max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
scripts/load_linux.py
checkra1n/PongoKit
114
11086045
<filename>scripts/load_linux.py<gh_stars>100-1000 #!/usr/bin/env python3 import usb.core import struct import sys import argparse import time parser = argparse.ArgumentParser(description='A little Linux kernel/initrd uploader for pongoOS.') parser.add_argument('-k', '--kernel', dest='kernel', help='path to kernel image') parser.add_argument('-d', '--dtbpack', dest='dtbpack', help='path to dtbpack') parser.add_argument('-r', '--initrd', dest='initrd', help='path to initial ramdisk') parser.add_argument('-c', '--cmdline', dest='cmdline', help='custom kernel command line') args = parser.parse_args() if args.kernel is None: print(f"error: No kernel specified! Run `{sys.argv[0]} --help` for usage.") exit(1) if args.dtbpack is None: print(f"error: No dtbpack specified! Run `{sys.argv[0]} --help` for usage.") exit(1) dev = usb.core.find(idVendor=0x05ac, idProduct=0x4141) if dev is None: print("Waiting for device...") while dev is None: dev = usb.core.find(idVendor=0x05ac, idProduct=0x4141) if dev is not None: dev.set_configuration() break time.sleep(2) else: dev.set_configuration() kernel = open(args.kernel, "rb").read() fdt = open(args.dtbpack, "rb").read() if args.cmdline is not None: dev.ctrl_transfer(0x21, 4, 0, 0, 0) dev.ctrl_transfer(0x21, 3, 0, 0, f"linux_cmdline {args.cmdline}\n") if args.initrd is not None: print("Loading initial ramdisk...") initrd = open(args.initrd, "rb").read() initrd_size = len(initrd) dev.ctrl_transfer(0x21, 2, 0, 0, 0) dev.ctrl_transfer(0x21, 1, 0, 0, struct.pack('I', initrd_size)) dev.write(2, initrd, 1000000) dev.ctrl_transfer(0x21, 4, 0, 0, 0) dev.ctrl_transfer(0x21, 3, 0, 0, "ramdisk\n") print("Initial ramdisk loaded successfully.") print("Loading device tree...") dev.ctrl_transfer(0x21, 2, 0, 0, 0) dev.ctrl_transfer(0x21, 1, 0, 0, 0) dev.write(2, fdt) dev.ctrl_transfer(0x21, 4, 0, 0, 0) dev.ctrl_transfer(0x21, 3, 0, 0, "fdt\n") print("Device tree loaded successfully.") print("Loading kernel...") kernel_size = len(kernel) dev.ctrl_transfer(0x21, 2, 0, 0, 0) dev.ctrl_transfer(0x21, 1, 0, 0, struct.pack('I', kernel_size)) dev.write(2, kernel, 1000000) print("Kernel loaded successfully.") dev.ctrl_transfer(0x21, 4, 0, 0, 0) print("Booting...") try: dev.ctrl_transfer(0x21, 3, 0, 0, "bootl\n") except: # if the device disconnects without acknowledging it usually means it succeeded print("Success.")
securityheaders/checkers/cors/allowcredentials/__init__.py
th3cyb3rc0p/securityheaders
151
11086055
<reponame>th3cyb3rc0p/securityheaders from .checker import AccessControlAllowCredentialsChecker __all__ = ['AccessControlAllowCredentialsChecker']
proplot/internals/context.py
lukelbd/panplot
633
11086056
<reponame>lukelbd/panplot<gh_stars>100-1000 #!/usr/bin/env python3 """ Utilities for manging context. """ from . import ic # noqa: F401 class _empty_context(object): """ A dummy context manager. """ def __init__(self): pass def __enter__(self): pass def __exit__(self, *args): # noqa: U100 pass class _state_context(object): """ Temporarily modify attribute(s) for an arbitrary object. """ def __init__(self, obj, **kwargs): self._obj = obj self._attrs_new = kwargs self._attrs_prev = { key: getattr(obj, key) for key in kwargs if hasattr(obj, key) } def __enter__(self): for key, value in self._attrs_new.items(): setattr(self._obj, key, value) def __exit__(self, *args): # noqa: U100 for key in self._attrs_new.keys(): if key in self._attrs_prev: setattr(self._obj, key, self._attrs_prev[key]) else: delattr(self._obj, key)
captcha/tests/__init__.py
shaoyh/django-simple-captcha
108
11086065
# -*- coding: utf-8 -*- from captcha.conf import settings from captcha.models import CaptchaStore from django.core.urlresolvers import reverse from django.test import TestCase from django.utils.translation import ugettext_lazy as _ from django.core.exceptions import ImproperlyConfigured from django.core.urlresolvers import reverse import datetime class CaptchaCase(TestCase): urls = 'captcha.tests.urls' def setUp(self): self.default_challenge = settings.get_challenge()() self.math_challenge = settings._callable_from_string('captcha.helpers.math_challenge')() self.chars_challenge = settings._callable_from_string('captcha.helpers.random_char_challenge')() self.unicode_challenge = settings._callable_from_string('captcha.helpers.unicode_challenge')() self.default_store, created = CaptchaStore.objects.get_or_create(challenge=self.default_challenge[0],response=self.default_challenge[1]) self.math_store, created = CaptchaStore.objects.get_or_create(challenge=self.math_challenge[0],response=self.math_challenge[1]) self.chars_store, created = CaptchaStore.objects.get_or_create(challenge=self.chars_challenge[0],response=self.chars_challenge[1]) self.unicode_store, created = CaptchaStore.objects.get_or_create(challenge=self.unicode_challenge[0],response=self.unicode_challenge[1]) def testImages(self): for key in (self.math_store.hashkey, self.chars_store.hashkey, self.default_store.hashkey, self.unicode_store.hashkey): response = self.client.get(reverse('captcha-image',kwargs=dict(key=key))) self.failUnlessEqual(response.status_code, 200) self.assertTrue(response.has_header('content-type')) self.assertEquals(response._headers.get('content-type'), ('Content-Type', 'image/png')) def testAudio(self): if not settings.CAPTCHA_FLITE_PATH: return for key in (self.math_store.hashkey, self.chars_store.hashkey, self.default_store.hashkey, self.unicode_store.hashkey): response = self.client.get(reverse('captcha-audio',kwargs=dict(key=key))) self.failUnlessEqual(response.status_code, 200) self.assertTrue(len(response.content) > 1024) self.assertTrue(response.has_header('content-type')) self.assertEquals(response._headers.get('content-type'), ('Content-Type', 'audio/x-wav')) def testFormSubmit(self): r = self.client.get(reverse('captcha-test')) self.failUnlessEqual(r.status_code, 200) hash_ = r.content[r.content.find('value="')+7:r.content.find('value="')+47] try: response = CaptchaStore.objects.get(hashkey=hash_).response except: self.fail() r = self.client.post(reverse('captcha-test'), dict(captcha_0=hash_,captcha_1=response, subject='xxx', sender='<EMAIL>')) self.failUnlessEqual(r.status_code, 200) self.assertTrue(r.content.find('Form validated') > 0) r = self.client.post(reverse('captcha-test'), dict(captcha_0=hash_,captcha_1=response, subject='xxx', sender='<EMAIL>')) self.failUnlessEqual(r.status_code, 200) self.assertFalse(r.content.find('Form validated') > 0) def testWrongSubmit(self): r = self.client.get(reverse('captcha-test')) self.failUnlessEqual(r.status_code, 200) r = self.client.post(reverse('captcha-test'), dict(captcha_0='abc',captcha_1='wrong response', subject='xxx', sender='<EMAIL>')) self.assertFormError(r,'form','captcha',_('Invalid CAPTCHA')) def testDeleteExpired(self): self.default_store.expiration = datetime.datetime.now() - datetime.timedelta(minutes=5) self.default_store.save() hash_ = self.default_store.hashkey r = self.client.post(reverse('captcha-test'), dict(captcha_0=hash_,captcha_1=self.default_store.response, subject='xxx', sender='<EMAIL>')) self.failUnlessEqual(r.status_code, 200) self.assertFalse(r.content.find('Form validated') > 0) # expired -> deleted try: CaptchaStore.objects.get(hashkey=hash_) self.fail() except: pass def testCustomErrorMessage(self): r = self.client.get(reverse('captcha-test-custom-error-message')) self.failUnlessEqual(r.status_code, 200) # Wrong answer r = self.client.post(reverse('captcha-test-custom-error-message'), dict(captcha_0='abc',captcha_1='wrong response')) self.assertFormError(r,'form','captcha','TEST CUSTOM ERROR MESSAGE') # empty answer r = self.client.post(reverse('captcha-test-custom-error-message'), dict(captcha_0='abc',captcha_1='')) self.assertFormError(r,'form','captcha',_('This field is required.')) def testRepeatedChallenge(self): store = CaptchaStore.objects.create(challenge='xxx',response='xxx') try: store2 = CaptchaStore.objects.create(challenge='xxx',response='xxx') except Exception: self.fail() def testRepeatedChallengeFormSubmit(self): settings.CAPTCHA_CHALLENGE_FUNCT = 'captcha.tests.trivial_challenge' r1 = self.client.get(reverse('captcha-test')) r2 = self.client.get(reverse('captcha-test')) self.failUnlessEqual(r1.status_code, 200) self.failUnlessEqual(r2.status_code, 200) hash_1 = r1.content[r1.content.find('value="')+7:r1.content.find('value="')+47] hash_2 = r2.content[r2.content.find('value="')+7:r2.content.find('value="')+47] try: store_1 = CaptchaStore.objects.get(hashkey=hash_1) store_2 = CaptchaStore.objects.get(hashkey=hash_2) except: self.fail() self.assertTrue(store_1.pk != store_2.pk) self.assertTrue(store_1.response == store_2.response) self.assertTrue(hash_1 != hash_2) r1 = self.client.post(reverse('captcha-test'), dict(captcha_0=hash_1,captcha_1=store_1.response, subject='xxx', sender='<EMAIL>')) self.failUnlessEqual(r1.status_code, 200) self.assertTrue(r1.content.find('Form validated') > 0) try: store_2 = CaptchaStore.objects.get(hashkey=hash_2) except: self.fail() r2 = self.client.post(reverse('captcha-test'), dict(captcha_0=hash_2,captcha_1=store_2.response, subject='xxx', sender='<EMAIL>')) self.failUnlessEqual(r2.status_code, 200) self.assertTrue(r2.content.find('Form validated') > 0) def testOutputFormat(self): settings.CAPTCHA_OUTPUT_FORMAT = u'%(image)s<p>Hello, captcha world</p>%(hidden_field)s%(text_field)s' r = self.client.get(reverse('captcha-test')) self.failUnlessEqual(r.status_code, 200) self.assertTrue('<p>Hello, captcha world</p>' in r.content) def testInvalidOutputFormat(self): settings.CAPTCHA_OUTPUT_FORMAT = u'%(image)s' try: r = self.client.get(reverse('captcha-test')) self.fail() except ImproperlyConfigured,e: self.failUnless('CAPTCHA_OUTPUT_FORMAT' in unicode(e)) def testPerFormFormat(self): settings.CAPTCHA_OUTPUT_FORMAT = u'%(image)s testCustomFormatString %(hidden_field)s %(text_field)s' r = self.client.get(reverse('captcha-test')) self.failUnless('testCustomFormatString' in r.content) r = self.client.get(reverse('test_per_form_format')) self.failUnless('testPerFieldCustomFormatString' in r.content) def testIssue31ProperLabel(self): settings.CAPTCHA_OUTPUT_FORMAT = u'%(image)s %(hidden_field)s %(text_field)s' r = self.client.get(reverse('captcha-test')) self.failUnless('<label for="id_captcha_1"' in r.content) def trivial_challenge(): return 'trivial','trivial'
hand_eye_calibration/bin/bag_to_csv_with_config.py
Chatoyant19/handeye_calibration
333
11086129
<filename>hand_eye_calibration/bin/bag_to_csv_with_config.py #!/usr/bin/env python from subprocess import call import argparse import copy import rospy import yaml if __name__ == '__main__': parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--yaml_config_file', required=True, help='A yaml file specifying topics and frames.') args = parser.parse_args() tf_arguments = ["rosrun", "hand_eye_calibration", "tf_to_csv.py"] te_arguments = ["rosrun", "hand_eye_calibration", "target_extractor_interface.py"] with open(args.yaml_config_file, 'r') as stream: try: yaml_content = yaml.load(stream) except yaml.YAMLError as exc: print(exc) bags = yaml_content['bags'] for bag in bags: bag_name = bag['name'] bag_name_without_suffix = bag_name.split('.')[0] bag_path = bag['bag_path'] intrinsics_path = bag['intrinsics_path'] target_config_path = bag['target_config_path'] print("\n\nExporting poses from {}...\n".format(bag_name)) tf_frames = bag['tf_frames'] if tf_frames is None: num_tf_source_frames = 0 num_tf_target_frames = 0 else: num_tf_source_frames = len(tf_frames['source']) num_tf_target_frames = len(tf_frames['target']) assert num_tf_source_frames == num_tf_target_frames, "Source and target frames should have equal length." for i in range(num_tf_source_frames): tf_source_frame = tf_frames['source'][i] tf_target_frame = tf_frames['target'][i] print("Exporting poses of {} in {} frame".format( tf_source_frame, tf_target_frame)) # Setup the args for tf_to_csv.py. tf_call = copy.deepcopy(tf_arguments) tf_call.append('--bag') tf_call.append(bag_path + bag_name) tf_call.append('--tf_source_frame') tf_call.append(tf_source_frame) tf_call.append('--tf_target_frame') tf_call.append(tf_target_frame) tf_call.append('--csv_output_file') tf_call.append(bag_name_without_suffix + '_' + tf_target_frame + '_' + tf_source_frame + '.csv') call(tf_call) cameras = bag['cameras'] equal_length_warning = ("Camera topics and intrinsic calibrations should " "have equal length.") if cameras is None: num_camera_topics = 0 num_camera_intrinsics = 0 else: num_camera_topics = len(cameras['cam_topics']) num_camera_intrinsics = len( cameras['cam_intrinsics']) assert num_camera_topics == num_camera_intrinsics, equal_length_warning target_config = bag['target'] for i in range(num_camera_topics): camera_topic = cameras['cam_topics'][i] camera_intrinsics = cameras['cam_intrinsics'][i] print("Exporting {} poses in world (target) frame.".format(camera_topic)) # Setup the args for target_extractor_interface.py. te_call = copy.deepcopy(te_arguments) te_call.append('--bag') te_call.append(bag_path + bag_name) te_call.append('--image_topic') te_call.append(camera_topic) te_call.append('--calib_file_camera') te_call.append(intrinsics_path + camera_intrinsics) te_call.append('--calib_file_target') te_call.append(target_config_path + target_config) te_call.append('--output_file') te_call.append(bag_name_without_suffix + '_' + 'W_' + camera_topic.replace("/", "_")[1:] + '.csv') call(te_call)
L1Trigger/Configuration/python/L1DummyConfig_cff.py
ckamtsikis/cmssw
852
11086166
<filename>L1Trigger/Configuration/python/L1DummyConfig_cff.py<gh_stars>100-1000 import FWCore.ParameterSet.Config as cms # for backwards compatibility from L1Trigger.Configuration.L1Trigger_FakeConditions_cff import *
gwd/eda/submission.py
kazakh-shai/kaggle-global-wheat-detection
136
11086177
<reponame>kazakh-shai/kaggle-global-wheat-detection import argparse import os import os.path as osp import cv2 import numpy as np import pandas as pd from tqdm import tqdm from gwd.eda.visualization import draw_bounding_boxes_on_image def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--submission_path", default="/data/pseudo_universe_submission.csv") parser.add_argument("--img_root", default="/data/test") parser.add_argument("--output_root", default="/data/eda") return parser.parse_args() def convert_bboxes(bboxes): bboxes = np.concatenate([bboxes[:, 1:], bboxes[:, :1]], axis=1) bboxes[:, 2] += bboxes[:, 0] bboxes[:, 3] += bboxes[:, 1] return bboxes def main(): args = parse_args() os.makedirs(args.output_root, exist_ok=True) submission = pd.read_csv(args.submission_path) for _, row in tqdm(submission.iterrows(), total=len(submission)): image = cv2.imread(osp.join(args.img_root, f"{row.image_id}.jpg")) bboxes = convert_bboxes(np.array(list(map(float, row.PredictionString.split()))).reshape(-1, 5)) draw_bounding_boxes_on_image(image, bboxes, use_normalized_coordinates=False, thickness=5) cv2.imwrite(osp.join(args.output_root, f"{row.image_id}.jpg"), image) if __name__ == "__main__": main()
tests/bytecode/mp-tests/fun4.py
LabAixBidouille/micropython
303
11086195
def f(a, b=1, *c, d): pass #print(a,b,c,d) # bug in uPy! f = lambda a, b, *c, d: None # default arg #f = lambda a, b=1, *c, d: None # default arg for lambda not implemented
PyEngine3D/Render/Light.py
ubuntunux/PyEngine3D
121
11086216
<reponame>ubuntunux/PyEngine3D import numpy as np from PyEngine3D.Utilities import * from PyEngine3D.Common import logger from PyEngine3D.Common.Constants import * from PyEngine3D.App import CoreManager from .Actor import StaticActor class MainLight(StaticActor): def __init__(self, name, **object_data): StaticActor.__init__(self, name, **object_data) self.light_color = Float4(*object_data.get('light_color', (1.0, 1.0, 1.0, 1.0))) self.transform.set_rotation(object_data.get('rot', [-1.0, 0, 0])) self.last_shadow_camera = None self.last_shadow_position = FLOAT3_ZERO.copy() self.shadow_samples = object_data.get('shadow_samples', SHADOW_SAMPLES) self.shadow_exp = object_data.get('shadow_exp', SHADOW_EXP) self.shadow_bias = object_data.get('shadow_bias', SHADOW_BIAS) self.shadow_width = object_data.get('shadow_width', SHADOW_DISTANCE) self.shadow_height = object_data.get('shadow_height', SHADOW_DISTANCE) self.shadow_depth = object_data.get('shadow_depth', SHADOW_DISTANCE) self.shadow_orthogonal = Matrix4() self.shadow_view_projection = Matrix4() self.changed = False self.update_shadow_orthogonal() def reset_changed(self): self.changed = False def update_shadow_orthogonal(self): ortho(self.shadow_orthogonal, -self.shadow_width, self.shadow_width, -self.shadow_height, self.shadow_height, -self.shadow_depth, self.shadow_depth) self.changed = True def get_attribute(self): super().get_attribute() self.attributes.set_attribute('light_color', self.light_color) self.attributes.set_attribute('shadow_width', self.shadow_width) self.attributes.set_attribute('shadow_height', self.shadow_height) self.attributes.set_attribute('shadow_depth', self.shadow_depth) self.attributes.set_attribute('shadow_exp', self.shadow_exp) self.attributes.set_attribute('shadow_bias', self.shadow_bias) self.attributes.set_attribute('shadow_samples', self.shadow_samples) return self.attributes def set_attribute(self, attribute_name, attribute_value, item_info_history, attribute_index): if 'light_color' == attribute_name: self.light_color[...] = attribute_value self.changed = True elif attribute_name in ('shadow_width', 'shadow_height', 'shadow_depth'): setattr(self, attribute_name, attribute_value) self.update_shadow_orthogonal() else: super().set_attribute(attribute_name, attribute_value, item_info_history, attribute_index) def get_save_data(self): save_data = StaticActor.get_save_data(self) save_data['light_color'] = self.light_color.tolist() save_data['shadow_width'] = self.shadow_width save_data['shadow_height'] = self.shadow_height save_data['shadow_depth'] = self.shadow_depth save_data['shadow_exp'] = self.shadow_exp save_data['shadow_bias'] = self.shadow_bias save_data['shadow_samples'] = self.shadow_samples return save_data def update(self, current_camera): changed = self.transform.update_transform(update_inverse_matrix=True) self.changed = self.changed or changed if current_camera is not None: camera_pos = current_camera.transform.get_pos() self.last_shadow_camera = current_camera self.last_shadow_position[...] = camera_pos set_translate_matrix(self.shadow_view_projection, *(-camera_pos)) self.shadow_view_projection[...] = np.dot(np.dot(self.shadow_view_projection, self.transform.inverse_matrix), self.shadow_orthogonal) class PointLight(StaticActor): def __init__(self, name, **object_data): StaticActor.__init__(self, name, **object_data) self.light_color = Float3(*object_data.get('light_color', (1.0, 1.0, 1.0))) self.light_radius = object_data.get('light_radius', 10.0) def get_attribute(self): super().get_attribute() self.attributes.set_attribute('light_color', self.light_color) self.attributes.set_attribute('light_radius', self.light_radius) return self.attributes def set_attribute(self, attribute_name, attribute_value, item_info_history, attribute_index): super().set_attribute(attribute_name, attribute_value, item_info_history, attribute_index) if attribute_name == 'light_color': self.light_color[:] = attribute_value[:] elif hasattr(self, attribute_name): setattr(self, attribute_name, attribute_value) def get_save_data(self): save_data = StaticActor.get_save_data(self) save_data['light_color'] = self.light_color.tolist() save_data['light_radius'] = self.light_radius return save_data def update(self): self.transform.update_transform()
packages/Python/lldbsuite/test/lang/swift/playgrounds-repl/two_valid_inputs/TestTwoValidInputs.py
xiaobai/swift-lldb
765
11086228
# TestTwoValidBlocks.py # # This source file is part of the Swift.org open source project # # Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors # Licensed under Apache License v2.0 with Runtime Library Exception # # See https://swift.org/LICENSE.txt for license information # See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors # # ------------------------------------------------------------------------------ """ Test that statements made in one block can be referenced in a proceeding block """ import lldbsuite.test.lldbplaygroundrepl as repl from lldbsuite.test.lldbtest import * class TestTwoValidInputs(repl.PlaygroundREPLTest): mydir = repl.PlaygroundREPLTest.compute_mydir(__file__) def do_test(self): """ Test that statements made in one block can be referenced in a proceeding block """ # Execute first block result, output = self.execute_code("Input1.swift") playground_output = output.GetSummary() if self.is_compile_or_runtime_error(result): self.did_crash(result) self.assertTrue(False) self.assertTrue(playground_output is not None) self.assertTrue("a=\\'3\\'" in playground_output) self.assertTrue("b=\\'5\\'" in playground_output) # Execute second block result, output = self.execute_code("Input2.swift") playground_output = output.GetSummary() if self.is_compile_or_runtime_error(result): self.did_crash(result) self.assertTrue(False) self.assertTrue(playground_output is not None) self.assertTrue("=\\'8\\'" in playground_output)
mmdet/utils/collect_env.py
Karybdis/mmdetection-mini
834
11086232
<filename>mmdet/utils/collect_env.py from mmdet.cv_core.utils.env import collect_env as collect_base_env def collect_env(): """Collect the information of the running environments.""" env_info = collect_base_env() return env_info if __name__ == '__main__': for name, val in collect_env().items(): print(f'{name}: {val}')
nuplan/planning/metrics/evaluation_metrics/common/ego_jerk.py
motional/nuplan-devkit
128
11086251
from typing import List from nuplan.planning.metrics.evaluation_metrics.base.within_bound_metric_base import WithinBoundMetricBase from nuplan.planning.metrics.metric_result import MetricStatistics from nuplan.planning.metrics.utils.state_extractors import extract_ego_jerk from nuplan.planning.scenario_builder.abstract_scenario import AbstractScenario from nuplan.planning.simulation.history.simulation_history import SimulationHistory class EgoJerkStatistics(WithinBoundMetricBase): """Ego jerk metric.""" def __init__(self, name: str, category: str, max_abs_mag_jerk: float) -> None: """ Initializes the EgoProgressAlongExpertRouteStatistics class :param name: Metric name :param category: Metric category :param max_abs_mag_jerk: Maximum threshold to define if absolute jerk is within bound. """ super().__init__(name=name, category=category) self._max_abs_mag_jerk = max_abs_mag_jerk def compute(self, history: SimulationHistory, scenario: AbstractScenario) -> List[MetricStatistics]: """ Returns the jerk metric :param history: History from a simulation engine :param scenario: Scenario running this metric :return the estimated jerk metric. """ return self._compute_statistics( # type: ignore history=history, scenario=scenario, statistic_unit_name='meters_per_second_cubed', extract_function=extract_ego_jerk, extract_function_params={'acceleration_coordinate': 'magnitude'}, max_within_bound_threshold=self._max_abs_mag_jerk, )
comcrawl/core/__init__.py
akozlo/comcrawl
118
11086254
<reponame>akozlo/comcrawl """This module exports the core class of the package.""" from .index_client import IndexClient
tools/gen_label_video_source.py
Xlsean/X-Temporal
492
11086282
<reponame>Xlsean/X-Temporal import os from decord import VideoReader from decord import cpu if __name__ == '__main__': root_dir = '' # video data root path dataset_name = 'hmdb51' with open(os.path.join('../datasets', dataset_name, 'category.txt')) as f: lines = f.readlines() categories = [] for line in lines: line = line.rstrip() categories.append(line) dict_categories = {} for i, category in enumerate(categories): dict_categories[category] = i filename_input = os.path.join('../datasets', dataset_name, 'vallist.txt') filename_output = 'test_videofolder.txt' with open(filename_input) as f: lines = f.readlines() videos = [] idx_categories = [] for line in lines: line = line.rstrip() videos.append(line) label = line.split('/')[0] idx_categories.append(dict_categories[label]) output = [] for i in range(len(videos)): curVideo = videos[i] curIDX = idx_categories[i] video_file = os.path.join(root_dir, curVideo) vr = VideoReader(os.path.join(root_dir, curVideo), ctx=cpu(0)) output.append('%s %d %d' % (curVideo, len(vr), curIDX)) print('%d/%d' % (i, len(vr))) with open(filename_output, 'w') as f: f.write('\n'.join(output))
rdkit/Chem/MolKey/UnitTestMolKey.py
kazuyaujihara/rdkit
1,609
11086287
<reponame>kazuyaujihara/rdkit # # @@ All Rights Reserved @@ # This file is part of the RDKit. # The contents are covered by the terms of the BSD license # which is included in the file license.txt, found at the root # of the RDKit source tree. # import doctest import unittest from rdkit.Chem import inchi from rdkit.TestRunner import redirect_stderr import io if inchi.INCHI_AVAILABLE: from rdkit.Chem.MolKey.InchiInfo import InchiInfo try: from rdkit.Avalon import pyAvalonTools from rdkit.Chem.MolKey import MolKey _testMolKey = True except ImportError: _testMolKey = False def load_tests(loader, tests, ignore): """ Add the Doctests from the module """ if _testMolKey: tests.addTests(doctest.DocTestSuite(MolKey, optionflags=doctest.ELLIPSIS)) return tests @unittest.skipUnless(_testMolKey, 'Avalon tools and Inchi required') class TestMolKey(unittest.TestCase): def test_GetKeyForCTAB(self): f = io.StringIO() with redirect_stderr(f): res = MolKey.GetKeyForCTAB('IncorrectCTAB') self.assertNotEqual(res.error, 0) s = f.getvalue() self.assertIn('WARNING:', s) def test_CheckCTAB(self): self.assertRaises(MolKey.BadMoleculeException, MolKey.CheckCTAB, None) self.assertRaises(MolKey.BadMoleculeException, MolKey.CheckCTAB, '') ok, _ = MolKey.CheckCTAB('CCincorrect', isSmiles=True) self.assertEqual(ok, 1) ok, _ = MolKey.CheckCTAB('NO_STRUCTURE', isSmiles=True) self.assertEqual(ok, MolKey.ERROR_DICT['NULL_MOL']) ok, ctab = MolKey.CheckCTAB('CC', isSmiles=True) self.assertEqual(ok, 0) ok, ctab2 = MolKey.CheckCTAB(ctab, isSmiles=False) self.assertEqual(ok, 0) self.assertEqual(ctab, ctab2) def test_GetInchiForCTAB(self): self.assertRaises(MolKey.BadMoleculeException, MolKey.GetInchiForCTAB, 'IncorrectCTAB') def test_ErrorBitsToText(self): errors = MolKey.ErrorBitsToText(3) self.assertIn('BAD_MOLECULE', errors) self.assertIn('ALIAS_CONVERSION_FAILED', errors) for k, v in MolKey.ERROR_DICT.items(): errors = MolKey.ErrorBitsToText(v) self.assertEqual(len(errors), 1) self.assertIn(k, errors) def test_get_chiral_identification_string(self): cases = [((0, 0), 'S_ACHIR'), # No stereo centers ((0, 1), 'R_ONE'), # One undefined stereo centers ((0, 2), 'S_UNKN'), # More than one undefined stereo centers ((0, 3), 'S_UNKN'), # More than one undefined stereo centers ((1, 0), 'S_ABS'), # Fully defined stereo center ((2, 0), 'S_ABS'), # Fully defined stereo centers ((1, 1), 'S_PART'), # Partially defined stereo centers ((2, 1), 'S_PART'), # Partially defined stereo centers ] for (nDefined, nUndefined), expected in cases: self.assertEqual(MolKey._get_chiral_identification_string(nDefined, nUndefined), expected) GUANINE = 'InChI=1S/C5H5N5O/c6-5-9-3-2(4(11)10-5)7-1-8-3/h1H0,(H4,6,7,8,9,10,11)' # 'N=C(-O)N', '/FixedH /SUU' UREA1 = 'InChI=1/CH4N2O/c2-1(3)4/h(H4,2,3,4)/f/h2,4H,3H2/b2-1?' # 'NC(=O)N', '/FixedH /SUU' UREA2 = 'InChI=1/CH4N2O/c2-1(3)4/h(H4,2,3,4)/f/h2-3H2' TRITIATED_UREA = 'InChI=1S/CH4N2O/c2-1(3)4/h(H4,2,3,4)/i/hT3' DEUTERATED_UREA = 'InChI=1S/CH4N2O/c2-1(3)4/h(H4,2,3,4)/i/hD2' ACETIC_ACID = 'InChI=1S/C3H6O2/c1-2-3(4)5/h2H2,1H3,(H,4,5)' ACETATE = 'InChI=1S/C3H6O2/c1-2-3(4)5/h2H2,1H3,(H,4,5)/p-1' mobile1 = 'InChI=1S/C5H5N3O2/c6-4(9)3-1-7-2-8-5(3)10/h1-2H,(H2,6,9)(H,7,8,10)' # invented mobile2 = 'InChI=1S/C7H10N4O/c1-4-2-5(3-6(8)12)11-7(9)10-4/h2H,3H2,1H3,(H2,8,12)(H2,9,10,11)' # sp3 stereo sugar1 = 'InChI=1S/C14H20O9/c1-6-11(20-7(2)15)12(21-8(3)16)13(22-9(4)17)14(19-6)23-10(5)18/h6,11-14H,1-5H3/t6-,11-,12+,13+,14?/m0/s1' # L-rhamnopyranose (source: chemspider) sugar2 = 'InChI=1S/C12H20O6/c1-11(2)14-5-6(16-11)8-7(13)9-10(15-8)18-12(3,4)17-9/h6-10,13H,5H2,1-4H3/t6-,7-,8-,9-,10-/m1/s1' # MFCD00135634 (Diacetone-D-Glucose, souce: chemspider) sp3_unk = 'InChI=1S/C12H21NO4/c1-8(2)10(12(15)16-3)13-11(14)9-5-4-6-17-7-9/h8-10H,4-7H2,1-3H3,(H,13,14)/t9?,10-/m0/s1' # derived from ChemSpider 34044335 @unittest.skipUnless(inchi.INCHI_AVAILABLE, 'Inchi required') class TestInchiInfo(unittest.TestCase): def doTest(self, inchi, numSp3=0, numUndefSp3=0, numMobileHGroups=0, layer='non-isotopic'): ii = InchiInfo(inchi) nSp3, nUndefSp3, _, _ = ii.get_sp3_stereo()['main'][layer] self.assertEqual(nSp3, numSp3) self.assertEqual(nUndefSp3, numUndefSp3) nMobileHGroups, _ = ii.get_mobile_h()['main'][layer] self.assertEqual(nMobileHGroups, numMobileHGroups) def testGuanine(self): self.doTest(GUANINE, 0, 0, 1) def testTritiatedUrea(self): self.doTest(TRITIATED_UREA, 0, 0, 1) def testDeuteratedUrea(self): self.doTest(DEUTERATED_UREA, 0, 0, 1) def testAceticAcid(self): self.doTest(ACETIC_ACID, 0, 0, 1) def testAcetate(self): self.doTest(ACETATE, 0, 0, 1) def testMobile1(self): self.doTest(mobile1, 0, 0, 2) def testMobile2(self): self.doTest(mobile2, 0, 0, 2) # sp3 stereo def testSugar1(self): self.doTest(sugar1, 5, 1, 0) def testSugar2(self): self.doTest(sugar2, 5, 0, 0) def testSP3_unk(self): self.doTest(sp3_unk, 2, 1, 1) if __name__ == '__main__': # pragma: nocover unittest.main()
upvote/gae/taskqueue/utils_test.py
iwikmai/upvote
453
11086292
<reponame>iwikmai/upvote<filename>upvote/gae/taskqueue/utils_test.py<gh_stars>100-1000 # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for taskqueue_utils.""" from google.appengine.ext import deferred from upvote.gae.lib.testing import basetest from upvote.gae.taskqueue import utils from upvote.shared import constants class QueueSizeTest(basetest.UpvoteTestCase): def testSuccess(self): self.assertEqual(0, utils.QueueSize()) expected_size = 10 for _ in xrange(expected_size): deferred.defer(dir) self.assertEqual(expected_size, utils.QueueSize()) class CappedDeferTest(basetest.UpvoteTestCase): def testSuccess(self): max_size = 6 total_size = 10 expected_results = [True] * max_size + [False] * (total_size - max_size) actual_results = [ utils.CappedDefer(dir, max_size) for _ in xrange(total_size) ] self.assertEqual(expected_results, actual_results) _DEFAULT = constants.TASK_QUEUE.DEFAULT _METRICS = constants.TASK_QUEUE.METRICS def _FreeFunction(a=0): return a + 1 if __name__ == '__main__': basetest.main()
aliyun/log/logresponse.py
topdown618/aliyun-log-python-sdk
130
11086293
#!/usr/bin/env python # encoding: utf-8 # Copyright (C) Alibaba Cloud Computing # All rights reserved. from .util import Util class LogResponse(object): """ The base response class of all log response. :type headers: dict :param headers: HTTP response header """ def __init__(self, headers, body=''): self.headers = headers if body is None: body = '' self.body = body def get_request_id(self): """ Get the request id of the response. '' will be return if not set. :return: string, request id """ return Util.h_v_td(self.headers, 'x-log-requestid', '') def get_body(self): """ Get body :return: string """ return self.body def get_all_headers(self): """ Get all http header of the response :return: dict, response header """ return self.headers def get_header(self, key): """ Get specified http header of the response, '' will be return if not set. :type key: string :param key: the key to get header :return: string, response header """ return self.headers[key] if key in self.headers else '' def log_print(self): print('header: ', self.headers)
demo/hermite_poisson2D.py
spectralDNS/shenfun
138
11086362
r""" Solve Poisson equation in 2D with homogeneous Dirichlet bcs in one direction and periodic in the other. The domain is (-inf, inf) x [0, 2pi] .. math:: \nabla^2 u = f, The equation to solve for a Hermite x Fourier basis is .. math:: (\nabla u, \nabla v) = -(f, v) """ import os import sys from sympy import symbols, exp, hermite, cos import numpy as np from shenfun import inner, grad, TestFunction, TrialFunction, la, \ Array, Function, FunctionSpace, TensorProductSpace, comm assert len(sys.argv) == 2, 'Call with one command-line argument' assert isinstance(int(sys.argv[-1]), int) # Use sympy to compute a rhs, given an analytical solution x, y = symbols("x,y", real=True) #ue = sin(4*x)*exp(-x**2) ue = cos(4*y)*hermite(4, x)*exp(-x**2/2) fe = ue.diff(x, 2)+ue.diff(y, 2) # Size of discretization N = int(sys.argv[-1]) SD = FunctionSpace(N, 'Hermite') K0 = FunctionSpace(N, 'Fourier', dtype='d') T = TensorProductSpace(comm, (SD, K0), axes=(0, 1)) u = TrialFunction(T) v = TestFunction(T) # Get f on quad points fj = Array(T, buffer=fe) # Compute right hand side of Poisson equation f_hat = Function(T) f_hat = inner(v, -fj, output_array=f_hat) # Get left hand side of Poisson equation matrices = inner(grad(v), grad(u)) # Solve and transform to real space u_hat = Function(T) # Solution spectral space sol = la.SolverGeneric1ND(matrices) u_hat = sol(f_hat, u_hat) uq = u_hat.backward() # Compare with analytical solution uj = Array(T, buffer=ue) assert np.allclose(uj, uq, atol=1e-5) print('Error ', np.linalg.norm(uj-uq)) if 'pytest' not in os.environ: import matplotlib.pyplot as plt plt.figure() X = T.local_mesh(True) plt.contourf(X[0], X[1], uq) plt.colorbar() plt.figure() plt.contourf(X[0], X[1], uj) plt.colorbar() plt.figure() plt.contourf(X[0], X[1], uq-uj) plt.colorbar() plt.title('Error') plt.figure() X = T.local_mesh() for x in np.squeeze(X[0]): plt.plot((x, x), (np.squeeze(X[1])[0], np.squeeze(X[1])[-1]), 'k') for y in np.squeeze(X[1]): plt.plot((np.squeeze(X[0])[0], np.squeeze(X[0])[-1]), (y, y), 'k') #plt.show()
python/akg/ops/math/__init__.py
tianjiashuo/akg
286
11086374
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """__init__""" from .abs import Abs from .abs_sum import AbsSum from .add import Add from .addn import Addn from .assign import Assign from .cast import Cast from .divide import Divide from .equal import Equal from .exp import Exp from .expand_dims import ExpandDims from .greater_equal import GreaterEqual from .less import Less from .less_equal import LessEqual from .log import Log from .logical_and import LogicalAnd from .logical_not import LogicalNot from .logical_or import LogicalOr from .maximum import Maximum from .minimum import Minimum from .mul import Mul from .neg import Neg from .notequal import NotEqual from .pow import Pow from .reduce_and import ReduceAnd from .reduce_max import ReduceMax from .reduce_min import ReduceMin from .reduce_or import ReduceOr from .reduce_prod import ReduceProd from .reduce_sum import ReduceSum from .reciprocal import Reciprocal from .round import Round from .rsqrt import Rsqrt from .select import Select from .sqrt import Sqrt from .sub import Sub from .sum import Sum
apps/autotest/run.py
rainydaygit/testtcloudserver
349
11086393
from apps.autotest.settings import config from apps.autotest.views.performance import performance if config.SERVER_ENV != 'dev': from gevent import monkey monkey.patch_all() else: pass from apps.autotest.views.datashow import datashow from apps.autotest.views.monkey import monkey from library.api.tFlask import tflask def create_app(): app = tflask(config) register_blueprints(app) return app def register_blueprints(app): app.register_blueprint(monkey, url_prefix='/v1/monkey') app.register_blueprint(datashow, url_prefix='/v1/datashow') app.register_blueprint(performance, url_prefix='/v1/performance') if __name__ == '__main__': create_app().run(port=config.PORT)
diffy_api/tasks/views.py
TheGableMethod/diffy
577
11086420
""" .. module: diffy.tasks.views :platform: Unix :copyright: (c) 2018 by Netflix Inc., see AUTHORS for more :license: Apache, see LICENSE for more details. .. moduleauthor:: <NAME> <<EMAIL>> """ from flask import Blueprint from flask_restful import Api, Resource from diffy_api.extensions import rq from diffy_api.common.util import validate_schema from diffy_api.schemas import task_output_schema, task_list_output_schema mod = Blueprint("tasks", __name__) api = Api(mod) class TaskList(Resource): """Defines the 'taskss' endpoints""" def __init__(self): super(TaskList, self).__init__() @validate_schema(None, task_list_output_schema) def get(self): """ .. http:get:: /tasks The current list of tasks **Example request**: .. sourcecode:: http GET /tasks HTTP/1.1 Host: example.com Accept: application/json, text/javascript **Example response**: .. sourcecode:: http HTTP/1.1 200 OK Vary: Accept Content-Type: text/javascript # TODO :statuscode 200: no error :statuscode 403: unauthenticated """ queue = rq.get_queue() data = queue.get_jobs() return data, 200 class Task(Resource): """Defines the 'taskss' endpoints""" def __init__(self): super(Task, self).__init__() @validate_schema(None, task_output_schema) def get(self, task_id): """ .. http:get:: /tasks The current list of tasks **Example request**: .. sourcecode:: http GET /tasks HTTP/1.1 Host: example.com Accept: application/json, text/javascript **Example response**: .. sourcecode:: http HTTP/1.1 200 OK Vary: Accept Content-Type: text/javascript # TODO :statuscode 200: no error :statuscode 403: unauthenticated """ queue = rq.get_queue() return queue.fetch_job(task_id) api.add_resource(Task, "/tasks/<task_id>") api.add_resource(TaskList, "/tasks", endpoint="tasks")
cross3d/abstract/abstractuserprops.py
vedantirb/cross3d
129
11086434
# # # \namespace cross3d.UserProps # # \remarks The cross3d.UserProps package creates an abstract wrapper from a 3d system # to use storing and retreiving custom user props # # \author mike # \author Blur Studio # \date 05/26/11 # import re import json import cross3d from collections import OrderedDict from PyQt4.QtCore import QTimer as _QTimer dispatchObject = cross3d.dispatch.dispatchObject class AbstractUserProps(dict): """ The cross3d.UserProps package creates an abstract wrapper from a 3d system to use storing and retreiving custom user props """ def __init__(self, nativePointer): dict.__init__(self) self._nativePointer = nativePointer # Handling and cleaning legacy tags. This is going away soon. # Pulls values from Tags and BlurTags the first time they are encountered # and then immediately deletes them so that they don't continue to overwrite # any values that are set on UserProps. # if 'BlurTags' in self.keys() and self['BlurTags']: # for key in self['BlurTags']: # self[key] = self['BlurTags'][key] # scene = cross3d.Scene() # obj = cross3d.SceneObject(scene, nativePointer) # self['BlurTags'] = {} # if not obj.model().isReferenced(): # del self['BlurTags'] # if 'Tags' in self.keys() and self['Tags']: # for key in self['Tags']: # self[key] = self['Tags'][key] # scene = cross3d.Scene() # obj = cross3d.SceneObject(scene, nativePointer) # self['Tags'] = {} # if not obj.model().isReferenced(): # del self['Tags'] def __contains__(self, key): return key in self.lookupProps() def __getitem__(self, key): return dict.__getitem__(self, key) def __iter__(self): return iter(self.keys()) def __setitem__(self, key, value): dict.__setitem__(self, key, value) self.emitChange() def __str__(self): return '<{cls} {props}>'.format(cls=self.__class__.__name__, props=unicode(self.lookupProps())) def clear(self): self.lookupProps().clear() def copy(self): return self.lookupProps().copy() def emitChange(self, key=None): if key == 'Tags': dispatchObject('TagChanged', self._nativePointer) else: dispatchObject('customPropChanged', self._nativePointer) def keys(self): return self.lookupProps().keys() def items(self): return self.lookupProps().items() def iteritems(self): return self.lookupProps().iteritems() def iterkeys(self): return self.lookupProps().iterkeys() def itervalues(self): return self.lookupProps().itervalues() def has_key(self, key): return self.lookupProps().has_key(key) def get(self, key, default=None): return self.lookupProps().get(key, default) def lookupProps(self): """ This is the workhorse method for the class, it is responsible for providing the dictionary of key value pares used for most of the class. If it is unabstracted it will return a empty dictionary :return: dict """ return {} def toString(self, prefix='', seperator=':', postfix=' '): out = '' for key in self.keys(): value = self[key] line = prefix + key + seperator + unicode(value) + postfix out += line return out def updateFromName(self, format=None): # TODO: REMOVE the dependency of this module from blur3d.naming import Name name = Name(self._nativePointer.name, format) for element in name.elements(): key = element.objectName() text = element.text() if text == 'x': if key in self: del self[key] else: self[key] = text def pop(self, key, default=None): return self.lookupProps().pop(key, default) def popitem(self): return self.lookupProps().popitem() def setAllHidden(self, state): """ Make all user props visible or hidden if the software supports it. :param state: Should the propery be shown or hidden """ for key in self.keys(): self.setHidden(key, state) def setdefault(self, key, default=None): props = self.lookupProps() if not key in props: self[key] = default return self[key] def setHidden(self, key, state): """ Hide the mecinism that stores user props in software that supports it. :param key: The key used to access the user prop :param state: If the item is hidden or shown """ return False def update(self, *args, **kwargs): for k, v in dict(*args, **kwargs).iteritems(): self[k] = v def values(self): return self.lookupProps().values() @staticmethod def escapeKey(string): """ Replaces any unstorable characters in key with their html codes """ if not isinstance(string, (str, unicode)): string = unicode(string) return string.replace(' ', '&#32;').replace('\n', '&#10;').replace('\r', '&#13;') @staticmethod def escapeValue(string): """ Replaces any unstorable characters in value with their html codes """ if not isinstance(string, (str, unicode)): string = unicode(string) return string.replace('\r\n', '&#13;&#10;').replace('\n', '&#10;').replace('\r', '&#13;') @staticmethod def unescapeKey(string): """ Replaces any html codes with their associated unstorable characters """ if not isinstance(string, (str, unicode)): string = unicode(string) return string.replace('&#32;', ' ').replace('&#10;', '\n').replace('&#13;', '\r') @staticmethod def unescapeValue(string): """ Replaces any html codes with their associated unstorable characters """ string = unicode(string) try: return json.loads( string ) except ValueError: pass string, typ = AbstractUserProps._decodeString(string) if typ == float: return float(string) elif typ == int: return int(string) elif typ in (list, dict, tuple, bool, OrderedDict): return eval(string) return string @staticmethod def _decodeString(string): try: int(string) return string, int except: pass if string.find('.') != -1: try: float(string) return string, float except: pass if string in ('True', 'False'): return string, bool if re.match('{.*}', string): return string, dict if re.match('\[.*\]', string): return string, list if re.match('#\(.*\)', string): data = [] s = string sOpen, close = AbstractUserProps._posCounter(s) while (sOpen != -1 or close != -1): s = s[:sOpen-2]+'['+s[sOpen:close]+']'+s[close+1:] sOpen, close = AbstractUserProps._posCounter(s) return s, list if re.match('\(.*\)', string): return string, tuple if re.match('OrderedDict\(.*\)', string): return string, OrderedDict return string, None @staticmethod def _posCounter(string, opening = '#(', closing = ')'): openBr = 0 openPos = 0 found = False for pos in range(0, len(string)): if string[pos-2:pos] == opening: openBr += 1 if not found: openPos = pos found = True elif string[pos] == closing: openBr -= 1 if found and not openBr: break else: return -1,-1 return openPos, pos class AbstractFileProps(AbstractUserProps): def __init__(self, fileName=''): self._dso = None self.fileName = fileName self._closeScheduled = False self._saveScheduled = False super(AbstractFileProps, self).__init__(None) def __delitem__(self, key): if self.dso().open(self.fileName): self._saveScheduled = True if self.dso().removeCustomProperty(key): self._close() return True raise KeyError('FileProps does not contain key: %s' % key) else: raise cross3d.Exceptions.FileNotDSO def __getitem__(self, key): if self.dso().open(self.fileName): self._scheduleClose() out = self.dso().customProperty(key) if out: return self.unescapeValue(out.value()) raise KeyError('FileProps does not contain key: %s' % key) else: raise cross3d.Exceptions.FileNotDSO def __setitem__(self, key, value): if self.dso().open(self.fileName): self._saveScheduled = True prop = self.dso().customProperty(key) if prop: prop.setValue(value) else: self.dso().addCustomProperty(key, value) self._close() self.emitChange() else: raise cross3d.Exceptions.FileNotDSO def __repr__(self): return self.__str__() def _close(self): if self._saveScheduled: self._saveScheduled = False self.dso().save() self.dso().close() self._closeScheduled = False def _scheduleClose(self, save=False): if save: self._saveScheduled = save if not self._closeScheduled: _QTimer.singleShot(0, self._close) self._closeScheduled = True def clear(self): """ Removes all attributes and immediately saves the changes. There is no QTimer delay. """ if self.dso().open(self.fileName): self.dso().clear() self._saveScheduled = True self._close() self.emitChange() else: raise cross3d.Exceptions.FileNotDSO def close(self): """ Immediately closes the connection to the file. """ if self.dso().open(self.fileName): self._close() else: raise cross3d.Exceptions.FileNotDSO def dso(self): if not self._dso: from cross3d.migrate import dsofile self._dso = dsofile.DSOFile() return self._dso def lookupProps(self): dso = self.dso() if self.dso().open(self.fileName): self._scheduleClose() ret = {} [ret.update({prop.name(): self.unescapeValue(prop.value())}) for prop in self.dso().customProperties()] return ret else: raise cross3d.Exceptions.FileNotDSO def update(self, *args, **kwargs): """ Adds all provided items and imedeately saves the changes. There is no QTimer delay. """ if self.dso().open(self.fileName): for k, v in dict(*args, **kwargs).iteritems(): self[k] = v self._saveScheduled = True self._close() else: raise cross3d.Exceptions.FileNotDSO # register the symbol cross3d.registerSymbol('UserProps', AbstractUserProps, ifNotFound=True) cross3d.registerSymbol('FileProps', AbstractFileProps, ifNotFound=True)
Chapter09/mandelbrot/mandelbrot/simple/__init__.py
yoyboy/Software-Architecture-with-Python
103
11086444
<gh_stars>100-1000 from . import mandelbrot
test/test_application/test_jsonrpc/test_getblock.py
darosior/spruned
152
11086467
<reponame>darosior/spruned import asyncio import random from unittest import TestCase from unittest.mock import Mock, call from spruned.application.jsonrpc_server import JSONRPCServer from spruned.application.utils.jsonrpc_client import JSONClient from test.utils import async_coro class TestJSONRPCServerGetblock(TestCase): def setUp(self): bindport = random.randint(31337, 41337) self.sut = JSONRPCServer('127.0.0.1', bindport, 'testuser', 'testpassword') self.vo_service = Mock() self.sut.set_vo_service(self.vo_service) self.client = JSONClient(b'testuser', b'testpassword', '127.0.0.1', bindport) self.loop = asyncio.get_event_loop() def test_getblock_success(self): self.vo_service.getblock.side_effect = [async_coro({'block': 'header'}), async_coro('cafebabe')] async def test(): await self.sut.start() response = await self.client.call('getblock', params=['00' * 32]) response2 = await self.client.call('getblock', params=['00' * 32, False]) return response, response2 res, res2 = self.loop.run_until_complete(test()) self.assertEqual( res, {'error': None, 'id': 1, 'jsonrpc': '2.0', 'result': {'block': 'header'}} ) self.assertEqual( res2, {'error': None, 'id': 1, 'jsonrpc': '2.0', 'result': 'cafebabe'} ) Mock.assert_has_calls( self.vo_service.getblock, calls=[ call('00' * 32, 1), call('00' * 32, False) ] ) def test_getblock_error_missing(self): response = None self.vo_service.getblock.return_value = async_coro(response) async def test(): await self.sut.start() response = await self.client.call('getblock', params=['00'*32]) return response res = self.loop.run_until_complete(test()) self.assertEqual( res, {'error': {'code': -5, 'message': 'Block not found'}, 'id': 1, 'jsonrpc': '2.0', 'result': None} ) Mock.assert_called_with(self.vo_service.getblock, '00' * 32, 1) def test_getblock_error_error_params(self): response = None self.vo_service.getblock.return_value = async_coro(response) async def test(): await self.sut.start() response1 = await self.client.call('getblock', params=['wrong_blockhash']) response2 = await self.client.call('getblock') return response1, response2 res, res2 = self.loop.run_until_complete(test()) self.assertEqual( res, { 'jsonrpc': '2.0', 'error': { 'code': -5, 'message': 'Error parsing JSON:wrong_blockhash' }, 'id': 1, 'result': None } ) # Really should be code: -32602, but that'll cause bitcoin-cli not to # error out correctly, so we use -1 instead self.assertEqual( res2, {'jsonrpc': '2.0', 'error': {'code': -1, 'message': 'Invalid params'}, 'id': 1, 'result': None} ) Mock.assert_not_called(self.vo_service.getblock)
tests/config/__init__.py
dadaloop82/viseron
399
11086485
<filename>tests/config/__init__.py """Tests for config module."""
tests/test_init.py
linshoK/pysen
423
11086494
<reponame>linshoK/pysen import argparse import pathlib import tempfile import unittest.mock from typing import Optional, Sequence import pytest import pysen from pysen import ConfigureLintOptions, configure_lint from pysen.exceptions import CommandNotFoundError from pysen.manifest import Manifest, TargetType from pysen.reporter import ReporterFactory from pysen.runner_options import RunOptions BASE_DIR = pathlib.Path(__file__).resolve().parent def test_load_manifest() -> None: manifest = pysen.load_manifest(BASE_DIR / "fakes/configs/example.toml") assert manifest is not None with pytest.raises(FileNotFoundError): pysen.load_manifest(BASE_DIR / "no_such_file.toml") def test_build_manifest() -> None: # NOTE(igarashi): since build_manifest is just a reference for pysen.build_manifest.build, # we just check if the function does not raise an error in this test. manifest = pysen.build_manifest( [], external_builder=BASE_DIR / "fakes/configs/good_builder.py" ) assert manifest is not None def test_run() -> None: with unittest.mock.patch( "pysen.runner.Runner.export_settings" ) as mock_export, unittest.mock.patch("pysen.runner.run_target") as mock_run: assert pysen.run( BASE_DIR, "lint", pyproject=BASE_DIR / "fakes/configs/example.toml" ) mock_export.assert_called() # check if settings_dir is correctly handled mock_export.reset_mock() with tempfile.TemporaryDirectory() as d: td = pathlib.Path(d) assert pysen.run( BASE_DIR, "lint", pyproject=BASE_DIR / "fakes/configs/example.toml", settings_dir=td, ) mock_export.assert_called_once_with( BASE_DIR, td, argparse.Namespace(disable=None, enable=None) ) with pytest.raises(CommandNotFoundError): assert pysen.run( BASE_DIR, "lint2", pyproject=BASE_DIR / "fakes/configs/example.toml" ) components = configure_lint(ConfigureLintOptions(enable_black=True)) assert pysen.run(BASE_DIR, "lint", components=components) with pytest.raises(CommandNotFoundError): assert pysen.run(BASE_DIR, "lint2", components=components) manifest = Manifest(components) assert pysen.run(BASE_DIR, "lint", manifest=manifest) with pytest.raises(CommandNotFoundError): assert pysen.run(BASE_DIR, "lint2", manifest=manifest) # TODO(igarashi): Add test to check run() handles both args and manifest_args with pytest.raises(FileNotFoundError): pysen.run(BASE_DIR, "lint", pyproject=BASE_DIR / "no_such_file.toml") with pytest.raises(ValueError): pysen.run(BASE_DIR, "lint") with pytest.raises(ValueError): pysen.run( BASE_DIR, "lint", pyproject=BASE_DIR / "fakes/configs/example.toml", manifest=manifest, ) # NOTE(igarashi): Check that run() returns False when the command reports an error def side_effect( target: TargetType, reporters: ReporterFactory, options: RunOptions, files: Optional[Sequence[pathlib.Path]], ) -> None: with reporters.create("hoge") as r: r.set_result(False, 128) mock_run.side_effect = side_effect assert not pysen.run( BASE_DIR, "lint", pyproject=BASE_DIR / "fakes/configs/example.toml" ) assert not pysen.run(BASE_DIR, "lint", components=components) assert not pysen.run(BASE_DIR, "lint", manifest=manifest)
classifiers/dimensionality_reduction/graph_spectral_analysis&spectral_clustering_default.py
gionanide/Speech-Signal-Processing-and-Classification
203
11086496
<filename>classifiers/dimensionality_reduction/graph_spectral_analysis&spectral_clustering_default.py #!usr/bin/python from __future__ import division import pandas as pd from sklearn import model_selection from sklearn.svm import SVC # supportctors for classification from sklearn.metrics import accuracy_score, confusion_matrix, classification_report from sklearn.model_selection import cross_val_score, GridSearchCV import timeit from sklearn.preprocessing import MinMaxScaler from sklearn.discriminant_analysis import LinearDiscriminantAnalysis import numpy as np from sklearn.neighbors import KNeighborsClassifier, NearestNeighbors import matplotlib.pyplot as plt from matplotlib.pyplot import figure import seaborn as sns from sklearn.manifold import LocallyLinearEmbedding, SpectralEmbedding, Isomap from sklearn.cluster import SpectralClustering from sklearn.metrics.cluster import homogeneity_score '''this function takes as an input the path of a file with features and labels and returns the content of this file as a csv format in the form feature1.........feature13,Label''' def readFile(): #make the format of the csv file. Our format is a vector with 13 features and a label which show the condition of the #sample hc/pc : helathy case, parkinson case names = ['Feature1', 'Feature2', 'Feature3', 'Feature4','Feature5','Feature6','Feature7','Feature8','Feature9', 'Feature10','Feature11','Feature12','Feature13','Label'] #path to read the samples, samples consist from healthy subjects and subject suffering from Parkinson's desease. #path = 'mfcc_man_woman.txt' path = 'PATH_TO_SAMPLES.txt' #path = '/home/gionanide/Theses_2017-2018_2519/features/parkinson_healthy/mfcc_parkinson_healthy.txt' #read file in csv format data = pd.read_csv(path,names=names ) #return an array of the shape (2103, 14), lines are the samples and columns are the features as we mentioned before return data 'takes the csv file and split the label from the features' def splitData(data): # Split-out the set in two different arrayste array = data.values #features array contains only the features of the samples features = array[:,0:13] #labels array contains only the lables of the samples labels = array[:,13] return features,labels ''' make this class in order to train the model with the same amount of samples of each class, because we have bigger support from class 0 than class1, particularly it is 9 to 1.''' def equalizeClasses(data): #take all the samples from the data frame that they have Label value equal to 0 and in the next line equal to 1 class0 = data.loc[data['Label'] == 0]#class0 and class1 are dataFrames class1 = data.loc[data['Label'] == 1] #check which class has more samples, by divide them and check if the number is bigger or smaller than 1 weight = len(class0) // len(class1) #take the results as an integer in order to split the class, using prior knowledge that #class0 has more samples, if it is bigger class0 has more samples and to be exact weight to 1 balance = (len(class0) // weight) #this is the number of samples in order to balance our classes #the keyword argument frac specifies the fraction of rows to return in the random sample, so fra=1 means, return random all rows #we kind of a way shuffle our data in order not to take the same samples in every iteration #class0 = class0.sample(frac=1) #samples array for training taking the balance number of samples for the shuffled dataFrame newClass0 = class0.sample(n=balance) #and now combine the new dataFrame from class0 with the class1 to return the balanced dataFrame newData = pd.concat([newClass0, class1]) #return the new balanced(number of samples from each class) dataFrame return newData '''we made this function in order to make a loop, the equalized data take only a small piece of the existing data, so with this loop we are going to take iteratably all the data, but from every iteration we are keeping only the samples who were support vectors, the samples only the class which we are taking a piece of it's samples''' def keepSV(): print 'yolo' '''we use this function in order to apply greedy search for finding the parameters that best fit our model. We have to mention that we start this procedure from a very large field and then we tried to focues to the direction where the results appear better. For example for the C parameter, the first range was [0.0001, 0.001, 0.01, 0.1, 1, 10 ,100 ,1000], the result was that the best value was 1000 so then we tried [100, 1000, 10000, 100000] and so on in order to focues to the area which give us the best results. This function is in comments because we found the best parameters and we dont need to run it in every trial.''' def paramTuning(features_train, labels_train, nfolds): #using the training data and define the number of folds #determine the range of the Cs range you want to search Cs = [0.001, 0.01, 0.1 ,1, 10, 100, 1000, 10000] #determine the range of the gammas range you want to search gammas = [0.00000001 ,0.00000001 ,0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1 , 1, 10, 100, 1000] #make the dictioanry param_grid = {'C': Cs, 'gamma': gammas} #start the greedy search using all the matching sets from above grid_search = GridSearchCV(SVC(kernel='poly'),param_grid,cv=nfolds) #fit your training data grid_search.fit(features_train, labels_train) #visualize the best couple of parameters print grid_search.best_params_ '''Classify Parkinson and Helathy. Building a model which is going to be trained with of given cases and test according to new ones''' def classifyPHC(): data = readFile() #data = equalizeClasses(data) features,labels = splitData(data) #determine the training and testing size in the range of 1, 1 = 100% validation_size = 0.2 #here we are splitting our data based on the validation_size into training and testing data #features_train, features_validation, labels_train, labels_validation = model_selection.train_test_split(features, labels, #test_size=validation_size) #we are using all the features because it is clustering so we do not want to split to testing and training #bacause we apply unsupervised techniques #normalize data in the range [-1,1] scaler = MinMaxScaler(feature_range=(-1, 1)) #fit only th training data in order to find the margin and then test to data without normalize them scaler.fit(features) features_scalar = scaler.transform(features) #trnasform the validation features without fitting them #features_validation_scalar = scaler.transform(features_validation) #apply the dimensionality reduction using graph spectral analysis '''#LocallyLinearEmbedding lle = LocallyLinearEmbedding(n_components=2) #transform data features_embedded = lle.fit_transform(features_scalar)''' '''#Isometric Mapping isomap = Isomap(n_components=2) #transform data features_embedded = isomap.fit_transform(features_scalar)''' #Graph embedding spectralEmbedding = SpectralEmbedding(n_components=2) #transform training and validation data features_embedded = spectralEmbedding.fit_transform(features_scalar) #we can see the shapes of the array just to check print 'feature training array: ',features_embedded.shape #,'and label training array: ',labels_train.shape #print 'feature testing array: ',features_validation_embedded.shape,'and label testing array: ',labels_validation.shape,'\n' #take the best couple of parameters from the procedure of greedy search #paramTuning(features_train, labels_train, 5) #we initialize our model #svm = SVC(kernel='poly',C=0.001,gamma=10,degree=3,decision_function_shape='ovr') #svm = KNeighborsClassifier(n_neighbors=3) #Apply spectral clustering spectralClustering = SpectralClustering(n_clusters=2) #train our model with the data that we previously precessed #spectralClustering.fit(features_embedded ) #now test our model with the test data spectralClustering.fit(features_embedded) predicted_labels = spectralClustering.labels_ #first implementation of score computing #accuracy = accuracy_score(labels, predicted_labels) #More accurate implementation, considering opposite labels accuracy = homogeneity_score(labels, predicted_labels) print 'Clustering accuracy: ',accuracy*100,'\n' #confusion matrix to illustrate the faulty classification of each class conf_matrix = confusion_matrix(labels, predicted_labels) print 'Confusion matrix: \n',conf_matrix,'\n' print 'Support class 0 class 1:' #calculate the support of each class print ' ',conf_matrix[0][0]+conf_matrix[0][1],' ',conf_matrix[1][0]+conf_matrix[1][1],'\n' #calculate the accuracy of each class hC = (conf_matrix[0][0]/(conf_matrix[0][0]+conf_matrix[0][1]))*100 pC = (conf_matrix[1][1]/(conf_matrix[1][0]+conf_matrix[1][1]))*100 #see the inside details of the classification print 'For class 0 man cases:',conf_matrix[0][0],'classified correctly and',conf_matrix[0][1],'missclassified,',hC,'accuracy \n' print 'For class 1 woman cases:',conf_matrix[1][1],'classified correctly and',conf_matrix[1][0],'missclassified,',pC,'accuracy\n' #plot the training features after the kpca and the lda procedure embedded_labels = pd.DataFrame({'Feature1': features_embedded[: ,0], 'Feature2': features_embedded[: ,1],'Label': labels}) sns.pairplot(embedded_labels, hue='Label') #plt.savefig('kpca_trainset_parkinson_healthy.png') #plt.show() #plot the training features after the kpca and the lda procedure embedded_predicted_labels = pd.DataFrame({'Feature1': features_embedded[: ,0], 'Feature2': features_embedded[: ,1],'Label': predicted_labels}) sns.pairplot(embedded_predicted_labels, hue='Label') #plt.savefig('kpca_trainset_parkinson_healthy.png') plt.show() def main(): #calculate the time import time start_time = time.time() #we are making an array in order to keep the support vectors and feed the function with them for the next iteration #support_vectors = classifyPHC() time = time.time()-start_time print 'time: ',time main()
fairseq/models/wav2vec.py
theorm/fairseq
239
11086497
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import sys import math import torch import torch.nn as nn import torch.nn.functional as F from . import ( BaseFairseqModel, register_model, register_model_architecture ) @register_model('wav2vec') class Wav2VecModel(BaseFairseqModel): @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" parser.add_argument('--prediction-steps', type=int, metavar='N', help='number of steps ahead to predict') parser.add_argument('--sample-distance', type=int, metavar='N', help='sample distance from target. does not work properly with cross-sampling') parser.add_argument('--cross-sample-negatives', action='store_true', help='whether to sample negatives across examples in the same batch') parser.add_argument('--num-negatives', type=int, metavar='N', help='number of negative examples') parser.add_argument('--conv-feature-layers', type=str, metavar='EXPR', help='convolutional feature extraction layers [(dim, kernel_size, stride), ...]') parser.add_argument('--conv-aggregator-layers', type=str, metavar='EXPR', help='convolutional feature extraction layers [(dim, kernel_size, stride), ...]') parser.add_argument('--dropout', type=float, metavar='D', help='dropout to apply within the model') parser.add_argument('--dropout-features', type=float, metavar='D', help='dropout to apply to the features') parser.add_argument('--dropout-agg', type=float, metavar='D', help='dropout to apply after aggregation step') parser.add_argument('--encoder', type=str, choices=['cnn'], help='type of encoder to use') parser.add_argument('--aggregator', type=str, choices=['cnn', 'gru'], help='type of aggregator to use') parser.add_argument('--gru-dim', type=int, metavar='N', help='GRU dimensionality') parser.add_argument('--no-conv-bias', action='store_true', help='if set, does not learn bias for conv layers') parser.add_argument('--agg-zero-pad', action='store_true', help='if set, zero pads in aggregator instead of repl pad') parser.add_argument('--skip-connections-feat', action='store_true', help='if set, adds skip connections to the feature extractor') parser.add_argument('--skip-connections-agg', action='store_true', help='if set, adds skip connections to the aggregator') parser.add_argument('--residual-scale', type=float, metavar='D', help='scales residual by sqrt(value)') parser.add_argument('--log-compression', action='store_true', help='if set, adds a log compression to feature extractor') parser.add_argument('--balanced-classes', action='store_true', help='if set, loss is scaled to balance for number of negatives') parser.add_argument('--project-features', choices=['none', 'same', 'new'], help='if not none, features are projected using the (same or new) aggregator') parser.add_argument('--non-affine-group-norm', action='store_true', help='if set, group norm is not affine') parser.add_argument('--offset', help='if set, introduces an offset from target to predictions. ' 'if set to "auto", it is computed automatically from the receptive field') @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_wav2vec_architecture(args) model = Wav2VecModel(args) print(model) return model def __init__(self, args): super().__init__() self.prediction_steps = args.prediction_steps offset = args.offset if args.encoder == 'cnn': feature_enc_layers = eval(args.conv_feature_layers) self.feature_extractor = ConvFeatureExtractionModel( conv_layers=feature_enc_layers, dropout=0., log_compression=args.log_compression, skip_connections=args.skip_connections_feat, residual_scale=args.residual_scale, non_affine_group_norm=args.non_affine_group_norm, ) embed = feature_enc_layers[-1][0] else: raise Exception('unknown encoder type ' + args.encoder) if args.offset == 'auto': assert args.encoder == 'cnn' jin = 0 rin = 0 for _, k, stride in feature_enc_layers: if rin == 0: rin = k rin = rin + (k - 1) * jin if jin == 0: jin = stride else: jin *= stride offset = math.ceil(rin / jin) offset = int(offset) def make_aggregator(): if args.aggregator == 'cnn': agg_layers = eval(args.conv_aggregator_layers) agg_dim = agg_layers[-1][0] feature_aggregator = ConvAggegator( conv_layers=agg_layers, embed=embed, dropout=args.dropout, skip_connections=args.skip_connections_agg, residual_scale=args.residual_scale, non_affine_group_norm=args.non_affine_group_norm, conv_bias=not args.no_conv_bias, zero_pad=args.agg_zero_pad, ) elif args.aggregator == 'gru': agg_dim = args.gru_dim feature_aggregator = nn.Sequential( TransposeLast(), nn.GRU( input_size=embed, hidden_size=agg_dim, num_layers=1, dropout=args.dropout, ), TransposeLast(deconstruct_idx=0), ) else: raise Exception('unknown aggregator type ' + args.aggregator) return feature_aggregator, agg_dim self.feature_aggregator, agg_dim = make_aggregator() self.wav2vec_predictions = Wav2VecPredictionsModel( in_dim=agg_dim, out_dim=embed, prediction_steps=args.prediction_steps, n_negatives=args.num_negatives, cross_sample_negatives=args.cross_sample_negatives, sample_distance=args.sample_distance, dropout=args.dropout, offset=offset, balanced_classes=args.balanced_classes, ) self.dropout_feats = nn.Dropout(p=args.dropout_features) self.dropout_agg = nn.Dropout(p=args.dropout_agg) if args.project_features == 'none': self.project_features = None elif args.project_features == 'same': self.project_features = self.feature_aggregator elif args.project_features == 'new': self.project_features, _ = make_aggregator() def forward(self, source): result = {} features = self.feature_extractor(source) x = self.dropout_feats(features) x = self.feature_aggregator(x) x = self.dropout_agg(x) if self.project_features is not None: features = self.project_features(features) x, targets = self.wav2vec_predictions(x, features) result['cpc_logits'] = x result['cpc_targets'] = targets return result def upgrade_state_dict_named(self, state_dict, name): return state_dict def max_positions(self): """Maximum length supported by the model.""" return sys.maxsize def get_logits(self, net_output): logits = net_output['cpc_logits'] return logits def get_targets(self, sample, net_output, expand_steps=True): t = net_output['cpc_targets'] return t.contiguous() def get_target_weights(self, targets, net_output): targets = net_output['cpc_targets'] if isinstance(targets, tuple) and targets[-1] is not None: return targets[-1] return 1. class TransposeLast(nn.Module): def __init__(self, deconstruct_idx=None): super().__init__() self.deconstruct_idx = deconstruct_idx def forward(self, x): if self.deconstruct_idx is not None: x = x[self.deconstruct_idx] return x.transpose(-2, -1) class Fp32GroupNorm(nn.GroupNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, input): output = F.group_norm( input.float(), self.num_groups, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps) return output.type_as(input) class Fp32LayerNorm(nn.LayerNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, input): output = F.layer_norm( input.float(), self.normalized_shape, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps) return output.type_as(input) def norm_block(is_layer_norm, dim, affine=True): if is_layer_norm: mod = nn.Sequential( TransposeLast(), Fp32LayerNorm(dim, elementwise_affine=affine), TransposeLast(), ) else: mod = Fp32GroupNorm(1, dim, affine=affine) return mod class ConvFeatureExtractionModel(nn.Module): def __init__(self, conv_layers, dropout, log_compression, skip_connections, residual_scale, non_affine_group_norm): super().__init__() def block(n_in, n_out, k, stride): return nn.Sequential( nn.Conv1d(n_in, n_out, k, stride=stride, bias=False), nn.Dropout(p=dropout), norm_block(is_layer_norm=False, dim=n_out, affine=not non_affine_group_norm), nn.ReLU(), ) in_d = 1 self.conv_layers = nn.ModuleList() for i, (dim, k, stride) in enumerate(conv_layers): self.conv_layers.append( block(in_d, dim, k, stride)) in_d = dim self.log_compression = log_compression self.skip_connections = skip_connections self.residual_scale = math.sqrt(residual_scale) def forward(self, x): # BxT -> BxCxT x = x.unsqueeze(1) for conv in self.conv_layers: residual = x x = conv(x) if self.skip_connections and x.size(1) == residual.size(1): tsz = x.size(2) r_tsz = residual.size(2) residual = residual[..., ::r_tsz // tsz][..., :tsz] x = (x + residual) * self.residual_scale if self.log_compression: x = x.abs() x = x + 1 x = x.log() return x class ZeroPad1d(nn.Module): def __init__(self, pad_left, pad_right): super().__init__() self.pad_left = pad_left self.pad_right = pad_right def forward(self, x): return F.pad(x, (self.pad_left, self.pad_right)) class ConvAggegator(nn.Module): def __init__(self, conv_layers, embed, dropout, skip_connections, residual_scale, non_affine_group_norm, conv_bias, zero_pad): super().__init__() def block(n_in, n_out, k, stride): # padding dims only really make sense for stride = 1 ka = k // 2 kb = ka - 1 if k % 2 == 0 else ka pad = ZeroPad1d(ka + kb, 0) if zero_pad else nn.ReplicationPad1d((ka + kb, 0)) return nn.Sequential( pad, nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias), nn.Dropout(p=dropout), norm_block(False, n_out, affine=not non_affine_group_norm), nn.ReLU(), ) in_d = embed self.conv_layers = nn.ModuleList() self.residual_proj = nn.ModuleList() for i, (dim, k, stride) in enumerate(conv_layers): if in_d != dim and skip_connections: self.residual_proj.append( nn.Conv1d(in_d, dim, 1, bias=False), ) else: self.residual_proj.append(None) self.conv_layers.append( block(in_d, dim, k, stride)) in_d = dim self.conv_layers = nn.Sequential(*self.conv_layers) self.skip_connections = skip_connections self.residual_scale = math.sqrt(residual_scale) def forward(self, x): for rproj, conv in zip(self.residual_proj, self.conv_layers): residual = x x = conv(x) if self.skip_connections: if rproj is not None: residual = rproj(residual) x = (x + residual) * self.residual_scale return x class Wav2VecPredictionsModel(nn.Module): def __init__(self, in_dim, out_dim, prediction_steps, n_negatives, cross_sample_negatives, sample_distance, dropout, offset, balanced_classes): super().__init__() self.n_negatives = n_negatives self.cross_sample_negatives = cross_sample_negatives self.sample_distance = sample_distance self.project_to_steps = nn.ConvTranspose2d(in_dim, out_dim, (1, prediction_steps)) self.dropout = nn.Dropout(p=dropout) self.offset = offset self.balanced_classes = balanced_classes def sample_negatives(self, y): bsz, fsz, tsz = y.shape y = y.transpose(0, 1) # BCT -> CBT y = y.contiguous().view(fsz, -1) # CBT => C(BxT) if self.cross_sample_negatives: high = tsz * bsz assert self.sample_distance is None, 'sample distance is not supported with cross sampling' else: high = tsz if self.sample_distance is None else min(tsz, self.sample_distance) neg_idxs = torch.randint(low=0, high=high, size=(bsz, self.n_negatives * tsz)) if self.sample_distance is not None and self.sample_distance < tsz: neg_idxs += torch.cat( [torch.arange(start=1, end=tsz - self.sample_distance, device=neg_idxs.device, dtype=neg_idxs.dtype), torch.arange(start=tsz - self.sample_distance, end=tsz - self.sample_distance * 2 - 1, step=-1, device=neg_idxs.device, dtype=neg_idxs.dtype)]) if not self.cross_sample_negatives: for i in range(1, bsz): neg_idxs[i] += i * high negs = y[..., neg_idxs.view(-1)] negs = negs.view(fsz, bsz, self.n_negatives, tsz).permute(2, 1, 0, 3) # to NxBxCxT return negs def forward(self, x, y): negatives = self.sample_negatives(y) y = y.unsqueeze(0) targets = torch.cat([y, negatives], dim=0) x = x.unsqueeze(-1) x = self.project_to_steps(x) # BxCxTxS x = self.dropout(x) x = x.unsqueeze(0).expand(targets.size(0), -1, -1, -1, -1) copies, bsz, dim, tsz, steps = x.shape steps = min(steps, tsz - self.offset) predictions = x.new(bsz * copies * (tsz - self.offset + 1) * steps - ((steps + 1) * steps // 2) * copies * bsz) labels = torch.zeros_like(predictions) weights = torch.full_like(labels, 1 / self.n_negatives) if self.balanced_classes else None start = end = 0 for i in range(steps): offset = i + self.offset end = start + (tsz - offset) * bsz * copies pos_num = (end - start) // copies predictions[start:end] = (x[..., :-offset, i] * targets[..., offset:]).sum(dim=2).flatten() labels[start:start + pos_num] = 1. if weights is not None: weights[start:start + pos_num] = 1. start = end assert end == predictions.numel(), '{} != {}'.format(end, predictions.numel()) if weights is not None: labels = (labels, weights) return predictions, labels @register_model_architecture('wav2vec', 'wav2vec') def base_wav2vec_architecture(args): conv_feature_layers = '[(512, 10, 5)]' conv_feature_layers += ' + [(512, 8, 4)]' conv_feature_layers += ' + [(512, 4, 2)] * 3' args.conv_feature_layers = getattr(args, 'conv_feature_layers', conv_feature_layers) args.conv_aggregator_layers = getattr(args, 'conv_aggregator_layers', '[(512, 3, 1)] * 9') args.prediction_steps = getattr(args, 'prediction_steps', 12) args.num_negatives = getattr(args, 'num_negatives', 1) args.sample_distance = getattr(args, 'sample_distance', None) args.cross_sample_negatives = getattr(args, 'cross_sample_negatives', False) args.dropout = getattr(args, 'dropout', 0.) args.dropout_features = getattr(args, 'dropout_features', 0.) args.dropout_agg = getattr(args, 'dropout_agg', 0.) args.encoder = getattr(args, 'encoder', 'cnn') args.aggregator = getattr(args, 'aggregator', 'cnn') args.skip_connections_feat = getattr(args, 'skip_connections_feat', False) args.skip_connections_agg = getattr(args, 'skip_connections_agg', False) args.residual_scale = getattr(args, 'residual_scale', 0.5) args.gru_dim = getattr(args, 'gru_dim', 512) args.no_conv_bias = getattr(args, 'no_conv_bias', False) args.agg_zero_pad = getattr(args, 'agg_zero_pad', False) args.log_compression = getattr(args, 'log_compression', False) args.balanced_classes = getattr(args, 'balanced_classes', False) args.project_features = getattr(args, 'project_features', 'none') args.non_affine_group_norm = getattr(args, 'non_affine_group_norm', False) args.offset = getattr(args, 'offset', 'auto')
steam/client/builtins/friends.py
tjensen/steam
727
11086502
<reponame>tjensen/steam<gh_stars>100-1000 import logging from six import itervalues from eventemitter import EventEmitter from steam.steamid import SteamID, intBase from steam.enums import EResult, EFriendRelationship from steam.enums.emsg import EMsg from steam.core.msg import MsgProto from steam.client.user import SteamUser class Friends(object): def __init__(self, *args, **kwargs): super(Friends, self).__init__(*args, **kwargs) #: :class:`.SteamFriendlist` instance self.friends = SteamFriendlist(self, logger_name="%s.friends" % self.__class__.__name__) class SteamFriendlist(EventEmitter): """SteamFriendlist is an object that keeps state of user's friend list. It's essentially a :class:`list` of :class:`.SteamUser`. You can iterate over it, check if it contains a particular ``steam id``, or get :class:`.SteamUser` for a ``steam id``. """ EVENT_READY = 'ready' """Friend list is ready for use """ EVENT_FRIEND_INVITE = 'friend_invite' """New or existing friend invite :param user: steam user instance :type user: :class:`.SteamUser` """ EVENT_FRIEND_NEW = 'friend_new' """Friendship established (after being accepted, or accepting) :param user: steam user instance :type user: :class:`.SteamUser` """ EVENT_FRIEND_REMOVED = 'friend_removed' """No longer a friend (removed by either side) :param user: steam user instance :type user: :class:`.SteamUser` """ EVENT_FRIEND_ADD_RESULT = 'friend_add_result' """Result response after adding a friend :param eresult: result :type eresult: :class:`.EResult` :param steam_id: steam id :type steam_id: :class:`.SteamID` """ ready = False #: indicates whether friend list is ready for use def __init__(self, client, logger_name='SteamFriendList'): self._LOG = logging.getLogger(logger_name) self._fr = {} self._steam = client self._steam.on(EMsg.ClientAddFriendResponse, self._handle_add_friend_result) self._steam.on(EMsg.ClientFriendsList, self._handle_friends_list) self._steam.on(self._steam.EVENT_DISCONNECTED, self._handle_disconnect) def emit(self, event, *args): if event is not None: self._LOG.debug("Emit event: %s" % repr(event)) EventEmitter.emit(self, event, *args) def _handle_disconnect(self): self.ready = False self._fr.clear() def _handle_add_friend_result(self, message): eresult = EResult(message.body.eresult) steam_id = SteamID(message.body.steam_id_added) self.emit(self.EVENT_FRIEND_ADD_RESULT, eresult, steam_id) def _handle_friends_list(self, message): incremental = message.body.bincremental if incremental == False: self._fr.clear() steamids_to_check = set() # update internal friends list for friend in message.body.friends: steamid = SteamID(friend.ulfriendid) if steamid.type != steamid.EType.Individual: continue suser = self._steam.get_user(steamid, False) rel = EFriendRelationship(friend.efriendrelationship) if steamid not in self._fr and rel != EFriendRelationship.NONE: # 0 self._fr[steamid] = suser suser.relationship = rel steamids_to_check.add(steamid) if rel in (2,4): # RequestRecipient = 2, RequestInitiator = 4 if rel == EFriendRelationship.RequestRecipient: self.emit(self.EVENT_FRIEND_INVITE, suser) else: oldrel, suser.relationship = suser.relationship, rel if rel == EFriendRelationship.NONE: suser = self._fr.pop(steamid, None) if suser and oldrel not in (EFriendRelationship.Ignored, 0): self.emit(self.EVENT_FRIEND_REMOVED, suser) elif oldrel in (2,4) and rel == EFriendRelationship.Friend: self.emit(self.EVENT_FRIEND_NEW, suser) # request persona state for any new entries if steamids_to_check: self._steam.request_persona_state(steamids_to_check) if not self.ready: self.ready = True self.emit(self.EVENT_READY) def __repr__(self): return "<%s %d users>" % ( self.__class__.__name__, len(self._fr), ) def __len__(self): return len(self._fr) def __iter__(self): return itervalues(self._fr) def __list__(self): return list(iter(self)) def __getitem__(self, key): if isinstance(key, SteamUser): key = key.steam_id return self._fr[key] def __contains__(self, friend): if isinstance(friend, SteamUser): friend = friend.steam_id return friend in self._fr def add(self, steamid_or_accountname_or_email): """ Add/Accept a steam user to be your friend. When someone sends you an invite, use this method to accept it. :param steamid_or_accountname_or_email: steamid, account name, or email :type steamid_or_accountname_or_email: :class:`int`, :class:`.SteamID`, :class:`.SteamUser`, :class:`str` .. note:: Adding by email doesn't not work. It's only mentioned for the sake of completeness. """ m = MsgProto(EMsg.ClientAddFriend) if isinstance(steamid_or_accountname_or_email, (intBase, int)): m.body.steamid_to_add = steamid_or_accountname_or_email elif isinstance(steamid_or_accountname_or_email, SteamUser): m.body.steamid_to_add = steamid_or_accountname_or_email.steam_id else: m.body.accountname_or_email_to_add = steamid_or_accountname_or_email self._steam.send_job(m) def remove(self, steamid): """ Remove a friend :param steamid: their steamid :type steamid: :class:`int`, :class:`.SteamID`, :class:`.SteamUser` """ if isinstance(steamid, SteamUser): steamid = steamid.steam_id self._steam.send(MsgProto(EMsg.ClientRemoveFriend), {'friendid': steamid}) def block(self, steamid): """ Block Steam user :param steamid: their steamid :type steamid: :class:`int`, :class:`.SteamID`, :class:`.SteamUser` :return: result :rtype: :class:`EResult` """ if isinstance(steamid, SteamUser): steamid = steamid.steam_id elif not isinstance(steamid, SteamID): steamid = SteamID(steamid) resp = self._steam.send_um_and_wait("Player.IgnoreFriend#1", {"steamid": steamid}, timeout=10) if not resp: return EResult.Timeout elif resp.header.eresult == EResult.OK: if steamid not in self._fr: self._fr[steamid] = self._steam.get_user(steamid, False) self._fr[steamid].relationship = EFriendRelationship(resp.body.friend_relationship) return resp.header.eresult def unblock(self, steamid): """ Unblock Steam user :param steamid: their steamid :type steamid: :class:`int`, :class:`.SteamID`, :class:`.SteamUser` :return: result :rtype: :class:`EResult` """ if isinstance(steamid, SteamUser): steamid = steamid.steam_id elif not isinstance(steamid, SteamID): steamid = SteamID(steamid) resp = self._steam.send_um_and_wait("Player.IgnoreFriend#1", {"steamid": steamid, "unignore": True}, timeout=10) if not resp: return EResult.Timeout elif resp.header.eresult == EResult.OK: if steamid in self._fr: self._fr[steamid].relationship = EFriendRelationship(resp.body.friend_relationship) return resp.header.eresult
src/smart_compose/run_smart_compose.py
StarWang/detext
1,229
11086512
<gh_stars>1000+ import sys import tempfile from dataclasses import asdict import tensorflow as tf from absl import logging from official.utils.misc import distribution_utils from smart_compose.args import SmartComposeArg from smart_compose.train import train from smart_compose.utils import distributed_utils, parsing_utils def main(argv): """ This is the main method for training the model. :param argv: training parameters """ argument = SmartComposeArg.__from_argv__(argv[1:], error_on_unknown=False) logging.set_verbosity(logging.INFO) logging.info(f"Args:\n {argument}") hparams = argument strategy = distribution_utils.get_distribution_strategy(hparams.distribution_strategy, num_gpus=hparams.num_gpu, all_reduce_alg=hparams.all_reduce_alg) logging.info(f"***********Num replica: {strategy.num_replicas_in_sync}***********") create_output_dir(hparams.resume_training, hparams.out_dir, strategy) save_hparams(hparams.out_dir, parsing_utils.HParams(**asdict(argument)), strategy) logging.info("***********Smart Compose Training***********") return train.train(strategy, hparams) def save_hparams(out_dir, hparams, strategy): """Saves hparams to out_dir""" is_chief = distributed_utils.is_chief(strategy) if not is_chief: out_dir = tempfile.mkdtemp() parsing_utils.save_hparams(out_dir, hparams) if not is_chief: tf.io.gfile.remove(parsing_utils._get_hparam_path(out_dir)) def create_output_dir(resume_training, out_dir, strategy): """Creates output directory if not exists""" is_chief = distributed_utils.is_chief(strategy) if not is_chief: out_dir = tempfile.mkdtemp() if not resume_training: if tf.io.gfile.exists(out_dir): logging.info("Removing previous output directory...") tf.io.gfile.rmtree(out_dir) # If output directory deleted or does not exist, create the directory. if not tf.io.gfile.exists(out_dir): logging.info('Creating dirs recursively at: {0}'.format(out_dir)) tf.io.gfile.makedirs(out_dir) if not is_chief: tf.io.gfile.rmtree(out_dir) if __name__ == '__main__': main(sys.argv)
wargames/overthewire-vortex/level6/win.py
spchal/pwntools-write-ups
456
11086514
#!/usr/bin/env python2 # -*- coding: utf-8 -*- from pwn import * level = 6 host = 'vortex.labs.overthewire.org' user = 'vortex%i' % level chal = 'vortex%i' % level password = args['PASSWORD'] passfile = '/etc/vortex_pass/<PASSWORD>' % (level+1) binary = '/vortex/%s' % chal shell = ssh(host=host, user=user, password=password) if not os.path.exists(chal): shell.download_file(binary) os.chmod(chal, 0755) sh = shell.run(''' python -c " import sys, os os.execve(%r, ['/bin/sh'], {'a':'b'}) " ''' % binary) sh.clean(2) sh.sendline('id') log.success('id: ' + sh.recvline().strip()) sh.sendline('cat %s' % passfile) password = sh.recvline().strip() log.success('Password: %s' % password) print password
service/generated_flatbuffers/tflite/LSTMOptions.py
lcrh/falken
213
11086521
<gh_stars>100-1000 # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # automatically generated by the FlatBuffers compiler, do not modify # namespace: tflite import flatbuffers from flatbuffers.compat import import_numpy np = import_numpy() class LSTMOptions(object): __slots__ = ['_tab'] @classmethod def GetRootAsLSTMOptions(cls, buf, offset): n = flatbuffers.encode.Get(flatbuffers.packer.uoffset, buf, offset) x = LSTMOptions() x.Init(buf, n + offset) return x @classmethod def LSTMOptionsBufferHasIdentifier(cls, buf, offset, size_prefixed=False): return flatbuffers.util.BufferHasIdentifier(buf, offset, b"\x54\x46\x4C\x33", size_prefixed=size_prefixed) # LSTMOptions def Init(self, buf, pos): self._tab = flatbuffers.table.Table(buf, pos) # LSTMOptions def FusedActivationFunction(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int8Flags, o + self._tab.Pos) return 0 # LSTMOptions def CellClip(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6)) if o != 0: return self._tab.Get(flatbuffers.number_types.Float32Flags, o + self._tab.Pos) return 0.0 # LSTMOptions def ProjClip(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(8)) if o != 0: return self._tab.Get(flatbuffers.number_types.Float32Flags, o + self._tab.Pos) return 0.0 # LSTMOptions def KernelType(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(10)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int8Flags, o + self._tab.Pos) return 0 # LSTMOptions def AsymmetricQuantizeInputs(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(12)) if o != 0: return bool(self._tab.Get(flatbuffers.number_types.BoolFlags, o + self._tab.Pos)) return False def LSTMOptionsStart(builder): builder.StartObject(5) def LSTMOptionsAddFusedActivationFunction(builder, fusedActivationFunction): builder.PrependInt8Slot(0, fusedActivationFunction, 0) def LSTMOptionsAddCellClip(builder, cellClip): builder.PrependFloat32Slot(1, cellClip, 0.0) def LSTMOptionsAddProjClip(builder, projClip): builder.PrependFloat32Slot(2, projClip, 0.0) def LSTMOptionsAddKernelType(builder, kernelType): builder.PrependInt8Slot(3, kernelType, 0) def LSTMOptionsAddAsymmetricQuantizeInputs(builder, asymmetricQuantizeInputs): builder.PrependBoolSlot(4, asymmetricQuantizeInputs, 0) def LSTMOptionsEnd(builder): return builder.EndObject() class LSTMOptionsT(object): # LSTMOptionsT def __init__(self): self.fusedActivationFunction = 0 # type: int self.cellClip = 0.0 # type: float self.projClip = 0.0 # type: float self.kernelType = 0 # type: int self.asymmetricQuantizeInputs = False # type: bool @classmethod def InitFromBuf(cls, buf, pos): lSTMOptions = LSTMOptions() lSTMOptions.Init(buf, pos) return cls.InitFromObj(lSTMOptions) @classmethod def InitFromObj(cls, lSTMOptions): x = LSTMOptionsT() x._UnPack(lSTMOptions) return x # LSTMOptionsT def _UnPack(self, lSTMOptions): if lSTMOptions is None: return self.fusedActivationFunction = lSTMOptions.FusedActivationFunction() self.cellClip = lSTMOptions.CellClip() self.projClip = lSTMOptions.ProjClip() self.kernelType = lSTMOptions.KernelType() self.asymmetricQuantizeInputs = lSTMOptions.AsymmetricQuantizeInputs() # LSTMOptionsT def Pack(self, builder): LSTMOptionsStart(builder) LSTMOptionsAddFusedActivationFunction(builder, self.fusedActivationFunction) LSTMOptionsAddCellClip(builder, self.cellClip) LSTMOptionsAddProjClip(builder, self.projClip) LSTMOptionsAddKernelType(builder, self.kernelType) LSTMOptionsAddAsymmetricQuantizeInputs(builder, self.asymmetricQuantizeInputs) lSTMOptions = LSTMOptionsEnd(builder) return lSTMOptions
tests/conftest.py
cclauss/aiofile
311
11086554
<filename>tests/conftest.py from functools import partial import pytest from caio import python_aio_asyncio from aiofile import AIOFile, async_open try: from caio import thread_aio_asyncio except ImportError: thread_aio_asyncio = None try: from caio import linux_aio_asyncio except ImportError: linux_aio_asyncio = None class DefaultContext: __name__ = "default" IMPLEMENTATIONS = list( filter( None, [ linux_aio_asyncio, thread_aio_asyncio, python_aio_asyncio, DefaultContext(), ], ), ) IMPLEMENTATION_NAMES = map(lambda x: x.__name__, IMPLEMENTATIONS) @pytest.fixture(params=IMPLEMENTATIONS, ids=IMPLEMENTATION_NAMES) async def aio_context(request, loop): if isinstance(request.param, DefaultContext): yield None return async with request.param.AsyncioContext(loop=loop) as context: yield context @pytest.fixture def aio_file_maker(aio_context): return partial(AIOFile, context=aio_context) @pytest.fixture(name="async_open") def async_open_maker(aio_context): return partial(async_open, context=aio_context)
src/lib/utils/stress_test/.s/python/lib/python3.6/site-packages/zmq/backend/cffi/message.py
devsapp/fc-stress-desktop
603
11086556
<gh_stars>100-1000 """Dummy Frame object""" # Copyright (C) PyZMQ Developers # Distributed under the terms of the Modified BSD License. import errno from threading import Event from ._cffi import ffi, lib as C from .constants import ETERM import zmq from zmq.utils.strtypes import unicode import zmq.error zmq_gc = None try: from __pypy__.bufferable import bufferable as maybe_bufferable except ImportError: maybe_bufferable = object def _content(obj): """Return content of obj as bytes""" if type(obj) is bytes: return obj if not isinstance(obj, memoryview): obj = memoryview(obj) return obj.tobytes() def _check_rc(rc): err = C.zmq_errno() if rc == -1: if err == errno.EINTR: raise zmq.error.InterrruptedSystemCall(err) elif err == errno.EAGAIN: raise zmq.error.Again(errno) elif err == ETERM: raise zmq.error.ContextTerminated(err) else: raise zmq.error.ZMQError(err) return 0 class Frame(maybe_bufferable): _data = None tracker = None closed = False more = False _buffer = None _bytes = None _failed_init = False tracker_event = None zmq_msg = None def __init__(self, data=None, track=False, copy=None, copy_threshold=None): self._failed_init = True self.zmq_msg = ffi.cast('zmq_msg_t[1]', C.malloc(ffi.sizeof("zmq_msg_t"))) # self.tracker should start finished # except in the case where we are sharing memory with libzmq if track: self.tracker = zmq._FINISHED_TRACKER if isinstance(data, unicode): raise TypeError( "Unicode objects not allowed. Only: bytes, buffer interfaces." ) if data is None: rc = C.zmq_msg_init(self.zmq_msg) _check_rc(rc) self._failed_init = False return self._data = data if type(data) is bytes: # avoid unnecessary copy on .bytes access self._bytes = data self._buffer = memoryview(data) c_data = ffi.from_buffer(self._buffer) data_len_c = self._buffer.nbytes if copy is None: if copy_threshold and data_len_c < copy_threshold: copy = True else: copy = False if copy: # copy message data instead of sharing memory rc = C.zmq_msg_init_size(self.zmq_msg, data_len_c) _check_rc(rc) ffi.buffer(C.zmq_msg_data(self.zmq_msg), data_len_c)[:] = self._buffer self._failed_init = False return # Getting here means that we are doing a true zero-copy Frame, # where libzmq and Python are sharing memory. # Hook up garbage collection with MessageTracker and zmq_free_fn # Event and MessageTracker for monitoring when zmq is done with data: if track: evt = Event() self.tracker_event = evt self.tracker = zmq.MessageTracker(evt) # create the hint for zmq_free_fn # two pointers: the zmq_gc context and a message to be sent to the zmq_gc PULL socket # allows libzmq to signal to Python when it is done with Python-owned memory. global zmq_gc if zmq_gc is None: from zmq.utils.garbage import gc as zmq_gc # can't use ffi.new because it will be freed at the wrong time! hint = ffi.cast("zhint[1]", C.malloc(ffi.sizeof("zhint"))) hint[0].id = zmq_gc.store(data, self.tracker_event) if not zmq_gc._push_mutex: zmq_gc._push_mutex = C.mutex_allocate() hint[0].mutex = ffi.cast("mutex_t*", zmq_gc._push_mutex) hint[0].sock = ffi.cast("void*", zmq_gc._push_socket.underlying) # calls zmq_wrap_msg_init_data with the C.free_python_msg callback rc = C.zmq_wrap_msg_init_data( self.zmq_msg, c_data, data_len_c, hint, ) if rc != 0: C.free(hint) C.free(self.zmq_msg) _check_rc(rc) self._failed_init = False def __del__(self): if not self.closed and not self._failed_init: self.close() def close(self): if self.closed or self._failed_init or self.zmq_msg is None: return self.closed = True rc = C.zmq_msg_close(self.zmq_msg) C.free(self.zmq_msg) self.zmq_msg = None if rc != 0: _check_rc(rc) def _buffer_from_zmq_msg(self): """one-time extract buffer from zmq_msg for Frames created by recv """ if self._data is None: self._data = ffi.buffer( C.zmq_msg_data(self.zmq_msg), C.zmq_msg_size(self.zmq_msg) ) if self._buffer is None: self._buffer = memoryview(self._data) @property def buffer(self): if self._buffer is None: self._buffer_from_zmq_msg() return self._buffer @property def bytes(self): if self._bytes is None: self._bytes = self.buffer.tobytes() return self._bytes def __len__(self): return self.buffer.nbytes def __eq__(self, other): return self.bytes == _content(other) def __str__(self): return self.bytes.decode() @property def done(self): return self.tracker.done() def __buffer__(self, flags): return self._buffer def __copy__(self): """Create a shallow copy of the message. This does not copy the contents of the Frame, just the pointer. This will increment the 0MQ ref count of the message, but not the ref count of the Python object. That is only done once when the Python is first turned into a 0MQ message. """ return self.fast_copy() def fast_copy(self): """Fast shallow copy of the Frame. Does not copy underlying data. """ new_msg = Frame() # This does not copy the contents, but just increases the ref-count # of the zmq_msg by one. C.zmq_msg_copy(new_msg.zmq_msg, self.zmq_msg) # Copy the ref to underlying data new_msg._data = self._data new_msg._buffer = self._buffer # Frame copies share the tracker and tracker_event new_msg.tracker_event = self.tracker_event new_msg.tracker = self.tracker return new_msg Message = Frame __all__ = ['Frame', 'Message']
nbs/live_streams/Exploring the fastai Callback System/utils.py
sakibsadmanshajib/walkwithfastai.github.io
104
11086604
# This source code is directly from goralpl's Seq2Seq example, which we worked on debugging together https://github.com/goralpl/learning_fastai/blob/master/seq2seq_fastai_datablocks_custom_model.ipynb from fastai.text.all import * __all__ = ['build_dls', 'Seq2Seq'] def build_dls(): valid_jsons = [ {"from_txt":"Hello how are you?","to_txt":"I am doing fine."}, {"from_txt":"Is it going to rain today?","to_txt":"Let me pull up the weather."}, {"from_txt":"How do fastai DataBlocks work?","to_txt":"Not sure, I'm still learning."} ] df_valid = pd.DataFrame(valid_jsons) df_valid['is_valid'] = True test_jsons = [ {"from_txt":"Hello, where is the closest McDonald's?","to_txt":"Let me find you that on Google Maps."}, {"from_txt":"Is it going to snow today?","to_txt":"Let me pull up the weather."}, {"from_txt":"How much coffee is safe to drink?","to_txt":"As much as you need to learn the Fastai Library."} ] df_train = pd.DataFrame(test_jsons) df_train['is_valid'] = False df = pd.concat([df_train,df_valid], ignore_index=True) logs = DataBlock( # blocks specify what type of data we are going to be loading. # In this case both are text files contained in the same df # You can specify a tokenizer by passing in a tok variable. Comment the line above and ucomment the onces below. blocks=( TextBlock.from_df('from_txt', is_lm=False, tok=SubwordTokenizer(vocab_sz=200)), TextBlock.from_df('to_txt' , is_lm=False, tok=SubwordTokenizer(vocab_sz=200))), # The TestBlock tokenization process puts tokenized inputs into a column called text. # The ColReader for get_x will always reference text, even if the original text inputs # were in a column with another name in the dataframe. get_x=ColReader('text'), get_y=ColReader('text'), # The dataframe needs to have a is_valid column for this to work. splitter=ColSplitter() ) return logs.dataloaders(df, bs=2) class Encoder(nn.Module): def __init__(self, input_dim, emb_dim, hid_dim, n_layers, dropout): super().__init__() self.hid_dim = hid_dim self.n_layers = n_layers self.embedding = nn.Embedding(input_dim, emb_dim) self.rnn = nn.LSTM(emb_dim, hid_dim, n_layers, dropout = dropout) self.dropout = nn.Dropout(dropout) def forward(self, src): #src = [src len, batch size] embedded = self.dropout(self.embedding(src)) #embedded = [src len, batch size, emb dim] outputs, (hidden, cell) = self.rnn(embedded) #outputs = [src len, batch size, hid dim * n directions] #hidden = [n layers * n directions, batch size, hid dim] #cell = [n layers * n directions, batch size, hid dim] #outputs are always from the top hidden layer return hidden, cell class Decoder(nn.Module): def __init__(self, output_dim, emb_dim, hid_dim, n_layers, dropout): super().__init__() self.output_dim = output_dim self.hid_dim = hid_dim self.n_layers = n_layers self.embedding = nn.Embedding(output_dim, emb_dim) self.rnn = nn.LSTM(emb_dim, hid_dim, n_layers, dropout = dropout) self.fc_out = nn.Linear(hid_dim, output_dim) self.dropout = nn.Dropout(dropout) def forward(self, input, hidden, cell): #input = [batch size] #hidden = [n layers * n directions, batch size, hid dim] #cell = [n layers * n directions, batch size, hid dim] #n directions in the decoder will both always be 1, therefore: #hidden = [n layers, batch size, hid dim] #context = [n layers, batch size, hid dim] input = input.unsqueeze(0) #input = [1, batch size] embedded = self.dropout(self.embedding(input)) #embedded = [1, batch size, emb dim] output, (hidden, cell) = self.rnn(embedded, (hidden, cell)) #output = [seq len, batch size, hid dim * n directions] #hidden = [n layers * n directions, batch size, hid dim] #cell = [n layers * n directions, batch size, hid dim] #seq len and n directions will always be 1 in the decoder, therefore: #output = [1, batch size, hid dim] #hidden = [n layers, batch size, hid dim] #cell = [n layers, batch size, hid dim] prediction = self.fc_out(output.squeeze(0)) #prediction = [batch size, output dim] return prediction, hidden, cell class Seq2Seq(nn.Module): def __init__(self, encoder, decoder, device): super().__init__() self.encoder = encoder self.decoder = decoder self.device = device assert encoder.hid_dim == decoder.hid_dim, \ "Hidden dimensions of encoder and decoder must be equal!" assert encoder.n_layers == decoder.n_layers, \ "Encoder and decoder must have equal number of layers!" def forward(self, src, trg, teacher_forcing_ratio = 0.5): #src = [src len, batch size] #trg = [trg len, batch size] #teacher_forcing_ratio is probability to use teacher forcing #e.g. if teacher_forcing_ratio is 0.75 we use ground-truth inputs 75% of the time batch_size = trg.shape[1] trg_len = trg.shape[0] trg_vocab_size = self.decoder.output_dim #tensor to store decoder outputs outputs = torch.zeros(trg_len, batch_size, trg_vocab_size).to(self.device) #last hidden state of the encoder is used as the initial hidden state of the decoder hidden, cell = self.encoder(src) #first input to the decoder is the <sos> tokens input = trg[0,:] for t in range(1, trg_len): #insert input token embedding, previous hidden and previous cell states #receive output tensor (predictions) and new hidden and cell states output, hidden, cell = self.decoder(input, hidden, cell) #place predictions in a tensor holding predictions for each token outputs[t] = output #decide if we are going to use teacher forcing or not teacher_force = random.random() < teacher_forcing_ratio #get the highest predicted token from our predictions top1 = output.argmax(1) #if teacher forcing, use actual next token as next input #if not, use predicted token input = trg[t] if teacher_force else top1 return outputs
tests/mxnet/mnist_gluon_model.py
sophiayue1116/sagemaker-debugger
133
11086686
# Using batch size 4 instead of 1024 decreases runtime from 35 secs to 4 secs. # Standard Library import time # Third Party import mxnet as mx import numpy as np from mxnet import autograd, gluon, init from mxnet.gluon import nn from mxnet.gluon.data.vision import datasets, transforms # First Party from smdebug import modes def acc(output, label): return (output.argmax(axis=1) == label.astype("float32")).mean().asscalar() def run_mnist_gluon_model( hook=None, hybridize=False, set_modes=False, register_to_loss_block=False, num_steps_train=None, num_steps_eval=None, make_input_zero=False, normalize_mean=0.13, normalize_std=0.31, save_custom_tensor=False, ): batch_size = 4 if make_input_zero: mnist_train = datasets.FashionMNIST( train=True, transform=lambda data, label: (data.astype(np.float32) * 0, label) ) normalize_mean = 0.0 else: mnist_train = datasets.FashionMNIST(train=True) X, y = mnist_train[0] ("X shape: ", X.shape, "X dtype", X.dtype, "y:", y) text_labels = [ "t-shirt", "trouser", "pullover", "dress", "coat", "sandal", "shirt", "sneaker", "bag", "ankle boot", ] X, y = mnist_train[0:10] transformer = transforms.Compose( [transforms.ToTensor(), transforms.Normalize(normalize_mean, 0.31)] ) mnist_train = mnist_train.transform_first(transformer) mnist_valid = gluon.data.vision.FashionMNIST(train=False) train_data = gluon.data.DataLoader( mnist_train, batch_size=batch_size, shuffle=True, num_workers=4 ) valid_data = gluon.data.DataLoader( mnist_valid.transform_first(transformer), batch_size=batch_size, num_workers=4 ) # Create Model in Gluon net = nn.HybridSequential() net.add( nn.Conv2D(channels=6, kernel_size=5, activation="relu"), nn.MaxPool2D(pool_size=2, strides=2), nn.Conv2D(channels=16, kernel_size=3, activation="relu"), nn.MaxPool2D(pool_size=2, strides=2), nn.Flatten(), nn.Dense(120, activation="relu"), nn.Dense(84, activation="relu"), nn.Dense(10), ) net.initialize(init=init.Xavier(), ctx=mx.cpu()) if hybridize: net.hybridize(()) if hook is not None: # Register the forward Hook hook.register_hook(net) softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss() trainer = gluon.Trainer(net.collect_params(), "sgd", {"learning_rate": 0.1}) if register_to_loss_block: hook.register_hook(softmax_cross_entropy) if set_modes: train_loss_name = eval_loss_name = "loss_scalar" train_acc_name = eval_acc_name = "acc" else: train_loss_name = "train_loss_scalar" eval_loss_name = "eval_loss_scalar" train_acc_name = "train_acc" eval_acc_name = "loss_acc" # Start the training. if save_custom_tensor: hook.save_tensor("custom_tensor_1", mx.nd.array([1, 2, 3])) for epoch in range(1): train_loss, train_acc, valid_acc = 0.0, 0.0, 0.0 tic = time.time() if set_modes: hook.set_mode(modes.TRAIN) i = 0 for data, label in train_data: if save_custom_tensor: hook.save_tensor("custom_tensor_2", mx.nd.array([1, 2, 3])) data = data.as_in_context(mx.cpu(0)) # forward + backward with autograd.record(): output = net(data) loss = softmax_cross_entropy(output, label) loss.backward() # update parameters trainer.step(batch_size) # calculate training metrics train_loss += loss.mean().asscalar() train_acc += acc(output, label) # hook.save_scalar(train_loss_name, train_loss) # hook.save_scalar(train_acc_name, train_acc) if save_custom_tensor: # This tensor will not be added to default collections since # collections have already been exported hook.save_tensor("custom_tensor_3", mx.nd.array([1, 2, 3])) i += 1 if num_steps_train is not None and i >= num_steps_train: break # calculate validation accuracy if set_modes: hook.set_mode(modes.EVAL) i = 0 for data, label in valid_data: data = data.as_in_context(mx.cpu(0)) val_output = net(data) valid_acc += acc(val_output, label) loss = softmax_cross_entropy(val_output, label) # hook.save_tensor('eval_labels', label) # hook.save_scalar(eval_acc_name, valid_acc) # hook.save_scalar(eval_loss_name, loss) i += 1 if num_steps_eval is not None and i >= num_steps_eval: break print( "Epoch %d: loss %.3f, train acc %.3f, test acc %.3f, in %.1f sec" % ( epoch, train_loss / len(train_data), train_acc / len(train_data), valid_acc / len(valid_data), time.time() - tic, ) ) # for tests we have to call cleanup ourselves as destructor won't be called now # hook._cleanup()
splitwise/user.py
aayaffe/splitwise
105
11086702
from splitwise.picture import Picture from splitwise.balance import Balance import splitwise.group as Group class User(object): """ Contains basic user data. Attributes: id(long, optional): ID of the user first_name(str, optional): First name of the user last_name(str, optional): Last name of the user email(str, optional): Email of the user registration_status(str, optional): Registration status of the user picture(:obj:`splitwise.picture.Picture`, optional): Profile picture of the user """ def __init__(self, data=None): """ Args: data(:obj:`json`, optional): JSON object representing user object """ if data: self.first_name = data["first_name"] self.last_name = data["last_name"] if 'id' in data: self.id = data["id"] else: self.id = None if 'email' in data: self.email = data["email"] else: self.email = None if 'registration_status' in data: self.registration_status = data["registration_status"] else: self.registration_status = None if 'picture' in data: self.picture = Picture(data["picture"]) else: self.picture = None def getId(self): """ Returns id of the user Returns: long: ID of the user """ return self.id def getFirstName(self): """ Returns first name of the user Returns: str: First name of the user """ return self.first_name def getLastName(self): """ Returns last name of the user Returns: str: Last name of the user """ return self.last_name def getEmail(self): """ Returns email of the user Returns: str: Email of the user """ return self.email def getRegistrationStatus(self): """ Returns registration status of the user Returns: str: Registration status of the user """ return self.registration_status def getPicture(self): """ Returns profile picture of the user Returns: :obj:`splitwise.picture.Picture`: Picture of the user """ return self.picture def setFirstName(self, first_name): """ Sets the first name of the user Agrs: first_name(str): First name of the user """ self.first_name = first_name def setLastName(self, last_name): """ Sets the last name of the user Agrs: last_name(str): Last name of the user """ self.last_name = last_name def setEmail(self, email): """ Sets the email of the user Agrs: email(str): Email of the user """ self.email = email def setId(self, id): """ Sets the id of the user Agrs: id(long): ID of the user """ self.id = id def __getattr__(self, item): return None class CurrentUser(User): """ Represents the current logged in user. Inherits: :class:`splitwise.user.User` Attributes: default_currency(str, optional): Default Currency locale(str, optional): Locale date_format(str, optional): Date format used by the user default_group_id(long, optional): User's default group id """ def __init__(self, data=None): """ Args: data(:obj:`json`, optional): JSON object representing current user object """ User.__init__(self, data) self.default_currency = data["default_currency"] self.locale = data["locale"] self.date_format = data["date_format"] self.default_group_id = data["default_group_id"] def getDefaultCurrency(self): """ Returns default currency of the user Returns: str: Default currency of the user """ return self.default_currency def getLocale(self): """ Returns locale of the user Returns: str: locale of the user """ return self.locale def getDateFormat(self): """ Returns Date format used by the user Returns: str: Date format used by the user """ return self.date_format def getDefaultGroupId(self): """ Returns default group id the user Returns: long: default group id the user """ return self.default_group_id class Friend(User): """ Represents a friend user. Inherits: :class:`splitwise.user.User` Attributes: balances(:obj:`list` of :obj:`splitwise.balance.Balance`, optional): List of balances groups(:obj:`list` of :obj:`splitwise.group.FriendGroup`, optional): List of groups updated_at(str, optional): ISO 8601 Date time. The last updated date time of user """ def __init__(self, data=None): """ Args: data(:obj:`json`, optional): JSON object representing friend user object """ User.__init__(self, data) if data: if 'updated_at' in data: self.updated_at = data["updated_at"] else: self.updated_at = None self.balances = [] for balance in data["balance"]: self.balances.append(Balance(balance)) self.groups = [] if "groups" in data: for group in data["groups"]: self.groups.append(Group.FriendGroup(group)) else: self.groups = None def getUpdatedAt(self): """ Returns last updated date of the user Returns: str: last updated date of the user """ return self.updated_at def getBalances(self): """ Returns balances of the user Returns: :obj:`list` of :obj:`splitwise.balance.Balance`: List of balances """ return self.balances def getGroups(self): """ Returns balances of the user Returns: :obj:`list` of :obj:`splitwise.group.Group`: List of groups """ return self.groups class ExpenseUser(User): """ Represents a user in an expense. Inherits: :class:`splitwise.user.User` Attributes: paid_share(str, optional): Paid share for the expense owed_share(str, optional): Owed share for the expense net_balance(str, optional): Net balance for the expense """ def __init__(self, data=None): """ Args: data(:obj:`json`, optional): JSON object representing user object """ if data: User.__init__(self, data["user"]) self.paid_share = data["paid_share"] self.owed_share = data["owed_share"] self.net_balance = data["net_balance"] def getPaidShare(self): """ Returns paid share of the user Returns: str: paid share of the user """ return self.paid_share def getOwedShare(self): """ Returns owed share of the user Returns: str: owed share of the user """ return self.owed_share def getNetBalance(self): """ Returns net balance of the user Returns: str: net balance of the user """ return self.net_balance def setPaidShare(self, paid_share): """ Sets the paid share of the user Args: paid_share(str): Paid share share of the user """ self.paid_share = paid_share def setOwedShare(self, owed_share): """ Sets the owed share of the user Args: owed_share(str): Owed share share of the user """ self.owed_share = owed_share
tests/test_config_management.py
jakuta-tech/trackerjacker
2,245
11086708
# pylint: disable=C0111, C0413, C0103, E0401 import unittest import trackerjacker.config_management as cm class TestParseWatchList(unittest.TestCase): def test_list_basic(self): # Test basic MAC-only string test1 = 'aa:bb:cc:dd:ee:ff' parsed = cm.parse_command_line_watch_list(test1) self.assertEqual(parsed, {'aa:bb:cc:dd:ee:ff': {'threshold': None, 'power': None}}) def test_2_macs(self): test2 = 'aa:bb:cc:dd:ee:ff, 11:22:33:44:55:66' parsed = cm.parse_command_line_watch_list(test2) self.assertEqual(parsed, {'aa:bb:cc:dd:ee:ff': {'threshold': None, 'power': None}, '11:22:33:44:55:66': {'threshold': None, 'power': None}}) def test_2_macs_explicit(self): """ Test 2 devices with explicitly setting threshold and power. """ test3 = 'aa:bb:cc:dd:ee:ff=1000, 11:22:33:44:55:66=-32' parsed = cm.parse_command_line_watch_list(test3) self.assertEqual(parsed, {'aa:bb:cc:dd:ee:ff': {'threshold': 1000, 'power': None}, '11:22:33:44:55:66': {'threshold': None, 'power': -32}}) class TestCommandLineBasics(unittest.TestCase): def test_default_config(self): # Just making sure I understand how parse_args works cmd_line_args = cm.get_arg_parser().parse_args([]) self.assertEqual(cmd_line_args.do_map, False) cmd_line_args = cm.get_arg_parser().parse_args(['--map']) self.assertEqual(cmd_line_args.do_map, True) # Test overriding the map_file cmd_line_args = cm.get_arg_parser().parse_args([]) config = cm.build_config(cmd_line_args) self.assertEqual(config['map_file'], 'wifi_map.yaml') def test_override_config(self): cmd_line_args = cm.get_arg_parser().parse_args(['--map-file', 'my_network.yaml']) config = cm.build_config(cmd_line_args) self.assertEqual(config['map_file'], 'my_network.yaml') def test_config_macs_to_watch_default_threshold_to_1(self): cmd_line_args = cm.get_arg_parser().parse_args(['--track', '-m', '7C:70:BC:78:70:21']) config = cm.build_config(cmd_line_args) self.assertEqual(config['devices_to_watch'], {'7C:70:BC:78:70:21': {'threshold': 1, 'power': None,}}) def test_config_macs_to_watch_explicit_threshold(self): """ Test setting an explicit threshold. """ cmd_line_args = cm.get_arg_parser().parse_args(['--track', '-m', '7C:70:BC:78:70:21=100']) config = cm.build_config(cmd_line_args) self.assertEqual(config['devices_to_watch'], {'7C:70:BC:78:70:21': {'threshold': 100, 'power': None}}) def test_config_macs_to_watch_explicit_threshold_multiple(self): cmd_line_args = cm.get_arg_parser().parse_args(['--track', '-m', '7C:70:BC:78:70:21=100,aa:bb:cc:dd:ee:ff']) config = cm.build_config(cmd_line_args) self.assertEqual(config['devices_to_watch'], {'7C:70:BC:78:70:21': {'threshold': 100, 'power': None}, 'aa:bb:cc:dd:ee:ff': {'threshold': 1, 'power': None}}) def test_config_macs_to_watch_power_and_threshold(self): """ Test setting power and threshold. """ cmd_line_args = cm.get_arg_parser().parse_args(['--track', '-m', '7C:70:BC:78:70:21=100,aa:bb:cc:dd:ee:ff=-50']) config = cm.build_config(cmd_line_args) self.assertEqual(config['devices_to_watch'], {'7C:70:BC:78:70:21': {'threshold': 100, 'power': None}, 'aa:bb:cc:dd:ee:ff': {'threshold': None, 'power': -50}}) def test_config_macs_to_watch_general_threshold(self): """ Test that general threshold is used if no explicit specified. """ cmd_line_args = cm.get_arg_parser().parse_args(['--track', '-m', '7C:70:BC:78:70:21,aa:bb:cc:dd:ee:ff', '--threshold', '1337']) config = cm.build_config(cmd_line_args) self.assertEqual(config['devices_to_watch'], {'7C:70:BC:78:70:21': {'threshold': 1337, 'power': None}, 'aa:bb:cc:dd:ee:ff': {'threshold': 1337, 'power': None}}) class TestCommandLineGeneralPower(unittest.TestCase): def test_config_macs_to_watch_power(self): """ Test that general threshold is used if no explicit specified. """ cmd_line_args = cm.get_arg_parser().parse_args(['--track', '-m', '7C:70:BC:78:70:21,aa:bb:cc:dd:ee:ff', '--power', '-42']) config = cm.build_config(cmd_line_args) self.assertEqual(config['devices_to_watch'], {'7C:70:BC:78:70:21': {'threshold': None, 'power': -42}, 'aa:bb:cc:dd:ee:ff': {'threshold': None, 'power': -42}}) class TestCommandLinePower(unittest.TestCase): def test_config_macs_to_watch_mixed_override(self): """ Test that we can have explicitly-set threshold and still get general power. """ cmd_line_args = cm.get_arg_parser().parse_args(['--track', '-m', '7C:70:BC:78:70:21=123,aa:bb:cc:dd:ee:ff', '--power', '-42']) config = cm.build_config(cmd_line_args) self.assertEqual(config['devices_to_watch'], {'7C:70:BC:78:70:21': {'threshold': 123, 'power': None}, 'aa:bb:cc:dd:ee:ff': {'threshold': None, 'power': -42}}) class TestCommandLineExplicitPowerGeneralThreshold(unittest.TestCase): def test_config_macs_to_watch_mixed_override_reverse(self): """ Test that we can have explicitly-set power and still get general threshold. """ cmd_line_args = cm.get_arg_parser().parse_args(['--track', '-m', '7C:70:BC:78:70:21=-22,11:bb:cc:dd:ee:ff', '--threshold', '1024']) config = cm.build_config(cmd_line_args) self.assertEqual(config['devices_to_watch'], {'7C:70:BC:78:70:21': {'threshold': None, 'power': -22}, '11:bb:cc:dd:ee:ff': {'threshold': 1024, 'power': None}}) class TestCommandLineApsToWatch(unittest.TestCase): def test_config_aps_to_watch(self): """ Test setting explicit threshold and power, and test ssid. """ cmd_line_args = cm.get_arg_parser().parse_args(['--track', '-a', '7C:70:BC:78:70:21=100,my_network']) config = cm.build_config(cmd_line_args) self.assertEqual(config['aps_to_watch'], {'7C:70:BC:78:70:21': {'threshold': 100, 'power': None}, 'my_network': {'threshold': 1, 'power': None}}) if __name__ == '__main__': unittest.main()
pyshtools/constants/__init__.py
mjc87/SHTOOLS
251
11086742
""" pyshtools constants. This subpackage defines several constants used in analyzing gravity, topography, and magnetic field data of the terrestrial planets. The constants are organized by planet, and each object is an astropy Constant that possesses the attributes name, value, unit, uncertainty, and reference. These constants can be used in arithmetic operations with objects of the astropy class Quantity. Examples Calculate the gravitational acceleration on the surface of Mars and then to convert this to mGals: >>> Mars.gm / Mars.r**2 <Quantity 3.7278663 m / s2> >>> (Mars.gm / Mars.r**2).to_value('mGal') 372786.6303857397 Inspect a constant using the print function: >>> print(G) Name = Gravitational constant Value = 6.6743e-11 Uncertainty = 1.5e-15 Unit = m3 / (kg s2) Reference = CODATA 2018 """ try: from astropy.constants import Constant from astropy.units.quantity import Quantity except ImportError: raise ImportError('To use the pyshtools constant subpackage, you must ' 'install astropy.') # == Fundamental constants == from astropy.constants import G from astropy.constants import mu0 from astropy.constants import codata # == Constants organized by planet === from . import Mercury from . import Venus from . import Earth from . import Moon from . import Mars # === Define __all__ === __all__ = ['Constant', 'Quantity', 'G', 'mu0', 'codata', 'Mercury', 'Venus', 'Earth', 'Moon', 'Mars']
recipes/Python/580733_Reverse_sequence_annotations_PDF/recipe-580733.py
tdiprima/code
2,023
11086754
<reponame>tdiprima/code import fitz doc = fitz.open("some.pdf") # open pdf page = doc[n] # open the page (0-based number) rtab = [] # store all rectangles here annot = page.firstAnnot # read first annotation while annot: rtab.append(annot.rect) # store rectangle annot = annot.next # read next annot annot = page.firstAnnot # cycle thru annots again for rect in reversed(rtab): annot.setRect(rect) # give it a new place annot = annot.next doc.save("some-reversed.pdf") # save PDF with reversed annotations
corehq/apps/users/migrations/0020_user_staging_pk_to_bigint.py
dimagilg/commcare-hq
471
11086771
# Generated by Django 2.2.13 on 2020-07-27 11:05 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0019_editreportspermissions'), ] operations = [ migrations.AlterField( model_name='userreportingmetadatastaging', name='id', field=models.BigAutoField(primary_key=True, serialize=False), ), ]
build/scripts/extract_jacoco_report.py
HeyLey/catboost
6,989
11086784
<filename>build/scripts/extract_jacoco_report.py import argparse import os import re import tarfile if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--archive', action='store') parser.add_argument('--source-re', action='store') parser.add_argument('--destination', action='store') args = parser.parse_args() with tarfile.open(args.archive) as tf: open(args.destination, 'wb').close() extract_list = [] matcher = re.compile(args.source_re) temp_dir = os.path.join(os.path.dirname(args.destination), 'temp_profiles') if not os.path.exists(temp_dir): os.makedirs(temp_dir) for f in [i for i in tf if matcher.match(i.name)]: tf.extract(f, path=temp_dir) for directory, _, srcs in os.walk(temp_dir): for f in srcs: with open(args.destination, 'ab') as dst: with open(os.path.join(temp_dir, directory, f), 'rb') as src: dst.write(src.read())
postprocessing/CalculateFrequency.py
mathreader/DeepKoopman
199
11086795
<gh_stars>100-1000 import numpy as np from scipy.special import factorial2 from scipy.special import factorial def kfn(theta0): return np.sin(np.float64(theta0) / 2) def periodTerm(n, k): numerator = np.float64((factorial2(2 * n - 1)) ** 2) denominator = np.float64((2 ** n) * factorial(n) * factorial2(2 * n)) return (numerator / denominator) * (k ** (2 * n)) * (2 * np.pi) def periodTermNextStep(n, k, prevTerm): nextTerm = ((2 * n - 1) ** 2) * prevTerm / (4 * n ** 2) * k ** 2 return nextTerm def periodPendulum(theta0, tol, maxN, printFlag=0): periodApprox = 2 * np.pi # n = 0 term k = kfn(theta0) for n in (np.arange(maxN) + 1): # n = 1, 2, ..., maxN if n < 3: nextTerm = periodTerm(n, k) else: # nextTermOldFormula = periodTerm(n, k) nextTerm = periodTermNextStep(n, k, prevTerm) # if (np.abs(nextTermOldFormula - nextTerm) > 10**(-10)): # print "discrepancy at n = %f, k = %f: prev. formula said nextTerm = %f, new formula says nextTerm = %f" % (n, k, nextTermOldFormula, nextTerm) if nextTerm < 0: print("nextTerm < 0: %f at n = %f, k = %f" % (nextTerm, n, k)) if nextTerm > tol: # nextTerm gives sense of error (really, lower bound, since all terms are non-neg) periodApprox += nextTerm else: if printFlag: print("reached tol (lower bound on error) after n = %d" % (n - 1)) break prevTerm = nextTerm.copy() return periodApprox def FindTheta0(theta, thetadot): # print "find theta0 for theta = %f and thetadot = %f" % (theta, thetadot) potential = (1.0 / 2.0) * (thetadot ** 2) - np.cos(theta) + 1 # H # E = 1 - np.cos(theta0) # domain for real #s for arrcos is [-1,1] # so want 1-potential in [-1, 1] # so want potential in [0, 2] if ((potential < 0) or (potential > 2)): # TODO: do something smarter here potential = 0 theta0 = np.arccos(1 - potential) return theta0 # def f(t, x): # return [x[1], -np.sin(x[0])] def FindOmega(point, tol=10 ** (-7), maxTerms=100): theta0 = FindTheta0(point[0], point[1]) period = periodPendulum(theta0, tol, maxTerms) omega = (2 * np.pi) / period # eigenval = np.exp(omega*1j*deltat) return omega def AddFrequency(prefix, suffix, tol=10 ** (-7), maxTerms=100): fname = prefix + suffix print("loading %s" % fname) data = np.loadtxt(fname, delimiter=',') # each row is an example, we add extra column data_freq = np.zeros((data.shape[0], data.shape[1] + 1), dtype=np.float32) data_freq[:, 0:2] = data.copy() for j in range(data.shape[0]): data_freq[j, 2] = FindOmega(data[j, 0:2]) newfname = prefix + 'Freq' + suffix print("saving %s" % newfname) np.savetxt(newfname, data_freq, delimiter=',')
pygmt/clib/loading.py
jbusecke/pygmt
326
11086798
""" Utility functions to load libgmt as ctypes.CDLL. The path to the shared library can be found automatically by ctypes or set through the GMT_LIBRARY_PATH environment variable. """ import ctypes import os import subprocess as sp import sys from ctypes.util import find_library from pathlib import Path from pygmt.exceptions import GMTCLibError, GMTCLibNotFoundError, GMTOSError def load_libgmt(lib_fullnames=None): """ Find and load ``libgmt`` as a :py:class:`ctypes.CDLL`. Will look for the GMT shared library in the directories determined by clib_full_names(). Parameters ---------- lib_fullnames : list of str or None List of possible full names of GMT's shared library. If ``None``, will default to ``clib_full_names()``. Returns ------- :py:class:`ctypes.CDLL` object The loaded shared library. Raises ------ GMTCLibNotFoundError If there was any problem loading the library (couldn't find it or couldn't access the functions). """ if lib_fullnames is None: lib_fullnames = clib_full_names() error = True error_msg = [] failing_libs = [] for libname in lib_fullnames: try: if libname not in failing_libs: # skip the lib if it's known to fail libgmt = ctypes.CDLL(libname) check_libgmt(libgmt) error = False break except (OSError, GMTCLibError) as err: error_msg.append(f"Error loading GMT shared library at '{libname}'.\n{err}") failing_libs.append(libname) if error: raise GMTCLibNotFoundError("\n".join(error_msg)) return libgmt def clib_names(os_name): """ Return the name of GMT's shared library for the current OS. Parameters ---------- os_name : str The operating system name as given by ``sys.platform``. Returns ------- libnames : list of str List of possible names of GMT's shared library. """ if os_name.startswith(("linux", "freebsd")): libnames = ["libgmt.so"] elif os_name == "darwin": # Darwin is macOS libnames = ["libgmt.dylib"] elif os_name == "win32": libnames = ["gmt.dll", "gmt_w64.dll", "gmt_w32.dll"] else: raise GMTOSError(f"Operating system '{os_name}' not supported.") return libnames def clib_full_names(env=None): """ Return the full path of GMT's shared library for the current OS. Parameters ---------- env : dict or None A dictionary containing the environment variables. If ``None``, will default to ``os.environ``. Yields ------ lib_fullnames: list of str List of possible full names of GMT's shared library. """ if env is None: env = os.environ libnames = clib_names(os_name=sys.platform) # e.g. libgmt.so, libgmt.dylib, gmt.dll # Search for the library in different ways, sorted by priority. # 1. Search for the library in GMT_LIBRARY_PATH if defined. libpath = env.get("GMT_LIBRARY_PATH", "") # e.g. $HOME/miniconda/envs/pygmt/lib if libpath: for libname in libnames: libfullpath = Path(libpath) / libname if libfullpath.exists(): yield str(libfullpath) # 2. Search for the library returned by command "gmt --show-library" # Use `str(Path(realpath))` to avoid mixture of separators "\\" and "/" try: libfullpath = Path( sp.check_output(["gmt", "--show-library"], encoding="utf-8").rstrip("\n") ) assert libfullpath.exists() yield str(libfullpath) except (FileNotFoundError, AssertionError, sp.CalledProcessError): # the 'gmt' executable is not found # the gmt library is not found # the 'gmt' executable is broken pass # 3. Search for DLLs in PATH by calling find_library() (Windows only) if sys.platform == "win32": for libname in libnames: libfullpath = find_library(libname) if libfullpath: yield libfullpath # 4. Search for library names in the system default path for libname in libnames: yield libname def check_libgmt(libgmt): """ Make sure that libgmt was loaded correctly. Checks if it defines some common required functions. Does nothing if everything is fine. Raises an exception if any of the functions are missing. Parameters ---------- libgmt : :py:class:`ctypes.CDLL` A shared library loaded using ctypes. Raises ------ GMTCLibError """ # Check if a few of the functions we need are in the library functions = ["Create_Session", "Get_Enum", "Call_Module", "Destroy_Session"] for func in functions: if not hasattr(libgmt, "GMT_" + func): # pylint: disable=protected-access msg = ( f"Error loading '{libgmt._name}'. Couldn't access function GMT_{func}. " "Ensure that you have installed an up-to-date GMT version 6 library. " "Please set the environment variable 'GMT_LIBRARY_PATH' to the " "directory of the GMT 6 library." ) raise GMTCLibError(msg)
utils/timeout.py
Mattlk13/dd-agent
1,172
11086822
<gh_stars>1000+ # (C) Datadog, Inc. 2010-2016 # All rights reserved # Licensed under Simplified BSD License (see LICENSE) from datadog_checks.utils.timeout import ( # noqa F401 TimeoutException, ThreadMethod, timeout )
rpython/jit/backend/ppc/callbuilder.py
m4sterchain/mesapy
381
11086830
<gh_stars>100-1000 from rpython.jit.backend.ppc.arch import IS_PPC_64, WORD, PARAM_SAVE_AREA_OFFSET from rpython.jit.backend.ppc.arch import THREADLOCAL_ADDR_OFFSET import rpython.jit.backend.ppc.register as r from rpython.jit.metainterp.history import INT, FLOAT from rpython.jit.backend.llsupport.callbuilder import AbstractCallBuilder from rpython.jit.backend.ppc.jump import remap_frame_layout from rpython.rlib.objectmodel import we_are_translated from rpython.jit.backend.llsupport import llerrno from rpython.rtyper.lltypesystem import rffi def follow_jump(addr): # xxx implement me return addr class CallBuilder(AbstractCallBuilder): GPR_ARGS = [r.r3, r.r4, r.r5, r.r6, r.r7, r.r8, r.r9, r.r10] FPR_ARGS = r.MANAGED_FP_REGS assert FPR_ARGS == [r.f1, r.f2, r.f3, r.f4, r.f5, r.f6, r.f7, r.f8, r.f9, r.f10, r.f11, r.f12, r.f13] RSHADOWPTR = r.RCS1 RFASTGILPTR = r.RCS2 RSHADOWOLD = r.RCS3 def __init__(self, assembler, fnloc, arglocs, resloc): AbstractCallBuilder.__init__(self, assembler, fnloc, arglocs, resloc, restype=INT, ressize=None) def prepare_arguments(self): assert IS_PPC_64 self.subtracted_to_sp = 0 # Prepare arguments. Note that this follows the convention where # a prototype is in scope, and doesn't take "..." arguments. If # you were to call a C function with a "..." argument with cffi, # it would not go there but instead via libffi. If you pretend # instead that it takes fixed arguments, then it would arrive here # but the convention is bogus for floating-point arguments. (And, # to add to the mess, at least CPython's ctypes cannot be used # to call a "..." function with floating-point arguments. As I # guess that it's a problem with libffi, it means PyPy inherits # the same problem.) arglocs = self.arglocs num_args = len(arglocs) non_float_locs = [] non_float_regs = [] float_locs = [] for i in range(min(num_args, 8)): if arglocs[i].type != FLOAT: non_float_locs.append(arglocs[i]) non_float_regs.append(self.GPR_ARGS[i]) else: float_locs.append(arglocs[i]) # now 'non_float_locs' and 'float_locs' together contain the # locations of the first 8 arguments if num_args > 8: # We need to make a larger PPC stack frame, as shown on the # picture in arch.py. It needs to be 48 bytes + 8 * num_args. # The new SP back chain location should point to the top of # the whole stack frame, i.e. jumping over both the existing # fixed-sise part and the new variable-sized part. base = PARAM_SAVE_AREA_OFFSET varsize = base + 8 * num_args varsize = (varsize + 15) & ~15 # align self.mc.load(r.SCRATCH2.value, r.SP.value, 0) # SP back chain self.mc.store_update(r.SCRATCH2.value, r.SP.value, -varsize) self.subtracted_to_sp = varsize # In this variable-sized part, only the arguments from the 8th # one need to be written, starting at SP + 112 for n in range(8, num_args): loc = arglocs[n] if loc.type != FLOAT: # after the 8th argument, a non-float location is # always stored in the stack if loc.is_reg(): src = loc else: src = r.r2 self.asm.regalloc_mov(loc, src) self.mc.std(src.value, r.SP.value, base + 8 * n) else: # the first 13 floating-point arguments are all passed # in the registers f1 to f13, independently on their # index in the complete list of arguments if len(float_locs) < len(self.FPR_ARGS): float_locs.append(loc) else: if loc.is_fp_reg(): src = loc else: src = r.FP_SCRATCH self.asm.regalloc_mov(loc, src) self.mc.stfd(src.value, r.SP.value, base + 8 * n) # We must also copy fnloc into FNREG non_float_locs.append(self.fnloc) non_float_regs.append(self.mc.RAW_CALL_REG) if float_locs: assert len(float_locs) <= len(self.FPR_ARGS) remap_frame_layout(self.asm, float_locs, self.FPR_ARGS[:len(float_locs)], r.FP_SCRATCH) remap_frame_layout(self.asm, non_float_locs, non_float_regs, r.SCRATCH) def push_gcmap(self): # we push *now* the gcmap, describing the status of GC registers # after the rearrangements done just before, ignoring the return # value r3, if necessary assert not self.is_call_release_gil noregs = self.asm.cpu.gc_ll_descr.is_shadow_stack() gcmap = self.asm._regalloc.get_gcmap([r.r3], noregs=noregs) self.asm.push_gcmap(self.mc, gcmap, store=True) def pop_gcmap(self): ssreg = None gcrootmap = self.asm.cpu.gc_ll_descr.gcrootmap if gcrootmap: if gcrootmap.is_shadow_stack and self.is_call_release_gil: # in this mode, RSHADOWOLD happens to contain the shadowstack # top at this point, so reuse it instead of loading it again ssreg = self.RSHADOWOLD self.asm._reload_frame_if_necessary(self.mc, shadowstack_reg=ssreg) def emit_raw_call(self): self.mc.raw_call() def restore_stack_pointer(self): if self.subtracted_to_sp != 0: self.mc.addi(r.SP.value, r.SP.value, self.subtracted_to_sp) def load_result(self): assert (self.resloc is None or self.resloc is r.r3 or self.resloc is r.f1) def call_releasegil_addr_and_move_real_arguments(self, fastgil): assert self.is_call_release_gil RSHADOWPTR = self.RSHADOWPTR RFASTGILPTR = self.RFASTGILPTR RSHADOWOLD = self.RSHADOWOLD # # Save this thread's shadowstack pointer into r29, for later comparison gcrootmap = self.asm.cpu.gc_ll_descr.gcrootmap if gcrootmap: if gcrootmap.is_shadow_stack: rst = gcrootmap.get_root_stack_top_addr() self.mc.load_imm(RSHADOWPTR, rst) self.mc.load(RSHADOWOLD.value, RSHADOWPTR.value, 0) # # change 'rpy_fastgil' to 0 (it should be non-zero right now) self.mc.load_imm(RFASTGILPTR, fastgil) self.mc.li(r.r0.value, 0) self.mc.lwsync() self.mc.std(r.r0.value, RFASTGILPTR.value, 0) # if not we_are_translated(): # for testing: we should not access self.mc.addi(r.SPP.value, r.SPP.value, 1) # r31 any more def move_real_result_and_call_reacqgil_addr(self, fastgil): from rpython.jit.backend.ppc.codebuilder import OverwritingBuilder # try to reacquire the lock. The following registers are still # valid from before the call: RSHADOWPTR = self.RSHADOWPTR # r30: &root_stack_top RFASTGILPTR = self.RFASTGILPTR # r29: &fastgil RSHADOWOLD = self.RSHADOWOLD # r28: previous val of root_stack_top # Equivalent of 'r10 = __sync_lock_test_and_set(&rpy_fastgil, 1);' self.mc.li(r.r9.value, 1) retry_label = self.mc.currpos() self.mc.ldarx(r.r10.value, 0, RFASTGILPTR.value) # load the lock value self.mc.stdcxx(r.r9.value, 0, RFASTGILPTR.value) # try to claim lock self.mc.bc(6, 2, retry_label - self.mc.currpos()) # retry if failed self.mc.isync() self.mc.cmpdi(0, r.r10.value, 0) b1_location = self.mc.currpos() self.mc.trap() # boehm: patched with a BEQ: jump if r10 is zero # shadowstack: patched with BNE instead if self.asm.cpu.gc_ll_descr.gcrootmap: # When doing a call_release_gil with shadowstack, there # is the risk that the 'rpy_fastgil' was free but the # current shadowstack can be the one of a different # thread. So here we check if the shadowstack pointer # is still the same as before we released the GIL (saved # in RSHADOWOLD), and if not, we fall back to 'reacqgil_addr'. self.mc.load(r.r9.value, RSHADOWPTR.value, 0) self.mc.cmpdi(0, r.r9.value, RSHADOWOLD.value) bne_location = b1_location b1_location = self.mc.currpos() self.mc.trap() # revert the rpy_fastgil acquired above, so that the # general 'reacqgil_addr' below can acquire it again... # (here, r10 is conveniently zero) self.mc.std(r.r10.value, RFASTGILPTR.value, 0) pmc = OverwritingBuilder(self.mc, bne_location, 1) pmc.bne(self.mc.currpos() - bne_location) pmc.overwrite() # # Yes, we need to call the reacqgil() function. # save the result we just got RSAVEDRES = RFASTGILPTR # can reuse this reg here reg = self.resloc if reg is not None: if reg.is_core_reg(): self.mc.mr(RSAVEDRES.value, reg.value) elif reg.is_fp_reg(): self.mc.stfd(reg.value, r.SP.value, PARAM_SAVE_AREA_OFFSET + 7 * WORD) self.mc.load_imm(self.mc.RAW_CALL_REG, self.asm.reacqgil_addr) self.mc.raw_call() if reg is not None: if reg.is_core_reg(): self.mc.mr(reg.value, RSAVEDRES.value) elif reg.is_fp_reg(): self.mc.lfd(reg.value, r.SP.value, PARAM_SAVE_AREA_OFFSET + 7 * WORD) # replace b1_location with BEQ(here) pmc = OverwritingBuilder(self.mc, b1_location, 1) pmc.beq(self.mc.currpos() - b1_location) pmc.overwrite() if not we_are_translated(): # for testing: now we can access self.mc.addi(r.SPP.value, r.SPP.value, -1) # r31 again def write_real_errno(self, save_err): if save_err & rffi.RFFI_READSAVED_ERRNO: # Just before a call, read '*_errno' and write it into the # real 'errno'. A lot of registers are free here, notably # r11 and r0. if save_err & rffi.RFFI_ALT_ERRNO: rpy_errno = llerrno.get_alt_errno_offset(self.asm.cpu) else: rpy_errno = llerrno.get_rpy_errno_offset(self.asm.cpu) p_errno = llerrno.get_p_errno_offset(self.asm.cpu) self.mc.ld(r.r11.value, r.SP.value, THREADLOCAL_ADDR_OFFSET + self.subtracted_to_sp) self.mc.lwz(r.r0.value, r.r11.value, rpy_errno) self.mc.ld(r.r11.value, r.r11.value, p_errno) self.mc.stw(r.r0.value, r.r11.value, 0) elif save_err & rffi.RFFI_ZERO_ERRNO_BEFORE: # Same, but write zero. p_errno = llerrno.get_p_errno_offset(self.asm.cpu) self.mc.ld(r.r11.value, r.SP.value, THREADLOCAL_ADDR_OFFSET + self.subtracted_to_sp) self.mc.ld(r.r11.value, r.r11.value, p_errno) self.mc.li(r.r0.value, 0) self.mc.stw(r.r0.value, r.r11.value, 0) def read_real_errno(self, save_err): if save_err & rffi.RFFI_SAVE_ERRNO: # Just after a call, read the real 'errno' and save a copy of # it inside our thread-local '*_errno'. Registers r4-r10 # never contain anything after the call. if save_err & rffi.RFFI_ALT_ERRNO: rpy_errno = llerrno.get_alt_errno_offset(self.asm.cpu) else: rpy_errno = llerrno.get_rpy_errno_offset(self.asm.cpu) p_errno = llerrno.get_p_errno_offset(self.asm.cpu) self.mc.ld(r.r9.value, r.SP.value, THREADLOCAL_ADDR_OFFSET) self.mc.ld(r.r10.value, r.r9.value, p_errno) self.mc.lwz(r.r10.value, r.r10.value, 0) self.mc.stw(r.r10.value, r.r9.value, rpy_errno)
corehq/apps/data_interfaces/dispatcher.py
akashkj/commcare-hq
471
11086839
from django.utils.decorators import method_decorator from django_prbac.utils import has_privilege from corehq import privileges from corehq.apps.accounting.decorators import requires_privilege_with_fallback from corehq.apps.reports.dispatcher import ReportDispatcher, datespan_default from corehq.apps.users.decorators import require_permission from corehq.apps.users.models import Permissions require_can_edit_data = require_permission(Permissions.edit_data) require_form_management_privilege = requires_privilege_with_fallback(privileges.DATA_CLEANUP) class EditDataInterfaceDispatcher(ReportDispatcher): prefix = 'edit_data_interface' map_name = 'EDIT_DATA_INTERFACES' @method_decorator(require_can_edit_data) @datespan_default def dispatch(self, request, *args, **kwargs): from corehq.apps.case_importer.base import ImportCases from .interfaces import BulkFormManagementInterface if kwargs['report_slug'] == ImportCases.slug: return self.bulk_import_case_dispatch(request, *args, **kwargs) elif (kwargs['report_slug'] == BulkFormManagementInterface.slug and not kwargs.get('skip_permissions_check')): return self.bulk_form_management_dispatch(request, *args, **kwargs) return super(EditDataInterfaceDispatcher, self).dispatch(request, *args, **kwargs) @method_decorator(requires_privilege_with_fallback(privileges.BULK_CASE_MANAGEMENT)) def bulk_import_case_dispatch(self, request, *args, **kwargs): return super(EditDataInterfaceDispatcher, self).dispatch(request, *args, **kwargs) @method_decorator(require_form_management_privilege) def bulk_form_management_dispatch(self, request, *args, **kwargs): return super(EditDataInterfaceDispatcher, self).dispatch(request, *args, **kwargs) def permissions_check(self, report, request, domain=None, is_navigation_check=False): if is_navigation_check: from corehq.apps.case_importer.base import ImportCases from corehq.apps.data_interfaces.interfaces import BulkFormManagementInterface report_name = report.split('.')[-1] if report_name == ImportCases.__name__: if not has_privilege(request, privileges.BULK_CASE_MANAGEMENT): return False if report_name == BulkFormManagementInterface.__name__: if not has_privilege(request, privileges.DATA_CLEANUP): return False return request.couch_user.can_edit_data(domain)
cooler/api.py
mimakaev/cooler
106
11086873
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function import simplejson as json import six import os from pandas.api.types import is_integer_dtype from scipy.sparse import coo_matrix import numpy as np import pandas as pd import h5py from .core import ( get, region_to_offset, region_to_extent, RangeSelector1D, RangeSelector2D, CSRReader, query_rect, ) from .util import parse_cooler_uri, parse_region, open_hdf5, closing_hdf5 from .fileops import list_coolers __all__ = ["Cooler", "annotate"] # The 4DN data portal and hic2cool store these weight vectors in divisive form _4DN_DIVISIVE_WEIGHTS = {"KR", "VC", "VC_SQRT"} class Cooler(object): """ A convenient interface to a cooler data collection. Parameters ---------- store : str, :py:class:`h5py.File` or :py:class:`h5py.Group` Path to a cooler file, URI string, or open handle to the root HDF5 group of a cooler data collection. root : str, optional [deprecated] HDF5 Group path to root of cooler group if ``store`` is a file. This option is deprecated. Instead, use a URI string of the form :file:`<file_path>::<group_path>`. kwargs : optional Options to be passed to :py:class:`h5py.File()` upon every access. By default, the file is opened with the default driver and mode='r'. Notes ----- If ``store`` is a file path, the file will be opened temporarily in when performing operations. This allows :py:class:`Cooler` objects to be serialized for multiprocess and distributed computations. Metadata is accessible as a dictionary through the :py:attr:`info` property. Table selectors, created using :py:meth:`chroms`, :py:meth:`bins`, and :py:meth:`pixels`, perform range queries over table rows, returning :py:class:`pd.DataFrame` and :py:class:`pd.Series`. A matrix selector, created using :py:meth:`matrix`, performs 2D matrix range queries, returning :py:class:`numpy.ndarray` or :py:class:`scipy.sparse.coo_matrix`. """ def __init__(self, store, root=None, **kwargs): if isinstance(store, six.string_types): if root is None: self.filename, self.root = parse_cooler_uri(store) elif h5py.is_hdf5(store): with open_hdf5(store, **kwargs) as h5: self.filename = h5.file.filename self.root = root else: raise ValueError("Not a valid path to a Cooler file") self.uri = self.filename + "::" + self.root self.store = self.filename self.open_kws = kwargs else: # Assume an open HDF5 handle, ignore open_kws self.filename = store.file.filename self.root = store.name self.uri = self.filename + "::" + self.root self.store = store.file self.open_kws = {} self._refresh() def _refresh(self): try: with open_hdf5(self.store, **self.open_kws) as h5: grp = h5[self.root] _ct = chroms(grp) _ct["name"] = _ct["name"].astype(object) self._chromsizes = _ct.set_index("name")["length"] self._chromids = dict(zip(_ct["name"], range(len(_ct)))) self._info = info(grp) mode = self._info.get("storage-mode", u"symmetric-upper") self._is_symm_upper = mode == u"symmetric-upper" except KeyError: err_msg = "No cooler found at: {}.".format(self.store) listing = list_coolers(self.store) if len(listing): err_msg += ( " Coolers found in {}. ".format(listing) + "Use '::' to specify a group path" ) raise KeyError(err_msg) def _load_dset(self, path): with open_hdf5(self.store, **self.open_kws) as h5: grp = h5[self.root] return grp[path][:] def _load_attrs(self, path): with open_hdf5(self.store, **self.open_kws) as h5: grp = h5[self.root] return dict(grp[path].attrs) def open(self, mode="r", **kwargs): """ Open the HDF5 group containing the Cooler with :py:mod:`h5py` Functions as a context manager. Any ``open_kws`` passed during construction are ignored. Parameters ---------- mode : str, optional [default: 'r'] * ``'r'`` (readonly) * ``'r+'`` or ``'a'`` (read/write) Notes ----- For other parameters, see :py:class:`h5py.File`. """ grp = h5py.File(self.filename, mode, **kwargs)[self.root] return closing_hdf5(grp) @property def storage_mode(self): """Indicates whether ordinary sparse matrix encoding is used (``"square"``) or whether a symmetric matrix is encoded by storing only the upper triangular elements (``"symmetric-upper"``). """ return self._info.get("storage-mode", u"symmetric-upper") @property def binsize(self): """ Resolution in base pairs if uniform else None """ return self._info["bin-size"] @property def chromsizes(self): """ Ordered mapping of reference sequences to their lengths in bp """ return self._chromsizes @property def chromnames(self): """ List of reference sequence names """ return list(self._chromsizes.index) def offset(self, region): """ Bin ID containing the left end of a genomic region Parameters ---------- region : str or tuple Genomic range Returns ------- int Examples -------- >>> c.offset('chr3') # doctest: +SKIP 1311 """ with open_hdf5(self.store, **self.open_kws) as h5: grp = h5[self.root] return region_to_offset( grp, self._chromids, parse_region(region, self._chromsizes) ) def extent(self, region): """ Bin IDs containing the left and right ends of a genomic region Parameters ---------- region : str or tuple Genomic range Returns ------- 2-tuple of ints Examples -------- >>> c.extent('chr3') # doctest: +SKIP (1311, 2131) """ with open_hdf5(self.store, **self.open_kws) as h5: grp = h5[self.root] return region_to_extent( grp, self._chromids, parse_region(region, self._chromsizes) ) @property def info(self): """ File information and metadata Returns ------- dict """ with open_hdf5(self.store, **self.open_kws) as h5: grp = h5[self.root] return info(grp) @property def shape(self): return (self._info["nbins"],) * 2 def chroms(self, **kwargs): """ Chromosome table selector Returns ------- Table selector """ def _slice(fields, lo, hi): with open_hdf5(self.store, **self.open_kws) as h5: grp = h5[self.root] return chroms(grp, lo, hi, fields, **kwargs) return RangeSelector1D(None, _slice, None, self._info["nchroms"]) def bins(self, **kwargs): """ Bin table selector Returns ------- Table selector """ def _slice(fields, lo, hi): with open_hdf5(self.store, **self.open_kws) as h5: grp = h5[self.root] return bins(grp, lo, hi, fields, **kwargs) def _fetch(region): with open_hdf5(self.store, **self.open_kws) as h5: grp = h5[self.root] return region_to_extent( grp, self._chromids, parse_region(region, self._chromsizes) ) return RangeSelector1D(None, _slice, _fetch, self._info["nbins"]) def pixels(self, join=False, **kwargs): """ Pixel table selector Parameters ---------- join : bool, optional Whether to expand bin ID columns into chrom, start, and end columns. Default is ``False``. Returns ------- Table selector """ def _slice(fields, lo, hi): with open_hdf5(self.store, **self.open_kws) as h5: grp = h5[self.root] return pixels(grp, lo, hi, fields, join, **kwargs) def _fetch(region): with open_hdf5(self.store, **self.open_kws) as h5: grp = h5[self.root] i0, i1 = region_to_extent( grp, self._chromids, parse_region(region, self._chromsizes) ) lo = grp["indexes"]["bin1_offset"][i0] hi = grp["indexes"]["bin1_offset"][i1] return lo, hi return RangeSelector1D(None, _slice, _fetch, self._info["nnz"]) def matrix( self, field=None, balance=True, sparse=False, as_pixels=False, join=False, ignore_index=True, divisive_weights=None, max_chunk=500000000, ): """ Contact matrix selector Parameters ---------- field : str, optional Which column of the pixel table to fill the matrix with. By default, the 'count' column is used. balance : bool, optional Whether to apply pre-calculated matrix balancing weights to the selection. Default is True and uses a column named 'weight'. Alternatively, pass the name of the bin table column containing the desired balancing weights. Set to False to return untransformed counts. sparse: bool, optional Return a scipy.sparse.coo_matrix instead of a dense 2D numpy array. as_pixels: bool, optional Return a DataFrame of the corresponding rows from the pixel table instead of a rectangular sparse matrix. False by default. join : bool, optional If requesting pixels, specifies whether to expand the bin ID columns into (chrom, start, end). Has no effect when requesting a rectangular matrix. Default is True. ignore_index : bool, optional If requesting pixels, don't populate the index column with the pixel IDs to improve performance. Default is True. divisive_weights : bool, optional Force balancing weights to be interpreted as divisive (True) or multiplicative (False). Weights are always assumed to be multiplicative by default unless named KR, VC or SQRT_VC, in which case they are assumed to be divisive by default. Returns ------- Matrix selector Notes ----- If ``as_pixels=True``, only data explicitly stored in the pixel table will be returned: if the cooler's storage mode is symmetric-upper, lower triangular elements will not be generated. If ``as_pixels=False``, those missing non-zero elements will automatically be filled in. """ if balance in _4DN_DIVISIVE_WEIGHTS and divisive_weights is None: divisive_weights = True def _slice(field, i0, i1, j0, j1): with open_hdf5(self.store, **self.open_kws) as h5: grp = h5[self.root] return matrix( grp, i0, i1, j0, j1, field, balance, sparse, as_pixels, join, ignore_index, divisive_weights, max_chunk, self._is_symm_upper, ) def _fetch(region, region2=None): with open_hdf5(self.store, **self.open_kws) as h5: grp = h5[self.root] if region2 is None: region2 = region region1 = parse_region(region, self._chromsizes) region2 = parse_region(region2, self._chromsizes) i0, i1 = region_to_extent(grp, self._chromids, region1) j0, j1 = region_to_extent(grp, self._chromids, region2) return i0, i1, j0, j1 return RangeSelector2D(field, _slice, _fetch, (self._info["nbins"],) * 2) def __repr__(self): if isinstance(self.store, six.string_types): filename = os.path.basename(self.store) container = "{}::{}".format(filename, self.root) else: container = repr(self.store) return '<Cooler "{}">'.format(container) def info(h5): """ File and user metadata dict. Parameters ---------- h5 : :py:class:`h5py.File` or :py:class:`h5py.Group` Open handle to cooler file. Returns ------- dict """ d = {} for k, v in h5.attrs.items(): if isinstance(v, six.string_types): try: v = json.loads(v) except ValueError: pass d[k] = v return d def chroms(h5, lo=0, hi=None, fields=None, **kwargs): """ Table describing the chromosomes/scaffolds/contigs used. They appear in the same order they occur in the heatmap. Parameters ---------- h5 : :py:class:`h5py.File` or :py:class:`h5py.Group` Open handle to cooler file. lo, hi : int, optional Range of rows to select from the table. fields : sequence of str, optional Subset of columns to select from table. Returns ------- :py:class:`DataFrame` """ if fields is None: fields = ( pd.Index(["name", "length"]) .append(pd.Index(h5["chroms"].keys())) .drop_duplicates() ) return get(h5["chroms"], lo, hi, fields, **kwargs) def bins(h5, lo=0, hi=None, fields=None, **kwargs): """ Table describing the genomic bins that make up the axes of the heatmap. Parameters ---------- h5 : :py:class:`h5py.File` or :py:class:`h5py.Group` Open handle to cooler file. lo, hi : int, optional Range of rows to select from the table. fields : sequence of str, optional Subset of columns to select from table. Returns ------- :py:class:`DataFrame` """ if fields is None: fields = ( pd.Index(["chrom", "start", "end"]) .append(pd.Index(h5["bins"].keys())) .drop_duplicates() ) # If convert_enum is not explicitly set to False, chrom IDs will get # converted to categorical chromosome names, provided the ENUM header # exists in bins/chrom. Otherwise, they will return as integers. out = get(h5["bins"], lo, hi, fields, **kwargs) # Handle the case where the ENUM header doesn't exist but we want to # convert integer chrom IDs to categorical chromosome names. if "chrom" in fields: convert_enum = kwargs.get("convert_enum", True) if isinstance(fields, six.string_types): chrom_col = out else: chrom_col = out["chrom"] if is_integer_dtype(chrom_col.dtype) and convert_enum: chromnames = chroms(h5, fields="name") chrom_col = pd.Categorical.from_codes(chrom_col, chromnames, ordered=True) if isinstance(fields, six.string_types): out = pd.Series(chrom_col, out.index) else: out["chrom"] = chrom_col return out def pixels(h5, lo=0, hi=None, fields=None, join=True, **kwargs): """ Table describing the nonzero upper triangular pixels of the Hi-C contact heatmap. Parameters ---------- h5 : :py:class:`h5py.File` or :py:class:`h5py.Group` Open handle to cooler file. lo, hi : int, optional Range of rows to select from the table. fields : sequence of str, optional Subset of columns to select from table. join : bool, optional Whether or not to expand bin ID columns to their full bin description (chrom, start, end). Default is True. Returns ------- :py:class:`DataFrame` """ if fields is None: fields = ( pd.Index(["bin1_id", "bin2_id"]) .append(pd.Index(h5["pixels"].keys())) .drop_duplicates() ) df = get(h5["pixels"], lo, hi, fields, **kwargs) if join: bins = get(h5["bins"], 0, None, ["chrom", "start", "end"], **kwargs) df = annotate(df, bins, replace=True) return df def annotate(pixels, bins, replace=False): """ Add bin annotations to a data frame of pixels. This is done by performing a relational "join" against the bin IDs of a table that describes properties of the genomic bins. New columns will be appended on the left of the output data frame. .. versionchanged:: 0.8.0 The default value of ``replace`` changed to False. Parameters ---------- pixels : :py:class:`DataFrame` A data frame containing columns named ``bin1_id`` and/or ``bin2_id``. If columns ``bin1_id`` and ``bin2_id`` are both present in ``pixels``, the adjoined columns will be suffixed with '1' and '2' accordingly. bins : :py:class:`DataFrame` or DataFrame selector Data structure that contains a full description of the genomic bins of the contact matrix, where the index corresponds to bin IDs. replace : bool, optional Remove the original ``bin1_id`` and ``bin2_id`` columns from the output. Default is False. Returns ------- :py:class:`DataFrame` """ columns = pixels.columns ncols = len(columns) if "bin1_id" in columns: if len(bins) > len(pixels): bin1 = pixels["bin1_id"] lo = bin1.min() hi = bin1.max() + 1 lo = 0 if np.isnan(lo) else lo hi = 0 if np.isnan(hi) else hi right = bins[lo:hi] else: right = bins[:] pixels = pixels.merge(right, how="left", left_on="bin1_id", right_index=True) if "bin2_id" in columns: if len(bins) > len(pixels): bin2 = pixels["bin2_id"] lo = bin2.min() hi = bin2.max() + 1 lo = 0 if np.isnan(lo) else lo hi = 0 if np.isnan(hi) else hi right = bins[lo:hi] else: right = bins[:] pixels = pixels.merge( right, how="left", left_on="bin2_id", right_index=True, suffixes=("1", "2") ) # rearrange columns pixels = pixels[list(pixels.columns[ncols:]) + list(pixels.columns[:ncols])] # drop bin IDs if replace: cols_to_drop = [col for col in ("bin1_id", "bin2_id") if col in columns] pixels = pixels.drop(cols_to_drop, axis=1) return pixels def matrix( h5, i0, i1, j0, j1, field=None, balance=True, sparse=False, as_pixels=False, join=True, ignore_index=True, divisive_weights=False, max_chunk=500000000, is_upper=True, ): """ Two-dimensional range query on the Hi-C contact heatmap. Depending on the options, returns either a 2D NumPy array, a rectangular sparse ``coo_matrix``, or a data frame of pixels. Parameters ---------- h5 : :py:class:`h5py.File` or :py:class:`h5py.Group` Open handle to cooler file. i0, i1 : int, optional Bin range along the 0th (row) axis of the heatap. j0, j1 : int, optional Bin range along the 1st (col) axis of the heatap. field : str, optional Which column of the pixel table to fill the matrix with. By default, the 'count' column is used. balance : bool, optional Whether to apply pre-calculated matrix balancing weights to the selection. Default is True and uses a column named 'weight'. Alternatively, pass the name of the bin table column containing the desired balancing weights. Set to False to return untransformed counts. sparse: bool, optional Return a scipy.sparse.coo_matrix instead of a dense 2D numpy array. as_pixels: bool, optional Return a DataFrame of the corresponding rows from the pixel table instead of a rectangular sparse matrix. False by default. join : bool, optional If requesting pixels, specifies whether to expand the bin ID columns into (chrom, start, end). Has no effect when requesting a rectangular matrix. Default is True. ignore_index : bool, optional If requesting pixels, don't populate the index column with the pixel IDs to improve performance. Default is True. Returns ------- ndarray, coo_matrix or DataFrame Notes ----- If ``as_pixels=True``, only data explicitly stored in the pixel table will be returned: if the cooler's storage mode is symmetric-upper, lower triangular elements will not be generated. If ``as_pixels=False``, those missing non-zero elements will automatically be filled in. """ if field is None: field = "count" if isinstance(balance, str): name = balance elif balance: name = "weight" if balance and name not in h5["bins"]: raise ValueError( "No column 'bins/{}'".format(name) + "found. Use ``cooler.balance_cooler`` to " + "calculate balancing weights or set balance=False." ) if as_pixels: reader = CSRReader(h5, field, max_chunk) index = None if ignore_index else reader.index_col(i0, i1, j0, j1) i, j, v = reader.query(i0, i1, j0, j1) cols = ["bin1_id", "bin2_id", field] df = pd.DataFrame(dict(zip(cols, [i, j, v])), columns=cols, index=index) if balance: weights = Cooler(h5).bins()[[name]] df2 = annotate(df, weights, replace=False) if divisive_weights: df2[name + "1"] = 1 / df2[name + "1"] df2[name + "2"] = 1 / df2[name + "2"] df["balanced"] = df2[name + "1"] * df2[name + "2"] * df2[field] if join: bins = Cooler(h5).bins()[["chrom", "start", "end"]] df = annotate(df, bins, replace=True) return df elif sparse: reader = CSRReader(h5, field, max_chunk) if is_upper: i, j, v = query_rect(reader.query, i0, i1, j0, j1, duplex=True) else: i, j, v = reader.query(i0, i1, j0, j1) mat = coo_matrix((v, (i - i0, j - j0)), (i1 - i0, j1 - j0)) if balance: weights = h5["bins"][name] bias1 = weights[i0:i1] bias2 = bias1 if (i0, i1) == (j0, j1) else weights[j0:j1] if divisive_weights: bias1 = 1 / bias1 bias2 = 1 / bias2 mat.data = bias1[mat.row] * bias2[mat.col] * mat.data return mat else: reader = CSRReader(h5, field, max_chunk) if is_upper: i, j, v = query_rect(reader.query, i0, i1, j0, j1, duplex=True) else: i, j, v = reader.query(i0, i1, j0, j1) arr = coo_matrix((v, (i - i0, j - j0)), (i1 - i0, j1 - j0)).toarray() if balance: weights = h5["bins"][name] bias1 = weights[i0:i1] bias2 = bias1 if (i0, i1) == (j0, j1) else weights[j0:j1] if divisive_weights: bias1 = 1 / bias1 bias2 = 1 / bias2 arr = arr * np.outer(bias1, bias2) return arr
micropsi_core/tests/test_runtime_monitors.py
joschabach/micropsi2
119
11086884
#!/usr/local/bin/python # -*- coding: utf-8 -*- """ Basic tests for monitor api """ import pytest from micropsi_core import runtime as micropsi def test_add_gate_monitor(fixed_nodenet): uid = micropsi.add_gate_monitor(fixed_nodenet, 'n0001', 'gen', sheaf='default') monitor = micropsi.nodenets[fixed_nodenet].get_monitor(uid) assert monitor.name == 'gate gen @ Node A1' assert monitor.node_uid == 'n0001' assert monitor.target == 'gen' assert monitor.type == 'gate' assert monitor.sheaf == 'default' assert monitor.color.startswith('#') assert len(monitor.values) == 0 micropsi.step_nodenet(fixed_nodenet) monitor = micropsi.nodenets[fixed_nodenet].get_monitor(uid) assert len(monitor.values) == 1 @pytest.mark.engine("dict_engine") def test_add_slot_monitor(fixed_nodenet): uid = micropsi.add_slot_monitor(fixed_nodenet, 'n0001', 'gen', name="FooBarMonitor", color="#112233") monitor = micropsi.nodenets[fixed_nodenet].get_monitor(uid) assert monitor.name == 'FooBarMonitor' assert monitor.node_uid == 'n0001' assert monitor.target == 'gen' assert monitor.type == 'slot' assert monitor.color == '#112233' assert len(monitor.values) == 0 micropsi.step_nodenet(fixed_nodenet) monitor = micropsi.nodenets[fixed_nodenet].get_monitor(uid) assert len(monitor.values) == 1 def test_add_link_monitor(fixed_nodenet): uid = micropsi.add_link_monitor(fixed_nodenet, 'n0005', 'gen', 'n0003', 'gen', 'weight', 'Testmonitor', color="#112233") monitor = micropsi.nodenets[fixed_nodenet].get_monitor(uid) assert monitor.name == 'Testmonitor' assert monitor.property == 'weight' assert monitor.source_node_uid == 'n0005' assert monitor.target_node_uid == 'n0003' assert monitor.gate_type == 'gen' assert monitor.slot_type == 'gen' assert monitor.color == "#112233" assert len(monitor.values) == 0 micropsi.step_nodenet(fixed_nodenet) monitor = micropsi.nodenets[fixed_nodenet].get_monitor(uid) assert round(monitor.values[1], 2) == 1 micropsi.nodenets[fixed_nodenet].set_link_weight('n0005', 'gen', 'n0003', 'gen', weight=0.7) micropsi.step_nodenet(fixed_nodenet) monitor = micropsi.nodenets[fixed_nodenet].get_monitor(uid) assert len(monitor.values) == 2 assert round(monitor.values[2], 2) == 0.7 def test_add_modulator_monitor(fixed_nodenet): uid = micropsi.add_modulator_monitor(fixed_nodenet, 'base_test', 'Testmonitor', color="#112233") monitor = micropsi.nodenets[fixed_nodenet].get_monitor(uid) assert monitor.name == 'Testmonitor' assert monitor.modulator == 'base_test' assert monitor.color == "#112233" assert len(monitor.values) == 0 micropsi.step_nodenet(fixed_nodenet) monitor = micropsi.nodenets[fixed_nodenet].get_monitor(uid) assert monitor.values[1] == 1 micropsi.nodenets[fixed_nodenet].set_modulator('base_test', 0.7) micropsi.step_nodenet(fixed_nodenet) monitor = micropsi.nodenets[fixed_nodenet].get_monitor(uid) assert len(monitor.values) == 2 assert monitor.values[2] == 0.7 def test_add_custom_monitor(fixed_nodenet): code = """return len(netapi.get_nodes())""" uid = micropsi.add_custom_monitor(fixed_nodenet, code, 'Nodecount', color="#112233") monitor = micropsi.nodenets[fixed_nodenet].get_monitor(uid) assert monitor.name == 'Nodecount' assert monitor.compiled_function is not None assert monitor.function == code assert monitor.color == "#112233" assert len(monitor.values) == 0 micropsi.step_nodenet(fixed_nodenet) monitor = micropsi.nodenets[fixed_nodenet].get_monitor(uid) assert len(monitor.values) == 1 assert monitor.values[1] == len(micropsi.nodenets[fixed_nodenet].netapi.get_nodes()) def test_remove_monitor(fixed_nodenet): uid = micropsi.add_gate_monitor(fixed_nodenet, 'n0001', 'gen') assert micropsi.nodenets[fixed_nodenet].get_monitor(uid) is not None micropsi.remove_monitor(fixed_nodenet, uid) monitor = micropsi.nodenets[fixed_nodenet].get_monitor(uid) assert monitor is None def test_remove_monitored_node(fixed_nodenet): uid = micropsi.add_gate_monitor(fixed_nodenet, 'n0001', 'gen', sheaf='default') micropsi.delete_nodes(fixed_nodenet, ['n0001']) micropsi.step_nodenet(fixed_nodenet) monitor = micropsi.export_monitor_data(fixed_nodenet) assert monitor[uid]['values'][1] is None def test_remove_monitored_link(fixed_nodenet): uid = micropsi.add_link_monitor(fixed_nodenet, 'n0005', 'gen', 'n0003', 'gen', 'weight', 'Testmonitor') micropsi.delete_link(fixed_nodenet, 'n0005', 'gen', 'n0003', 'gen') micropsi.step_nodenet(fixed_nodenet) monitor = micropsi.export_monitor_data(fixed_nodenet) assert monitor[uid]['values'][1] is None def test_remove_monitored_link_via_delete_node(fixed_nodenet): uid = micropsi.add_link_monitor(fixed_nodenet, 'n0005', 'gen', 'n0003', 'gen', 'weight', 'Testmonitor') micropsi.delete_nodes(fixed_nodenet, ['n0005']) micropsi.step_nodenet(fixed_nodenet) monitor = micropsi.export_monitor_data(fixed_nodenet) assert monitor[uid]['values'][1] is None def test_get_monitor_data(fixed_nodenet): uid = micropsi.add_gate_monitor(fixed_nodenet, 'n0001', 'gen', name="Testmonitor") micropsi.step_nodenet(fixed_nodenet) data = micropsi.get_monitor_data(fixed_nodenet) assert data['current_step'] == 1 assert data['monitors'][uid]['name'] == 'Testmonitor' values = data['monitors'][uid]['values'] assert len(values.keys()) == 1 assert [k for k in values.keys()] == [1] def test_export_monitor_data(fixed_nodenet): uid1 = micropsi.add_gate_monitor(fixed_nodenet, 'n0001', 'gen') uid2 = micropsi.add_gate_monitor(fixed_nodenet, 'n0003', 'gen') micropsi.step_nodenet(fixed_nodenet) data = micropsi.export_monitor_data(fixed_nodenet) assert uid1 in data assert 'values' in data[uid1] assert uid2 in data def test_export_monitor_data_with_id(fixed_nodenet): uid1 = micropsi.add_gate_monitor(fixed_nodenet, 'n0001', 'gen', name="Testmonitor") micropsi.add_gate_monitor(fixed_nodenet, 'n0003', 'gen') micropsi.step_nodenet(fixed_nodenet) data = micropsi.export_monitor_data(fixed_nodenet, monitor_uid=uid1) assert data['name'] == 'Testmonitor' assert 'values' in data def test_clear_monitor(fixed_nodenet): uid = micropsi.add_gate_monitor(fixed_nodenet, 'n0001', 'gen') micropsi.step_nodenet(fixed_nodenet) micropsi.clear_monitor(fixed_nodenet, uid) data = micropsi.get_monitor_data(fixed_nodenet) values = data['monitors'][uid]['values'] assert len(values.keys()) == 0 def test_fetch_partial_monitor_data(fixed_nodenet): uid = micropsi.add_gate_monitor(fixed_nodenet, 'n0001', 'gen') i = 0 while i < 50: micropsi.step_nodenet(fixed_nodenet) i += 1 assert micropsi.nodenets[fixed_nodenet].current_step == 50 # get 10 items from [20 - 29] data = micropsi.export_monitor_data(fixed_nodenet, monitor_from=20, monitor_count=10) values = data[uid]['values'] assert len(values.keys()) == 10 assert set(list(values.keys())) == set(range(20, 30)) # get 10 items from [20 - 29] for one monitor data = micropsi.export_monitor_data(fixed_nodenet, monitor_uid=uid, monitor_from=20, monitor_count=10) values = data['values'] assert len(values.keys()) == 10 assert set(list(values.keys())) == set(range(20, 30)) # get 10 newest values [41-50] data = micropsi.export_monitor_data(fixed_nodenet, monitor_count=10) values = data[uid]['values'] assert len(values.keys()) == 10 assert set(list(values.keys())) == set(range(41, 51)) # get 10 items, starting at 45 -- assert they are filled up to the left. data = micropsi.export_monitor_data(fixed_nodenet, monitor_from=40, monitor_count=15) values = data[uid]['values'] assert len(values.keys()) == 15 assert set(list(values.keys())) == set(range(36, 51)) # get all items, starting at 10 data = micropsi.export_monitor_data(fixed_nodenet, monitor_from=10) values = data[uid]['values'] assert len(values.keys()) == 41 assert set(list(values.keys())) == set(range(10, 51))
pgoapi/protos/POGOProtos/Data/Gym_pb2.py
neoz/pgoapi
1,457
11086895
<gh_stars>1000+ # Generated by the protocol buffer compiler. DO NOT EDIT! # source: POGOProtos.Data.Gym.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from POGOProtos import Data_pb2 as POGOProtos_dot_Data__pb2 POGOProtos_dot_Enums__pb2 = POGOProtos_dot_Data__pb2.POGOProtos_dot_Enums__pb2 POGOProtos_dot_Data_dot_Player__pb2 = POGOProtos_dot_Data__pb2.POGOProtos_dot_Data_dot_Player__pb2 POGOProtos_dot_Enums__pb2 = POGOProtos_dot_Data__pb2.POGOProtos_dot_Enums__pb2 POGOProtos_dot_Inventory_dot_Item__pb2 = POGOProtos_dot_Data__pb2.POGOProtos_dot_Inventory_dot_Item__pb2 from POGOProtos.Data import Player_pb2 as POGOProtos_dot_Data_dot_Player__pb2 POGOProtos_dot_Enums__pb2 = POGOProtos_dot_Data_dot_Player__pb2.POGOProtos_dot_Enums__pb2 from POGOProtos.Map import Fort_pb2 as POGOProtos_dot_Map_dot_Fort__pb2 POGOProtos_dot_Enums__pb2 = POGOProtos_dot_Map_dot_Fort__pb2.POGOProtos_dot_Enums__pb2 POGOProtos_dot_Inventory_dot_Item__pb2 = POGOProtos_dot_Map_dot_Fort__pb2.POGOProtos_dot_Inventory_dot_Item__pb2 from POGOProtos.Data_pb2 import * from POGOProtos.Data.Player_pb2 import * from POGOProtos.Map.Fort_pb2 import * DESCRIPTOR = _descriptor.FileDescriptor( name='POGOProtos.Data.Gym.proto', package='POGOProtos.Data.Gym', syntax='proto3', serialized_pb=_b('\n\x19POGOProtos.Data.Gym.proto\x12\x13POGOProtos.Data.Gym\x1a\x15POGOProtos.Data.proto\x1a\x1cPOGOProtos.Data.Player.proto\x1a\x19POGOProtos.Map.Fort.proto\"\x90\x01\n\rGymMembership\x12\x32\n\x0cpokemon_data\x18\x01 \x01(\x0b\x32\x1c.POGOProtos.Data.PokemonData\x12K\n\x16trainer_public_profile\x18\x02 \x01(\x0b\x32+.POGOProtos.Data.Player.PlayerPublicProfile\"u\n\x08GymState\x12\x30\n\tfort_data\x18\x01 \x01(\x0b\x32\x1d.POGOProtos.Map.Fort.FortData\x12\x37\n\x0bmemberships\x18\x02 \x03(\x0b\x32\".POGOProtos.Data.Gym.GymMembershipP\x00P\x01P\x02\x62\x06proto3') , dependencies=[POGOProtos_dot_Data__pb2.DESCRIPTOR,POGOProtos_dot_Data_dot_Player__pb2.DESCRIPTOR,POGOProtos_dot_Map_dot_Fort__pb2.DESCRIPTOR,]) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _GYMMEMBERSHIP = _descriptor.Descriptor( name='GymMembership', full_name='POGOProtos.Data.Gym.GymMembership', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='pokemon_data', full_name='POGOProtos.Data.Gym.GymMembership.pokemon_data', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='trainer_public_profile', full_name='POGOProtos.Data.Gym.GymMembership.trainer_public_profile', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=131, serialized_end=275, ) _GYMSTATE = _descriptor.Descriptor( name='GymState', full_name='POGOProtos.Data.Gym.GymState', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='fort_data', full_name='POGOProtos.Data.Gym.GymState.fort_data', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='memberships', full_name='POGOProtos.Data.Gym.GymState.memberships', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=277, serialized_end=394, ) _GYMMEMBERSHIP.fields_by_name['pokemon_data'].message_type = POGOProtos_dot_Data__pb2._POKEMONDATA _GYMMEMBERSHIP.fields_by_name['trainer_public_profile'].message_type = POGOProtos_dot_Data_dot_Player__pb2._PLAYERPUBLICPROFILE _GYMSTATE.fields_by_name['fort_data'].message_type = POGOProtos_dot_Map_dot_Fort__pb2._FORTDATA _GYMSTATE.fields_by_name['memberships'].message_type = _GYMMEMBERSHIP DESCRIPTOR.message_types_by_name['GymMembership'] = _GYMMEMBERSHIP DESCRIPTOR.message_types_by_name['GymState'] = _GYMSTATE GymMembership = _reflection.GeneratedProtocolMessageType('GymMembership', (_message.Message,), dict( DESCRIPTOR = _GYMMEMBERSHIP, __module__ = 'POGOProtos.Data.Gym_pb2' # @@protoc_insertion_point(class_scope:POGOProtos.Data.Gym.GymMembership) )) _sym_db.RegisterMessage(GymMembership) GymState = _reflection.GeneratedProtocolMessageType('GymState', (_message.Message,), dict( DESCRIPTOR = _GYMSTATE, __module__ = 'POGOProtos.Data.Gym_pb2' # @@protoc_insertion_point(class_scope:POGOProtos.Data.Gym.GymState) )) _sym_db.RegisterMessage(GymState) # @@protoc_insertion_point(module_scope)
scripts/GenerateFeedback.py
AustinHartman/shasta
267
11086909
#!/usr/bin/python3 import configparser import sys import getopt import json import csv helpMessage = """ Usage: GenerateFeedback.py --assemblyDirectory /path/to/assemblyDirectory Note: The goal of this script is to provide feedback on a de novo assembly done using the Shasta long read assembler. Each genome is different and reads differ in quality. So it is likely that you will need to repeat the `assembly -> feedback -> assembly` process a few times. If you're not happy with the assembly after a few (3-4) tries, please file a Github issue and we can help. """ def usage(): print(helpMessage) return def loadAssemblySummary(assemblyDirPath): assemblySummary = {} assemblySummaryFile = '{}/AssemblySummary.json'.format(assemblyDirPath) with open(assemblySummaryFile) as jsonFile: assemblySummary = json.load(jsonFile) return assemblySummary def analyze(assemblyDirPath, genomeSize): assemblySummary = loadAssemblySummary(assemblyDirPath) readsUsedInAssembly = assemblySummary['Reads used in this assembly'] numberOfReads = readsUsedInAssembly['Number of reads'] readGraph = assemblySummary['Read graph'] isolatedReadsFraction = float(readGraph['Isolated reads fraction']['Reads']) alignments = assemblySummary['Alignments'] numberOfAlignmentCandidates = alignments['Number of alignment candidates found by the LowHash algorithm'] numberOfGoodAlignments = alignments['Number of good alignments'] assembledSegments = assemblySummary['Assembled segments'] totalAssembledLength = assembledSegments['Total assembled segment length'] longestSegmentLength = assembledSegments['Longest assembled segment length'] segmentsN50 = assembledSegments['Assembled segments N50'] print() print('Number of reads used = {}'.format(numberOfReads)) print('Isolated reads fraction = {:.2f}'.format(isolatedReadsFraction)) print('Number of alignment candidates = {}'.format(numberOfAlignmentCandidates)) print('Number of good alignments = {}'.format(numberOfGoodAlignments)) print() print('Genome fraction assembled = {:.2f} %'.format(totalAssembledLength * 100 / genomeSize)) print('Longest assembled segment length = {}'.format(longestSegmentLength)) print('Assembled segments N50 = {}'.format(segmentsN50)) print() avgCandidatesPerRead = numberOfAlignmentCandidates / numberOfReads config = getConfig(assemblyDirPath) minHashConfig = config['MinHash'] print('Feedback, if any:') if (avgCandidatesPerRead < 20): print('MinHash phase did not generate enough alignment candidates.') print('Try the following in order:') print(' (Suggestion) Increase `MinHash.minHashIterationCount` by 10, up to a maximum of 100.') if (int(minHashConfig['m']) == 4): print(' (Suggestion) Decrease `MinHash.m` to 3.') else: # Enough promising candidate pairs were generated avgGoodAlignmentsPerRead = numberOfGoodAlignments / numberOfReads if (avgGoodAlignmentsPerRead < 5 or isolatedReadsFraction > 0.5): # ... but not enough candidates met the bar of what is considered a good alignment. msg = ( 'Not enough good alignments were generated per read. ' 'Try relaxing the definition of what makes a good alignment.' ) print(msg) print('Try the following in order:') print(' (Suggestion) Decrease `Align.minAlignedFraction` by 0.05, up to a minimum of 0.2.') print(' (Suggestion) Decrease `Align.minAlignedMarkerCount` by 20, up to a minimum of 200.') print(' (Suggestion) Increase `Align.maxSkip` & `Align.maxDrift` by 10, to allow for larger gaps in alignments.') def getConfig(assemblyDirPath): config = configparser.ConfigParser() configFilePath = '{}/shasta.conf'.format(assemblyDirPath) if not config.read(configFilePath): raise Exception('Error reading config file {}.'.format(configFilePath)) return config def main(argv): assemblyDirPath = "" try: opts, args = getopt.getopt(argv,"", ["assemblyDirectory="]) except getopt.GetoptError: usage() sys.exit(2) for opt, arg in opts: if opt in ("--assemblyDirectory"): assemblyDirPath = arg if assemblyDirPath == "": usage() exit(2) print() genomeSizeMessage = """ What is the approximate genome size in megabases (Mbp)? Examples: 3000 (for a 3 Gbp genome) 0.4 (for a 400 Kbp genome) """ print(genomeSizeMessage) genomeSize = float(input('Approximate genome size in megabasis (Mbp): ')) genomeSize = int(genomeSize * 1000 * 1000) analyze(assemblyDirPath, genomeSize) print() return if __name__ == '__main__': main(sys.argv[1:])
2021/day_19.py
salt-die/Advent-of-Code
105
11086923
from itertools import product import cv2 import numpy as np import aoc_helper from aoc_helper.utils import extract_ints class Scanner: def __init__(self, coords): self.coords = coords self.distances = np.array( list(map(set, np.linalg.norm(coords[:, None] - coords[None], axis=-1))) ) def parse_raw(): raw = aoc_helper.day(19).split("\n\n") scanners = [ ] for scanner in raw: _, data = scanner.split("\n", 1) scanners.append( Scanner( np.fromiter(extract_ints(data), dtype=int).reshape(-1, 3) ) ) return scanners SCANNERS = parse_raw() def coalesce(a, b): js, ks = [ ], [ ] for (j, p), (k, q) in product( enumerate(a.distances), enumerate(b.distances), ): if len(p & q) >= 12: js.append(j) ks.append(k) if len(js) == 4: break else: return False M = cv2.estimateAffine3D(b.coords[ks], a.coords[js])[1].round().astype(int) orientation, translation = M[:, :3], M[:, 3] transformed = b.coords @ orientation.T + translation check = (a.coords[:, None] == transformed[None]).all(-1) where_a_equal_b, where_b_equal_a = np.where(check) b_not_equal_a_mask = ~check.any(0) a.distances[where_a_equal_b] |= b.distances[where_b_equal_a] a.distances = np.concatenate((a.distances, b.distances[b_not_equal_a_mask])) a.coords = np.concatenate((a.coords, transformed[b_not_equal_a_mask])) a.scanners.append(translation) return True def coalesce_all(): origin = SCANNERS[0] origin.scanners = [np.zeros(3, dtype=int)] unpaired = SCANNERS[1:] while unpaired: unpaired = [ scanner for scanner in unpaired if not coalesce(origin, scanner) ] return origin ORIGIN = coalesce_all() def part_one(): return len(ORIGIN.coords) def part_two(): scanners = np.array(ORIGIN.scanners) return np.abs(scanners[:, None] - scanners[None]).sum(axis=-1).max() aoc_helper.submit(19, part_one) aoc_helper.submit(19, part_two)
frameworks/cassandra/tests/test_sanity.py
iss-lab/dcos-commons
201
11086937
import pytest import logging from typing import Any, Dict, Iterator, List import sdk_cmd import sdk_hosts import sdk_install import sdk_jobs import sdk_metrics import sdk_networks import sdk_plan import sdk_service import sdk_tasks import sdk_upgrade from tests import config log = logging.getLogger(__name__) @pytest.fixture(scope="module", autouse=True) def configure_package(configure_security: None) -> Iterator[None]: test_jobs: List[Dict[str, Any]] = [] try: test_jobs = config.get_all_jobs(node_address=config.get_foldered_node_address()) # destroy/reinstall any prior leftover jobs, so that they don't touch the newly installed service: for job in test_jobs: sdk_jobs.install_job(job) sdk_install.uninstall(config.PACKAGE_NAME, config.get_foldered_service_name()) sdk_upgrade.test_upgrade( config.PACKAGE_NAME, config.get_foldered_service_name(), config.DEFAULT_TASK_COUNT, from_options={"service": {"name": config.get_foldered_service_name()}}, ) yield # let the test session execute finally: sdk_install.uninstall(config.PACKAGE_NAME, config.get_foldered_service_name()) for job in test_jobs: sdk_jobs.remove_job(job) @pytest.mark.sanity def test_endpoints() -> None: # check that we can reach the scheduler via admin router, and that returned endpoints are sanitized: endpoints = sdk_networks.get_endpoint( config.PACKAGE_NAME, config.get_foldered_service_name(), "native-client" ) assert endpoints["dns"][0] == sdk_hosts.autoip_host( config.get_foldered_service_name(), "node-0-server", 9042 ) assert "vip" not in endpoints @pytest.mark.sanity @pytest.mark.smoke def test_repair_cleanup_plans_complete() -> None: parameters = {"CASSANDRA_KEYSPACE": "testspace1"} # populate 'testspace1' for test, then delete afterwards: with sdk_jobs.RunJobContext( before_jobs=[ config.get_write_data_job(node_address=config.get_foldered_node_address()), config.get_verify_data_job(node_address=config.get_foldered_node_address()), ], after_jobs=[ config.get_delete_data_job(node_address=config.get_foldered_node_address()), config.get_verify_deletion_job(node_address=config.get_foldered_node_address()), ], ): sdk_plan.start_plan(config.get_foldered_service_name(), "cleanup", parameters=parameters) sdk_plan.wait_for_completed_plan(config.get_foldered_service_name(), "cleanup") sdk_plan.start_plan(config.get_foldered_service_name(), "repair", parameters=parameters) sdk_plan.wait_for_completed_plan(config.get_foldered_service_name(), "repair") @pytest.mark.sanity @pytest.mark.dcos_min_version("1.9") def test_metrics() -> None: expected_metrics = [ "org.apache.cassandra.metrics.Table.CoordinatorReadLatency.system.hints.p999", "org.apache.cassandra.metrics.Table.CompressionRatio.system_schema.indexes", "org.apache.cassandra.metrics.ThreadPools.ActiveTasks.internal.MemtableReclaimMemory", ] def expected_metrics_exist(emitted_metrics: List[str]) -> bool: return sdk_metrics.check_metrics_presence( emitted_metrics=emitted_metrics, expected_metrics=expected_metrics ) sdk_metrics.wait_for_service_metrics( config.PACKAGE_NAME, config.get_foldered_service_name(), "node-0", "node-0-server", config.DEFAULT_CASSANDRA_TIMEOUT, expected_metrics_exist, ) @pytest.mark.sanity def test_custom_jmx_port() -> None: expected_open_port = ":7200" new_config = {"cassandra": {"jmx_port": 7200}} sdk_service.update_configuration( config.PACKAGE_NAME, config.get_foldered_service_name(), new_config, config.DEFAULT_TASK_COUNT, ) sdk_plan.wait_for_completed_deployment(config.get_foldered_service_name()) tasks = sdk_tasks.get_service_tasks(config.get_foldered_service_name(), "node") for task in tasks: _, stdout, _ = sdk_cmd.run_cli("task exec {} netstat -nlp | grep :7200".format(task.id)) assert expected_open_port in stdout @pytest.mark.sanity def test_udf() -> None: test_jobs: List[Dict[str, Any]] = [] try: test_jobs = config.get_udf_jobs(node_address=config.get_foldered_node_address()) # destroy/reinstall any prior leftover jobs, so that they don't touch the newly installed service: for job in test_jobs: sdk_jobs.install_job(job) new_config = { "cassandra": { "enable_user_defined_functions": True, "enable_scripted_user_defined_functions": True, } } sdk_service.update_configuration( config.PACKAGE_NAME, config.get_foldered_service_name(), new_config, config.DEFAULT_TASK_COUNT, ) config.verify_client_can_write_read_udf(config.get_foldered_node_address()) finally: # remove job definitions from metronome for job in test_jobs: sdk_jobs.remove_job(job)
src/models/convolutional_encoder.py
roberthoenig/VQ-VAE-Speech
241
11086950
<gh_stars>100-1000 ##################################################################################### # MIT License # # # # Copyright (C) 2019 <NAME> # # # # This file is part of VQ-VAE-Speech. # # # # Permission is hereby granted, free of charge, to any person obtaining a copy # # of this software and associated documentation files (the "Software"), to deal # # in the Software without restriction, including without limitation the rights # # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # # copies of the Software, and to permit persons to whom the Software is # # furnished to do so, subject to the following conditions: # # # # The above copyright notice and this permission notice shall be included in all # # copies or substantial portions of the Software. # # # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # # SOFTWARE. # ##################################################################################### from modules.residual_stack import ResidualStack from modules.conv1d_builder import Conv1DBuilder from error_handling.console_logger import ConsoleLogger import torch import torch.nn as nn import torch.nn.functional as F class ConvolutionalEncoder(nn.Module): def __init__(self, in_channels, num_hiddens, num_residual_layers, num_residual_hiddens, use_kaiming_normal, input_features_type, features_filters, sampling_rate, device, verbose=False): super(ConvolutionalEncoder, self).__init__() """ 2 preprocessing convolution layers with filter length 3 and residual connections. """ self._conv_1 = Conv1DBuilder.build( in_channels=features_filters, out_channels=num_hiddens, kernel_size=3, use_kaiming_normal=use_kaiming_normal, padding=1 ) self._conv_2 = Conv1DBuilder.build( in_channels=num_hiddens, out_channels=num_hiddens, kernel_size=3, use_kaiming_normal=use_kaiming_normal, padding=1 ) """ 1 strided convolution length reduction layer with filter length 4 and stride 2 (downsampling the signal by a factor of two). """ self._conv_3 = Conv1DBuilder.build( in_channels=num_hiddens, out_channels=num_hiddens, kernel_size=4, stride=2, # timestep * 2 use_kaiming_normal=use_kaiming_normal, padding=2 ) """ 2 convolutional layers with length 3 and residual connections. """ self._conv_4 = Conv1DBuilder.build( in_channels=num_hiddens, out_channels=num_hiddens, kernel_size=3, use_kaiming_normal=use_kaiming_normal, padding=1 ) self._conv_5 = Conv1DBuilder.build( in_channels=num_hiddens, out_channels=num_hiddens, kernel_size=3, use_kaiming_normal=use_kaiming_normal, padding=1 ) """ 4 feedforward ReLu layers with residual connections. """ self._residual_stack = ResidualStack( in_channels=num_hiddens, num_hiddens=num_hiddens, num_residual_layers=num_residual_layers, num_residual_hiddens=num_residual_hiddens, use_kaiming_normal=use_kaiming_normal ) self._input_features_type = input_features_type self._features_filters = features_filters self._sampling_rate = sampling_rate self._device = device self._verbose = verbose def forward(self, inputs): if self._verbose: ConsoleLogger.status('inputs size: {}'.format(inputs.size())) x_conv_1 = F.relu(self._conv_1(inputs)) if self._verbose: ConsoleLogger.status('x_conv_1 output size: {}'.format(x_conv_1.size())) x = F.relu(self._conv_2(x_conv_1)) + x_conv_1 if self._verbose: ConsoleLogger.status('_conv_2 output size: {}'.format(x.size())) x_conv_3 = F.relu(self._conv_3(x)) if self._verbose: ConsoleLogger.status('_conv_3 output size: {}'.format(x_conv_3.size())) x_conv_4 = F.relu(self._conv_4(x_conv_3)) + x_conv_3 if self._verbose: ConsoleLogger.status('_conv_4 output size: {}'.format(x_conv_4.size())) x_conv_5 = F.relu(self._conv_5(x_conv_4)) + x_conv_4 if self._verbose: ConsoleLogger.status('x_conv_5 output size: {}'.format(x_conv_5.size())) x = self._residual_stack(x_conv_5) + x_conv_5 if self._verbose: ConsoleLogger.status('_residual_stack output size: {}'.format(x.size())) return x
tests/errors/semantic/blocking/CONST_ASSIGNED_ARGUMENT2.py
dina-fouad/pyccel
206
11086955
# pylint: disable=missing-function-docstring, missing-module-docstring/ #$ header function array_int32_1d_add_const(const int32[:], int32[:]) def array_int32_1d_add_const( x, y ): x[:] += y
Bit Manipulation/next power of 2/python/nextpowOf2.py
iabhimanyu/Algorithms
715
11086960
def nextPowOf2(n): p = 1 if (n and not(n & (n - 1))): return n while (p < n) : p <<= 1 return p; t = int(input()) for i in range(t): n= int(input()) print("Next Power of 2 " + nextPowOf2(n))
core/downloaders/deluge.py
rikbarker/watcher
194
11086996
import logging import json import urllib2 import zlib from lib.deluge_client import DelugeRPCClient import core from core.helpers import Torrent, Url logging = logging.getLogger(__name__) class DelugeRPC(object): @staticmethod def test_connection(data): ''' Tests connectivity to deluge daemon rpc data: dict of deluge server information Tests if we can open a socket to the rpc Return True on success or str error message on failure ''' host = data['host'] port = int(data['port']) user = data['user'] password = data['pass'] client = DelugeRPCClient(host, port, user, password) try: error = client.connect() if error: return u'{}.'.format(error) except Exception, e: return str(e) return True @staticmethod def add_torrent(data): ''' Adds torrent or magnet to Deluge data: dict of torrrent/magnet information Returns dict {'response': True, 'download_id': 'id'} {'response': False, 'error': 'exception'} ''' conf = core.CONFIG['Downloader']['Torrent']['DelugeRPC'] host = conf['host'] port = conf['port'] user = conf['user'] password = conf['<PASSWORD>'] client = DelugeRPCClient(host, port, user, password) try: error = client.connect() if error: return {'response': False, 'error': error} except Exception, e: return {'response': False, 'error': str(e)[1:-1]} try: def_download_path = client.call('core.get_config')['download_location'] except Exception, e: logging.error(u'Unable to get download path.', exc_info=True) return {'response': False, 'error': 'Unable to get download path.'} download_path = u'{}/{}'.format(def_download_path, conf['category']) priority_keys = { 'Normal': 0, 'High': 128, 'Max': 255 } options = {} options['add_paused'] = conf['addpaused'] options['download_location'] = download_path options['priority'] = priority_keys[conf['priority']] if data['type'] == u'magnet': try: download_id = client.call('core.add_torrent_magnet', data['torrentfile'], options) return {'response': True, 'downloadid': download_id} except Exception, e: logging.error(u'Unable to send magnet.', exc_info=True) return {'response': False, 'error': str(e)[1:-1]} elif data['type'] == u'torrent': try: download_id = client.call('core.add_torrent_url', data['torrentfile'], options) return {'response': True, 'downloadid': download_id} except Exception, e: logging.error(u'Unable to send magnet.', exc_info=True) return {'response': False, 'error': str(e)[1:-1]} return class DelugeWeb(object): cookie = None retry = False command_id = 0 headers = {'Content-Type': 'application/json', 'User-Agent': 'Watcher'} @staticmethod def test_connection(data): ''' Tests connectivity to deluge web client data: dict of deluge server information Return True on success or str error message on failure ''' host = data['host'] port = data['port'] password = data['pass'] url = u'{}:{}/json'.format(host, port) return DelugeWeb._login(url, password) @staticmethod def add_torrent(data): ''' Adds torrent or magnet to deluge web api data: dict of torrrent/magnet information Adds torrents to default/path/<category> Returns dict {'response': True, 'download_id': 'id'} {'response': False, 'error': 'exception'} ''' conf = core.CONFIG['Downloader']['Torrent']['DelugeWeb'] host = conf['host'] port = conf['port'] url = u'{}:{}/json'.format(host, port) priority_keys = { 'Normal': 0, 'High': 128, 'Max': 255 } # check cookie validity while getting default download dir download_dir = DelugeWeb._get_download_dir(url) if not download_dir: password = conf['pass'] if DelugeWeb._login(url, password) is not True: return {'response': False, 'error': 'Incorrect usename or password.'} download_dir = DelugeWeb._get_download_dir(url) if not download_dir: return {'response': False, 'error': 'Unable to get path information.'} # if we got download_dir we can connect. download_dir = u'{}/{}'.format(download_dir, conf['category']) # if file is a torrent, have deluge download it to a tmp dir if data['type'] == 'torrent': tmp_torrent_file = DelugeWeb._get_torrent_file(data['torrentfile'], url) if tmp_torrent_file['response'] is True: data['torrentfile'] = tmp_torrent_file['torrentfile'] else: return {'response': False, 'error': tmp_torrent_file['error']} torrent = {'path': data['torrentfile'], 'options': {}} torrent['options']['add_paused'] = conf['addpaused'] torrent['options']['download_location'] = download_dir torrent['options']['priority'] = priority_keys[conf['priority']] command = {'method': 'web.add_torrents', 'params': [[torrent]], 'id': DelugeWeb.command_id } DelugeWeb.command_id += 1 post_data = json.dumps(command) request = Url.request(url, post_data=post_data, headers=DelugeWeb.headers) request.add_header('cookie', DelugeWeb.cookie) try: response = DelugeWeb._read(Url.open(request)) if response['result'] is True: downloadid = Torrent.get_hash(data['torrentfile']) return {'response': True, 'downloadid': downloadid} else: return {'response': False, 'error': response['error']} except (SystemExit, KeyboardInterrupt): raise except Exception, e: logging.error(u'Delugeweb add_torrent', exc_info=True) return {'response': False, 'error': str(e)[1:-1]} @staticmethod def _get_torrent_file(torrent_url, deluge_url): command = {'method': 'web.download_torrent_from_url', 'params': [torrent_url], 'id': DelugeWeb.command_id } DelugeWeb.command_id += 1 post_data = json.dumps(command) request = Url.request(deluge_url, post_data=post_data, headers=DelugeWeb.headers) request.add_header('cookie', DelugeWeb.cookie) try: response = DelugeWeb._read(Url.open(request)) if response['error'] is None: return {'response': True, 'torrentfile': response['result']} except (SystemExit, KeyboardInterrupt): raise except Exception, e: #noqa logging.error(u'Delugeweb download_torrent_from_url', exc_info=True) return {'response': False, 'error': str(e)[1:-1]} @staticmethod def _get_download_dir(url): command = {'method': 'core.get_config_value', 'params': ['download_location'], 'id': DelugeWeb.command_id } DelugeWeb.command_id += 1 post_data = json.dumps(command) request = Url.request(url, post_data=post_data, headers=DelugeWeb.headers) request.add_header('cookie', DelugeWeb.cookie) try: response = DelugeWeb._read(Url.open(request)) return response['result'] except Exception, e: logging.error(u'delugeweb get_download_dir', exc_info=True) return {'response': False, 'error': str(e.reason)[1:-1]} @staticmethod def _read(response): ''' Reads gzipped json response into dict ''' return json.loads(zlib.decompress(response, 16+zlib.MAX_WBITS)) @staticmethod def _login(url, password): command = {'method': 'auth.login', 'params': [password], 'id': DelugeWeb.command_id } DelugeWeb.command_id += 1 post_data = json.dumps(command) request = Url.request(url, post_data, headers=DelugeWeb.headers) try: response = urllib2.urlopen(request) DelugeWeb.cookie = response.headers.get('Set-Cookie') if DelugeWeb.cookie is None: return 'Incorrect password.' if response.msg == 'OK': return True else: return response.msg except (SystemExit, KeyboardInterrupt): raise except Exception, e: logging.error(u'DelugeWeb test_connection', exc_info=True) return u'{}.'.format(e.reason)
fatiando/gridder/__init__.py
XuesongDing/fatiando
179
11087031
""" Create and operate on data grids, scatters, and profiles. """ from __future__ import absolute_import from .slicing import inside, cut from .interpolation import interp, interp_at, profile from .padding import pad_array, unpad_array, pad_coords from .point_generation import regular, scatter, circular_scatter from .utils import spacing
loss/IQA/gmsd.py
milesgray/CALAE
203
11087034
import torch from torch import nn from torch.nn import functional as F import numpy as np from torchvision import transforms class GMSD(nn.Module): # Refer to http://www4.comp.polyu.edu.hk/~cslzhang/IQA/GMSD/GMSD.htm def __init__(self, channels=3): super(GMSD, self).__init__() self.channels = channels dx = (torch.Tensor([[1,0,-1],[1,0,-1],[1,0,-1]])/3.).unsqueeze(0).unsqueeze(0).repeat(channels,1,1,1) dy = (torch.Tensor([[1,1,1],[0,0,0],[-1,-1,-1]])/3.).unsqueeze(0).unsqueeze(0).repeat(channels,1,1,1) self.dx = nn.Parameter(dx, requires_grad=False) self.dy = nn.Parameter(dy, requires_grad=False) self.aveKernel = nn.Parameter(torch.ones(channels,1,2,2)/4., requires_grad=False) def gmsd(self, img1, img2, T=170): Y1 = F.conv2d(img1, self.aveKernel, stride=2, padding =0, groups = self.channels) Y2 = F.conv2d(img2, self.aveKernel, stride=2, padding =0, groups = self.channels) IxY1 = F.conv2d(Y1, self.dx, stride=1, padding =1, groups = self.channels) IyY1 = F.conv2d(Y1, self.dy, stride=1, padding =1, groups = self.channels) gradientMap1 = torch.sqrt(IxY1**2 + IyY1**2+1e-12) IxY2 = F.conv2d(Y2, self.dx, stride=1, padding =1, groups = self.channels) IyY2 = F.conv2d(Y2, self.dy, stride=1, padding =1, groups = self.channels) gradientMap2 = torch.sqrt(IxY2**2 + IyY2**2+1e-12) quality_map = (2*gradientMap1*gradientMap2 + T)/(gradientMap1**2+gradientMap2**2 + T) score = torch.std(quality_map.view(quality_map.shape[0],-1),dim=1) return score def forward(self, y, x, as_loss=True): assert x.shape == y.shape x = x * 255 y = y * 255 if as_loss: score = self.gmsd(x, y) return score.mean() else: with torch.no_grad(): score = self.gmsd(x, y) return score if __name__ == '__main__': from PIL import Image import argparse from utils import prepare_image parser = argparse.ArgumentParser() parser.add_argument('--ref', type=str, default='images/r0.png') parser.add_argument('--dist', type=str, default='images/r1.png') args = parser.parse_args() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') ref = prepare_image(Image.open(args.ref).convert("RGB")).to(device) dist = prepare_image(Image.open(args.dist).convert("RGB")).to(device) model = GMSD().to(device) score = model(ref, dist, as_loss=False) print('score: %.4f' % score.item()) # score: 0.1907
components/org.apache.stratos.python.cartridge.agent/src/main/python/cartridge.agent/cartridge.agent/agent.py
TanJay/stratos
127
11087040
#!/usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import time from threading import Thread import publisher from logpublisher import * from modules.event.application.signup.events import * from modules.event.domain.mapping.events import * import modules.event.eventhandler as event_handler from modules.event.instance.notifier.events import * from modules.event.tenant.events import * from modules.event.topology.events import * from subscriber import EventSubscriber class CartridgeAgent(object): def __init__(self): Config.initialize_config() self.__terminated = False self.__log = LogFactory().get_log(__name__) mb_urls = Config.mb_urls.split(",") mb_uname = Config.mb_username mb_pwd = Config.mb_password self.__inst_topic_subscriber = EventSubscriber(constants.INSTANCE_NOTIFIER_TOPIC, mb_urls, mb_uname, mb_pwd) self.__tenant_topic_subscriber = EventSubscriber(constants.TENANT_TOPIC, mb_urls, mb_uname, mb_pwd) self.__app_topic_subscriber = EventSubscriber(constants.APPLICATION_SIGNUP, mb_urls, mb_uname, mb_pwd) self.__topology_event_subscriber = EventSubscriber(constants.TOPOLOGY_TOPIC, mb_urls, mb_uname, mb_pwd) def run_agent(self): # Start topology event receiver thread self.register_topology_event_listeners() if Config.lvs_virtual_ip is None or str(Config.lvs_virtual_ip).strip() == "": self.__log.debug("LVS Virtual IP is not defined") else: event_handler.create_dummy_interface() # request complete topology event from CC by publishing CompleteTopologyRequestEvent publisher.publish_complete_topology_request_event() # wait until complete topology message is received to get LB IP self.wait_for_complete_topology() # wait for member initialized event while not Config.initialized: self.__log.debug("Waiting for cartridge agent to be initialized...") time.sleep(1) # Start instance notifier listener thread self.register_instance_topic_listeners() # Start tenant event receiver thread self.register_tenant_event_listeners() # start application signup event listener self.register_application_signup_event_listeners() # request complete tenant event from CC by publishing CompleteTenantRequestEvent publisher.publish_complete_tenant_request_event() # Execute instance started shell script event_handler.on_instance_started_event() # Publish instance started event publisher.publish_instance_started_event() # Execute start servers extension try: event_handler.start_server_extension() except Exception as ex: self.__log.exception("Error processing start servers event: %s" % ex) # check if artifact management is required before publishing instance activated event repo_url = Config.repo_url if repo_url is None or str(repo_url).strip() == "": self.__log.info("No artifact repository found") publisher.publish_instance_activated_event() event_handler.on_instance_activated_event() else: # instance activated event will be published in artifact updated event handler self.__log.info( "Artifact repository found, waiting for artifact updated event to checkout artifacts: [repo_url] %s", repo_url) persistence_mapping_payload = Config.persistence_mappings if persistence_mapping_payload is not None: event_handler.volume_mount_extension(persistence_mapping_payload) # start log publishing thread log_publish_manager = None if DataPublisherConfiguration.get_instance().enabled: log_file_paths = Config.log_file_paths if log_file_paths is None: self.__log.exception("No valid log file paths found, no logs will be published") else: self.__log.debug("Starting Log Publisher Manager: [Log file paths] %s" % ", ".join(log_file_paths)) log_publish_manager = LogPublisherManager(log_file_paths) log_publish_manager.start() # run until terminated while not self.__terminated: time.sleep(5) if DataPublisherConfiguration.get_instance().enabled: log_publish_manager.terminate_all_publishers() def terminate(self): """ Allows the CartridgeAgent thread to be terminated :return: void """ self.__terminated = True def register_instance_topic_listeners(self): self.__log.debug("Starting instance notifier event message receiver thread") self.__inst_topic_subscriber.register_handler("ArtifactUpdatedEvent", Handlers.on_artifact_updated) self.__inst_topic_subscriber.register_handler("InstanceCleanupMemberEvent", Handlers.on_instance_cleanup_member) self.__inst_topic_subscriber.register_handler( "InstanceCleanupClusterEvent", Handlers.on_instance_cleanup_cluster) self.__inst_topic_subscriber.start() self.__log.info("Instance notifier event message receiver thread started") # wait till subscribed to continue while not self.__inst_topic_subscriber.is_subscribed(): time.sleep(1) def register_topology_event_listeners(self): self.__log.debug("Starting topology event message receiver thread") self.__topology_event_subscriber.register_handler("MemberActivatedEvent", Handlers.on_member_activated) self.__topology_event_subscriber.register_handler("MemberTerminatedEvent", Handlers.on_member_terminated) self.__topology_event_subscriber.register_handler("MemberSuspendedEvent", Handlers.on_member_suspended) self.__topology_event_subscriber.register_handler("CompleteTopologyEvent", Handlers.on_complete_topology) self.__topology_event_subscriber.register_handler("MemberStartedEvent", Handlers.on_member_started) self.__topology_event_subscriber.register_handler("MemberCreatedEvent", Handlers.on_member_created) self.__topology_event_subscriber.register_handler("MemberInitializedEvent", Handlers.on_member_initialized) self.__topology_event_subscriber.start() self.__log.info("Cartridge agent topology receiver thread started") # wait till subscribed to continue while not self.__topology_event_subscriber.is_subscribed(): time.sleep(1) def register_tenant_event_listeners(self): self.__log.debug("Starting tenant event message receiver thread") self.__tenant_topic_subscriber.register_handler("DomainMappingAddedEvent", Handlers.on_domain_mapping_added) self.__tenant_topic_subscriber.register_handler("DomainsMappingRemovedEvent", Handlers.on_domain_mapping_removed) self.__tenant_topic_subscriber.register_handler("CompleteTenantEvent", Handlers.on_complete_tenant) self.__tenant_topic_subscriber.register_handler("TenantSubscribedEvent", Handlers.on_tenant_subscribed) self.__tenant_topic_subscriber.start() self.__log.info("Tenant event message receiver thread started") # wait till subscribed to continue while not self.__tenant_topic_subscriber.is_subscribed(): time.sleep(1) def register_application_signup_event_listeners(self): self.__log.debug("Starting application signup event message receiver thread") self.__app_topic_subscriber.register_handler("ApplicationSignUpRemovedEvent", Handlers.on_application_signup_removed) self.__app_topic_subscriber.start() self.__log.info("Application signup event message receiver thread started") # wait till subscribed to continue while not self.__app_topic_subscriber.is_subscribed(): time.sleep(1) def wait_for_complete_topology(self): while not TopologyContext.initialized: self.__log.info("Waiting for complete topology event...") time.sleep(5) self.__log.info("Complete topology event received") class Handlers(object): """ Handler methods for message broker events """ __log = LogFactory().get_log(__name__) __tenant_context_initialized = False @staticmethod def on_artifact_updated(msg): event_obj = ArtifactUpdatedEvent.create_from_json(msg.payload) event_handler.on_artifact_updated_event(event_obj) @staticmethod def on_instance_cleanup_member(msg): member_in_payload = Config.member_id event_obj = InstanceCleanupMemberEvent.create_from_json(msg.payload) member_in_event = event_obj.member_id if member_in_payload == member_in_event: event_handler.on_instance_cleanup_member_event() @staticmethod def on_instance_cleanup_cluster(msg): event_obj = InstanceCleanupClusterEvent.create_from_json(msg.payload) cluster_in_payload = Config.cluster_id cluster_in_event = event_obj.cluster_id instance_in_payload = Config.cluster_instance_id instance_in_event = event_obj.cluster_instance_id if cluster_in_event == cluster_in_payload and instance_in_payload == instance_in_event: event_handler.on_instance_cleanup_cluster_event() @staticmethod def on_member_created(msg): Handlers.__log.debug("Member created event received: %r" % msg.payload) @staticmethod def on_member_initialized(msg): Handlers.__log.debug("Member initialized event received: %r" % msg.payload) event_obj = MemberInitializedEvent.create_from_json(msg.payload) if not TopologyContext.initialized: return event_handler.on_member_initialized_event(event_obj) @staticmethod def on_member_activated(msg): Handlers.__log.debug("Member activated event received: %r" % msg.payload) if not TopologyContext.initialized: return event_obj = MemberActivatedEvent.create_from_json(msg.payload) event_handler.on_member_activated_event(event_obj) @staticmethod def on_member_terminated(msg): Handlers.__log.debug("Member terminated event received: %r" % msg.payload) if not TopologyContext.initialized: return event_obj = MemberTerminatedEvent.create_from_json(msg.payload) event_handler.on_member_terminated_event(event_obj) @staticmethod def on_member_suspended(msg): Handlers.__log.debug("Member suspended event received: %r" % msg.payload) if not TopologyContext.initialized: return event_obj = MemberSuspendedEvent.create_from_json(msg.payload) event_handler.on_member_suspended_event(event_obj) @staticmethod def on_complete_topology(msg): event_obj = CompleteTopologyEvent.create_from_json(msg.payload) TopologyContext.update(event_obj.topology) if not TopologyContext.initialized: TopologyContext.initialized = True Handlers.__log.info("Topology initialized from complete topology event") event_handler.on_complete_topology_event(event_obj) Handlers.__log.debug("Topology context updated with [topology] %r" % event_obj.topology.json_str) @staticmethod def on_member_started(msg): Handlers.__log.debug("Member started event received: %r" % msg.payload) if not TopologyContext.initialized: return event_obj = MemberStartedEvent.create_from_json(msg.payload) event_handler.on_member_started_event(event_obj) @staticmethod def on_domain_mapping_added(msg): Handlers.__log.debug("Subscription domain added event received : %r" % msg.payload) event_obj = DomainMappingAddedEvent.create_from_json(msg.payload) event_handler.on_domain_mapping_added_event(event_obj) @staticmethod def on_domain_mapping_removed(msg): Handlers.__log.debug("Subscription domain removed event received : %r" % msg.payload) event_obj = DomainMappingRemovedEvent.create_from_json(msg.payload) event_handler.on_domain_mapping_removed_event(event_obj) @staticmethod def on_complete_tenant(msg): event_obj = CompleteTenantEvent.create_from_json(msg.payload) TenantContext.update(event_obj.tenants) if not Handlers.__tenant_context_initialized: Handlers.__log.info("Tenant context initialized from complete tenant event") Handlers.__tenant_context_initialized = True event_handler.on_complete_tenant_event(event_obj) Handlers.__log.debug("Tenant context updated with [tenant list] %r" % event_obj.tenant_list_json) @staticmethod def on_tenant_subscribed(msg): Handlers.__log.debug("Tenant subscribed event received: %r" % msg.payload) event_obj = TenantSubscribedEvent.create_from_json(msg.payload) event_handler.on_tenant_subscribed_event(event_obj) @staticmethod def on_application_signup_removed(msg): Handlers.__log.debug("Application signup removed event received: %r" % msg.payload) event_obj = ApplicationSignUpRemovedEvent.create_from_json(msg.payload) event_handler.on_application_signup_removed_event(event_obj) def check_termination(agent_obj): terminate = False terminator_file_path = os.path.abspath(os.path.dirname(__file__)) + "/terminator.txt" while not terminate: time.sleep(60) try: with open(terminator_file_path, 'r') as f: file_output = f.read() terminate = True if "true" in file_output else False except IOError: pass log.info("Shutting down Stratos cartridge agent...") agent_obj.terminate() if __name__ == "__main__": log = LogFactory().get_log(__name__) cartridge_agent = CartridgeAgent() try: log.info("Starting Stratos cartridge agent...") task_thread = Thread(target=check_termination, args=(cartridge_agent,)) task_thread.start() cartridge_agent.run_agent() except Exception as e: log.exception("Cartridge Agent Exception: %r" % e) log.info("Terminating Stratos cartridge agent...") cartridge_agent.terminate()
semanticpy/transform/transform.py
thecapacity/semanticpy
116
11087048
<reponame>thecapacity/semanticpy<filename>semanticpy/transform/transform.py from semanticpy.matrix_formatter import MatrixFormatter from scipy import array class Transform: def __init__(self, matrix): self.matrix = array(matrix, dtype=float) def __repr__(self): MatrixFormatter(self.matrix).pretty_print
challenges/iccv21-mfr/dataset_mask.py
qaz734913414/insightface
12,377
11087053
import numbers import os import queue as Queue import threading import mxnet as mx import numpy as np import torch from torch.utils.data import DataLoader, Dataset from torchvision import transforms import cv2 import albumentations as A from albumentations.pytorch import ToTensorV2 from insightface.app import MaskAugmentation class BackgroundGenerator(threading.Thread): def __init__(self, generator, local_rank, max_prefetch=6): super(BackgroundGenerator, self).__init__() self.queue = Queue.Queue(max_prefetch) self.generator = generator self.local_rank = local_rank self.daemon = True self.start() def run(self): torch.cuda.set_device(self.local_rank) for item in self.generator: self.queue.put(item) self.queue.put(None) def next(self): next_item = self.queue.get() if next_item is None: raise StopIteration return next_item def __next__(self): return self.next() def __iter__(self): return self class DataLoaderX(DataLoader): def __init__(self, local_rank, **kwargs): super(DataLoaderX, self).__init__(**kwargs) self.stream = torch.cuda.Stream(local_rank) self.local_rank = local_rank def __iter__(self): self.iter = super(DataLoaderX, self).__iter__() self.iter = BackgroundGenerator(self.iter, self.local_rank) self.preload() return self def preload(self): self.batch = next(self.iter, None) if self.batch is None: return None with torch.cuda.stream(self.stream): for k in range(len(self.batch)): self.batch[k] = self.batch[k].to(device=self.local_rank, non_blocking=True) def __next__(self): torch.cuda.current_stream().wait_stream(self.stream) batch = self.batch if batch is None: raise StopIteration self.preload() return batch class MXFaceDataset(Dataset): def __init__(self, root_dir, local_rank, aug_modes="brightness=0.1+mask=0.1"): super(MXFaceDataset, self).__init__() default_aug_probs = { 'brightness' : 0.2, 'blur': 0.1, 'mask': 0.1, } aug_mode_list = aug_modes.lower().split('+') aug_mode_map = {} for aug_mode_str in aug_mode_list: _aug = aug_mode_str.split('=') aug_key = _aug[0] if len(_aug)>1: aug_prob = float(_aug[1]) else: aug_prob = default_aug_probs[aug_key] aug_mode_map[aug_key] = aug_prob transform_list = [] self.mask_aug = False self.mask_prob = 0.0 key = 'mask' if key in aug_mode_map: self.mask_aug = True self.mask_prob = aug_mode_map[key] transform_list.append( MaskAugmentation(mask_names=['mask_white', 'mask_blue', 'mask_black', 'mask_green'], mask_probs=[0.4, 0.4, 0.1, 0.1], h_low=0.33, h_high=0.4, p=self.mask_prob) ) if local_rank==0: print('data_transform_list:', transform_list) print('mask:', self.mask_aug, self.mask_prob) key = 'brightness' if key in aug_mode_map: prob = aug_mode_map[key] transform_list.append( A.RandomBrightnessContrast(brightness_limit=0.125, contrast_limit=0.05, p=prob) ) key = 'blur' if key in aug_mode_map: prob = aug_mode_map[key] transform_list.append( A.ImageCompression(quality_lower=30, quality_upper=80, p=prob) ) transform_list.append( A.MedianBlur(blur_limit=(1,7), p=prob) ) transform_list.append( A.MotionBlur(blur_limit=(5,12), p=prob) ) transform_list += \ [ A.HorizontalFlip(p=0.5), A.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ToTensorV2(), ] #here, the input for A transform is rgb cv2 img self.transform = A.Compose( transform_list ) self.root_dir = root_dir self.local_rank = local_rank path_imgrec = os.path.join(root_dir, 'train.rec') path_imgidx = os.path.join(root_dir, 'train.idx') self.imgrec = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r') s = self.imgrec.read_idx(0) header, _ = mx.recordio.unpack(s) #print(header) #print(len(self.imgrec.keys)) if header.flag > 0: if len(header.label)==2: self.imgidx = np.array(range(1, int(header.label[0]))) else: self.imgidx = np.array(list(self.imgrec.keys)) else: self.imgidx = np.array(list(self.imgrec.keys)) #print('imgidx len:', len(self.imgidx)) def __getitem__(self, index): idx = self.imgidx[index] s = self.imgrec.read_idx(idx) header, img = mx.recordio.unpack(s) hlabel = header.label #print('hlabel:', hlabel.__class__) sample = mx.image.imdecode(img).asnumpy() if not isinstance(hlabel, numbers.Number): idlabel = hlabel[0] else: idlabel = hlabel label = torch.tensor(idlabel, dtype=torch.long) if self.transform is not None: sample = self.transform(image=sample, hlabel=hlabel)['image'] return sample, label def __len__(self): return len(self.imgidx) if __name__ == "__main__": import argparse, cv2, copy parser = argparse.ArgumentParser(description='dataset test') parser.add_argument('--dataset', type=str, help='dataset path') parser.add_argument('--samples', type=int, default=256, help='') parser.add_argument('--cols', type=int, default=16, help='') args = parser.parse_args() assert args.samples%args.cols==0 assert args.cols%2==0 samples = args.samples cols = args.cols rows = args.samples // args.cols dataset = MXFaceDataset(root_dir=args.dataset, local_rank=0, aug_modes='mask=1.0') dataset.transform = A.Compose([t for t in dataset.transform if not isinstance(t, (A.Normalize, ToTensorV2))]) dataset_0 = copy.deepcopy(dataset) #dataset_0.transform = None dataset_1 = copy.deepcopy(dataset) #dataset_1.transform = A.Compose( # [ # A.RandomBrightnessContrast(brightness_limit=0.125, contrast_limit=0.05, p=1.0), # A.ImageCompression(quality_lower=30, quality_upper=80, p=1.0), # A.MedianBlur(blur_limit=(1,7), p=1.0), # A.MotionBlur(blur_limit=(5,12), p=1.0), # A.Affine(scale=(0.92, 1.08), translate_percent=(-0.06, 0.06), rotate=(-6, 6), shear=None, interpolation=cv2.INTER_LINEAR, p=1.0), # ] #) fig = np.zeros( (112*rows, 112*cols, 3), dtype=np.uint8 ) for idx in range(samples): if idx%2==0: image, _ = dataset_0[idx//2] else: image, _ = dataset_1[idx//2] row_idx = idx // cols col_idx = idx % cols fig[row_idx*112:(row_idx+1)*112, col_idx*112:(col_idx+1)*112,:] = image[:,:,::-1] # to bgr cv2.imwrite("./datasets.png", fig)
3rd_party/occa/scripts/docs/api_docgen/file_parser.py
RonRahaman/nekRS
312
11087072
<filename>3rd_party/occa/scripts/docs/api_docgen/file_parser.py ''' Parse doxygen output files ''' from typing import Any, Dict, List, Tuple from .types import * from .system_commands import * def alias_path(path: str, node_id: str, ordered_path_aliases: List[Tuple[str, str]]) -> Tuple[str, str]: for (alias_path, alias_id) in ordered_path_aliases: if path.startswith(alias_path): return ( path.replace(path, alias_id), f'{alias_id}.{node_id}', ) return (path, node_id) def get_global_id_map(tree: Any, nodes: List[Any]) -> Dict[str, str]: paths = sorted([ [tree.getpath(node), Documentation.parse(node)] for node in nodes ]) global_id_map = {} ordered_path_ids: List[Tuple[str, str]] = [] for [path, node_info] in paths: # Build aliases from short names -> long names (aliased_path, aliased_id) = alias_path( path, node_info.id_, ordered_path_ids ) # Build the ids backwards to match longer -> shorter to find # the longest alias possible ordered_path_ids.insert(0, (aliased_path, aliased_id)) global_id_map[path] = aliased_id return global_id_map def get_doc_tree(filename: str) -> Dict[str, Any]: (tree, root) = parse_xml_file(filename) nodes = get_documented_definition_nodes(root) global_id_map = get_global_id_map(tree, nodes) doc_tree: Dict[str, Any] = {} for node in nodes: # Split by . and append a CHILDREN_FIELD in between # Example: # device.malloc # -> # ['device', CHILDREN_FIELD, 'malloc] path = [] for entry in global_id_map[tree.getpath(node)].split('.'): path.append(entry) path.append(CHILDREN_FIELD) path.pop() doc_node = nested_get(doc_tree, path) if DOC_FIELD not in doc_node: doc_node[DOC_FIELD] = DocNode( definitions=[], ) doc_node[DOC_FIELD].definitions.append( Definition.parse(node) ) return doc_tree def finalize_doc_tree(doc_tree: Dict[str, Any]) -> List[DocTreeNode]: return [ DocTreeNode( definitions=doc_info[DOC_FIELD].definitions, children=finalize_doc_tree( doc_info.get(CHILDREN_FIELD, {}) ) ) for doc_info in doc_tree.values() ] def load_documentation() -> DocTree: # Merge all documented files into one tree doc_tree = {} for documented_file in find_documented_files(): doc_tree.update( get_doc_tree(documented_file) ) return DocTree( roots=finalize_doc_tree(doc_tree) )
haproxyadmin/frontend.py
jrassier/haproxyadmin
104
11087094
# -*- coding: utf-8 -*- # # pylint: disable=superfluous-parens # """ haproxyadmin.frontend ~~~~~~~~~~~~~~~~~~~~~ This module provides the :class:`Frontend <.Frontend>` class. This class can be used to run operations on a frontend and retrieve statistics. """ from haproxyadmin.utils import (calculate, cmd_across_all_procs, converter, check_command, should_die, compare_values) FRONTEND_METRICS = [ 'bin', 'bout', 'comp_byp', 'comp_in', 'comp_out', 'comp_rsp', 'dreq', 'dresp', 'ereq', 'hrsp_1xx', 'hrsp_2xx', 'hrsp_3xx', 'hrsp_4xx', 'hrsp_5xx', 'hrsp_other', 'rate', 'rate_lim', 'rate_max', 'req_rate', 'req_rate_max', 'req_tot', 'scur', 'slim', 'smax', 'stot', ] class Frontend(object): """Build a user-created :class:`Frontend` for a single frontend. :param frontend_per_proc: list of :class:`._Frontend` objects. :type frontend_per_proc: ``list`` :rtype: a :class:`Frontend`. """ def __init__(self, frontend_per_proc): self._frontend_per_proc = frontend_per_proc self._name = self._frontend_per_proc[0].name # built-in comparison operator is adjusted to support # if 'x' in list_of_frontend_obj # x == frontend_obj def __eq__(self, other): if isinstance(other, Frontend): return (self.name == other.name) elif isinstance(other, str): return (self.name == other) else: return False def __ne__(self, other): return (not self.__eq__(other)) @property def iid(self): """Return the unique proxy ID of the frontend. .. note:: Because proxy ID is the same across all processes, we return the proxy ID from the 1st process. :rtype: ``int`` """ return int(self._frontend_per_proc[0].iid) @should_die def disable(self): """Disable frontend. :param die: control the handling of errors. :type die: ``bool`` :return: ``True`` if frontend is disabled otherwise ``False``. :rtype: bool :raise: If ``die`` is ``True`` :class:`haproxyadmin.exceptions.CommandFailed` or :class:`haproxyadmin.exceptions.MultipleCommandResults` is raised when something bad happens otherwise returns ``False``. """ cmd = "disable frontend {}".format(self.name) results = cmd_across_all_procs(self._frontend_per_proc, 'command', cmd) return check_command(results) @should_die def enable(self): """Enable frontend. :param die: control the handling of errors. :type die: ``bool`` :return: ``True`` if frontend is enabled otherwise ``False``. :rtype: bool :raise: If ``die`` is ``True`` :class:`haproxyadmin.exceptions.CommandFailed` or :class:`haproxyadmin.exceptions.MultipleCommandResults` is raised when something bad happens otherwise returns ``False``. """ cmd = "enable frontend {}".format(self.name) results = cmd_across_all_procs(self._frontend_per_proc, 'command', cmd) return check_command(results) def metric(self, name): """Return the value of a metric. Performs a calculation on the metric across all HAProxy processes. The type of calculation is either sum or avg and defined in :data:`haproxyadmin.utils.METRICS_SUM` and :data:`haproxyadmin.utils.METRICS_AVG`. :param name: metric name to retrieve :type name: any of :data:`haproxyadmin.haproxy.FRONTEND_METRICS` :return: value of the metric :rtype: ``integer`` :raise: ``ValueError`` when a given metric is not found """ if name not in FRONTEND_METRICS: raise ValueError("{} is not valid metric".format(name)) metrics = [x.metric(name) for x in self._frontend_per_proc] metrics[:] = (converter(x) for x in metrics) metrics[:] = (x for x in metrics if x is not None) return calculate(name, metrics) @property def maxconn(self): """Return the configured maximum connection allowed for frontend. :rtype: ``integer`` """ return self.metric('slim') @should_die def setmaxconn(self, value): """Set maximum connection to the frontend. :param die: control the handling of errors. :type die: ``bool`` :param value: max connection value. :type value: ``integer`` :return: ``True`` if value was set. :rtype: ``bool`` :raise: If ``die`` is ``True`` :class:`haproxyadmin.exceptions.CommandFailed` or :class:`haproxyadmin.exceptions.MultipleCommandResults` is raised when something bad happens otherwise returns ``False``. Usage:: >>> from haproxyadmin import haproxy >>> hap = haproxy.HAProxy(socket_dir='/run/haproxy') >>> frontend = hap.frontend('frontend1_proc34') >>> frontend.maxconn >>> frontend.setmaxconn(50000) True >>> frontend.maxconn 100000 """ if not isinstance(value, int): raise ValueError("Expected integer and got {}".format(type(value))) cmd = "set maxconn frontend {} {}".format(self.name, value) results = cmd_across_all_procs(self._frontend_per_proc, 'command', cmd) return check_command(results) @property def name(self): """Return the name of the frontend. :rtype: ``string`` """ return self._name @property def process_nb(self): """Return a list of process number in which frontend is configured. :rtype: ``list`` Usage:: >>> from haproxyadmin import haproxy >>> hap = haproxy.HAProxy(socket_dir='/run/haproxy') >>> frontend = hap.frontend('frontend2_proc34') >>> frontend.process_nb [4, 3] """ process_numbers = [] for frontend in self._frontend_per_proc: process_numbers.append(frontend.process_nb) return process_numbers @property def requests(self): """Return the number of requests. :rtype: ``integer`` Usage:: >>> from haproxyadmin import haproxy >>> hap = haproxy.HAProxy(socket_dir='/run/haproxy') >>> frontend = hap.frontend('frontend2_proc34') >>> frontend.requests 5 """ return self.metric('req_tot') def requests_per_process(self): """Return the number of requests for the frontend per process. :return: a list of tuples with 2 elements #. process number of HAProxy #. requests :rtype: ``list`` Usage:: >>> from haproxyadmin import haproxy >>> hap = haproxy.HAProxy(socket_dir='/run/haproxy') >>> frontend = hap.frontend('frontend2_proc34') >>> frontend.requests_per_process() [(4, 2), (3, 3)] """ results = cmd_across_all_procs(self._frontend_per_proc, 'metric', 'req_tot') return results @should_die def shutdown(self): """Disable the frontend. .. warning:: HAProxy removes from the running configuration a frontend, so further operations on the frontend will return an error. :rtype: ``bool`` """ cmd = "shutdown frontend {}".format(self.name) results = cmd_across_all_procs(self._frontend_per_proc, 'command', cmd) return check_command(results) def stats_per_process(self): """Return all stats of the frontend per process. :return: a list of tuples with 2 elements #. process number #. a dict with all stats :rtype: ``list`` """ results = cmd_across_all_procs(self._frontend_per_proc, 'stats') return results @property def status(self): """Return the status of the frontend. :rtype: ``string`` :raise: :class:`IncosistentData` exception if status is different per process Usage:: >>> from haproxyadmin import haproxy >>> hap = haproxy.HAProxy(socket_dir='/run/haproxy') >>> frontend = hap.frontend('frontend2_proc34') >>> frontend.status 'OPEN' """ results = cmd_across_all_procs(self._frontend_per_proc, 'metric', 'status') return compare_values(results)
cinder/api/v3/views/attachments.py
lightsey/cinder
571
11087095
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_utils import timeutils class ViewBuilder(object): """Model an attachment API response as a python dictionary.""" _collection_name = "attachments" @staticmethod def _normalize(date): if date: return timeutils.normalize_time(date) return '' @classmethod def detail(cls, attachment, flat=False): """Detailed view of an attachment.""" result = cls.summary(attachment, flat=True) result.update( attached_at=cls._normalize(attachment.attach_time), detached_at=cls._normalize(attachment.detach_time), attach_mode=attachment.attach_mode, connection_info=attachment.connection_info) if flat: return result return {'attachment': result} @staticmethod def summary(attachment, flat=False): """Non detailed view of an attachment.""" result = { 'id': attachment.id, 'status': attachment.attach_status, 'instance': attachment.instance_uuid, 'volume_id': attachment.volume_id, } if flat: return result return {'attachment': result} @classmethod def list(cls, attachments, detail=False): """Build a view of a list of attachments.""" func = cls.detail if detail else cls.summary return {'attachments': [func(attachment, flat=True) for attachment in attachments]}
server.py
ivaylo-iliev/play-with-mpv
254
11087138
#!/usr/bin/env python # Plays MPV when instructed to by a chrome extension =] import sys from subprocess import Popen from shutil import which PORT = 7531 # Use --public if you want the server and extension on different computers hostname = 'localhost' if '--public' in sys.argv: hostname = '0.0.0.0' if sys.version_info[0] < 3: # python 2 import BaseHTTPServer import urlparse class CompatibilityMixin: def send_body(self, msg): self.wfile.write(msg+'\n') self.wfile.close() else: # python 3 import http.server as BaseHTTPServer import urllib.parse as urlparse class CompatibilityMixin: def send_body(self, msg): self.wfile.write(bytes(msg+'\n', 'utf-8')) class Handler(BaseHTTPServer.BaseHTTPRequestHandler, CompatibilityMixin): def respond(self, code, body=None): self.send_response(code) self.send_header("Content-type", "text/plain") self.end_headers() if body: self.send_body(body) def play_with_mpv(self, query): mpv_command='mpv' if "list" in query: list_url = 'https://www.youtube.com/playlist?list={}'.format( query["list"][0]) ytdl_format = '' if "mpv_args" in query: if query["mpv_args"] is not None: ytdl_format = '--ytdl-format={}'.format(query["mpv_args"][0]) return Popen([mpv_command, list_url, '--force-window'] + query.get("mpv_args", [])) else: mpv_options = '' urls = str(query["play_url"][0]) return Popen([mpv_command, urls, '--force-window'] + query.get("mpv_args", [])) def play_with_celluloid(self, query): if which('celluloid') is not None: # Playlist support urls = '' if "list" in query: urls += str("&list={}".format(query["list"][0])) mpv_command = 'celluloid' mpv_options = [] # Translate mpv options to celluloid for mpv_arg in query["mpv_args"]: if '--ytdl-format' in mpv_arg: mpv_options.append(mpv_arg.replace( '--ytdl-format=', '--mpv-ytdl-format="') + '"') else: mpv_options.append(mpv_arg) return Popen([mpv_command, urls] + mpv_options) def do_GET(self): mpv_command='mpv' try: url = urlparse.urlparse(self.path) query = urlparse.parse_qs(url.query) except: query = {} if query.get('mpv_args'): print("MPV ARGS:", query.get('mpv_args')) mpv_command = 'mpv' if('mpv_player' in query): mpv_command = query['mpv_player'][0] if "play_url" in query: urls = str(query["play_url"][0]) if urls.startswith('magnet:') or urls.endswith('.torrent'): pipe = Popen(['peerflix', '-k', urls, '--', '--force-window'] + query.get("mpv_args", [])) else: if mpv_command == 'mpv': pipe = self.play_with_mpv(query) elif mpv_command == 'celluloid': pipe = self.play_with_celluloid(query) self.respond(200, "playing...") elif "cast_url" in query: urls = str(query["cast_url"][0]) if urls.startswith('magnet:') or urls.endswith('.torrent'): print(" === WARNING: Casting torrents not yet fully supported!") with Popen(['mkchromecast', '--video', '--source-url', 'http://localhost:8888']): pass pipe.terminate() else: pipe = Popen(['mkchromecast', '--video', '-y', urls]) self.respond(200, "casting...") elif "fairuse_url" in query: urls = str(query["fairuse_url"][0]) location = query.get("location", ['~/Downloads/'])[0] if "%" not in location: location += "%(title)s.%(ext)s" print("downloading ", urls, "to", location) if urls.startswith('magnet:') or urls.endswith('.torrent'): msg = " === ERROR: Downloading torrents not yet supported!" print(msg) self.respond(400, msg) else: pipe = Popen(['youtube-dl', urls, '-o', location] + query.get('ytdl_args', [])) self.respond(200, "downloading...") else: self.respond(400) def start(): httpd = BaseHTTPServer.HTTPServer((hostname, PORT), Handler) print("serving on {}:{}".format(hostname, PORT)) try: httpd.serve_forever() except KeyboardInterrupt: print(" shutting down...") httpd.shutdown() if __name__ == '__main__': start()
platform/coredb/coredb/models/artifacts.py
admariner/polyaxon
3,200
11087139
<reponame>admariner/polyaxon<gh_stars>1000+ #!/usr/bin/python # # Copyright 2018-2021 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from coredb.abstracts.artifacts import BaseArtifact, BaseArtifactLineage class Artifact(BaseArtifact): class Meta: app_label = "coredb" unique_together = (("name", "state"),) db_table = "db_artifact" class ArtifactLineage(BaseArtifactLineage): class Meta: app_label = "coredb" unique_together = (("run", "artifact", "is_input"),) db_table = "db_artifactlineage"
mlcomp/db/providers/dag_storage.py
sUeharaE4/mlcomp
166
11087149
<reponame>sUeharaE4/mlcomp<filename>mlcomp/db/providers/dag_storage.py<gh_stars>100-1000 from mlcomp.db.models import DagStorage, File, DagLibrary from mlcomp.db.providers.base import BaseDataProvider class DagStorageProvider(BaseDataProvider): model = DagStorage def by_dag(self, dag: int): query = self.query(DagStorage, File).join(File, isouter=True). \ filter(DagStorage.dag == dag). \ order_by(DagStorage.path) return query.all() class DagLibraryProvider(BaseDataProvider): model = DagLibrary def dag(self, dag: int): return self.query(DagLibrary.library, DagLibrary.version). \ filter(DagLibrary.dag == dag).all() __all__ = ['DagStorageProvider', 'DagLibraryProvider']
transformer_courses/BERT_distillation/PaddleSlim-develop/paddleslim/common/rl_controller/__init__.py
wwhio/awesome-DeepLearning
1,150
11087189
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from ..log_helper import get_logger _logger = get_logger(__name__, level=logging.INFO) try: import parl from .ddpg import * except ImportError as e: pass from .lstm import * from .utils import *
mmdet/models/dense_heads/obb/odm_head.py
voinSR/OBBDetection
274
11087205
import torch from mmcv.cnn import ConvModule, normal_init, bias_init_with_prob from mmdet.ops.orn import ORConv2d, RotationInvariantPooling from torch import nn from mmdet.core import get_bbox_dim, build_bbox_coder, build_assigner, build_sampler, build_anchor_generator, \ multi_apply, images_to_levels, force_fp32 from .obb_anchor_head import OBBAnchorHead from mmdet.models.builder import HEADS, build_loss @HEADS.register_module() class ODMHead(OBBAnchorHead): def __init__(self, num_classes, in_channels, feat_channels=256, stacked_convs=4, with_orconv=False, bbox_type='obb', reg_dim=None, anchor_generator=None, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=(.0, .0, .0, .0), target_stds=(1.0, 1.0, 1.0, 1.0)), reg_decoded_bbox=False, background_label=None, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), conv_cfg=None, norm_cfg=None, train_cfg=None, test_cfg=None): super(OBBAnchorHead, self).__init__() self.in_channels = in_channels self.num_classes = num_classes self.stacked_convs = stacked_convs self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.feat_channels = feat_channels self.bbox_type = bbox_type self.reg_dim = get_bbox_dim(self.bbox_type) \ if reg_dim is None else reg_dim self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) # TODO better way to determine whether sample or not self.sampling = loss_cls['type'] not in [ 'FocalLoss', 'GHMC', 'QualityFocalLoss' ] if self.use_sigmoid_cls: self.cls_out_channels = num_classes else: self.cls_out_channels = num_classes + 1 if self.cls_out_channels <= 0: raise ValueError(f'num_classes={num_classes} is too small') self.reg_decoded_bbox = reg_decoded_bbox self.background_label = ( num_classes if background_label is None else background_label) # background_label should be either 0 or num_classes assert (self.background_label == 0 or self.background_label == num_classes) self.bbox_coder = build_bbox_coder(bbox_coder) self.loss_cls = build_loss(loss_cls) self.loss_bbox = build_loss(loss_bbox) self.train_cfg = train_cfg self.test_cfg = test_cfg if self.train_cfg: self.assigner = build_assigner(self.train_cfg.assigner) # use PseudoSampler when sampling is False if self.sampling and hasattr(self.train_cfg, 'sampler'): sampler_cfg = self.train_cfg.sampler else: sampler_cfg = dict(type='PseudoSampler') self.sampler = build_sampler(sampler_cfg, context=self) self.fp16_enabled = False self.with_orconv = with_orconv if anchor_generator is None: # Will Pass By S2AHead self.anchor_generator = None self.num_anchors = 1 self.with_prior = True else: self.anchor_generator = build_anchor_generator(anchor_generator) # usually the numbers of anchors for each level are the same # except SSD detectors self.num_anchors = self.anchor_generator.num_base_anchors[0] self.with_prior = False self._init_layers() def _init_layers(self): """Initialize layers of the head.""" self.relu = nn.ReLU(inplace=True) if self.with_orconv: self.or_conv = ORConv2d(self.feat_channels, int( self.feat_channels / 8), kernel_size=3, padding=1, arf_config=(1, 8)) self.or_pool = RotationInvariantPooling(256, 8) self.reg_convs = nn.ModuleList() self.cls_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = int(self.feat_channels / 8) if i == 0 and self.with_orconv else self.feat_channels self.reg_convs.append( ConvModule( self.feat_channels, self.feat_channels, 3, stride=1, padding=1)) self.cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1)) self.odm_cls = nn.Conv2d( self.feat_channels, self.cls_out_channels, 3, padding=1) self.odm_reg = nn.Conv2d(self.feat_channels, 5, 3, padding=1) def init_weights(self): """Initialize weights of the head.""" if self.with_orconv: normal_init(self.or_conv, std=0.01) for m in self.cls_convs: normal_init(m.conv, std=0.01) for m in self.reg_convs: normal_init(m.conv, std=0.01) bias_cls = bias_init_with_prob(0.01) normal_init(self.odm_cls, std=0.01, bias=bias_cls) normal_init(self.odm_reg, std=0.01) def forward_single(self, x): """Forward feature of a single scale level. Args: x (Tensor): Features of a single scale level. Returns: tuple: cls_score (Tensor): Cls scores for a single scale level the channels number is num_anchors * num_classes. bbox_pred (Tensor): Box energies / deltas for a single scale level, the channels number is num_anchors * 4. """ skip_cls = self.test_cfg.get('skip_cls', False) if self.with_orconv: x = self.or_conv(x) # reg reg_feat = x for reg_conv in self.reg_convs: reg_feat = reg_conv(reg_feat) bbox_pred = self.odm_reg(reg_feat) if self.training or not skip_cls: if self.with_orconv: cls_feat = self.or_pool(x) else: cls_feat = x for cls_conv in self.cls_convs: cls_feat = cls_conv(cls_feat) cls_score = self.odm_cls(cls_feat) else: cls_score = None return cls_score, bbox_pred def get_prior_anchors(self, featmap_sizes, refine_anchors, img_metas, is_train=True, device='cuda'): num_levels = len(featmap_sizes) refine_anchors_list = [] for img_id, img_meta in enumerate(img_metas): mlvl_refine_anchors = [] for i in range(num_levels): refine_anchor = refine_anchors[i][img_id].reshape(-1, 5) mlvl_refine_anchors.append(refine_anchor) refine_anchors_list.append(mlvl_refine_anchors) valid_flag_list = [] if is_train: for img_id, img_meta in enumerate(img_metas): multi_level_flags = self.anchor_generator.valid_flags( featmap_sizes, img_meta['pad_shape'], device) valid_flag_list.append(multi_level_flags) return refine_anchors_list, valid_flag_list def loss(self, cls_scores, bbox_preds, gt_obboxes, gt_labels, prior_anchors, img_metas, gt_bboxes_ignore=None): if prior_anchors is None: assert not self.with_prior return super().loss(cls_scores, bbox_preds, gt_obboxes, gt_labels, img_metas, gt_bboxes_ignore) else: assert self.with_prior featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] assert len(featmap_sizes) == self.anchor_generator.num_levels device = cls_scores[0].device anchor_list, valid_flag_list = self.get_prior_anchors( featmap_sizes, prior_anchors, img_metas, device=device) label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 cls_reg_targets = self.get_targets( anchor_list, valid_flag_list, gt_obboxes, img_metas, gt_bboxes_ignore_list=gt_bboxes_ignore, gt_labels_list=gt_labels, label_channels=label_channels) if cls_reg_targets is None: return None (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos, num_total_neg) = cls_reg_targets num_total_samples = ( num_total_pos + num_total_neg if self.sampling else num_total_pos) # anchor number of multi levels num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] # concat all level anchors and flags to a single tensor concat_anchor_list = [] for i in range(len(anchor_list)): concat_anchor_list.append(torch.cat(anchor_list[i])) all_anchor_list = images_to_levels(concat_anchor_list, num_level_anchors) losses_cls, losses_bbox = multi_apply( self.loss_single, cls_scores, bbox_preds, all_anchor_list, labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_samples=num_total_samples) return dict(loss_cls=losses_cls, loss_bbox=losses_bbox) @force_fp32(apply_to=('cls_scores', 'bbox_preds')) def get_bboxes(self, cls_scores, bbox_preds, prior_anchors, img_metas, cfg=None, rescale=False): if prior_anchors is None: assert not self.with_prior return super(ODMHead, self).get_bboxes(cls_scores, bbox_preds, img_metas, cfg, rescale) else: assert self.with_prior assert len(cls_scores) == len(bbox_preds) num_levels = len(cls_scores) device = cls_scores[0].device featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] refine_anchors = self.get_prior_anchors( featmap_sizes, prior_anchors, img_metas, is_train=False, device=device) mlvl_anchors = refine_anchors[0][0] result_list = [] for img_id in range(len(img_metas)): cls_score_list = [ cls_scores[i][img_id].detach() for i in range(num_levels) ] bbox_pred_list = [ bbox_preds[i][img_id].detach() for i in range(num_levels) ] img_shape = img_metas[img_id]['img_shape'] scale_factor = img_metas[img_id]['scale_factor'] proposals = self._get_bboxes_single(cls_score_list, bbox_pred_list, mlvl_anchors, img_shape, scale_factor, cfg, rescale) result_list.append(proposals) return result_list
examples/building_meter/generate.py
BrickSchema/brick
146
11087244
<reponame>BrickSchema/brick import brickschema from brickschema.namespaces import A, OWL, BRICK, UNIT from rdflib import Namespace, Literal # our entities will live in this namespace BLDG = Namespace("urn:example#") # create a graph for our model g = brickschema.Graph() g.bind("bldg", BLDG) # define a building in a site g.add((BLDG["mysite"], A, BRICK.Site)) g.add((BLDG["mybldg"], A, BRICK.Building)) g.add((BLDG["mysite"], BRICK.hasPart, BLDG["mybldg"])) # add a full building meter to the building g.add((BLDG["meter"], A, BRICK.Building_Electrical_Meter)) g.add((BLDG["mybldg"], BRICK.isLocationOf, BLDG["meter"])) # add sensors to the meter... # energy sensor g.add((BLDG["building_energy_sensor"], A, BRICK.Energy_Sensor)) g.add((BLDG["building_energy_sensor"], BRICK.isPointOf, BLDG["meter"])) g.add((BLDG["building_energy_sensor"], BRICK.hasUnit, UNIT["KiloW-HR"])) timeseries_props = [ (BRICK.hasTimeseriesId, Literal("a7523b08-7bc7-4a9d-8e88-8c0cd8084be0")) ] g.add((BLDG["building_energy_sensor"], BRICK.timeseries, timeseries_props)) # power sensor g.add((BLDG["building_power_sensor"], A, BRICK.Electrical_Power_Sensor)) g.add((BLDG["building_power_sensor"], BRICK.isPointOf, BLDG["meter"])) g.add((BLDG["building_power_sensor"], BRICK.hasUnit, UNIT["KiloW"])) timeseries_props = [ (BRICK.hasTimeseriesId, Literal("fd64fbc8-0742-4e1e-8f88-e2cd8a3d78af")) ] g.add((BLDG["building_power_sensor"], BRICK.timeseries, timeseries_props)) # peak demand sensor g.add((BLDG["building_peak_demand"], A, BRICK.Peak_Power_Demand_Sensor)) g.add((BLDG["building_peak_demand"], BRICK.isPointOf, BLDG["meter"])) g.add((BLDG["building_peak_demand"], BRICK.hasUnit, UNIT["KiloW"])) other_props = [ (BRICK.aggregationFunction, Literal("max")), (BRICK.aggregationWindow, Literal("RP1D")), ] g.add((BLDG["building_peak_demand"], BRICK.aggregate, other_props)) timeseries_props = [ (BRICK.hasTimeseriesId, Literal("bcf9a85d-696c-446a-a2ac-97207ecfbc56")) ] g.add((BLDG["building_peak_demand"], BRICK.timeseries, timeseries_props)) # save the file g.serialize("building_meter.ttl", format="ttl")
analysis/extract_pattern/extract_topk_cluster.py
taokong/ibot
327
11087252
<gh_stars>100-1000 # Copyright (c) ByteDance, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import math import argparse import torch.backends.cudnn as cudnn import torch import torch.distributed as dist import numpy as np import models import utils from PIL import ImageFile from tqdm import tqdm from torchvision import transforms from torch.utils.data import DataLoader from models.head import iBOTHead from PIL import Image, ImageDraw from loader import ImageFolderInstance ImageFile.LOAD_TRUNCATED_IMAGES = True def concat_all_gather(tensor): """ Performs all_gather operation on the provided tensors. *** Warning ***: torch.distributed.all_gather has no gradient. """ tensors_gather = [torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size())] torch.distributed.all_gather(tensors_gather, tensor, async_op=False) output = torch.cat(tensors_gather, dim=0) return output def main(): parser = argparse.ArgumentParser("The first stage of BoostrapSelfSup") parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed parallel') parser.add_argument('--arch', default='vit_small', type=str, choices=['vit_tiny', 'vit_small', 'vit_base', 'vit_large', 'swin_tiny','swin_small', 'swin_base', 'swin_large', 'resnet50', 'resnet101'], help='Architecture.') parser.add_argument('--data_path', default='/path/to/imagenet/val/', type=str, help='Please specify path to the ImageNet validation data.') parser.add_argument("--pretrained_path", type=str, default="", help="the pretraining models") parser.add_argument("--checkpoint_key", default="teacher", type=str, help="""Key to use in the checkpoint (Default: teacher)""") parser.add_argument("--save_path", type=str, default="", help="where to save the memory_bank") parser.add_argument("--batch_size", type=int, default=32, help="batch size") parser.add_argument("--patch_size", type=int, default=16, help="patch size") parser.add_argument("--img_size", type=int, default=224, help="image size") parser.add_argument("--patch_window", type=int, default=5, help="patch visualize window") parser.add_argument("--out_dim", type=int, default=8192, help="out_dim") parser.add_argument("--type", type=str, default='patch', choices=['cls', 'patch'], help="""wether to visualize patterns on patch level or cls level.""") parser.add_argument("--topk", type=int, default=196, help="topk") parser.add_argument("--show_pics", type=int, default=100, help="show pics of topk cluster with most items") parser.add_argument("--chunks", type=int, default=16, help="""Number of counting chunks. Set this larger (e.g., 128 for DINO w/ 65536 out dim) when the model output dimension is large to avoid memory overflow.""") args = parser.parse_args() pretrained_path = os.path.expanduser(args.pretrained_path) save_path = os.path.expanduser(args.save_path) batch_size = args.batch_size dist.init_process_group(backend='nccl') torch.cuda.set_device(args.local_rank) network = models.__dict__[args.arch]( patch_size=args.patch_size, return_all_tokens=True, ) network = utils.MultiCropWrapper(network, iBOTHead( network.embed_dim, args.out_dim, patch_out_dim=args.out_dim, act='gelu', shared_head=True, )) network.cuda(args.local_rank) try: utils.restart_from_checkpoint(pretrained_path, **{args.checkpoint_key: network}) except: network = torch.nn.parallel.DistributedDataParallel(network, device_ids=[args.local_rank]) utils.restart_from_checkpoint(pretrained_path, **{args.checkpoint_key: network}) cudnn.benchmark = True augmentation = transforms.Compose([ transforms.Resize(args.img_size // 7 * 8), transforms.CenterCrop(args.img_size), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) train_dataset = ImageFolderInstance(args.data_path, transform=augmentation) train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, shuffle=False, rank=args.local_rank) n_train_points = len(train_dataset) train_dataloader = DataLoader(train_dataset, batch_size=batch_size, sampler=train_sampler, pin_memory=True, num_workers=10) try: data = torch.load(os.path.join(args.save_path, f'memory_{args.type}.pth')) memory_bank = data['memory_bank'] num_per_cluster = data.get('num_per_cluster', None) except: memory_bank = None num_per_cluster = None network.eval() train_sampler.set_epoch(0) for data in tqdm(train_dataloader): idx, img, _ = data idx = idx.cuda(args.local_rank, non_blocking=True) img = img.cuda(args.local_rank, non_blocking=True) feature = network(img)[1].contiguous() if args.type == \ 'patch' else network(img)[0].contiguous() feature = concat_all_gather(feature).detach().cpu() idx = concat_all_gather(idx) if memory_bank is None: print("Initializing memory_bank bank: {} points.".format(n_train_points)) memory_bank = torch.zeros(n_train_points, feature.size(1), 2) if \ args.type == 'patch' else torch.zeros(n_train_points, 2) memory_bank = memory_bank.to("cpu").detach() with torch.no_grad(): memory_bank[idx] = torch.stack(feature.max(-1), dim=-1) torch.save( {'memory_bank': memory_bank}, os.path.join(args.save_path, f'memory_{args.type}.pth'), ) if num_per_cluster is None and args.local_rank == 0: num_per_cluster = torch.Tensor([]) all_dim = torch.arange(args.out_dim).chunk(args.chunks) for i in tqdm(all_dim): mask = memory_bank[..., 1, None] == i.view(1, 1, -1) num_per_cluster = torch.cat((num_per_cluster, mask.sum((0,1)))) torch.save( {'memory_bank': memory_bank, 'num_per_cluster': num_per_cluster}, os.path.join(args.save_path, f'memory_{args.type}.pth'), ) if args.local_rank == 0: patterns = {} for i in num_per_cluster.topk(args.show_pics)[1]: mask = memory_bank[..., 1] == i if args.type == 'patch': values, spatial_id = (memory_bank[..., 0] * mask).max(-1) values, instance_id = torch.topk(values, args.topk * 2) spatial_id = spatial_id[instance_id] npatch = args.img_size // args.patch_size height_id = spatial_id // npatch width_id = spatial_id % npatch indices = torch.stack((instance_id, height_id, width_id), dim=-1) else: values, indices = torch.topk((memory_bank[..., 0] * mask), args.topk) patterns[i.item()] = indices augmentation = transforms.Compose([ transforms.Resize(args.img_size // 7 * 8), transforms.CenterCrop(args.img_size), ]) train_dataset = ImageFolderInstance(args.data_path, transform=augmentation) for nrank, (cluster, idxs) in enumerate(patterns.items()): size = math.ceil(args.topk ** 0.5) # 6 unit = args.patch_size if args.type == 'patch' else args.img_size # 16/224 vis_unit = (unit * args.patch_window) if args.type == 'patch' else unit # 80/224 img = Image.new('RGB', (size * vis_unit, size * vis_unit)) i = 0 for idx in idxs.numpy(): if args.type == 'patch': _, raw, _ = train_dataset[idx[0]] data = raw.crop(( (idx[2] - args.patch_window // 2) * unit, (idx[1] - args.patch_window // 2) * unit, (idx[2] + args.patch_window // 2 + 1) * unit, (idx[1] + args.patch_window // 2 + 1) * unit)) # filter too dark patch for visualization hsv = np.array(data.convert('HSV')) if hsv[..., -1].mean() <= 40: continue # draw highlight region if args.patch_window > 1: draw = ImageDraw.Draw(data, "RGBA") draw.rectangle(( args.patch_window // 2 * unit, args.patch_window // 2 * unit, (args.patch_window // 2 + 1) * unit, (args.patch_window // 2 + 1) * unit), fill=(200, 100, 0, 127)) else: _, data, _ = train_dataset[idx] img.paste(data, (i % size * vis_unit, i // size * vis_unit)) i += 1 if i >= args.topk: break img.save(os.path.join(save_path, 'c{}_crank{}_cid{}_top{}.jpg'.format(args.type, nrank, cluster, args.topk))) if __name__ == '__main__': main()
src/lightkurve/seismology/utils.py
jorgemarpa/lightkurve
235
11087255
"""Generic classes and functions which aid the asteroseismology features.""" import numpy as np import copy from astropy import units as u from astropy.units import Quantity __all__ = ["SeismologyQuantity"] class SeismologyQuantity(Quantity): """Holds an asteroseismic value including its unit, error, and estimation method. Compared to a traditional AstroPy `~astropy.units.Quantity` object, this class has the following extra attributes: * name (e.g. 'deltanu' or 'radius'); * error (i.e. the uncertainty); * method (e.g. specifying the asteroseismic scaling relation); * diagnostics; * diagnostics_plot_method. """ def __new__( cls, quantity, name=None, error=None, method=None, diagnostics=None, diagnostics_plot_method=None, ): # Note: Quantity is peculiar to sub-class because it inherits from numpy ndarray; # see https://docs.astropy.org/en/stable/units/quantity.html#subclassing-quantity. self = Quantity.__new__(cls, quantity.value) self.__dict__ = quantity.__dict__ self.name = name self.error = error self.method = method self.diagnostics = diagnostics self.diagnostics_plot_method = diagnostics_plot_method return self def __repr__(self): try: return "{}: {} {} (method: {})".format( self.name, "{:.2f}".format(self.value), self.unit.__str__(), self.method ) except AttributeError: # Math operations appear to remove Seismic attributes for now return super().__repr__() def _repr_latex_(self): try: return "{}: {} {} (method: {})".format( self.name, "${:.2f}$".format(self.value), self.unit._repr_latex_(), self.method, ) except AttributeError: # Math operations appear to remove Seismic attributes for now return super()._repr_latex_() def get_fwhm(periodogram, numax): """In a power spectrum of a solar-like oscillator, the power of the modes of oscillation will appear in the shape of that looks approximately Gaussian, for all basic purposes, also referred to as the 'mode envelope'. For a given numax (the central frequency of the mode envelope), the expected Full Width Half Maximum of the envelope is known as a function of numax for evolved Red Giant Branch stars as follows (see Mosser et al 2010): fwhm = 0.66 * numax^0.88 . If the maximum frequency in the periodogram is less than 500 microhertz, this function will default to the above equation under the assumption it is dealing with an RGB star, which oscillate at lower frequencies. If the maximum frequency is above 500 microhertz, the envelope is given as a different function of numax (see Lund et al. 2017), as fwhm = 0.25 * numax, in which case the function assumes it is dealing with a main sequence star, which oscillate at higher frequencies. Parameters ---------- numax : float The estimated position of the numax of the power spectrum. This is used to calculated the region autocorrelated with itself. Returns ------- fwhm: float The estimate full-width-half-maximum of the seismic mode envelope """ # Calculate the index FWHM for a given numax if u.Quantity(periodogram.frequency[-1], u.microhertz) > u.Quantity( 500.0, u.microhertz ): fwhm = 0.25 * numax else: fwhm = 0.66 * numax ** 0.88 return fwhm def autocorrelate(periodogram, numax, window_width=25.0, frequency_spacing=None): """An autocorrelation function (ACF) for seismic mode envelopes. We autocorrelate a region with a width of `window_width` (in microhertz) around a central frequency `numax` (in microhertz). The window size is determined based on the location of the nyquist frequency when estimating numax, and based on the expected width of the mode envelope of the asteroseismic oscillations when calculating deltanu. The section of power being autocorrelated is first resclaed by subtracting its mean, so that its noise is centered around zero. If this is not done, noise will appear in the ACF as a function of 1/lag. Parameters: ---------- numax : float The estimated position of the numax of the power spectrum. This is used to calculated the region autocorrelated with itself. window_width : int or float The width of the autocorrelation window around the central frequency numax. frequency_spacing : float The frequency spacing of the periodogram. If none is passed, it is calculated internally. This should never be set by the user. Returns: -------- acf : array-like The autocorrelation power calculated for the given numax """ if frequency_spacing is None: frequency_spacing = np.median(np.diff(periodogram.frequency.value)) spread = int(window_width / 2 / frequency_spacing) # Find the spread in indices x = int(numax / frequency_spacing) # Find the index value of numax x0 = int( (periodogram.frequency[0].value / frequency_spacing) ) # Transform in case the index isn't from 0 xt = x - x0 p_sel = copy.deepcopy( periodogram.power[xt - spread : xt + spread].value ) # Make the window selection p_sel -= np.nanmean(p_sel) # Make it so that the selection has zero mean. C = np.correlate(p_sel, p_sel, mode="full")[ len(p_sel) - 1 : ] # Correlated the resulting SNR space with itself return C
tests/presets/test_datapackage.py
JoeStaines/goodtables-py
243
11087268
<filename>tests/presets/test_datapackage.py # -*- coding: utf-8 -*- from __future__ import division from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals import pytest from copy import deepcopy from goodtables import validate from goodtables.presets.datapackage import datapackage # Validate @pytest.mark.parametrize('dp_path', [ 'data/datapackages/valid/datapackage.json', 'data/datapackages/valid.zip', ]) def test_validate_datapackage_valid(log, dp_path): report = validate(dp_path) assert log(report) == [] @pytest.mark.parametrize('dp_path', [ 'data/datapackages/invalid/datapackage.json', 'data/datapackages/invalid.zip', ]) def test_validate_datapackage_invalid(log, dp_path): report = validate(dp_path) assert log(report) == [ (1, 3, None, 'blank-row'), (2, 4, None, 'blank-row'), ] # Validate (integrity) DESCRIPTOR = { 'resources': [ { 'name': 'resource1', 'path': 'data/valid.csv', 'bytes': 30, 'hash': 'sha256:a1fd6c5ff3494f697874deeb07f69f8667e903dd94a7bc062dd57550cea26da8', } ] } def test_check_file_integrity(log): source = deepcopy(DESCRIPTOR) report = validate(source) assert log(report) == [] def test_check_file_integrity_invalid(log): source = deepcopy(DESCRIPTOR) source['resources'][0]['bytes'] += 1 source['resources'][0]['hash'] += 'a' report = validate(source) assert report['tables'][0]['errors'] == [{ 'code': 'source-error', 'message': 'Calculated size "30" and hash "a1fd6c5ff3494f697874deeb07f69f8667e903dd94a7bc062dd57550cea26da8" differ(s) from declared value(s)', 'message-data': {} }] def test_check_file_integrity_size(log): source = deepcopy(DESCRIPTOR) source['resources'][0]['hash'] = None report = validate(source) assert log(report) == [] def test_check_file_integrity_size_invalid(log): source = deepcopy(DESCRIPTOR) source['resources'][0]['bytes'] += 1 source['resources'][0]['hash'] = None report = validate(source) assert report['tables'][0]['errors'] == [{ 'code': 'source-error', 'message': 'Calculated size "30" differ(s) from declared value(s)', 'message-data': {} }] def test_check_file_integrity_hash(log): source = deepcopy(DESCRIPTOR) source['resources'][0]['bytes'] = None report = validate(source) assert log(report) == [] def test_check_file_integrity_hash_invalid(log): source = deepcopy(DESCRIPTOR) source['resources'][0]['bytes'] = None source['resources'][0]['hash'] += 'a' report = validate(source) assert report['tables'][0]['errors'] == [{ 'code': 'source-error', 'message': 'Calculated hash "a1fd6c5ff3494f697874deeb07f69f8667e903dd94a7bc062dd57550cea26da8" differ(s) from declared value(s)', 'message-data': {} }] def test_check_file_integrity_invalid(log): source = deepcopy(DESCRIPTOR) source['resources'][0]['hash'] = 'not-supported-hash' report = validate(source) assert report['warnings'] == [ 'Resource "resource1" does not use the SHA256 hash. The check will be skipped', ] # Preset def test_preset_datapackage(): warnings, tables = datapackage('data/datapackages/valid/datapackage.json') assert len(warnings) == 0 assert len(tables) == 2 # Issues def test_preset_datapackage_non_tabular_datapackage_issue_170(): warnings, tables = datapackage('data/non_tabular_datapackage.json') assert len(warnings) == 0 assert len(tables) == 2 def test_preset_datapackage_mixed_datapackage_issue_170(): warnings, tables = datapackage('data/mixed_datapackage.json') assert len(warnings) == 0 assert len(tables) == 2 def test_preset_datapackage_invalid_json_issue_192(): warnings, tables = datapackage('data/invalid_json.json') assert len(warnings) == 1 assert len(tables) == 0 assert 'Unable to parse JSON' in warnings[0]
robosat/osm/core.py
iboates/robosat
1,844
11087288
<reponame>iboates/robosat<filename>robosat/osm/core.py import os import uuid import geojson class FeatureStorage: """Stores features on disk and handles batching. Note: you have to call flush at the end to flush the last partial batch. """ def __init__(self, out, batch): assert batch > 0 self.out = out self.batch = batch self.features = [] def add(self, feature): if len(self.features) >= self.batch: self.flush() self.features.append(feature) def flush(self): if not self.features: return collection = geojson.FeatureCollection(self.features) base, ext = os.path.splitext(self.out) suffix = uuid.uuid4().hex out = "{}-{}{}".format(base, suffix, ext) with open(out, "w") as fp: geojson.dump(collection, fp) self.features.clear() def is_polygon(way): """Checks if the way is a polygon. Args way: the osmium.osm.Way to check. Returns: True if the way is a polygon, False otherwise. Note: The geometry shape can still be invalid (e.g. self-intersecting). """ if not way.is_closed(): return False if len(way.nodes) < 4: return False return True
apprise/plugins/NotifyXMPP/SleekXmppAdapter.py
linkmauve/apprise
4,764
11087319
# -*- coding: utf-8 -*- import ssl from os.path import isfile import logging # Default our global support flag SLEEKXMPP_SUPPORT_AVAILABLE = False try: # Import sleekxmpp if available import sleekxmpp SLEEKXMPP_SUPPORT_AVAILABLE = True except ImportError: # No problem; we just simply can't support this plugin because we're # either using Linux, or simply do not have sleekxmpp installed. pass class SleekXmppAdapter(object): """ Wrapper to sleekxmpp """ # Reference to XMPP client. xmpp = None # Whether everything succeeded success = False # The default protocol protocol = 'xmpp' # The default secure protocol secure_protocol = 'xmpps' # The default XMPP port default_unsecure_port = 5222 # The default XMPP secure port default_secure_port = 5223 # Taken from https://golang.org/src/crypto/x509/root_linux.go CA_CERTIFICATE_FILE_LOCATIONS = [ # Debian/Ubuntu/Gentoo etc. "/etc/ssl/certs/ca-certificates.crt", # Fedora/RHEL 6 "/etc/pki/tls/certs/ca-bundle.crt", # OpenSUSE "/etc/ssl/ca-bundle.pem", # OpenELEC "/etc/pki/tls/cacert.pem", # CentOS/RHEL 7 "/etc/pki/ca-trust/extracted/pem/tls-ca-bundle.pem", ] # This entry is a bit hacky, but it allows us to unit-test this library # in an environment that simply doesn't have the sleekxmpp package # available to us. # # If anyone is seeing this had knows a better way of testing this # outside of what is defined in test/test_xmpp_plugin.py, please # let me know! :) _enabled = SLEEKXMPP_SUPPORT_AVAILABLE def __init__(self, host=None, port=None, secure=False, verify_certificate=True, xep=None, jid=None, password=<PASSWORD>, body=None, targets=None, before_message=None, logger=None): """ Initialize our SleekXmppAdapter object """ self.host = host self.port = port self.secure = secure self.verify_certificate = verify_certificate self.xep = xep self.jid = jid self.password = password self.body = body self.targets = targets self.before_message = before_message self.logger = logger or logging.getLogger(__name__) # Use the Apprise log handlers for configuring the sleekxmpp logger. apprise_logger = logging.getLogger('apprise') sleek_logger = logging.getLogger('sleekxmpp') for handler in apprise_logger.handlers: sleek_logger.addHandler(handler) sleek_logger.setLevel(apprise_logger.level) if not self.load(): raise ValueError("Invalid XMPP Configuration") def load(self): # Prepare our object self.xmpp = sleekxmpp.ClientXMPP(self.jid, self.password) # Register our session self.xmpp.add_event_handler("session_start", self.session_start) for xep in self.xep: # Load xep entries try: self.xmpp.register_plugin('xep_{0:04d}'.format(xep)) except sleekxmpp.plugins.base.PluginNotFound: self.logger.warning( 'Could not register plugin {}'.format( 'xep_{0:04d}'.format(xep))) return False if self.secure: # Don't even try to use the outdated ssl.PROTOCOL_SSLx self.xmpp.ssl_version = ssl.PROTOCOL_TLSv1 # If the python version supports it, use highest TLS version # automatically if hasattr(ssl, "PROTOCOL_TLS"): # Use the best version of TLS available to us self.xmpp.ssl_version = ssl.PROTOCOL_TLS self.xmpp.ca_certs = None if self.verify_certificate: # Set the ca_certs variable for certificate verification self.xmpp.ca_certs = next( (cert for cert in self.CA_CERTIFICATE_FILE_LOCATIONS if isfile(cert)), None) if self.xmpp.ca_certs is None: self.logger.warning( 'XMPP Secure comunication can not be verified; ' 'no local CA certificate file') return False # We're good return True def process(self): """ Thread that handles the server/client i/o """ # Establish connection to XMPP server. # To speed up sending messages, don't use the "reattempt" feature, # it will add a nasty delay even before connecting to XMPP server. if not self.xmpp.connect((self.host, self.port), use_ssl=self.secure, reattempt=False): default_port = self.default_secure_port \ if self.secure else self.default_unsecure_port default_schema = self.secure_protocol \ if self.secure else self.protocol # Log connection issue self.logger.warning( 'Failed to authenticate {jid} with: {schema}://{host}{port}' .format( jid=self.jid, schema=default_schema, host=self.host, port='' if not self.port or self.port == default_port else ':{}'.format(self.port), )) return False # Process XMPP communication. self.xmpp.process(block=True) return self.success def session_start(self, *args, **kwargs): """ Session Manager """ targets = list(self.targets) if not targets: # We always default to notifying ourselves targets.append(self.jid) while len(targets) > 0: # Get next target (via JID) target = targets.pop(0) # Invoke "before_message" event hook. self.before_message() # The message we wish to send, and the JID that will receive it. self.xmpp.send_message(mto=target, mbody=self.body, mtype='chat') # Using wait=True ensures that the send queue will be # emptied before ending the session. self.xmpp.disconnect(wait=True) # Toggle our success flag self.success = True
tests/gen_test.py
beatrizuezu/pycpfcnpj
127
11087324
<reponame>beatrizuezu/pycpfcnpj import unittest from pycpfcnpj import gen, cpf, cnpj class GenerateCPFTest(unittest.TestCase): """docstring for GenerateCPFTest""" def setUp(self): self.masked_valid_cpf = gen.cpf_with_punctuation() def test_validate_masked_cnpj_true(self): self.assertTrue(cpf.validate(self.masked_valid_cpf)) def test_valif_cpf_without_mask_true(self): cpf_result =(self.masked_valid_cpf.replace(".","")).replace("-","") self.assertTrue(cpf.validate(cpf_result)) class GenerateCNPJTest(unittest.TestCase): """docstring for GenerateCNPJTest""" def setUp(self): self.masked_valid_cnpj = gen.cnpj_with_punctuation() def test_validate_masked_cnpj_true(self): self.assertTrue(cnpj.validate(self.masked_valid_cnpj)) def test_valid_cnpj_without_mask_true(self): cnpj_result =(self.masked_valid_cnpj.replace(".","")).replace("-","") self.assertTrue(cnpj.validate(cnpj_result))
基础教程/A2-神经网络基本原理/第5步 - 非线性分类/src/ch12-MultipleLayerNetwork/HelperClass2/ActivatorFunction_2_0.py
microsoft/ai-edu
11,094
11087336
# Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE file in the project root for full license information. """ Version 2.0 """ import numpy as np class CActivator(object): # z = 本层的wx+b计算值矩阵 def forward(self, z): pass # z = 本层的wx+b计算值矩阵 # a = 本层的激活函数输出值矩阵 # delta = 上(后)层反传回来的梯度值矩阵 def backward(self, z, a, delta): pass # 直传函数,相当于无激活 class Identity(CActivator): def forward(self, z): return z def backward(self, z, a, delta): return delta, a class Sigmoid(CActivator): def forward(self, z): a = 1.0 / (1.0 + np.exp(-z)) return a def backward(self, z, a, delta): da = np.multiply(a, 1-a) dz = np.multiply(delta, da) return dz, da class Tanh(CActivator): def forward(self, z): a = 2.0 / (1.0 + np.exp(-2*z)) - 1.0 return a def backward(self, z, a, delta): da = 1 - np.multiply(a, a) dz = np.multiply(delta, da) return dz, da class Relu(CActivator): def forward(self, z): a = np.maximum(z, 0) return a # 注意relu函数判断是否大于1的根据是正向的wx+b=z的值,而不是a值 def backward(self, z, a, delta): da = np.zeros(z.shape) da[z>0] = 1 dz = da * delta return dz, da
empire/server/modules/powershell/situational_awareness/network/powerview/get_gpo_computer.py
chenxiangfang/Empire
2,541
11087366
<gh_stars>1000+ from __future__ import print_function from builtins import object from builtins import str from typing import Dict from empire.server.common import helpers from empire.server.common.module_models import PydanticModule from empire.server.utils import data_util from empire.server.utils.module_util import handle_error_message class Module(object): @staticmethod def generate(main_menu, module: PydanticModule, params: Dict, obfuscate: bool = False, obfuscation_command: str = ""): # read in the common powerview.ps1 module source code module_source = main_menu.installPath + "/data/module_source/situational_awareness/network/powerview.ps1" try: f = open(module_source, 'r') except: return handle_error_message("[!] Could not read module source path at: " + str(module_source)) module_code = f.read() f.close() # get just the code needed for the specified function script = helpers.strip_powershell_comments(module_code) script += "\nGet-DomainOU " for option, values in params.items(): if option.lower() != "agent" and option.lower() != "guid" and option.lower() != "outputfunction": if values and values != '': if values.lower() == "true": # if we're just adding a switch script += " -" + str(option) else: script += " -" + str(option) + " " + str(values) script += "-GPLink " + str(params['GUID']) + " | %{ Get-DomainComputer -SearchBase $_.distinguishedname" for option, values in params.items(): if option.lower() != "agent" and option.lower() != "guid" and option.lower() != "outputfunction": if values and values != '': if values.lower() == "true": # if we're just adding a switch script += " -" + str(option) else: script += " -" + str(option) + " " + str(values) outputf = params.get("OutputFunction", "Out-String") script += f"}} | {outputf} | " + '%{$_ + \"`n\"};"`n' + str(module.name.split("/")[-1]) + ' completed!"' if obfuscate: script = helpers.obfuscate(main_menu.installPath, psScript=script, obfuscationCommand=obfuscation_command) script = data_util.keyword_obfuscation(script) return script
bin/tower.py
theosech/ec
290
11087373
<reponame>theosech/ec try: import binutil # required to import from dreamcoder modules except ModuleNotFoundError: import bin.binutil # alt import if called as module from dreamcoder.domains.tower.main import main, TowerCNN, tower_options from dreamcoder.dreamcoder import commandlineArguments from dreamcoder.utilities import numberOfCPUs if __name__ == '__main__': arguments = commandlineArguments( featureExtractor=TowerCNN, CPUs=numberOfCPUs(), helmholtzRatio=0.5, recognitionTimeout=3600, iterations=6, a=3, structurePenalty=1, pseudoCounts=10, topK=2, maximumFrontier=5, extras=tower_options) main(arguments)
test/effective_user_test.py
blekinge/snakebite
691
11087383
from minicluster_testbase import MiniClusterTestBase from snakebite.client import Client import os class EffectiveUserTest(MiniClusterTestBase): ERR_MSG_TOUCH = "org.apache.hadoop.security.AccessControlException\nPermission denied: user=__foobar" ERR_MSG_STAT = "`/foobar2': No such file or directory" VALID_FILE = '/foobar' INVALID_FILE = '/foobar2' def setUp(self): self.custom_client = Client(self.cluster.host, self.cluster.port) self.custom_foobar_client = Client(host=self.cluster.host, port=self.cluster.port, effective_user='__foobar') def test_touch(self): print tuple(self.custom_client.touchz([self.VALID_FILE])) try: tuple(self.custom_foobar_client.touchz([self.INVALID_FILE])) except Exception, e: self.assertTrue(e.message.startswith(self.ERR_MSG_TOUCH)) self.custom_client.stat([self.VALID_FILE]) try: self.custom_client.stat([self.INVALID_FILE]) except Exception, e: self.assertEquals(e.message, self.ERR_MSG_STAT)
recipes/train_rasa/examples_to_rasa.py
CvH/voice2json
913
11087388
#!/usr/bin/env python3 import sys import json from collections import defaultdict examples_by_intent = defaultdict(list) # Gather all examples by intent name for line in sys.stdin: example = json.loads(line) intent_name = example["intent"]["name"] examples_by_intent[intent_name].append(example) # Write data in RasaNLU markdown training format for intent_name, examples in examples_by_intent.items(): print(f"## intent:{intent_name}") for example in examples: # Create mapping from start/stop character indexes to example entities entities_by_start = {e["raw_start"]: e for e in example["entities"]} entities_by_end = {e["raw_end"]: e for e in example["entities"]} # Current character index char_idx = 0 # Final list of tokens that will be printed for the example tokens_to_print = [] # Current entity entity = None # Tokens that belong to the current entity entity_tokens = [] # Process "raw" tokens without substitutions for token in example["raw_tokens"]: if char_idx in entities_by_start: # Start entity entity = entities_by_start[char_idx] entity_tokens = [] if entity is None: # Use token as-is tokens_to_print.append(token) else: # Accumulate into entity token list entity_tokens.append(token) # Advance character index in raw text char_idx += len(token) + 1 # space if (char_idx - 1) in entities_by_end: # Finish entity entity_str = entity["entity"] if entity["value"] != entity["raw_value"]: # Include substitution entity_str += f":{entity['value']}" # Create Markdown-style entity token_str = "[" + " ".join(entity_tokens) + f"]({entity_str})" tokens_to_print.append(token_str) entity = None # Print example print("-", " ".join(tokens_to_print)) # Blank line between intents print("")
panoptic_mapping_utils/src/flat_dataset/flat_data_player.py
ethz-asl/panoptic_mapping
101
11087402
<reponame>ethz-asl/panoptic_mapping<gh_stars>100-1000 #!/usr/bin/env python3 import os import json import csv import rospy from sensor_msgs.msg import Image from geometry_msgs.msg import PoseStamped from cv_bridge import CvBridge import cv2 from PIL import Image as PilImage import numpy as np import tf from std_srvs.srv import Empty, EmptyResponse from panoptic_mapping_msgs.msg import DetectronLabel, DetectronLabels class FlatDataPlayer(object): def __init__(self): """ Initialize ros node and read params """ # params self.data_path = rospy.get_param( '~data_path', '/home/lukas/Documents/Datasets/flat_dataset/run1') self.global_frame_name = rospy.get_param('~global_frame_name', 'world') self.sensor_frame_name = rospy.get_param('~sensor_frame_name', "depth_cam") self.use_detectron = rospy.get_param('~use_detectron', False) self.play_rate = rospy.get_param('~play_rate', 1.0) self.wait = rospy.get_param('~wait', False) self.max_frames = rospy.get_param('~max_frames', 1e9) self.refresh_rate = 100 # Hz # ROS self.color_pub = rospy.Publisher("~color_image", Image, queue_size=100) self.depth_pub = rospy.Publisher("~depth_image", Image, queue_size=100) self.id_pub = rospy.Publisher("~id_image", Image, queue_size=100) if self.use_detectron: self.label_pub = rospy.Publisher("~labels", DetectronLabels, queue_size=100) self.pose_pub = rospy.Publisher("~pose", PoseStamped, queue_size=100) self.tf_broadcaster = tf.TransformBroadcaster() # setup self.cv_bridge = CvBridge() stamps_file = os.path.join(self.data_path, 'timestamps.csv') self.times = [] self.ids = [] self.current_index = 0 # Used to iterate through if not os.path.isfile(stamps_file): rospy.logfatal("No timestamp file '%s' found." % stamps_file) with open(stamps_file, 'r') as read_obj: csv_reader = csv.reader(read_obj) for row in csv_reader: if row[0] == "ImageID": continue self.ids.append(str(row[0])) self.times.append(float(row[1]) / 1e9) self.ids = [x for _, x in sorted(zip(self.times, self.ids))] self.times = sorted(self.times) self.times = [(x - self.times[0]) / self.play_rate for x in self.times] self.start_time = None if self.wait: self.start_srv = rospy.Service('~start', Empty, self.start) else: self.start(None) def start(self, _): self.running = True self.timer = rospy.Timer(rospy.Duration(1.0 / self.refresh_rate), self.callback) return EmptyResponse() def callback(self, _): # Check we should be publishing. if not self.running: return # Check we're not done. if self.current_index >= len(self.times): rospy.loginfo("Finished playing the dataset.") rospy.signal_shutdown("Finished playing the dataset.") return # Check the time. now = rospy.Time.now() if self.start_time is None: self.start_time = now if self.times[self.current_index] > (now - self.start_time).to_sec(): return # Get all data and publish. file_id = os.path.join(self.data_path, self.ids[self.current_index]) # Color. color_file = file_id + "_color.png" depth_file = file_id + "_depth.tiff" pose_file = file_id + "_pose.txt" files = [color_file, depth_file, pose_file] if self.use_detectron: pred_file = file_id + "_predicted.png" labels_file = file_id + "_labels.json" files += [pred_file, labels_file] else: pred_file = file_id + "_segmentation.png" files.append(pred_file) for f in files: if not os.path.isfile(f): rospy.logwarn("Could not find file '%s', skipping frame." % f) self.current_index += 1 return # Load and publish Color image. cv_img = cv2.imread(color_file) img_msg = self.cv_bridge.cv2_to_imgmsg(cv_img, "bgr8") img_msg.header.stamp = now img_msg.header.frame_id = self.sensor_frame_name self.color_pub.publish(img_msg) # Load and publish ID image. cv_img = cv2.imread(pred_file) img_msg = self.cv_bridge.cv2_to_imgmsg(cv_img[:, :, 0], "8UC1") img_msg.header.stamp = now img_msg.header.frame_id = self.sensor_frame_name self.id_pub.publish(img_msg) # Load and publish labels. if self.use_detectron: label_msg = DetectronLabels() label_msg.header.stamp = now with open(labels_file) as json_file: data = json.load(json_file) for d in data: if 'instance_id' not in d: d['instance_id'] = 0 if 'score' not in d: d['score'] = 0 label = DetectronLabel() label.id = d['id'] label.instance_id = d['instance_id'] label.is_thing = d['isthing'] label.category_id = d['category_id'] label.score = d['score'] label_msg.labels.append(label) self.label_pub.publish(label_msg) # Load and publish depth image. These are optional. cv_img = PilImage.open(depth_file) img_msg = self.cv_bridge.cv2_to_imgmsg(np.array(cv_img), "32FC1") img_msg.header.stamp = now img_msg.header.frame_id = self.sensor_frame_name self.depth_pub.publish(img_msg) # Load and publish transform. if os.path.isfile(pose_file): pose_data = [float(x) for x in open(pose_file, 'r').read().split()] transform = np.eye(4) for row in range(4): for col in range(4): transform[row, col] = pose_data[row * 4 + col] rotation = tf.transformations.quaternion_from_matrix(transform) self.tf_broadcaster.sendTransform( (transform[0, 3], transform[1, 3], transform[2, 3]), rotation, now, self.sensor_frame_name, self.global_frame_name) pose_msg = PoseStamped() pose_msg.header.stamp = now pose_msg.header.frame_id = self.global_frame_name pose_msg.pose.position.x = pose_data[3] pose_msg.pose.position.y = pose_data[7] pose_msg.pose.position.z = pose_data[11] pose_msg.pose.orientation.x = rotation[0] pose_msg.pose.orientation.y = rotation[1] pose_msg.pose.orientation.z = rotation[2] pose_msg.pose.orientation.w = rotation[3] self.pose_pub.publish(pose_msg) self.current_index += 1 if self.current_index > self.max_frames: rospy.signal_shutdown("Played reached max frames (%i)" % self.max_frames) if __name__ == '__main__': rospy.init_node('flat_data_player') flat_data_player = FlatDataPlayer() rospy.spin()
lib/python/plash/macros/shortcuts.py
parampavar/plash
346
11087406
<gh_stars>100-1000 from plash.eval import eval, register_macro ALIASES = dict( x=[["run"]], l=[["layer"]], f=[["from"]], # Update on an best effort basis. If possible keep versions that point to a # latest release. A=[["from", "alpine:edge"], ["apk"]], U=[["from", "ubuntu:focal"], ["apt"]], F=[["from", "fedora:32"], ["dnf"]], D=[["from", "debian:sid"], ["apt"]], C=[["from", "centos:8"], ["yum"]], R=[["from", "archlinux:current"], ["pacman"]], G=[["from", "gentoo:current"], ["emerge"]], ) for name, macro in ALIASES.items(): def bounder(macro=macro): def func(*args): # list(args) throws an exception exception for some really funny reason # therefore the list comprehension args = [i for i in args] return eval(macro[:-1] + [macro[-1] + args]) func.__doc__ = "alias for: {}[ARG1 [ARG2 [...]]]".format( " ".join("--" + i[0] + " " + " ".join(i[1:]) for i in macro) ) return func func = bounder() register_macro(name=name, group="macros")(func)
docs/render_templates.py
ticlazau/deon
223
11087438
<reponame>ticlazau/deon from pathlib import Path import click from click.testing import CliRunner from jinja2 import Environment, FileSystemLoader import yaml from deon.cli import main as deon_command from deon.formats import Markdown, EXTENSIONS from deon.parser import Checklist env = Environment( loader=FileSystemLoader("md_templates"), ) TEMPLATE_AND_OUTPUT = { "index.tpl": Path("docs/index.md"), "examples.tpl": Path("docs/examples.md"), "readme.tpl": Path("../README.md"), } def create_context(): cl = Checklist.read(Path(__file__).absolute().parents[1] / "deon" / "assets" / "checklist.yml") checklist_template = Markdown(cl) rendered_checklist = checklist_template.render() runner = CliRunner() result = runner.invoke(deon_command, ["--help"]) table = make_table_of_links() return { "default_checklist": rendered_checklist, "cli_options": result.output, "supported_formats": EXTENSIONS, "links_table": table, } def make_table_of_links(): """ Generates table where lefthand column contains checklist items (from checklist.yml) and righthand column contains hyperlinks to examples where things have gone wrong (from examples.yml). Table appears in docs/docs/examples.md. """ root = Path(__file__).absolute().parents[1] / "deon" / "assets" cl = Checklist.read(root / "checklist.yml") with open(root / "examples_of_ethical_issues.yml", "r") as f: refs = yaml.load(f, Loader=yaml.SafeLoader) refs_dict = dict() for r in refs: refs_dict[r["line_id"]] = r["links"] template = """<center>Checklist Question</center> | <center>Examples of Ethical Issues</center> --- | --- {lines} """ line_template = "**{line_id} {line_summary}**: {line} | {row_text}" section_title_template = " | <center>**{section_title}**</center>" line_delimiter = "\n" formatted_rows = [] for s in cl.sections: # section title row row = section_title_template.format(section_title=s.title) formatted_rows.append(row) for line in s.lines: # create bulleted list of links for each checklist item in that section bulleted_list = [] for link in refs_dict[line.line_id]: text = link["text"] url = link["url"] bullet_hyperlink = f"<li>[{text}]({url})</li>" bulleted_list.append(bullet_hyperlink) formatted_bullets = "".join(bulleted_list) row = line_template.format( line_id=line.line_id, line_summary=line.line_summary, line=line.line, row_text=f"<ul>{formatted_bullets}</ul>", ) formatted_rows.append(row) # bring all the rows together all_rows = line_delimiter.join(formatted_rows) return template.format(lines=all_rows) @click.command() def main(): ctx = create_context() for t, o in TEMPLATE_AND_OUTPUT.items(): tmpl = env.get_template(t) with open(o, "w", encoding="utf-8") as f: (tmpl.stream(**ctx).dump(f)) if __name__ == "__main__": main()
k2/python/tests/dense_fsa_vec_test.py
EmreOzkose/k2
491
11087456
#!/usr/bin/env python3 # # Copyright 2020 Mobvoi Inc. (authors: <NAME>) # # See ../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # To run this single test, use # # ctest --verbose -R dense_fsa_vec_test_py import unittest import k2 import torch class TestDenseFsaVec(unittest.TestCase): @classmethod def setUpClass(cls): cls.devices = [torch.device('cpu')] if torch.cuda.is_available() and k2.with_cuda: cls.devices.append(torch.device('cuda', 0)) if torch.cuda.device_count() > 1: torch.cuda.set_device(1) cls.devices.append(torch.device('cuda', 1)) def test_dense_fsa_vec(self): for device in self.devices: log_prob = torch.arange(20, dtype=torch.float32, device=device).reshape( 2, 5, 2).log_softmax(dim=-1) supervision_segments = torch.tensor( [ # seq_index, start_time, duration [0, 0, 3], [0, 1, 4], [1, 0, 2], [0, 2, 3], [1, 3, 2], ], dtype=torch.int32) dense_fsa_vec = k2.DenseFsaVec(log_prob, supervision_segments) assert dense_fsa_vec.dim0() == 5, 'It should contain 5 segments' assert dense_fsa_vec.device == device assert dense_fsa_vec.duration.device == torch.device('cpu') assert torch.all( torch.eq(dense_fsa_vec.duration, supervision_segments[:, 2])) del dense_fsa_vec._duration assert torch.all( torch.eq(dense_fsa_vec.duration, supervision_segments[:, 2])) assert torch.allclose(dense_fsa_vec.scores[:3, 1:], log_prob[0][0:3]) offset = 3 + 1 assert torch.allclose(dense_fsa_vec.scores[offset:offset + 4, 1:], log_prob[0][1:5]) offset += 4 + 1 assert torch.allclose(dense_fsa_vec.scores[offset:offset + 2, 1:], log_prob[1][0:2]) offset += 2 + 1 assert torch.allclose(dense_fsa_vec.scores[offset:offset + 3, 1:], log_prob[0][2:5]) offset += 3 + 1 assert torch.allclose(dense_fsa_vec.scores[offset:offset + 2, 1:], log_prob[1][3:5]) dense_fsa_vec.to('cpu') def test_duration(self): for device in self.devices: log_prob = torch.arange(20, dtype=torch.float32, device=device).reshape( 2, 5, 2).log_softmax(dim=-1) supervision_segments = torch.tensor( [ # seq_index, start_time, duration [0, 0, 3], [0, 4, 2], # exceed 1 [0, 3, 4], # exceed 2 [1, 1, 7], # exceed 3 ], dtype=torch.int32) dense_fsa_vec = k2.DenseFsaVec(log_prob, supervision_segments, allow_truncate=3) assert torch.all( torch.eq(dense_fsa_vec.duration, torch.tensor([3, 1, 2, 4]))) assert torch.allclose(dense_fsa_vec.scores[:3, 1:], log_prob[0][0:3]) offset = 3 + 1 assert torch.allclose(dense_fsa_vec.scores[offset:offset + 1, 1:], log_prob[0][4:5]) offset += 1 + 1 assert torch.allclose(dense_fsa_vec.scores[offset:offset + 2, 1:], log_prob[0][3:5]) offset += 2 + 1 assert torch.allclose(dense_fsa_vec.scores[offset:offset + 4, 1:], log_prob[1][1:5]) dense_fsa_vec.to('cpu') if __name__ == '__main__': unittest.main()
exampleSite/algolia-index-upload.py
timatlee/bilberry-hugo-theme
274
11087487
<reponame>timatlee/bilberry-hugo-theme import argparse import json from algoliasearch.search_client import SearchClient parser = argparse.ArgumentParser() parser.add_argument('-f', '--index-file', help="Index file to upload to Algolia") parser.add_argument('-a', '--app-id', help="Algolia application ID") parser.add_argument('-k', '--admin-api-key', help="Algolia admin API key") parser.add_argument('-n', '--index-name', help="Algolia index name") args = parser.parse_args() with open(args.index_file, 'r') as file: indices_json = file.read().replace('\n', '') indices = json.loads(indices_json) client = SearchClient.create(args.app_id, args.admin_api_key) index = client.init_index(args.index_name) index.save_objects(indices)
src/test/tests/queries/revolved_surface_area.py
visit-dav/vis
226
11087510
<filename>src/test/tests/queries/revolved_surface_area.py # ---------------------------------------------------------------------------- # CLASSES: nightly # # Test Case: revolved_surface_area.py # Tests: queries - Revolved surface area of 2D plot. # # Defect ID: VisIt00004666, '3260, '3261 # # Programmer: <NAME> # Date: March 30, 2004 # # Modifications: # <NAME>, Thu Apr 29 07:40:58 PDT 2004 # Slice defaults atts have changed, update accordingly. # # <NAME>, Thu Jan 12 15:57:52 PST 2006 # Added additional tests ('3260, '3261). # # <NAME>, Wed Jan 20 07:37:11 PST 2010 # Added ability to swtich between Silo's HDF5 and PDB data. # ---------------------------------------------------------------------------- # Test for topological dimension 2. TurnOnAllAnnotations() OpenDatabase(silo_data_path("rect2d.silo")) AddPlot("Pseudocolor", "d") DrawPlots() Query("Revolved surface area") text = GetQueryOutputString() TestText("revolved_surface_area_01", text) # Test with isosurface operator. DeleteAllPlots() AddPlot("Pseudocolor", "d") AddOperator("Isosurface") iso_atts = IsosurfaceAttributes(); iso_atts.contourValue = (.25) iso_atts.contourMethod = iso_atts.Value SetOperatorOptions(iso_atts) DrawPlots() Query("Revolved surface area") text = GetQueryOutputString() TestText("revolved_surface_area_02", text) # Test for boundary plot. DeleteAllPlots() AddPlot("Boundary", "mat1") DrawPlots() Query("Revolved surface area") text = GetQueryOutputString() TestText("revolved_surface_area_03", text) # Test with 3D, isosurface, slice. DeleteAllPlots() OpenDatabase(silo_data_path("rect3d.silo")) AddPlot("Pseudocolor", "d") AddOperator("Isosurface") SetOperatorOptions(iso_atts) AddOperator("Slice") s = SliceAttributes() s.originIntercept = 0.5 s.axisType = s.YAxis SetOperatorOptions(s) DrawPlots() Query("Revolved surface area") text = GetQueryOutputString() TestText("revolved_surface_area_04", text) RemoveLastOperator() Query("Revolved surface area") text = GetLastError() TestText("revolved_surface_area_05", text) Exit()
databuilder/databuilder/task/search/search_metadata_to_elasticsearch_task.py
kokizzu/amundsen
1,169
11087535
<gh_stars>1000+ # Copyright Contributors to the Amundsen project. # SPDX-License-Identifier: Apache-2.0 import logging from datetime import date from typing import ( Any, Generator, List, ) from uuid import uuid4 from elasticsearch.exceptions import NotFoundError from elasticsearch.helpers import parallel_bulk from elasticsearch_dsl.connections import Connections, connections from elasticsearch_dsl.document import Document from elasticsearch_dsl.index import Index from pyhocon import ConfigTree from databuilder import Scoped from databuilder.extractor.base_extractor import Extractor from databuilder.task.base_task import Task from databuilder.task.search.document_mappings import RESOURCE_TO_MAPPING, SearchableResource from databuilder.transformer.base_transformer import NoopTransformer, Transformer from databuilder.utils.closer import Closer LOGGER = logging.getLogger(__name__) class SearchMetadatatoElasticasearchTask(Task): ENTITY_TYPE = 'doc_type' ELASTICSEARCH_CLIENT_CONFIG_KEY = 'client' MAPPING_CLASS = 'document_mapping' ELASTICSEARCH_ALIAS_CONFIG_KEY = 'alias' ELASTICSEARCH_NEW_INDEX = 'new_index' ELASTICSEARCH_PUBLISHER_BATCH_SIZE = 'batch_size' ELASTICSEARCH_TIMEOUT_SEC = 'es_timeout_sec' DATE = 'date' today = date.today().strftime("%Y%m%d") def __init__(self, extractor: Extractor, transformer: Transformer = NoopTransformer()) -> None: self.extractor = extractor self.transformer = transformer self._closer = Closer() self._closer.register(self.extractor.close) self._closer.register(self.transformer.close) def init(self, conf: ConfigTree) -> None: # initialize extractor with configurarion self.extractor.init(Scoped.get_scoped_conf(conf, self.extractor.get_scope())) # initialize transformer with configuration self.transformer.init(Scoped.get_scoped_conf(conf, self.transformer.get_scope())) # task configuration conf = Scoped.get_scoped_conf(conf, self.get_scope()) self.date = conf.get_string(SearchMetadatatoElasticasearchTask.DATE, self.today) self.entity = conf.get_string(SearchMetadatatoElasticasearchTask.ENTITY_TYPE).lower() self.elasticsearch_client = conf.get( SearchMetadatatoElasticasearchTask.ELASTICSEARCH_CLIENT_CONFIG_KEY ) self.elasticsearch_alias = conf.get( SearchMetadatatoElasticasearchTask.ELASTICSEARCH_ALIAS_CONFIG_KEY ) self.elasticsearch_new_index = conf.get( SearchMetadatatoElasticasearchTask.ELASTICSEARCH_NEW_INDEX, self.create_new_index_name()) self.document_mapping = conf.get(SearchMetadatatoElasticasearchTask.MAPPING_CLASS, RESOURCE_TO_MAPPING[self.entity]) if not issubclass(self.document_mapping, SearchableResource): msg = "Provided document_mapping should be instance" \ f" of SearchableResource not {type(self.document_mapping)}" LOGGER.error(msg) raise TypeError(msg) self.elasticsearch_batch_size = conf.get( SearchMetadatatoElasticasearchTask.ELASTICSEARCH_PUBLISHER_BATCH_SIZE, 10000 ) self.elasticsearch_timeout_sec = conf.get( SearchMetadatatoElasticasearchTask.ELASTICSEARCH_TIMEOUT_SEC, 120 ) def create_new_index_name(self) -> str: hex_string = uuid4().hex return f"{self.elasticsearch_alias}_{self.date}_{hex_string}" def to_document(self, metadata: Any) -> Document: return self.document_mapping(_index=self.elasticsearch_new_index, **metadata) def generate_documents(self, record: Any) -> Generator: # iterate through records while record: record = self.transformer.transform(record) if not record: # Move on if the transformer filtered the record out record = self.extractor.extract() continue document = self.to_document(metadata=record).to_dict(True) document['_source']['resource_type'] = self.entity yield document record = self.extractor.extract() def _get_old_index(self, connection: Connections) -> List[str]: """ Retrieve all indices that currently have {elasticsearch_alias} alias :return: list of elasticsearch indices """ try: indices = connection.indices.get_alias(self.elasticsearch_alias).keys() return indices except NotFoundError: LOGGER.warn("Received index not found error from Elasticsearch. " + "The index doesn't exist for a newly created ES. It's OK on first run.") # return empty list on exception return [] def _delete_old_index(self, connection: Connections, document_index: Index) -> None: alias_updates = [] previous_index = self._get_old_index(connection=connection) for previous_index_name in previous_index: if previous_index_name != document_index._name: LOGGER.info(f"Deleting old index {previous_index_name}") alias_updates.append({"remove_index": {"index": previous_index_name}}) alias_updates.append({"add": { "index": self.elasticsearch_new_index, "alias": self.elasticsearch_alias}}) connection.indices.update_aliases({"actions": alias_updates}) def run(self) -> None: LOGGER.info('Running search metadata to Elasticsearch task') try: # extract records from metadata store record = self.extractor.extract() # create connection connections.add_connection('default', self.elasticsearch_client) connection = connections.get_connection() # health check ES health = connection.cluster.health() status = health["status"] if status not in ("green", "yellow"): msg = f"Elasticsearch healthcheck failed: {status}" LOGGER.error(msg) raise Exception(msg) # create index LOGGER.info(f"Creating ES index {self.elasticsearch_new_index}") index = Index(name=self.elasticsearch_new_index, using=self.elasticsearch_client) index.document(self.document_mapping) index.create() # publish search metadata to ES cnt = 0 for success, info in parallel_bulk(connection, self.generate_documents(record=record), raise_on_error=False, chunk_size=self.elasticsearch_batch_size, request_timeout=self.elasticsearch_timeout_sec): if not success: LOGGER.warn(f"There was an error while indexing a document to ES: {info}") else: cnt += 1 if cnt == self.elasticsearch_batch_size: LOGGER.info(f'Published {str(cnt*self.elasticsearch_batch_size)} records to ES') # delete old index self._delete_old_index(connection=connection, document_index=index) LOGGER.info("Elasticsearch Indexing completed") finally: self._closer.close() def get_scope(self) -> str: return 'task.search_metadata_to_elasticsearch'
test/test_detect_secrets.py
trae-horton/secret-bridge
152
11087537
import unittest from detectors.detectsecrets import DetectSecrets class AttrDict(dict): """A hacky dictionary that exposes its members as attributes. Ex: attr_dict['foo'] == attr_dict.foo This is to mimic the way that decoded JSON objects look (i.e. JSON object fields are exposed attributes attributes). """ def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self class TestDetectSecrets(unittest.TestCase): TEST_INPUT = """my_secret_key = "<KEY>"\n""" TEST_JSON_OUTPUT_SUBSET = """"results": { "foo.txt": [ { "hashed_secret": "a6846d8320dcb082eba8ab9612f8fd1df7e4a345", "line_number": 1, "type": "Hex High Entropy String" } ] } }""" def test_parse_example_output(self): ds = DetectSecrets() file_obj = AttrDict({ "filename": "secret_test.txt", "patch": self.TEST_INPUT }) out = ds.run('tmp_path', file_obj) self.assertEqual(len(out), 1) finding = out[0] self.assertEqual(finding.secret_type, "Hex High Entropy String")
thrift_tools/tests/test_file_reader.py
cbweixin/thrift-tools
222
11087549
<gh_stars>100-1000 from collections import namedtuple try: from StringIO import StringIO except ImportError: from io import StringIO import unittest from thrift_tools.file_reader import run from .util import get_log_path PARAMS = [ 'file', 'padding', 'protocol', 'structs', 'finagle_thrift', 'skip_values', 'pretty', 'max_messages', 'debug', 'show_holes' ] PARAM_NAMES = ' '.join(PARAMS) class Params(namedtuple('Params', PARAM_NAMES)): pass class FileReaderTestCase(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_read_structs(self): params = Params( file=get_log_path('structs'), padding=0, protocol='binary', structs=True, finagle_thrift=False, # ignored when structs skip_values=False, pretty=True, max_messages=0, debug=False, show_holes=False ) output = StringIO() run(params, output) self.assertIn("'field_type': 'i32', 'value': 1", output.getvalue()) def test_read_messages(self): params = Params( file=get_log_path('messages'), padding=0, protocol='binary', structs=False, finagle_thrift=False, skip_values=False, pretty=True, max_messages=0, debug=False, show_holes=False ) output = StringIO() run(params, output) self.assertIn('ping', output.getvalue()) self.assertIn('search', output.getvalue()) self.assertIn('reply', output.getvalue())
datadog_checks_base/tests/test_utils.py
vbarbaresi/integrations-core
663
11087552
<gh_stars>100-1000 # -*- coding: utf-8 -*- # (C) Datadog, Inc. 2018-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) from decimal import ROUND_HALF_DOWN import mock import pytest from six import PY2, PY3 from datadog_checks.base.utils.common import ensure_bytes, ensure_unicode, pattern_filter, round_value, to_native_string from datadog_checks.base.utils.containers import hash_mutable, iter_unique from datadog_checks.base.utils.limiter import Limiter from datadog_checks.base.utils.secrets import SecretsSanitizer class Item: def __init__(self, name): self.name = name def __eq__(self, other): return self.name == other.name class TestPatternFilter: def test_no_items(self): items = [] whitelist = ['mock'] assert pattern_filter(items, whitelist=whitelist) == [] def test_no_patterns(self): items = ['mock'] assert pattern_filter(items) is items def test_multiple_matches_whitelist(self): items = ['abc', 'def', 'abcdef', 'ghi'] whitelist = ['abc', 'def'] assert pattern_filter(items, whitelist=whitelist) == ['abc', 'def', 'abcdef'] def test_multiple_matches_blacklist(self): items = ['abc', 'def', 'abcdef', 'ghi'] blacklist = ['abc', 'def'] assert pattern_filter(items, blacklist=blacklist) == ['ghi'] def test_whitelist_blacklist(self): items = ['abc', 'def', 'abcdef', 'ghi'] whitelist = ['def'] blacklist = ['abc'] assert pattern_filter(items, whitelist=whitelist, blacklist=blacklist) == ['def'] def test_key_function(self): items = [Item('abc'), Item('def'), Item('abcdef'), Item('ghi')] whitelist = ['abc', 'def'] assert pattern_filter(items, whitelist=whitelist, key=lambda item: item.name) == [ Item('abc'), Item('def'), Item('abcdef'), ] class TestLimiter: def test_no_uid(self): warning = mock.MagicMock() limiter = Limiter("my_check", "names", 10, warning_func=warning) for _ in range(0, 10): assert limiter.is_reached() is False assert limiter.get_status() == (10, 10, False) # Reach limit assert limiter.is_reached() is True assert limiter.get_status() == (11, 10, True) # Make sure warning is only sent once assert limiter.is_reached() is True warning.assert_called_once_with("Check %s exceeded limit of %s %s, ignoring next ones", "my_check", 10, "names") def test_with_uid(self): warning = mock.MagicMock() limiter = Limiter("my_check", "names", 10, warning_func=warning) for _ in range(0, 20): assert limiter.is_reached("dummy1") is False assert limiter.get_status() == (1, 10, False) for _ in range(0, 20): assert limiter.is_reached("dummy2") is False assert limiter.get_status() == (2, 10, False) warning.assert_not_called() def test_mixed(self): limiter = Limiter("my_check", "names", 10) for _ in range(0, 20): assert limiter.is_reached("dummy1") is False assert limiter.get_status() == (1, 10, False) for _ in range(0, 5): assert limiter.is_reached() is False assert limiter.get_status() == (6, 10, False) def test_reset(self): limiter = Limiter("my_check", "names", 10) for _ in range(1, 20): limiter.is_reached("dummy1") assert limiter.get_status() == (1, 10, False) limiter.reset() assert limiter.get_status() == (0, 10, False) assert limiter.is_reached("dummy1") is False assert limiter.get_status() == (1, 10, False) class TestRounding: def test_round_half_up(self): assert round_value(3.5) == 4.0 def test_round_modify_method(self): assert round_value(3.5, rounding_method=ROUND_HALF_DOWN) == 3.0 def test_round_modify_sig_digits(self): assert round_value(2.555, precision=2) == 2.560 assert round_value(4.2345, precision=2) == 4.23 assert round_value(4.2345, precision=3) == 4.235 class TestContainers: def test_iter_unique(self): custom_queries = [ { 'metric_prefix': 'database', 'tags': ['test:database'], 'query': 'SELECT thing1, thing2 FROM TABLE', 'columns': [{'name': 'database.metric', 'type': 'count'}, {'name': 'tablespace', 'type': 'tag'}], }, { 'tags': ['test:database'], 'columns': [{'name': 'tablespace', 'type': 'tag'}, {'name': 'database.metric', 'type': 'count'}], 'query': 'SELECT thing1, thing2 FROM TABLE', 'metric_prefix': 'database', }, ] assert len(list(iter_unique(custom_queries))) == 1 @pytest.mark.parametrize( 'value', [ pytest.param({'x': 'y'}, id='dict'), pytest.param({'x': 'y', 'z': None}, id='dict-with-none-value'), pytest.param({'x': 'y', None: 't'}, id='dict-with-none-key'), pytest.param({'x': ['y', 'z'], 't': 'u'}, id='dict-nest-list'), pytest.param(['x', 'y'], id='list'), pytest.param(['x', None], id='list-with-none'), pytest.param(('x', None), id='tuple-with-none'), pytest.param({'x', None}, id='set-with-none'), ], ) def test_hash_mutable(self, value): h = hash_mutable(value) assert isinstance(h, int) @pytest.mark.skipif( PY2, reason="In Python 2, a < b when a and b are of different types returns `False` (does not raise `TypeError`)", ) @pytest.mark.parametrize( 'value', [ pytest.param(['x', 1], id='mixed-list'), pytest.param(['x', [1, 2, 3]], id='mixed-list-nested-1'), pytest.param(['x', {'y': 'z'}], id='mixed-list-nested-2'), pytest.param(('x', 1), id='mixed-tuple'), pytest.param({'x', 1}, id='mixed-set'), pytest.param({'x': 1, 2: 'y'}, id='mixed-dict-keys'), ], ) def test_hash_mutable_unsupported_mixed_type(self, value): """ Hashing mixed type containers is not supported, mostly because we haven't needed to add support for it yet. """ with pytest.raises(TypeError): hash_mutable(value) @pytest.mark.parametrize( 'left, right', [ pytest.param([1, 2], [2, 1], id='top-level'), pytest.param({'x': [1, 2]}, {'x': [2, 1]}, id='nested'), ], ) def test_hash_mutable_commutative(self, left, right): """ hash_mutable() is expected to return the same hash regardless of the order of items in the container. """ assert hash_mutable(left) == hash_mutable(right) class TestBytesUnicode: @pytest.mark.skipif(PY3, reason="Python 3 does not support explicit bytestring with special characters") def test_ensure_bytes_py2(self): assert ensure_bytes('éâû') == 'éâû' assert ensure_bytes(u'éâû') == 'éâû' def test_ensure_bytes(self): assert ensure_bytes('qwerty') == b'qwerty' def test_ensure_unicode(self): assert ensure_unicode('éâû') == u'éâû' assert ensure_unicode(u'éâû') == u'éâû' def test_to_native_string(self): # type: () -> None text = u'éâû' binary = text.encode('utf-8') if PY3: assert to_native_string(binary) == text else: assert to_native_string(binary) == binary class TestSecretsSanitizer: def test_default(self): # type: () -> None secret = 's3kr3t' sanitizer = SecretsSanitizer() assert sanitizer.sanitize(secret) == secret def test_sanitize(self): # type: () -> None secret = 's3kr3t' sanitizer = SecretsSanitizer() sanitizer.register(secret) assert all(letter == '*' for letter in sanitizer.sanitize(secret)) def test_sanitize_multiple(self): # type: () -> None pwd1 = '<PASSWORD>' pwd2 = '<PASSWORD>' sanitizer = SecretsSanitizer() sanitizer.register(pwd1) sanitizer.register(pwd2) message = 'Could not authenticate with password {}, did you try {}?'.format(pwd1, pwd2) sanitized = sanitizer.sanitize(message) assert pwd1 not in sanitized assert pwd2 not in sanitized
aiida/storage/psql_dos/migrations/versions/django_0032_remove_legacy_workflows.py
mkrack/aiida-core
153
11087573
<reponame>mkrack/aiida-core # -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### # pylint: disable=invalid-name,no-member """Remove legacy workflows This is similar to migration 1b8ed3425af9 Revision ID: django_0032 Revises: django_0031 """ from alembic import op from aiida.storage.psql_dos.migrations.utils.legacy_workflows import export_workflow_data revision = 'django_0032' down_revision = 'django_0031' branch_labels = None depends_on = None def upgrade(): """Migrations for the upgrade.""" # Clean data export_workflow_data(op.get_bind(), op.get_context().opts['aiida_profile']) # drop tables (indexes are also automatically dropped) op.drop_table('db_dbworkflowstep_sub_workflows') op.drop_table('db_dbworkflowstep_calculations') op.drop_table('db_dbworkflowstep') op.drop_table('db_dbworkflowdata') op.drop_table('db_dbworkflow') def downgrade(): """Migrations for the downgrade.""" raise NotImplementedError('Downgrade of django_0032.')
utils/fasm/test/make_blif.py
brycejh/vtr-verilog-to-routing
682
11087576
#!/usr/bin/env python3 """ This is an utility script that generates a BLIF file with arbitrary number of 5 and 6 input LUTs. Along with LUTs their initialization content is placed in a comment just before the '.names' directive. """ import random def main(): lut_count = 35 print('.model top') print('.inputs ' + ' '.join(['di{}'.format(i) for i in range(6)])) print('.outputs ' + ' '.join(['do{}'.format(i) for i in range(lut_count)])) for i in range(lut_count): n = random.choice((5, 6)) ones = set([''.join([random.choice('01') for i in range(n)]) for j in range(2**n)]) init = 0 for one in ones: idx = 0 for j, c in enumerate(one): if c == '1': idx |= (1 << (len(one)-1-j)) init |= 1 << idx init_str = ''.join(['1' if init & (1<<j) else '0' for j in reversed(range(2**n))]) print('# {}\'b{}'.format(2**n, init_str)) print('.names ' + ' '.join(['di{}'.format(j) for j in range(n)]) + ' do{} '.format(i)) for one in ones: print('{} 1'.format(one)) if __name__ == "__main__": main()
Raspberry-Pi-Sonoff/Main.py
Aishwary912/Raspberry-Pi-Sonoff
269
11087619
<gh_stars>100-1000 from flask import Flask, render_template, request, redirect from gpiozero import LED from time import sleep led = LED(2) app = Flask(__name__) @app.route("/") def home(): if led.value == 1: status = 'ON' else: status = 'OFF' return render_template('home.html', status=status) @app.route("/on") def on(): led.on() return "LED on" @app.route("/off") def off(): led.off() return "LED off" if __name__ == "__main__": app.run(host='0.0.0.0', port=8000)
tests/garage/tf/algos/test_reps.py
blacksph3re/garage
1,500
11087634
<filename>tests/garage/tf/algos/test_reps.py """ This script creates a test that fails when garage.tf.algos.REPS performance is too low. """ import pytest from garage.envs import GymEnv from garage.np.baselines import LinearFeatureBaseline from garage.sampler import LocalSampler from garage.tf.algos import REPS from garage.tf.policies import CategoricalMLPPolicy from garage.trainer import TFTrainer from tests.fixtures import snapshot_config, TfGraphTestCase class TestREPS(TfGraphTestCase): @pytest.mark.large def test_reps_cartpole(self): """Test REPS with gym Cartpole environment.""" with TFTrainer(snapshot_config, sess=self.sess) as trainer: env = GymEnv('CartPole-v0') policy = CategoricalMLPPolicy(env_spec=env.spec, hidden_sizes=[32, 32]) baseline = LinearFeatureBaseline(env_spec=env.spec) sampler = LocalSampler( agents=policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True) algo = REPS(env_spec=env.spec, policy=policy, baseline=baseline, sampler=sampler, discount=0.99) trainer.setup(algo, env) last_avg_ret = trainer.train(n_epochs=10, batch_size=4000) assert last_avg_ret > 5 env.close()
test_proj/blog/forms.py
Ivan-Feofanov/django-inline-actions
204
11087645
<reponame>Ivan-Feofanov/django-inline-actions from django import forms from . import models class ChangeTitleForm(forms.ModelForm): class Meta: model = models.Article fields = ('title',)
vnpy/api/femas/__init__.py
funrunskypalace/vnpy
19,529
11087653
<filename>vnpy/api/femas/__init__.py<gh_stars>1000+ from .vnfemasmd import MdApi from .vnfemastd import TdApi from .femas_constant import *
docs/demos/multi_page_meta_tags/app.py
ruxi/dash-labs
110
11087655
<filename>docs/demos/multi_page_meta_tags/app.py from dash import Dash, html, dcc import dash import dash_labs as dl app = Dash(__name__, plugins=[dl.plugins.pages]) app.layout = html.Div( [ html.H1("App Frame"), html.Div( [ html.Div( [ html.Img( src=app.get_asset_url(page["image"]), height="40px", width="60px", ), dcc.Link(f"{page['name']} - {page['path']}", href=page["path"]), ], style={"margin": 20}, ) for page in dash.page_registry.values() ] ), dl.plugins.page_container, ] ) if __name__ == "__main__": app.run_server(debug=True)
pythainlp/transliterate/royin.py
wannaphongcom/pythai-nlp
125
11087669
<reponame>wannaphongcom/pythai-nlp # -*- coding: utf-8 -*- """ The Royal Thai General System of Transcription (RTGS) is the official system for rendering Thai words in the Latin alphabet. It was published by the Royal Institute of Thailand. :See Also: * `Wikipedia <https://en.wikipedia.org/wiki/Royal_Thai_General_System_of_Transcription>`_ """ import re from pythainlp import thai_consonants, word_tokenize # vowel _vowel_patterns = """เ*ียว,\\1iao แ*็ว,\\1aeo เ*ือย,\\1ueai แ*ว,\\1aeo เ*็ว,\\1eo เ*ว,\\1eo *ิว,\\1io *วย,\\1uai เ*ย,\\1oei *อย,\\1oi โ*ย,\\1oi *ุย,\\1ui *าย,\\1ai ไ*ย,\\1ai *ัย,\\1ai ไ**,\\1\\2ai ไ*,\\1ai ใ*,\\1ai *ว*,\\1ua\\2 *ัวะ,\\1ua *ัว,\\1ua เ*ือะ,\\1uea เ*ือ,\\1uea เ*ียะ,\\1ia เ*ีย,\\1ia เ*อะ,\\1oe เ*อ,\\1oe เ*ิ,\\1oe *อ,\\1o เ*าะ,\\1o เ*็,\\1e โ*ะ,\\1o โ*,\\1o แ*ะ,\\1ae แ*,\\1ae เ*าะ,\\1e *าว,\\1ao เ*า,\\1ao เ*,\\1e *ู,\\1u *ุ,\\1u *ื,\\1ue *ึ,\\1ue *ี,\\1i *ิ,\\1i *ำ,\\1am *า,\\1a *ั,\\1a *ะ,\\1a #ฤ,\\1rue $ฤ,\\1ri""" _vowel_patterns = _vowel_patterns.replace("*", f"([{thai_consonants}])") _vowel_patterns = _vowel_patterns.replace("#", "([คนพมห])") _vowel_patterns = _vowel_patterns.replace("$", "([กตทปศส])") _VOWELS = [x.split(",") for x in _vowel_patterns.split("\n")] # พยัญชนะ ต้น สะกด _CONSONANTS = { "ก": ["k", "k"], "ข": ["kh", "k"], "ฃ": ["kh", "k"], "ค": ["kh", "k"], "ฅ": ["kh", "k"], "ฆ": ["kh", "k"], "ง": ["ng", "ng"], "จ": ["ch", "t"], "ฉ": ["ch", "t"], "ช": ["ch", "t"], "ซ": ["s", "t"], "ฌ": ["ch", "t"], "ญ": ["y", "n"], "ฎ": ["d", "t"], "ฏ": ["t", "t"], "ฐ": ["th", "t"], # ฑ พยัญชนะต้น เป็น d ได้ "ฑ": ["th", "t"], "ฒ": ["th", "t"], "ณ": ["n", "n"], "ด": ["d", "t"], "ต": ["t", "t"], "ถ": ["th", "t"], "ท": ["th", "t"], "ธ": ["th", "t"], "น": ["n", "n"], "บ": ["b", "p"], "ป": ["p", "p"], "ผ": ["ph", "p"], "ฝ": ["f", "p"], "พ": ["ph", "p"], "ฟ": ["f", "p"], "ภ": ["ph", "p"], "ม": ["m", "m"], "ย": ["y", ""], "ร": ["r", "n"], "ฤ": ["rue", ""], "ล": ["l", "n"], "ว": ["w", ""], "ศ": ["s", "t"], "ษ": ["s", "t"], "ส": ["s", "t"], "ห": ["h", ""], "ฬ": ["l", "n"], "อ": ["", ""], "ฮ": ["h", ""], } _THANTHAKHAT = "\u0e4c" _RE_CONSONANT = re.compile(f"[{thai_consonants}]") _RE_NORMALIZE = re.compile( f"จน์|มณ์|ณฑ์|ทร์|ตร์|[{thai_consonants}]{_THANTHAKHAT}|" f"[{thai_consonants}][\u0e30-\u0e39]{_THANTHAKHAT}" # Paiyannoi, Maiyamok, Tonemarks, Thanthakhat, Nikhahit, other signs r"|[\u0e2f\u0e46\u0e48-\u0e4f\u0e5a\u0e5b]" ) def _normalize(word: str) -> str: """ Remove silence, no sound, and tonal characters. ตัดอักษรที่ไม่ออกเสียง (การันต์ ไปยาลน้อย ไม้ยมก*) และวรรณยุกต์ทิ้ง """ return _RE_NORMALIZE.sub("", word) def _replace_vowels(word: str) -> str: for vowel in _VOWELS: word = re.sub(vowel[0], vowel[1], word) return word def _replace_consonants(word: str, consonants: str) -> str: _HO_HIP = "\u0e2b" # ห _RO_RUA = "\u0e23" # ร _DOUBLE_RO_RUA = _RO_RUA + _RO_RUA if not consonants: return word skip = False mod_chars = [] j = 0 # j is the index of consonants for i in range(len(word)): if skip: skip = False j += 1 elif word[i] not in _CONSONANTS: # word[i] is not a Thai consonant. mod_chars.append(word[i]) elif ( len(mod_chars) == 0 and word[i] == _HO_HIP and len(consonants) != 1 ): # Skip HO HIP except that HO HIP is the only one consonant j += 1 elif ( len(mod_chars) == 0 ): # The first character must be an initial consonant. mod_chars.append(_CONSONANTS[consonants[j]][0]) j += 1 elif word[i:] == _DOUBLE_RO_RUA: # Double RO RUA is in end of word skip = True mod_chars.append("a") mod_chars.append("n") j += 1 elif word[i : i + 2] == _DOUBLE_RO_RUA: skip = True mod_chars.append("a") j += 1 else: # Assume that the rest are final consonants. mod_chars.append(_CONSONANTS[consonants[j]][1]) j += 1 return "".join(mod_chars) # support function for romanize() def _romanize(word: str) -> str: word = _replace_vowels(_normalize(word)) consonants = _RE_CONSONANT.findall(word) # 2-character word, all consonants if len(word) == 2 and len(consonants) == 2: word = list(word) word.insert(1, "o") word = "".join(word) word = _replace_consonants(word, consonants) return word def romanize(text: str) -> str: """Render Thai words in Latin alphabet, using RTGS Royal Thai General System of Transcription (RTGS), is the official system by the Royal Institute of Thailand. :param text: Thai text to be romanized :type text: str :return: A string of Thai words rendered in the Latin alphabet :rtype: str """ words = word_tokenize(text) romanized_words = [_romanize(word) for word in words] return "".join(romanized_words)