses 127.0.0.1 flush_table " + "ybdemo_keyspace cassandrakeyvalue 60", shell=True) # Restart the cluster subprocess.check_call([YUGABYTE_DIR + "/bin/yb-ctl", "stop"]) subprocess.check_call( YUGABYTE_DIR + "/bin/yb-ctl start --tserver_flags \"skip_flushed_entries=" + str(opt_on).lower() + "\"", shell=True) time.sleep(10) # Get the bootstrap time for i in range(0, 10): metrics = json.loads(urllib.request.urlopen("http://1172.16.31.10:9000/metrics").read()) for group in metrics: if group["type"] == "server": smetrics = group["metrics"] for metric in smetrics: if metric["name"] == "ts_bootstrap_time": print(metric) sys.stdout.flush() if metric["total_count"] == NUM_TABLETS: return metric["total_sum"] else: time.sleep(10) # Metric not present (SHOULD NEVER REACH HERE) return -1 # Destroy and remake the cluster from scratch def remake_cluster(): subprocess.check_call(YUGABYTE_DIR + "/bin/yb-ctl stop", shell=True) subprocess.check_call(YUGABYTE_DIR + "/bin/yb-ctl destroy", shell=True) subprocess.check_call( YUGABYTE_DIR + "/bin/yb-ctl --num_shards_per_tserver " + str(NUM_TABLETS) + " create", shell=True) time.sleep(5) if __name__ == '__main__': # Run our trials for i in range(NUM_TRIALS): # Trial with optimization remake_cluster() print("OPTIMIZE_YES: %d" % test_cluster(True)) sys.stdout.flush() # Trial without optimization remake_cluster() print("OPTIMIZE_NO: %d" % test_cluster(False)) sys.stdout.flush()
mayan/apps/appearance/tests/mixins.py
nattangwiwat/Mayan-EDMS-recitation
336
11078560
from ..models import Theme from .literals import TEST_THEME_LABEL, TEST_THEME_LABEL_EDITED class ThemeTestMixin: def _create_test_theme(self): self.test_theme = Theme.objects.create( label=TEST_THEME_LABEL ) def _edit_test_theme(self): self.test_theme.label = TEST_THEME_LABEL_EDITED self.test_theme.save() class ThemeViewTestMixin: def _request_test_theme_create_view(self): pk_list = list(Theme.objects.values_list('pk', flat=True)) response = self.post( viewname='appearance:theme_create', data={ 'label': TEST_THEME_LABEL, } ) self.test_theme = Theme.objects.exclude(pk__in=pk_list).first() return response def _request_test_theme_delete_view(self): return self.post( viewname='appearance:theme_delete', kwargs={ 'theme_id': self.test_theme.pk } ) def _request_test_theme_edit_view(self): return self.post( viewname='appearance:theme_edit', kwargs={ 'theme_id': self.test_theme.pk }, data={ 'label': TEST_THEME_LABEL_EDITED, } ) def _request_test_theme_list_view(self): return self.get(viewname='appearance:theme_list')
sharppy/databases/sars_cal.py
skovic/SHARPpy
163
11078568
import sharppy.databases.sars as sars import sharppy.sharptab as tab from sharppy.io.spc_decoder import SPCDecoder import numpy as np from datetime import datetime import os def get_profile(fname, sars_type): # Create a convective profile object # fname - filename/SARS sounding string to load in # sars_type - string showing what SARS database (hail/supercell) to look for the raw file # Load in the data try: sars_fname = sars.getSounding(fname[0].decode('utf-8'), sars_type) except: print("Unable to find data file for:", fname[0]) return None dec = SPCDecoder(sars_fname) profs = dec.getProfiles() prof = profs._profs[''][0] dates = profs._dates prof.strictQC = True try: new_prof = tab.profile.ConvectiveProfile.copy(prof) except Exception as e: print("There was a problem with the generation of the ConvectiveProfile:", str(e)) return None return new_prof def calc_inputs(new_prof, sars_type): # Grab the input values for SARS that were generated by SHARPpy in the ConvectiveProfile object # new_prof - the ConvectiveProfile object # sars_type - type of SARS (hail/supercell) sfc_6km_shear = tab.utils.KTS2MS( tab.utils.mag( new_prof.sfc_6km_shear[0], new_prof.sfc_6km_shear[1]) ) sfc_3km_shear = tab.utils.KTS2MS( tab.utils.mag( new_prof.sfc_3km_shear[0], new_prof.sfc_3km_shear[1]) ) sfc_9km_shear = tab.utils.KTS2MS( tab.utils.mag( new_prof.sfc_9km_shear[0], new_prof.sfc_9km_shear[1]) ) h500t = tab.interp.temp(new_prof, 500.) lapse_rate = tab.params.lapse_rate( new_prof, 700., 500., pres=True ) right_srh3km = new_prof.right_srh3km[0] right_srh1km = new_prof.right_srh1km[0] left_srh3km = new_prof.left_srh3km[0] left_srh1km = new_prof.left_srh1km[0] mucape = new_prof.mupcl.bplus mlcape = new_prof.mlpcl.bplus mllcl = new_prof.mlpcl.lclhght mumr = tab.thermo.mixratio(new_prof.mupcl.pres, new_prof.mupcl.dwpc) #self.ship = params.ship(self) if sars_type == 'supercell': data = [mlcape, mllcl, h500t, lapse_rate, tab.utils.MS2KTS(sfc_6km_shear), right_srh1km, tab.utils.MS2KTS(sfc_3km_shear), tab.utils.MS2KTS(sfc_9km_shear), right_srh3km] else: data = [ mumr, mucape, h500t, lapse_rate, sfc_6km_shear, sfc_9km_shear, sfc_3km_shear, right_srh3km ] return np.round(np.asarray(data),1) def check_supercell_cal(use_db=True): # Use to check the SARS supercell calibration database_fn = os.path.join( os.path.dirname( __file__ ), 'sars_supercell.txt' ) supercell_db = np.loadtxt(database_fn, skiprows=1, dtype=bytes, comments="%%%%") hits = 0 fa = 0 cn = 0 miss = 0 match = 0 for f in supercell_db: mlcape = float(f[3]) mllcl = float(f[5]) h5temp = float(f[9]) lr = float(f[11]) shr = float(f[7]) srh = float(f[6]) srh3 = float(f[14]) shr3 = float(f[12]) shr9 = float(f[13]) if use_db is True: out = sars.supercell('sars_supercell.txt', mlcape, mllcl, h5temp, lr, shr, srh, shr3, shr9, srh3) else: new_prof = get_profile(f, 'supercell') if new_prof is None: continue out = new_prof.right_supercell_matches m = int(f[0].decode('utf-8') in out[0]) if m == 0: data = calc_inputs(new_prof, 'supercell') #print("C:", data) #print("T:", [mlcape, mllcl, h5temp, lr, shr, srh, shr3, shr9, srh3]) match += m #print(f[0], match) if out[-1] >= .5 and int(f[1]) > 0: hits += 1 elif out[-1] >= .5 and int(f[1]) == 0: fa += 1 elif out[-1] < .5 and int(f[1]) == 0: cn += 1 elif out[-1] < .5 and int(f[1]) > 0: miss += 1 print("--- SARS SUPERCELL CALIBRATION ---") print_stats(hits, cn, miss, fa, match) return {'hits': hits, 'cn': cn, 'miss':miss, 'fa': fa, 'match':match} def print_stats(hits, cn, miss, fa, matches): # Print out the verification stats print("TOTAL SNDGS:", hits + cn + miss + fa ) print("SELF MATCHES:", matches) print("HIT:", hits) print("MISS:", miss) print("FALSE ALARM:", fa) print("CORRECT NULL:", cn) print("ACCURACY: %.3f" % (float(hits+cn)/float(hits+cn+miss+fa))) print("BIAS: %.3f" % (float(hits+fa)/float(hits+miss))) print("POD: %.3f" % (float(hits)/float(hits+miss))) print("FAR: %.3f" % (float(fa)/float(fa+hits))) print("CSI: %.3f" % (float(hits)/float(hits + miss + fa))) print("TSS: %.3f" % (float(hits)/float(hits+miss) - float(fa)/float(fa+cn))) print() def calc_verification(vals): stats = {} stats['num'] = vals['hits'] + vals['cn'] + vals['miss'] + vals['fa'] for key in vals.keys(): stats[key] = vals[key] hits = stats['hits'] miss = stats['miss'] fa = stats['fa'] cn = stats['cn'] stats["ACCURACY"] = float(hits+cn)/float(hits+cn+miss+fa) stats["BIAS"] = float(hits+fa)/float(hits+miss) stats["POD"] = float(hits)/float(hits+miss) stats["FAR"] = float(fa)/float(fa+hits) stats["CSI"] = float(hits)/float(hits + miss + fa) stats["TSS"] = float(hits)/float(hits+miss) - float(fa)/float(fa+cn) return stats def check_hail_cal(use_db=True): # Check the calibration of the SARS hail database_fn = os.path.join( os.path.dirname( __file__ ), 'sars_hail.txt' ) hail_db = np.loadtxt(database_fn, skiprows=1, dtype=bytes) hits = 0 cn = 0 miss = 0 fa = 0 match = 0 for f in hail_db: mumr = float(f[4]) mucape = float(f[3]) lr = float(f[7]) h5_temp = float(f[5]) shr = float(f[10]) shr9 = float(f[11]) shr3 = float(f[9]) srh = float(f[12]) if use_db is True: out = sars.hail('sars_hail.txt', mumr, mucape, h5_temp, lr, shr, shr9, shr3, srh) else: new_prof = get_profile(f, 'hail') if new_prof is None: continue out = new_prof.right_matches m = int(f[0].decode('utf-8') in out[0]) if m == 0: data = calc_inputs(new_prof, 'hail') #print("C:", data) #print("T:", [mumr, mucape, h5_temp, lr, shr, shr9, shr3, srh]) match += m #print(f[0], match) if out[-1] >= .5 and float(f[2]) >= 2: hits += 1 elif out[-1] >= .5 and float(f[2]) < 2: fa += 1 elif out[-1] < .5 and float(f[2]) < 2: cn += 1 elif out[-1] < .5 and float(f[2]) >= 2: miss += 1 print("--- SARS HAIL CALIBRATION ---") print_stats(hits, cn, miss, fa, match) return {'hits': hits, 'cn': cn, 'miss':miss, 'fa': fa, 'match':match} #check_db = False #check_supercell_cal(check_db) #check_hail_cal(check_db)
virtual/lib/python3.8/site-packages/registration/views.py
erastus-1/GramApp
925
11078572
""" Views which allow users to create and activate accounts. """ from django.conf import settings from django.shortcuts import redirect from django.utils.decorators import method_decorator from django.utils.module_loading import import_string from django.views.decorators.debug import sensitive_post_parameters from django.views.generic.base import TemplateView from django.views.generic.edit import FormView from registration.forms import ResendActivationForm REGISTRATION_FORM_PATH = getattr(settings, 'REGISTRATION_FORM', 'registration.forms.RegistrationForm') REGISTRATION_FORM = import_string(REGISTRATION_FORM_PATH) ACCOUNT_AUTHENTICATED_REGISTRATION_REDIRECTS = getattr( settings, 'ACCOUNT_AUTHENTICATED_REGISTRATION_REDIRECTS', True) class RegistrationView(FormView): """ Base class for user registration views. """ disallowed_url = 'registration_disallowed' form_class = REGISTRATION_FORM http_method_names = ['get', 'post', 'head', 'options', 'trace'] success_url = None template_name = 'registration/registration_form.html' @method_decorator(sensitive_post_parameters('password1', 'password2')) def dispatch(self, request, *args, **kwargs): """ Check that user signup is allowed and if user is logged in before even bothering to dispatch or do other processing. """ if ACCOUNT_AUTHENTICATED_REGISTRATION_REDIRECTS: if self.request.user.is_authenticated: if settings.LOGIN_REDIRECT_URL is not None: return redirect(settings.LOGIN_REDIRECT_URL) else: raise Exception(( 'You must set a URL with LOGIN_REDIRECT_URL in ' 'settings.py or set ' 'ACCOUNT_AUTHENTICATED_REGISTRATION_REDIRECTS=False')) if not self.registration_allowed(): return redirect(self.disallowed_url) return super().dispatch(request, *args, **kwargs) def form_valid(self, form): new_user = self.register(form) success_url = self.get_success_url(new_user) # success_url may be a simple string, or a tuple providing the # full argument set for redirect(). Attempting to unpack it # tells us which one it is. try: to, args, kwargs = success_url except ValueError: return redirect(success_url) else: return redirect(to, *args, **kwargs) def registration_allowed(self): """ Override this to enable/disable user registration, either globally or on a per-request basis. """ return True def register(self, form): """ Implement user-registration logic here. """ raise NotImplementedError def get_success_url(self, user=None): """ Use the new user when constructing success_url. """ return super().get_success_url() class ActivationView(TemplateView): """ Base class for user activation views. """ http_method_names = ['get'] template_name = 'registration/activate.html' def get(self, request, *args, **kwargs): activated_user = self.activate(*args, **kwargs) if activated_user: success_url = self.get_success_url(activated_user) try: to, args, kwargs = success_url except ValueError: return redirect(success_url) else: return redirect(to, *args, **kwargs) return super().get(request, *args, **kwargs) def activate(self, *args, **kwargs): """ Implement account-activation logic here. """ raise NotImplementedError def get_success_url(self, user): raise NotImplementedError class ResendActivationView(FormView): """ Base class for resending activation views. """ form_class = ResendActivationForm template_name = 'registration/resend_activation_form.html' def form_valid(self, form): """ Regardless if resend_activation is successful, display the same confirmation template. """ self.resend_activation(form) return self.render_form_submitted_template(form) def resend_activation(self, form): """ Implement resend activation key logic here. """ raise NotImplementedError def render_form_submitted_template(self, form): """ Implement rendering of confirmation template here. """ raise NotImplementedError class ApprovalView(TemplateView): http_method_names = ['get'] template_name = 'registration/admin_approve.html' def get(self, request, *args, **kwargs): approved_user = self.approve(*args, **kwargs) if approved_user: success_url = self.get_success_url(approved_user) try: to, args, kwargs = success_url except ValueError: return redirect(success_url) else: return redirect(to, *args, **kwargs) return super().get(request, *args, **kwargs) def approve(self, *args, **kwargs): """ Implement admin-approval logic here. """ raise NotImplementedError def get_success_url(self, user): raise NotImplementedError
ykdl/extractors/bilibili/vc.py
Fearyncess/ykdl
1,153
11078576
#!/usr/bin/env python # -*- coding: utf-8 -*- from ykdl.extractor import VideoExtractor from ykdl.videoinfo import VideoInfo from ykdl.util.html import get_content from ykdl.util.match import match1 import json class BiliVC(VideoExtractor): name = u'哔哩哔哩 小视频 (Bili VC)' def prepare(self): info = VideoInfo(self.name) self.vid = match1(self.url, 'video/(\d+)') api_url = 'https://api.vc.bilibili.com/clip/v1/video/detail?video_id={}'.format(self.vid) video_data = json.loads(get_content(api_url)) info.title = video_data['data']['item']['description'] info.artist = video_data['data']['user']['name'] info.stream_types.append('current') info.streams['current'] = {'container': 'mp4', 'src' : [video_data['data']['item']['video_playurl']], 'size': int(video_data['data']['item']['video_size'])} return info site = BiliVC()
mpi4jax/_src/collective_ops/send.py
Thenerdstation/mpi4jax
122
11078597
import numpy as _np from mpi4py import MPI as _MPI from jax import core from jax.core import Primitive from jax.interpreters import xla from jax.lax import create_token from jax.lib import xla_client from ..utils import ( HashableMPIType, default_primitive_impl, to_dtype_handle, to_mpi_handle, unpack_hashable, wrap_as_hashable, xla_constant_intc, xla_constant_uintptr, ) from ..decorators import translation_rule_cpu, translation_rule_gpu from ..validation import enforce_types from ..comm import get_default_comm from ..jax_compat import Tracer, Token # The Jax primitive mpi_send_p = Primitive("send_mpi") # Create the primitive mpi_send_impl = default_primitive_impl(mpi_send_p) # This function applies the primitive to an AST @enforce_types( dest=_np.integer, tag=_np.integer, comm=(type(None), _MPI.Intracomm, HashableMPIType), token=(type(None), Token, Tracer), ) def send(x, dest, *, tag=0, comm=None, token=None): """Perform a send operation. Arguments: x: Array or scalar input to send. dest (int): Rank of the destination MPI process. tag (int): Tag of this message. comm (mpi4py.MPI.Comm): The MPI communicator to use (defaults to a clone of :obj:`COMM_WORLD`). token (Token): XLA token to use to ensure correct execution order. If not given, a new token is generated. Returns: Token: A new, modified token, that depends on this operation. """ if token is None: token = create_token(x) if comm is None: comm = get_default_comm() comm = wrap_as_hashable(comm) return mpi_send_p.bind(x, token, dest=dest, tag=tag, comm=comm) # This function compiles the operation @translation_rule_cpu def mpi_send_xla_encode_cpu(c, x, token, dest, tag, comm): comm = unpack_hashable(comm) x_shape = c.GetShape(x) dtype = x_shape.element_type() dims = x_shape.dimensions() # compute total number of elements in array nitems = _np.prod(dims, dtype=int) dtype_handle = to_dtype_handle(dtype) # ensure void** out type sh = xla_client.Shape.tuple_shape([xla_client.Shape.token_shape()]) out = xla_client.ops.CustomCall( c, b"mpi_send", operands=( xla_constant_intc(c, nitems), x, xla_client.ops.Constant(c, _np.intc(dest)), xla_constant_intc(c, tag), xla_constant_uintptr(c, to_mpi_handle(comm)), xla_constant_uintptr(c, dtype_handle), token, ), shape=sh, has_side_effect=True, ) return xla_client.ops.GetTupleElement(out, 0) @translation_rule_gpu def mpi_send_xla_encode_gpu(c, x, token, dest, tag, comm): from ..xla_bridge.mpi_xla_bridge_gpu import build_send_descriptor comm = unpack_hashable(comm) x_shape = c.GetShape(x) dtype = x_shape.element_type() dims = x_shape.dimensions() # compute total number of elements in array nitems = _np.prod(dims, dtype=int) dtype_handle = to_dtype_handle(dtype) # ensure void** out type sh = xla_client.Shape.tuple_shape([xla_client.Shape.token_shape()]) descriptor = build_send_descriptor( nitems, dest, tag, to_mpi_handle(comm), dtype_handle, ) out = xla_client.ops.CustomCall( c, b"mpi_send", operands=( x, token, ), shape=sh, opaque=descriptor, has_side_effect=True, ) return xla_client.ops.GetTupleElement(out, 0) # This function evaluates only the shapes during AST construction def mpi_send_abstract_eval(xs, token, dest, tag, comm): return core.abstract_token mpi_send_p.def_impl(mpi_send_impl) mpi_send_p.def_abstract_eval(mpi_send_abstract_eval) # assign to the primitive the correct encoder xla.backend_specific_translations["cpu"][mpi_send_p] = mpi_send_xla_encode_cpu xla.backend_specific_translations["gpu"][mpi_send_p] = mpi_send_xla_encode_gpu
robot-server/tests/protocols/__init__.py
anuwrag/opentrons
235
11078605
<gh_stars>100-1000 """Tests for the robot_server.protocols module."""
RecoMuon/MuonSeedGenerator/python/ptSeedParameterization_38T_cfi.py
ckamtsikis/cmssw
852
11078625
import FWCore.ParameterSet.Config as cms ptSeedParameterization = cms.PSet( SMB_21 = cms.vdouble(0.918425, -0.141199, 0.0, 0.254515, -0.111848, 0.0), SMB_20 = cms.vdouble(0.861314, -0.16233, 0.0, 0.248879, -0.113879, 0.0), SMB_22 = cms.vdouble(1.308565, -0.701634, 0.0, -0.302861, 0.675785, 0.0), OL_2213 = cms.vdouble(0.563218, -0.493991, 0.0, 0.943776, -0.591751, 0.0), # Sigle CSC Segments # CSCDet_Id p1 p2 p3 ep1 ep2 ep3 #------------------------------------------------------------------------ # SME_11 = cms.vdouble(2.39479, -0.888663, 0.0, -4.604546, 3.623464, 0.0), SME_13 = cms.vdouble(0.398851, 0.028176, 0.0, 0.567015, 2.623232, 0.0), SME_12 = cms.vdouble(-0.277294, 0.7616, 0.0, -0.243326, 1.446792, 0.0), SME_32 = cms.vdouble(-0.021912, -0.008995, 0.0, -49.779764, 30.780972, 0.0), SME_31 = cms.vdouble(-0.588188, 0.316961, 0.0, -95.261732, 45.444051, 0.0), SME_42 = cms.vdouble(-0.021912, -0.008995, 0.0, -49.779764, 30.780972, 0.0), # OL Parameters # Det_Layers p1 p2 p3 ep1 ep2 ep3 #------------------------------------------------------------------------ # OL_1213 = cms.vdouble(0.960544, -0.75644, 0.0, 0.1636, 0.114178, 0.0), DT_13 = cms.vdouble(0.298842, 0.076531, -0.14293, 0.219923, -0.145026, 0.155638), # DT Parameters # Det_Stations p1 p2 p3 ep1 ep2 ep3 #------------------------------------------------------------------------ # DT_12 = cms.vdouble(0.176182, 0.058535, -0.090549, 0.202363, -0.203126, 0.222219), DT_14 = cms.vdouble(0.388423, 0.068698, -0.145925, 0.159515, 0.124299, -0.133269), OL_1232 = cms.vdouble(0.162626, 0.000843, 0.0, 0.396271, 0.002791, 0.0), CSC_23 = cms.vdouble(-0.095236, 0.122061, -0.029852, -11.396689, 15.933598, -4.267065), CSC_24 = cms.vdouble(-0.049769, 0.063087, -0.011029, -13.765978, 16.296143, -4.241835), CSC_03 = cms.vdouble(0.498992, -0.086235, -0.025772, 2.761006, -2.667607, 0.72802), SMB_31 = cms.vdouble(0.398661, -0.024853, 0.0, 0.863324, -0.413048, 0.0), # CSC Parameters # Det_Stations p1 p2 p3 ep1 ep2 ep3 #------------------------------------------------------------------------ # CSC_01 = cms.vdouble(0.155906, -0.000406, 0.0, 0.194022, -0.010181, 0.0), SMB_32 = cms.vdouble(0.421649, -0.111654, 0.0, -0.044613, 1.134858, 0.0), SMB_30 = cms.vdouble(0.399628, 0.014922, 0.0, 0.665622, 0.358439, 0.0), OL_2222 = cms.vdouble(0.087587, 0.005729, 0.0, 0.535169, -0.087675, 0.0), # Sigle DT Segments # DTDet_Id p1 p2 p3 ep1 ep2 ep3 #------------------------------------------------------------------------ # SMB_10 = cms.vdouble(1.160532, 0.148991, 0.0, 0.182785, -0.093776, 0.0), SMB_11 = cms.vdouble(1.289468, -0.139653, 0.0, 0.137191, 0.01217, 0.0), SMB_12 = cms.vdouble(1.923091, -0.913204, 0.0, 0.161556, 0.020215, 0.0), DT_23 = cms.vdouble(0.120647, 0.034743, -0.070855, 0.302427, -0.21417, 0.261012), DT_24 = cms.vdouble(0.189527, 0.037328, -0.088523, 0.251936, 0.032411, 0.010984), SME_21 = cms.vdouble(0.64895, -0.148762, 0.0, -5.07676, 6.284227, 0.0), SME_22 = cms.vdouble(-0.624708, 0.641043, 0.0, 32.581295, -19.604264, 0.0), CSC_34 = cms.vdouble(0.144321, -0.142283, 0.035636, 190.260708, -180.888643, 43.430395), CSC_02 = cms.vdouble(0.600235, -0.205683, 0.001113, 0.655625, -0.682129, 0.253916), SME_41 = cms.vdouble(-0.187116, 0.076415, 0.0, -58.552583, 27.933864, 0.0), DT_34 = cms.vdouble(0.049146, -0.003494, -0.010099, 0.672095, 0.36459, -0.304346), CSC_14 = cms.vdouble(0.952517, -0.532733, 0.084601, 1.615881, -1.630744, 0.514139), OL_1222 = cms.vdouble(0.215915, 0.002556, 0.0, 0.313596, -0.021465, 0.0), CSC_13 = cms.vdouble(1.22495, -1.792358, 0.711378, 5.271848, -6.280625, 2.0142), CSC_12 = cms.vdouble(-0.363549, 0.569552, -0.173186, 7.777069, -10.203618, 3.478874) )
test/slicing/test_convergence.py
HazyResearch/snorkel
2,906
11078631
import random import unittest from typing import List import numpy as np import pandas as pd import pytest import torch import torch.nn as nn from snorkel.analysis import Scorer from snorkel.classification import ( DictDataLoader, DictDataset, MultitaskClassifier, Operation, Task, Trainer, ) from snorkel.slicing import ( PandasSFApplier, add_slice_labels, convert_to_slice_tasks, slicing_function, ) from snorkel.types import DataPoint # Define SFs specifying points inside a circle @slicing_function() def f(x: DataPoint) -> int: # targets ~7% of the data radius = 0.3 h, k = (-0.15, -0.3) # center return np.sqrt((x.x1 - h) ** 2 + (x.x2 - k) ** 2) < radius @slicing_function() def g(x: DataPoint) -> int: # targets ~6% of the data radius = 0.3 h, k = (0.25, 0.0) # center return np.sqrt((x.x1 - h) ** 2 + (x.x2 - k) ** 2) < radius @slicing_function() def h(x: DataPoint) -> int: # targets ~27% of the data radius = 0.6 h, k = (0.25, 0.0) # center return np.sqrt((x.x1 - h) ** 2 + (x.x2 - k) ** 2) < radius class SlicingConvergenceTest(unittest.TestCase): @classmethod def setUpClass(cls): # Ensure deterministic runs random.seed(123) np.random.seed(123) torch.manual_seed(123) # Create raw data cls.N_TRAIN = 1500 cls.N_VALID = 300 cls.df_train = create_data(cls.N_TRAIN) cls.df_valid = create_data(cls.N_VALID) @pytest.mark.complex def test_convergence(self): """Test slicing convergence with 1 slice task that represents ~25% of the data.""" dataloaders = [] for df, split in [(self.df_train, "train"), (self.df_valid, "valid")]: dataloader = create_dataloader(df, split) dataloaders.append(dataloader) base_task = create_task("task", module_suffixes=["A", "B"]) # Apply SFs slicing_functions = [h] # high coverage slice slice_names = [sf.name for sf in slicing_functions] applier = PandasSFApplier(slicing_functions) S_train = applier.apply(self.df_train, progress_bar=False) S_valid = applier.apply(self.df_valid, progress_bar=False) self.assertEqual(S_train.shape, (self.N_TRAIN,)) self.assertEqual(S_valid.shape, (self.N_VALID,)) self.assertIn("h", S_train.dtype.names) # Add slice labels add_slice_labels(dataloaders[0], base_task, S_train) add_slice_labels(dataloaders[1], base_task, S_valid) # Convert to slice tasks tasks = convert_to_slice_tasks(base_task, slice_names) model = MultitaskClassifier(tasks=tasks) # Train trainer = Trainer(lr=0.001, n_epochs=50, progress_bar=False) trainer.fit(model, dataloaders) scores = model.score(dataloaders) # Confirm near perfect scores self.assertGreater(scores["task/TestData/valid/accuracy"], 0.94) self.assertGreater(scores["task_slice:h_pred/TestData/valid/accuracy"], 0.94) self.assertGreater(scores["task_slice:h_ind/TestData/valid/f1"], 0.94) # Calculate/check train/val loss train_dataset = dataloaders[0].dataset train_loss_output = model.calculate_loss( train_dataset.X_dict, train_dataset.Y_dict ) train_loss = train_loss_output[0]["task"].item() self.assertLess(train_loss, 0.1) val_dataset = dataloaders[1].dataset val_loss_output = model.calculate_loss(val_dataset.X_dict, val_dataset.Y_dict) val_loss = val_loss_output[0]["task"].item() self.assertLess(val_loss, 0.1) @pytest.mark.complex def test_performance(self): """Test slicing performance with 2 corresponding slice tasks that represent roughly <10% of the data.""" dataloaders = [] for df, split in [(self.df_train, "train"), (self.df_valid, "valid")]: dataloader = create_dataloader(df, split) dataloaders.append(dataloader) base_task = create_task("task", module_suffixes=["A", "B"]) # Apply SFs slicing_functions = [f, g] # low-coverage slices slice_names = [sf.name for sf in slicing_functions] applier = PandasSFApplier(slicing_functions) S_train = applier.apply(self.df_train, progress_bar=False) S_valid = applier.apply(self.df_valid, progress_bar=False) # Add slice labels add_slice_labels(dataloaders[0], base_task, S_train) add_slice_labels(dataloaders[1], base_task, S_valid) # Convert to slice tasks tasks = convert_to_slice_tasks(base_task, slice_names) model = MultitaskClassifier(tasks=tasks) # Train # NOTE: Needs more epochs to convergence with more heads trainer = Trainer(lr=0.001, n_epochs=65, progress_bar=False) trainer.fit(model, dataloaders) scores = model.score(dataloaders) # Confirm reasonably high slice scores # Check train scores self.assertGreater(scores["task/TestData/train/f1"], 0.9) self.assertGreater(scores["task_slice:f_pred/TestData/train/f1"], 0.9) self.assertGreater(scores["task_slice:f_ind/TestData/train/f1"], 0.9) self.assertGreater(scores["task_slice:g_pred/TestData/train/f1"], 0.9) self.assertGreater(scores["task_slice:g_ind/TestData/train/f1"], 0.9) self.assertGreater(scores["task_slice:base_pred/TestData/train/f1"], 0.9) self.assertEqual(scores["task_slice:base_ind/TestData/train/f1"], 1.0) # Check valid scores self.assertGreater(scores["task/TestData/valid/f1"], 0.9) self.assertGreater(scores["task_slice:f_pred/TestData/valid/f1"], 0.9) self.assertGreater(scores["task_slice:f_ind/TestData/valid/f1"], 0.9) self.assertGreater(scores["task_slice:g_pred/TestData/valid/f1"], 0.9) self.assertGreater(scores["task_slice:g_ind/TestData/valid/f1"], 0.9) self.assertGreater(scores["task_slice:base_pred/TestData/valid/f1"], 0.9) # base_ind is trivial: all labels are positive self.assertEqual(scores["task_slice:base_ind/TestData/valid/f1"], 1.0) def create_data(n: int) -> pd.DataFrame: X = (np.random.random((n, 2)) * 2 - 1).astype(np.float32) Y = (X[:, 0] < X[:, 1] + 0.25).astype(int) df = pd.DataFrame({"x1": X[:, 0], "x2": X[:, 1], "y": Y}) return df def create_dataloader(df: pd.DataFrame, split: str) -> DictDataLoader: dataset = DictDataset( name="TestData", split=split, X_dict={ "coordinates": torch.stack( (torch.tensor(df["x1"]), torch.tensor(df["x2"])), dim=1 ) }, Y_dict={"task": torch.tensor(df["y"], dtype=torch.long)}, ) dataloader = DictDataLoader( dataset=dataset, batch_size=4, shuffle=(dataset.split == "train") ) return dataloader def create_task(task_name: str, module_suffixes: List[str]) -> Task: module1_name = f"linear1{module_suffixes[0]}" module2_name = f"linear2{module_suffixes[1]}" module_pool = nn.ModuleDict( { module1_name: nn.Sequential(nn.Linear(2, 20), nn.ReLU()), module2_name: nn.Linear(20, 2), } ) op1 = Operation(module_name=module1_name, inputs=[("_input_", "coordinates")]) op2 = Operation(module_name=module2_name, inputs=[op1.name]) op_sequence = [op1, op2] task = Task( name=task_name, module_pool=module_pool, op_sequence=op_sequence, scorer=Scorer(metrics=["f1", "accuracy"]), ) return task if __name__ == "__main__": unittest.main()
src/ros_callbacks.py
UnofficialJuliaMirrorSnapshots/RobotOS.jl-22415677-39a4-5241-a37a-00beabbbdae8
147
11078636
<reponame>UnofficialJuliaMirrorSnapshots/RobotOS.jl-22415677-39a4-5241-a37a-00beabbbdae8<filename>src/ros_callbacks.py #Python 2/3 compatibility with 3 style code from __future__ import absolute_import, division, print_function, unicode_literals __metaclass__ = type import sys import ctypes import threading try: import queue except ImportError: import Queue as queue class MessageQueue: "Queue up received messages and invoke notification to run callback" def __init__(self, cbptr, notify_handle): CBType = ctypes.CFUNCTYPE(ctypes.c_int, ctypes.c_void_p) self._cb_notify = CBType(cbptr.value) self._notify_handle = notify_handle self._queue = queue.Queue() def storemsg(self, msg): self._queue.put(msg) self._cb_notify(self._notify_handle) def size(self): return self._queue.qsize() def get(self): return self._queue.get() class ServiceCallback: def __init__(self, cbptr, notify_handle): CBType = ctypes.CFUNCTYPE(ctypes.c_int, ctypes.c_void_p) self._cb_notify = CBType(cbptr.value) self._notify_handle = notify_handle self._response = None self._hasresponse = threading.Condition() def srv_cb(self, srvreq): "Store received service request and block until Julia callback completes" self._hasresponse.acquire() self._request = srvreq self._cb_notify(self._notify_handle) #wait for the julia callback self._hasresponse.wait() self._hasresponse.release() return self._response def get_request(self): return self._request def set_response(self, resp): self._response = resp self._hasresponse.acquire() self._hasresponse.notify() self._hasresponse.release()
tests/modifier_test.py
khoih-prog/TinyNeuralNetwork
241
11078650
import random import unittest from distutils.version import LooseVersion from operator import add, mul, sub, truediv from unittest.case import SkipTest import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from interval import Interval from tinynn.graph.modifier import l2_norm from tinynn.prune.oneshot_pruner import OneShotChannelPruner def removed_idx_group_check(removed_idx, total_idx_len, removed_idx_len, group, offset=0): for i in range(group): remove_group_len = removed_idx_len // group for j in range(i * remove_group_len, i * remove_group_len + remove_group_len): idx_group_len = total_idx_len // group assert removed_idx[j] in Interval( offset + i * idx_group_len, offset + i * idx_group_len + idx_group_len, upper_closed=False ) def get_rd_lst(length): rd_lst = random.sample(range(0, 1000), length) random.shuffle(rd_lst) print(rd_lst) return rd_lst def get_topk(lst, k, offset=0): _, idx = torch.topk(torch.tensor(lst), k, largest=False) return sorted([i + offset for i in idx.tolist()]) def init_conv_by_list(conv, ch_value): assert conv.weight.shape[0] == len(ch_value) for i in range(len(ch_value)): conv.weight.data[i, :] = ch_value[i] class ModifierTester(unittest.TestCase): def test_cat_graph(self): class TestModel(nn.Module): def __init__(self): super().__init__() self.conv0 = nn.Conv2d(3, 8, (3, 3)) self.conv1 = nn.Conv2d(3, 8, (3, 3)) self.conv2 = nn.Conv2d(16, 32, (3, 3)) self.linear = nn.Linear(800, 100) def forward(self, x): x0 = self.conv0(x) x1 = self.conv1(x) cat0 = torch.cat([x0, x1], dim=1) conv2 = self.conv2(cat0) view0 = conv2.view((1, -1)) linear0 = self.linear(view0) return linear0 def test_func(): model = TestModel() rd_lst_8 = get_rd_lst(8) rd_lst_32 = get_rd_lst(32) init_conv_by_list(model.conv0, rd_lst_8) init_conv_by_list(model.conv1, rd_lst_8) init_conv_by_list(model.conv2, rd_lst_32) importance_conv0 = l2_norm(model.conv0.weight, model.conv0).tolist() importance_conv1 = l2_norm(model.conv1.weight, model.conv1).tolist() importance_conv2 = l2_norm(model.conv2.weight, model.conv2).tolist() pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() conv0_idxes = get_topk(importance_conv0, 4) conv1_idxes = get_topk(importance_conv1, 4) conv2_idxes = get_topk(importance_conv2, 16) assert model.conv0.masker.ot_remove_idx == conv0_idxes assert model.conv1.masker.ot_remove_idx == conv1_idxes assert model.conv2.masker.in_remove_idx == conv0_idxes + [i + 8 for i in conv0_idxes] assert model.conv2.masker.ot_remove_idx == conv2_idxes pruner.apply_mask() assert model.conv1.out_channels == 4 assert model.conv0.out_channels == 4 assert model.conv2.in_channels == 8 assert model.conv2.out_channels == 16 assert model.linear.in_features == 400 assert model.linear.out_features == 100 model(torch.ones(1, 3, 9, 9)) for i in range(100): test_func() def test_cat_add_graph(self): class TestModel(nn.Module): def __init__(self): super().__init__() self.conv0 = nn.Conv2d(3, 8, (3, 3), padding=(1, 1)) self.conv1 = nn.Conv2d(3, 8, (3, 3), padding=(1, 1)) self.conv2 = nn.Conv2d(3, 16, (3, 3), padding=(1, 1)) self.conv3 = nn.Conv2d(16, 32, (3, 3), padding=(1, 1)) def forward(self, x): x0 = self.conv0(x) x1 = self.conv1(x) x2 = self.conv2(x) cat0 = torch.cat([x0, x1], dim=1) add0 = torch.add(cat0, x2) return self.conv3(add0) def test_func(): model = TestModel() while True: ch_8 = get_rd_lst(8) ch_16 = get_rd_lst(16) ch_32 = get_rd_lst(32) init_conv_by_list(model.conv0, ch_8) init_conv_by_list(model.conv1, ch_8) init_conv_by_list(model.conv2, ch_16) init_conv_by_list(model.conv3, ch_32) importance_conv0 = l2_norm(model.conv0.weight, model.conv0).tolist() importance_conv1 = l2_norm(model.conv1.weight, model.conv1).tolist() importance_conv2 = l2_norm(model.conv2.weight, model.conv2).tolist() importance_conv3 = l2_norm(model.conv3.weight, model.conv3).tolist() importance_add0 = list(map(add, importance_conv0 + importance_conv1, importance_conv2)) # Duplicate values may lead to multiple possibilities for remove idx if len(set(importance_add0)) == len(importance_add0): break conv0_idxes = get_topk(importance_add0[:8], 4) conv1_idxes = get_topk(importance_add0[8:], 4) conv3_idxes = get_topk(importance_conv3, 16) pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() assert model.conv0.masker.ot_remove_idx == conv0_idxes assert model.conv1.masker.ot_remove_idx == conv1_idxes assert model.conv2.masker.ot_remove_idx == conv0_idxes + [8 + i for i in conv1_idxes] assert model.conv3.masker.ot_remove_idx == conv3_idxes pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) assert model.conv0.out_channels == 4 assert model.conv1.out_channels == 4 assert model.conv2.out_channels == 8 assert model.conv3.in_channels == 8 assert model.conv3.out_channels == 16 for i in range(100): test_func() def test_flatten_graph(self): class TestFlattenModel(nn.Module): def __init__(self): super(TestFlattenModel, self).__init__() self.conv0 = nn.Conv2d(3, 16, (3, 3)) self.conv1 = nn.Conv2d(16, 32, (3, 3)) self.dropout = nn.Dropout() self.linear1 = nn.Linear(800, 100) self.linear2 = nn.Linear(100, 10) def forward(self, x): conv0 = self.conv0(x) conv1 = self.conv1(conv0) flatten0 = torch.flatten(conv1, 1) dropout0 = self.dropout(flatten0) linear1 = self.linear1(dropout0) linear2 = self.linear2(linear1) return linear2 def test_func(): model = TestFlattenModel() ch_32 = get_rd_lst(32) init_conv_by_list(model.conv1, ch_32) importance_conv1 = l2_norm(model.conv1.weight, model.conv1).tolist() conv1_idxes = get_topk(importance_conv1, 24) pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.75, "metrics": "l2_norm"}) pruner.register_mask() linear1_idxes = np.array([i for i in range(800)]) linear1_idxes = linear1_idxes.reshape([32, 25]) linear1_idxes = linear1_idxes[conv1_idxes, :] linear1_idxes = linear1_idxes.reshape([600]).tolist() assert model.conv1.masker.ot_remove_idx == conv1_idxes assert model.linear1.masker.in_remove_idx == linear1_idxes pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) assert model.conv0.out_channels == 4 assert model.conv1.out_channels == 8 assert model.linear1.in_features == 200 assert model.linear1.out_features == 25 assert model.linear2.in_features == 25 assert model.linear2.out_features == 10 for i in range(10): test_func() def test_loop_cat_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv1 = nn.Conv2d(3, 16, (3, 3)) self.conv2 = nn.Conv2d(64, 128, (3, 3)) self.relu1 = torch.nn.modules.activation.ReLU(inplace=True) self.relu2 = torch.nn.modules.activation.ReLU(inplace=True) self.relu3 = torch.nn.modules.activation.ReLU(inplace=True) self.relu4 = torch.nn.modules.activation.ReLU(inplace=True) def forward(self, x): conv1 = self.conv1(x) relu1 = self.relu1(conv1) relu2 = self.relu2(conv1) relu3 = self.relu3(conv1) relu4 = self.relu4(conv1) z = torch.cat([relu1, relu2, relu3, relu4], dim=1) return self.conv2(z) def test_func(): model = TestModel() ch_16 = get_rd_lst(16) init_conv_by_list(model.conv1, ch_16) importance_conv1 = l2_norm(model.conv1.weight, model.conv1).tolist() conv1_idxes = get_topk(importance_conv1, 8) pruner = OneShotChannelPruner(model, torch.randn((1, 3, 9, 9)), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() assert model.conv1.masker.ot_remove_idx == conv1_idxes assert model.conv2.masker.in_remove_idx == [j + i * 16 for i in range(4) for j in conv1_idxes] pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) assert model.conv1.out_channels == 8 assert model.conv2.in_channels == 32 assert model.conv2.out_channels == 64 for i in range(10): test_func() def test_group_cat_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv1 = nn.Conv2d(3, 16, (3, 3)) self.conv2 = nn.Conv2d(3, 32, (3, 3)) self.conv3 = nn.Conv2d(48, 64, (3, 3), groups=4) def forward(self, x): conv1 = self.conv1(x) conv2 = self.conv2(x) cat0 = torch.cat([conv1, conv2], dim=1) return self.conv3(cat0) def test_func(): model = TestModel() ch_16 = get_rd_lst(16) ch_32 = get_rd_lst(32) init_conv_by_list(model.conv1, ch_16) init_conv_by_list(model.conv2, ch_32) importance_conv1 = l2_norm(model.conv1.weight, model.conv1).tolist() importance_conv2 = l2_norm(model.conv2.weight, model.conv2).tolist() conv1_idxes_g1 = get_topk(importance_conv1[:12], 6) conv1_idxes_g2 = get_topk(importance_conv1[12:], 2, offset=12) conv1_idxes = conv1_idxes_g1 + conv1_idxes_g2 conv2_idxes_g1 = get_topk(importance_conv2[:8], 4) conv2_idxes_g2 = get_topk(importance_conv2[8:20], 6, offset=8) conv2_idxes_g3 = get_topk(importance_conv2[20:], 6, offset=20) conv2_idxes = conv2_idxes_g1 + conv2_idxes_g2 + conv2_idxes_g3 pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() assert model.conv1.masker.ot_remove_idx == conv1_idxes assert model.conv2.masker.ot_remove_idx == conv2_idxes assert model.conv3.masker.in_remove_idx == conv1_idxes + [i + 16 for i in conv2_idxes] pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) assert model.conv1.out_channels == 8 assert model.conv2.out_channels == 16 assert model.conv3.in_channels == 24 assert model.conv3.out_channels == 32 for i in range(10): test_func() def test_nonaligned_cat_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv1 = nn.Conv2d(3, 8, (3, 3)) self.conv2 = nn.Conv2d(3, 4, (3, 3)) self.conv3 = nn.Conv2d(3, 4, (3, 3)) self.conv4 = nn.Conv2d(16, 64, (3, 3)) def forward(self, x): conv1 = self.conv1(x) conv2 = self.conv2(x) conv3 = self.conv3(x) cat0 = torch.cat([conv1, conv2, conv3], dim=1) return self.conv4(cat0) model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.25, "metrics": "l2_norm"}) pruner.prune() model(torch.ones(1, 3, 9, 9)) assert model.conv1.out_channels == 6 assert model.conv2.out_channels == 3 assert model.conv3.out_channels == 3 assert model.conv4.in_channels == 12 assert model.conv4.out_channels == 48 def test_group_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv0 = nn.Conv2d(3, 16, (3, 3)) self.conv1 = nn.Conv2d(16, 32, (3, 3), groups=8) self.conv2 = nn.Conv2d(32, 32, (3, 3)) def forward(self, x): conv0 = self.conv0(x) conv1 = self.conv1(conv0) return self.conv2(conv1) def test_func(): model = TestModel() ch_16 = get_rd_lst(16) ch_32 = get_rd_lst(32) init_conv_by_list(model.conv0, ch_16) init_conv_by_list(model.conv1, ch_32) importance_conv0 = l2_norm(model.conv0.weight, model.conv0).tolist() importance_conv1 = l2_norm(model.conv1.weight, model.conv1).tolist() conv0_idxes = [] conv1_idxes = [] for i in range(8): conv0_idxes += get_topk(importance_conv0[i * 2 : (i + 1) * 2], 1, offset=i * 2) conv1_idxes += get_topk(importance_conv1[i * 4 : (i + 1) * 4], 2, offset=i * 4) pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() removed_idx_group_check(model.conv0.masker.ot_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv1.masker.in_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv1.masker.ot_remove_idx, 32, 16, 8) removed_idx_group_check(model.conv2.masker.in_remove_idx, 32, 16, 8) assert model.conv0.masker.ot_remove_idx == conv0_idxes assert model.conv1.masker.ot_remove_idx == conv1_idxes pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) assert model.conv0.out_channels == 8 assert model.conv1.in_channels == 8 assert model.conv1.out_channels == 16 assert model.conv2.out_channels == 16 for i in range(10): test_func() def test_multi_group_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv0 = nn.Conv2d(3, 16, (3, 3)) self.conv1 = nn.Conv2d(16, 32, (3, 3), groups=4) self.conv2 = nn.Conv2d(16, 32, (3, 3), groups=8) def forward(self, x): conv0 = self.conv0(x) conv1 = self.conv1(conv0) conv2 = self.conv2(conv0) return conv1, conv2 def test_func(): model = TestModel() ch_16 = get_rd_lst(16) ch_32 = get_rd_lst(32) init_conv_by_list(model.conv0, ch_16) init_conv_by_list(model.conv1, ch_32) init_conv_by_list(model.conv2, ch_32) conv0_idxes = [] conv1_idxes = [] conv2_idxes = [] importance_conv0 = l2_norm(model.conv0.weight, model.conv0).tolist() importance_conv1 = l2_norm(model.conv1.weight, model.conv1).tolist() importance_conv2 = l2_norm(model.conv2.weight, model.conv2).tolist() for i in range(4): conv1_idxes += get_topk(importance_conv1[i * 8 : (i + 1) * 8], 4, offset=i * 8) for i in range(8): conv0_idxes += get_topk(importance_conv0[i * 2 : (i + 1) * 2], 1, offset=i * 2) conv2_idxes += get_topk(importance_conv2[i * 4 : (i + 1) * 4], 2, offset=i * 4) pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() removed_idx_group_check(model.conv0.masker.ot_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv1.masker.in_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv2.masker.in_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv1.masker.ot_remove_idx, 32, 16, 4) removed_idx_group_check(model.conv2.masker.ot_remove_idx, 32, 16, 8) assert model.conv0.masker.ot_remove_idx == conv0_idxes assert model.conv1.masker.ot_remove_idx == conv1_idxes assert model.conv2.masker.ot_remove_idx == conv2_idxes pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) assert model.conv0.out_channels == 8 assert model.conv1.in_channels == 8 assert model.conv1.out_channels == 16 assert model.conv2.out_channels == 16 for i in range(10): test_func() def test_add_cat_group_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv0 = nn.Conv2d(3, 16, (3, 3)) self.conv1 = nn.Conv2d(16, 32, (3, 3), groups=2) self.conv2 = nn.Conv2d(16, 32, (3, 3), groups=4) self.conv3 = nn.Conv2d(3, 16, (3, 3)) self.conv4 = nn.Conv2d(16, 32, (3, 3), groups=8) self.conv5 = nn.Conv2d(64, 64, (3, 3)) def forward(self, x): conv0 = self.conv0(x) conv1 = self.conv1(conv0) conv2 = self.conv2(conv0) add1 = conv1.__add__(conv2) conv3 = self.conv3(x) conv4 = self.conv4(conv3) cat0 = torch.cat([add1, conv4], dim=1) return self.conv5(cat0) def test_func(): while True: model = TestModel() ch_conv0 = get_rd_lst(16) ch_conv1 = get_rd_lst(32) ch_conv2 = get_rd_lst(32) ch_conv4 = get_rd_lst(32) init_conv_by_list(model.conv0, ch_conv0) init_conv_by_list(model.conv1, ch_conv1) init_conv_by_list(model.conv2, ch_conv2) init_conv_by_list(model.conv4, ch_conv4) importance_conv0 = l2_norm(model.conv0.weight, model.conv0).tolist() importance_conv1 = l2_norm(model.conv1.weight, model.conv1).tolist() importance_conv2 = l2_norm(model.conv2.weight, model.conv2).tolist() importance_conv4 = l2_norm(model.conv4.weight, model.conv4).tolist() importance_conv12 = list(map(add, importance_conv1, importance_conv2)) if len(importance_conv12) == len(set(importance_conv12)): break conv0_idxes = [] conv4_idxes = [] conv12_idxes = [] for i in range(4): conv0_idxes += get_topk(importance_conv0[i * 4 : (i + 1) * 4], 2, i * 4) conv12_idxes += get_topk(importance_conv12[i * 8 : (i + 1) * 8], 4, i * 8) for i in range(8): conv4_idxes += get_topk(importance_conv4[i * 4 : (i + 1) * 4], 2, i * 4) pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() assert model.conv0.masker.ot_remove_idx == conv0_idxes assert model.conv1.masker.ot_remove_idx == conv12_idxes assert model.conv2.masker.ot_remove_idx == conv12_idxes assert model.conv5.masker.in_remove_idx == conv12_idxes + [i + 32 for i in conv4_idxes] removed_idx_group_check(model.conv0.masker.ot_remove_idx, 16, 8, 4) removed_idx_group_check(model.conv1.masker.in_remove_idx, 16, 8, 4) removed_idx_group_check(model.conv2.masker.in_remove_idx, 16, 8, 4) removed_idx_group_check(model.conv1.masker.ot_remove_idx, 32, 16, 4) removed_idx_group_check(model.conv2.masker.ot_remove_idx, 32, 16, 4) removed_idx_group_check(model.conv4.masker.in_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv4.masker.ot_remove_idx, 32, 16, 8) removed_idx_group_check(model.conv5.masker.in_remove_idx[:16], 32, 16, 4) removed_idx_group_check(model.conv5.masker.in_remove_idx[16:], 32, 16, 8, offset=32) pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) for i in range(50): test_func() def test_multi_cat_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv0 = nn.Conv2d(3, 8, (3, 3)) self.conv1 = nn.Conv2d(8, 16, (3, 3)) self.conv2 = nn.Conv2d(8, 16, (3, 3), groups=4) self.conv3 = nn.Conv2d(8, 16, (3, 3)) self.conv4 = nn.Conv2d(32, 64, (3, 3)) self.conv5 = nn.Conv2d(32, 64, (3, 3)) def forward(self, x): conv0 = self.conv0(x) relu0 = F.relu(conv0) x1 = self.conv1(relu0) x2 = self.conv2(relu0) x3 = self.conv3(relu0) cat0 = torch.cat([x1, x2], dim=1) cat1 = torch.cat([x2, x3], dim=1) cat0 = self.conv4(cat0) cat1 = self.conv5(cat1) return cat0, cat1 def test_func(): model = TestModel() conv0_ch = get_rd_lst(8) conv1_ch = get_rd_lst(16) conv2_ch = get_rd_lst(16) conv3_ch = get_rd_lst(16) init_conv_by_list(model.conv0, conv0_ch) init_conv_by_list(model.conv1, conv1_ch) init_conv_by_list(model.conv2, conv2_ch) init_conv_by_list(model.conv3, conv3_ch) importance_conv0 = l2_norm(model.conv0.weight, model.conv0) importance_conv1 = l2_norm(model.conv1.weight, model.conv1) importance_conv2 = l2_norm(model.conv2.weight, model.conv2) importance_conv3 = l2_norm(model.conv3.weight, model.conv3) conv0_idxes = [] conv2_idxes = [] conv1_idxes = get_topk(importance_conv1, 8) conv3_idxes = get_topk(importance_conv3, 8) for i in range(4): conv0_idxes += get_topk(importance_conv0[i * 2 : (i + 1) * 2], 1, offset=i * 2) conv2_idxes += get_topk(importance_conv2[i * 4 : (i + 1) * 4], 2, offset=i * 4) pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() assert model.conv0.masker.ot_remove_idx == conv0_idxes assert model.conv1.masker.ot_remove_idx == conv1_idxes assert model.conv2.masker.ot_remove_idx == conv2_idxes assert model.conv3.masker.ot_remove_idx == conv3_idxes removed_idx_group_check(model.conv0.masker.ot_remove_idx, 8, 4, 4) removed_idx_group_check(model.conv1.masker.in_remove_idx, 8, 4, 4) removed_idx_group_check(model.conv2.masker.in_remove_idx, 8, 4, 4) removed_idx_group_check(model.conv3.masker.in_remove_idx, 8, 4, 4) removed_idx_group_check(model.conv2.masker.ot_remove_idx, 16, 8, 4) removed_idx_group_check(model.conv4.masker.in_remove_idx[8:], 16, 8, 4, offset=16) removed_idx_group_check(model.conv5.masker.in_remove_idx[:8], 16, 8, 4) pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) for i in range(50): test_func() def test_split_group_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv1 = nn.Conv2d(3, 32, (3, 3)) self.conv2 = nn.Conv2d(3, 16, (3, 3)) self.conv3 = nn.Conv2d(3, 16, (3, 3)) self.conv4 = nn.Conv2d(16, 32, (3, 3), groups=2) self.conv5 = nn.Conv2d(16, 32, (3, 3), groups=4) def forward(self, x): conv1 = self.conv1(x) conv2 = self.conv2(x) conv3 = self.conv3(x) size = conv1.shape[1] // 2 sp1, sp2 = torch.split(conv1, size, 1) add0 = conv2 + sp1 add1 = sp2 + conv3 return self.conv4(add0), self.conv5(add1) def test_func(): model = TestModel() ch_conv1 = get_rd_lst(32) ch_conv2 = get_rd_lst(16) ch_conv3 = get_rd_lst(16) init_conv_by_list(model.conv1, ch_conv1) init_conv_by_list(model.conv2, ch_conv2) init_conv_by_list(model.conv3, ch_conv3) importance_conv1 = l2_norm(model.conv1.weight, model.conv1) importance_conv2 = l2_norm(model.conv2.weight, model.conv2) importance_conv3 = l2_norm(model.conv3.weight, model.conv3) importance_conv12 = list(map(add, importance_conv1[:16], importance_conv2)) importance_conv13 = list(map(add, importance_conv1[16:], importance_conv3)) conv2_idxes = [] conv3_idxes = [] for i in range(2): conv2_idxes += get_topk(importance_conv12[i * 8 : (i + 1) * 8], 4, offset=i * 8) for i in range(4): conv3_idxes += get_topk(importance_conv13[i * 4 : (i + 1) * 4], 2, offset=i * 4) conv1_idxes = conv2_idxes + [i + 16 for i in conv3_idxes] pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() assert model.conv1.masker.ot_remove_idx == conv1_idxes assert model.conv2.masker.ot_remove_idx == conv2_idxes assert model.conv3.masker.ot_remove_idx == conv3_idxes assert model.conv4.masker.in_remove_idx == conv2_idxes assert model.conv5.masker.in_remove_idx == conv3_idxes removed_idx_group_check(model.conv1.masker.ot_remove_idx[:8], 16, 8, 2) removed_idx_group_check(model.conv1.masker.ot_remove_idx[8:], 16, 8, 4, offset=16) removed_idx_group_check(model.conv2.masker.ot_remove_idx, 16, 8, 2) removed_idx_group_check(model.conv3.masker.ot_remove_idx, 16, 8, 4) removed_idx_group_check(model.conv4.masker.in_remove_idx, 16, 8, 2) removed_idx_group_check(model.conv4.masker.ot_remove_idx, 32, 16, 2) removed_idx_group_check(model.conv5.masker.in_remove_idx, 16, 8, 4) removed_idx_group_check(model.conv5.masker.ot_remove_idx, 32, 16, 4) pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) for i in range(50): test_func() def group_element_wise_graph(self, op): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv0 = nn.Conv2d(16, 16, (1, 1), groups=8) self.conv1 = nn.Conv2d(16, 16, (1, 1)) self.conv2 = nn.Conv2d(16, 16, (1, 1), groups=4) def forward(self, x): conv0 = self.conv0(x) conv1 = self.conv1(x) add0 = op(conv0, conv1) conv2 = self.conv2(add0) return conv2 def test_func(): model = TestModel() ch_conv0 = get_rd_lst(16) ch_conv1 = get_rd_lst(16) ch_conv2 = get_rd_lst(16) init_conv_by_list(model.conv0, ch_conv0) init_conv_by_list(model.conv1, ch_conv1) init_conv_by_list(model.conv2, ch_conv2) importance_conv0 = l2_norm(model.conv0.weight, model.conv0) importance_conv1 = l2_norm(model.conv1.weight, model.conv1) importance_conv2 = l2_norm(model.conv2.weight, model.conv2) importance_conv01 = list(map(add, importance_conv0, importance_conv1)) idxes_conv0 = [] idxes_conv2 = [] for i in range(8): idxes_conv0 += get_topk(importance_conv01[i * 2 : (i + 1) * 2], 1, offset=i * 2) for i in range(4): idxes_conv2 += get_topk(importance_conv2[i * 4 : (i + 1) * 4], 2, offset=i * 4) pruner = OneShotChannelPruner(model, torch.ones(16, 16, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() assert model.conv0.masker.ot_remove_idx == idxes_conv0 assert model.conv1.masker.ot_remove_idx == idxes_conv0 assert model.conv2.masker.ot_remove_idx == idxes_conv2 removed_idx_group_check(model.conv0.masker.ot_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv1.masker.ot_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv2.masker.ot_remove_idx, 16, 8, 4) pruner.apply_mask() model(torch.ones(16, 16, 9, 9)) for i in range(50): test_func() def test_group_element_wise_graph(self): self.group_element_wise_graph(add) self.group_element_wise_graph(mul) self.group_element_wise_graph(sub) self.group_element_wise_graph(truediv) def group_element_wise_split_graph(self, op): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv0 = nn.Conv2d(3, 32, (1, 1)) self.conv1 = nn.Conv2d(16, 16, (1, 1), groups=8) self.conv2 = nn.Conv2d(16, 16, (1, 1), groups=2) def forward(self, x): conv0 = self.conv0(x) sp0, sp1 = torch.split(conv0, conv0.shape[1] // 2, 1) conv1 = self.conv1(sp0) add0 = op(conv1, sp1) conv2 = self.conv2(add0) return conv2 def test_func(): model = TestModel() ch_conv0 = get_rd_lst(32) ch_conv1 = get_rd_lst(16) init_conv_by_list(model.conv0, ch_conv0) init_conv_by_list(model.conv1, ch_conv1) importance_conv0 = l2_norm(model.conv0.weight, model.conv0) importance_conv1 = l2_norm(model.conv1.weight, model.conv1) importance_conv01 = list(map(add, importance_conv0[16:], importance_conv1)) idxes_conv0 = [] idxes_conv1 = [] for i in range(8): idxes_conv0 += get_topk(importance_conv0[i * 2 : (i + 1) * 2], 1, offset=i * 2) idxes_conv1 += get_topk(importance_conv01[i * 2 : (i + 1) * 2], 1, offset=i * 2) idxes_conv0 += [i + 16 for i in idxes_conv1] pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() assert model.conv0.masker.ot_remove_idx == idxes_conv0 assert model.conv1.masker.ot_remove_idx == idxes_conv1 removed_idx_group_check(model.conv0.masker.ot_remove_idx, 32, 16, 8) removed_idx_group_check(model.conv1.masker.in_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv1.masker.ot_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv2.masker.in_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv2.masker.ot_remove_idx, 16, 8, 2) pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) for i in range(50): test_func() def test_group_element_wise_split_graph(self): self.group_element_wise_split_graph(add) self.group_element_wise_split_graph(sub) self.group_element_wise_split_graph(mul) self.group_element_wise_split_graph(truediv) def test_res_2_net_block(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv1 = nn.Conv2d(3, 64, (1, 1)) self.conv2 = nn.Conv2d(16, 16, (1, 1), groups=8) self.conv3 = nn.Conv2d(16, 16, (1, 1), groups=2) self.conv4 = nn.Conv2d(16, 16, (1, 1)) self.conv5 = nn.Conv2d(64, 64, (1, 1)) def forward(self, x): conv1 = self.conv1(x) size0 = conv1.shape[1] // 4 split0 = torch.split(conv1, size0, 1) conv2 = self.conv2(split0[0]) add0 = conv2 + split0[1] conv3 = self.conv3(add0) add3 = conv3 + split0[2] conv4 = self.conv4(add3) cat0 = torch.cat([conv2, conv3, conv4, split0[3]], 1) return self.conv5(cat0) model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() removed_idx_group_check(model.conv1.masker.ot_remove_idx[:16], 32, 16, 8) removed_idx_group_check(model.conv1.masker.ot_remove_idx[16:24], 16, 8, 2, offset=32) pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) def test_conv1d_block(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv1 = nn.Conv1d(3, 16, (3,)) self.conv2 = nn.Conv1d(16, 32, (3,)) def forward(self, x): conv1 = self.conv1(x) return self.conv2(conv1) model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9), {"sparsity": 0.25, "metrics": "l2_norm"}) pruner.prune() model(torch.ones(1, 3, 9)) assert model.conv1.out_channels == 12 assert model.conv2.out_channels == 24 def test_loop_conv_block(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv0 = nn.Conv2d(3, 16, (3, 3)) self.conv1 = nn.Conv2d(16, 32, (3, 3)) def forward(self, x): conv0 = self.conv0(x) return self.conv1(conv0 + conv0 + conv0) def test_func(): model = TestModel() ch_conv0 = get_rd_lst(16) init_conv_by_list(model.conv0, ch_conv0) importance_conv0 = l2_norm(model.conv0.weight, model.conv0) idxes_conv0 = get_topk(importance_conv0, 8) pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() assert model.conv0.masker.ot_remove_idx == idxes_conv0 pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) for i in range(10): test_func() def test_multi_dim_fc(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.fc0 = nn.Linear(8, 32) self.fc1 = nn.Linear(32, 32) def forward(self, x): fc0 = self.fc0(x) fc1 = self.fc1(fc0) return fc1 model = TestModel() pruner = OneShotChannelPruner(model, torch.rand((16, 16, 8)), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.prune() model(torch.rand((16, 8))) assert model.fc0.out_features == 16 assert model.fc1.in_features == 16 assert model.fc1.out_features == 32 def test_rnn(self): rnn_in_size = 28 rnn_hidden_size = 128 fc_out_channel = 10 class TestModel(nn.Module): def __init__(self, *args, **kwargs): super(TestModel, self).__init__() assert 'cell_type' in kwargs cell_type = kwargs.pop('cell_type') assert cell_type in (nn.RNN, nn.GRU, nn.LSTM) bidirectional = kwargs.get('bidirectional', False) num_directions = 2 if bidirectional else 1 fc_in_channel = rnn_hidden_size * num_directions if 'proj_size' in kwargs: fc_in_channel = kwargs['proj_size'] * num_directions self.rnn = cell_type(rnn_in_size, rnn_hidden_size, *args, **kwargs) self.fc = nn.Linear(fc_in_channel, fc_out_channel) def forward(self, x): rnn, _ = self.rnn(x) fc = self.fc(rnn) return fc for cell_type in (nn.RNN, nn.GRU, nn.LSTM): for num_layers in (1, 2): for bidirectional in (False, True): for batch_first in (False, True): for proj_size in (0, 120): if cell_type != nn.LSTM and proj_size > 0: continue kwargs = { 'num_layers': num_layers, 'bidirectional': bidirectional, 'batch_first': batch_first, 'cell_type': cell_type, } if proj_size > 0: if LooseVersion(torch.__version__) >= LooseVersion('1.8.0'): kwargs.update({'proj_size': proj_size}) else: continue filtered_args = {k: v for k, v in kwargs.items() if k != 'cell_type'} print(f'\nTesting {cell_type.__name__} with {filtered_args}') model = TestModel(**kwargs) pruner = OneShotChannelPruner( model, torch.rand((3, 3, rnn_in_size)), {"sparsity": 0.5, "metrics": "l2_norm"} ) pruner.prune() model(torch.rand((3, 3, rnn_in_size))) assert model.rnn.hidden_size == 64 def test_lstm_proj_add_fc(self): if LooseVersion(torch.__version__) < LooseVersion('1.8.0'): raise SkipTest("LSTM with projection is not supported in PyTorch < 1.8") rnn_in_size = 28 rnn_hidden_size = 128 fc_out_channel = 10 proj_size = 120 class TestModel(nn.Module): def __init__(self, *args, **kwargs): super(TestModel, self).__init__() bidirectional = kwargs.get('bidirectional', False) num_directions = 2 if bidirectional else 1 fc_in_channel = proj_size * num_directions self.rnn = nn.LSTM(rnn_in_size, rnn_hidden_size, proj_size=proj_size, *args, **kwargs) self.fc0 = nn.Linear(rnn_in_size, fc_in_channel) self.fc1 = nn.Linear(fc_in_channel, fc_out_channel) def forward(self, x): rnn, _ = self.rnn(x) fc0 = self.fc0(x) + rnn fc1 = self.fc1(fc0) return fc1 for num_layers in (1, 2): for bidirectional in (False, True): kwargs = { 'num_layers': num_layers, 'bidirectional': bidirectional, } print(f'\nTesting with {kwargs}') model = TestModel(**kwargs) model(torch.rand((3, 3, rnn_in_size))) pruner = OneShotChannelPruner( model, torch.rand((3, 3, rnn_in_size)), {"sparsity": 0.5, "metrics": "l2_norm"} ) pruner.prune() model(torch.rand((3, 3, rnn_in_size))) if __name__ == '__main__': unittest.main()
doc/tutorial.py
alex123012/biotite
208
11078667
<reponame>alex123012/biotite<filename>doc/tutorial.py import os.path import os import codeop import logging import copy from importlib.util import module_from_spec, spec_from_loader from sphinx.util.logging import getLogger from sphinx.util import status_iterator import sphinx_gallery.gen_rst as genrst from sphinx_gallery.gen_gallery import DEFAULT_GALLERY_CONF import sphinx_gallery.scrapers as scrapers import sphinx_gallery.py_source_parser as parser import biotite def create_tutorial(src_dir, target_dir): logger = getLogger('sphinx-gallery') logger.info("generating tutorial...", color="white") with open(os.path.join(src_dir, "scripts"), "r") as file: scripts = [line.strip() for line in file.read().splitlines() if line[0] != "#" and line.strip() != ""] iterator = status_iterator( scripts, "generating tutorial...", length=len(scripts) ) for script in iterator: _create_tutorial_section(script, src_dir, target_dir) # Create index # String for enumeration of tutorial pages include_string = "\n\n".join( [f".. include:: {os.path.splitext(script)[0]}.rst" for script in scripts] ) index_content = \ f""" ======== Tutorial ======== .. contents:: :depth: 3 {include_string} """ with open(os.path.join(target_dir, f"index.rst"), "w") as f: f.write(index_content) def _create_tutorial_section(fname, src_dir, target_dir): if not os.path.exists(target_dir): os.makedirs(target_dir) src_file = os.path.normpath(os.path.join(src_dir, fname)) # Check if the same tutorial script has been already run md5_file = os.path.join(target_dir, f"{fname}.md5") if _md5sum_is_current(src_file, md5_file): return file_conf, script_blocks = parser.split_code_and_text_blocks(src_file) # Remove *.py suffix base_image_name = os.path.splitext(fname)[0] # Locate file in tutorial target directory abs_base_image_name = os.path.join( os.getcwd(), "tutorial", "target", base_image_name ) image_path_template = abs_base_image_name + "_{0:02}.png" fake_main = module_from_spec(spec_from_loader('__main__', None)) script_vars = { "execute_script": True, "image_path_iterator": scrapers.ImagePathIterator(image_path_template), "src_file": src_file, "memory_delta": [], "fake_main": fake_main } tutorial_globals = fake_main.__dict__ tutorial_globals.update({ "__doc__": "", }) gallery_conf = copy.deepcopy(DEFAULT_GALLERY_CONF) gallery_conf.update({ "abort_on_example_error": True, "src_dir": os.getcwd(), "execute_script": True, "inspect_global_variables": False, "call_memory": (lambda func: (0., func())), "image_scrapers": (scrapers.matplotlib_scraper,), }) compiler = codeop.Compile() content_rst = "" for block_label, block_content, line_no in script_blocks: if block_label == "code": # Run code and save output images code_output = genrst.execute_code_block( compiler=compiler, block=(block_label, block_content, line_no), example_globals=tutorial_globals, script_vars=script_vars, gallery_conf=gallery_conf ) content_rst += genrst.codestr2rst( block_content, lineno=None ) + "\n" content_rst += code_output else: content_rst += block_content + "\n\n" with open(os.path.join(target_dir, f"{base_image_name}.rst"), "w") as file: file.write(content_rst) # Write checksum of file to avoid unnecessary rerun with open(md5_file, "w") as file: file.write(genrst.get_md5sum(src_file)) def _md5sum_is_current(src_file, md5_file): if not os.path.exists(md5_file): return False src_md5 = genrst.get_md5sum(src_file) with open(md5_file, "r") as file: ref_md5 = file.read() return src_md5 == ref_md5
raw_packet/Scripts/DHCPv4/dhcpv4_server.py
Vladimir-Ivanov-Git/raw_packet
146
11078671
<reponame>Vladimir-Ivanov-Git/raw_packet<filename>raw_packet/Scripts/DHCPv4/dhcpv4_server.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- # region Description """ dhcpv4_server.py: DHCPv4 server (dhcpv4_server) Author: <NAME> License: MIT Copyright 2020, Raw-packet Project """ # endregion # region Import from raw_packet.Utils.base import Base from raw_packet.Servers.dhcpv4_server import DHCPv4Server from argparse import ArgumentParser, RawDescriptionHelpFormatter # endregion # region Authorship information __author__ = '<NAME>' __copyright__ = 'Copyright 2020, Raw-packet Project' __credits__ = [''] __license__ = 'MIT' __version__ = '0.2.1' __maintainer__ = '<NAME>' __email__ = '<EMAIL>' __status__ = 'Development' __script_name__ = 'DHCPv4 server (dhcpv4_server)' # endregion # region Main function def main(): # region Init Raw-packet classes base: Base = Base(admin_only=True, available_platforms=['Linux', 'Darwin', 'Windows']) # endregion # region Parse script arguments parser: ArgumentParser = ArgumentParser(description=base.get_banner(__script_name__), formatter_class=RawDescriptionHelpFormatter) parser.add_argument('-i', '--interface', help='Set interface name for send reply packets') parser.add_argument('-f', '--first_offer_ip', type=str, help='Set first client ip for offering', default=None) parser.add_argument('-l', '--last_offer_ip', type=str, help='Set last client ip for offering', default=None) parser.add_argument('-m', '--target_mac', type=str, help='Set target MAC address', default=None) parser.add_argument('-t', '--target_ip', type=str, help='Set client IP address with MAC in --target_mac', default=None) parser.add_argument('--netmask', type=str, help='Set network mask', default=None) parser.add_argument('--dhcp_mac', type=str, help='Set DHCP server MAC address, if not set use your MAC address', default=None) parser.add_argument('--dhcp_ip', type=str, help='Set DHCP server IP address, if not set use your IP address', default=None) parser.add_argument('--router', type=str, help='Set router IP address, if not set use your ip address', default=None) parser.add_argument('--dns', type=str, help='Set DNS server IP address, if not set use your ip address', default=None) parser.add_argument('--tftp', type=str, help='Set TFTP server IP address', default=None) parser.add_argument('--wins', type=str, help='Set WINS server IP address', default=None) parser.add_argument('--domain', type=str, help='Set domain name for search, default=local', default='local') parser.add_argument('--lease_time', type=int, help='Set lease time, default=172800', default=172800) parser.add_argument('--discover', action='store_true', help='Send DHCP discover packets in the background thread') parser.add_argument('-O', '--shellshock_option_code', type=int, help='Set dhcp option code for inject shellshock payload, default=114', default=114) parser.add_argument('-c', '--shellshock_command', type=str, help='Set shellshock command in DHCP client') parser.add_argument('-b', '--bind_shell', action='store_true', help='Use awk bind tcp shell in DHCP client') parser.add_argument('-p', '--bind_port', type=int, help='Set port for listen bind shell (default=1234)', default=1234) parser.add_argument('-N', '--nc_reverse_shell', action='store_true', help='Use nc reverse tcp shell in DHCP client') parser.add_argument('-E', '--nce_reverse_shell', action='store_true', help='Use nc -e reverse tcp shell in DHCP client') parser.add_argument('-R', '--bash_reverse_shell', action='store_true', help='Use bash reverse tcp shell in DHCP client') parser.add_argument('-e', '--reverse_port', type=int, help='Set port for listen bind shell (default=443)', default=443) parser.add_argument('-n', '--without_network', action='store_true', help='Do not add network configure in payload') parser.add_argument('-B', '--without_base64', action='store_true', help='Do not use base64 encode in payload') parser.add_argument('--ip_path', type=str, help='Set path to "ip" in shellshock payload, default = /bin/', default='/bin/') parser.add_argument('--iface_name', type=str, help='Set iface name in shellshock payload, default = eth0', default='eth0') parser.add_argument('--broadcast_response', action='store_true', help='Send broadcast response') parser.add_argument('--dnsop', action='store_true', help='Do not send DHCP OFFER packets') parser.add_argument('--exit', action='store_true', help='Exit on success MiTM attack') parser.add_argument('--apple', action='store_true', help='Add delay before send DHCP ACK') parser.add_argument('-q', '--quiet', action='store_true', help='Minimal output') args = parser.parse_args() # endregion # region Print banner if argument quit is not set if not args.quiet: base.print_banner(__script_name__) # endregion # region Get your network settings current_network_interface: str = \ base.network_interface_selection(interface_name=args.interface, message='Please select a network interface for ' + __script_name__ + ' from table: ') # endregion try: dhcpv4_server: DHCPv4Server = DHCPv4Server(network_interface=current_network_interface) dhcpv4_server.start(target_mac_address=args.target_mac, target_ipv4_address=args.target_ip, first_offer_ipv4_address=args.first_offer_ip, last_offer_ipv4_address=args.last_offer_ip, dhcp_server_mac_address=args.dhcp_mac, dhcp_server_ipv4_address=args.dhcp_mac, dns_server_ipv4_address=args.dns, tftp_server_ipv4_address=args.tftp, wins_server_ipv4_address=args.wins, router_ipv4_address=args.router, domain_search=args.domain, ipv4_network_mask=args.netmask, lease_time=args.lease_time, shellshock_option_code=args.shellshock_option_code, send_dhcp_discover_packets=args.discover, send_dhcp_offer_packets=not args.dnsop, send_broadcast_dhcp_response=args.broadcast_response, exit_on_success=args.exit, apple=args.apple, quiet=args.quiet) except KeyboardInterrupt: base.print_info('Exit') exit(0) except AssertionError as Error: base.print_error(Error.args[0]) exit(1) # endregion # region Call Main function if __name__ == "__main__": main() # endregion
examples/create_boxplots.py
sevagh/sigsep-mus-eval
116
11078677
import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import museval comparisons = museval.MethodStore() comparisons.add_sisec18() agg_df = comparisons.agg_frames_scores() sns.set() sns.set_context("notebook") metrics = ['SDR'] selected_targets = ['vocals', 'drums', 'bass', 'other'] oracles = [ 'IBM1', 'IBM2', 'IRM1', 'IRM2', 'MWF', 'IMSK' ] # Convert to Pandas Dataframes agg_df['oracle'] = agg_df.method.isin(oracles) agg_df = agg_df[agg_df.target.isin(selected_targets)].dropna() # Get sorting keys (sorted by median of SDR:vocals) df_sort_by = agg_df[ (agg_df.metric == "SDR") & (agg_df.target == "vocals") ] methods_by_sdr = df_sort_by.score.groupby( df_sort_by.method ).median().sort_values().index.tolist() # df = df[df.target == "vocals"] g = sns.FacetGrid( agg_df, row="target", col="metric", row_order=selected_targets, col_order=metrics, size=4, sharex=False, aspect=3 ) g = (g.map( sns.boxplot, "score", "method", "oracle", orient='h', order=methods_by_sdr[::-1], hue_order=[True, False], showfliers=False, notch=True )) g.fig.tight_layout() plt.subplots_adjust(hspace=0.2, wspace=0.1) g.fig.savefig( "boxplot.pdf", bbox_inches='tight', )
tests/tensorflow/test_models/__init__.py
sarthakpati/nncf
310
11078711
""" Copyright (c) 2020 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from tests.tensorflow.test_models.densenet import DenseNet121 from tests.tensorflow.test_models.mobilenet_v2_slim import HubMobileNetV2 from tests.tensorflow.test_models.inception_resnet_v2 import InceptionResNetV2 from tests.tensorflow.test_models.inception_v3 import InceptionV3 from tests.tensorflow.test_models.mobilenet import MobileNet from tests.tensorflow.test_models.mobilenet_v2 import MobileNetV2 from tests.tensorflow.test_models.nasnet import NASNetLarge from tests.tensorflow.test_models.nasnet import NASNetMobile from tests.tensorflow.test_models.resnet import ResNet50 from tests.tensorflow.test_models.resnet_v2 import ResNet50V2 from tests.tensorflow.test_models.vgg16 import VGG16 from tests.tensorflow.test_models.xception import Xception from tests.tensorflow.test_models.retinanet import RetinaNet from tests.tensorflow.test_models.sequential_model import SequentialModel from tests.tensorflow.test_models.sequential_model import SequentialModelNoInput from tests.tensorflow.test_models.mobilenet_v3 import MobileNetV3Small from tests.tensorflow.test_models.mobilenet_v3 import MobileNetV3Large from tests.tensorflow.test_models.shared_layers_model import SharedLayersModel from tests.tensorflow.test_models.maskrcnn import MaskRCNN from tests.tensorflow.test_models.yolo_v4 import YOLOv4
src/genie/libs/parser/junos/tests/ShowOspfDatabase/cli/equal/golden_output_expected.py
balmasea/genieparser
204
11078720
<gh_stars>100-1000 expected_output = { "ospf-database-information": { "ospf-area-header": {"ospf-area": "0.0.0.8"}, "ospf-database": [ { "advertising-router": "10.36.3.3", "age": "61", "checksum": "0xa127", "lsa-id": "10.36.3.3", "lsa-length": "2496", "lsa-type": "Router", "options": "0x22", "sequence-number": "0x80004d2d", }, { "advertising-router": "10.100.5.5", "age": "1469", "checksum": "0xa1c", "lsa-id": "10.100.5.5", "lsa-length": "60", "lsa-type": "Router", "options": "0x22", "sequence-number": "0x800019d7", }, { "advertising-router": "10.19.198.239", "age": "622", "checksum": "0x95bf", "lsa-id": "10.19.198.239", "lsa-length": "96", "lsa-type": "Router", "options": "0x22", "sequence-number": "0x80000442", }, { "advertising-router": "10.34.2.250", "age": "736", "checksum": "0x26f6", "lsa-id": "10.34.2.250", "lsa-length": "144", "lsa-type": "Router", "options": "0x22", "sequence-number": "0x8000205a", }, { "advertising-router": "10.34.2.251", "age": "567", "checksum": "0x1022", "lsa-id": "10.34.2.251", "lsa-length": "108", "lsa-type": "Router", "options": "0x22", "sequence-number": "0x80001dde", }, { "advertising-router": "10.169.196.241", "age": "35", "checksum": "0x1055", "lsa-id": "10.169.196.241", "lsa-length": "144", "lsa-type": "Router", "options": "0x22", "sequence-number": "0x800004a4", }, { "advertising-router": "10.169.14.240", "age": "2732", "checksum": "0x3a76", "lsa-id": "10.169.14.240", "lsa-length": "144", "lsa-type": "Router", "options": "0x22", "sequence-number": "0x80001bc1", }, { "advertising-router": "10.169.14.241", "age": "1468", "checksum": "0x81fa", "lsa-id": "10.169.14.241", "lsa-length": "120", "lsa-type": "Router", "options": "0x22", "sequence-number": "0x80001f67", }, { "advertising-router": "10.189.5.252", "age": "1608", "checksum": "0x1e2", "lsa-id": "10.189.5.252", "lsa-length": "120", "lsa-type": "Router", "options": "0x22", "our-entry": True, "sequence-number": "0x80001b9e", }, { "advertising-router": "10.189.5.253", "age": "1689", "checksum": "0xe230", "lsa-id": "10.189.5.253", "lsa-length": "108", "lsa-type": "Router", "options": "0x22", "sequence-number": "0x80001b04", }, { "advertising-router": "192.168.36.119", "age": "928", "checksum": "0xc6a6", "lsa-id": "192.168.36.119", "lsa-length": "48", "lsa-type": "Router", "options": "0x22", "sequence-number": "0x800019de", }, { "advertising-router": "192.168.36.120", "age": "500", "checksum": "0x2747", "lsa-id": "192.168.36.120", "lsa-length": "48", "lsa-type": "Router", "options": "0x22", "sequence-number": "0x800019ea", }, { "advertising-router": "10.169.14.240", "age": "485", "checksum": "0xbb30", "lsa-id": "192.168.36.49", "lsa-length": "32", "lsa-type": "Network", "options": "0x22", "sequence-number": "0x80000499", }, { "advertising-router": "10.169.14.240", "age": "2292", "checksum": "0x5f86", "lsa-id": "192.168.36.57", "lsa-length": "32", "lsa-type": "Network", "options": "0x22", "sequence-number": "0x80000498", }, { "advertising-router": "10.100.5.5", "age": "1469", "checksum": "0xc57f", "lsa-id": "10.1.0.0", "lsa-length": "28", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x800019ac", }, { "advertising-router": "10.19.198.239", "age": "622", "checksum": "0x4e06", "lsa-id": "10.1.0.0", "lsa-length": "28", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x8000028c", }, { "advertising-router": "10.169.196.241", "age": "521", "checksum": "0xe9d4", "lsa-id": "10.1.0.0", "lsa-length": "28", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x80000fdd", }, { "advertising-router": "10.34.2.250", "age": "1888", "checksum": "0x902f", "lsa-id": "10.1.0.1", "lsa-length": "28", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x800019e5", }, { "advertising-router": "10.34.2.251", "age": "1664", "checksum": "0xd00b", "lsa-id": "10.1.0.1", "lsa-length": "28", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x800019c7", }, { "advertising-router": "10.169.14.240", "age": "334", "checksum": "0xde66", "lsa-id": "10.1.0.1", "lsa-length": "28", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x80001987", }, { "advertising-router": "10.169.14.241", "age": "1907", "checksum": "0x8014", "lsa-id": "10.1.0.1", "lsa-length": "28", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x80001e31", }, { "advertising-router": "10.189.5.252", "age": "231", "checksum": "0xd49a", "lsa-id": "10.1.0.1", "lsa-length": "28", "lsa-type": "OpaqArea", "options": "0x22", "our-entry": True, "sequence-number": "0x80001a15", }, { "advertising-router": "10.189.5.253", "age": "901", "checksum": "0xe48e", "lsa-id": "10.1.0.1", "lsa-length": "28", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x80001a0f", }, { "advertising-router": "10.34.2.250", "age": "2119", "checksum": "0x47bd", "lsa-id": "10.1.0.3", "lsa-length": "136", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x800013d3", }, { "advertising-router": "10.34.2.251", "age": "1445", "checksum": "0x5fc3", "lsa-id": "10.1.0.3", "lsa-length": "136", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x800013b5", }, { "advertising-router": "10.169.14.240", "age": "1690", "checksum": "0x75dc", "lsa-id": "10.1.0.3", "lsa-length": "136", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x8000063d", }, { "advertising-router": "10.169.14.241", "age": "951", "checksum": "0x1721", "lsa-id": "10.1.0.3", "lsa-length": "136", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x80000c51", }, { "advertising-router": "10.189.5.252", "age": "2678", "checksum": "0x97cc", "lsa-id": "10.1.0.3", "lsa-length": "136", "lsa-type": "OpaqArea", "options": "0x22", "our-entry": True, "sequence-number": "0x80000321", }, { "advertising-router": "10.189.5.253", "age": "2500", "checksum": "0x71f1", "lsa-id": "10.1.0.3", "lsa-length": "136", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x80000322", }, { "advertising-router": "10.34.2.250", "age": "1427", "checksum": "0x1e4", "lsa-id": "10.1.0.4", "lsa-length": "136", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x8000029e", }, { "advertising-router": "10.34.2.251", "age": "1226", "checksum": "0x29c0", "lsa-id": "10.1.0.4", "lsa-length": "136", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x80000299", }, { "advertising-router": "10.169.14.240", "age": "1238", "checksum": "0xb606", "lsa-id": "10.1.0.4", "lsa-length": "136", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x800003f8", }, { "advertising-router": "10.169.14.241", "age": "2127", "checksum": "0x694d", "lsa-id": "10.1.0.4", "lsa-length": "136", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x800013fe", }, { "advertising-router": "10.189.5.252", "age": "2411", "checksum": "0xb804", "lsa-id": "10.1.0.4", "lsa-length": "136", "lsa-type": "OpaqArea", "options": "0x22", "our-entry": True, "sequence-number": "0x800013e8", }, { "advertising-router": "10.189.5.253", "age": "2772", "checksum": "0x4ecf", "lsa-id": "10.1.0.4", "lsa-length": "136", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x80000f9b", }, { "advertising-router": "10.34.2.250", "age": "289", "checksum": "0x5e9d", "lsa-id": "10.1.0.5", "lsa-length": "136", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x800001b5", }, { "advertising-router": "10.34.2.251", "age": "276", "checksum": "0xd817", "lsa-id": "10.1.0.5", "lsa-length": "136", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x800001b5", }, { "advertising-router": "10.169.14.240", "age": "33", "checksum": "0xdd1f", "lsa-id": "10.1.0.5", "lsa-length": "136", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x80000289", }, { "advertising-router": "10.169.14.241", "age": "1687", "checksum": "0x21a9", "lsa-id": "10.1.0.5", "lsa-length": "136", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x80000298", }, { "advertising-router": "10.189.5.252", "age": "1312", "checksum": "0x79b5", "lsa-id": "10.1.0.5", "lsa-length": "136", "lsa-type": "OpaqArea", "options": "0x22", "our-entry": True, "sequence-number": "0x800001bb", }, { "advertising-router": "10.189.5.253", "age": "1147", "checksum": "0x5ec3", "lsa-id": "10.1.0.5", "lsa-length": "136", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x800001bb", }, { "advertising-router": "10.100.5.5", "age": "1469", "checksum": "0x629a", "lsa-id": "10.1.0.6", "lsa-length": "168", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x800019be", }, { "advertising-router": "10.19.198.239", "age": "622", "checksum": "0xcffa", "lsa-id": "10.1.0.10", "lsa-length": "132", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x8000025d", }, { "advertising-router": "10.169.196.241", "age": "521", "checksum": "0x771b", "lsa-id": "10.1.0.10", "lsa-length": "132", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x8000025d", }, { "advertising-router": "10.19.198.239", "age": "622", "checksum": "0xecd3", "lsa-id": "10.1.0.11", "lsa-length": "132", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x8000025d", }, { "advertising-router": "10.169.196.241", "age": "521", "checksum": "0xa14f", "lsa-id": "10.1.0.11", "lsa-length": "132", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x8000025d", }, { "advertising-router": "10.19.198.239", "age": "622", "checksum": "0x87f8", "lsa-id": "10.1.0.12", "lsa-length": "80", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x80000163", }, { "advertising-router": "10.169.196.241", "age": "35", "checksum": "0x8150", "lsa-id": "10.1.8.69", "lsa-length": "80", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x8000003b", }, { "advertising-router": "10.169.196.241", "age": "521", "checksum": "0x8a2d", "lsa-id": "10.1.8.70", "lsa-length": "80", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x80000151", }, { "advertising-router": "10.100.5.5", "age": "1469", "checksum": "0x810a", "lsa-id": "10.16.0.0", "lsa-length": "52", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x800019ac", }, { "advertising-router": "10.19.198.239", "age": "622", "checksum": "0x8e0f", "lsa-id": "10.16.0.0", "lsa-length": "76", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x8000028c", }, { "advertising-router": "10.34.2.250", "age": "2810", "checksum": "0xbd3d", "lsa-id": "10.16.0.0", "lsa-length": "44", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x80001a15", }, { "advertising-router": "10.34.2.251", "age": "2103", "checksum": "0x1b10", "lsa-id": "10.16.0.0", "lsa-length": "44", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x800019e4", }, { "advertising-router": "10.169.196.241", "age": "521", "checksum": "0x2db9", "lsa-id": "10.16.0.0", "lsa-length": "76", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x800003a6", }, { "advertising-router": "10.169.14.240", "age": "2142", "checksum": "0x15f1", "lsa-id": "10.16.0.0", "lsa-length": "44", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x8000199d", }, { "advertising-router": "10.169.14.241", "age": "48", "checksum": "0xb2a7", "lsa-id": "10.16.0.0", "lsa-length": "44", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x80001e44", }, { "advertising-router": "10.189.5.252", "age": "771", "checksum": "0xe5ef", "lsa-id": "10.16.0.0", "lsa-length": "44", "lsa-type": "OpaqArea", "options": "0x22", "our-entry": True, "sequence-number": "0x80001a2a", }, { "advertising-router": "10.189.5.253", "age": "410", "checksum": "0xf1eb", "lsa-id": "10.16.0.0", "lsa-length": "44", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x80001a21", }, { "advertising-router": "10.19.198.239", "age": "622", "checksum": "0xcdab", "lsa-id": "10.49.0.0", "lsa-length": "44", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x8000028c", }, { "advertising-router": "10.169.196.241", "age": "521", "checksum": "0x69c9", "lsa-id": "10.49.0.0", "lsa-length": "44", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x800003a4", }, { "advertising-router": "10.100.5.5", "age": "1469", "checksum": "0x6c5a", "lsa-id": "10.49.0.1", "lsa-length": "44", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x800019ac", }, { "advertising-router": "10.34.2.250", "age": "736", "checksum": "0x7fa7", "lsa-id": "10.49.0.1", "lsa-length": "44", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x80001fa9", }, { "advertising-router": "10.34.2.251", "age": "567", "checksum": "0x6ce", "lsa-id": "10.49.0.1", "lsa-length": "44", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x80001cfb", }, { "advertising-router": "10.169.14.240", "age": "2732", "checksum": "0x99aa", "lsa-id": "10.49.0.1", "lsa-length": "44", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x80001bc1", }, { "advertising-router": "10.169.14.241", "age": "1468", "checksum": "0x6433", "lsa-id": "10.49.0.1", "lsa-length": "44", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x80001f67", }, { "advertising-router": "10.189.5.252", "age": "1608", "checksum": "0x8c7f", "lsa-id": "10.49.0.1", "lsa-length": "44", "lsa-type": "OpaqArea", "options": "0x22", "our-entry": True, "sequence-number": "0x80001b9e", }, { "advertising-router": "10.189.5.253", "age": "1689", "checksum": "0xe3bf", "lsa-id": "10.49.0.1", "lsa-length": "44", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x80001b04", }, { "advertising-router": "10.34.2.250", "age": "76", "checksum": "0x39a3", "lsa-id": "10.64.0.1", "lsa-length": "60", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x800004f9", }, { "advertising-router": "10.169.14.241", "age": "725", "checksum": "0x7002", "lsa-id": "10.64.0.1", "lsa-length": "60", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x80000311", }, { "advertising-router": "10.189.5.253", "age": "2230", "checksum": "0x6915", "lsa-id": "10.64.0.1", "lsa-length": "60", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x8000030a", }, { "advertising-router": "10.169.14.241", "age": "499", "checksum": "0x7271", "lsa-id": "10.64.0.2", "lsa-length": "60", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x80000305", }, { "advertising-router": "10.169.14.241", "age": "274", "checksum": "0x7248", "lsa-id": "10.64.0.3", "lsa-length": "60", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x8000029a", }, { "advertising-router": "10.189.5.253", "age": "656", "checksum": "0x34eb", "lsa-id": "10.64.0.3", "lsa-length": "60", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x800002db", }, { "advertising-router": "10.189.5.253", "age": "1960", "checksum": "0x31be", "lsa-id": "10.64.0.4", "lsa-length": "60", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x800001bb", }, { "advertising-router": "10.100.5.5", "age": "1469", "checksum": "0x4de2", "lsa-id": "10.64.0.6", "lsa-length": "56", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x800019bf", }, { "advertising-router": "10.34.2.250", "age": "2580", "checksum": "0xb9a6", "lsa-id": "10.64.0.7", "lsa-length": "48", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x8000046b", }, { "advertising-router": "10.34.2.251", "age": "1006", "checksum": "0x6a96", "lsa-id": "10.64.0.7", "lsa-length": "60", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x800004de", }, { "advertising-router": "10.19.198.239", "age": "622", "checksum": "0xb34a", "lsa-id": "10.64.0.17", "lsa-length": "104", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x8000025d", }, { "advertising-router": "10.169.196.241", "age": "521", "checksum": "0x3e3c", "lsa-id": "10.64.0.17", "lsa-length": "104", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x8000025d", }, { "advertising-router": "10.19.198.239", "age": "622", "checksum": "0xb938", "lsa-id": "10.64.0.18", "lsa-length": "104", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x8000025d", }, { "advertising-router": "10.169.196.241", "age": "521", "checksum": "0x6fdb", "lsa-id": "10.64.0.18", "lsa-length": "104", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x8000025d", }, { "advertising-router": "10.34.2.251", "age": "2542", "checksum": "0xe909", "lsa-id": "10.64.0.31", "lsa-length": "60", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x8000029a", }, { "advertising-router": "10.34.2.251", "age": "787", "checksum": "0xe396", "lsa-id": "10.64.0.32", "lsa-length": "60", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x800001b5", }, { "advertising-router": "10.34.2.250", "age": "1658", "checksum": "0xffb8", "lsa-id": "10.64.0.37", "lsa-length": "60", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x8000029b", }, { "advertising-router": "10.34.2.250", "age": "966", "checksum": "0x71b3", "lsa-id": "10.64.0.38", "lsa-length": "60", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x800001b5", }, { "advertising-router": "10.189.5.252", "age": "501", "checksum": "0x7efa", "lsa-id": "10.64.0.52", "lsa-length": "60", "lsa-type": "OpaqArea", "options": "0x22", "our-entry": True, "sequence-number": "0x80000308", }, { "advertising-router": "10.189.5.252", "age": "1042", "checksum": "0x1839", "lsa-id": "10.64.0.54", "lsa-length": "60", "lsa-type": "OpaqArea", "options": "0x22", "our-entry": True, "sequence-number": "0x800002dc", }, { "advertising-router": "10.189.5.252", "age": "1876", "checksum": "0x92eb", "lsa-id": "10.64.0.55", "lsa-length": "60", "lsa-type": "OpaqArea", "options": "0x22", "our-entry": True, "sequence-number": "0x800001bb", }, { "advertising-router": "10.169.14.240", "age": "1087", "checksum": "0x7544", "lsa-id": "10.64.0.57", "lsa-length": "60", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x80000303", }, { "advertising-router": "10.169.14.240", "age": "1389", "checksum": "0x6d12", "lsa-id": "10.64.0.59", "lsa-length": "60", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x800002f4", }, { "advertising-router": "10.169.14.240", "age": "937", "checksum": "0x4f1a", "lsa-id": "10.64.0.60", "lsa-length": "60", "lsa-type": "OpaqArea", "options": "0x22", "sequence-number": "0x8000028b", }, { "advertising-router": "10.169.196.241", "age": "35", "checksum": "0xdcd1", "lsa-id": "10.64.8.74", "lsa-length": "92", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x80000030", }, { "advertising-router": "10.169.196.241", "age": "521", "checksum": "0xd4b0", "lsa-id": "10.64.8.75", "lsa-length": "92", "lsa-type": "OpaqArea", "options": "0x20", "sequence-number": "0x80000151", }, { "advertising-router": "10.34.2.251", "age": "2323", "checksum": "0x6715", "lsa-id": "0.0.0.0", "lsa-length": "36", "lsa-type": "Extern", "options": "0x22", "sequence-number": "0x800019e3", }, { "advertising-router": "10.169.14.240", "age": "1991", "checksum": "0x9fcc", "lsa-id": "0.0.0.0", "lsa-length": "36", "lsa-type": "Extern", "options": "0x22", "sequence-number": "0x8000039e", }, { "advertising-router": "192.168.36.119", "age": "928", "checksum": "0x3bc3", "lsa-id": "10.1.0.0", "lsa-length": "36", "lsa-type": "Extern", "options": "0x20", "sequence-number": "0x800019b0", }, { "advertising-router": "192.168.36.120", "age": "500", "checksum": "0x33c9", "lsa-id": "10.1.0.0", "lsa-length": "36", "lsa-type": "Extern", "options": "0x20", "sequence-number": "0x800019b1", }, { "advertising-router": "10.169.14.240", "age": "1841", "checksum": "0xf161", "lsa-id": "10.174.132.237", "lsa-length": "36", "lsa-type": "Extern", "options": "0x22", "sequence-number": "0x8000039e", }, { "advertising-router": "10.169.14.240", "age": "2443", "checksum": "0x473e", "lsa-id": "10.34.2.250", "lsa-length": "36", "lsa-type": "Extern", "options": "0x22", "sequence-number": "0x80000288", }, { "advertising-router": "10.169.14.241", "age": "2346", "checksum": "0x2153", "lsa-id": "10.34.2.250", "lsa-length": "36", "lsa-type": "Extern", "options": "0x22", "sequence-number": "0x80000298", }, { "advertising-router": "10.169.14.240", "age": "184", "checksum": "0x3b48", "lsa-id": "10.34.2.251", "lsa-length": "36", "lsa-type": "Extern", "options": "0x22", "sequence-number": "0x80000289", }, { "advertising-router": "10.169.14.241", "age": "1176", "checksum": "0x175c", "lsa-id": "10.34.2.251", "lsa-length": "36", "lsa-type": "Extern", "options": "0x22", "sequence-number": "0x80000298", }, { "advertising-router": "10.34.2.250", "age": "1197", "checksum": "0xf88e", "lsa-id": "10.169.14.240", "lsa-length": "36", "lsa-type": "Extern", "options": "0x22", "sequence-number": "0x8000029a", }, { "advertising-router": "10.34.2.251", "age": "1884", "checksum": "0x190c", "lsa-id": "10.169.14.240", "lsa-length": "36", "lsa-type": "Extern", "options": "0x22", "sequence-number": "0x800019e4", }, { "advertising-router": "10.189.5.252", "age": "2143", "checksum": "0xc3fb", "lsa-id": "10.169.14.240", "lsa-length": "36", "lsa-type": "Extern", "options": "0x22", "our-entry": True, "sequence-number": "0x80001a3a", }, { "advertising-router": "10.34.2.250", "age": "2349", "checksum": "0xb341", "lsa-id": "10.169.14.241", "lsa-length": "36", "lsa-type": "Extern", "options": "0x22", "sequence-number": "0x80001a14", }, { "advertising-router": "10.34.2.251", "age": "50", "checksum": "0xea9b", "lsa-id": "10.169.14.241", "lsa-length": "36", "lsa-type": "Extern", "options": "0x22", "sequence-number": "0x80000299", }, { "advertising-router": "10.189.5.253", "age": "164", "checksum": "0xeb68", "lsa-id": "10.169.14.241", "lsa-length": "36", "lsa-type": "Extern", "options": "0x22", "sequence-number": "0x80000fae", }, { "advertising-router": "10.169.14.240", "age": "1539", "checksum": "0xc372", "lsa-id": "10.189.5.252", "lsa-length": "36", "lsa-type": "Extern", "options": "0x22", "sequence-number": "0x800019b0", }, { "advertising-router": "10.169.14.241", "age": "2566", "checksum": "0x6d4", "lsa-id": "10.189.5.253", "lsa-length": "36", "lsa-type": "Extern", "options": "0x22", "sequence-number": "0x8000140f", }, { "advertising-router": "10.169.14.240", "age": "786", "checksum": "0xfb51", "lsa-id": "192.168.100.0", "lsa-length": "36", "lsa-type": "Extern", "options": "0x22", "sequence-number": "0x800002da", }, { "advertising-router": "10.169.14.240", "age": "636", "checksum": "0x19b8", "lsa-id": "192.168.100.252", "lsa-length": "36", "lsa-type": "Extern", "options": "0x22", "sequence-number": "0x800002d9", }, ], } }
tests/float/sys_getsizeof_float.py
iotctl/pycopy
663
11078730
<filename>tests/float/sys_getsizeof_float.py # test sys.getsizeof() function import sys try: sys.getsizeof except AttributeError: print("SKIP") raise SystemExit print(sys.getsizeof(1.0) >= 2)
src/nginx/config/api/base.py
sixninetynine/nginx-config-builder
149
11078736
<filename>src/nginx/config/api/base.py class Base(object): """ This is the base class for all blocks and options. """ _indent_level = 0 _indent_char = ' ' _indent = 4 _parent = None def _get_indent(self): return self._indent_char * self._indent * self._indent_level def _render(self, name): return '\n{indent}{name}'.format( name=name, indent=self._get_indent() ) def __str__(self): return str(self.__repr__()) @property def parent(self): return self._parent
backend/chat/schemas.py
restato/bunnybook
131
11078739
import datetime as dt from typing import Optional from uuid import UUID from common.schemas import BaseSchema class ChatMessageRead(BaseSchema): id: UUID created_at: dt.datetime from_profile_id: UUID chat_group_id: UUID content: str class ConversationRead(BaseSchema): from_profile_id: UUID from_profile_username: str content: str created_at: dt.datetime chat_group_id: UUID chat_group_name: str read_at: Optional[dt.datetime] class IsTypingWsMessage(BaseSchema): profile_id: UUID username: str chat_group_id: UUID class PrivateChatRead(BaseSchema): chat_group_id: UUID profile_id: UUID username: str
copier/subproject.py
Ket3r/copier
438
11078755
<gh_stars>100-1000 """Objects to interact with subprojects. A *subproject* is a project that gets rendered and/or updated with Copier. """ from pathlib import Path from typing import Optional import yaml from plumbum.cmd import git from plumbum.machines import local from pydantic.dataclasses import dataclass from .template import Template from .types import AbsolutePath, AnyByStrDict, VCSTypes from .vcs import is_in_git_repo try: from functools import cached_property except ImportError: from backports.cached_property import cached_property @dataclass class Subproject: """Object that represents the subproject and its current state. Attributes: local_abspath: Absolute path on local disk pointing to the subproject root folder. answers_relpath: Relative path to [the answers file][the-copier-answersyml-file]. """ local_abspath: AbsolutePath answers_relpath: Path = Path(".copier-answers.yml") def is_dirty(self) -> bool: """Indicates if the local template root is dirty. Only applicable for VCS-tracked templates. """ if self.vcs == "git": with local.cwd(self.local_abspath): return bool(git("status", "--porcelain").strip()) return False @property def _raw_answers(self) -> AnyByStrDict: """The last answers, loaded raw as yaml.""" try: return yaml.safe_load( (self.local_abspath / self.answers_relpath).read_text() ) except OSError: return {} @cached_property def last_answers(self) -> AnyByStrDict: """Last answers, excluding private ones (except _src_path and _commit).""" return { key: value for key, value in self._raw_answers.items() if key in {"_src_path", "_commit"} or not key.startswith("_") } @cached_property def template(self) -> Optional[Template]: """Template, as it was used the last time.""" last_url = self.last_answers.get("_src_path") last_ref = self.last_answers.get("_commit") if last_url: return Template(url=last_url, ref=last_ref) @cached_property def vcs(self) -> Optional[VCSTypes]: """VCS type of the subproject.""" if is_in_git_repo(self.local_abspath): return "git"
scripts/convertChromsBigWig.py
gartician/deepTools
351
11078761
<reponame>gartician/deepTools #!/usr/bin/env python import sys import pyBigWig import requests import re import argparse from argparse import RawTextHelpFormatter import itertools def parse_arguments(defaults): parser = argparse.ArgumentParser(description='Convert chromosome names for bigwig files between ensembl, gencode and UCSC naming schemes\n' + "Per default it writes to the same location as original file, however with a modified filename:\n" + "eg. test.bw --> test.[toFormat]_chroms.bw\n" + "Change this with the -o option!\n\n" + "Mapping tables are taken from https://github.com/dpryan79/ChromosomeMappings\n\n" + "Provided mapping options need to exactly match an existing file\n" + "[GENOME]_[FROM_FORMAT]2[TO_FORMAT].txt in this repo!", usage='$ convertChroms BIGWIG', formatter_class=RawTextHelpFormatter) parser.add_argument('bw_in_filename', metavar='BIGWIG', help='bigwig file that will be converted') parser.add_argument('--genome', '-g', action='store', dest='genome', help='Genome version of original bigwig \n' + '(GRCm37|GRCm38|GRCh37|GRCh38|BDGP6|dm3|GRCz10|GRCz11|\n' + 'JGI_4.2|MEDAKA1|R64-1-1|WBcel235|Zv9|galGal4|rn5|rn6)\n' + '(default: %(default)s)', default=defaults["genome"]) parser.add_argument('--fromFormat', '-f', action='store', dest='from_format', help='Chr naming format of original bigwig (ensembl|gencode|UCSC) (default: %(default)s)', default=defaults["fromFormat"]) parser.add_argument('--toFormat', '-t', action='store', dest='to_format', help='Chr naming format of converted bigwig (ensembl|gencode|UCSC) (default: %(default)s)', default=defaults["toFormat"]) parser.add_argument('--outFileName', '-o', action='store', dest='bw_out_filename', help='Chr naming format of converted bigwig (ensembl|gencode|UCSC) (default: %(default)s)', default=defaults["bw_out_filename"]) parser.add_argument('--baseURL', '-u', action='store', dest='base_url', help='base url where the mapping tables can be found (default: %(default)s)\n' + 'Local files can be given with \'file://[BASE_DIR]/\'', default=defaults["base_url"]) parser.add_argument('--verbose', '-v', action='store_true', dest='verbose', help='Be more verbose where possible (default: %(default)s)', default=defaults["verbose"]) return parser def get_chromosome_mapping(genome="GRCm38", from_format="ensembl", to_format="UCSC", verbose=True, base_url='https://raw.githubusercontent.com/dpryan79/ChromosomeMappings/master/'): """ creates a dict with chromosome name mappings according to provided conversion formats default base URL access a github repo with conversion files, but you can also give eg. a path to local directory """ mapping_file = genome + '_' + from_format + '2' + to_format + '.txt' if re.match('^file:[/]+.*', base_url): base_url = re.sub("file:[/]*(/.*)", "\\1", base_url) if verbose: print("load mapping table (" + mapping_file + ') from ' + base_url) tab = None if re.match('^https?://.*', base_url): try: r = requests.get(base_url + '/' + mapping_file) r.raise_for_status() except requests.exceptions.RequestException as e: print("\n", e, "\n\nPlease provide correct name (GENOME, FROM_FORMAT, TO_FORMAT) for a mapping table!\n") sys.exit(1) tab = r.text elif re.match('^[/]+.*', base_url): try: tab = open(base_url + '/' + mapping_file).read() except IOError as e: print("\n", e, "\n\nPlease provide a correct name (GENOME, FROM_FORMAT, TO_FORMAT) for a mapping table!\n") sys.exit(1) else: print("\nPlease provide a correct BASE_URL for a mapping table!\n") sys.exit(1) mapping_table = {} for ent in tab.split("\n"): if len(ent) == 0: continue pair = ent.split("\t") if (len(pair[1]) <= 0): # if (verbose): # print("skip chrom \'" + pair[0] + "\' - cannot be mapped to "+to_format) continue mapping_table[pair[0]] = pair[1] return mapping_table def convert_bigwig(mapping_table, bw_in_filename, bw_out_filename, verbose=False): """ convert chromosome names of a bigwig file according to given mapping_table it checks which chromosome names that can correctly mapped, all other chromosomes are skipped """ bw = pyBigWig.open(bw_in_filename) curr_chroms = bw.chroms() final_mapping_table = {} new_chroms = {} for c in curr_chroms: if c not in mapping_table: if (verbose): print("skip original chrom \'" + c + "\' - cannot be found in mapping table! Right GENOME & FROM_FORMAT?") continue final_mapping_table[c] = mapping_table[c] new_chroms[mapping_table[c]] = curr_chroms[c] if (len(new_chroms) <= 0): print("No chromosomes found for mapping! Wrong 'FROM_FORMAT'?") sys.exit(1) bw_out = pyBigWig.open(bw_out_filename, "w") bw_out.addHeader(list(new_chroms.items())) for c in final_mapping_table: c_int = bw.intervals(c) c_map = final_mapping_table[c] if verbose: print("convert chromosome: ", c, " --> ", c_map) bw_out.addEntries(list(itertools.repeat(c_map, len(c_int))), [x[0] for x in c_int], ends=[x[1] for x in c_int], values=[x[2] for x in c_int]) bw_out.close() bw.close() if (verbose): print("\nbigwig conversion finished!\n") def main(args=None): defaults = { 'genome': 'GRCm38', 'fromFormat': 'ensembl', 'toFormat': 'UCSC', 'verbose': False, 'bw_out_filename': None, 'base_url': 'https://raw.githubusercontent.com/dpryan79/ChromosomeMappings/master/' } args = parse_arguments(defaults).parse_args(args) bw_out_filename = args.bw_out_filename if args.bw_out_filename is None: bw_out_filename = re.sub(r"(.[^\.]+)$", ".%s\\1" % (args.to_format + "_chroms"), args.bw_in_filename) print("\noutput_file: " + bw_out_filename) mapping_table = get_chromosome_mapping(genome=args.genome, from_format=args.from_format, to_format=args.to_format, verbose=args.verbose, base_url=args.base_url) convert_bigwig(mapping_table, args.bw_in_filename, bw_out_filename, args.verbose) if __name__ == "__main__": args = None if len(sys.argv) == 1: args = ["--help"] main(args)
srl_zoo/models/autoencoders.py
anonymous-authors-2018/robotics-repo
134
11078792
from __future__ import print_function, division, absolute_import from .models import * class LinearAutoEncoder(BaseModelAutoEncoder): """ :param input_dim: (int) :param state_dim: (int) """ def __init__(self, input_dim, state_dim=3): super(LinearAutoEncoder, self).__init__() self.encoder = nn.Sequential( nn.Linear(input_dim, state_dim), ) self.decoder = nn.Sequential( nn.Linear(state_dim, input_dim), ) def encode(self, x): """ :param x: (th.Tensor) :return: (th.Tensor) """ # Flatten input x = x.view(x.size(0), -1) return self.encoder(x) def decode(self, x): """ :param x: (th.Tensor) :return: (th.Tensor) """ return self.decoder(x) class DenseAutoEncoder(BaseModelAutoEncoder): """ Dense autoencoder network Known issue: it reconstructs the image but omits the robot arm :param input_dim: (int) :param state_dim: (int) """ def __init__(self, input_dim, state_dim=3): super(DenseAutoEncoder, self).__init__() self.encoder = nn.Sequential( nn.Linear(input_dim, 50), nn.Tanh(), nn.Linear(50, 50), nn.Tanh(), nn.Linear(50, state_dim), ) self.decoder = nn.Sequential( nn.Linear(state_dim, 50), nn.Tanh(), nn.Linear(50, 50), nn.Tanh(), nn.Linear(50, input_dim), ) def encode(self, x): """ :param x: (th.Tensor) :return: (th.Tensor) """ # Flatten input x = x.view(x.size(0), -1) return self.encoder(x) def decode(self, x): """ :param x: (th.Tensor) :return: (th.Tensor) """ return self.decoder(x) class CNNAutoEncoder(BaseModelAutoEncoder): """ Custom convolutional autoencoder network Input dim (same as ResNet): 3x224x224 :param state_dim: (int) """ def __init__(self, state_dim=3): super(CNNAutoEncoder, self).__init__() self.encoder_fc = nn.Sequential( nn.Linear(6 * 6 * 64, state_dim) ) self.decoder_fc = nn.Sequential( nn.Linear(state_dim, 6 * 6 * 64) ) def encode(self, x): """ :param x: (th.Tensor) :return: (th.Tensor) """ encoded = self.encoder_conv(x) encoded = encoded.view(encoded.size(0), -1) return self.encoder_fc(encoded) def decode(self, x): """ :param x: (th.Tensor) :return: (th.Tensor) """ decoded = self.decoder_fc(x) decoded = decoded.view(x.size(0), 64, 6, 6) return self.decoder_conv(decoded)
scripts/bpf/gen.py
5cs/spdk
2,107
11078811
<filename>scripts/bpf/gen.py #!/usr/bin/env python3 from argparse import ArgumentParser import os import re import subprocess import sys class TraceProcess: def __init__(self, pid): self._path = os.readlink(f'/proc/{pid}/exe') self._pid = pid self._probes = self._init_probes() def _init_probes(self): lines = subprocess.check_output(['bpftrace', '-l', '-p', str(self._pid)], text=True) probes = {} for line in lines.split('\n'): parts = line.split(':') if len(parts) < 3: continue ptype, path, function = parts[0], parts[1], parts[-1] probes[(ptype, function)] = path return probes def fixup(self, script): pregs = [re.compile(r'({}):__EXE__:(\w+)'.format(ptype)) for ptype in ['usdt', 'uprobe']] with open(script, 'r') as file: lines = file.readlines() result = '' for line in lines: for regex in pregs: match = regex.match(line) if match is not None: ptype, function = match.groups() path = self._probes.get((ptype, function), self._path) line = line.replace('__EXE__', path) break result += line.replace('__EXE__', self._path).replace('__PID__', str(self._pid)) return result if __name__ == '__main__': parser = ArgumentParser(description='bpftrace script generator replacing special ' + 'variables in the scripts with appropriate values') parser.add_argument('-p', '--pid', type=int, required=True, help='PID of a traced process') parser.add_argument('scripts', metavar='SCRIPTS', type=str, nargs='+', help='bpftrace scripts to process') args = parser.parse_args(sys.argv[1:]) proc = TraceProcess(args.pid) for script in args.scripts: print(proc.fixup(script))
examples/pysolver.py
tenglongcong/amgcl
504
11078820
<gh_stars>100-1000 #!/usr/bin/env python import sys, argparse import numpy as np import pyamgcl as amg from scipy.io import mmread, mmwrite from time import time from make_poisson import * class timeit: profile = {} def __init__(self, desc): self.desc = desc self.tic = time() def __enter__(self): return self def __exit__(self, type, value, traceback): toc = time() timeit.profile[self.desc] = timeit.profile.get(self.desc, 0.0) + (toc - self.tic) @staticmethod def report(): print('\n---------------------------------') total = sum(timeit.profile.values()) for k,v in sorted(timeit.profile.items()): print('{0:>22}: {1:>8.3f}s ({2:>5.2f}%)'.format(k, v, 100 * v / total)) print('---------------------------------') print('{0:>22}: {1:>8.3f}s'.format('Total', total)) #---------------------------------------------------------------------------- parser = argparse.ArgumentParser(sys.argv[0]) parser.add_argument('-A,--matrix', dest='A', help='System matrix in MatrixMarket format') parser.add_argument('-f,--rhs', dest='f', help='RHS in MatrixMarket format') parser.add_argument('-n,--size', dest='n', type=int, default=64, help='The size of the Poisson problem to solve when no system matrix is given') parser.add_argument('-o,--out', dest='x', help='Output file name') parser.add_argument('-p,--precond', dest='p', help='preconditioner parameters: key1=val1 key2=val2', nargs='+', default=[]) parser.add_argument('-s,--solver', dest='s', help='solver parameters: key1=val1 key2=val2', nargs='+', default=[]) args = parser.parse_args(sys.argv[1:]) #---------------------------------------------------------------------------- if args.A: with timeit('Read problem'): A = mmread(args.A) f = mmread(args.f).flatten() if args.f else np.ones(A.shape[0]) else: with timeit('Generate problem'): A,f = make_poisson_3d(args.n) # Parse parameters p_prm = {p[0]: p[1] for p in map(lambda s: s.split('='), args.p)} s_prm = {p[0]: p[1] for p in map(lambda s: s.split('='), args.s)} # Create solver/preconditioner pair with timeit('Setup solver'): S = amg.solver(amg.amgcl(A, p_prm), s_prm) print(S) # Solve the system for the RHS with timeit('Solve the problem'): x = S(f) error = np.linalg.norm(f - A * x) / np.linalg.norm(f) print("{0.iters}: {0.error:.6e} / {1:.6e}".format(S, error)) # Save the solution if args.x: with timeit('Save the result'): mmwrite(args.x, x.reshape((-1,1))) timeit.report()
chrome/test/functional/media/media_stat_perf.py
nagineni/chromium-crosswalk
231
11078827
<gh_stars>100-1000 #!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """CPU, Memory, and FPS performance test for <video>. Calculates decoded fps, dropped fps, CPU, and memory statistics while playing HTML5 media element. The test compares results of playing a media file on different video resolutions. """ import logging import os import psutil import pyauto_media import pyauto import pyauto_utils # HTML test path; relative to src/chrome/test/data. _TEST_HTML_PATH = os.path.join('media', 'html', 'media_stat_perf.html') # Path under data path for test files. _TEST_MEDIA_PATH_CROWD = os.path.join('pyauto_private', 'media', 'crowd') # Path under data path for test files. _TEST_MEDIA_PATH_TULIP = os.path.join('media', 'avperf', 'tulip') # The media files used for testing. _TEST_VIDEOS = [os.path.join(_TEST_MEDIA_PATH_CROWD, name) for name in [ 'crowd2160.webm', 'crowd1080.webm']] _TEST_VIDEOS.extend([os.path.join(_TEST_MEDIA_PATH_TULIP, name) for name in [ 'tulip2.webm', 'tulip2.wav', 'tulip2.ogv', 'tulip2.ogg', 'tulip2.mp4', 'tulip2.mp3', 'tulip2.m4a']]) class MediaStatsPerfTest(pyauto.PyUITest): """PyAuto test container. See file doc string for more information.""" def _GetChromeRendererProcess(self): """Returns the Chrome renderer process.""" renderer_id = self.GetBrowserInfo()['windows'][0]['tabs'][1]['renderer_pid'] if not renderer_id: self.fail('Can not find the tab renderer process.') return psutil.Process(renderer_id) def testMediaPerformance(self): """Launches HTML test which plays each video and records statistics.""" for file_name in _TEST_VIDEOS: # Append a tab and delete it at the end of the test to free its memory. self.AppendTab(pyauto.GURL(self.GetFileURLForDataPath(_TEST_HTML_PATH))) file_url = self.GetFileURLForDataPath(file_name) logging.debug('Running perf test for %s.', file_url) renderer_process = self._GetChromeRendererProcess() # Call to set a starting time to record CPU usage by the renderer. renderer_process.get_cpu_percent() self.assertTrue( self.CallJavascriptFunc('startTest', [file_url], tab_index=1)) cpu_usage = renderer_process.get_cpu_percent() mem_usage_mb = renderer_process.get_memory_info()[0] / 1024 file_name = os.path.basename(file_name) pyauto_utils.PrintPerfResult('cpu', file_name, cpu_usage, '%') pyauto_utils.PrintPerfResult('memory', file_name, mem_usage_mb, 'KB') decoded_fps = [ float(value) for value in self.GetDOMValue("decodedFPS.join(',')", tab_index=1).split(',')] dropped_frames = self.GetDOMValue('droppedFrames', tab_index=1) dropped_fps = [ float(value) for value in self.GetDOMValue("droppedFPS.join(',')", tab_index=1).split(',')] pyauto_utils.PrintPerfResult('fps', file_name, decoded_fps, 'fps') pyauto_utils.PrintPerfResult('dropped_fps', file_name, dropped_fps, 'fps') pyauto_utils.PrintPerfResult('dropped_frames', file_name, dropped_frames, 'frames') self.CloseTab(tab_index=1) if __name__ == '__main__': pyauto_media.Main()