max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
corehq/apps/builds/management/commands/add_commcare_build.py
andyasne/commcare-hq
471
11101047
from github import Github from django.core.management.base import BaseCommand, CommandError from corehq.apps.builds.models import CommCareBuild, CommCareBuildConfig, BuildMenuItem, BuildSpec class Command(BaseCommand): help = ('Adds a commcare build, labeled with the version (x.y.z) and build_number (an incrementing integer)\n' 'to get started see https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/builds/README.md') def add_arguments(self, parser): parser.add_argument('build_path', nargs='?') parser.add_argument('version', nargs='?') parser.add_argument('build_number', type=int, nargs='?') parser.add_argument( '-l', '--latest', action='store_true', help="add the latest CommCare build version from GitHub" ) def handle(self, build_path, version, build_number, **options): if options.get('latest'): _create_build_with_latest_version() else: if build_path and version and build_number: try: CommCareBuild.create_from_zip(build_path, version, build_number) except Exception as e: raise CommandError("%s" % e) self.stdout.write('Build %s #%s created\n' % (version, build_number)) self.stdout.write('You can see a list of builds at [your-server]/builds/\n') else: raise CommandError("<build_path>, <version> or <build_number> not specified!") def _create_build_with_latest_version(): version = _get_latest_commcare_build_version() commcare_version_build = next( (cc_build for cc_build in CommCareBuild.all_builds() if cc_build.version == version), None ) if commcare_version_build is None: CommCareBuild.create_without_artifacts(version, None) _update_commcare_build_menu(version) def _get_latest_commcare_build_version(): repo = Github().get_organization('dimagi').get_repo("commcare-android") latest_release_tag = repo.get_latest_release().tag_name return latest_release_tag.split('commcare_')[1] def _update_commcare_build_menu(version): build_config_doc = CommCareBuildConfig.fetch() _add_build_menu_item(build_config_doc, version) _update_default_build_spec_to_version(build_config_doc, version) build_config_doc.save() CommCareBuildConfig.clear_local_cache() def _add_build_menu_item(build_config, version): build_menu_items = build_config.menu build = BuildSpec(version=version, latest=True) build_menu_item = BuildMenuItem(build=build, label="CommCare {}".format(version), j2me_enabled=False) build_menu_items.append(build_menu_item) def _update_default_build_spec_to_version(build_config, version): major_version = version[0] defaults = build_config.defaults major_default_build_spec = next( (default for default in defaults if default.version.startswith(major_version)), None ) if major_default_build_spec and major_default_build_spec.version != version: major_default_build_spec.version = version
unittest/scripts/auto/py_devapi/validation/collection_create_index.py
mueller/mysql-shell
119
11101080
#@<OUT> Create an index on a single field. 1 (WL10858-FR1_1) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: 10 Packed: NULL Null: YES Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> Create an index on a single field. 2 (WL10858-FR1_1) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, ?{} `<<<idx_col_1>>>` text GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$.myField'))) VIRTUAL, PRIMARY KEY (`_id`), ?{VER(<8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`(10)) ?{} ?{VER(>=8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`(10)), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@<OUT> Create an index on a single field with all the possibles options. 1 (WL10858-FR1_2) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: 10 Packed: NULL Null: Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> Create an index on a single field with all the possibles options. 2 (WL10858-FR1_2) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, ?{} `<<<idx_col_1>>>` text GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$.myField'))) VIRTUAL NOT NULL, PRIMARY KEY (`_id`), ?{VER(<8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`(10)) ?{} ?{VER(>=8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`(10)), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@<OUT> Create an index on multiple fields 1 (WL10858-FR1_3) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: 10 Packed: NULL Null: YES Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL *************************** 2. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 2 Column_name: <<<idx_col_2>>> Collation: A Cardinality: 0 Sub_part: 10 Packed: NULL Null: YES Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL *************************** 3. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 3 Column_name: <<<idx_col_3>>> Collation: A Cardinality: 0 Sub_part: NULL Packed: NULL Null: YES Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> Create an index on multiple fields 2 (WL10858-FR1_3) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, ?{} `<<<idx_col_1>>>` text GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$.myField'))) VIRTUAL, `<<<idx_col_2>>>` text GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$.myField2'))) VIRTUAL, ?{VER(<8.0.19)} `<<<idx_col_3>>>` int(11) GENERATED ALWAYS AS (json_extract(`doc`,_utf8mb4'$.myField3')) VIRTUAL, ?{} ?{VER(>=8.0.19)} `<<<idx_col_3>>>` int GENERATED ALWAYS AS (json_extract(`doc`,_utf8mb4'$.myField3')) VIRTUAL, ?{} PRIMARY KEY (`_id`), ?{VER(<8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`(10),`<<<idx_col_2>>>`(10),`<<<idx_col_3>>>`) ?{} ?{VER(>=8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`(10),`<<<idx_col_2>>>`(10),`<<<idx_col_3>>>`), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@<OUT> Create an index on multiple fields with all the possibles options. 1 (WL10858-FR1_4) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: 10 Packed: NULL Null: YES Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL *************************** 2. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 2 Column_name: <<<idx_col_2>>> Collation: A Cardinality: 0 Sub_part: 10 Packed: NULL Null: Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL *************************** 3. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 3 Column_name: <<<idx_col_3>>> Collation: A Cardinality: 0 Sub_part: NULL Packed: NULL Null: YES Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> Create an index on multiple fields with all the possibles options. 2 (WL10858-FR1_4) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, ?{} `<<<idx_col_1>>>` text GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$.myField'))) VIRTUAL, `<<<idx_col_2>>>` text GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$.myField2'))) VIRTUAL NOT NULL, ?{VER(<8.0.19)} `<<<idx_col_3>>>` int(11) GENERATED ALWAYS AS (json_extract(`doc`,_utf8mb4'$.myField3')) VIRTUAL, ?{} ?{VER(>=8.0.19)} `<<<idx_col_3>>>` int GENERATED ALWAYS AS (json_extract(`doc`,_utf8mb4'$.myField3')) VIRTUAL, ?{} PRIMARY KEY (`_id`), ?{VER(<8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`(10),`<<<idx_col_2>>>`(10),`<<<idx_col_3>>>`) ?{} ?{VER(>=8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`(10),`<<<idx_col_2>>>`(10),`<<<idx_col_3>>>`), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@<OUT> Create an index using a geojson datatype field. 1 (WL10858-FR1_5) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: 32 Packed: NULL Null: Index_type: SPATIAL Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> Create an index using a geojson datatype field. 2 (WL10858-FR1_5) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, ?{} `<<<idx_col_1>>>` geometry GENERATED ALWAYS AS (st_geomfromgeojson(json_extract(`doc`,_utf8mb4'$.myGeoJsonField'),1,4326)) STORED NOT NULL /*!80003 SRID 4326 */, PRIMARY KEY (`_id`), ?{VER(<8.0.19)} SPATIAL KEY `myIndex` (`<<<idx_col_1>>>`) ?{} ?{VER(>=8.0.19)} SPATIAL KEY `myIndex` (`<<<idx_col_1>>>`), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@<OUT> Create an index using a geojson datatype field without specifying the required flag it should be set to True by default. 1 (WL10858-FR1_6) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: 32 Packed: NULL Null: Index_type: SPATIAL Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> Create an index using a geojson datatype field without specifying the required flag it should be set to True by default. 2 (WL10858-FR1_6) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, ?{} `<<<idx_col_1>>>` geometry GENERATED ALWAYS AS (st_geomfromgeojson(json_extract(`doc`,_utf8mb4'$.myGeoJsonField'),1,4326)) STORED NOT NULL /*!80003 SRID 4326 */, PRIMARY KEY (`_id`), ?{VER(<8.0.19)} SPATIAL KEY `myIndex` (`<<<idx_col_1>>>`) ?{} ?{VER(>=8.0.19)} SPATIAL KEY `myIndex` (`<<<idx_col_1>>>`), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@<OUT> Create an index using a geojson datatype field with all the possibles options. 1 (WL10858-FR1_7) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: 32 Packed: NULL Null: Index_type: SPATIAL Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> Create an index using a geojson datatype field with all the possibles options. 2 (WL10858-FR1_7) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, ?{} `<<<idx_col_1>>>` geometry GENERATED ALWAYS AS (st_geomfromgeojson(json_extract(`doc`,_utf8mb4'$.myGeoJsonField'),2,4400)) STORED NOT NULL /*!80003 SRID 4400 */, PRIMARY KEY (`_id`), ?{VER(<8.0.19)} SPATIAL KEY `myIndex` (`<<<idx_col_1>>>`) ?{} ?{VER(>=8.0.19)} SPATIAL KEY `myIndex` (`<<<idx_col_1>>>`), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@<OUT> Create an index using a datetime field. 1 (WL10858-FR1_8) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: NULL Packed: NULL Null: YES Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> Create an index using a datetime field. 2 (WL10858-FR1_8) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, ?{} `<<<idx_col_1>>>` datetime GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$.myField'))) VIRTUAL, PRIMARY KEY (`_id`), ?{VER(<8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`) ?{} ?{VER(>=8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@<OUT> Create an index using a timestamp field. 1 (WL10858-FR1_9) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: NULL Packed: NULL Null: YES Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> Create an index using a timestamp field. 2 (WL10858-FR1_9) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, ?{} `<<<idx_col_1>>>` timestamp GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$.myField'))) VIRTUAL NULL, PRIMARY KEY (`_id`), ?{VER(<8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`) ?{} ?{VER(>=8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@<OUT> Create an index using a time field. 1 (WL10858-FR1_10) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: NULL Packed: NULL Null: YES Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> Create an index using a time field. 2 (WL10858-FR1_10) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, ?{} `<<<idx_col_1>>>` time GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$.myField'))) VIRTUAL, PRIMARY KEY (`_id`), ?{VER(<8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`) ?{} ?{VER(>=8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@<OUT> Create an index using a date field. 1 (WL10858-FR1_11) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: NULL Packed: NULL Null: YES Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> Create an index using a date field. 2 (WL10858-FR1_11) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, ?{} `<<<idx_col_1>>>` date GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$.myField'))) VIRTUAL, PRIMARY KEY (`_id`), ?{VER(<8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`) ?{} ?{VER(>=8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@<OUT> Create an index using a numeric field. 1 (WL10858-FR1_12) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: NULL Packed: NULL Null: YES Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> Create an index using a numeric field. 2 (WL10858-FR1_12) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, ?{} `<<<idx_col_1>>>` decimal(10,0) unsigned GENERATED ALWAYS AS (json_extract(`doc`,_utf8mb4'$.myField')) VIRTUAL, PRIMARY KEY (`_id`), ?{VER(<8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`) ?{} ?{VER(>=8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@<OUT> FR1_13 Create an index using a decimal field. 1 (WL10858-FR1_13) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: NULL Packed: NULL Null: YES Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> FR1_13 Create an index using a decimal field. 2 (WL10858-FR1_13) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, ?{} `<<<idx_col_1>>>` decimal(10,0) GENERATED ALWAYS AS (json_extract(`doc`,_utf8mb4'$.myField')) VIRTUAL, PRIMARY KEY (`_id`), ?{VER(<8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`) ?{} ?{VER(>=8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@<OUT> Create an index using a double field. 1 (WL10858-FR1_14) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: NULL Packed: NULL Null: YES Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> Create an index using a double field. 2 (WL10858-FR1_14) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, ?{} `<<<idx_col_1>>>` double GENERATED ALWAYS AS (json_extract(`doc`,_utf8mb4'$.myField')) VIRTUAL, PRIMARY KEY (`_id`), ?{VER(<8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`) ?{} ?{VER(>=8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@<OUT> Create an index using a float field. 1 (WL10858-FR1_15) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: NULL Packed: NULL Null: YES Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> Create an index using a float field. 2 (WL10858-FR1_15) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, ?{} `<<<idx_col_1>>>` float unsigned GENERATED ALWAYS AS (json_extract(`doc`,_utf8mb4'$.myField')) VIRTUAL, PRIMARY KEY (`_id`), ?{VER(<8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`) ?{} ?{VER(>=8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@<OUT> Create an index using a real field. 1 (WL10858-FR1_16) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: NULL Packed: NULL Null: YES Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> Create an index using a real field. 2 (WL10858-FR1_16) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, ?{} `<<<idx_col_1>>>` double unsigned GENERATED ALWAYS AS (json_extract(`doc`,_utf8mb4'$.myField')) VIRTUAL, PRIMARY KEY (`_id`), ?{VER(<8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`) ?{} ?{VER(>=8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@<OUT> Create an index using a bigint field. 1 (WL10858-FR1_17) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: NULL Packed: NULL Null: YES Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> Create an index using a bigint field. 2 (WL10858-FR1_17) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(<8.0.19)} `<<<idx_col_1>>>` bigint(20) GENERATED ALWAYS AS (json_extract(`doc`,_utf8mb4'$.myField')) VIRTUAL, ?{} ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, `<<<idx_col_1>>>` bigint GENERATED ALWAYS AS (json_extract(`doc`,_utf8mb4'$.myField')) VIRTUAL, ?{} PRIMARY KEY (`_id`), ?{VER(<8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`) ?{} ?{VER(>=8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@<OUT> Create an index using a integer field. 1 (WL10858-FR1_18) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: NULL Packed: NULL Null: YES Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> Create an index using a integer field. 2 (WL10858-FR1_18) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(<8.0.19)} `<<<idx_col_1>>>` int(10) unsigned GENERATED ALWAYS AS (json_extract(`doc`,_utf8mb4'$.myField')) VIRTUAL, ?{} ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, `<<<idx_col_1>>>` int unsigned GENERATED ALWAYS AS (json_extract(`doc`,_utf8mb4'$.myField')) VIRTUAL, ?{} PRIMARY KEY (`_id`), ?{VER(<8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`) ?{} ?{VER(>=8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@<OUT> Create an index using a mediumint field. 1 (WL10858-FR1_19) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: NULL Packed: NULL Null: YES Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> Create an index using a mediumint field. 2 (WL10858-FR1_19) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(<8.0.19)} `<<<idx_col_1>>>` mediumint(8) unsigned GENERATED ALWAYS AS (json_extract(`doc`,_utf8mb4'$.myField')) VIRTUAL, ?{} ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, `<<<idx_col_1>>>` mediumint unsigned GENERATED ALWAYS AS (json_extract(`doc`,_utf8mb4'$.myField')) VIRTUAL, ?{} PRIMARY KEY (`_id`), ?{VER(<8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`) ?{} ?{VER(>=8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@<OUT> Create an index using a smallint field. 1 (WL10858-FR1_20) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: NULL Packed: NULL Null: YES Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> Create an index using a smallint field. 2 (WL10858-FR1_20) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(<8.0.19)} `<<<idx_col_1>>>` smallint(6) GENERATED ALWAYS AS (json_extract(`doc`,_utf8mb4'$.myField')) VIRTUAL, ?{} ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, `<<<idx_col_1>>>` smallint GENERATED ALWAYS AS (json_extract(`doc`,_utf8mb4'$.myField')) VIRTUAL, ?{} PRIMARY KEY (`_id`), ?{VER(<8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`) ?{} ?{VER(>=8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@<OUT> Create an index using a tinyint field. 1 (WL10858-FR1_21) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: NULL Packed: NULL Null: YES Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> Create an index using a tinyint field. 2 (WL10858-FR1_21) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(<8.0.19)} `<<<idx_col_1>>>` tinyint(3) unsigned GENERATED ALWAYS AS (json_extract(`doc`,_utf8mb4'$.myField')) VIRTUAL, ?{} ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, `<<<idx_col_1>>>` tinyint unsigned GENERATED ALWAYS AS (json_extract(`doc`,_utf8mb4'$.myField')) VIRTUAL, ?{} PRIMARY KEY (`_id`), ?{VER(<8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`) ?{} ?{VER(>=8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@<OUT> Verify that the drop_index function removes the index entry from the table schema of a collection. 1 (WL10858-FR4_1) *************************** 1. row *************************** Table: my_coll Non_unique: 1 Key_name: myIndex Seq_in_index: 1 Column_name: <<<idx_col_1>>> Collation: A Cardinality: 0 Sub_part: 10 Packed: NULL Null: YES Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL #@<OUT> Verify that the drop_index function removes the index entry from the table schema of a collection. 2 (WL10858-FR4_1) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, ?{} `<<<idx_col_1>>>` text GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$.myField'))) VIRTUAL, PRIMARY KEY (`_id`), ?{VER(<8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`(10)) ?{} ?{VER(>=8.0.19)} KEY `myIndex` (`<<<idx_col_1>>>`(10)), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@ Verify that the drop_index function removes the index entry from the table schema of a collection. 3 (WL10858-FR4_1) |Empty set| #@<OUT> Verify that the drop_index function removes the index entry from the table schema of a collection. 4 (WL10858-FR4_1) *************************** 1. row *************************** Table: my_coll Create Table: CREATE TABLE `my_coll` ( `doc` json DEFAULT NULL, `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL, ?{VER(<8.0.19)} PRIMARY KEY (`_id`) ?{} ?{VER(>=8.0.19)} `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL, PRIMARY KEY (`_id`), CONSTRAINT `$val_strict_98ECC39AA1BEFEB54F58E37A530CD5D1BD7631C5` CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */ ?{} ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci #@ Verify that the dropIndex silently succeeds if the index does not exist. (WL10858-FR4_2) || #@ Create an index with the name of an index that already exists. (WL10858-FR5_2) ||MySQL Error (1061): Duplicate key name 'myIndex' #@ Create an index with a not valid JSON document definition. (WL10858-FR5_3) {sys.version_info[:2] < (3, 8)} ||coll.create_index('myIndex', {'fields': [{'field' = '$.myField', type = 'TEXT(10)'}]}) || ^ ||SyntaxError: invalid syntax ||coll.create_index('myIndex', {'fields': [{'field': '$.myField', 'type': 'TEXT(10)']}) || ^ ||SyntaxError: invalid syntax ||coll.create_index('myIndex', {'fields': [{'field': '$.myField', 'type': 'TEXT(10)'}}) || ^ ||SyntaxError: invalid syntax #@ Create an index with a not valid JSON document definition. (WL10858-FR5_3) {sys.version_info[:2] >= (3, 8)} ||coll.create_index('myIndex', {'fields': [{'field' = '$.myField', type = 'TEXT(10)'}]}) || ^ ||SyntaxError: invalid syntax ||SyntaxError: closing parenthesis ']' does not match opening parenthesis '{' ||SyntaxError: closing parenthesis '}' does not match opening parenthesis '[' #@ Create an index where its definition is a JSON document but its structure is not valid. (WL10858-FR5_4) ||MySQL Error (5015): Invalid number of arguments, expected value for 'fields[0].field' #@ Create an index with the index type not "INDEX" or "SPATIAL" (case insensitive). (WL10858-FR5_5) ||MySQL Error (5017): Argument value 'IDX' for index type is invalid ||MySQL Error (5017): Argument value 'SPATIAL_' for index type is invalid ||MySQL Error (5017): Argument value 'INVALID' for index type is invalid #@ Create a 'SPATIAL' index with "required" flag set to False. (WL10858-FR5_6) ||MySQL Error (5117): GEOJSON index requires 'field.required: TRUE #@ Create an index with an invalid "type" specified (type names are case insensitive). (WL10858-FR5_7) ||MySQL Error (5017): Invalid or unsupported type specification '_Text(10)' ||MySQL Error (5017): Invalid or unsupported type specification 'Invalid' ||MySQL Error (5017): Invalid or unsupported type specification 'Timestamps' ||MySQL Error (5017): Invalid or unsupported type specification 'Dates' #@ Create an index specifiying geojson options for non geojson data type. (WL10858-FR5_8) ||MySQL Error (5017): Unsupported argument specification for '$.myField' #@ Create an index with mismatched data types (WL10858-ET_1) ||MySQL Error (1292): Incorrect datetime value: '10' for column #@ Create an index specifiying SPATIAL as the index type for a non spatial data type (WL10858-ET_2) ||MySQL Error (3106): 'Spatial index on virtual generated column' is not supported for generated columns. #@ Create an index specifiying INDEX as the index type for a spatial data type (WL10858-ET_3) ||Column '$ix_gj_r_B4C4FDF5AD30671EF010BCE1E67FA76778A889F7' cannot be null
rllib/examples/env/utils/interfaces.py
mgelbart/ray
21,382
11101138
########## # Contribution by the Center on Long-Term Risk: # https://github.com/longtermrisk/marltoolbox ########## from abc import ABC, abstractmethod class InfoAccumulationInterface(ABC): @abstractmethod def _init_info(self): raise NotImplementedError() @abstractmethod def _reset_info(self): raise NotImplementedError() @abstractmethod def _get_episode_info(self): raise NotImplementedError() @abstractmethod def _accumulate_info(self, *args, **kwargs): raise NotImplementedError()
loris/utils.py
munnellg/loris
150
11101145
<filename>loris/utils.py import errno import logging import os import shutil import uuid logger = logging.getLogger(__name__) def symlink(src, dst): """Create a symlink from ``src`` to ``dst``. Creates any required intermediate directories, and overrides any existing file at ``dst``. """ if src == dst: logger.warn( 'Circular symlink requested from %s to %s; not creating symlink', src, dst) return os.makedirs(os.path.dirname(dst), exist_ok=True) # Shouldn't be the case, but helps with debugging. if os.path.lexists(dst): os.unlink(dst) os.symlink(src, dst) def safe_rename(src, dst): """Rename a file from ``src`` to ``dst``. We use a custom version rather than the standard library because we have two requirements: * Moves must be atomic. Otherwise Loris may serve a partial image from a cache, which causes an error. ``shutil.move()`` is not atomic. Note that multiple threads may try to write to the cache at once, so atomicity is required to ensure the serving on one thread doesn't pick up a partially saved image from another thread. * Moves must work across filesystems. Often temp directories and the cache directories live on different filesystems. ``os.rename()`` can throw errors if run across filesystems. So we try ``os.rename()``, but if we detect a cross-filesystem copy, we switch to ``shutil.move()`` with some wrappers to make it atomic. """ logger.debug('Renaming %r to %r', src, dst) try: os.rename(src, dst) except OSError as err: logger.debug('Calling os.rename(%r, %r) failed with %r', src, dst, err) if err.errno == errno.EXDEV: # Generate a unique ID, and copy `<src>` to the target directory # with a temporary name `<dst>.<ID>.tmp`. Because we're copying # across a filesystem boundary, this initial copy may not be # atomic. We intersperse a random UUID so if different processes # are copying into `<dst>`, they don't overlap in their tmp copies. mole_id = uuid.uuid4() tmp_dst = '%s.%s.tmp' % (dst, mole_id) shutil.copyfile(src, tmp_dst) # Then do an atomic rename onto the new name, and clean up the # source image. os.rename(tmp_dst, dst) os.unlink(src) else: raise def decode_bytes(data): try: return data.decode('utf8') except UnicodeDecodeError: return data.decode('latin1')
omega_miya/utils/bilibili_utils/request_utils.py
rinrini001/omega-miya
120
11101165
from nonebot import get_driver from omega_miya.utils.omega_plugin_utils import HttpFetcher, PicEncoder from omega_miya.database import Result __GLOBAL_CONFIG = get_driver().config BILI_SESSDATA = __GLOBAL_CONFIG.bili_sessdata BILI_CSRF = __GLOBAL_CONFIG.bili_csrf BILI_UID = __GLOBAL_CONFIG.bili_uid class BiliRequestUtils(object): HEADERS = {'accept': 'application/json, text/plain, */*', 'accept-encoding': 'gzip, deflate', 'accept-language': 'zh-CN,zh;q=0.9', 'dnt': '1', 'origin': 'https://www.bilibili.com', 'referer': 'https://www.bilibili.com/', 'sec-ch-ua': '"Google Chrome";v="89", "Chromium";v="89", ";Not A Brand";v="99"', 'sec-ch-ua-mobile': '?0', 'sec-fetch-dest': 'empty', 'sec-fetch-mode': 'cors', 'sec-fetch-site': 'same-site', 'sec-gpc': '1', 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/89.0.4389.114 Safari/537.36' } @classmethod def get_bili_uid(cls): return BILI_UID @classmethod def get_bili_csrf(cls): return BILI_CSRF @classmethod def get_bili_sessdata(cls): return BILI_SESSDATA @classmethod def get_cookies(cls) -> Result.DictResult: cookies = {} if BILI_SESSDATA and BILI_CSRF: cookies.update({'SESSDATA': BILI_SESSDATA}) cookies.update({'bili_jct': BILI_CSRF}) return Result.DictResult(error=False, info='Success', result=cookies) else: return Result.DictResult(error=True, info='None', result=cookies) async def verify_cookies(self) -> Result.TextResult: cookies_result = self.get_cookies() if cookies_result.error: return Result.TextResult(error=True, info='No cookies configs', result='') cookies_verify_url = 'https://api.bilibili.com/x/web-interface/nav' cookies = cookies_result.result fetcher = HttpFetcher(timeout=10, flag='bilibili_live_monitor', headers=self.HEADERS, cookies=cookies) result = await fetcher.get_json(url=cookies_verify_url) if result.success(): code = result.result.get('code') data = dict(result.result.get('data')) if code == 0 and data.get('isLogin'): uname = data.get('uname') mid = data.get('mid') if mid == BILI_UID: return Result.TextResult(error=False, info='Success login', result=uname) else: return Result.TextResult(error=True, info='Logged user UID does not match', result=uname) else: return Result.TextResult(error=True, info='Not login', result='') else: return Result.TextResult(error=True, info=result.info, result='') @classmethod # 图片转base64 async def pic_to_base64(cls, url: str) -> Result.TextResult: headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/89.0.4389.114 Safari/537.36', 'origin': 'https://www.bilibili.com', 'referer': 'https://www.bilibili.com/'} fetcher = HttpFetcher( timeout=30, attempt_limit=2, flag='bilibili_live_monitor_get_image', headers=headers) bytes_result = await fetcher.get_bytes(url=url) if bytes_result.error: return Result.TextResult(error=True, info='Image download failed', result='') encode_result = PicEncoder.bytes_to_b64(image=bytes_result.result) if encode_result.success(): return Result.TextResult(error=False, info='Success', result=encode_result.result) else: return Result.TextResult(error=True, info=encode_result.info, result='') @classmethod async def pic_to_file(cls, url: str) -> Result.TextResult: headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/89.0.4389.114 Safari/537.36', 'origin': 'https://www.bilibili.com', 'referer': 'https://www.bilibili.com/'} fetcher = HttpFetcher( timeout=30, attempt_limit=2, flag='bilibili_live_monitor_get_image', headers=headers) bytes_result = await fetcher.get_bytes(url=url) if bytes_result.error: return Result.TextResult(error=True, info='Image download failed', result='') encode_result = await PicEncoder.bytes_to_file(image=bytes_result.result, folder_flag='bilibili') if encode_result.success(): return Result.TextResult(error=False, info='Success', result=encode_result.result) else: return Result.TextResult(error=True, info=encode_result.info, result='') __all__ = [ 'BiliRequestUtils' ]
cassiopeia/dto/league.py
artemigkh/cassiopeia
437
11101235
<gh_stars>100-1000 from .common import DtoObject class MiniSeriesDto(DtoObject): pass class LeagueEntryDto(DtoObject): pass class LeagueDto(DtoObject): pass class LeagueSummonerEntriesDto(DtoObject): pass class LeagueEntriesDto(DtoObject): pass class ChallengerLeagueListDto(DtoObject): pass class GrandmasterLeagueListDto(DtoObject): pass class MasterLeagueListDto(DtoObject): pass
tests/openwisp2/sample_integration_device/apps.py
scloudvn/openwisp-network-topology
105
11101258
from openwisp_network_topology.integrations.device.apps import ( OpenwispTopologyDeviceConfig as BaseAppConfig, ) class OpenwispTopologyDeviceConfig(BaseAppConfig): name = 'openwisp2.sample_integration_device' label = 'sample_integration_device'
venv/lib/python3.9/site-packages/pendulum/lang/pl.py
qarik-hanrattyjen/apache-airflow-backport-providers-google-2021.3.3
224
11101260
# -*- coding: utf-8 -*- translations = { # Days 'days': { 0: 'niedziela', 1: 'poniedziałek', 2: 'wtorek', 3: 'środa', 4: 'czwartek', 5: 'piątek', 6: 'sobota' }, 'days_abbrev': { 0: 'Nd', 1: 'Pn', 2: 'Wt', 3: 'Śr', 4: 'Czw', 5: 'Pt', 6: 'So' }, # Months 'months': { 1: 'styczeń', 2: 'luty', 3: 'marzec', 4: 'kwiecień', 5: 'maj', 6: 'czerwiec', 7: 'lipiec', 8: 'sierpień', 9: 'wrzesień', 10: 'październik', 11: 'listopad', 12: 'grudzień', }, 'months_abbrev': { 1: 'sty', 2: 'lut', 3: 'mar', 4: 'kwi', 5: 'maj', 6: 'cze', 7: 'lip', 8: 'sie', 9: 'wrz', 10: 'paź', 11: 'lis', 12: 'gru', }, # Units of time 'year': ['{count} rok', '{count} lata', '{count} lat'], 'month': ['{count} miesiąc', '{count} miesiące', '{count} miesięcy'], 'week': ['{count} tydzień', '{count} tygodnie', '{count} tygodni'], 'day': ['{count} dzień', '{count} dni', '{count} dni'], 'hour': ['{count} godzina', '{count} godziny', '{count} godzin'], 'minute': ['{count} minuta', '{count} minuty', '{count} minut'], 'second': ['{count} sekunda', '{count} sekundy', '{count} sekund'], # Relative time 'ago': '{time} temu', 'from_now': '{time} od teraz', 'after': '{time} po', 'before': '{time} przed', # Date formats 'date_formats': { 'LTS': 'HH:mm:ss', 'LT': 'HH:mm', 'LLLL': 'dddd, D MMMM YYYY HH:mm', 'LLL': 'D MMMM YYYY HH:mm', 'LL': 'D MMMM YYYY', 'L': 'DD.MM.YYYY', }, }
tests/classification/interpret/sst_test.py
shunk031/allennlp-models
402
11101278
<reponame>shunk031/allennlp-models import pytest def test_gradient_visualization(): from allennlp.predictors.predictor import Predictor predictor = Predictor.from_path( "https://storage.googleapis.com/allennlp-public-models/sst-roberta-large-2020.06.08.tar.gz" ) sentence = "a very well-made, funny and entertaining picture." inputs = {"sentence": sentence} from allennlp.interpret.saliency_interpreters import SimpleGradient simple_gradient_interpreter = SimpleGradient(predictor) simple_gradient_interpretation = simple_gradient_interpreter.saliency_interpret_from_json( inputs ) gradients = simple_gradient_interpretation["instance_1"]["grad_input_1"] assert max(gradients) - min(gradients) < 0.75
utils/maintenance.py
goztrk/django-htk
206
11101299
# HTK Imports from htk.utils import htk_setting def is_maintenance_mode(): maintenance_mode = htk_setting('HTK_MAINTENANCE_MODE', False) return maintenance_mode
tekore/_client/api/player/modify.py
evanofslack/tekore
135
11101301
<reponame>evanofslack/tekore from typing import Union from tekore._auth import scope from tekore.model import RepeatState from tekore._convert import to_uri from ...base import SpotifyBase from ...decor import send_and_process, scopes from ...process import nothing def offset_to_dict(offset: Union[int, str]): """ Parse playback start offset to an appropriate payload member. If offset is an integer, it is an index to a track position. If it is a string, it is a URI of a specific track. """ if isinstance(offset, int): return {'position': offset} elif isinstance(offset, str): return {'uri': to_uri('track', offset)} class SpotifyPlayerModify(SpotifyBase): """Player API endpoints that modify state.""" @scopes([scope.user_modify_playback_state]) @send_and_process(nothing) def playback_transfer(self, device_id: str, force_play: bool = False) -> None: """ Transfer playback to another device. Parameters ---------- device_id device to transfer playback to force_play true: play after transfer, false: keep current state """ payload = { 'device_ids': [device_id], 'play': force_play } return self._put('me/player', payload=payload) @scopes([scope.user_modify_playback_state]) @send_and_process(nothing) def playback_resume(self, device_id: str = None) -> None: """ Resume user's playback. Parameters ---------- device_id device to start playback on """ return self._put('me/player/play', device_id=device_id) @scopes([scope.user_modify_playback_state]) @send_and_process(nothing) def playback_start_tracks( self, track_ids: list, offset: Union[int, str] = None, position_ms: int = None, device_id: str = None ) -> None: """ Start playback of one or more tracks. Parameters ---------- track_ids track IDs to start playing offset offset into tracks by index or track ID position_ms initial position of first played track device_id device to start playback on """ payload = { 'uris': [to_uri('track', t) for t in track_ids], 'offset': offset_to_dict(offset), 'position_ms': position_ms, } payload = {k: v for k, v in payload.items() if v is not None} return self._put('me/player/play', payload=payload, device_id=device_id) @scopes([scope.user_modify_playback_state]) @send_and_process(nothing) def playback_start_context( self, context_uri: str, offset: Union[int, str] = None, position_ms: int = None, device_id: str = None ) -> None: """ Start playback of a context: an album, artist or playlist. Parameters ---------- context_uri context to start playing offset offset into context by index or track ID, only available when context is an album or playlist position_ms initial position of first played track device_id device to start playback on """ payload = { 'context_uri': context_uri, 'offset': offset_to_dict(offset), 'position_ms': position_ms, } payload = {k: v for k, v in payload.items() if v is not None} return self._put('me/player/play', payload=payload, device_id=device_id) @scopes([scope.user_modify_playback_state]) @send_and_process(nothing) def playback_queue_add(self, uri: str, device_id: str = None) -> None: """ Add a track or an episode to a user's queue. Parameters ---------- uri resource to add, track or episode device_id devide to extend the queue on """ return self._post('me/player/queue', uri=uri, device_id=device_id) @scopes([scope.user_modify_playback_state]) @send_and_process(nothing) def playback_pause(self, device_id: str = None) -> None: """ Pause a user's playback. Parameters ---------- device_id device to pause playback on """ return self._put('me/player/pause', device_id=device_id) @scopes([scope.user_modify_playback_state]) @send_and_process(nothing) def playback_next(self, device_id: str = None) -> None: """ Skip user's playback to next track. Parameters ---------- device_id device to skip track on """ return self._post('me/player/next', device_id=device_id) @scopes([scope.user_modify_playback_state]) @send_and_process(nothing) def playback_previous(self, device_id: str = None) -> None: """ Skip user's playback to previous track. Parameters ---------- device_id device to skip track on """ return self._post('me/player/previous', device_id=device_id) @scopes([scope.user_modify_playback_state]) @send_and_process(nothing) def playback_seek(self, position_ms: int, device_id: str = None) -> None: """ Seek to position in current playing track. Parameters ---------- position_ms position on track device_id device to seek on """ return self._put( 'me/player/seek', position_ms=position_ms, device_id=device_id ) @scopes([scope.user_modify_playback_state]) @send_and_process(nothing) def playback_repeat( self, state: Union[str, RepeatState], device_id: str = None ) -> None: """ Set repeat mode for playback. Parameters ---------- state `track`, `context`, or `off` device_id device to set repeat on """ return self._put('me/player/repeat', state=str(state), device_id=device_id) @scopes([scope.user_modify_playback_state]) @send_and_process(nothing) def playback_shuffle(self, state: bool, device_id: str = None) -> None: """ Toggle shuffle for user's playback. Parameters ---------- state shuffle state device_id device to toggle shuffle on """ state = 'true' if state else 'false' return self._put('me/player/shuffle', state=state, device_id=device_id) @scopes([scope.user_modify_playback_state]) @send_and_process(nothing) def playback_volume(self, volume_percent: int, device_id: str = None) -> None: """ Set volume for user's playback. Parameters ---------- volume_percent volume to set (0..100) device_id device to set volume on """ return self._put( 'me/player/volume', volume_percent=volume_percent, device_id=device_id )
scripts/build_sdk_ios.py
eliatlas/unity_sdk
111
11101337
from scripting_utils import * def build(root_dir, ios_submodule_dir, with_test_lib): # ------------------------------------------------------------------ # Paths. src_dir = '{0}/sdk'.format(ios_submodule_dir) lib_out_dir = '{0}/Assets/Adjust/iOS'.format(root_dir) lib_out_dir_test = '{0}/Assets/Adjust/iOS/Test'.format(root_dir) sdk_static_framework = '{0}/Frameworks/Static/AdjustSdk.framework'.format(src_dir) # ------------------------------------------------------------------ # Build AdjustStatic framework target. debug_green('Building AdjustStatic framework target ...') change_dir(src_dir) xcode_build_release('AdjustStatic') copy_file(sdk_static_framework + '/Versions/A/AdjustSdk', lib_out_dir + '/AdjustSdk.a') copy_files('*', sdk_static_framework + '/Versions/A/Headers/', lib_out_dir) if with_test_lib: # ------------------------------------------------------------------ # Paths. test_static_framework = '{0}/Frameworks/Static/AdjustTestLibrary.framework'.format(src_dir) # ------------------------------------------------------------------ # Build AdjustTestLibraryStatic framework target. set_log_tag('IOS-TEST-LIB-BUILD') debug_green('Building Test Library started ...') change_dir('{0}/AdjustTests/AdjustTestLibrary'.format(src_dir)) xcode_build_debug('AdjustTestLibraryStatic') copy_file(test_static_framework + '/Versions/A/AdjustTestLibrary', lib_out_dir_test + '/AdjustTestLibrary.a') copy_files('*', test_static_framework + '/Versions/A/Headers/', lib_out_dir_test)
PR_BCI_team/Team_StarLab/DKHan/examples/giga_cnn/model_openbmi.py
PatternRecognition/OpenBMI
217
11101369
<gh_stars>100-1000 from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import Dataset, DataLoader from torch.utils.data.sampler import SubsetRandomSampler import numpy as np import pickle from .cbam import * class Base_cnn(nn.Module): def __init__(self,use_attn = None): super(Base_cnn, self).__init__() self.num_filters = 112 self.num_hidden = 512 self.conv1 = nn.Conv2d(1, self.num_filters, (10,10), 1) self.fc1 = nn.Linear(self.num_filters * 1 * 1, self.num_hidden) #self.bn = nn.BatchNorm1d(self.num_hidden) #self.fc2 = nn.Linear(self.num_hidden,self.num_hidden) self.fc_fin = nn.Linear(self.num_hidden, 2) if not use_attn == None: self.cbam = CBAM(1,16) def forward(self, x): if not self.cbam == None: x = self.cbam(x) x = self.conv1(x[:, :, :, :]) x = F.elu(x) #temporal #x = F.max_pool2d(x, (1, 10), 3) x = x.view(-1, self.num_filters * 1 * 1) # x = F.elu(self.bn(self.fc1(x))) x = F.elu(self.fc1(x)) x = F.dropout(x, training=self.training,p=0.5) #x = F.leaky_relu(self.fc2(x)) #x = F.dropout(x, training=self.training) x = self.fc_fin(x) x = F.log_softmax(x, dim=1) return x class Base_cnn_dev(nn.Module): def __init__(self,use_attn = None): super(Base_cnn_dev, self).__init__() self.num_filters = 100 self.num_hidden = 512 self.conv1 = nn.Conv2d(1, self.num_filters, (1,10), 1) #temporal self.conv2 = nn.Conv2d(self.num_filters, self.num_filters, (62, 30), 1) #spatio-temporal self.fc1 = nn.Linear(self.num_filters * 1 * 1, self.num_hidden) #self.bn = nn.BatchNorm1d(self.num_hidden) #self.fc2 = nn.Linear(self.num_hidden,self.num_hidden) self.fc_fin = nn.Linear(self.num_hidden, 2) if not use_attn == None: self.cbam = CBAM(1,16) def forward(self, x): if not self.cbam == None: x = self.cbam(x) x = self.conv1(x[:, :, :, :]) x = F.elu(x) #temporal #x = F.max_pool2d(x, (1, 10), 3) x = x.view(-1, self.num_filters * 1 * 1) # x = F.elu(self.bn(self.fc1(x))) x = F.elu(self.fc1(x)) x = F.dropout(x, training=self.training,p=0.5) #x = F.leaky_relu(self.fc2(x)) #x = F.dropout(x, training=self.training) x = self.fc_fin(x) x = F.log_softmax(x, dim=1) return x class Base_cnn_mult(nn.Module): def __init__(self): super(Base_cnn_mult, self).__init__() self.num_filters = 40 self.num_hidden = 1024 self.conv1 = nn.Conv2d(1, self.num_filters, (62,45), 1) self.fc1 = nn.Linear(self.num_filters * 1 * 83, self.num_hidden) self.bn = nn.BatchNorm1d(self.num_hidden) self.fc2 = nn.Linear(self.num_hidden,self.num_hidden) self.fc_lr = nn.Linear(self.num_hidden, 2) self.fc_subj = nn.Linear(self.num_hidden, 2) def forward(self, x): x = F.elu(self.conv1(x[:,:,:,:])) #temporal x = F.max_pool2d(x, (1, 10), 3) x = x.view(-1, self.num_filters * 1 * 83) # x = F.elu(self.bn(self.fc1(x))) x = F.elu(self.fc1(x)) x = F.dropout(x, training=self.training,p=0.5) #x = F.leaky_relu(self.fc2(x)) #x = F.dropout(x, training=self.training) x1 = self.fc_lr(x) x2 = self.fc_subj(x) x1 = F.log_softmax(x1, dim=1) x2 = F.log_softmax(x2, dim=1) return x1,x2 class depthwise_separable_conv(nn.Module): def __init__(self): super(depthwise_separable_conv, self).__init__() self.num_filters = 100 self.num_hidden = 1024 self.depthwise1 = nn.Conv2d(1, 1, kernel_size=(62,45), padding=0, groups=1) torch.nn.init.xavier_uniform(self.depthwise1.weight) self.pointwise1 = nn.Conv2d(1, self.num_filters, kernel_size=1) torch.nn.init.xavier_uniform(self.pointwise1.weight) self.depthwise2 = nn.Conv2d(self.num_filters, self.num_filters, kernel_size=(1,10), padding=0, groups=self.num_filters) self.pointwise2 = nn.Conv2d(self.num_filters, self.num_filters, kernel_size=1) self.fc1 = nn.Linear(self.num_filters * 1 * 24, 2) def forward(self, x): x = self.depthwise1(x) x = self.pointwise1(x) x = F.elu(x) x = self.depthwise2(x) x = self.pointwise2(x) x = F.elu(x) x = F.max_pool2d(x, (1, 10), 10) x = x.view(-1, self.num_filters * 1 * 24) # x = F.elu(self.bn(self.fc1(x))) x = self.fc1(x) x = F.dropout(x, training=self.training, p=0.5) # x = F.leaky_relu(self.fc2(x)) # x = F.dropout(x, training=self.training) # x = self.fc_fin(x) x = F.log_softmax(x, dim=1) return x class ResNet_EEG(nn.Module): #Resnet def __init__(self,block,layers, att_type=None, use_cbam = True): super(ResNet_EEG, self).__init__() self.num_filters = 40 self.num_hidden = 960 self.inplanes = 1 self.layer1 = self._make_layer(block, 20, layers[0], att_type=att_type) self.layer2 = self._make_layer(block, 40, layers[1], stride=2, att_type=att_type) self.layer3 = self._make_layer(block, 80, layers[2], stride=2, att_type=att_type) self.layer4 = self._make_layer(block, 160, layers[3], stride=2, att_type=att_type) self.depthwise = nn.Conv2d(160, 160, kernel_size=(8, 8), padding=0, groups=160) self.pointwise = nn.Conv2d(160, 160, kernel_size=1) self.fc = nn.Linear(self.num_hidden, 2) #self.fc2 = nn.Linear(1024, 2) def _make_layer(self, block, planes, blocks, stride=1, att_type=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, use_cbam=att_type == 'CBAM')) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, use_cbam=att_type == 'CBAM')) return nn.Sequential(*layers) def forward(self, x): x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.depthwise(x) x = self.pointwise(x) x = F.max_pool2d(x,(1,5)) x = x.view(x.size(0), -1) x = self.fc(x) #x = F.dropout(x, training=self.training, p=0.5) #x = self.fc2(x) #x = F.dropout(x, training=self.training, p=0.5) x = F.log_softmax(x, dim=1) return x class Base_dilated_cnn(nn.Module): def __init__(self): super(Base_dilated_cnn, self).__init__() self.num_filters = 128 self.num_hidden = 1024 self.conv1 = nn.Conv2d(1, 64, (62, 10), stride=1, dilation=(1, 1)) self.conv2 = nn.Conv2d(64, 128, (1,10), stride=10, dilation=(1, 2)) self.fc1 = nn.Linear(self.num_filters * 1 * 7, self.num_hidden) self.bn = nn.BatchNorm1d(self.num_hidden) self.fc2 = nn.Linear(self.num_hidden,self.num_hidden) self.fc_fin = nn.Linear(self.num_hidden, 2) self.cbam = CBAM(self.num_filters,16) def forward(self, x): x = self.conv1(x) x = F.elu(x) x = self.conv2(x) #x = self.cbam(x) x = F.elu(x) #temporal x = F.max_pool2d(x, (1, 10), 1) x = x.view(-1, self.num_filters * 1 * 7) # x = F.elu(self.bn(self.fc1(x))) x = F.elu(self.fc1(x)) x = F.dropout(x, training=self.training,p=0.5) #x = F.leaky_relu(self.fc2(x)) #x = F.dropout(x, training=self.training) x = self.fc_fin(x) x = F.log_softmax(x, dim=1) return x class ShallowCNN(nn.Module): #shallowconv def __init__(self,use_cbam = False,ismult = False,use_bn = False): super(ShallowCNN, self).__init__() self.num_filters = 40 self.num_hidden = 1000 #self.SpatialGate = SpatialGate() # self.conv1 = nn.Conv2d(1, 25, kernel_size=(1, 10), stride=1) # 템포럴 # self.conv2 = nn.Conv2d(25, 25, kernel_size=(62, 1), stride=1) # 채널 self.conv1 = nn.Conv2d(1, 40, kernel_size= (1,25), stride=(1, 1)) #템포럴 self.conv2 = nn.Conv2d(40,40, kernel_size = (62, 1), stride=(1, 1)) # 채널 # self.cbam = CBAM(self.num_filters, 16) if use_bn: self.bn1 = nn.BatchNorm2d(self.num_filters) self.bn2 = nn.BatchNorm2d(self.num_filters) else: self.bn1 = None self.bn2 = None if use_cbam: self.cbam1 = CBAM(self.num_filters,40) self.cbam2 = CBAM(self.num_filters, 40) else: self.cbam1 = None self.cbam2 = None #self.fc1 = nn.Linear(self.num_filters * 1 * 21, self.num_hidden) self.fc_lr = nn.Linear(self.num_filters * 1 * 21, 2) if ismult: self.fc_subj = nn.Linear(self.num_filters * 1 * 21, 2) else: self.fc_subj = None def forward(self, x): x = self.conv1(x) # x = self.SpatialGate(x) if not self.cbam1 ==None: x = self.cbam1(x) if not self.bn1 ==None: x = self.bn1(x) x = self.conv2(x) if not self.cbam2 ==None: x = self.cbam2(x) if not self.bn2 ==None: x = self.bn2(x) x = x*x x = F.avg_pool2d(x, kernel_size = (1, 75), stride = (1,15)) #1,149 x = x.view(-1, self.num_filters * 1 * 21) x = torch.log(x) #x = F.leaky_relu(self.fc2(x)) #x = F.dropout(x, training=self.training) x1 = self.fc_lr(x) x1 = F.dropout(x1, training=self.training, p=0.5) x1 = F.log_softmax(x1, dim=1) if not self.fc_subj == None: x2 = self.fc_subj(x) x2 = F.dropout(x2, training=self.training, p=0.5) x2 = F.log_softmax(x2, dim=1) return x1,x2 else: return x1 class Deep4CNN(nn.Module): #shallowconv def __init__(self,use_cbam = False,ismult = False,use_bn = False): super(Deep4CNN, self).__init__() self.num_filters = 200 self.num_hidden = 1000 self.conv1 = nn.Conv2d(1, 25, kernel_size=(1,10), stride=1) #템포럴 self.conv2 = nn.Conv2d(25, 25, kernel_size=(62, 1), stride=1) # 채널 self.conv3 = nn.Conv2d(25, 50, kernel_size=(1, 10), stride=1) # 채널 self.conv4 = nn.Conv2d(50,100,kernel_size=(1,10),stride=1) self.conv5 = nn.Conv2d(100,200,kernel_size=(1,10),stride=1) #self.conv_classifier = nn.Conv2d(200, 2, kernel_size=(9, 1), stride=(1, 1)) if use_bn: self.bn1 = nn.BatchNorm2d(25, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.bn2 = nn.BatchNorm2d(50, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.bn3 = nn.BatchNorm2d(100, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.bn4 = nn.BatchNorm2d(200, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) else: self.bn1 = None self.bn2 = None self.bn3 = None self.bn4 = None if use_cbam: self.cbam1 = CBAM(25,10) self.cbam2 = CBAM(50,10) self.cbam3 = None #CBAM(100,10) self.cbam4 = None # CBAM(200,10) else: self.cbam1 = None self.cbam2 = None self.cbam3 = None self.cbam4 = None self.fc1 = nn.Linear(self.num_filters * 1 * 10, self.num_hidden) self.fc_lr = nn.Linear(self.num_filters * 1 * 10, 2) if ismult: self.fc_subj = nn.Linear(self.num_filters * 1 * 14, 2) else: self.fc_subj = None def forward(self, x): #block1 x = self.conv1(x) x = self.conv2(x) if not self.cbam1 ==None: x = self.cbam1(x) if not self.bn1 ==None: x = self.bn1(x) x = F.elu(x) x = F.max_pool2d(x, kernel_size = (1, 3), stride = (1, 2)) #block2 x = self.conv3(x) if not self.cbam2 ==None: x = self.cbam2(x) if not self.bn2 ==None: x = self.bn2(x) x = F.elu(x) x = F.max_pool2d(x, kernel_size=(1, 3), stride=(1, 2)) #block3 x = self.conv4(x) if not self.cbam3 == None: x = self.cbam3(x) if not self.bn3 == None: x = self.bn3(x) x = F.elu(x) x = F.max_pool2d(x, kernel_size=(1, 3), stride=(1, 2)) #block4 x = self.conv5(x) if not self.cbam4 ==None: x = self.cbam4(x) if not self.bn4 ==None: x = self.bn4(x) x = F.elu(x) x = F.max_pool2d(x, kernel_size=(1, 3), stride=(1, 3)) x = x.view(-1, 200* 1 * 10) #x = torch.log(x) #x = F.leaky_relu(self.fc2(x)) #x = F.dropout(x, training=self.training) x1 = self.fc_lr(x) x1 = F.dropout(x1, training=self.training, p=0.5) x1 = F.log_softmax(x1, dim=1) if not self.fc_subj == None: x2 = self.fc_subj(x) x2 = F.dropout(x2, training=self.training, p=0.5) x2 = F.log_softmax(x2, dim=1) return x1,x2 else: return x1 class melCNN(nn.Module): def __init__(self): super(melCNN, self).__init__() self.conv1 = nn.Conv2d(62, 100, (6, 6), stride=1) # 템포럴 self.bn1 = nn.BatchNorm2d(100) self.conv2 = nn.Conv2d(100, 100, (6, 6), stride=1) # 템포럴 self.bn2 = nn.BatchNorm2d(100) self.conv3 = nn.Conv2d(10, 20, (3, 3), stride=1) # 템포럴 self.fc1 = nn.Linear(1600, 2) def forward(self, x): x = x.squeeze(1) x = self.conv1(x) x = self.bn1(x) x = F.relu(x) x = F.max_pool2d(x, kernel_size=2) x = self.conv2(x) x = self.bn2(x) x = F.relu(x) x = F.max_pool2d(x, kernel_size=2) # # x = self.conv3(x) # x = F.relu(x) # x = F.max_pool2d(x, kernel_size=2) x = x.view(-1,1600) x = self.fc1(x) x = F.log_softmax(x, dim=1) return x class SimpleNN(nn.Module): def __init__(self): super(SimpleNN, self).__init__() self.fc1 = nn.Linear(24800, 1000) nn.init.xavier_uniform_(self.fc1.weight) self.fc2 = nn.Linear(1000, 1000) nn.init.xavier_uniform_(self.fc2.weight) self.fc3 = nn.Linear(1000, 2) nn.init.xavier_uniform_(self.fc3.weight) def forward(self, x): x = x.view(-1, 24800) x = self.fc1(x) x = F.dropout(x, training=self.training, p=0.5) x = F.relu(x) x = self.fc2(x) x = F.dropout(x, training=self.training, p=0.5) x = F.relu(x) x = self.fc3(x) x = F.dropout(x, training=self.training, p=0.5) x = F.log_softmax(x, dim=1) return x
hpccm/primitives/runscript.py
robertmaynard/hpc-container-maker
340
11101415
<filename>hpccm/primitives/runscript.py # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=invalid-name, too-few-public-methods """Runscript primitive""" from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function import shlex from six.moves import shlex_quote import logging # pylint: disable=unused-import import hpccm.config from hpccm.common import container_type class runscript(object): """The `runscript` primitive specifies the commands to be invoked when the container starts. # Parameters _args: Boolean flag to specify whether `"$@"` should be appended to the command. If more than one command is specified, nothing is appended regardless of the value of this flag. The default is True (Singularity specific). _app: String containing the [SCI-F](https://www.sylabs.io/guides/2.6/user-guide/reproducible_scif_apps.html) identifier. This also causes the Singularity block to named `%apprun` rather than `%runscript` (Singularity specific). commands: A list of commands to execute. The default is an empty list. _exec: Boolean flag to specify whether `exec` should be inserted to preface the final command. The default is True (Singularity specific). # Examples ```python runscript(commands=['cd /workdir', 'source env.sh']) ``` ```python runscript(commands=['/usr/local/bin/entrypoint.sh']) ``` """ def __init__(self, **kwargs): """Initialize primitive""" #super(wget, self).__init__() self._args = kwargs.get('_args', True) # Singularity specific self._app = kwargs.get('_app', '') # Singularity specific self._exec = kwargs.get('_exec', True) # Singularity specific self.commands = kwargs.get('commands', []) def __str__(self): """String representation of the primitive""" if self.commands: if hpccm.config.g_ctype == container_type.DOCKER: if self._app: logging.warning('The Singularity specific %app.. syntax was ' 'requested. Docker does not have an ' 'equivalent: using regular ENTRYPOINT!') if len(self.commands) > 1: logging.warning('Multiple commands given to runscript. ' 'Docker ENTRYPOINT supports just one cmd: ' 'ignoring remaining commands!') # Format: # ENTRYPOINT ["cmd1", "arg1", "arg2", ...] s = [] s.extend('"{}"'.format(shlex_quote(x)) for x in shlex.split(self.commands[0])) return 'ENTRYPOINT [' + ', '.join(s) + ']' elif hpccm.config.g_ctype == container_type.SINGULARITY: if self._exec: # prepend last command with exec self.commands[-1] = 'exec {0}'.format(self.commands[-1]) if len(self.commands) == 1 and self._args: # append "$@" to singleton command self.commands[0] = '{} "$@"'.format(self.commands[0]) # Format: # %runscript # cmd1 # cmd2 # exec cmd3 if self._app: s = ['%apprun {0}'.format(self._app)] else: s = ['%runscript'] s.extend([' {}'.format(x) for x in self.commands]) return '\n'.join(s) elif hpccm.config.g_ctype == container_type.BASH: logging.warning('runscript primitive does not map into bash') return '' else: raise RuntimeError('Unknown container type') else: return '' def merge(self, lst, _app=None): """Merge one or more instances of the primitive into a single instance. Due to conflicts or option differences the merged primitive may not be exact. """ if not lst: # pragma: nocover raise RuntimeError('no items provided to merge') cmds = [] for item in lst: if not item.__class__.__name__ == 'runscript': # pragma: nocover logging.warning('item is not the correct type, skipping...') continue cmds.extend(item.commands) return runscript(commands=cmds, _app=_app)
contrib/notebooks/deep_learning/model_scripts/ConvNet_CIFAR10.py
hebinhuang/batch-shipyard
279
11101426
<filename>contrib/notebooks/deep_learning/model_scripts/ConvNet_CIFAR10.py # Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE.md file in the project root # for full license information. # ============================================================================== from __future__ import print_function import _cntk_py import argparse import json import logging import os from uuid import uuid4 import cntk import cntk.io.transforms as xforms import numpy as np from cntk import layers, Trainer, learning_rate_schedule, momentum_as_time_constant_schedule, momentum_sgd, \ UnitType, CrossValidationConfig from cntk.io import MinibatchSource, ImageDeserializer, StreamDef, StreamDefs from cntk.logging import ProgressPrinter, TensorBoardProgressWriter from cntk.losses import cross_entropy_with_softmax from cntk.metrics import classification_error from cntk.ops import minus, element_times, constant, relu logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) _ABS_PATH = os.getcwd() _MODEL_PATH = os.path.join(_ABS_PATH, "Models") # model dimensions _IMAGE_HEIGHT = 32 _IMAGE_WIDTH = 32 _NUM_CHANNELS = 3 # RGB _NUM_CLASSES = 10 _MODEL_NAME = "ConvNet_CIFAR10_model.dnn" _EPOCH_SIZE = 50000 def process_map_file(map_file, imgfolder): """ Convert map file format to one required by CNTK ImageDeserializer """ logger.info('Processing {}...'.format(map_file)) orig_file = open(map_file, 'r') map_path, map_name = os.path.split(map_file) new_filename = os.path.join(map_path, 'p_{}'.format(map_name)) new_file = open(new_filename, 'w') for line in orig_file: fname, label = line.split('\t') new_file.write("%s\t%s\n" % (os.path.join(imgfolder, fname), label.strip())) orig_file.close() new_file.close() return new_filename def _create_env_variable_appender(env_var_name): def env_var_appender(identifier): env_var_value = os.environ.get(env_var_name, None) if env_var_value is None: return identifier else: return '{}_{}'.format(identifier, env_var_value) return env_var_appender _append_task_id = _create_env_variable_appender('AZ_BATCH_TASK_ID') # Append task id if the env variable exists _append_job_id = _create_env_variable_appender('AZ_BATCH_JOB_ID') # Append job id if the env variable exists def _get_unique_id(): """ Returns a unique identifier If executed in a batch environment it will incorporate the job and task id """ return _append_job_id(_append_task_id(str(uuid4())[:8])) def _save_results(test_result, filename, **kwargs): results_dict = {'test_metric':test_result, 'parameters': kwargs} logger.info('Saving results {}'.format(results_dict)) if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) with open(filename, 'w') as outfile: json.dump(results_dict, outfile) def create_image_mb_source(map_file, mean_file, train, total_number_of_samples): """ Creates minibatch source """ if not os.path.exists(map_file) or not os.path.exists(mean_file): raise RuntimeError( "File '%s' or '%s' does not exist. " % (map_file, mean_file)) # transformation pipeline for the features has jitter/crop only when training transforms = [] if train: imgfolder = os.path.join(os.path.split(map_file)[0], 'train') transforms += [ xforms.crop(crop_type='randomside', side_ratio=0.8, jitter_type='uniratio') # train uses jitter ] else: imgfolder = os.path.join(os.path.split(map_file)[0], 'test') transforms += [ xforms.scale(width=_IMAGE_WIDTH, height=_IMAGE_HEIGHT, channels=_NUM_CHANNELS, interpolations='linear'), xforms.mean(mean_file) ] map_file = process_map_file(map_file, imgfolder) # deserializer return MinibatchSource( ImageDeserializer(map_file, StreamDefs( features=StreamDef(field='image', transforms=transforms), # first column in map file is referred to as 'image' labels=StreamDef(field='label', shape=_NUM_CLASSES))), # and second as 'label' randomize=train, max_samples=total_number_of_samples, multithreaded_deserializer=True) def create_network(num_convolution_layers): """ Create network """ # Input variables denoting the features and label data input_var = cntk.input_variable((_NUM_CHANNELS, _IMAGE_HEIGHT, _IMAGE_WIDTH)) label_var = cntk.input_variable((_NUM_CLASSES)) # create model, and configure learning parameters # Instantiate the feedforward classification model input_removemean = minus(input_var, constant(128)) scaled_input = element_times(constant(0.00390625), input_removemean) print('Creating NN model') with layers.default_options(activation=relu, pad=True): model = layers.Sequential([ layers.For(range(num_convolution_layers), lambda: [ layers.Convolution2D((3, 3), 64), layers.Convolution2D((3, 3), 64), layers.MaxPooling((3, 3), (2, 2)) ]), layers.For(range(2), lambda i: [ layers.Dense([256, 128][i]), layers.Dropout(0.5) ]), layers.Dense(_NUM_CLASSES, activation=None) ])(scaled_input) # loss and metric ce = cross_entropy_with_softmax(model, label_var) pe = classification_error(model, label_var) return { 'name': 'convnet', 'feature': input_var, 'label': label_var, 'ce': ce, 'pe': pe, 'output': model } def train_and_test(network, trainer, train_source, test_source, minibatch_size, epoch_size, restore, model_path=_MODEL_PATH, cv_config=None): """ Train and test """ # define mapping from intput streams to network inputs input_map = { network['feature']: train_source.streams.features, network['label']: train_source.streams.labels } cntk.training_session( trainer=trainer, mb_source=train_source, mb_size=minibatch_size, model_inputs_to_streams=input_map, checkpoint_config=cntk.CheckpointConfig(filename=os.path.join(model_path, _MODEL_NAME), restore=restore), progress_frequency=epoch_size, cv_config=cv_config ).train() def create_trainer(network, minibatch_size, epoch_size, progress_printer): """ Create trainer """ # Set learning parameters lr_per_sample = [0.0015625] * 10 + [0.00046875] * 10 + [0.00015625] momentum_time_constant = [0] * 20 + [-minibatch_size / np.log(0.9)] l2_reg_weight = 0.002 lr_schedule = learning_rate_schedule(lr_per_sample, epoch_size=epoch_size, unit=UnitType.sample) mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant) learner = momentum_sgd(network['output'].parameters, lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight) return Trainer(network['output'], (network['ce'], network['pe']), learner, progress_printer) def create_results_callback(filename, **kwargs): def simple_callback(index, average_error, cv_num_samples, cv_num_minibatches): _save_results(average_error, filename, **kwargs) return False return simple_callback def convnet_cifar10(train_source, test_source, epoch_size, num_convolution_layers=2, minibatch_size=64, max_epochs=30, log_file=None, tboard_log_dir='.', results_path=_MODEL_PATH): _cntk_py.set_computation_network_trace_level(0) logger.info("""Running network with: {num_convolution_layers} convolution layers {minibatch_size} minibatch size for {max_epochs} epochs""".format( num_convolution_layers=num_convolution_layers, minibatch_size=minibatch_size, max_epochs=max_epochs )) network = create_network(num_convolution_layers) progress_printer = ProgressPrinter( tag='Training', log_to_file=log_file, rank=cntk.Communicator.rank(), num_epochs=max_epochs) tensorboard_writer = TensorBoardProgressWriter(freq=10, log_dir=tboard_log_dir, model=network['output']) trainer = create_trainer(network, minibatch_size, epoch_size, [progress_printer, tensorboard_writer]) cv_config = CrossValidationConfig(minibatch_source=test_source, minibatch_size=16, callback=create_results_callback(os.path.join(results_path, "model_results.json"), num_convolution_layers=num_convolution_layers, minibatch_size=minibatch_size, max_epochs=max_epochs)) train_and_test(network, trainer, train_source, test_source, minibatch_size, epoch_size, restore=False, cv_config=cv_config) network['output'].save(os.path.join(results_path, _MODEL_NAME)) if __name__=='__main__': parser = argparse.ArgumentParser() parser.add_argument('--datadir', help='Data directory where the CIFAR dataset is located', required=True) parser.add_argument('-m', '--modeldir', help='directory for saving model', required=False, default=_MODEL_PATH) parser.add_argument('-logfile', '--logfile', help='Log file', required=False, default=None) parser.add_argument('-tensorboard_logdir', '--tensorboard_logdir', help='Directory where TensorBoard logs should be created', required=False, default='.') parser.add_argument('-e', '--max_epochs', help='Total number of epochs to train', type=int, required=False, default='20') parser.add_argument('--num_convolution_layers', help='Number of convolution layers', type=int, required=False, default='2') parser.add_argument('--minibatch_size', help='Number of examples in each minibatch', type=int, required=False, default='64') args = vars(parser.parse_args()) epochs = int(args['max_epochs']) model_path = args['modeldir'] data_path = args['datadir'] if not os.path.exists(data_path): raise RuntimeError("Folder %s does not exist" % data_path) train_source = create_image_mb_source(os.path.join(data_path, 'train_map.txt'), os.path.join(data_path, 'CIFAR-10_mean.xml'), train=True, total_number_of_samples=epochs * _EPOCH_SIZE) test_source = create_image_mb_source(os.path.join(data_path, 'test_map.txt'), os.path.join(data_path, 'CIFAR-10_mean.xml'), train=False, total_number_of_samples=cntk.io.FULL_DATA_SWEEP) unique_path = os.path.join(model_path, _get_unique_id()) convnet_cifar10(train_source, test_source, _EPOCH_SIZE, num_convolution_layers=args['num_convolution_layers'], minibatch_size=args['minibatch_size'], max_epochs=args['max_epochs'], log_file=None, tboard_log_dir='.', results_path=unique_path)
saleor/checkout/migrations/0028_auto_20200824_1019.py
fairhopeweb/saleor
15,337
11101437
# Generated by Django 3.1 on 2020-08-24 10:19 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("checkout", "0027_auto_20200810_1415"), ] operations = [ migrations.AddField( model_name="checkout", name="redirect_url", field=models.URLField(blank=True, null=True), ), migrations.AddField( model_name="checkout", name="tracking_code", field=models.CharField(blank=True, max_length=255, null=True), ), ]
tests/utils/test_array_utils.py
llv22/baal_tf2.4_mac
575
11101449
<reponame>llv22/baal_tf2.4_mac import numpy as np import pytest import torch from scipy.special import softmax, expit from baal.utils import array_utils from baal.utils.array_utils import to_prob from baal.utils.iterutils import map_on_tensor @pytest.fixture() def a_tensor(): return torch.randn([10, 3, 32, 32]) @pytest.fixture() def an_array(): return np.random.randn(10, 3, 32, 32) @pytest.fixture() def a_binary_array(): return np.random.randn(10, 1, 32, 32) def test_stack_in_memory_single(a_tensor): iterations = 10 out = array_utils.stack_in_memory(a_tensor, iterations=iterations) assert out.shape == (10 * iterations, 3, 32, 32) def test_stack_in_memory_multi(a_tensor): iterations = 10 t = [a_tensor, a_tensor] out = map_on_tensor(lambda ti: array_utils.stack_in_memory(ti, iterations=iterations), t) assert out[0].shape == (10 * iterations, 3, 32, 32) assert out[1].shape == (10 * iterations, 3, 32, 32) def test_to_prob(an_array, a_binary_array): out = to_prob(an_array) assert not np.allclose(out, an_array) out = to_prob(a_binary_array) assert not np.allclose(out, a_binary_array) a_array_scaled = softmax(an_array, 1) a_binary_array_scaled = expit(a_binary_array) out = to_prob(a_array_scaled) assert np.allclose(out, a_array_scaled) out = to_prob(a_binary_array_scaled) assert np.allclose(out, a_binary_array_scaled) if __name__ == '__main__': pytest.main()
examples/command_send_message.py
tvorogme/pytg
385
11101512
# -*- coding: utf-8 -*- """ Simplest way to just send a message. Without complicated message receiving stuff. """ from pytg.sender import Sender __author__ = 'luckydonald' def main(): sender = Sender("127.0.0.1", 4458) # you need a CLI already running in json mode on port 4458. res = sender.msg("@username", "Hello!") print("Response: {response}".format(response=res)) # end def main if __name__ == '__main__': main()
easyreg/ants_iter.py
ebrahimebrahim/easyreg
107
11101530
<filename>easyreg/ants_iter.py from .base_toolkit import ToolkitBase from .ants_utils import * class AntsRegIter(ToolkitBase): """ The AntsRegIter provides an interface to [AntsPy](https://github.com/ANTsX/ANTsPy), the version we work on is 0.1.4, though the newest version is 0.2.0 AntsPy is not fully functioned, a support on ants package is plan to replace the AntsPy. """ def name(self): return 'ants_reg iter' def initialize(self,opt): """ initialize the ants registration mehtod support: "affine", "syn" * the "syn" include affine as preproccessing :param opt: task opt settings :return: None """ ToolkitBase.initialize(self, opt) if self.method_name =='affine': self.affine_on = True self.warp_on = False elif self.method_name =='syn': self.affine_on = False self.warp_on = True self.ants_param = opt['tsk_set']['reg']['ants'] def affine_optimization(self): """ run the affine optimization the results, including warped image, warped label, transformation map, etc. take the ants format and saved in record path :return: warped image, warped label(None), transformation map(None) """ output, loutput, phi,_ = performAntsRegistration(self.ants_param, self.resized_moving_path,self.resized_target_path,self.method_name,self.record_path,self.resized_l_moving_path,self.resized_l_target_path,self.fname_list[0]) self.output = output self.warped_label_map = loutput self.phi = None return self.output, None, None def syn_optimization(self): """ run the syn optimization the results, including warped image, warped label, transformation map, etc. take the ants format and saved in record path :return: warped image, warped label(None), transformation map(None) """ output, loutput, disp,jacobian = performAntsRegistration(self.ants_param, self.resized_moving_path,self.resized_target_path,self.method_name,self.record_path,self.resized_l_moving_path,self.resized_l_target_path,self.fname_list[0]) #self.afimg_or_afparam = None self.output = output self.warped_label_map = loutput self.jacobian= jacobian self.phi = None return self.output,None, None def forward(self,input=None): """ forward the model :param input: :return: """ if self.affine_on and not self.warp_on: return self.affine_optimization() elif self.warp_on: """ the syn include affine""" return self.syn_optimization() def compute_jacobi_map(self,jacobian): """ In ants, negative jacobi are set to zero, we compute the num of zero jacobi instead the jacobi_abs_sum is not used here :param jacobian: :return: """ jacobi_abs = -0.0 # - np.sum(jacobian[jacobian < 0.]) # jacobi_num = np.sum(jacobian <=0.) print("the jacobi_value of fold points for current batch is {}".format(jacobi_abs)) print("the number of fold points for current batch is {}".format(jacobi_num)) # np.sum(np.abs(dfx[dfx<0])) + np.sum(np.abs(dfy[dfy<0])) + np.sum(np.abs(dfz[dfz<0])) jacobi_abs_sum = jacobi_abs # / np.prod(map.shape) return jacobi_abs_sum, jacobi_num
recipes/Python/577758_Sleepsort_processes/recipe-577758.py
tdiprima/code
2,023
11101531
import os import time def sleepsort(l): """Another dumb sorting algorithm.""" pids = [] def reap(): while pids: os.waitpid(pids.pop(), 0) # Setup communication. startr, startw = os.pipe() resr, resw = os.pipe() try: for i, x in enumerate(l): pid = os.fork() if pid == 0: # Wait for parent process to signal start. os.read(startr, 1) time.sleep(x) # Notify the parent process. os.write(resw, str(i).encode("ascii") + b" ") # Goodbye. os._exit(0) else: pids.append(pid) # Start the sleeps. os.write(startw, b"x" * len(l)) os.close(startw) startw = -1 reap() os.close(resw) resw = -1 # Read results. data = [] while True: d = os.read(resr, 4096) if len(d) == 0: break data.append(d) finally: os.close(startr) if startw > 0: os.close(startw) os.close(resr) if resw > 0: os.close(resw) reap() return [l[int(c)] for c in b"".join(data)[:-1].split(b" ")] if __name__ == "__main__": print(sleepsort([10, 9, 7.3, 7, 6, .2, .4, 3, 2, 1.5]))
website/registries/utils.py
gaybro8777/osf.io
628
11101601
<gh_stars>100-1000 REG_CAMPAIGNS = { 'prereg': 'OSF Preregistration', 'osf-registered-reports': 'Registered Report Protocol Preregistration', } def get_campaign_schema(campaign): from osf.models import RegistrationSchema if campaign not in REG_CAMPAIGNS: raise ValueError('campaign must be one of: {}'.format(', '.join(REG_CAMPAIGNS.keys()))) schema_name = REG_CAMPAIGNS[campaign] return RegistrationSchema.objects.filter(name=schema_name).order_by('-schema_version').first() def drafts_for_user(user, campaign=None): from osf.models import DraftRegistration, Node from osf.utils.permissions import ADMIN_NODE if not user or user.is_anonymous: return None node_qs = Node.objects.get_nodes_for_user(user, ADMIN_NODE).values_list('id', flat=True) drafts = DraftRegistration.objects.filter( approval=None, registered_node=None, deleted__isnull=True, branched_from__in=node_qs, ) if campaign: drafts = drafts.filter( registration_schema=get_campaign_schema(campaign), ) return drafts
libnd4j/include/graph/generated/nd4j/graph/ByteOrder.py
rghwer/testdocs
13,006
11101621
# automatically generated by the FlatBuffers compiler, do not modify # namespace: graph class ByteOrder(object): LE = 0 BE = 1
cisco-ios-xr/ydk/models/cisco_ios_xr/Cisco_IOS_XR_infra_fti_cfg.py
CiscoDevNet/ydk-py
177
11101633
<reponame>CiscoDevNet/ydk-py """ Cisco_IOS_XR_infra_fti_cfg This module contains a collection of YANG definitions for Cisco IOS\-XR infra\-fti package configuration. This module contains definitions for the following management objects\: dci\-fabric\-interconnect\: Configure FTI parameters/sub\-parameters Copyright (c) 2013\-2018 by Cisco Systems, Inc. All rights reserved. """ import sys from collections import OrderedDict from ydk.types import Entity as _Entity_ from ydk.types import EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64 from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64 from ydk.filters import YFilter from ydk.errors import YError, YModelError from ydk.errors.error_handler import handle_type_error as _handle_type_error class DciFabricInterconnect(_Entity_): """ Configure FTI parameters/sub\-parameters .. attribute:: fabrics Configure fabric parameters **type**\: :py:class:`Fabrics <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_fti_cfg.DciFabricInterconnect.Fabrics>` .. attribute:: acp Configure Auto Config Pool parameters **type**\: :py:class:`Acp <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_fti_cfg.DciFabricInterconnect.Acp>` .. attribute:: identity Identity (Loopback IP address)<x.x.x.x> **type**\: str **pattern:** (([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])\\.){3}([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])(%[\\p{N}\\p{L}]+)? """ _prefix = 'infra-fti-cfg' _revision = '2017-11-13' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(DciFabricInterconnect, self).__init__() self._top_entity = None self.yang_name = "dci-fabric-interconnect" self.yang_parent_name = "Cisco-IOS-XR-infra-fti-cfg" self.is_top_level_class = True self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("fabrics", ("fabrics", DciFabricInterconnect.Fabrics)), ("acp", ("acp", DciFabricInterconnect.Acp))]) self._leafs = OrderedDict([ ('identity', (YLeaf(YType.str, 'identity'), ['str'])), ]) self.identity = None self.fabrics = DciFabricInterconnect.Fabrics() self.fabrics.parent = self self._children_name_map["fabrics"] = "fabrics" self.acp = DciFabricInterconnect.Acp() self.acp.parent = self self._children_name_map["acp"] = "acp" self._segment_path = lambda: "Cisco-IOS-XR-infra-fti-cfg:dci-fabric-interconnect" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(DciFabricInterconnect, ['identity'], name, value) class Fabrics(_Entity_): """ Configure fabric parameters .. attribute:: fabric Enter fabric identifier **type**\: list of :py:class:`Fabric <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_fti_cfg.DciFabricInterconnect.Fabrics.Fabric>` """ _prefix = 'infra-fti-cfg' _revision = '2017-11-13' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(DciFabricInterconnect.Fabrics, self).__init__() self.yang_name = "fabrics" self.yang_parent_name = "dci-fabric-interconnect" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("fabric", ("fabric", DciFabricInterconnect.Fabrics.Fabric))]) self._leafs = OrderedDict() self.fabric = YList(self) self._segment_path = lambda: "fabrics" self._absolute_path = lambda: "Cisco-IOS-XR-infra-fti-cfg:dci-fabric-interconnect/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(DciFabricInterconnect.Fabrics, [], name, value) class Fabric(_Entity_): """ Enter fabric identifier .. attribute:: id1 (key) fabric identifier **type**\: int **range:** 1000..9999 .. attribute:: controllers Enter Opflex peer info **type**\: :py:class:`Controllers <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_fti_cfg.DciFabricInterconnect.Fabrics.Fabric.Controllers>` .. attribute:: ssl Disabled or Path to certificate **type**\: str """ _prefix = 'infra-fti-cfg' _revision = '2017-11-13' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(DciFabricInterconnect.Fabrics.Fabric, self).__init__() self.yang_name = "fabric" self.yang_parent_name = "fabrics" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['id1'] self._child_classes = OrderedDict([("controllers", ("controllers", DciFabricInterconnect.Fabrics.Fabric.Controllers))]) self._leafs = OrderedDict([ ('id1', (YLeaf(YType.uint32, 'id1'), ['int'])), ('ssl', (YLeaf(YType.str, 'ssl'), ['str'])), ]) self.id1 = None self.ssl = None self.controllers = DciFabricInterconnect.Fabrics.Fabric.Controllers() self.controllers.parent = self self._children_name_map["controllers"] = "controllers" self._segment_path = lambda: "fabric" + "[id1='" + str(self.id1) + "']" self._absolute_path = lambda: "Cisco-IOS-XR-infra-fti-cfg:dci-fabric-interconnect/fabrics/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(DciFabricInterconnect.Fabrics.Fabric, ['id1', 'ssl'], name, value) class Controllers(_Entity_): """ Enter Opflex peer info .. attribute:: controller Enter Spine IP address **type**\: list of :py:class:`Controller <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_fti_cfg.DciFabricInterconnect.Fabrics.Fabric.Controllers.Controller>` """ _prefix = 'infra-fti-cfg' _revision = '2017-11-13' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(DciFabricInterconnect.Fabrics.Fabric.Controllers, self).__init__() self.yang_name = "controllers" self.yang_parent_name = "fabric" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([("controller", ("controller", DciFabricInterconnect.Fabrics.Fabric.Controllers.Controller))]) self._leafs = OrderedDict() self.controller = YList(self) self._segment_path = lambda: "controllers" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(DciFabricInterconnect.Fabrics.Fabric.Controllers, [], name, value) class Controller(_Entity_): """ Enter Spine IP address .. attribute:: ip1 (key) Enter Spine IP address **type**\: str **pattern:** (([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])\\.){3}([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])(%[\\p{N}\\p{L}]+)? """ _prefix = 'infra-fti-cfg' _revision = '2017-11-13' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(DciFabricInterconnect.Fabrics.Fabric.Controllers.Controller, self).__init__() self.yang_name = "controller" self.yang_parent_name = "controllers" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = ['ip1'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('ip1', (YLeaf(YType.str, 'ip1'), ['str'])), ]) self.ip1 = None self._segment_path = lambda: "controller" + "[ip1='" + str(self.ip1) + "']" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(DciFabricInterconnect.Fabrics.Fabric.Controllers.Controller, ['ip1'], name, value) @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_infra_fti_cfg as meta return meta._meta_table['DciFabricInterconnect.Fabrics.Fabric.Controllers.Controller']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_infra_fti_cfg as meta return meta._meta_table['DciFabricInterconnect.Fabrics.Fabric.Controllers']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_infra_fti_cfg as meta return meta._meta_table['DciFabricInterconnect.Fabrics.Fabric']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_infra_fti_cfg as meta return meta._meta_table['DciFabricInterconnect.Fabrics']['meta_info'] class Acp(_Entity_): """ Configure Auto Config Pool parameters .. attribute:: bd_range Specify BD pool range **type**\: :py:class:`BdRange <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_fti_cfg.DciFabricInterconnect.Acp.BdRange>` .. attribute:: vni_range Specify VNI pool range **type**\: :py:class:`VniRange <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_fti_cfg.DciFabricInterconnect.Acp.VniRange>` .. attribute:: bvi_range Specify BVI pool range **type**\: :py:class:`BviRange <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_fti_cfg.DciFabricInterconnect.Acp.BviRange>` .. attribute:: vrfs Configure local VRF parameters **type**\: :py:class:`Vrfs <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_fti_cfg.DciFabricInterconnect.Acp.Vrfs>` .. attribute:: nve_id Specify NVE interface id **type**\: int **range:** 0..4294967295 .. attribute:: bgp_as Specify BGP AS number **type**\: int **range:** 0..4294967295 .. attribute:: bg_name Specify Bridge\-group name **type**\: str """ _prefix = 'infra-fti-cfg' _revision = '2017-11-13' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(DciFabricInterconnect.Acp, self).__init__() self.yang_name = "acp" self.yang_parent_name = "dci-fabric-interconnect" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("bd-range", ("bd_range", DciFabricInterconnect.Acp.BdRange)), ("vni-range", ("vni_range", DciFabricInterconnect.Acp.VniRange)), ("bvi-range", ("bvi_range", DciFabricInterconnect.Acp.BviRange)), ("vrfs", ("vrfs", DciFabricInterconnect.Acp.Vrfs))]) self._leafs = OrderedDict([ ('nve_id', (YLeaf(YType.uint32, 'nve-id'), ['int'])), ('bgp_as', (YLeaf(YType.uint32, 'bgp-as'), ['int'])), ('bg_name', (YLeaf(YType.str, 'bg-name'), ['str'])), ]) self.nve_id = None self.bgp_as = None self.bg_name = None self.bd_range = DciFabricInterconnect.Acp.BdRange() self.bd_range.parent = self self._children_name_map["bd_range"] = "bd-range" self.vni_range = DciFabricInterconnect.Acp.VniRange() self.vni_range.parent = self self._children_name_map["vni_range"] = "vni-range" self.bvi_range = DciFabricInterconnect.Acp.BviRange() self.bvi_range.parent = self self._children_name_map["bvi_range"] = "bvi-range" self.vrfs = DciFabricInterconnect.Acp.Vrfs() self.vrfs.parent = self self._children_name_map["vrfs"] = "vrfs" self._segment_path = lambda: "acp" self._absolute_path = lambda: "Cisco-IOS-XR-infra-fti-cfg:dci-fabric-interconnect/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(DciFabricInterconnect.Acp, ['nve_id', 'bgp_as', 'bg_name'], name, value) class BdRange(_Entity_): """ Specify BD pool range .. attribute:: bd_min BD Range\:min value **type**\: int **range:** 1..4000 .. attribute:: bd_max BD Range\:max value **type**\: int **range:** 0..4294967295 """ _prefix = 'infra-fti-cfg' _revision = '2017-11-13' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(DciFabricInterconnect.Acp.BdRange, self).__init__() self.yang_name = "bd-range" self.yang_parent_name = "acp" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('bd_min', (YLeaf(YType.uint32, 'bd-min'), ['int'])), ('bd_max', (YLeaf(YType.uint32, 'bd-max'), ['int'])), ]) self.bd_min = None self.bd_max = None self._segment_path = lambda: "bd-range" self._absolute_path = lambda: "Cisco-IOS-XR-infra-fti-cfg:dci-fabric-interconnect/acp/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(DciFabricInterconnect.Acp.BdRange, ['bd_min', 'bd_max'], name, value) @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_infra_fti_cfg as meta return meta._meta_table['DciFabricInterconnect.Acp.BdRange']['meta_info'] class VniRange(_Entity_): """ Specify VNI pool range .. attribute:: vni_min VNI Range\:min value **type**\: int **range:** 1..4000 .. attribute:: vni_max VNI Range\:max value **type**\: int **range:** 0..4294967295 """ _prefix = 'infra-fti-cfg' _revision = '2017-11-13' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(DciFabricInterconnect.Acp.VniRange, self).__init__() self.yang_name = "vni-range" self.yang_parent_name = "acp" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('vni_min', (YLeaf(YType.uint32, 'vni-min'), ['int'])), ('vni_max', (YLeaf(YType.uint32, 'vni-max'), ['int'])), ]) self.vni_min = None self.vni_max = None self._segment_path = lambda: "vni-range" self._absolute_path = lambda: "Cisco-IOS-XR-infra-fti-cfg:dci-fabric-interconnect/acp/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(DciFabricInterconnect.Acp.VniRange, ['vni_min', 'vni_max'], name, value) @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_infra_fti_cfg as meta return meta._meta_table['DciFabricInterconnect.Acp.VniRange']['meta_info'] class BviRange(_Entity_): """ Specify BVI pool range .. attribute:: bvi_min BVI Range\:min value **type**\: int **range:** 1..4000 .. attribute:: bvi_max BVI Range\:max value **type**\: int **range:** 0..4294967295 """ _prefix = 'infra-fti-cfg' _revision = '2017-11-13' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(DciFabricInterconnect.Acp.BviRange, self).__init__() self.yang_name = "bvi-range" self.yang_parent_name = "acp" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('bvi_min', (YLeaf(YType.uint32, 'bvi-min'), ['int'])), ('bvi_max', (YLeaf(YType.uint32, 'bvi-max'), ['int'])), ]) self.bvi_min = None self.bvi_max = None self._segment_path = lambda: "bvi-range" self._absolute_path = lambda: "Cisco-IOS-XR-infra-fti-cfg:dci-fabric-interconnect/acp/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(DciFabricInterconnect.Acp.BviRange, ['bvi_min', 'bvi_max'], name, value) @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_infra_fti_cfg as meta return meta._meta_table['DciFabricInterconnect.Acp.BviRange']['meta_info'] class Vrfs(_Entity_): """ Configure local VRF parameters .. attribute:: vrf vrf name **type**\: list of :py:class:`Vrf <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_fti_cfg.DciFabricInterconnect.Acp.Vrfs.Vrf>` """ _prefix = 'infra-fti-cfg' _revision = '2017-11-13' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(DciFabricInterconnect.Acp.Vrfs, self).__init__() self.yang_name = "vrfs" self.yang_parent_name = "acp" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("vrf", ("vrf", DciFabricInterconnect.Acp.Vrfs.Vrf))]) self._leafs = OrderedDict() self.vrf = YList(self) self._segment_path = lambda: "vrfs" self._absolute_path = lambda: "Cisco-IOS-XR-infra-fti-cfg:dci-fabric-interconnect/acp/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(DciFabricInterconnect.Acp.Vrfs, [], name, value) class Vrf(_Entity_): """ vrf name .. attribute:: vrf_name (key) vrf name **type**\: str **pattern:** [\\w\\\-\\.\:,\_@#%$\\+=\\\|;]+ .. attribute:: bvi_vrf_ip BVI override IP address **type**\: str **pattern:** (([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])\\.){3}([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])(%[\\p{N}\\p{L}]+)? """ _prefix = 'infra-fti-cfg' _revision = '2017-11-13' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(DciFabricInterconnect.Acp.Vrfs.Vrf, self).__init__() self.yang_name = "vrf" self.yang_parent_name = "vrfs" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['vrf_name'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('vrf_name', (YLeaf(YType.str, 'vrf-name'), ['str'])), ('bvi_vrf_ip', (YLeaf(YType.str, 'bvi-vrf-ip'), ['str'])), ]) self.vrf_name = None self.bvi_vrf_ip = None self._segment_path = lambda: "vrf" + "[vrf-name='" + str(self.vrf_name) + "']" self._absolute_path = lambda: "Cisco-IOS-XR-infra-fti-cfg:dci-fabric-interconnect/acp/vrfs/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(DciFabricInterconnect.Acp.Vrfs.Vrf, ['vrf_name', 'bvi_vrf_ip'], name, value) @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_infra_fti_cfg as meta return meta._meta_table['DciFabricInterconnect.Acp.Vrfs.Vrf']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_infra_fti_cfg as meta return meta._meta_table['DciFabricInterconnect.Acp.Vrfs']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_infra_fti_cfg as meta return meta._meta_table['DciFabricInterconnect.Acp']['meta_info'] def clone_ptr(self): self._top_entity = DciFabricInterconnect() return self._top_entity @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_infra_fti_cfg as meta return meta._meta_table['DciFabricInterconnect']['meta_info']
LRC/train_mixup.py
houj04/AutoDL
155
11101648
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. # # Based on: # -------------------------------------------------------- # DARTS # Copyright (c) 2018, <NAME>. # Licensed under the Apache License, Version 2.0; # -------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function from learning_rate import cosine_decay import numpy as np import argparse from model import NetworkCIFAR as Network import reader_cifar as reader import sys import os import time import logging import genotypes import paddle.fluid as fluid import shutil import utils import math parser = argparse.ArgumentParser("cifar") # yapf: disable parser.add_argument('--data', type=str, default='./dataset/cifar/cifar-10-batches-py/', help='location of the data corpus') parser.add_argument('--batch_size', type=int, default=96, help='batch size') parser.add_argument('--pretrained_model', type=str, default=None, help='pretrained model to load') parser.add_argument('--model_id', type=int, help='model id') parser.add_argument('--learning_rate', type=float, default=0.025, help='init learning rate') parser.add_argument('--momentum', type=float, default=0.9, help='momentum') parser.add_argument('--weight_decay', type=float, default=3e-4, help='weight decay') parser.add_argument('--report_freq', type=float, default=50, help='report frequency') parser.add_argument('--epochs', type=int, default=600, help='num of training epochs') parser.add_argument('--init_channels', type=int, default=36, help='num of init channels') parser.add_argument('--layers', type=int, default=20, help='total number of layers') parser.add_argument('--save_model_path', type=str, default='saved_models', help='path to save the model') parser.add_argument('--auxiliary', action='store_true', default=False, help='use auxiliary tower') parser.add_argument('--auxiliary_weight', type=float, default=0.4, help='weight for auxiliary loss') parser.add_argument('--cutout', action='store_true', default=False, help='use cutout') parser.add_argument('--cutout_length', type=int, default=16, help='cutout length') parser.add_argument('--drop_path_prob', type=float, default=0.2, help='drop path probability') parser.add_argument('--arch', type=str, default='DARTS', help='which architecture to use') parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping') parser.add_argument('--lr_exp_decay', action='store_true', default=False, help='use exponential_decay learning_rate') parser.add_argument('--mix_alpha', type=float, default=0.5, help='mixup alpha') parser.add_argument('--lrc_loss_lambda', default=0, type=float, help='lrc_loss_lambda') # yapf: enable args = parser.parse_args() CIFAR_CLASSES = 10 dataset_train_size = 50000. image_size = 32 genotypes.DARTS = genotypes.MY_DARTS_list[args.model_id] def main(): image_shape = [3, image_size, image_size] devices = os.getenv("CUDA_VISIBLE_DEVICES") or "" devices_num = len(devices.split(",")) logging.info("args = %s", args) genotype = eval("genotypes.%s" % args.arch) model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype) steps_one_epoch = math.ceil(dataset_train_size / (devices_num * args.batch_size)) train(model, args, image_shape, steps_one_epoch) def build_program(main_prog, startup_prog, args, is_train, model, im_shape, steps_one_epoch): out = [] with fluid.program_guard(main_prog, startup_prog): py_reader = model.build_input(im_shape, is_train) if is_train: with fluid.unique_name.guard(): loss = model.train_model(py_reader, args.init_channels, args.auxiliary, args.auxiliary_weight, args.lrc_loss_lambda) optimizer = fluid.optimizer.Momentum( learning_rate=cosine_decay(args.learning_rate, args.epochs, steps_one_epoch), regularization=fluid.regularizer.L2Decay(args.weight_decay), momentum=args.momentum) optimizer.minimize(loss) out = [py_reader, loss] else: with fluid.unique_name.guard(): prob, acc_1, acc_5 = model.test_model(py_reader, args.init_channels) out = [py_reader, prob, acc_1, acc_5] return out def train(model, args, im_shape, steps_one_epoch): startup_prog = fluid.Program() train_prog = fluid.Program() test_prog = fluid.Program() train_py_reader, loss_train = build_program( train_prog, startup_prog, args, True, model, im_shape, steps_one_epoch) test_py_reader, prob, acc_1, acc_5 = build_program( test_prog, startup_prog, args, False, model, im_shape, steps_one_epoch) test_prog = test_prog.clone(for_test=True) place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(startup_prog) if args.pretrained_model: def if_exist(var): return os.path.exists(os.path.join(args.pretrained_model, var.name)) fluid.io.load_vars( exe, args.pretrained_model, main_program=train_prog, predicate=if_exist) exec_strategy = fluid.ExecutionStrategy() exec_strategy.num_threads = 1 build_strategy = fluid.BuildStrategy() build_strategy.memory_optimize = False build_strategy.enable_inplace = True compile_program = fluid.compiler.CompiledProgram( train_prog).with_data_parallel( loss_name=loss_train.name, build_strategy=build_strategy, exec_strategy=exec_strategy) train_reader = reader.train10(args) test_reader = reader.test10(args) train_py_reader.decorate_paddle_reader(train_reader) test_py_reader.decorate_paddle_reader(test_reader) fluid.clip.set_gradient_clip( fluid.clip.GradientClipByGlobalNorm(args.grad_clip), program=train_prog) train_fetch_list = [loss_train] def save_model(postfix, main_prog): model_path = os.path.join(args.save_model_path, postfix) if os.path.isdir(model_path): shutil.rmtree(model_path) fluid.io.save_persistables(exe, model_path, main_program=main_prog) def test(epoch_id): test_fetch_list = [prob, acc_1, acc_5] top1 = utils.AvgrageMeter() top5 = utils.AvgrageMeter() test_py_reader.start() test_start_time = time.time() step_id = 0 try: while True: prev_test_start_time = test_start_time test_start_time = time.time() prob_v, acc_1_v, acc_5_v = exe.run(test_prog, fetch_list=test_fetch_list) top1.update(np.array(acc_1_v), np.array(prob_v).shape[0]) top5.update(np.array(acc_5_v), np.array(prob_v).shape[0]) if step_id % args.report_freq == 0: print("Epoch {}, Step {}, acc_1 {}, acc_5 {}, time {}". format(epoch_id, step_id, np.array(acc_1_v), np.array(acc_5_v), test_start_time - prev_test_start_time)) step_id += 1 except fluid.core.EOFException: test_py_reader.reset() print("Epoch {0}, top1 {1}, top5 {2}".format(epoch_id, top1.avg, top5.avg)) epoch_start_time = time.time() for epoch_id in range(args.epochs): model.drop_path_prob = args.drop_path_prob * epoch_id / args.epochs train_py_reader.start() epoch_end_time = time.time() if epoch_id > 0: print("Epoch {}, total time {}".format(epoch_id - 1, epoch_end_time - epoch_start_time)) epoch_start_time = epoch_end_time epoch_end_time start_time = time.time() step_id = 0 try: while True: prev_start_time = start_time start_time = time.time() loss_v, = exe.run( compile_program, fetch_list=[v.name for v in train_fetch_list]) print("Epoch {}, Step {}, loss {}, time {}".format(epoch_id, step_id, \ np.array(loss_v).mean(), start_time-prev_start_time)) step_id += 1 sys.stdout.flush() except fluid.core.EOFException: train_py_reader.reset() if epoch_id % 50 == 0: save_model(str(epoch_id), train_prog) if epoch_id == args.epochs - 1: save_model('final', train_prog) test(epoch_id) if __name__ == '__main__': main()
colossus/apps/templates/models.py
CreativeWurks/emailerpro
372
11101661
<gh_stars>100-1000 from django.db import models from django.template.loader import get_template from django.urls import reverse from django.utils import timezone from django.utils.html import mark_safe from django.utils.translation import gettext_lazy as _ from .utils import wrap_blocks class EmailTemplateManager(models.Manager): @classmethod def default_content(cls): default_content = get_template('templates/default_email_template_content.html') content = default_content.template.source return content class EmailTemplate(models.Model): name = models.CharField(_('name'), max_length=100) content = models.TextField(blank=True) create_date = models.DateTimeField(_('create date'), auto_now_add=True) update_date = models.DateTimeField(_('update date'), default=timezone.now) last_used_date = models.DateTimeField(_('last used'), null=True, blank=True) last_used_campaign = models.ForeignKey( 'campaigns.Campaign', on_delete=models.SET_NULL, null=True, blank=True, verbose_name=_('last used campaign'), related_name='+' ) objects = EmailTemplateManager() class Meta: verbose_name = _('email template') verbose_name_plural = _('email templates') db_table = 'colossus_email_templates' def __str__(self): return self.name def save(self, *args, **kwargs): if not self.pk and not self.content: self.content = self.__class__.objects.default_content() super().save(*args, **kwargs) def get_absolute_url(self): return reverse('templates:emailtemplate_editor', kwargs={'pk': self.pk}) def html_preview(self): html = wrap_blocks(self.content) return mark_safe(html)
languages/python/oso/polar/variable.py
connec/oso
2,167
11101715
class Variable(str): """An unbound variable type, can be used to query the KB for information""" def __repr__(self): return f"Variable({super().__repr__()})" def __str__(self): return repr(self) def __eq__(self, other): return super().__eq__(other) def __hash__(self): return super().__hash__()
extras/mysteryHex.py
Manny27nyc/BitcoinArmory
505
11101750
<reponame>Manny27nyc/BitcoinArmory<filename>extras/mysteryHex.py #! /usr/bin/python from os import path import sys from optparse import OptionParser sys.path.append('..') from pybtcengine import * HASHCODE_HEADER = 1 HASHCODE_MERKLE = 2 HASHCODE_TX = 3 ################################################################################ ################################################################################ def figureOutMysteryHex(hexStr, hashDict={}): binStr = hex_to_binary(hexStr) print '\n' + '-'*80 print '\nStarting hex data:', len(binStr), 'bytes' hexStr.replace(' ','') pprintHex(hexStr, ' ') print '\n' + '-'*80 # These search terms only give us hints about where things are. We have more # operations to determine if something is actually behind these strings hintStr = {} hintStr['Empty4B' ] = hex_to_binary('00000000' ) hintStr['Version' ] = hex_to_binary('01000000' ) hintStr['PkStart' ] = hex_to_binary('76a9' ) hintStr['PkEnd' ] = hex_to_binary('88ac' ) hintStr['SeqNum' ] = hex_to_binary('ffffffff' ) # These search terms are simple, self-explanatory terms. We find them, flag # them and we're done. simpleList = [] simpleList.append(['f9beb4d9', 'MagicNum', 'Main network magic bytes (f9beb4d9)']) simpleList.append(['fabfb5da', 'MagicNum', 'Test network magic bytes (fabfb5da)']) simpleList.append(['76657261636b', 'VERACK', 'Version acknowledgement message']) simpleList.append(['76657273696f6e', 'VersionMsg', 'Version declaration message']) simpleList.append(['61646472', 'AddressMsg', 'Address declaration message']) # To verify a timestamp, check it's between 2009 and today + 10days timeMin = time.mktime( (2009,1,1,0,0,0,0,0,-1)) timeMax = time.time() + 10*86400 # Exclusive list of [Name, startIdx, endIdx, hexSubstr, toPrintAfter] # Exlucsive means that if we already identified something there, we don't # search it again idListExcl = [] # Inclusive list of multipe random things. Inclusive means that even if # we already identified a transaction somewhere, we will still ID all the # scripts in it, even though it's technically already flagged as ID'd idListSimple = [] # This is a running mask of what bytes have been identified already maskAll = [0]*len(binStr) # This method will return all indices that match the substring "findBin" # excluding matches inside chunks already ID'd def getIdxListNotIdYet(findBin, theMask): versIdx = [] findIdx = binStr.find(findBin) while not findIdx == -1: if not theMask[findIdx] == 1: versIdx.append(findIdx) findIdx = binStr.find(hintStr['Version'],findIdx+1) return versIdx # Return all matches for the string, regardless of whether it's ID'd already def getIdxList(findBin): versIdx = [] findIdx = binStr.find(findBin) while not findIdx == -1: versIdx.append(findIdx) findIdx = binStr.find(findBin,findIdx+1) return versIdx ############################################################################ # Search for version numbers which will help us find Tx's and BlockHeaders ############################################################################ versIdx = getIdxListNotIdYet(hintStr['Version'], maskAll) for idx in versIdx: # Check for block Header: hash has leading zeros and timestamp is sane if idx<=len(binStr)-80: hashZeros = binStr[idx+32:idx+36] == hintStr['Empty4B'] validTime = timeMin < binary_to_int(binStr[idx+68:idx+72]) < timeMax if hashZeros and validTime: bin80 = binStr[idx:idx+80] blkhead = PyBlockHeader().unserialize(bin80) idListExcl.append(['BlockHeader', idx, idx+80, binary_to_hex(bin80), blkhead]) maskAll[idx:idx+80] = [1]*80 continue # If not a header, check to see if it's a Tx try: testTx = PyTx().unserialize(binStr[idx:]) if len(testTx.inputs) < 1 or len(testTx.outputs) < 1: raise Exception for inp in testTx.inputs: if not inp.intSeq==binary_to_int(hintStr['SeqNum']): raise Exception # If we got here, the sequence numbers should be sufficient evidence for # declaring this is a transaction txBin = testTx.serialize() txLen = len(txBin) txHex = binary_to_hex(txBin) idListExcl.append(['Transaction', idx, idx+txLen, txHex, testTx]) maskAll[idx:idx+txLen] = [1]*txLen except: # Obviously wasn't a transaction, either continue pubkeyList = [ ] # Try to find a PkScript pkIdx = getIdxListNotIdYet(hintStr['PkStart'], maskAll) for idx in pkIdx: if binStr[idx+23:idx+25] == hintStr['PkEnd']: addrStr = PyBtcAddress().createFromPublicKeyHash160(binStr[idx+3:idx+23]) extraInfo = addrStr.getAddrStr() idListSimple.append(['TxOutScript', idx, idx+25, extraInfo, '']) maskAll[idx:idx+25] = [1]*25 startCBPK = hex_to_binary('04') pkIdx = getIdxListNotIdYet(startCBPK, maskAll) for idx in pkIdx: if idx > len(binStr)-65: continue try: addrStr = PyBtcAddress().createFromPublicKey(binStr[idx:idx+65]) extraInfo = addrStr.calculateAddrStr() if not idx+65==len(binStr) and binStr[idx+65] == hex_to_binary('ac'): idListSimple.append(['CoinbaseScript', idx, idx+66, extraInfo, '']) maskAll[idx:idx+66] = [1]*66 else: idListSimple.append(['BarePublicKey', idx, idx+65, extraInfo, '']) maskAll[idx:idx+65] = [1]*65 if idx>0 and binStr[idx-1] == hex_to_binary('41'): idListSimple[-1][1] -= 1 # get the 41 that's there if it's a script maskAll[idx-1] = 1 except: pass # I guess this wasn't a PK after all... ############################################################################ # Random straightforward things to search for without any extra computation. ############################################################################ for triplet in simpleList: foundIdx = getIdxList( hex_to_binary(triplet[0])) for idx in foundIdx: idListSimple.append([triplet[1], idx, idx+len(triplet[0])/2, triplet[2], '']) # If we have a useful dictionary of hashes, let's use it if len(hashDict) > 0: for i in range(len(binStr)-31): if maskAll[i] == 1: continue str32 = binStr[i:i+32] if hashDict.has_key(str32): hashcode = hashDict[str32] if hashcode==HASHCODE_HEADER: hashCode = 'HeaderHash' elif hashcode==HASHCODE_MERKLE: hashCode = 'MerkleRoot' elif hashcode==HASHCODE_TX: hashCode = 'TxHash' else: hashCode = 'UnknownHash' idListSimple.append([hashCode, i, i+32, binary_to_hex(str32), '']) elif hashDict.has_key(binary_switchEndian(str32)): hashcode = hashDict[binary_switchEndian(str32)] if hashcode==HASHCODE_HEADER: hashCode = 'HeaderHash(BE)' elif hashcode==HASHCODE_MERKLE: hashCode = 'MerkleRoot(BE)' elif hashcode==HASHCODE_TX: hashCode = 'TxHash(BE)' else: hashCode = 'UnknownHash' idListSimple.append([hashCode, i, i+32, binary_to_hex(str32), '']) ############################################################################ # Done searching for stuff. Print results ############################################################################ for ids in idListExcl: print '' print '#'*100 idx0,idx1 = ids[1], ids[2] # If this is a Tx or BH, need to pprint the last arg hexToPrint = ['-'] * 2*len(binStr) if ids[0] == 'Transaction' or ids[0] == 'BlockHeader': hexToPrint[2*ids[1]:2*ids[2]] = ids[3] print 'Found: ', ids[0] print 'Size:', idx1-idx0, 'bytes' print 'Bytes: %d to %d (0x%s to 0x%s)' % (idx0, idx1, \ int_to_hex(idx0, 4, BIGENDIAN), \ int_to_hex(idx1, 4, BIGENDIAN)) pprintHex( ''.join(hexToPrint), ' ') print '' ids[4].pprint(1) print '' print '#'*100 # Print all the simple stuff onto a single bytemap print 'Other assorted things:' idListSimple.sort(key=lambda x: x[1]) hexToPrint = ['-'] * 2*len(binStr) ReprList = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' for j,ids in enumerate(idListSimple): i1 = ids[1] i2 = ids[2] nb = i2-i1 maskAll[i1:i2] = [1]*nb hexToPrint[2*i1:2*i2] = ReprList[j]*2*nb hexToPrint = ''.join(hexToPrint) pprintHex(hexToPrint, ' ') print '' for j,ids in enumerate(idListSimple): print ' ', ReprList[j] + ':', ids[0].ljust(16,' '), ':', ids[3] print '\n\nUnidentified bytes' maskedBytes = ['--' if maskAll[i] == 1 else hexStr[2*i:2*i+2] for i in range(len(binStr))] pprintHex(''.join(maskedBytes)); ################################################################################ ################################################################################ def updateHashList(hashfile, blkfile, rescan=False): print '' print '\t.Updating hashlist from the blockchain file in your bitcoin directory' print '\t.This will take 1-5 min the first time you run this script (and on rescan)' print '\t\t.Hashfile: ', hashfile print '\t\t.BlockFile:', blkfile if not path.exists(hashfile) or rescan: hf = open('knownHashes.bin','wb') hf.write('\x00'*8) hf.close() hf = open(hashfile, 'rb') startBlkByte = binary_to_int(hf.read(8)) hf.close() assert(path.exists(blkfile)) blkfileSize = os.stat(blkfile).st_size bf = open(blkfile, 'rb') hf = open(hashfile, 'r+') hf.write(int_to_binary(blkfileSize, widthBytes=8)) hf.seek(0,2) # start writing at the end of the file # The first 8 bytes of the hashfile tells us where to start searching # blk0001.dat (so we don't recompute every time). We need to rewrite # this value every time bf.seek(startBlkByte, 0) # seek to this point in the file binunpack = BinaryUnpacker(bf.read()) newBlocksRead = 0 newHashes = 0 while( binunpack.getRemainingSize() > 0): binunpack.advance(4) # magic sz = binunpack.get(UINT32) # total bytes in this block thisHeader = PyBlockHeader().unserialize(binunpack) hf.write(thisHeader.theHash + '\x01') hf.write(thisHeader.merkleRoot + '\x02') thisData = PyBlockData().unserialize(binunpack) for tx in thisData.txList: hf.write(tx.thisHash + '\x03') newHashes += 2 + len(thisData.txList) if newBlocksRead==0: print '\n\t\tReading blocks...', newBlocksRead += 1 if(newBlocksRead%1000==0): if(newBlocksRead%10000==0): print '\n\t\tRead', newBlocksRead, 'blocks', print '.', sys.stdout.flush() print '\n\t.Updated hashfile with %d bytes / %d hashes / %d blocks from blkfile' % \ (blkfileSize-startBlkByte, newHashes, newBlocksRead) hf.close() if __name__ == '__main__': print '\nTry to identify Bitcoin-related strings in a block of data' parser = OptionParser(usage='USAGE: %prog [--binary|-b] -f FILE \n or: %prog unidentifiedHex') parser.add_option('-f', '--file', dest='filename', \ help='Get unidentified data from this file') parser.add_option('-k', '--blkfile', dest='blk0001file', default='', \ help='Update hashlist from this file (default ~/.bitcoin/blk0001.dat)') parser.add_option('-g', '--hashfile', dest='hashfile', default='./knownHashes.bin', \ help='The file to store and retrieve header/tx hashes') parser.add_option('-b', '--binary', action='store_false', dest='isHex', default=True, \ help='Specified file is in binary') parser.add_option('--byterange', dest='byterange', default='all', \ help='Bytes to read, --byterange=0,100') parser.add_option('-s', '--usehashes', action='store_true', dest='useHashes', default=False, \ help='Import header/tx hashes to be used in searching') parser.add_option('-u', '--noupdatehashes', action='store_false', dest='updateHashes', default=True, \ help='Disable searching blk0001.dat to update hashlist (ignored without -s)') parser.add_option('-r', '--rescanhashes', action='store_true', dest='doRescan', default=False, \ help='Rescan blkfile for header/tx hashes') #parser.add_option('-t', '--testnet', action='store_true', dest='testnet', default=False, \ #help='Run the script using testnet data/addresses') # Should add option for picking (start,end) bytes for files that are long #parser.add_option('-o', '--outfile', dest='outfile', default='', \ #help='Redirect results to output file') (opts, args) = parser.parse_args() fn = opts.filename isHex = opts.isHex blkfile = opts.blk0001file hashfile = opts.hashfile #outfile = opts.outfile if len(blkfile)==0 and opts.updateHashes: import platform opsys = platform.system() if 'win' in opsys.lower(): blkfile = path.join(os.getenv('APPDATA'), 'Bitcoin', 'blk0001.dat') if 'nix' in opsys.lower() or 'nux' in opsys.lower(): blkfile = path.join(os.getenv('HOME'), '.bitcoin', 'blk0001.dat') if 'mac' in opsys.lower() or 'osx' in opsys.lower(): blkfile = os.path.expanduser('~/Library/Application Support/Bitcoin/blk0001.dat') # A variety of error conditions if fn == None and len(args)==0: parser.error('Please supply hex data or a file with unidentified data\n') if not fn == None and not path.exists(fn): parser.error('Cannot find ' + fn) if fn == None and not isHex: parser.error('Cannot read binary data from command line. Please put it in a file and use -f option') if not path.exists(blkfile) and opts.useHashes and opts.updateHashes: print 'Cannot find blockdata file', blkfile, '... proceeding without updating hashes' opts.updateHashes = False if not opts.useHashes: print '\t(use the -s option to enable search for header/tx hashes from blk0001.dat)' byteStart,byteStop = 0,0 print opts.byterange if not opts.byterange=='all': byteStart,byteStop = [int(i) for i in opts.byterange.split(',')] # Update the knownHashes.txt file, if necessary if(opts.useHashes and opts.updateHashes): updateHashList(hashfile, blkfile, opts.doRescan) # If we plan to use it, populate a dictionary of hashes hashDict = {} if(opts.useHashes): hfile = open(hashfile, 'rb') skip = hfile.read(8) binaryHashes = hfile.read() hfile.close() print '\t.Reading %s (%0.1f MB)' % (hashfile, len(binaryHashes)/float(1024**2)) if not opts.updateHashes: print '\t (remove -u flag to update hashlist with recent blocks from blk0001.dat' nHash = len(binaryHashes) / 33 for i in range(nHash): loc = i*33 hash32 = binaryHashes[loc:loc+32] code = binaryHashes[loc+32] hashDict[hash32] = binary_to_int(code) print '\t.Hash dictionary populated with %d hashes from %s' % (len(hashDict),hashfile) binaryToSearch = [] if not fn == None: if not isHex: f = open(fn, 'rb') binaryToSearch = '' if byteStop<=byteStart: binaryToSearch = f.read() else: f.seek(byteStart,0); binaryToSearch = f.read(byteStop-byteStart) f.close() else: f = open(fn, 'r') hexLines = f.readlines() hexToSearch = ''.join([l.strip().replace(' ','') for l in hexLines]) if not byteStop<=byteStart: hexToSearch = hexToSearch[2*byteStart:2*byteStop] try: binaryToSearch = hex_to_binary(hexToSearch) except: print 'Error processing %s. If this is a binary file, please use the -b flag' % (fn,) exit(0) else: # pull data from the remaining arguments (which must be hex) hexToSearch = ''.join(args) binaryToSearch = hex_to_binary(hexToSearch.replace(' ','')) # Yeah, I know we just converted it to binary, now back to hex figureOutMysteryHex(binary_to_hex(binaryToSearch), hashDict)
src/programy/clients/polling/twitter/config.py
cdoebler1/AIML2
345
11101768
<gh_stars>100-1000 """ Copyright (c) 2016-2020 <NAME> http://www.keithsterling.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from programy.clients.config import ClientConfigurationData from programy.utils.substitutions.substitues import Substitutions class TwitterConfiguration(ClientConfigurationData): def __init__(self): ClientConfigurationData.__init__(self, "twitter") self._description = 'ProgramY AIML2.0 Twitter Client' self._polling_interval = 60 self._rate_limit_sleep = 900 self._follow_followers = True self._respond_to_mentions = True self._respond_to_directs = False self._mentions = ['#askprogramy'] self._welcome_message = "Thanks for following me." @property def polling_interval(self): return self._polling_interval @property def rate_limit_sleep(self): return self._rate_limit_sleep @property def follow_followers(self): return self._follow_followers @property def respond_to_mentions(self): return self._respond_to_mentions @property def respond_to_directs(self): return self._respond_to_directs @property def mentions(self): return self._mentions @property def welcome_message(self): return self._welcome_message def load_configuration_section(self, configuration_file, section, bot_root, subs: Substitutions = None): assert section is not None self._polling_interval = configuration_file.get_int_option(section, "polling_interval", missing_value=60, subs=subs) self._rate_limit_sleep = configuration_file.get_int_option(section, "rate_limit_sleep", missing_value=900, subs=subs) self._follow_followers = configuration_file.get_bool_option(section, "follow_followers", missing_value=False, subs=subs) self._respond_to_mentions = configuration_file.get_bool_option(section, "respond_to_mentions", missing_value=False, subs=subs) self._respond_to_directs = configuration_file.get_bool_option(section, "respond_to_directs", missing_value=True, subs=subs) self._mentions = configuration_file.get_multi_option(section, "mentions", missing_value="", subs=subs) self._welcome_message = configuration_file.get_option(section, "welcome_message", subs=subs) super(TwitterConfiguration, self).load_configuration_section(configuration_file, section, bot_root, subs=subs) def to_yaml(self, data, defaults=True): if defaults is True: data['polling_interval'] = 60 data['rate_limit_sleep'] = 900 data['follow_followers'] = True data['respond_to_mentions'] = True data['respond_to_directs'] = False data['mentions'] = ["#askprogramy"] data['welcome_message'] = "Thanks for following me." data['storage'] = 'file' data['storage_location'] = './storage/twitter.data' else: data['polling_interval'] = self._polling_interval data['rate_limit_sleep'] = self._rate_limit_sleep data['follow_followers'] = self._follow_followers data['respond_to_mentions'] = self._respond_to_mentions data['respond_to_directs'] = self._respond_to_directs data['mentions'] = self._mentions[:] data['welcome_message'] = self._welcome_message super(TwitterConfiguration, self).to_yaml(data, defaults)
env/Lib/site-packages/OpenGL/GL/ARB/ES3_2_compatibility.py
5gconnectedbike/Navio2
210
11101785
<filename>env/Lib/site-packages/OpenGL/GL/ARB/ES3_2_compatibility.py '''OpenGL extension ARB.ES3_2_compatibility This module customises the behaviour of the OpenGL.raw.GL.ARB.ES3_2_compatibility to provide a more Python-friendly API Overview (from the spec) This extension adds support for features of OpenGL ES 3.2 that are missing from OpenGL 4.5. Enabling these features will ease the process of porting applications from OpenGL ES 3.2 to OpenGL. In particular this adds the following features: - Bounding box used to optimization tessellation processing (OES_primitive_bounding_box) - query for MULTISAMPLE_LINE_WIDTH_RANGE_ARB - support for the OpenGL ES 3.20 shading language For full OpenGL ES 3.2 compatibility the implementation must support KHR_blend_equation_advanced and KHR_texture_compression_astc_ldr. Those features are not defined in this extension spec since they are already defined at the KHR level. The official definition of this extension is available here: http://www.opengl.org/registry/specs/ARB/ES3_2_compatibility.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GL import _types, _glgets from OpenGL.raw.GL.ARB.ES3_2_compatibility import * from OpenGL.raw.GL.ARB.ES3_2_compatibility import _EXTENSION_NAME def glInitEs32CompatibilityARB(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) ### END AUTOGENERATED SECTION
desktop/core/ext-py/odfpy-1.4.1/examples/subobject.py
yetsun/hue
5,079
11101845
<gh_stars>1000+ #!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (C) 2007 <NAME>, European Environment Agency # # This is free software. You may redistribute it under the terms # of the Apache license and the GNU General Public License Version # 2 or at your option any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Contributor(s): # # This is an example of an OpenDocument Text with an embedded Chart. # from odf.opendocument import OpenDocumentChart, OpenDocumentText from odf import chart, style, table, text, draw # import a support class from the examples directory from datatable import DataTable class BarChart(object): def __init__(self): self.charttype = 'chart:bar' self.subtype = 'normal' # 'percentage', 'stacked' or 'normal' self.threedimensional = "false" self.x_axis = "X" self.y_axis = "Y" self.values = (1,2,3) self.title = None self.subtitle = None def __call__(self, doc): chartstyle = style.Style(name="chartstyle", family="chart") chartstyle.addElement( style.GraphicProperties(stroke="none", fillcolor="#ffffff")) doc.automaticstyles.addElement(chartstyle) mychart = chart.Chart(width="476pt", height="404pt",stylename=chartstyle, attributes={'class':self.charttype}) doc.chart.addElement(mychart) # Title if self.title: titlestyle = style.Style(name="titlestyle", family="chart") titlestyle.addElement( style.GraphicProperties(stroke="none", fill="none")) titlestyle.addElement( style.TextProperties(fontfamily="'Nimbus Sans L'", fontfamilygeneric="swiss", fontpitch="variable", fontsize="13pt")) doc.automaticstyles.addElement(titlestyle) mytitle = chart.Title(x="185pt", y="27pt", stylename=titlestyle) mytitle.addElement( text.P(text=self.title)) mychart.addElement(mytitle) # Subtitle if self.subtitle: subtitlestyle = style.Style(name="subtitlestyle", family="chart") subtitlestyle.addElement( style.GraphicProperties(stroke="none", fill="none")) subtitlestyle.addElement( style.TextProperties(fontfamily="'Nimbus Sans L'", fontfamilygeneric="swiss", fontpitch="variable", fontsize="10pt")) doc.automaticstyles.addElement(subtitlestyle) subtitle = chart.Subtitle(x="50pt", y="50pt", stylename=subtitlestyle) subtitle.addElement( text.P(text= self.subtitle)) mychart.addElement(subtitle) # Legend legendstyle = style.Style(name="legendstyle", family="chart") legendstyle.addElement( style.GraphicProperties(fill="none")) legendstyle.addElement( style.TextProperties(fontfamily="'Nimbus Sans L'", fontfamilygeneric="swiss", fontpitch="variable", fontsize="8pt")) doc.automaticstyles.addElement(legendstyle) mylegend = chart.Legend(legendposition="end", legendalign="center", stylename=legendstyle) mychart.addElement(mylegend) # Plot area plotstyle = style.Style(name="plotstyle", family="chart") if self.subtype == "stacked": percentage="false"; stacked="true" elif self.subtype == "percentage": percentage="true"; stacked="false" else: percentage="false"; stacked="false" plotstyle.addElement( style.ChartProperties(seriessource="columns", percentage=percentage, stacked=stacked, threedimensional=self.threedimensional)) doc.automaticstyles.addElement(plotstyle) plotarea = chart.PlotArea(datasourcehaslabels=self.datasourcehaslabels, stylename=plotstyle) mychart.addElement(plotarea) # Style for the X,Y axes axisstyle = style.Style(name="axisstyle", family="chart") axisstyle.addElement( style.ChartProperties(displaylabel="true")) axisstyle.addElement( style.TextProperties(fontfamily="'Nimbus Sans L'", fontfamilygeneric="swiss", fontpitch="variable", fontsize="8pt")) doc.automaticstyles.addElement(axisstyle) # Title for the X axis xaxis = chart.Axis(dimension="x", name="primary-x", stylename=axisstyle) plotarea.addElement(xaxis) xt = chart.Title() xaxis.addElement(xt) xt.addElement(text.P(text=self.x_axis)) # Title for the Y axis yaxis = chart.Axis(dimension="y", name="primary-y", stylename=axisstyle) plotarea.addElement(yaxis) yt = chart.Title() yaxis.addElement(yt) yt.addElement(text.P(text=self.y_axis)) # Set up the data series. OOo doesn't show correctly without them. s = chart.Series(valuescellrangeaddress="local-table.B2:.B6", labelcelladdress="local-table.B1") s.addElement(chart.DataPoint(repeated=5)) plotarea.addElement(s) s = chart.Series(valuescellrangeaddress="local-table.C2:.C6", labelcelladdress="local-table.C1") s.addElement(chart.DataPoint(repeated=5)) plotarea.addElement(s) # The data are placed in a table inside the chart object - but could also be a # table in the main document datatable = DataTable(self.values) datatable.datasourcehaslabels = self.datasourcehaslabels mychart.addElement(datatable()) if __name__ == "__main__": # Create the subdocument chartdoc = OpenDocumentChart() mychart = BarChart() mychart.title = "SPECTRE" mychart.subtitle = "SPecial Executive for Counter-intelligence, Terrorism, Revenge and Extortion" mychart.x_axis = "Divisions" mychart.y_axis = u"€ (thousand)" # These represent the data. Six rows in three columns mychart.values = ( ('','Expense','Revenue'), ('Counterfeit',1000,1500), ('Murder',1100,1150), ('Prostitution',3200,2350), ('Blackmail',1100,1150), ('Larceny',1000,1750) ) mychart.datasourcehaslabels = "both" mychart(chartdoc) # Create the containg document textdoc = OpenDocumentText() # Create a paragraph to contain the frame. You can put the frame directly # as a child og textdoc.text, but both Kword and OOo has problems wiht # this approach. p = text.P() textdoc.text.addElement(p) # Create the frame. df = draw.Frame(width="476pt", height="404pt", anchortype="paragraph") p.addElement(df) # Here we add the subdocument to the main document. We get back a reference # to use in the href. objectloc = textdoc.addObject(chartdoc) do = draw.Object(href=objectloc) # Put the object inside the frame df.addElement(do) textdoc.save("spectre-balance", True)
eeauditor/auditors/aws/Amazon_VPC_Auditor.py
kbhagi/ElectricEye
442
11101846
<reponame>kbhagi/ElectricEye #This file is part of ElectricEye. #SPDX-License-Identifier: Apache-2.0 #Licensed to the Apache Software Foundation (ASF) under one #or more contributor license agreements. See the NOTICE file #distributed with this work for additional information #regarding copyright ownership. The ASF licenses this file #to you under the Apache License, Version 2.0 (the #"License"); you may not use this file except in compliance #with the License. You may obtain a copy of the License at #http://www.apache.org/licenses/LICENSE-2.0 #Unless required by applicable law or agreed to in writing, #software distributed under the License is distributed on an #"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY #KIND, either express or implied. See the License for the #specific language governing permissions and limitations #under the License. import boto3 import datetime from check_register import CheckRegister registry = CheckRegister() # create boto3 clients ec2 = boto3.client("ec2") # loop through vpcs def describe_vpcs(cache): response = cache.get("describe_vpcs") if response: return response cache["describe_vpcs"] = ec2.describe_vpcs(DryRun=False) return cache["describe_vpcs"] @registry.register_check("ec2") def vpc_default_check(cache: dict, awsAccountId: str, awsRegion: str, awsPartition: str) -> dict: """[VPC.1] Consider deleting the Default VPC if unused""" vpc = describe_vpcs(cache=cache) for vpcs in vpc["Vpcs"]: vpcId = str(vpcs["VpcId"]) vpcArn = f"arn:{awsPartition}:ec2:{awsRegion}:{awsAccountId}vpc/{vpcId}" defaultVpcCheck = str(vpcs["IsDefault"]) iso8601Time = datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc).isoformat() if defaultVpcCheck == "True": finding = { "SchemaVersion": "2018-10-08", "Id": vpcArn + "/vpc-is-default-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": vpcArn, "AwsAccountId": awsAccountId, "Types": ["Software and Configuration Checks/AWS Security Best Practices"], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "MEDIUM"}, "Confidence": 99, "Title": "[VPC.1] Consider deleting the Default VPC if unused", "Description": "VPC " + vpcId + " has been identified as the Default VPC, consider deleting this VPC if it is not necessary for daily operations. The Default VPC in AWS Regions not typically used can serve as a persistence area for malicious actors, additionally, many services will automatically use this VPC which can lead to a degraded security posture. Refer to the remediation instructions if this configuration is not intended", "Remediation": { "Recommendation": { "Text": "For more information on the default VPC refer to the Deleting Your Default Subnets and Default VPC section of the Amazon Virtual Private Cloud User Guide", "Url": "https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html#deleting-default-vpc", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEc2Vpc", "Id": vpcArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"Other": {"VpcId": vpcId}}, } ], "Compliance": { "Status": "FAILED", "RelatedRequirements": [ "NIST CSF PR.AC-5", "NIST SP 800-53 AC-4", "NIST SP 800-53 AC-10", "NIST SP 800-53 SC-7", "AICPA TSC CC6.1", "ISO 27001:2013 A.13.1.1", "ISO 27001:2013 A.13.1.3", "ISO 27001:2013 A.13.2.1", "ISO 27001:2013 A.14.1.2", "ISO 27001:2013 A.14.1.3", ], }, "Workflow": {"Status": "NEW"}, "RecordState": "ACTIVE", } yield finding else: finding = { "SchemaVersion": "2018-10-08", "Id": vpcArn + "/vpc-is-default-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": vpcArn, "AwsAccountId": awsAccountId, "Types": ["Software and Configuration Checks/AWS Security Best Practices"], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "INFORMATIONAL"}, "Confidence": 99, "Title": "[VPC.1] Consider deleting the Default VPC if unused", "Description": "VPC " + vpcId + " is not the Default VPC", "Remediation": { "Recommendation": { "Text": "For more information on the default VPC refer to the Deleting Your Default Subnets and Default VPC section of the Amazon Virtual Private Cloud User Guide", "Url": "https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html#deleting-default-vpc", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEc2Vpc", "Id": vpcArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"Other": {"VpcId": vpcId}}, } ], "Compliance": { "Status": "PASSED", "RelatedRequirements": [ "NIST CSF PR.AC-5", "NIST SP 800-53 AC-4", "NIST SP 800-53 AC-10", "NIST SP 800-53 SC-7", "AICPA TSC CC6.1", "ISO 27001:2013 A.13.1.1", "ISO 27001:2013 A.13.1.3", "ISO 27001:2013 A.13.2.1", "ISO 27001:2013 A.14.1.2", "ISO 27001:2013 A.14.1.3", ], }, "Workflow": {"Status": "RESOLVED"}, "RecordState": "ARCHIVED", } yield finding @registry.register_check("ec2") def vpc_flow_logs_check(cache: dict, awsAccountId: str, awsRegion: str, awsPartition: str) -> dict: """[VPC.2] Flow Logs should be enabled for all VPCs""" vpc = describe_vpcs(cache=cache) for vpcs in vpc["Vpcs"]: vpcId = str(vpcs["VpcId"]) vpcArn = f"arn:{awsPartition}:ec2:{awsRegion}:{awsAccountId}vpc/{vpcId}" response = ec2.describe_flow_logs( DryRun=False, Filters=[{"Name": "resource-id", "Values": [vpcId]}] ) iso8601Time = datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc).isoformat() if str(response["FlowLogs"]) == "[]": finding = { "SchemaVersion": "2018-10-08", "Id": vpcArn + "/vpc-flow-log-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": vpcArn, "AwsAccountId": awsAccountId, "Types": ["Software and Configuration Checks/AWS Security Best Practices"], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "MEDIUM"}, "Confidence": 99, "Title": "[VPC.2] Flow Logs should be enabled for all VPCs", "Description": "VPC " + vpcId + " does not have flow logging enabled. Refer to the remediation instructions if this configuration is not intended", "Remediation": { "Recommendation": { "Text": "For more information on flow logs refer to the VPC Flow Logs section of the Amazon Virtual Private Cloud User Guide", "Url": "https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEc2Vpc", "Id": vpcArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"Other": {"VpcId": vpcId}}, } ], "Compliance": { "Status": "FAILED", "RelatedRequirements": [ "NIST CSF DE.AE-3", "NIST SP 800-53 AU-6", "NIST SP 800-53 CA-7", "NIST SP 800-53 IR-4", "NIST SP 800-53 IR-5", "NIST SP 800-53 IR-8", "NIST SP 800-53 SI-4", "AICPA TSC CC7.2", "ISO 27001:2013 A.12.4.1", "ISO 27001:2013 A.16.1.7", ], }, "Workflow": {"Status": "NEW"}, "RecordState": "ACTIVE", } yield finding else: finding = { "SchemaVersion": "2018-10-08", "Id": vpcArn + "/vpc-flow-log-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": vpcArn, "AwsAccountId": awsAccountId, "Types": ["Software and Configuration Checks/AWS Security Best Practices"], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "INFORMATIONAL"}, "Confidence": 99, "Title": "[VPC.2] Flow Logs should be enabled for all VPCs", "Description": "VPC " + vpcId + " has flow logging enabled.", "Remediation": { "Recommendation": { "Text": "For more information on flow logs refer to the VPC Flow Logs section of the Amazon Virtual Private Cloud User Guide", "Url": "https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEc2Vpc", "Id": vpcArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"Other": {"VpcId": vpcId}}, } ], "Compliance": { "Status": "PASSED", "RelatedRequirements": [ "NIST CSF DE.AE-3", "NIST SP 800-53 AU-6", "NIST SP 800-53 CA-7", "NIST SP 800-53 IR-4", "NIST SP 800-53 IR-5", "NIST SP 800-53 IR-8", "NIST SP 800-53 SI-4", "AICPA TSC CC7.2", "ISO 27001:2013 A.12.4.1", "ISO 27001:2013 A.16.1.7", ], }, "Workflow": {"Status": "RESOLVED"}, "RecordState": "ARCHIVED", } yield finding @registry.register_check("ec2") def subnet_public_ip_check(cache: dict, awsAccountId: str, awsRegion: str, awsPartition: str) -> dict: """[VPC.3] Subnets should not automatically map Public IP addresses on launch""" iso8601Time = datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc).isoformat() vpc = describe_vpcs(cache=cache) myVpcs = vpc["Vpcs"] for vpcs in myVpcs: vpcId = str(vpcs["VpcId"]) # Get subnets for the VPC for snet in ec2.describe_subnets(Filters=[{'Name': 'vpc-id','Values': [vpcId]}])["Subnets"]: snetArn = str(snet["SubnetArn"]) snetId = str(snet["SubnetId"]) if str(snet["MapPublicIpOnLaunch"]) == "True": # This is a failing check finding = { "SchemaVersion": "2018-10-08", "Id": snetArn + "/subnet-map-public-ip-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": snetArn, "AwsAccountId": awsAccountId, "Types": ["Software and Configuration Checks/AWS Security Best Practices"], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "LOW"}, "Confidence": 99, "Title": "[VPC.3] Subnets should not automatically map Public IP addresses on launch", "Description": "Subnet " + snetId + " maps Public IPs on Launch, consider disabling this to avoid unncessarily exposing workloads to the internet. Refer to the remediation instructions if this configuration is not intended", "Remediation": { "Recommendation": { "Text": "For information on IP addressing refer to the IP Addressing in your VPC section of the Amazon Virtual Private Cloud User Guide", "Url": "https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html" } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEc2Subnet", "Id": snetArn, "Partition": awsPartition, "Region": awsRegion, "Details": { "Other": { "VpcId": vpcId, "SubnetId": snetId } } } ], "Compliance": { "Status": "FAILED", "RelatedRequirements": [ "NIST CSF PR.AC-5", "NIST SP 800-53 AC-4", "NIST SP 800-53 AC-10", "NIST SP 800-53 SC-7", "AICPA TSC CC6.1", "ISO 27001:2013 A.13.1.1", "ISO 27001:2013 A.13.1.3", "ISO 27001:2013 A.13.2.1", "ISO 27001:2013 A.14.1.2", "ISO 27001:2013 A.14.1.3", ] }, "Workflow": {"Status": "NEW"}, "RecordState": "ACTIVE" } yield finding else: finding = { "SchemaVersion": "2018-10-08", "Id": snetArn + "/subnet-map-public-ip-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": snetArn, "AwsAccountId": awsAccountId, "Types": ["Software and Configuration Checks/AWS Security Best Practices"], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "INFORMATIONAL"}, "Confidence": 99, "Title": "[VPC.3] Subnets should not automatically map Public IP addresses on launch", "Description": "Subnet " + snetId + " does not map Public IPs on Launch.", "Remediation": { "Recommendation": { "Text": "For information on IP addressing refer to the IP Addressing in your VPC section of the Amazon Virtual Private Cloud User Guide", "Url": "https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html" } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEc2Subnet", "Id": snetArn, "Partition": awsPartition, "Region": awsRegion, "Details": { "Other": { "VpcId": vpcId, "SubnetId": snetId } } } ], "Compliance": { "Status": "PASSED", "RelatedRequirements": [ "NIST CSF PR.AC-5", "NIST SP 800-53 AC-4", "NIST SP 800-53 AC-10", "NIST SP 800-53 SC-7", "AICPA TSC CC6.1", "ISO 27001:2013 A.13.1.1", "ISO 27001:2013 A.13.1.3", "ISO 27001:2013 A.13.2.1", "ISO 27001:2013 A.14.1.2", "ISO 27001:2013 A.14.1.3" ] }, "Workflow": {"Status": "RESOLVED"}, "RecordState": "ARCHIVED" } yield finding @registry.register_check("ec2") def subnet_no_ip_space_check(cache: dict, awsAccountId: str, awsRegion: str, awsPartition: str) -> dict: """[VPC.4] Subnets should be monitored for available IP address space""" iso8601Time = datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc).isoformat() vpc = describe_vpcs(cache=cache) myVpcs = vpc["Vpcs"] for vpcs in myVpcs: vpcId = str(vpcs["VpcId"]) # Get subnets for the VPC for snet in ec2.describe_subnets(Filters=[{'Name': 'vpc-id','Values': [vpcId]}])["Subnets"]: snetArn = str(snet["SubnetArn"]) snetId = str(snet["SubnetId"]) if int(snet["AvailableIpAddressCount"]) <= 1: # This is a failing check finding = { "SchemaVersion": "2018-10-08", "Id": snetArn + "/subnet-map-no-more-ips-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": snetArn, "AwsAccountId": awsAccountId, "Types": ["Software and Configuration Checks/AWS Security Best Practices"], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "MEDIUM"}, "Confidence": 99, "Title": "[VPC.4] Subnets should be monitored for available IP address space", "Description": "Subnet " + snetId + " does not have any available IP address space, consider terminating unncessary workloads or expanding CIDR capacity to avoid availability losses. Refer to the remediation instructions if this configuration is not intended", "Remediation": { "Recommendation": { "Text": "For information on IP addressing refer to the IP Addressing in your VPC section of the Amazon Virtual Private Cloud User Guide", "Url": "https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html" } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEc2Subnet", "Id": snetArn, "Partition": awsPartition, "Region": awsRegion, "Details": { "Other": { "VpcId": vpcId, "SubnetId": snetId } } } ], "Compliance": { "Status": "FAILED", "RelatedRequirements": [ "NIST CSF ID.BE-5", "NIST CSF PR.PT-5", "NIST SP 800-53 CP-2", "NIST SP 800-53 CP-11", "NIST SP 800-53 SA-13", "NIST SP 800-53 SA14", "AICPA TSC CC3.1", "AICPA TSC A1.2", "ISO 27001:2013 A.11.1.4", "ISO 27001:2013 A.17.1.1", "ISO 27001:2013 A.17.1.2", "ISO 27001:2013 A.17.2.1", ] }, "Workflow": {"Status": "NEW"}, "RecordState": "ACTIVE" } yield finding else: finding = { "SchemaVersion": "2018-10-08", "Id": snetArn + "/subnet-map-no-more-ips-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": snetArn, "AwsAccountId": awsAccountId, "Types": ["Software and Configuration Checks/AWS Security Best Practices"], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "INFORMATIONAL"}, "Confidence": 99, "Title": "[VPC.4] Subnets should be monitored for available IP address space", "Description": "Subnet " + snetId + " has available IP address space, well, at least 2 lol...", "Remediation": { "Recommendation": { "Text": "For information on IP addressing refer to the IP Addressing in your VPC section of the Amazon Virtual Private Cloud User Guide", "Url": "https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html" } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEc2Subnet", "Id": snetArn, "Partition": awsPartition, "Region": awsRegion, "Details": { "Other": { "VpcId": vpcId, "SubnetId": snetId } } } ], "Compliance": { "Status": "PASSED", "RelatedRequirements": [ "NIST CSF ID.BE-5", "NIST CSF PR.PT-5", "NIST SP 800-53 CP-2", "NIST SP 800-53 CP-11", "NIST SP 800-53 SA-13", "NIST SP 800-53 SA14", "AICPA TSC CC3.1", "AICPA TSC A1.2", "ISO 27001:2013 A.11.1.4", "ISO 27001:2013 A.17.1.1", "ISO 27001:2013 A.17.1.2", "ISO 27001:2013 A.17.2.1", ] }, "Workflow": {"Status": "RESOLVED"}, "RecordState": "ARCHIVED" } yield finding
Arrays/random_sample.py
techsavvyy/coding-problems
2,647
11101853
<filename>Arrays/random_sample.py ''' Random Sample Given an array and length of the sample, find a random sample from that array. Input: [1, 2, 3, 4], 2 Output: This is a nondeterministic algorithm, C(N, K) combinations exist. In this case 4! / (2! * (4 - 2)!) = 6. All combinations are a valid solution. [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4] ========================================= Simple solution in one pass, Reservoir sampling. Maybe the solution looks like the elements don't have an equal probability to be chosen, but there is a proof that they have equal probability https://en.wikipedia.org/wiki/Reservoir_sampling Btw this solution works when we don't know the total number of elements. Time Complexity: O(N) Space Complexity: O(K) Another simple solution in one pass, the probability for each element to be choosen in the first choosing is K/N, after that we're removing that element. In the second choosing the probability for each element is (K-1)/(N-1), in the third is (K-2)/(N-2), etc... This solution could be proved using induction hypothesis. Time Complexity: O(N) Space Complexity: O(K) Note: In Python there is already implemented sample method (in random module "from random import sample", sample(arr, k)). Note 2: This problem can be solved using the shuffle method (shuffle_array.py), and choosing the first K element from the shuffled array. Note 3: Don't use solutions which are iterating until K distinct elements/indices are chosen. For example: distinct = set() while(len(distinct) < k): distinct.insert(randint(0, n)) Why? Because if you try it with an array with 100 000 elements and K equal to 99 999, then the code inside the "while" could be executed more than 1 million times, that's O(10*N). So this algorithm doesn't work good when K is close to N, to many duplicates will be choosen, read about Birthday Problem (https://en.wikipedia.org/wiki/Birthday_problem). ''' ############## # Solution 1 # ############## from random import randint def reservoir_sampling(arr, k): # fill the reservoir array sample = [] for i in range(k): sample.append(arr[i]) # replace elements with gradually decreasing probability n = len(arr) for i in range(k, n): # randint(a, b) generates a uniform integer from the inclusive range {a, ..., b} (a <= X <= b) j = randint(0, i) if j < k: sample[j] = arr[i] return sample ############## # Solution 2 # ############## from random import random def probabilistic_sampling(arr, k): sample = [] n = len(arr) for el in arr: # random() generates a uniform double in this range (0 <= X < 1) # (k / n) is the probability for this element to be choosen (0 <= X <= 1) if random() < (k / n): sample.append(el) k -= 1 # left elements to be choosen n -= 1 # left elements for choosing return sample ########### # Testing # ########### # Test 1 # Correct result => One of these: [1, 2], [1, 3], [1, 4], [2, 3], [2, 4] arr = [1, 2, 3, 4] k = 2 print(reservoir_sampling(arr, k)) print(probabilistic_sampling(arr, k))
tests/test_torch_hub.py
unitaryai/detoxify
404
11101862
<reponame>unitaryai/detoxify import torch import gc def test_torch_hub_models(): result = torch.hub.list("unitaryai/detoxify") def test_torch_hub_bert(): model = torch.hub.load('unitaryai/detoxify', 'toxic_bert') del model gc.collect() def test_torch_hub_roberta(): model = torch.hub.load('unitaryai/detoxify', 'unbiased_toxic_roberta') del model gc.collect() def test_torch_hub_multilingual(): model = torch.hub.load('unitaryai/detoxify', 'multilingual_toxic_xlm_r') del model gc.collect()
sample/tensorflow/unit_test/fused_QKV_multihead_attention_unit_test.py
dujiangsu/FasterTransformer
777
11101876
<filename>sample/tensorflow/unit_test/fused_QKV_multihead_attention_unit_test.py # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import tensorflow as tf import numpy as np import unittest import sys import os import math sys.path.append("./tensorflow/") from utils.encoder import build_sequence_mask os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' USE_CACHE_BATCH_MAJOR_ATTENTION = True class TestFusedQKVMutiheadAttention(unittest.TestCase): def test_attn_batch_fp32(self): for b in [1, 4, 32, 128]: tf.reset_default_graph() self.run_attn(b, 128, 12, 64, tf.float32) def test_attn_batch_fp16(self): for b in [1, 4, 32, 128]: tf.reset_default_graph() self.run_attn(b, 128, 12, 64, tf.float16) def test_attn_seq_fp32(self): for seq in [64, 96, 128, 384]: tf.reset_default_graph() self.run_attn(4, seq, 12, 64, tf.float32) def test_attn_seq_fp16(self): for seq in [64, 96, 128, 384]: tf.reset_default_graph() self.run_attn(4, seq, 12, 64, tf.float16) def test_attn_head_fp32(self): for head in [8, 12, 16]: tf.reset_default_graph() self.run_attn(4, 128, head, 64, tf.float32) def test_attn_head_fp16(self): for head in [8, 12, 16]: tf.reset_default_graph() self.run_attn(4, 128, head, 64, tf.float16) def test_attn_size_fp32(self): for size in [32, 64, 128]: tf.reset_default_graph() self.run_attn(4, 128, 12, size, tf.float32) def test_attn_size_fp16(self): for size in [32, 64, 128]: tf.reset_default_graph() self.run_attn(4, 128, 12, size, tf.float16) def run_attn(self, batch_size, seq_len, head_num, size_per_head, data_type): threshold = 3e-5 if data_type == tf.float16: threshold = 3e-3 # Inputs: qkv_buf and k/v cache # Do: update k/v cahce, and compute attention (Q*K, QK*V) # Output: attention result, new k/v cache # Notes: Only used for decoder, so seqlen of q is always 1. np.random.seed(1) tf.set_random_seed(1) qkv_buf = tf.random.normal([batch_size, 3, head_num, size_per_head], dtype=data_type) qkv_bias = tf.random.normal([3, head_num, size_per_head], dtype=data_type) k_cache = tf.random.normal([batch_size, head_num, seq_len - 1, size_per_head], dtype=data_type) v_cache = tf.random.normal([batch_size, head_num, seq_len - 1, size_per_head], dtype=data_type) q, k, v = tf.split(qkv_buf + qkv_bias, 3, axis=1) q = tf.transpose(q, [0, 2, 1, 3]) k = tf.transpose(k, [0, 2, 1, 3]) v = tf.transpose(v, [0, 2, 1, 3]) keys = tf.concat([k_cache, k], axis=2) values = tf.concat([v_cache, v], axis=2) tf_k_cache = keys tf_v_cache = values q *= (size_per_head)**-0.5 dot = tf.matmul(q, keys, transpose_b=True) attn = tf.cast(tf.nn.softmax(tf.cast(dot, data_type)), dot.dtype) context = tf.matmul(attn, values) tf_attn_result = tf.transpose(context, [0, 2, 1, 3]) fused_multihead_attention_op = tf.load_op_library(os.path.join('./lib/libtf_fused_multihead_attention.so')) # if USE_CACHE_BATCH_MAJOR_ATTENTION == True # The layout of the cache buffer for the keys is [batch_size, head_num, size_per_head/x, seq_len, x] # where x == 8 for FP16 and x == 4 for FP32 where the fastest moving dimension (contiguous data) # is the rightmost one. The values for x are chosen to create chunks of 16 bytes. # The layout of the cache buffer for the values is [batch_size, head_num, seq_len, size_per_head]. if USE_CACHE_BATCH_MAJOR_ATTENTION == True: x = 8 if data_type == tf.float16 else 4 assert size_per_head % x == 0 ft_k_cache = tf.concat([k_cache, tf.zeros_like(k)], axis=2) ft_k_cache_shape = np.array([batch_size, head_num, seq_len, size_per_head / x, x], dtype=np.int32) ft_k_cache = tf.reshape(ft_k_cache, ft_k_cache_shape) ft_k_cache = tf.transpose(ft_k_cache, [0, 1, 3, 2, 4]) ft_v_cache = tf.concat([v_cache, tf.zeros_like(v)], axis=2) else : ft_k_cache = tf.concat([k_cache, tf.zeros_like(k)], axis=2) # [batch_size, head_num, seq_len + 1, size_per_head] ft_k_cache = tf.transpose(ft_k_cache, [2, 0, 1, 3]) # [seq_len + 1, batch_size, head_num, size_per_head] ft_v_cache = tf.concat([v_cache, tf.zeros_like(v)], axis=2) ft_v_cache = tf.transpose(ft_v_cache, [2, 0, 1, 3]) ft_attn_result, ft_k_cache, ft_v_cache = fused_multihead_attention_op.fused_qkv_multi_head_attention(qkv_buf, qkv_bias, ft_k_cache, ft_v_cache, batch_size, seq_len, head_num, size_per_head) if USE_CACHE_BATCH_MAJOR_ATTENTION == True: ft_k_cache = tf.transpose(ft_k_cache, [0, 1, 3, 2, 4]) ft_k_cache_shape = np.array([batch_size, head_num, seq_len, size_per_head], dtype=np.int32) ft_k_cache = tf.reshape(ft_k_cache, ft_k_cache_shape) else: ft_k_cache = tf.transpose(ft_k_cache, [1, 2, 0, 3]) # [batch_size, head_num, seq_len + 1, size_per_head] ft_v_cache = tf.transpose(ft_v_cache, [1, 2, 0, 3]) config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: print(batch_size, seq_len, head_num, size_per_head) sess.run(tf.global_variables_initializer()) tf_attn_result_val, ft_attn_result_val, k_cache_diff_val, v_cache_diff_val = sess.run([tf_attn_result, ft_attn_result, tf_k_cache - ft_k_cache, tf_v_cache - ft_v_cache]) attn_diff_val = tf_attn_result_val - ft_attn_result_val attn_max_diff = abs(attn_diff_val).max() attn_max_diff_id = abs(attn_diff_val).argmax() print("attn_max_diff_id = ", attn_max_diff_id) k_cache_max_diff = abs(k_cache_diff_val).max() v_cache_max_diff = abs(v_cache_diff_val).max() print("tf_attn_result_val at max diff = ", tf_attn_result_val.flatten()[attn_max_diff_id]) print("ft_attn_result_val at max diff = ", ft_attn_result_val.flatten()[attn_max_diff_id]) print("threshold = ", threshold) print(attn_max_diff) print(k_cache_max_diff) print(v_cache_max_diff) sys.stdout.flush() assert(attn_max_diff < threshold) assert(k_cache_max_diff < threshold) assert(v_cache_max_diff < threshold) if __name__ == "__main__": unittest.main()
animatplot/blocks/vectors.py
ianhi/animatplot
402
11101881
<reponame>ianhi/animatplot from .base import Block from .image_like import Pcolormesh import numpy as np class Quiver(Block): """ A block for animated quiver plots Parameters ---------- X : 1D or 2D numpy array The x positions of the arrows. Cannot be animated. Y : 1D or 2D numpy array The y positions of the arrows. Cannot be animated. U : 2D or 3D numpy array The U displacement of the arrows. 1 dimension higher than the X, Y arrays. V : 2D or 3D numpy array The V displcement of the arrows. 1 dimension higher than the X, Y arrays. ax : matplotlib.axes.Axes, optional The matplotlib axes to the block to. Defaults to matplotlib.pyplot.gca() t_axis : int, optional The axis of the array that represents time. Defaults to 0. No effect if U, V are lists. Attributes ---------- ax : matplotlib.axes.Axes The matplotlib axes that the block is attached to. Notes ----- This block accepts additional keyword arguments to be passed to :meth:`matplotlib.axes.Axes.quiver` """ def __init__(self, X, Y, U, V, ax=None, t_axis=0, **kwargs): self.X = X self.Y = Y self.U = np.asanyarray(U) self.V = np.asanyarray(V) if X.shape != Y.shape: raise ValueError("X, Y must have the same shape") if self.U.shape != self.V.shape: raise ValueError("U, V must have the same shape") super().__init__(ax, t_axis) self._dim = len(self.U.shape) self._is_list = isinstance(U, list) Slice = self._make_slice(0, self._dim) self.Q = self.ax.quiver(self.X, self.Y, self.U[Slice], self.V[Slice], **kwargs) def _update(self, i): Slice = self._make_slice(i, self._dim) self.Q.set_UVC(self.U[Slice], self.V[Slice]) return self.Q def __len__(self): if self._is_list: return self.U.shape[0] return self.U.shape[self.t_axis] def vector_comp(X, Y, U, V, skip=5, *, t_axis=0, pcolor_kw={}, quiver_kw={}): """produces an animation of vector fields This takes 2D vector field, and plots the magnitude as a pcolomesh, and the normalized direction as a quiver plot. It then animates it. This is a convience function. It wraps around the Pcolormesh and Quiver blocks. It will be more restrictive than using the blocks themselves. If you need more control, or the ability to pass data in as a list, then use the individual blocks. Parameters ---------- X : 2D numpy array The x location of the vectors to be animated Y : 2D numpy array The x location of the vectors to be animated U : 3D numpy array The x components of the vectors to be animated. V : 3D numpy array The y components of the vectors to be animated. skip : int, optional The amount of values to skip over when making the quiver plot. Higher skip means fewer arrows. For best results, the skip should divide the length of the data-1. Defaults to 5. t_axis : int, optional The axis of the U, V array's the represent time. Defaults to 0. Note this is different from the defaults that blocks choose. This default is chosen to be consistent with 3D-meshgrids (meshgrid(x, y, t)). pcolor_kw : dict, optional A dictionary of parameters to pass to pcolormesh. quiver_kw : dict, optional A dictionary of parameters to pass to quiver. Returns ------- list of Animatplot.blocks.Block A list of all the blocks used in the animation. The list contains a Pcolorblock, and a Quiver block in that order. """ # plot the magnitude of the vectors as a pcolormesh magnitude = np.sqrt(U**2+V**2) pcolor_block = Pcolormesh(X, Y, magnitude, t_axis=t_axis, **pcolor_kw) # use a subset of the data to plot the arrows as a quiver plot. xy_slice = tuple([slice(None, None, skip)]*len(X.shape)) uv_slice = [slice(None, None, skip)]*len(U.shape) uv_slice[t_axis] = slice(None) uv_slice = tuple(uv_slice) quiver_block = Quiver(X[xy_slice], Y[xy_slice], U[uv_slice]/magnitude[uv_slice], V[uv_slice]/magnitude[uv_slice], t_axis=t_axis, **quiver_kw) return [pcolor_block, quiver_block]
RecoTracker/FinalTrackSelectors/python/trackListMerger_cfi.py
ckamtsikis/cmssw
852
11101883
import FWCore.ParameterSet.Config as cms # # ctf tracks parameter-set entries for module # # TrackListMerger # # located in # # RecoTracker/FinalTrackSelectors # # # sequence dependency: # # # # cleans and merges ctf and rs Track lists and put new list back in Event trackListMerger = cms.EDProducer("TrackListMerger", # minimum shared fraction to be called duplicate for tracks between collections ShareFrac = cms.double(0.19), # best track chosen by chi2 modified by parameters below: FoundHitBonus = cms.double(5.0), LostHitPenalty = cms.double(5.0), # minimum pT in GeV/c MinPT = cms.double(0.05), # minimum difference in rechit position in cm # negative Epsilon uses sharedInput for comparison Epsilon = cms.double(-0.001), # maximum chisq/dof MaxNormalizedChisq = cms.double(1000.0), # minimum number of RecHits used in fit MinFound = cms.int32(3), # always override these in the clone TrackProducers = cms.VInputTag(cms.InputTag(''),cms.InputTag('')), hasSelector = cms.vint32(0,0), # minimum shared fraction to be called duplicate indivShareFrac = cms.vdouble(1.0,1.0), selectedTrackQuals = cms.VInputTag(cms.InputTag(""),cms.InputTag("")), setsToMerge = cms.VPSet( cms.PSet( tLists=cms.vint32(0,1), pQual=cms.bool(False)), cms.PSet( tLists=cms.vint32(2,3), pQual=cms.bool(True) ), cms.PSet( tLists=cms.vint32(4,5), pQual=cms.bool(True) ), cms.PSet( tLists=cms.vint32(2,3,4,5), pQual=cms.bool(True) ), cms.PSet( tLists=cms.vint32(0,1,2,3,4,5), pQual=cms.bool(True) ) ), trackAlgoPriorityOrder = cms.string("trackAlgoPriorityOrder"), # set new quality for confirmed tracks for each merged pair and then for the final pair allowFirstHitShare = cms.bool(True), newQuality = cms.string('confirmed'), copyExtras = cms.untracked.bool(False), writeOnlyTrkQuals = cms.bool(False), copyMVA = cms.bool(True) )
etl/parsers/etw/Microsoft_Windows_RemoteApp_and_Desktop_Connections.py
IMULMUL/etl-parser
104
11101904
<gh_stars>100-1000 # -*- coding: utf-8 -*- """ Microsoft-Windows-RemoteApp and Desktop Connections GUID : 1b8b402d-78dc-46fb-bf71-46e64aedf165 """ from construct import Int8sl, Int8ul, Int16ul, Int16sl, Int32sl, Int32ul, Int64sl, Int64ul, Bytes, Double, Float32l, Struct from etl.utils import WString, CString, SystemTime, Guid from etl.dtyp import Sid from etl.parsers.etw.core import Etw, declare, guid @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1000, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1000_0(Etw): pattern = Struct( "Name" / WString, "FeedURL" / WString, "ErrorCode" / Int32ul, "ErrorCodeAdditional" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1001, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1001_0(Etw): pattern = Struct( "Name" / WString, "FeedURL" / WString, "ErrorCode" / Int32ul, "ErrorCodeAdditional" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1002, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1002_0(Etw): pattern = Struct( "Name" / WString, "FeedURL" / WString, "ErrorCode" / Int32ul, "ErrorCodeAdditional" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1003, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1003_0(Etw): pattern = Struct( "Name" / WString, "FeedURL" / WString, "ErrorCode" / Int32ul, "ErrorCodeAdditional" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1004, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1004_0(Etw): pattern = Struct( "Name" / WString, "FeedURL" / WString, "ErrorCode" / Int32ul, "ErrorCodeAdditional" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1005, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1005_0(Etw): pattern = Struct( "Name" / WString, "FeedURL" / WString, "ErrorCode" / Int32ul, "ErrorCodeAdditional" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1006, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1006_0(Etw): pattern = Struct( "Name" / WString, "FeedURL" / WString, "ErrorCode" / Int32ul, "ErrorCodeAdditional" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1007, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1007_0(Etw): pattern = Struct( "Name" / WString, "FeedURL" / WString, "ErrorCode" / Int32ul, "ErrorCodeAdditional" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1008, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1008_0(Etw): pattern = Struct( "Name" / WString, "FeedURL" / WString, "ErrorCode" / Int32ul, "ErrorCodeAdditional" / Int32ul, "NumResourcesAvailable" / Int32ul, "NumResourcesDownloaded" / Int32ul, "NumResourcesNotDownloaded" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1009, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1009_0(Etw): pattern = Struct( "Name" / WString, "FeedURL" / WString, "ErrorCode" / Int32ul, "ErrorCodeAdditional" / Int32ul, "NumResourcesAvailable" / Int32ul, "NumResourcesDownloaded" / Int32ul, "NumResourcesNotDownloaded" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1010, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1010_0(Etw): pattern = Struct( "Name" / WString, "FeedURL" / WString, "ErrorCode" / Int32ul, "ErrorCodeAdditional" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1011, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1011_0(Etw): pattern = Struct( "Name" / WString, "FeedURL" / WString, "ErrorCode" / Int32ul, "ErrorCodeAdditional" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1012, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1012_0(Etw): pattern = Struct( "Name" / WString, "FeedURL" / WString, "ErrorCode" / Int32ul, "ErrorCodeAdditional" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1013, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1013_0(Etw): pattern = Struct( "Name" / WString, "FeedURL" / WString, "ErrorCode" / Int32ul, "ErrorCodeAdditional" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1014, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1014_0(Etw): pattern = Struct( "Name" / WString, "FeedURL" / WString, "ErrorCode" / Int32ul, "ErrorCodeAdditional" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1015, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1015_0(Etw): pattern = Struct( "Name" / WString, "FeedURL" / WString, "ErrorCode" / Int32ul, "ErrorCodeAdditional" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1016, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1016_0(Etw): pattern = Struct( "Name" / WString, "FeedURL" / WString, "ErrorCode" / Int32ul, "ErrorCodeAdditional" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1017, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1017_0(Etw): pattern = Struct( "Name" / WString, "FeedURL" / WString, "ErrorCode" / Int32ul, "ErrorCodeAdditional" / Int32ul, "ResourceURL" / WString ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1018, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1018_0(Etw): pattern = Struct( "Name" / WString, "FeedURL" / WString, "ErrorCode" / Int32ul, "ErrorCodeAdditional" / Int32ul, "ResourceURL" / WString ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1019, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1019_0(Etw): pattern = Struct( "Name" / WString, "FeedURL" / WString ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1020, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1020_0(Etw): pattern = Struct( "Name" / WString, "FeedURL" / WString ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1021, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1021_0(Etw): pattern = Struct( "String1" / WString, "String2" / WString ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1022, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1022_0(Etw): pattern = Struct( "Hint" / WString, "FeedURL" / WString ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1023, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1023_0(Etw): pattern = Struct( "Hint" / WString, "FeedURL" / WString, "ErrorCode" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1024, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1024_0(Etw): pattern = Struct( "Hint" / WString, "FeedURL" / WString, "ErrorCode" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1025, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1025_0(Etw): pattern = Struct( "ResourceName" / WString, "ConnectionName" / WString, "ConnectionURL" / WString, "ErrorCode" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1026, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1026_0(Etw): pattern = Struct( "User" / WString ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1027, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1027_0(Etw): pattern = Struct( "UserName" / WString, "ConnectionName" / WString ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1028, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1028_0(Etw): pattern = Struct( "UserName" / WString, "ConnectionName" / WString ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1029, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1029_0(Etw): pattern = Struct( "UserName" / WString, "ConnectionName" / WString ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1030, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1030_0(Etw): pattern = Struct( "UserName" / WString, "ConnectionName" / WString ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1031, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1031_0(Etw): pattern = Struct( "ConnectionName" / WString, "ErrorCode" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1032, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1032_0(Etw): pattern = Struct( "UserName" / WString, "ConnectionName" / WString ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1033, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1033_0(Etw): pattern = Struct( "UserName" / WString, "ConnectionName" / WString, "ErrorCode" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1034, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1034_0(Etw): pattern = Struct( "ConnectionId" / Int32ul, "ConnectionName" / WString ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1035, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1035_0(Etw): pattern = Struct( "ConnectionName" / WString ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1036, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1036_0(Etw): pattern = Struct( "ConnectionName" / WString, "ErrorCode" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1037, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1037_0(Etw): pattern = Struct( "ConnectionId" / Int32ul, "ConnectionName" / WString ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1038, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1038_0(Etw): pattern = Struct( "UserName" / WString, "ConnectionName" / WString ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1039, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1039_0(Etw): pattern = Struct( "UserName" / WString, "ConnectionName" / WString, "ErrorCode" / Int32ul ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1040, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1040_0(Etw): pattern = Struct( "UserName" / WString, "ConnectionName" / WString ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1041, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1041_0(Etw): pattern = Struct( "RemoteAppName" / WString, "ConnectionName" / WString, "Reason" / WString ) @declare(guid=guid("1b8b402d-78dc-46fb-bf71-46e64aedf165"), event_id=1042, version=0) class Microsoft_Windows_RemoteApp_and_Desktop_Connections_1042_0(Etw): pattern = Struct( "UserName" / WString, "ConnectionName" / WString, "ErrorCode" / Int32ul )
ib/ext/cfg/EWrapperMsgGenerator.py
LewisW/IbPy
1,260
11101906
<filename>ib/ext/cfg/EWrapperMsgGenerator.py #!/usr/bin/env python # -*- coding: utf-8 -*- """ ib.ext.cfg.EWrapperMsgGenerator -> config module for EWrapperMsgGenerator.java. """ from java2python.config.default import modulePrologueHandlers modulePrologueHandlers += [ 'from ib.ext.AnyWrapperMsgGenerator import AnyWrapperMsgGenerator', 'from ib.ext.EClientSocket import EClientSocket', 'from ib.ext.MarketDataType import MarketDataType', 'from ib.ext.TickType import TickType', 'from ib.ext.Util import Util', '', 'from ib.lib import Double', ]
project/game/ai/riichi.py
MahjongRepository/tenhou-python-bot
201
11101931
<filename>project/game/ai/riichi.py<gh_stars>100-1000 from typing import List from game.ai.defence.enemy_analyzer import EnemyAnalyzer from game.ai.discard import DiscardOption from game.ai.placement import Placement from mahjong.tile import TilesConverter from mahjong.utils import is_chi, is_honor, is_pair, is_terminal, plus_dora, simplify class Riichi: def __init__(self, player): self.player = player def should_call_riichi(self, discard_option: DiscardOption, threats: List[EnemyAnalyzer]): assert discard_option.shanten == 0 assert not self.player.is_open_hand hand_builder = self.player.ai.hand_builder waiting_34 = discard_option.waiting # empty waiting can be found in some cases if not waiting_34: return False # save original hand state # we will restore it after we have finished our routines tiles_original, discards_original = hand_builder.emulate_discard(discard_option) count_tiles = hand_builder.count_tiles(waiting_34, TilesConverter.to_34_array(self.player.closed_hand)) if count_tiles == 0: # don't call karaten riichi hand_builder.restore_after_emulate_discard(tiles_original, discards_original) return False # we decide if we should riichi or not before making a discard, hence we check for round step == 0 first_discard = self.player.round_step == 0 if first_discard and not self.player.table.meld_was_called: hand_builder.restore_after_emulate_discard(tiles_original, discards_original) # it is daburi! return True # regular path if len(waiting_34) == 1: should_riichi = self._should_call_riichi_one_sided(waiting_34, threats) else: should_riichi = self._should_call_riichi_many_sided(waiting_34, threats) hand_builder.restore_after_emulate_discard(tiles_original, discards_original) return should_riichi def _should_call_riichi_one_sided(self, waiting_34: List[int], threats: List[EnemyAnalyzer]): count_tiles = self.player.ai.hand_builder.count_tiles( waiting_34, TilesConverter.to_34_array(self.player.closed_hand) ) waiting_34 = waiting_34[0] hand_value = self.player.ai.estimate_hand_value_or_get_from_cache(waiting_34, call_riichi=False) hand_value_with_riichi = self.player.ai.estimate_hand_value_or_get_from_cache(waiting_34, call_riichi=True) must_riichi = self.player.ai.placement.must_riichi( has_yaku=(hand_value.yaku is not None and hand_value.cost is not None), num_waits=count_tiles, cost_with_riichi=hand_value_with_riichi.cost["main"], cost_with_damaten=(hand_value.cost and hand_value.cost["main"] or 0), ) if must_riichi == Placement.MUST_RIICHI: return True elif must_riichi == Placement.MUST_DAMATEN: return False tiles = self.player.closed_hand[:] closed_melds = [x for x in self.player.melds if not x.opened] for meld in closed_melds: tiles.extend(meld.tiles[:3]) results, tiles_34 = self.player.ai.hand_builder.divide_hand(tiles, waiting_34) result = results[0] closed_tiles_34 = TilesConverter.to_34_array(self.player.closed_hand) have_suji, have_kabe = self.player.ai.hand_builder.check_suji_and_kabe(closed_tiles_34, waiting_34) # what if we have yaku if hand_value.yaku is not None and hand_value.cost is not None: min_cost = hand_value.cost["main"] min_cost_with_riichi = hand_value_with_riichi and hand_value_with_riichi.cost["main"] or 0 # tanki honor is a good wait, let's damaten only if hand is already expensive if is_honor(waiting_34): if self.player.is_dealer and min_cost < 12000: return True if not self.player.is_dealer and min_cost < 8000: return True return False is_chiitoitsu = len([x for x in result if is_pair(x)]) == 7 simplified_waiting = simplify(waiting_34) for hand_set in result: if waiting_34 not in hand_set: continue # tanki wait but not chiitoitsu if is_pair(hand_set) and not is_chiitoitsu: # let's not riichi tanki 4, 5, 6 if 3 <= simplified_waiting <= 5: return False # don't riichi tanki wait on 1, 2, 3, 7, 8, 9 if it's only 1 tile if count_tiles == 1: return False # don't riichi 2378 tanki if hand has good value if simplified_waiting != 0 and simplified_waiting != 8: if self.player.is_dealer and min_cost >= 7700: return False if not self.player.is_dealer and min_cost >= 5200: return False # only riichi if we have suji-trap or there is kabe if not have_suji and not have_kabe: return False # let's not push these bad wait against threats if threats: return False return True # tanki wait with chiitoitsu if is_pair(hand_set) and is_chiitoitsu: # chiitoitsu on last suit tile is not the best if count_tiles == 1: return False # early riichi on 19 tanki is good if (simplified_waiting == 0 or simplified_waiting == 8) and self.player.round_step < 7: return True # riichi on 19 tanki is good later too if we have 3 tiles to wait for if ( (simplified_waiting == 0 or simplified_waiting == 8) and self.player.round_step < 12 and count_tiles == 3 ): return True # riichi on 28 tanki is good if we have 3 tiles to wait for if ( (simplified_waiting == 1 or simplified_waiting == 7) and self.player.round_step < 12 and count_tiles == 3 ): return True # otherwise only riichi if we have suji-trab or there is kabe if not have_suji and not have_kabe: return False # let's not push these bad wait against threats if threats: return False return True # 1-sided wait means kanchan or penchan if is_chi(hand_set): # if we only have 1 tile to wait for, let's damaten if count_tiles == 1: return False # for dealer it is always riichi if self.player.is_dealer: return True # let's not push cheap hands against threats elif threats and min_cost_with_riichi < 2600: return False if 3 <= simplified_waiting <= 5: if min_cost_with_riichi >= 2600: return True # for not dealer let's not riichi cheap kanchan on 4, 5, 6 return False # if we have 2 tiles to wait for and hand cost is good without riichi, # let's damaten if count_tiles == 2: if self.player.is_dealer and min_cost >= 7700: return False if not self.player.is_dealer and min_cost >= 5200: return False # if we have more than two tiles to wait for and we have kabe or suji - insta riichi if count_tiles > 2 and (have_suji or have_kabe): return True # 2 and 8 are good waits but not in every condition if simplified_waiting == 1 or simplified_waiting == 7: if self.player.round_step < 7: if self.player.is_dealer and min_cost < 18000: return True if not self.player.is_dealer and min_cost < 8000: return True if self.player.round_step < 12: if self.player.is_dealer and min_cost < 12000: return True if not self.player.is_dealer and min_cost < 5200: return True if self.player.round_step < 15: if self.player.is_dealer and 2000 < min_cost < 7700: return True # 3 and 7 are ok waits sometimes too if simplified_waiting == 2 or simplified_waiting == 6: if self.player.round_step < 7: if self.player.is_dealer and min_cost < 12000: return True if not self.player.is_dealer and min_cost < 5200: return True if self.player.round_step < 12: if self.player.is_dealer and min_cost < 7700: return True if not self.player.is_dealer and min_cost < 5200: return True if self.player.round_step < 15: if self.player.is_dealer and 2000 < min_cost < 7700: return True # otherwise only riichi if we have suji-trap or there is kabe if not have_suji and not have_kabe: return False return True # what if we don't have yaku # our tanki wait is good, let's riichi if is_honor(waiting_34): return True if count_tiles > 1: # terminal tanki is ok, too, just should be more than one tile left if is_terminal(waiting_34): return True # whatever dora wait is ok, too, just should be more than one tile left if plus_dora(waiting_34 * 4, self.player.table.dora_indicators, add_aka_dora=False) > 0: return True simplified_waiting = simplify(waiting_34) for hand_set in result: if waiting_34 not in hand_set: continue if is_pair(hand_set): # let's not riichi tanki wait without suji-trap or kabe if not have_suji and not have_kabe: return False # let's not riichi tanki on last suit tile if it's early if count_tiles == 1 and self.player.round_step < 6: return False # let's not riichi tanki 4, 5, 6 if it's early if 3 <= simplified_waiting <= 5 and self.player.round_step < 6: return False # 1-sided wait means kanchan or penchan # let's only riichi this bad wait if # it has all 4 tiles available or it # it's not too early # and there are no threats if not threats and is_chi(hand_set) and 4 <= simplified_waiting <= 6: return count_tiles == 4 or self.player.round_step >= 6 return True def _should_call_riichi_many_sided(self, waiting_34: List[int], threats: List[EnemyAnalyzer]): count_tiles = self.player.ai.hand_builder.count_tiles( waiting_34, TilesConverter.to_34_array(self.player.closed_hand) ) hand_costs = [] hand_costs_with_riichi = [] waits_with_yaku = 0 for wait in waiting_34: hand_value = self.player.ai.estimate_hand_value_or_get_from_cache(wait, call_riichi=False) if hand_value.error is None: hand_costs.append(hand_value.cost["main"]) if hand_value.yaku is not None and hand_value.cost is not None: waits_with_yaku += 1 hand_value_with_riichi = self.player.ai.estimate_hand_value_or_get_from_cache(wait, call_riichi=True) if hand_value_with_riichi.error is None: hand_costs_with_riichi.append(hand_value_with_riichi.cost["main"]) min_cost = hand_costs and min(hand_costs) or 0 min_cost_with_riichi = hand_costs_with_riichi and min(hand_costs_with_riichi) or 0 must_riichi = self.player.ai.placement.must_riichi( has_yaku=waits_with_yaku == len(waiting_34), num_waits=count_tiles, cost_with_riichi=min_cost_with_riichi, cost_with_damaten=min_cost, ) if must_riichi == Placement.MUST_RIICHI: return True elif must_riichi == Placement.MUST_DAMATEN: return False is_dealer_threat = any([x.enemy.is_dealer for x in threats]) # we don't want to push cheap hand against dealer if is_dealer_threat and min_cost_with_riichi <= 1300: return False # if we have yaku on every wait if waits_with_yaku == len(waiting_34): # let's not riichi this bad wait if count_tiles <= 2: return False # chasing riichi on late steps of the game is not profitable if threats and self.player.round_step >= 9: return False # if wait is slightly better, we will riichi only a cheap hand if count_tiles <= 4: if self.player.is_dealer and min_cost >= 7700: return False if not self.player.is_dealer and min_cost >= 5200: return False return True # wait is even better, but still don't call riichi on damaten mangan if count_tiles <= 6: # if it's early riichi more readily if self.player.round_step > 6: if self.player.is_dealer and min_cost >= 11600: return False if not self.player.is_dealer and min_cost >= 7700: return False else: if self.player.is_dealer and min_cost >= 18000: return False if not self.player.is_dealer and min_cost >= 12000: return False return True # if wait is good we only damaten haneman if self.player.is_dealer and min_cost >= 18000: return False if not self.player.is_dealer and min_cost >= 12000: return False return True # if we don't have yaku on every wait and it's two-sided or more, we call riichi return True
test/visuals/test_interpolation.py
colinmford/coldtype
142
11101949
from coldtype.test import * ov = Font("assets/ColdtypeObviously.designspace") @test((1000, 1000), rstate=1) def test_mouse_interp(r, rs): ri = r.inset(100) sx, sy = ri.ipos(rs.mouse) return [ DATPen().rect(ri).f(None).s(hsl(0.9, a=0.3)).sw(10), (StyledString("COLD", Style(ov, 250+sy*100, wdth=sx)) .pens() .align(r) .f(0))]
app/core/lldbEvents.py
ant4g0nist/vegvisir
209
11101991
<gh_stars>100-1000 import json import logging from ..config import config from threading import Thread verbose = config.verbose logging.basicConfig(name="lldb",level=logging.DEBUG) def logEvent(eventType, event): if verbose: logging.debug("[:EVENT:] Type %d (%s)\n" %(eventType, str(event))) def msgProcess(msg): if verbose: logging.debug("[:MSG:] %s"%(json.dumps(msg))) def stateTypeToString(state, lldb): """ Returns the state type string for the given an state. """ if state == lldb.eStateInvalid: return "invalid" elif state == lldb.eStateUnloaded: return "unloaded" elif state == lldb.eStateConnected: return "connected" elif state == lldb.eStateAttaching: return "attaching" elif state == lldb.eStateLaunching: return "launching" elif state == lldb.eStateStopped: return "stopped" elif state == lldb.eStateRunning: return "running" elif state == lldb.eStateStepping: return "stepping" elif state == lldb.eStateCrashed: return "crashed" elif state == lldb.eStateDetached: return "detached" elif state == lldb.eStateExited: return "exited" elif state == lldb.eStateSuspended: return "suspended" else: raise Exception("Unknown StateType enum") class LLDBEvents(Thread): """ Listens for Events from lldb process -- modified from do_listen_for_and_print_event lldb examples """ def __init__(self, handler, lldb): Thread.__init__(self) self.lldb = lldb self.handler = handler def run(self): target = self.handler.target process = target.GetProcess() listener = self.lldb.SBListener("LLDB events listener") # create process broadcaster to listen for state changes, processBroadcaster = process.GetBroadcaster() processBroadcaster.AddListener(listener, self.lldb.SBProcess.eBroadcastBitStateChanged | self.lldb.SBProcess.eBroadcastBitSTDOUT | self.lldb.SBProcess.eBroadcastBitSTDERR) self.done = False event = self.lldb.SBEvent() while not self.done: if listener.WaitForEvent(1, event): # get the broadcaster for this event eBroadcaster = event.GetBroadcaster() eventType = event.GetType() logEvent(eventType, event) # get details give by process broadcaster if eBroadcaster == processBroadcaster: # eBroadcastBitStateChanged if eventType == self.lldb.SBProcess.eBroadcastBitStateChanged: state = self.lldb.SBProcess.GetStateFromEvent(event) message = {"status":"event", "type":"state", "inferior_state":state, "state_desc": stateTypeToString(state,self.lldb)} if state == self.lldb.eStateExited: message["exit_status"] = process.GetExitStatus() # eBroadcastBitSTDOUT elif eventType == self.lldb.SBProcess.eBroadcastBitSTDOUT: stdout = process.GetSTDOUT(256) if stdout is not None and len(stdout) > 0: message = {"status":"event", "type":"stdout", "output": "".join(["%02x" % ord(i) for i in stdout])} # eBroadcastBitSTDERR elif eventType == self.lldb.SBProcess.eBroadcastBitSTDERR: stderr = process.GetSTDERR(256) if stderr is not None and len(stderr) > 0: message = {"status":"event", "type":"stderr", "output": "".join(["%02x" % ord(i) for i in stderr])} msgProcess(message) return
src/modules/python/webapp/mods/io.vertx~example-web-app~1.0/app.py
vietj/vertx-examples
143
11102025
import vertx from core.event_bus import EventBus # Our application config - you can maintain it here or alternatively you could # stick it in a conf.json text file and specify that on the command line when # starting this verticle # Configuration for the web server web_server_conf = { # Normal web server stuff 'port': 8080, 'host': 'localhost', 'ssl': True, # Configuration for the event bus client side bridge # This bridges messages from the client side to the server side event bus 'bridge': True, # This defines which messages from the client we will let through # to the server side 'inbound_permitted': [ # Allow calls to login { 'address': 'vertx.basicauthmanager.login' }, # Allow calls to get static album data from the persistor { 'address': 'vertx.mongopersistor', 'match': { 'action': 'find', 'collection': 'albums' } }, # And to place orders { 'address': 'vertx.mongopersistor', 'requires_auth': True, # User must be logged in to send let these through 'match': { 'action': 'save', 'collection': 'orders' } } ], # This defines which messages from the server we will let through to the client 'outbound_permitted': [ {} ] } # And when it's deployed run a script to load it with some reference # data for the demov def deploy_handler(err, id): if err is None: # Load the static data import static_data else: print 'Failed to deploy %s' % err # Now we deploy the modules that we need # Deploy a MongoDB persistor module vertx.deploy_module('io.vertx~mod-mongo-persistor~2.0.0-final', handler=deploy_handler) # Deploy an auth manager to handle the authentication vertx.deploy_module('io.vertx~mod-auth-mgr~2.0.0-final') # Start the web server, with the config we defined above vertx.deploy_module('io.vertx~mod-web-server~2.0.0-final', web_server_conf)
tests/integration/advanced/graph/fluent/test_graph_explicit_execution.py
LaudateCorpus1/python-driver
1,163
11102047
# Copyright DataStax, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from cassandra.graph import Vertex, Edge from tests.integration.advanced.graph import ( validate_classic_vertex, validate_classic_edge, validate_generic_vertex_result_type, validate_classic_edge_properties, validate_line_edge, validate_generic_edge_result_type, validate_path_result_type) from tests.integration import requiredse, DSE_VERSION from tests.integration.advanced import use_single_node_with_graph from tests.integration.advanced.graph import GraphTestConfiguration from tests.integration.advanced.graph.fluent import ( BaseExplicitExecutionTest, _AbstractTraversalTest, _validate_prop) def setup_module(): if DSE_VERSION: dse_options = {'graph': {'realtime_evaluation_timeout_in_seconds': 60}} use_single_node_with_graph(dse_options=dse_options) @requiredse @GraphTestConfiguration.generate_tests(traversal=True) class ExplicitExecutionTest(BaseExplicitExecutionTest, _AbstractTraversalTest): """ This test class will execute all tests of the AbstractTraversalTestClass using Explicit execution All queries will be run by converting them to byte code, and calling execute graph explicitly with a generated ep. """ @staticmethod def fetch_key_from_prop(property): return property.label def _validate_classic_vertex(self, g, vertex): validate_classic_vertex(self, vertex) def _validate_generic_vertex_result_type(self, g, vertex): validate_generic_vertex_result_type(self, vertex) def _validate_classic_edge_properties(self, g, edge): validate_classic_edge_properties(self, edge) def _validate_classic_edge(self, g, edge): validate_classic_edge(self, edge) def _validate_line_edge(self, g, edge): validate_line_edge(self, edge) def _validate_generic_edge_result_type(self, edge): validate_generic_edge_result_type(self, edge) def _validate_type(self, g, vertex): for key in vertex.properties: value = vertex.properties[key][0].value _validate_prop(key, value, self) def _validate_path_result_type(self, g, path_obj): # This pre-processing is due to a change in TinkerPop # properties are not returned automatically anymore # with some queries. for obj in path_obj.objects: if not obj.properties: props = [] if isinstance(obj, Edge): obj.properties = { p.key: p.value for p in self.fetch_edge_props(g, obj) } elif isinstance(obj, Vertex): obj.properties = { p.label: p.value for p in self.fetch_vertex_props(g, obj) } validate_path_result_type(self, path_obj) def _validate_meta_property(self, g, vertex): self.assertEqual(len(vertex.properties), 1) self.assertEqual(len(vertex.properties['key']), 1) p = vertex.properties['key'][0] self.assertEqual(p.label, 'key') self.assertEqual(p.value, 'meta_prop') self.assertEqual(p.properties, {'k0': 'v0', 'k1': 'v1'})
zeus/common/util/benchmark_data.py
TianQi-777/xingtian
240
11102065
# Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE """Make database for record.""" class Data(object): """ Make base class of data structure to store train/test information, for analysis relative performance. local database will using sqlite. local file will work with numpy & csv """ VERSION = 0.1 def __init__(self): self.base_fields = ( "env_name", # rl's environment "alg_name", # algorithm "train_index", # the index of model saved, user define "start_time", # this event start time "sample_step", # the total sample steps used for training, "train_loss", "train_reward", "eval_reward", "framework", "comments", # user others' comments ) def insert_records(self, to_record): """ Insert train record. Args: ---- to_record: """ raise NotImplementedError def get_version(self): """Get database version info.""" return self.VERSION
sknetwork/clustering/__init__.py
HerrZYZ/scikit-network
457
11102082
<reponame>HerrZYZ/scikit-network """clustering module""" from sknetwork.clustering.base import BaseClustering from sknetwork.clustering.kmeans import KMeans from sknetwork.clustering.louvain import Louvain from sknetwork.clustering.metrics import modularity, bimodularity, comodularity, normalized_std from sknetwork.clustering.postprocess import reindex_labels from sknetwork.clustering.propagation_clustering import PropagationClustering
tests/test_botvars.py
KennethBlaney/rivescript-python
154
11102089
<reponame>KennethBlaney/rivescript-python #!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import unicode_literals, absolute_import from .config import RiveScriptTestCase class BotvarTests(RiveScriptTestCase): """Test bot variables.""" def test_bot_variables(self): self.new(""" ! var name = Aiden ! var age = 5 + what is your name - My name is <bot name>. + how old are you - I am <bot age>. + what are you - I'm <bot gender>. + happy birthday - <bot age=6>Thanks! + who is your master - My master is <bot master>. """) self.rs.set_variable("master", "kirsle") self.reply("What is your name?", "My name is Aiden.") self.reply("How old are you?", "I am 5.") self.reply("What are you?", "I'm undefined.") self.reply("Happy birthday!", "Thanks!") self.reply("How old are you?", "I am 6.") self.reply("Who is your master?", "My master is kirsle.") self.assertEqual(self.rs.get_variable("age"), "6") self.assertEqual(self.rs.get_variable("master"), "kirsle") self.assertEqual(self.rs.get_variable("fake"), "undefined") def test_global_variables(self): self.new(""" ! global debug = false + debug mode - Debug mode is: <env debug> + set debug mode * - <env debug=<star>>Switched to <star>. + are you testing - Testing: <env testing> """) self.rs.set_global("testing", "true") self.reply("Debug mode.", "Debug mode is: false") self.reply("Set debug mode true", "Switched to true.") self.reply("Debug mode?", "Debug mode is: true") self.reply("Are you testing?", "Testing: true") self.assertEqual(self.rs.get_global("debug"), "true") self.assertEqual(self.rs.get_global("testing"), "true") self.assertEqual(self.rs.get_global("fake"), "undefined")
tools/pot/openvino/tools/pot/engines/simplified_engine.py
pazamelin/openvino
2,406
11102091
<gh_stars>1000+ # Copyright (C) 2020-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 from .ie_engine import IEEngine from .utils import append_stats class SimplifiedEngine(IEEngine): @staticmethod def _process_batch(batch): """ Processes batch data and returns lists of annotations, images and batch meta data :param batch: a list with batch data [image] :returns None as annotations a list with input data [image] None as meta_data """ return None, batch, None def _process_infer_output(self, stats_layout, predictions, batch_annotations, batch_meta, need_metrics_per_sample): # Collect statistics if stats_layout: append_stats(self._accumulated_layer_stats, stats_layout, predictions, 0)
apps/interface/models/interfacecase.py
rainydaygit/testtcloudserver
349
11102111
from library.api.db import EntityWithNameModel, db class InterfaceCase(EntityWithNameModel): ACTIVE = 0 DISABLE = 1 num = db.Column(db.Integer(), nullable=True, comment='用例序号') name = db.Column(db.String(128), nullable=True, comment='用例名称') desc = db.Column(db.String(256), comment='用例描述') func_address = db.Column(db.String(256), comment='用例需要引用的函数') variable = db.Column(db.Text(), comment='用例公共参数') times = db.Column(db.Integer(), nullable=True, comment='执行次数') project_id = db.Column(db.Integer, comment='所属的项目id') case_set_id = db.Column(db.Integer, comment='所属的用例集id') status = db.Column(db.Integer, default=ACTIVE) # 状态
Tools/sqfvalidator/sqf/expressions.py
Rowantrek/A3-Antistasi
161
11102134
from sqf.types import Keyword, Nothing, Anything, Type from sqf.interpreter_types import InterpreterType class Expression: """ A generic class to represent an expression. The expression matches according to the types of their elements, listed in `types`. """ def __init__(self, types_or_values, return_type): self.types_or_values = tuple(types_or_values) self.return_type = return_type for t_or_v in self.types_or_values: assert (isinstance(t_or_v, (Type, Keyword)) or issubclass(t_or_v, Type)) assert(return_type is None or issubclass(return_type, Type)) def is_match(self, values, exact=True): """ Given a list of values, returns a list of matches when the values match or not each condition of the expression """ if len(values) != len(self.types_or_values): return False for i, (t_or_v, value) in enumerate(zip(self.types_or_values, values)): if isinstance(t_or_v, (Type, Keyword)): # it is a value if value != t_or_v: return False else: # it is a type if not (isinstance(value, t_or_v) or (not exact and type(value) == Anything and not issubclass(t_or_v, InterpreterType))): return False return True def is_signature_match(self, values): return self.is_match(values, exact=False) def execute(self, values, interpreter): raise NotImplementedError def __repr__(self): return '<%s %s>' % (self.__class__.__name__, self.types_or_values) def __eq__(self, other): if issubclass(other.__class__, Expression): return self.types_or_values == other.types_or_values else: return False @property def keyword(self): raise NotImplementedError def _result_to_typed_result(self, value): if self.return_type is None: return value elif self.return_type in (Anything, Nothing): return self.return_type() else: if isinstance(value, tuple): return self.return_type(*value) else: return self.return_type(value) class UnaryExpression(Expression): def __init__(self, op, rhs_type, return_type, action=None): assert (isinstance(op, Keyword)) super().__init__([op, rhs_type], return_type) if action is None and return_type is None: action = lambda rhs, i: i.private_default_class() elif action is None: action = lambda rhs, i: None self.action = action def execute(self, values, interpreter): result = self.action(values[1], interpreter) return self._result_to_typed_result(result) @property def keyword(self): return self.types_or_values[0] class BinaryExpression(Expression): def __init__(self, lhs_type, op, rhs_type, return_type, action=None): assert(isinstance(op, Keyword)) super().__init__([lhs_type, op, rhs_type], return_type) if action is None and return_type is None: action = lambda lhs, rhs, i: i.private_default_class() elif action is None: action = lambda lhs, rhs, i: None self.action = action def execute(self, values, interpreter): result = self.action(values[0], values[2], interpreter) return self._result_to_typed_result(result) @property def keyword(self): return self.types_or_values[1] class NullExpression(Expression): def __init__(self, op, return_type, action=None): assert(isinstance(op, Keyword)) assert(return_type is not None) super().__init__([op], return_type) if action is None: action = lambda i: None self.action = action def execute(self, values, interpreter): result = self.action(interpreter) return self._result_to_typed_result(result) @property def keyword(self): return self.types_or_values[0]
clpy/_version.py
fixstars/clpy
142
11102138
__version__ = '2.1.0rc1'
lib/astc-encoder/Test/astc_test_python.py
atteneder/KTX-Software
619
11102156
<filename>lib/astc-encoder/Test/astc_test_python.py #!/usr/bin/env python3 # SPDX-License-Identifier: Apache-2.0 # ----------------------------------------------------------------------------- # Copyright 2020 Arm Limited # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy # of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # ----------------------------------------------------------------------------- """ The python test runner is designed to run some basic tests against the Python test code base. """ import re import sys import unittest import pycodestyle import pylint.epylint as lint class PythonTests(unittest.TestCase): """ Some basic Python static analysis and style checks. """ def test_pylint(self): """ Run pylint over the codebase. """ pylintOut, _ = lint.py_run("./Test", True) pattern = re.compile(r"Your code has been rated at (.*?)/10") match = pattern.search(pylintOut.getvalue()) self.assertIsNotNone(match) score = float(match.group(1)) self.assertGreaterEqual(score, 9.8) with open("pylint.log", "w") as fileHandle: fileHandle.write(pylintOut.getvalue()) def test_pycodestyle(self): """ Test that we conform to PEP-8. """ style = pycodestyle.StyleGuide() result = style.check_files(["./Test"]) self.assertEqual(result.total_errors, 0, "Found code style errors (and warnings).") def main(): """ The main function. Returns: int: The process return code. """ results = unittest.main(exit=False) return 0 if results.result.wasSuccessful() else 1 if __name__ == "__main__": sys.exit(main())
observations/r/accident.py
hajime9652/observations
199
11102176
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import numpy as np import os import sys from observations.util import maybe_download_and_extract def accident(path): """Ship Accidents a cross-section *number of observations* : 40 A dataframe containing : type ship type, a factor with levels (A,B,C,D,E) constr year constructed, a factor with levels (C6064,C6569,C7074,C7579) operate year operated, a factor with levels (O6074,O7579) months measure of service amount acc accidents <NAME>. and <NAME> (1983) *Generalized linear methods*, New York:Chapman and Hall. Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `accident.csv`. Returns: Tuple of np.ndarray `x_train` with 40 rows and 5 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'accident.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/Ecdat/Accident.csv' maybe_download_and_extract(path, url, save_file_name='accident.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
pygithub3/requests/repos/watchers.py
teamorchard/python-github3
107
11102206
#!/usr/bin/env python # -*- encoding: utf-8 -*- from . import Request from pygithub3.resources.users import User from pygithub3.resources.repos import Repo class List(Request): uri = 'repos/{user}/{repo}/watchers' resource = User class List_repos(Request): uri = 'users/{user}/watched' resource = Repo def clean_uri(self): if not self.user: return 'user/watched' class Is_watching(Request): uri = 'user/watched/{user}/{repo}' class Watch(Request): uri = 'user/watched/{user}/{repo}' class Unwatch(Request): uri = 'user/watched/{user}/{repo}'
external/android/xorpt.gyp
gordonjohnpatrick/XobotOS
263
11102207
{ 'includes': [ '../skia/gyp/common.gypi', ], 'targets': [ { 'target_name': 'xorpt', 'type': 'executable', 'mac_bundle' : 1, 'include_dirs' : [ 'include' ], 'conditions': [ [ 'skia_os == "linux"', { 'cflags': [ '-fPIC', '-Wall' ], 'sources': [ ], }], ], 'sources' : [ 'aapt/AaptAssets.cpp', 'aapt/Command.cpp', 'aapt/CrunchCache.cpp', 'aapt/FileFinder.cpp', 'aapt/Images.cpp', 'aapt/Main.cpp', 'aapt/Package.cpp', 'aapt/Resource.cpp', 'aapt/ResourceFilter.cpp', 'aapt/ResourceTable.cpp', 'aapt/SourcePos.cpp', 'aapt/StringPool.cpp', 'aapt/XMLNode.cpp', 'aapt/ZipEntry.cpp', 'aapt/ZipFile.cpp', 'aapt/AaptAssets.h', 'aapt/Bundle.h', 'aapt/CacheUpdater.h', 'aapt/CrunchCache.h', 'aapt/DirectoryWalker.h', 'aapt/FileFinder.h', 'aapt/Images.h', 'aapt/Main.h', 'aapt/ResourceFilter.h', 'aapt/ResourceTable.h', 'aapt/SourcePos.h', 'aapt/StringPool.h', 'aapt/XMLNode.h', 'aapt/ZipEntry.h', 'aapt/ZipFile.h' ], 'link_settings': { 'libraries': [ '-lpng' ], }, 'dependencies': [ 'android-libs.gyp:android_libs', '../expat/expat.gyp:expat', '../jpeg/libjpeg.gyp:android_libjpeg' ], } ] }
src/python/grpcio_tests/tests_aio/unit/channel_ready_test.py
warlock135/grpc
36,552
11102212
<filename>src/python/grpcio_tests/tests_aio/unit/channel_ready_test.py # Copyright 2020 The gRPC Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing the channel_ready function.""" import asyncio import gc import logging import socket import time import unittest import grpc from grpc.experimental import aio from tests.unit.framework.common import get_socket from tests.unit.framework.common import test_constants from tests_aio.unit import _common from tests_aio.unit._test_base import AioTestBase from tests_aio.unit._test_server import start_test_server class TestChannelReady(AioTestBase): async def setUp(self): address, self._port, self._socket = get_socket( listen=False, sock_options=(socket.SO_REUSEADDR,)) self._channel = aio.insecure_channel(f"{address}:{self._port}") self._socket.close() async def tearDown(self): await self._channel.close() async def test_channel_ready_success(self): # Start `channel_ready` as another Task channel_ready_task = self.loop.create_task( self._channel.channel_ready()) # Wait for TRANSIENT_FAILURE await _common.block_until_certain_state( self._channel, grpc.ChannelConnectivity.TRANSIENT_FAILURE) try: # Start the server _, server = await start_test_server(port=self._port) # The RPC should recover itself await channel_ready_task finally: await server.stop(None) async def test_channel_ready_blocked(self): with self.assertRaises(asyncio.TimeoutError): await asyncio.wait_for(self._channel.channel_ready(), test_constants.SHORT_TIMEOUT) if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) unittest.main(verbosity=2)
local/speaker-id-from-server.py
slckl/kaldi-offline-transcriber
199
11102224
#! /usr/bin/env python3 import argparse import requests import json import sys from urllib3.filepost import encode_multipart_formdata, choose_boundary from urllib3.fields import RequestField import subprocess def encode_multipart_related(fields, boundary=None): if boundary is None: boundary = choose_boundary() body, _ = encode_multipart_formdata(fields, boundary) content_type = str('multipart/related; boundary=%s' % boundary) return body, content_type def encode_media_related(audio_files): rfs = [] for f in audio_files: if f.endswith("|"): p = subprocess.Popen(f[:-1], shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=False) data = p.stdout.read() rf = RequestField( name='placeholder2', data=data, headers={'Content-Type': "audio/wav"}, ) else: rf = RequestField( name='placeholder2', data=open(f, 'rb').read(), headers={'Content-Type': "audio/wav"}, ) rfs.append(rf) return encode_multipart_related(rfs) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Perform speaker ID using a dedicated server') parser.add_argument('--url', default="http://localhost:8888") parser.add_argument('spk2utt') parser.add_argument('wav_scp') parser.add_argument('output_json') args = parser.parse_args() wavs = {} for l in open(args.wav_scp): ss = l.split() wavs[ss[0]] = " ".join(ss[1:]) spk2utt = {} for l in open(args.spk2utt): ss = l.split() spk2utt[ss[0]] = [wavs[utt] for utt in ss[1:]] output = {} for speaker, wavs in spk2utt.items(): body, content_type = encode_media_related(wavs) full_url = args.url + "/v1/identify?uploadType=multipart" try: print("Doing speaker ID for speaker %s using URL %s" % (speaker, full_url), file=sys.stderr) r = requests.post(full_url, data=body, headers={"Content-Type": content_type}) if r.status_code == 200: speaker_info = json.loads(r.content.decode("utf-8")) output[speaker] = speaker_info print("Speaker ID successful, speaker info: " + str(speaker_info), file=sys.stderr) else: print("Speaker ID not successful, status %d " % r.status_code, file=sys.stderr) output[speaker] = {} except Exception as ex: print("Failed to do speaker ID using server URL %s" % full_url, file=sys.stderr) print(ex, file=sys.stderr) output[speaker] = {} json.dump(output, open(args.output_json, "w"), sort_keys=False, indent=4)
build/plugins/credits.py
mjjohns1/catboost
6,989
11102276
from _common import rootrel_arc_src def oncredits_disclaimer(unit, *args): if unit.get('WITH_CREDITS'): unit.message(["warn", "CREDITS WARNING: {}".format(' '.join(args))]) def oncheck_contrib_credits(unit, *args): module_path = rootrel_arc_src(unit.path(), unit) for arg in args: if module_path.startswith(arg) and not unit.get('CREDITS_TEXTS_FILE') and not unit.get('NO_CREDITS_TEXTS_FILE'): unit.message(["error", "License texts not found. See https://st.yandex-team.ru/DTCC-324"])
torcms/script/autocrud/html_tpl.py
bukun/TorCMS
243
11102293
# -*- coding:utf-8 -*- ''' Tempaltes for CRUD. ''' TPL_ADD = ''' {% extends "../../tmpl_kkkk/tpl_add.html" %} {% block header %} <h1>{{ header_text }}</h1> {% end %} {% block extrainfo %} <div id="iga_add_rec_box"> xxxxxx </div> {% end %} {% block footer %} <p>{{ footer_text }}</p> {% end %}''' TPL_EDIT = ''' {% extends "../../tmpl_kkkk/tpl_edit.html" %} {% block header %} <h1>{{ header_text }}</h1> {% end %} {% block extrainfo %} <div id="iga_edit_rec_box"> xxxxxx </div> {% end %} {% block footer %} <p>{{ footer_text }}</p> {% end %}''' TPL_LIST = ''' {% extends "../../tmpl_kkkk/tpl_list.html" %} {% block header %} {{ header_text }} {% end %} {% block infoselect %} <div class="infoselect"> xxxxxx </div> {% end %} {% block infonav %} {% end %} {% block infolist %} <div class="list_house"> <ul class="list-group"> <span id="resultSpan"></span> </ul> </div> {% end %} {% block footer %} <p>{{ footer_text }}</p> {% end %}''' TPL_LISTINFO = '''{% extends "../../tmpl_kkkk/tpl_listinfo.html" %}''' TPL_VIEW = '''{% extends "../../tmpl_kkkk/tpl_viewssss.html" %} {% block header %} <h1>{{ header_text }}</h1> {% end %} {% block extrainfo %} <div id="iga_view_rec_box"> xxxxxx </div> {% end %} {% block footer %} <p>{{ footer_text }}</p> {% end %}''' HTML_INPUT_EDIT_DOWNLOAD = ''' <div class="form-group"> <label class="col-sm-2 control-label" for="{sig_en}"> <span><a class="glyphicon glyphicon-star" style="color: red;font-size: xx-small;"> </a>{sig_zh}</span> </label> <div class="col-sm-8"> <input id='{sig_en}' name="{sig_en}" value="{{{{ postinfo.extinfo.get('{sig_en}','') }}}}" type="{sig_type}" class="form-control"> </div> <div class="col-sm-2"><a href="/entry/add" target="_blank" class="btn btn-primary" role="button">Upload</a></div> </div> ''' HTML_INPUT_EDIT = ''' <div class="form-group"> <label class="col-sm-2 control-label" for="{sig_en}"> <span><a class="glyphicon glyphicon-star" style="color: red;font-size: xx-small;"> </a>{sig_zh}</span> </label> <div class="col-sm-9"> <input id='{sig_en}' name="{sig_en}" value="{{{{ postinfo.extinfo.get('{sig_en}','') }}}}" type="{sig_type}" class="form-control"> </div> <div class="col-sm-1">{sig_dic}</div> </div> ''' HTML_INPUT_ADD_DOWNLOAD = '''<div class="form-group"> <label class="col-sm-2 control-label" for="{sig_en}"> <span><a class="glyphicon glyphicon-star" style="color: red;font-size: xx-small;"> </a>{sig_zh}</span> </label> <div class="col-sm-8"> <input id='{sig_en}' name="{sig_en}" value="" type="{sig_type}" class="form-control"> </div> <div class="col-sm-2"> <a href="/entry/add" target="_blank" class="btn btn-primary" role="button">Upload</a> </div></div> ''' HTML_INPUT_ADD = ''' <div class="form-group"> <label class="col-sm-2 control-label" for="{sig_en}"> <span><a class="glyphicon glyphicon-star" style="color: red;font-size: xx-small;"> </a>{sig_zh}</span> </label> <div class="col-sm-9"> <input id='{sig_en}' name="{sig_en}" value="" type="{sig_type}" class="form-control"> </div> <div class="col-sm-1"> {sig_dic} </div></div> ''' HTML_INPUT_VIEW_DONWLOAD = '''<div class="row"> <div class="col-sm-4"><span class="des"><strong>{sig_zh}</strong></span></div> <div class="col-sm-8"> {{% if userinfo %}} {{% if postinfo.extinfo.get('tag_file_download') or postinfo.extinfo.get('tag__file_download') %}} <a class="val btn-xs btn btn-warning" onclick="entity_down('{{{{postinfo.uid}}}}')" id="file_download" style="cursor: pointer; color:#fff"> <span class="glyphicon glyphicon-download-alt"> Download</span> {sig_unit}</a> {{% else %}} <span class="glyphicon glyphicon-ban-circle" style="color:red"> Unavailable</span> {{% end %}} {{% else %}} <a href="/user/login">Please download after login, click to <span class="btn btn-primary btn-xs"> login in</span>. </a> {{% end %}} </div></div> ''' HTML_INPUT_VIEW_LINK = '''<div class="row"> <div class="col-sm-4"><span class="des"><strong>{1}</strong></span></div> <div class="col-sm-8"> <a class="val" target="_blank" href="{{{{ postinfo.extinfo.get('{0}','') }}}} {2}" style="cursor: pointer; color:#069"> {{{{ postinfo.extinfo.get('{0}','') }}}} {2} </a></div></div> ''' HTML_INPUT_VIEW = '''<div class="row"> <div class="col-sm-4"><span class="des"><strong>{1}</strong></span></div> <div class="col-sm-8"> <span class="val">{{{{ postinfo.extinfo.get('{0}','') }}}} {2}</span></div></div> ''' HTML_TPL_DICT = { 'input_add': HTML_INPUT_ADD, 'input_add_download': HTML_INPUT_ADD_DOWNLOAD, 'input_edit_download': HTML_INPUT_EDIT_DOWNLOAD, 'input_edit': HTML_INPUT_EDIT, 'input_view_download': HTML_INPUT_VIEW_DONWLOAD, 'input_view_link': HTML_INPUT_VIEW_LINK, 'input_view': HTML_INPUT_VIEW, }
src/prod/tools/linux/lldb/fabdbg.py
gridgentoo/ServiceFabricAzure
2,542
11102298
# ------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See License.txt in the repo root for license information. # ------------------------------------------------------------ """ service fabric lldb extension usage: (lldb) script import fabdbg (lldb) script help(fabdbg) (lldb) script fabdbg.function(...) """ import lldb import re import collections import operator import time import multiprocessing import sys from joblib import Parallel, delayed PointerByteSize = 8 def addr_to_ptr(addr) : # per lldb documentation, addr.load_addr should be used instead of addr.file_addr. # however, our exectuable is loaded twice in lldb somehow, probably a bug in lldb. # load_addr does not match what's stored in actuall C++ object, thus we have to # use file_addr, which means it only works for types defined in executable, not # types defined in so files. The suggested worked around is to use target.ResolveLoadAddress(ptrValue) # and compare result SBAddress with vtable symbol SBAddress, but it slows things # down significantly, we should investigate if it is possible to speed it up return addr.file_addr def vtable_addr (vtableSymbol): addr = addr_to_ptr(vtableSymbol.addr) if addr == lldb.LLDB_INVALID_ADDRESS : return lldb.LLDB_INVALID_ADDRESS return addr + 0x10 def get_search_regions() : memoryRegions = lldb.process.GetMemoryRegions() print 'total memory regions: ', memoryRegions.GetSize() region = lldb.SBMemoryRegionInfo() searchRegions = [] for i in range(memoryRegions.GetSize()): if memoryRegions.GetMemoryRegionAtIndex(i, region): if region.IsWritable() and region.IsReadable() and not region.IsExecutable(): #print '[{0:x},{1:x}]'.format(region.GetRegionBase(), region.GetRegionEnd()) searchRegions.append((region.GetRegionBase(), region.GetRegionEnd())) #sort regions in descending order, so that large regions get processed early searchRegions.sort(key=lambda tup: tup[1] - tup[0], reverse=True) # for region in searchRegions : # print '{0:x} [{1:x}, {2:x})'.format(region[1]-region[0], region[0], region[1]) searchRegionCount = len(searchRegions) print 'target memory regions: ', searchRegionCount return searchRegions def findtype_in_region(region, vtableAddr) : sys.stdout.write('+') sys.stdout.flush() startAddr = region[0] endAddr = region[1] #print '[{0:x},{1:x})'.format(startAddr, endAddr) matches = set() error = lldb.SBError() for addr in range(startAddr, endAddr, PointerByteSize): ptr = lldb.process.ReadPointerFromMemory(addr, error) if error.success and ptr == vtableAddr : matches.add(addr) sys.stdout.write('.') sys.stdout.flush() return matches def findtype (typename): """ find objects of the "virtual" type with given typename for example, typename='Transport::TcpDatagramTransport' wll search for all TcpDatagramTransport instances """ startTime = time.time() matchCount = 0 vtblSymbol = 'vtable for ' + typename symbols = lldb.target.FindSymbols(vtblSymbol) if len(symbols) == 0 : print '%s is not a virtual type' %typename return searchRegions = get_search_regions(); searchRegionCount = len(searchRegions) processorCount = multiprocessing.cpu_count() vtableAddr = vtable_addr(symbols[0].symbol) if vtableAddr == lldb.LLDB_INVALID_ADDRESS : print 'vtable address is LLDB_INVALID_ADDRESS' return print 'searching vtable address 0x{0:x} in target regions on {1} cores'.format(vtableAddr, processorCount) #print '%x' % symbols[0].symbol.addr.load_addr taskResults = Parallel(n_jobs=processorCount)(delayed(findtype_in_region)(searchRegions[i], vtableAddr) for i in range(searchRegionCount)) print print print '<<<matches>>>' matchCount = 0 for taskResult in taskResults : matchCount += len(taskResult) for ptr in taskResult : print '0x{0:x}'.format(ptr) print print 'total match found: ', matchCount print 'time elapsed: ', time.time() - startTime print def findtypes_in_region(region, names) : sys.stdout.write('+') sys.stdout.flush() startAddr = region[0] endAddr = region[1] #print '[{0:x},{1:x})'.format(startAddr, endAddr) matches = dict() error = lldb.SBError() for addr in range(startAddr, endAddr, PointerByteSize): ptr = lldb.process.ReadPointerFromMemory(addr, error) if error.success and ptr in names: if ptr in matches : matches[ptr] += 1 else : matches[ptr] = 1 sys.stdout.write('.') sys.stdout.flush() return matches def type_regex_to_vtable_regex(typename) : if len(typename) == 0 : return '^vtable for' if typename[0] == '^' : return '^vtable for ' + typename[1:] return '^vtable for .*' + typename def get_all_pure_virtual_funcs() : result = dict() symbolCtxList = lldb.target.FindSymbols('__cxa_pure_virtual') for ctx in symbolCtxList : symbol = ctx.symbol pvfAddr = addr_to_ptr(symbol.addr) result[pvfAddr]=ctx.module.platform_file.basename """ print 'found %d pure virtual functions:' %len(result) for pvf, n in result.iteritems() : print '%0.16x : %s' % (pvf,n) """ return result def has_pure_virtual(vtableAddr, pureVirtualFuncs) : error = lldb.SBError() vtableEndAddr = lldb.process.ReadPointerFromMemory(vtableAddr-PointerByteSize, error) if not error.success : return False #print "vtable: [%0.16x, %0.16x)" % (vtableAddr, vtableEndAddr) for addr in range(vtableAddr, vtableEndAddr, PointerByteSize) : #print "read from address %.016x" % addr funcAddr = lldb.process.ReadPointerFromMemory(addr, error) if not error.success : continue if funcAddr in pureVirtualFuncs : return True return False def findtypes (pattern, ignorePureVirtualType=True): """ count objects of "virtual" types that match pattern string and rank them based on object count pattern: regular expression string for target types for example: pattern='' or pattern='.*' will match all virtual types pathern='^(?!std)' will match all non-std virtual types pattern='^Transport::' will match all Transport virtual types pattern='Transport$' will match all virtual types ending with Transport """ startTime = time.time() moduleCount = lldb.target.GetNumModules() print 'search for matching virtual types in {0} modules ...'.format(moduleCount), # find all virtual types first symbolPattern = type_regex_to_vtable_regex(pattern) symbolRegex = re.compile(symbolPattern) names = dict() matches = dict() pureVirtualFuncs = set() if ignorePureVirtualType : pureVirtualFuncs = get_all_pure_virtual_funcs() for i in range(moduleCount) : module = lldb.target.GetModuleAtIndex(i) symbolCount = module.GetNumSymbols() for j in range(symbolCount) : symbol = module.GetSymbolAtIndex(j) symbolName = symbol.name if symbolName and symbolRegex.match(symbolName) : vtableAddr = vtable_addr(symbol) if vtableAddr == lldb.LLDB_INVALID_ADDRESS : continue if ignorePureVirtualType and has_pure_virtual(vtableAddr, pureVirtualFuncs) : continue if vtableAddr in names and not names[vtableAddr] == symbol.GetName()[11:]: print 'file_addr {0:x} conflicts: {1}, {2}'.format(vtableAddr, names[vtableAddr], symbol.GetName()[11:]) names[vtableAddr] = symbol.GetName()[11:] matches[vtableAddr] = 0 """ for vtableAddr, symbolName in names.items() : print '0x{0:x} {1}'.format(vtableAddr, symbolName) """ print 'found {0}'.format(len(names)) if len(names) == 0 : return # search for matches of virtual types searchRegions = get_search_regions(); searchRegionCount = len(searchRegions) processorCount = multiprocessing.cpu_count() print 'searching target regions on {0} cores'.format(processorCount) taskResults = Parallel(n_jobs=processorCount)(delayed(findtypes_in_region)(searchRegions[i], names) for i in range(searchRegionCount)) for taskResult in taskResults : for ptr, count in taskResult.iteritems() : matches[ptr] += count # output result print print print 'object count {' matchRanking = sorted(matches.items(), key=operator.itemgetter(1)) for vtableAddr, objCount in matchRanking : if objCount > 0 : print '{0:9} {1}'.format(objCount, names[vtableAddr]) print '} object count' print print 'time elapsed: ', time.time() - startTime print def findall(pattern, ignorePureVirtualType=True): """ findall is an alias of findtypes """ findtypes(pattern,ignorePureVirtualType) def findptr_in_region(region, ptrValue) : sys.stdout.write('+') sys.stdout.flush() startAddr = region[0] endAddr = region[1] #print '[{0:x},{1:x})'.format(startAddr, endAddr) matches = set() error = lldb.SBError() for addr in range(startAddr, endAddr, PointerByteSize): ptr = lldb.process.ReadPointerFromMemory(addr, error) if error.success and ptr == ptrValue: matches.add(addr) sys.stdout.write('.') sys.stdout.flush() return matches def findptr(ptrValue) : """ find pointer value or pointer size integer value """ startTime = time.time() searchRegions = get_search_regions() searchRegionCount = len(searchRegions) processorCount = multiprocessing.cpu_count() print 'searching target regions on {0} cores'.format(processorCount) taskResults = Parallel(n_jobs=processorCount)(delayed(findptr_in_region)(searchRegions[i], ptrValue) for i in range(searchRegionCount)) print print print '<<<matches>>>' matchCount = 0 for taskResult in taskResults : for match in taskResult : print '0x{0:x}'.format(match) matchCount += 1 print print 'total: ', matchCount print 'time elapsed: ', time.time() - startTime print def findsptr_in_region(region, objPtr, refCountTypeVTable) : sys.stdout.write('+') sys.stdout.flush() startAddr = region[0] endAddr = region[1] #print '[{0:x},{1:x})'.format(startAddr, endAddr) matches = set() error = lldb.SBError() for addr in range(startAddr, endAddr-PointerByteSize, PointerByteSize): ptr = lldb.process.ReadPointerFromMemory(addr, error) if error.fail : continue if ptr != objPtr : continue; ptr2 = lldb.process.ReadPointerFromMemory(addr + PointerByteSize, error) if error.fail : continue ptr3 = lldb.process.ReadPointerFromMemory(ptr2, error) if error.fail : continue if ptr3 == refCountTypeVTable : matches.add(addr) sys.stdout.write('.') sys.stdout.flush() return matches def findsptr(sptrAddr) : """ find shared_ptr or weak_ptr instances of a given object by matching both pointer of shared object and vtable of shared_ptr/weak_ptr ref count type strAddr: address of a shared_ptr/weak_ptr instance of the given object """ startTime = time.time() error = lldb.SBError() objPtr = lldb.process.ReadPointerFromMemory(sptrAddr, error) if error.fail : print 'failed to read from ', sptrAddr, ' : ', error return print 'address of shared object: 0x{0:x}'.format(objPtr) refCountObjPtr = lldb.process.ReadPointerFromMemory(sptrAddr + PointerByteSize, error) if error.fail : print 'failed to read from {0}: {1}'.format(sptrAddr+PointerByteSize, error) return print 'address of shared_ptr ref count object: 0x{0:x}'.format(refCountObjPtr) refCountTypeVTable = lldb.process.ReadPointerFromMemory(refCountObjPtr, error) if error.fail : print 'failed to read vtable address of shared_ptr ref count type : ', error return print 'vtable address of shared_ptr ref count type: 0x{0:x}'.format(refCountTypeVTable) searchRegions = get_search_regions() searchRegionCount = len(searchRegions) processorCount = multiprocessing.cpu_count() print 'searching target regions on {0} cores'.format(processorCount) taskResults = Parallel(n_jobs=processorCount)(delayed(findsptr_in_region)(searchRegions[i], objPtr, refCountTypeVTable) for i in range(searchRegionCount)) print print print '<<<matches>>>' matchCount = 0 for taskResult in taskResults : for match in taskResult : print '0x{0:x}'.format(match) matchCount += 1 print print 'total: ', matchCount print 'time elapsed: ', time.time() - startTime print
pyroomacoustics/adaptive/data_structures.py
Womac/pyroomacoustics
915
11102330
<reponame>Womac/pyroomacoustics from __future__ import division, print_function import numpy as np class Buffer: """ A simple buffer class with amortized cost Parameters ---------- length: int buffer length dtype: numpy.type data type """ def __init__(self, length=20, dtype=np.float64): self.buf = np.zeros(length, dtype=dtype) self.len = length self.head = self.len def push(self, val): """Add one element at the front of the buffer""" # Increase size if the buffer is too small if self.head == 0: self.buf = np.concatenate( (np.zeros(self.len, dtype=self.buf.dtype), self.buf) ) self.head += self.len self.len *= 2 # store value at head self.buf[self.head - 1] = val # move head to next free spot self.head -= 1 def top(self, n): """Returns the n elements at the front of the buffer from newest to oldest""" return self.buf[self.head : self.head + n] def flush(self, n): """Removes the n oldest elements in the buffer""" if n > self.len - self.head: n = self.len - self.head new_head = self.head + n # copy the remaining items to the right self.buf[new_head:] = self.buf[self.head : -n] # move head self.head = new_head def size(self): """Returns the number of elements in the buffer""" return self.len - self.head def __getitem__(self, r): """Allows to retrieve element at a specific position""" # create a view that starts at head ptr = self.buf[self.head :] # returned desired range return ptr[r] def __repr__(self): if self.head == self.len: return "[]" else: return str(self.buf[self.head :]) class Powers: """ This class allows to store all powers of a small number and get them 'a la numpy' with the bracket operator. There is automatic increase when new values are requested Parameters ---------- a: float the number length: int the number of integer powers dtype: numpy.type, optional the data type (typically np.float32 or np.float64) Example ------- >>> an = Powers(0.5) >>> print(an[4]) 0.0625 """ def __init__(self, a, length=20, dtype=np.float64): self.a = dtype(a) self.pwr = self.a ** np.arange(length) def __getitem__(self, r): # find maximum power requested if isinstance(r, int): high = r + 1 elif isinstance(r, slice): high = r.stop elif isinstance(r, list): high = max(r) + 1 else: high = int(r + 1) # Compute it if needed if high > self.pwr.shape[0]: self.pwr = np.concatenate( (self.pwr, self.a ** np.arange(self.pwr.shape[0], high)) ) return self.pwr[r] def __repr__(self): return str(self.pwr) class CoinFlipper: """ This class efficiently generates large number of coin flips. Because each call to ``numpy.random.rand`` is a little bit costly, it is more efficient to generate many values at once. This class does this and stores them in advance. It generates new fresh numbers when needed. Parameters ---------- p: float, 0 < p < 1 probability to output a 1 length: int the number of flips to precompute """ def __init__(self, p, length=10000): self.p = p self.length = length self.buffer = np.random.random(length) < p self.dirty_coins = 0 def fresh_flips(self, n): """Generates n binary random values now""" return np.random.random(n) < self.p def flip_all(self): """Regenerates all the used up values""" remaining = self.length - self.dirty_coins self.buffer[: self.dirty_coins] = self.fresh_flips(self.dirty_coins) self.dirty_coins = 0 def flip(self, n): """Get n random binary values from the buffer""" # If more flips than computed are requested # increase buffer size and flip again if n > self.length: self.buffer = np.pad(self.buffer, (0, 2 * n - self.length), mode="constant") self.buffer[self.length :] = self.fresh_flips(2 * n - self.length) self.length = 2 * n remaining = self.length - self.dirty_coins if remaining < n: self.flip_all() flips = self.buffer[self.dirty_coins : self.dirty_coins + n] self.dirty_coins += n return flips
applications/smart-distancing/libs/loggers/csv_logger.py
mhsekhavat/neuralet
228
11102339
<gh_stars>100-1000 import csv import os from datetime import date from tools.objects_post_process import extract_violating_objects import numpy as np def prepare_object(detected_object, frame_number): """Construct a dictionary that is appropriate for csv writer. This function transform a dictionary with list values to a dictionary with scalar values. This transformation is necessary for csv writer to avoid writing lists into csv. Args: detected_object: It is a dictionary that contains an detected object information after postprocessing. frame_number: current frame number Returns: A transformed version of detected_object to a dictionary with only scalar values. It also contains an item for frame number. """ object_dict = {} object_dict.update({"frame_number": frame_number}) for key, value in detected_object.items(): if isinstance(value, (list, tuple)): for i, item in enumerate(value): # TODO: Inspect why some items are float and some are np.float32 if isinstance(item, (float, np.float32)): item = round(float(item), 4) object_dict.update({str(key) + "_" + str(i): item}) else: # TODO: Inspect why some items are float and some are np.float32 if isinstance(value, (float, np.float32)): value = round(float(value), 4) object_dict.update({key: value}) return object_dict class Logger: """A CSV logger class that store objects information and violated distances information into csv files. This logger creates two csv file every day in two different directory, one for logging detected objects and one for logging violated social distancing incidents. The file names are the same as recording date. :param config: A ConfigEngine object which store all of the config parameters. Access to any parameter is possible by calling get_section_dict method. """ def __init__(self, config): self.config = config # The parent directory that stores all log file. self.log_directory = config.get_section_dict("Logger")["LogDirectory"] # A directory inside the log_directory that stores object log files. self.objects_log_directory = os.path.join(self.log_directory, "objects_log") self.distances_log_directory = os.path.join(self.log_directory, "distances_log") self.dist_threshold = config.get_section_dict("PostProcessor")["DistThreshold"] if not os.path.exists(self.log_directory): os.mkdir(self.log_directory) if not os.path.exists(self.objects_log_directory): os.mkdir(self.objects_log_directory) if not os.path.exists(self.distances_log_directory): os.mkdir(self.distances_log_directory) def update(self, frame_number, objects_list, distances): """Write the object and violated distances information of a frame into log files. Args: frame_number: current frame number objects_list: A list of dictionary where each dictionary stores information of an object (person) in a frame. distances: A 2-d numpy array that stores distance between each pair of objects. """ file_name = str(date.today()) objects_log_file_path = os.path.join(self.objects_log_directory, file_name + ".csv") distances_log_file_path = os.path.join(self.distances_log_directory, file_name + ".csv") self.log_objects(objects_list, frame_number, objects_log_file_path) self.log_distances(distances, frame_number, distances_log_file_path) @staticmethod def log_objects(objects_list, frame_number, file_path): """Write objects information of a frame into the object log file. Each row of the object log file consist of a detected object (person) information such as object (person) ids, bounding box coordinates and frame number. Args: objects_list: A list of dictionary where each dictionary stores information of an object (person) in a frame. frame_number: current frame number file_path: log file path """ if len(objects_list) != 0: object_dict = list(map(lambda x: prepare_object(x, frame_number), objects_list)) if not os.path.exists(file_path): with open(file_path, "w", newline="") as csvfile: field_names = list(object_dict[0].keys()) writer = csv.DictWriter(csvfile, fieldnames=field_names) writer.writeheader() with open(file_path, "a", newline="") as csvfile: field_names = list(object_dict[0].keys()) writer = csv.DictWriter(csvfile, fieldnames=field_names) writer.writerows(object_dict) def log_distances(self, distances, frame_number, file_path): """Write violated incident's information of a frame into the object log file. Each row of the distances log file consist of a violation information such as object (person) ids, distance between these two object and frame number. Args: distances: A 2-d numpy array that stores distance between each pair of objects. frame_number: current frame number file_path: The path for storing log files """ violating_objects = extract_violating_objects(distances, self.dist_threshold) if not os.path.exists(file_path): with open(file_path, "w", newline="") as csvfile: field_names = ["frame_number", "object_0", "object_1", "distance"] writer = csv.DictWriter(csvfile, fieldnames=field_names) writer.writeheader() with open(file_path, "a", newline="") as csvfile: field_names = ["frame_number", "object_0", "object_1", "distance"] writer = csv.DictWriter(csvfile, fieldnames=field_names) writer.writerows([{"frame_number": frame_number, "object_0": indices[0], "object_1": indices[1], "distance": distances[indices[0], indices[1]]} for indices in violating_objects])
exp_ssl.py
noskill/nips14-ssl
496
11102343
import learn_yz_x_ss import sys learn_yz_x_ss.main(n_passes=3000, n_labeled=int(sys.argv[1]), dataset='mnist_2layer', n_z=50, n_hidden=tuple([int(sys.argv[2])]*int(sys.argv[3])), seed=int(sys.argv[4]), alpha=0.1, comment='')
alg/compartmental_gp/pyro_model/exponential_break.py
loramf/mlforhealthlabpub
171
11102347
import torch import torch.nn as nn import logging import pyro import pyro.distributions as dist import pyro.poutine as poutine from pyro.infer import MCMC, NUTS, SVI, TraceEnum_ELBO from pyro.infer.autoguide import AutoNormal, init_to_sample from pyro.infer.predictive import _guess_max_plate_nesting from pyro.nn.module import PyroModule from pyro.optim import DCTAdam from pyro.contrib.forecast.util import (MarkDCTParamMessenger, PrefixConditionMessenger, PrefixReplayMessenger, PrefixWarmStartMessenger, reshape_batch) logger = logging.getLogger(__name__) class EnumForecaster(nn.Module): """ Forecaster for a :class:`ForecastingModel` using variational inference. On initialization, this fits a distribution using variational inference over latent variables and exact inference over the noise distribution, typically a :class:`~pyro.distributions.GaussianHMM` or variant. After construction this can be called to generate sample forecasts. :ivar list losses: A list of losses recorded during training, typically used to debug convergence. Defined by ``loss = -elbo / data.numel()``. :param ForecastingModel model: A forecasting model subclass instance. :param data: A tensor dataset with time dimension -2. :type data: ~torch.Tensor :param covariates: A tensor of covariates with time dimension -2. For models not using covariates, pass a shaped empty tensor ``torch.empty(duration, 0)``. :type covariates: ~torch.Tensor :param guide: Optional guide instance. Defaults to a :class:`~pyro.infer.autoguide.AutoNormal`. :type guide: ~pyro.nn.module.PyroModule :param callable init_loc_fn: A per-site initialization function for the :class:`~pyro.infer.autoguide.AutoNormal` guide. Defaults to :func:`~pyro.infer.autoguide.initialization.init_to_sample`. See :ref:`autoguide-initialization` section for available functions. :param float init_scale: Initial uncertainty scale of the :class:`~pyro.infer.autoguide.AutoNormal` guide. :param callable create_plates: An optional function to create plates for subsampling with the :class:`~pyro.infer.autoguide.AutoNormal` guide. :param optim: An optional Pyro optimizer. Defaults to a freshly constructed :class:`~pyro.optim.optim.DCTAdam`. :type optim: ~pyro.optim.optim.PyroOptim :param float learning_rate: Learning rate used by :class:`~pyro.optim.optim.DCTAdam`. :param tuple betas: Coefficients for running averages used by :class:`~pyro.optim.optim.DCTAdam`. :param float learning_rate_decay: Learning rate decay used by :class:`~pyro.optim.optim.DCTAdam`. Note this is the total decay over all ``num_steps``, not the per-step decay factor. :param float clip_norm: Norm used for gradient clipping during optimization. Defaults to 10.0. :param bool dct_gradients: Whether to discrete cosine transform gradients in :class:`~pyro.optim.optim.DCTAdam`. Defaults to False. :param bool subsample_aware: whether to update gradient statistics only for those elements that appear in a subsample. This is used by :class:`~pyro.optim.optim.DCTAdam`. :param int num_steps: Number of :class:`~pyro.infer.svi.SVI` steps. :param int num_particles: Number of particles used to compute the :class:`~pyro.infer.elbo.ELBO`. :param bool vectorize_particles: If ``num_particles > 1``, determines whether to vectorize computation of the :class:`~pyro.infer.elbo.ELBO`. Defaults to True. Set to False for models with dynamic control flow. :param bool warm_start: Whether to warm start parameters from a smaller time window. Note this may introduce statistical leakage; usage is recommended for model exploration purposes only and should be disabled when publishing metrics. :param int log_every: Number of training steps between logging messages. """ def __init__(self, model, data, covariates, *, guide=None, init_loc_fn=init_to_sample, init_scale=0.1, create_plates=None, optim=None, learning_rate=0.01, betas=(0.9, 0.99), learning_rate_decay=0.1, clip_norm=10.0, dct_gradients=False, subsample_aware=False, num_steps=1001, num_particles=1, vectorize_particles=True, warm_start=False, log_every=100): assert data.size(-2) == covariates.size(-2) super().__init__() self.model = model if guide is None: guide = AutoNormal(self.model, init_loc_fn=init_loc_fn, init_scale=init_scale, create_plates=create_plates) self.guide = guide # Initialize. if warm_start: model = PrefixWarmStartMessenger()(model) guide = PrefixWarmStartMessenger()(guide) if dct_gradients: model = MarkDCTParamMessenger("time")(model) guide = MarkDCTParamMessenger("time")(guide) elbo = TraceEnum_ELBO(num_particles=num_particles, vectorize_particles=vectorize_particles) elbo._guess_max_plate_nesting(model, guide, (data, covariates), {}) elbo.max_plate_nesting = max(elbo.max_plate_nesting, 1) # force a time plate losses = [] if num_steps: if optim is None: optim = DCTAdam({"lr": learning_rate, "betas": betas, "lrd": learning_rate_decay ** (1 / num_steps), "clip_norm": clip_norm, "subsample_aware": subsample_aware}) svi = SVI(self.model, self.guide, optim, elbo) for step in range(num_steps): loss = svi.step(data, covariates) / data.numel() if log_every and step % log_every == 0: logger.info("step {: >4d} loss = {:0.6g}".format(step, loss)) losses.append(loss) self.guide.create_plates = None # Disable subsampling after training. self.max_plate_nesting = elbo.max_plate_nesting self.losses = losses def __call__(self, data, covariates, num_samples, batch_size=None): """ Samples forecasted values of data for time steps in ``[t1,t2)``, where ``t1 = data.size(-2)`` is the duration of observed data and ``t2 = covariates.size(-2)`` is the extended duration of covariates. For example to forecast 7 days forward conditioned on 30 days of observations, set ``t1=30`` and ``t2=37``. :param data: A tensor dataset with time dimension -2. :type data: ~torch.Tensor :param covariates: A tensor of covariates with time dimension -2. For models not using covariates, pass a shaped empty tensor ``torch.empty(duration, 0)``. :type covariates: ~torch.Tensor :param int num_samples: The number of samples to generate. :param int batch_size: Optional batch size for sampling. This is useful for generating many samples from models with large memory footprint. Defaults to ``num_samples``. :returns: A batch of joint posterior samples of shape ``(num_samples,1,...,1) + data.shape[:-2] + (t2-t1,data.size(-1))``, where the ``1``'s are inserted to avoid conflict with model plates. :rtype: ~torch.Tensor """ return super().__call__(data, covariates, num_samples, batch_size) def forward(self, data, covariates, num_samples, batch_size=None): assert data.size(-2) < covariates.size(-2) assert isinstance(num_samples, int) and num_samples > 0 if batch_size is not None: batches = [] while num_samples > 0: batch = self.forward(data, covariates, min(num_samples, batch_size)) batches.append(batch) num_samples -= batch_size return torch.cat(batches) assert self.max_plate_nesting >= 1 dim = -1 - self.max_plate_nesting with torch.no_grad(): with poutine.trace() as tr: with pyro.plate("particles", num_samples, dim=dim): self.guide(data, covariates) with PrefixReplayMessenger(tr.trace): with PrefixConditionMessenger(self.model._prefix_condition_data): with pyro.plate("particles", num_samples, dim=dim): return self.model(data, covariates)
backend/config/settings/development.py
stungkit/doccano
2,082
11102440
from .base import * # noqa: F403 MIDDLEWARE.append("api.middleware.RangesMiddleware") # noqa: F405 CORS_ORIGIN_WHITELIST = ("http://127.0.0.1:3000", "http://0.0.0.0:3000", "http://localhost:3000") CSRF_TRUSTED_ORIGINS = CORS_ORIGIN_WHITELIST # LOGGING = { # 'version': 1, # 'handlers': { # 'console': { # 'level': 'DEBUG', # 'class': 'logging.StreamHandler', # } # }, # 'loggers': { # 'django.db.backends': { # 'level': 'DEBUG', # 'handlers': ['console'], # }, # } # }
tools/mac/rewrite_modern_objc.py
zipated/src
2,151
11102456
#!/usr/bin/env python # Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Runs clang's "modern objective-c" rewriter on chrome code. Does the same as Xcode's Edit->Convert->To Modern Objective-C Syntax. Note that this just runs compile commands and doesn't look at build dependencies, i.e. it doesn't make sure generated headers exist. It also requires goma to be disabled. Suggested workflow: Build the target you want to convert locally with goma to create generated headers, then disable goma, re-run gn, and then run this script. """ import argparse import glob import json import math import os import shlex import subprocess import sys def main(): # As far as I can tell, clang's ObjC rewriter can't do in-place rewriting # (the ARC rewriter can). libclang exposes functions for parsing the remap # file, but doing that manually in python seems a lot easier. parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('builddir', help='build directory, e.g. out/gn') parser.add_argument('substr', default='', nargs='?', help='source dir part, eg chrome/browser/ui/cocoa') args = parser.parse_args() rewrite_dir = os.path.abspath( os.path.join(args.builddir, 'rewrite_modern_objc')) try: os.mkdir(rewrite_dir) except OSError: pass remap_file = os.path.join(rewrite_dir, 'remap') try: # Remove remap files from prior runs. os.remove(remap_file) except OSError: pass # The basic idea is to call clang's objcmt rewriter for each source file. # The rewriter writes a "remap" file containing N times 3 lines: # Name of an original source file, the original file's timestamp # at rewriting time, and the name of a temp file containing the rewritten # contents. # The rewriter gets confused if several instances run in parallel. We could # be fancy and have num_cpus rewrite dirs and combine their contents in the # end, but for now just run the rewrites serially. # First, ask ninja for the compile commands of all .m and .mm files. compdb = subprocess.check_output( ['ninja', '-C', args.builddir, '-t', 'compdb', 'objc', 'objcxx']) for cmd in json.loads(compdb): objc_file = cmd['file'] if args.substr not in objc_file: continue clang_cmd = cmd['command'] had_error = False if 'gomacc' in clang_cmd: print >>sys.stderr, 'need builddir with use_goma not set' had_error = True if 'jumbo' in clang_cmd: print >>sys.stderr, 'need builddir with use_jumbo_build not set' had_error = True if 'precompile.h-m' in clang_cmd: print >>sys.stderr, 'need builddir with enable_precompiled_headers=false' had_error = True if had_error: sys.exit(1) # Ninja creates the directory containing the build output, but we # don't run ninja, so we need to do that ourselves. split_cmd = shlex.split(clang_cmd) o_index = split_cmd.index('-o') assert o_index != -1 try: os.makedirs(os.path.dirname(split_cmd[o_index + 1])) except OSError: pass # Add flags to tell clang to do the rewriting. # Passing "-ccc-objcmt-migrate dir" doesn't give us control over each # individual setting, so use the Xclang flags. The individual flags are at # http://llvm-cs.pcc.me.uk/tools/clang/include/clang/Driver/Options.td#291 # Note that -objcmt-migrate-all maps to ObjCMT_MigrateDecls in # http://llvm-cs.pcc.me.uk/tools/clang/lib/Frontend/CompilerInvocation.cpp#1479 # which is not quite all the options: # http://llvm-cs.pcc.me.uk/tools/clang/include/clang/Frontend/FrontendOptions.h#248 flags = ['-Xclang', '-mt-migrate-directory', '-Xclang', rewrite_dir] flags += ['-Xclang', '-objcmt-migrate-subscripting' ] flags += ['-Xclang', '-objcmt-migrate-literals' ] #flags += ['-Xclang', '-objcmt-returns-innerpointer-property'] # buggy #flags += ['-Xclang', '-objcmt-migrate-property-dot-syntax'] # do not want # objcmt-migrate-all is the same as the flags following it here (it does # not include the flags listed above it). # Probably don't want ns-nonatomic-iosonly (or atomic-property), so we # can't use migrate-alll which includes that, and have to manually set the # bits of migrate-all we do want. #flags += ['-Xclang', '-objcmt-migrate-all'] #flags += ['-Xclang', '-objcmt-migrate-property'] # not sure if want flags += ['-Xclang', '-objcmt-migrate-annotation'] flags += ['-Xclang', '-objcmt-migrate-instancetype'] flags += ['-Xclang', '-objcmt-migrate-ns-macros'] #flags += ['-Xclang', '-objcmt-migrate-protocol-conformance'] # buggy #flags += ['-Xclang', '-objcmt-atomic-property'] # not sure if want #flags += ['-Xclang', '-objcmt-ns-nonatomic-iosonly'] # not sure if want # Want, but needs careful manual review, and doesn't find everything: #flags += ['-Xclang', '-objcmt-migrate-designated-init'] clang_cmd += ' ' + ' '.join(flags) print objc_file subprocess.check_call(clang_cmd, shell=True, cwd=cmd['directory']) if not os.path.exists(remap_file): print 'no changes' return # Done with rewriting. Now the read the above-described 'remap' file and # copy modified files over the originals. remap = open(remap_file).readlines() for i in range(0, len(remap), 3): infile, mtime, outfile = map(str.strip, remap[i:i+3]) if args.substr not in infile: # Ignore rewritten header files not containing args.substr too. continue if math.trunc(os.path.getmtime(infile)) != int(mtime): print '%s was modified since rewriting; exiting' % infile sys.exit(1) os.rename(outfile, infile) # Copy rewritten file over. print 'all done. commit, run `git cl format`, commit again, and upload!' if __name__ == '__main__': main()
problems/euler/13/largesum.py
vidyadeepa/the-coding-interview
1,571
11102466
<reponame>vidyadeepa/the-coding-interview numbers = [37107287533902102798797998220837590246510135740250, 46376937677490009712648124896970078050417018260538, 74324986199524741059474233309513058123726617309629, 91942213363574161572522430563301811072406154908250, 23067588207539346171171980310421047513778063246676, 89261670696623633820136378418383684178734361726757, 28112879812849979408065481931592621691275889832738, 44274228917432520321923589422876796487670272189318, 47451445736001306439091167216856844588711603153276, 70386486105843025439939619828917593665686757934951, 62176457141856560629502157223196586755079324193331, 64906352462741904929101432445813822663347944758178, 92575867718337217661963751590579239728245598838407, 58203565325359399008402633568948830189458628227828, 80181199384826282014278194139940567587151170094390, 35398664372827112653829987240784473053190104293586, 86515506006295864861532075273371959191420517255829, 71693888707715466499115593487603532921714970056938, 54370070576826684624621495650076471787294438377604, 53282654108756828443191190634694037855217779295145, 36123272525000296071075082563815656710885258350721, 45876576172410976447339110607218265236877223636045, 17423706905851860660448207621209813287860733969412, 81142660418086830619328460811191061556940512689692, 51934325451728388641918047049293215058642563049483, 62467221648435076201727918039944693004732956340691, 15732444386908125794514089057706229429197107928209, 55037687525678773091862540744969844508330393682126, 18336384825330154686196124348767681297534375946515, 80386287592878490201521685554828717201219257766954, 78182833757993103614740356856449095527097864797581, 16726320100436897842553539920931837441497806860984, 48403098129077791799088218795327364475675590848030, 87086987551392711854517078544161852424320693150332, 59959406895756536782107074926966537676326235447210, 69793950679652694742597709739166693763042633987085, 41052684708299085211399427365734116182760315001271, 65378607361501080857009149939512557028198746004375, 35829035317434717326932123578154982629742552737307, 94953759765105305946966067683156574377167401875275, 88902802571733229619176668713819931811048770190271, 25267680276078003013678680992525463401061632866526, 36270218540497705585629946580636237993140746255962, 24074486908231174977792365466257246923322810917141, 91430288197103288597806669760892938638285025333403, 34413065578016127815921815005561868836468420090470, 23053081172816430487623791969842487255036638784583, 11487696932154902810424020138335124462181441773470, 63783299490636259666498587618221225225512486764533, 67720186971698544312419572409913959008952310058822, 95548255300263520781532296796249481641953868218774, 76085327132285723110424803456124867697064507995236, 37774242535411291684276865538926205024910326572967, 23701913275725675285653248258265463092207058596522, 29798860272258331913126375147341994889534765745501, 18495701454879288984856827726077713721403798879715, 38298203783031473527721580348144513491373226651381, 34829543829199918180278916522431027392251122869539, 40957953066405232632538044100059654939159879593635, 29746152185502371307642255121183693803580388584903, 41698116222072977186158236678424689157993532961922, 62467957194401269043877107275048102390895523597457, 23189706772547915061505504953922979530901129967519, 86188088225875314529584099251203829009407770775672, 11306739708304724483816533873502340845647058077308, 82959174767140363198008187129011875491310547126581, 97623331044818386269515456334926366572897563400500, 42846280183517070527831839425882145521227251250327, 55121603546981200581762165212827652751691296897789, 32238195734329339946437501907836945765883352399886, 75506164965184775180738168837861091527357929701337, 62177842752192623401942399639168044983993173312731, 32924185707147349566916674687634660915035914677504, 99518671430235219628894890102423325116913619626622, 73267460800591547471830798392868535206946944540724, 76841822524674417161514036427982273348055556214818, 97142617910342598647204516893989422179826088076852, 87783646182799346313767754307809363333018982642090, 10848802521674670883215120185883543223812876952786, 71329612474782464538636993009049310363619763878039, 62184073572399794223406235393808339651327408011116, 66627891981488087797941876876144230030984490851411, 60661826293682836764744779239180335110989069790714, 85786944089552990653640447425576083659976645795096, 66024396409905389607120198219976047599490197230297, 64913982680032973156037120041377903785566085089252, 16730939319872750275468906903707539413042652315011, 94809377245048795150954100921645863754710598436791, 78639167021187492431995700641917969777599028300699, 15368713711936614952811305876380278410754449733078, 40789923115535562561142322423255033685442488917353, 44889911501440648020369068063960672322193204149535, 41503128880339536053299340368006977710650566631954, 81234880673210146739058568557934581403627822703280, 82616570773948327592232845941706525094512325230608, 22918802058777319719839450180888072429661980811197, 77158542502016545090413245809786882778948721859617, 72107838435069186155435662884062257473692284509516, 20849603980134001723930671666823555245252804609722, 53503534226472524250874054075591789781264330331690] numbers_length = len(str(numbers[0])) reverted = [str(n)[::-1] for n in numbers] result = [] remainder = 0 for pos in range(numbers_length): digit_sum = sum(int(d[pos]) for d in reverted) + remainder print digit_sum digit = digit_sum % 10 print digit result.append(str(digit)) remainder = digit_sum / 10 print remainder result.append(str(remainder)) result = "".join(r for r in result)[::-1] print result[0:10]
src/lib/weakref.py
DTenore/skulpt
2,671
11102505
import _sk_fail; _sk_fail._("weakref")
tests/utils/common.py
niobeus/onnx2torch
144
11102511
<filename>tests/utils/common.py import io from typing import Any from typing import Callable from typing import Dict from typing import List from typing import Optional from typing import Sequence from typing import Tuple from typing import Type from typing import Union import torch import numpy as np import onnx import onnxruntime as ort from onnx import defs from onnx import numpy_helper from onnx.helper import make_graph from onnx.helper import make_model from onnx.helper import make_operatorsetid from onnx.helper import make_tensor_value_info from onnx.mapping import NP_TYPE_TO_TENSOR_TYPE from onnx.onnx_ml_pb2 import ModelProto from onnx.onnx_ml_pb2 import NodeProto from onnx.onnx_ml_pb2 import ValueInfoProto from onnx.shape_inference import infer_shapes from onnx2torch.converter import convert def make_model_from_nodes( nodes: Union[NodeProto, Sequence[NodeProto]], initializers: Dict[str, np.ndarray], inputs_example: Optional[Dict[str, np.ndarray]] = None, inputs_info: Optional[Sequence[ValueInfoProto]] = None, outputs_info: Optional[Sequence[ValueInfoProto]] = None, opset_version: Optional[int] = 11, ) -> ModelProto: if inputs_info is None and inputs_example is None: raise ValueError('inputs_example or inputs_info must be set') if inputs_info is None: inputs_info = [] for name, data in inputs_example.items(): elem_type = NP_TYPE_TO_TENSOR_TYPE[data.dtype] inputs_info.append(make_tensor_value_info(name=name, elem_type=elem_type, shape=data.shape)) if outputs_info is None: outputs_info = [] elem_type = inputs_info[0].type.tensor_type.elem_type for name in tuple(nodes.output): output_proto = make_tensor_value_info(name=name, elem_type=elem_type, shape=None) outputs_info.append(output_proto) graph_proto = make_graph( nodes=(nodes,), name='test_graph', inputs=inputs_info, outputs=outputs_info, initializer=[ numpy_helper.from_array(data, name=name) for name, data in initializers.items() ], ) opset_imports = None if opset_version is not None: opset_imports = [ make_operatorsetid( domain=defs.ONNX_DOMAIN, version=opset_version, ), ] model = make_model(graph_proto, opset_imports=opset_imports) model = infer_shapes(model, check_type=False) onnx.checker.check_model(model, False) return model def _convert_data(data: Any, from_type: Type, convert_function: Callable) -> Any: if isinstance(data, Dict): return { k: _convert_data(v, from_type, convert_function) for k, v in data.items() } if isinstance(data, (Tuple, List)): return type(data)( _convert_data(v, from_type, convert_function) for v in data ) if isinstance(data, from_type): return convert_function(data) return data def convert_data_onnx2torch(data: Any, device: str = 'cpu') -> Any: def convert_function(t): return torch.from_numpy(t).to(device=device) return _convert_data(data, from_type=np.ndarray, convert_function=convert_function) def convert_data_torch2onnx(data: Any) -> Any: def convert_function(t): return t.detach().cpu().numpy() return _convert_data(data, from_type=torch.Tensor, convert_function=convert_function) def convert_onnx_inputs_to_torch_inputs( onnx_model: ModelProto, onnx_inputs: Dict[str, Any], device: str = 'cpu', ) -> List[Any]: return [ convert_data_onnx2torch(onnx_inputs[graph_input.name], device=device) for graph_input in onnx_model.graph.input if graph_input.name in onnx_inputs ] def calc_ort_outputs(model: ModelProto, inputs: Dict[str, Any], skip_unused_inputs: bool = False) -> List[Any]: ort_session = ort.InferenceSession( model.SerializeToString(), providers=['CPUExecutionProvider'], ) if skip_unused_inputs: graph_inputs = [i.name for i in model.graph.input] inputs = { k: v for k, v in inputs.items() if k in graph_inputs } outputs = ort_session.run( output_names=None, input_feed=inputs, ) return outputs def calc_torch_outputs(model: ModelProto, inputs: Dict[str, Any], device: str = 'cpu') -> Any: inputs = convert_onnx_inputs_to_torch_inputs(onnx_model=model, onnx_inputs=inputs, device=device) model = convert(model).to(device=device) outputs = model(*inputs) return convert_data_torch2onnx(outputs) def calc_torch_and_ort_outputs( model: ModelProto, test_inputs: Dict[str, np.ndarray], ): torch_outputs = calc_torch_outputs(model=model, inputs=test_inputs) ort_outputs = calc_ort_outputs(model=model, inputs=test_inputs) return torch_outputs, ort_outputs def convert_onnx2torch2onnx( model: ModelProto, inputs: Dict[str, np.ndarray], opset_version: int = 13, **export_kwargs, ) -> ModelProto: torch_model = convert(model) input_names = list(inputs.keys()) args = list(inputs.values()) args = tuple(torch.tensor(arg) for arg in args) with io.BytesIO() as tmp_file: torch.onnx.export( model=torch_model, args=args, f=tmp_file, input_names=input_names, opset_version=opset_version, **export_kwargs, ) return onnx.load_from_string(tmp_file.getvalue()) def _check_onnx_model( onnx_model: ModelProto, onnx_inputs: Dict[str, Any], onnx_torch_check_function: Callable, torch_cpu_cuda_check_function: Optional[Callable] = None, onnx_torch2onnx_check_function: Optional[Callable] = None, opset_version: int = 13, ) -> None: ort_outputs = calc_ort_outputs(onnx_model, onnx_inputs) torch_outputs = calc_torch_outputs(onnx_model, onnx_inputs, device='cpu') onnx_torch_check_function(ort_outputs, torch_outputs) if torch_cpu_cuda_check_function is not None: torch_cuda_outputs = calc_torch_outputs(onnx_model, onnx_inputs, device='cuda') torch_cpu_cuda_check_function(torch_outputs, torch_cuda_outputs) if onnx_torch2onnx_check_function is not None: torch2onnx_model = convert_onnx2torch2onnx(onnx_model, inputs=onnx_inputs, opset_version=opset_version) ort_torch2onnx_outputs = calc_ort_outputs(torch2onnx_model, onnx_inputs, skip_unused_inputs=True) onnx_torch2onnx_check_function(ort_outputs, ort_torch2onnx_outputs) def check_onnx_model( onnx_model: ModelProto, onnx_inputs: Dict[str, Any], atol_onnx_torch: float = 0.0, atol_torch_cpu_cuda: float = 0.0, atol_onnx_torch2onnx: float = 0.0, opset_version: int = 13, ) -> None: def onnx_torch_check_function(onnx_output, torch_output): if len(onnx_output) == 1: torch_output = [torch_output] for a, b in zip(onnx_output, torch_output): assert np.all(np.isclose(a, b, atol=atol_onnx_torch)), 'ort and torch outputs have significant difference' def torch_cpu_cuda_check_function(torch_cpu_output, torch_cuda_output): if not isinstance(torch_cpu_output, (List, Tuple)): torch_cpu_output = [torch_cpu_output] torch_cuda_output = [torch_cuda_output] for a, b in zip(torch_cpu_output, torch_cuda_output): assert np.all(np.isclose(a, b, atol=atol_torch_cpu_cuda)), \ 'torch cpu and torch cuda outputs have significant difference' return True def onnx_torch2onnx_check_function(onnx_output, torch2onnx_output): for a, b in zip(onnx_output, torch2onnx_output): assert np.all(np.isclose(a, b, atol=atol_onnx_torch2onnx)), \ 'ort and ort+torch2onnx outputs have significant difference' return True _check_onnx_model( onnx_model=onnx_model, onnx_inputs=onnx_inputs, onnx_torch_check_function=onnx_torch_check_function, torch_cpu_cuda_check_function=torch_cpu_cuda_check_function, onnx_torch2onnx_check_function=onnx_torch2onnx_check_function, opset_version=opset_version, ) def check_torch_model( torch_model: torch.nn.Module, onnx_inputs: Dict[str, Any], atol_onnx_torch: float = 0.0, atol_torch_cpu_cuda: float = 0.0, atol_onnx_torch2onnx: float = 0.0, opset_version: int = 13, ) -> None: arguments = locals() input_names = list(onnx_inputs.keys()) args = tuple(torch.tensor(arg) for arg in onnx_inputs.values()) with io.BytesIO() as tmp_file: torch.onnx.export( model=torch_model, args=args, f=tmp_file, input_names=input_names, opset_version=opset_version, ) arguments.pop('torch_model') arguments['onnx_model'] = onnx.load_from_string(tmp_file.getvalue()) check_onnx_model(**arguments)
RecoVertex/BeamSpotProducer/test/BeamFit_LumiBased_Workflow.py
ckamtsikis/cmssw
852
11102545
import FWCore.ParameterSet.Config as cms process = cms.Process("BSworkflow") # initialize MessageLogger process.load("FWCore.MessageLogger.MessageLogger_cfi") process.load("RecoVertex.BeamSpotProducer.d0_phi_analyzer_cff") process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring( '/store/express/Run2010B/StreamExpress/ALCARECO/TkAlMinBias-v2/000/147/984/00B7AE46-58D8-DF11-9A23-001D09F292D1.root' ) ) process.MessageLogger.cerr.FwkReport = cms.untracked.PSet( reportEvery = cms.untracked.int32(1000000), ) #process.source = cms.Source('PoolSource', # debugVerbosity = cms.untracked.uint32(0), # debugFlag = cms.untracked.bool(False) # ) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) #1500 ) process.options = cms.untracked.PSet( wantSummary = cms.untracked.bool(True) ) # this is for filtering on L1 technical trigger bit process.load('L1TriggerConfig.L1GtConfigProducers.L1GtTriggerMaskTechTrigConfig_cff') process.load('HLTrigger/HLTfilters/hltLevel1GTSeed_cfi') process.hltLevel1GTSeed.L1TechTriggerSeeding = cms.bool(True) process.hltLevel1GTSeed.L1SeedsLogicalExpression = cms.string('0 AND ( 40 OR 41 ) AND NOT (36 OR 37 OR 38 OR 39)') ## reco PV process.load("Configuration.StandardSequences.MagneticField_cff") process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") process.GlobalTag.globaltag = 'GR_R_38X_V11::All' process.load("Configuration.StandardSequences.Reconstruction_cff") process.load("RecoVertex.BeamSpotProducer.BeamSpot_cfi") process.load("RecoVertex.PrimaryVertexProducer.OfflinePrimaryVertices_cfi") process.offlinePrimaryVertices.TrackLabel = cms.InputTag("ALCARECOTkAlMinBias") #### remove beam scraping events process.noScraping= cms.EDFilter("FilterOutScraping", applyfilter = cms.untracked.bool(True), debugOn = cms.untracked.bool(False), ## Or 'True' to get some per-event info numtrack = cms.untracked.uint32(10), thresh = cms.untracked.double(0.20) ) process.p = cms.Path( # process.hltLevel1GTSeed + # process.offlineBeamSpot + # process.offlinePrimaryVertices+ # process.noScraping + process.d0_phi_analyzer) process.MessageLogger.debugModules = ['BeamSpotAnalyzer'] ################### Primary Vertex process.offlinePrimaryVertices.PVSelParameters.maxDistanceToBeam = 2 process.offlinePrimaryVertices.TkFilterParameters.maxNormalizedChi2 = 20 process.offlinePrimaryVertices.TkFilterParameters.minSiliconLayersWithHits = 5 process.offlinePrimaryVertices.TkFilterParameters.maxD0Significance = 100 process.offlinePrimaryVertices.TkFilterParameters.minPixelLayersWithHits = 1 process.offlinePrimaryVertices.TkClusParameters.TkGapClusParameters.zSeparation = 1 ####################### process.d0_phi_analyzer.BeamFitter.TrackCollection = 'ALCARECOTkAlMinBias' process.d0_phi_analyzer.BeamFitter.MinimumTotalLayers = 6 process.d0_phi_analyzer.BeamFitter.MinimumPixelLayers = -1 process.d0_phi_analyzer.BeamFitter.MaximumNormChi2 = 10 process.d0_phi_analyzer.BeamFitter.MinimumInputTracks = 50 process.d0_phi_analyzer.BeamFitter.MinimumPt = 1.0 process.d0_phi_analyzer.BeamFitter.MaximumImpactParameter = 1.0 process.d0_phi_analyzer.BeamFitter.TrackAlgorithm = cms.untracked.vstring() #process.d0_phi_analyzer.BeamFitter.Debug = True process.d0_phi_analyzer.PVFitter.Apply3DFit = True process.d0_phi_analyzer.PVFitter.minNrVerticesForFit = 10 ######################### process.d0_phi_analyzer.BeamFitter.AsciiFileName = 'BeamFit_LumiBased_Workflow.txt' process.d0_phi_analyzer.BeamFitter.AppendRunToFileName = False process.d0_phi_analyzer.BeamFitter.OutputFileName = 'BeamFit_LumiBased_Workflow.root' #process.d0_phi_analyzer.BeamFitter.SaveNtuple = True process.d0_phi_analyzer.BeamFitter.SavePVVertices = True # fit as function of lumi sections process.d0_phi_analyzer.BSAnalyzerParameters.fitEveryNLumi = 1 process.d0_phi_analyzer.BSAnalyzerParameters.resetEveryNLumi = 1
orgsrc/plantuml.py
Sinamore/orgextended
120
11102546
<gh_stars>100-1000 import sublime import sublime_plugin import sys import io import re import logging import subprocess, os import threading, time, signal from shutil import copyfile import OrgExtended.asettings as sets # Python Babel Mode def Extension(cmd): return ".pu" def WrapStart(cmd): return "@startuml" def WrapEnd(cmd): return "@enduml" # Actually do the work, return an array of output. def Execute(cmd,sets): jarfile = sets.Get("plantuml",None) if(jarfile == None): print("ERROR: cannot find plantuml jar file. Please setup the plantuml key in your settings file") return ["ERROR - missing plantuml.jar file"] cmd.output = cmd.params.Get('file',"diagram.png") outpath = os.path.dirname(cmd.filename) sourcepath = os.path.dirname(cmd.sourcefile) commandLine = [r"java", "-jar", jarfile, cmd.filename] try: startupinfo = subprocess.STARTUPINFO() startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW except: startupinfo = None cwd = os.path.join(sublime.packages_path(),"User") popen = subprocess.Popen(commandLine, universal_newlines=True, cwd=cwd, startupinfo=startupinfo, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (o,e) = popen.communicate() convertFile = os.path.join(outpath,os.path.splitext(os.path.basename(cmd.filename))[0] + ".png") destFile = os.path.normpath(os.path.join(sourcepath,cmd.output)) os.makedirs(os.path.dirname(destFile), exist_ok=True) copyfile(convertFile, destFile) return o.split('\n') + e.split('\n') # Run after results are in the buffer. We can do whatever # Is needed to the buffer post execute here. def PostExecute(cmd): pass # Create one of these and return true if we should show images after a execution. def GeneratesImages(cmd): return True
auctioning_platform/auctions/auctions/tests/test_bidding.py
nhdinh/smp-modulith
299
11102560
<reponame>nhdinh/smp-modulith from datetime import datetime, timedelta from typing import Optional from unittest.mock import Mock, call from freezegun import freeze_time import pytest import pytz from foundation.events import EventBus from foundation.value_objects.factories import get_dollars from auctions import BeginningAuction, BidderHasBeenOverbid, PlacingBid, WinningBidPlaced from auctions.application.repositories import AuctionsRepository from auctions.application.use_cases.beginning_auction import BeginningAuctionInputDto from auctions.application.use_cases.placing_bid import PlacingBidInputDto, PlacingBidOutputBoundary, PlacingBidOutputDto from auctions.domain.entities import Auction from auctions.domain.exceptions import BidOnEndedAuction from auctions.domain.value_objects import AuctionId from auctions.tests.factories import AuctionFactory from auctions.tests.in_memory_repo import InMemoryAuctionsRepo class PlacingBidOutputBoundaryFake(PlacingBidOutputBoundary): def __init__(self) -> None: self.dto: Optional[PlacingBidOutputDto] = None def present(self, output_dto: PlacingBidOutputDto) -> None: self.dto = output_dto @pytest.fixture() def output_boundary() -> PlacingBidOutputBoundary: return PlacingBidOutputBoundaryFake() @pytest.fixture() def auction() -> Auction: return AuctionFactory() @pytest.fixture() def auction_id(auction: Auction) -> AuctionId: return auction.id @pytest.fixture() def auction_title(auction: Auction) -> str: return auction.title @pytest.fixture() def event_bus() -> Mock: return Mock(spec_set=EventBus) @pytest.fixture() def auctions_repo(event_bus: Mock) -> AuctionsRepository: return InMemoryAuctionsRepo(event_bus) @pytest.fixture() def place_bid_uc( output_boundary: PlacingBidOutputBoundaryFake, auction: Auction, auctions_repo: AuctionsRepository ) -> PlacingBid: auctions_repo.save(auction) return PlacingBid(output_boundary, auctions_repo) @pytest.fixture() def beginning_auction_uc(auctions_repo: AuctionsRepository) -> BeginningAuction: return BeginningAuction(auctions_repo) def test_Auction_FirstBidHigherThanIntialPrice_IsWinning( place_bid_uc: PlacingBid, output_boundary: PlacingBidOutputBoundaryFake, auction_id: AuctionId ) -> None: place_bid_uc.execute(PlacingBidInputDto(1, auction_id, get_dollars("100"))) expected_dto = PlacingBidOutputDto(is_winner=True, current_price=get_dollars("100")) assert output_boundary.dto == expected_dto def test_Auction_BidLowerThanCurrentPrice_IsLosing( place_bid_uc: PlacingBid, output_boundary: PlacingBidOutputBoundaryFake, auction_id: AuctionId ) -> None: place_bid_uc.execute(PlacingBidInputDto(1, auction_id, get_dollars("5"))) assert output_boundary.dto == PlacingBidOutputDto(is_winner=False, current_price=get_dollars("10")) def test_Auction_Overbid_IsWinning( place_bid_uc: PlacingBid, output_boundary: PlacingBidOutputBoundaryFake, auction_id: AuctionId ) -> None: place_bid_uc.execute(PlacingBidInputDto(1, auction_id, get_dollars("100"))) place_bid_uc.execute(PlacingBidInputDto(2, auction_id, get_dollars("120"))) assert output_boundary.dto == PlacingBidOutputDto(is_winner=True, current_price=get_dollars("120")) def test_Auction_OverbidByWinner_IsWinning( place_bid_uc: PlacingBid, output_boundary: PlacingBidOutputBoundaryFake, auction_id: AuctionId ) -> None: place_bid_uc.execute(PlacingBidInputDto(1, auction_id, get_dollars("100"))) place_bid_uc.execute(PlacingBidInputDto(1, auction_id, get_dollars("120"))) assert output_boundary.dto == PlacingBidOutputDto(is_winner=True, current_price=get_dollars("120")) def test_Auction_FirstBid_EmitsEvent( place_bid_uc: PlacingBid, event_bus: Mock, auction_id: AuctionId, auction_title: str ) -> None: place_bid_uc.execute(PlacingBidInputDto(1, auction_id, get_dollars("100"))) event_bus.post.assert_called_once_with(WinningBidPlaced(auction_id, 1, get_dollars("100"), auction_title)) # Uzyty w przykladzie to inicjalizowania modulu def test_Auction_OverbidFromOtherBidder_EmitsEvents( beginning_auction_uc: BeginningAuction, place_bid_uc: PlacingBid, event_bus: Mock ) -> None: auction_id = 1 tomorrow = datetime.now(tz=pytz.UTC) + timedelta(days=1) beginning_auction_uc.execute(BeginningAuctionInputDto(auction_id, "Foo", get_dollars("1.00"), tomorrow)) place_bid_uc.execute(PlacingBidInputDto(1, auction_id, get_dollars("2.0"))) event_bus.post.reset_mock() place_bid_uc.execute(PlacingBidInputDto(2, auction_id, get_dollars("3.0"))) event_bus.post.assert_has_calls( [ call(WinningBidPlaced(auction_id, 2, get_dollars("3.0"), "Foo")), call(BidderHasBeenOverbid(auction_id, 1, get_dollars("3.0"), "Foo")), ], any_order=True, ) assert event_bus.post.call_count == 2 def test_Auction_OverbidFromOtherBidder_EmitsEvent( place_bid_uc: PlacingBid, event_bus: Mock, auction_id: AuctionId, auction_title: str ) -> None: place_bid_uc.execute(PlacingBidInputDto(1, auction_id, get_dollars("100"))) event_bus.post.reset_mock() place_bid_uc.execute(PlacingBidInputDto(2, auction_id, get_dollars("120"))) event_bus.post.assert_has_calls( [ call(WinningBidPlaced(auction_id, 2, get_dollars("120"), auction_title)), call(BidderHasBeenOverbid(auction_id, 1, get_dollars("120"), auction_title)), ], any_order=True, ) assert event_bus.post.call_count == 2 def test_Auction_OverbidFromWinner_EmitsWinningBidEventOnly( place_bid_uc: PlacingBid, event_bus: Mock, auction_id: AuctionId, auction_title: str ) -> None: place_bid_uc.execute(PlacingBidInputDto(3, auction_id, get_dollars("100"))) event_bus.post.reset_mock() place_bid_uc.execute(PlacingBidInputDto(3, auction_id, get_dollars("120"))) event_bus.post.assert_called_once_with(WinningBidPlaced(auction_id, 3, get_dollars("120"), auction_title)) def test_PlacingBid_BiddingOnEndedAuction_RaisesException( beginning_auction_uc: BeginningAuction, place_bid_uc: PlacingBid ) -> None: yesterday = datetime.now(tz=pytz.UTC) - timedelta(days=1) with freeze_time(yesterday): beginning_auction_uc.execute( BeginningAuctionInputDto(1, "Bar", get_dollars("1.00"), yesterday + timedelta(hours=1)) ) with pytest.raises(BidOnEndedAuction): place_bid_uc.execute(PlacingBidInputDto(1, 1, get_dollars("2.00")))
utils/data_util.py
taha-a/image
161
11102568
import numpy as np import pandas as pd from collections import Counter from nltk.tokenize import word_tokenize import pickle import json import os max_len = 20 word_threshold = 2 counter = None def prepare_coco_captions(filename="Dataset/captions_val2014.json"): ''' Prepare COCO Captions in the Flickr annotation file format ''' with open(filename, 'r') as f: data = json.load(f) images = data['images'] captions = data['annotations'] prefix = "COCO_train2014_" for cap in captions: image_id = str(cap['image_id']) len_id = len(image_id) zeros = '0'*(12-len_id) image_id = prefix+zeros+image_id cap['image_id'] = image_id cap['caption'] = cap['caption'].replace('\n','')\ .replace(',', ' ,').replace('.', '')\ .replace('"','" ').replace("'s"," 's")\ .replace("'t"," 't")+ " ." captions = sorted(captions, key=lambda k: k['image_id']) cap_path="Dataset/COCOcaptions.txt" with open(cap_path,'w') as f: for i, cap in enumerate(captions): f.write(cap['image_id']+'#'+str(i%5)+'\t'+cap['caption']+'\n') return cap_path def preprocess_coco_captions(filenames, captions): df = pd.DataFrame() df['FileNames'] = filenames df['caption'] = captions df.caption = df.caption.str.decode('utf') df['caption'] = df['caption'].apply(word_tokenize).apply(lambda x: x[:20]).apply(" ".join).str.lower() anomalies = df.FileNames.value_counts()[(df.FileNames.value_counts() > 5)].index.tolist() for name in anomalies: indexes = df[df.FileNames==name].index[5:] df = df.drop(indexes) df = df.reset_index(drop=True) with open("Dataset/COCOcaptions.txt",'w') as f: for i, row in df.iterrows(): f.write(row['FileNames']+'#'+str(i%5)+'\t'+row['caption']+'\n') return df def preprocess_flickr_captions(filenames, captions): global max_len print "Preprocessing Captions" df = pd.DataFrame() df['FileNames'] = filenames df['caption'] = captions df.caption = df.caption.str.decode('utf') df['caption'] = df['caption'].apply(word_tokenize).apply( lambda x: x[:max_len]).apply(" ".join).str.lower() #df = df[:158900] #uncomment if flickr return df def generate_vocab(df): global max_len, word_threshold, counter print "Generating Vocabulary" vocab = dict([w for w in counter.items() if w[1] >= word_threshold]) vocab["<UNK>"] = len(counter) - len(vocab) vocab["<PAD>"] = df.caption.str.count("<PAD>").sum() vocab["<S>"] = df.caption.str.count("<S>").sum() vocab["</S>"] = df.caption.str.count("</S>").sum() wtoidx = {} wtoidx["<S>"] = 1 wtoidx["</S>"] = 2 wtoidx["<PAD>"] = 0 wtoidx["<UNK>"] = 3 print "Generating Word to Index and Index to Word" i = 4 for word in vocab.keys(): if word not in ["<S>", "</S>", "<PAD>", "<UNK>"]: wtoidx[word] = i i += 1 print "Size of Vocabulary", len(vocab) return vocab, wtoidx def pad_captions(df): global max_len print "Padding Caption <PAD> to Max Length", max_len, "+ 2 for <S> and </S>" dfPadded = df.copy() dfPadded['caption'] = "<S> " + dfPadded['caption'] + " </S>" max_len = max_len + 2 for i, row in dfPadded.iterrows(): cap = row['caption'] cap_len = len(cap.split()) if(cap_len < max_len): pad_len = max_len - cap_len pad_buf = "<PAD> " * pad_len pad_buf = pad_buf.strip() dfPadded.set_value(i, 'caption', cap + " " + pad_buf) return dfPadded def load_features(feature_path): features = np.load(feature_path) features = np.repeat(features, 5, axis=0) print "Features Loaded", feature_path return features def split_dataset(df, features, ratio=0.8): split_idx = int(df.shape[0] * ratio) print "Data Statistics:" print "# Records Total Data: ", df.shape[0] print "# Records Training Data: ", split_idx print "# Records Training Data: ", df.shape[0] - split_idx print "Ration of Training: Validation = ", ratio * 100, ":", 100 - (ratio * 100) val_features = features[split_idx:] val_captions = np.array(df.caption)[split_idx:] np.save("Dataset/Validation_Data", zip(val_features, val_captions)) return df[:split_idx], features[:split_idx] def get_data(required_files): ret = [] for fil in required_files: ret.append(np.load("Dataset/" + fil + ".npy")) return ret def generate_captions( wt=2, ml=20, cap_path='Dataset/results_20130124.token',#default set to flickr30k captions feat_path='Dataset/features.npy', data_is_coco=False): required_files = ["vocab", "wordmap", "Training_Data"] generate = False for fil in required_files: if not os.path.isfile('Dataset/' + fil + ".npy"): generate = True print "Required Files not present. Regenerating Data." break if not generate: print "Dataset Present; Skipping Generation." return get_data(required_files) global max_len, word_threshold, counter max_len = ml word_threshold = wt print "Loading Caption Data", cap_path if data_is_coco: # Prepare COCO captions in Flickr format cap_path = prepare_coco_captions(cap_path) # Load the COCO captions data with open(cap_path, 'r') as f: data = f.readlines() filenames = [caps.split('\t')[0].split('#')[0] for caps in data] captions = [caps.split('\t')[1] for caps in data] df = preprocess_coco_captions(filenames, captions) else: with open(cap_path, 'r') as f: data = f.readlines() filenames = [caps.split('\t')[0].split('#')[0] for caps in data] captions = [caps.replace('\n', '').split('\t')[1] for caps in data] df = preprocess_flickr_captions(filenames, captions) features = load_features(feat_path) print features.shape, df.shape idx = np.random.permutation(features.shape[0]) df = df.iloc[idx] features = features[idx] # df, features = split_dataset(df, features) #use flickr8k for validation counter = Counter() for i, row in df.iterrows(): counter.update(row["caption"].lower().split()) df = pad_captions(df) vocab, wtoidx = generate_vocab(df) captions = np.array(df.caption) np.save("Dataset/Training_Data", zip(features, captions)) np.save("Dataset/wordmap", wtoidx) np.save("Dataset/vocab", vocab) print "Preprocessing Complete" return get_data(required_files)
hl7apy/factories.py
ryoung29/hl7apy
163
11102629
# -*- coding: utf-8 -*- # # Copyright (c) 2012-2018, CRS4 # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ This module contains factory functions for hl7apy base data types. The functions get the value of the data type as string and return the correct object """ from __future__ import absolute_import from decimal import Decimal, InvalidOperation from types import FunctionType from hl7apy import load_library, get_default_validation_level, get_default_version from hl7apy.exceptions import InvalidDataType from hl7apy.utils import get_date_info, get_datetime_info, get_timestamp_info def datatype_factory(datatype, value, version=None, validation_level=None): """ Factory function for both base and complex datatypes. It generates the correct object according to the datatype in input. It should be noted that if you use the factory it is not possible to specify some parameters for the datatype (e.g. the format for datetime base datatypes) If the value is not valid for the datatype specified if the ``validation_level`` is :attr:`hl7apy.consts.VALIDATION_LEVEL.TOLERANT` it generates an :class:`hl7apy.base_datatypes.ST` object :type datatype: ``str`` :param datatype: The datatype to be generated :param value: The value of the datatype :type version: ``str`` :param version: A valid HL7 version. It must be one of :attr:`SUPPRTED_LIBRARIES <hl7apy.SUPPORTED_LIBRARIES>` :type validation_level: ``int`` :param validation_level: It must be a value from class :attr:`validation_level` :class:`VALIDATION_LEVEL hl7apy.consts.VALIDATION_LEVEL` or ``None`` to use the default value :rtype: The type specified in datatype :raises :exc:`ValueError`: If the ``validation_level`` is :attr:`VALIDATION_LEVEL.STRICT <hl7apy.consts.VALIDATION_LEVEL.STRICT>` and the value is not valid for the specified datatype :raises :exc:`InvalidDatatype <hl7apy.exceptions.InvalidDatatype>`: If the ``datatype`` specified is not valid for the given ``version`` """ from hl7apy.validation import Validator if validation_level is None: validation_level = get_default_validation_level() if version is None: version = get_default_version() lib = load_library(version) base_datatypes = lib.get_base_datatypes() factories = base_datatypes.copy() if 'DT' in factories: factories['DT'] = date_factory if 'TM' in factories: factories['TM'] = timestamp_factory if 'DTM' in factories: factories['DTM'] = datetime_factory if 'NM' in factories: factories['NM'] = numeric_factory if 'SI' in factories: factories['SI'] = sequence_id_factory try: factory = factories[datatype] if isinstance(factory, FunctionType): return factory(value, base_datatypes[datatype], validation_level=validation_level) return factory(value, validation_level=validation_level) except KeyError: raise InvalidDataType(datatype) except ValueError as e: print(e) if Validator.is_strict(validation_level): raise e # TODO: Do we really want this? In that case the parent's datatype must be changed accordingly return factories['ST'](value) def date_factory(value, datatype_cls, validation_level=None): """ Creates a :class:`DT <hl7apy.base_datatypes.DT>` object The value in input must be a string parsable with :meth:`datetime.strptime`. The date format is chosen according to the length of the value as stated in this table: +-------+-----------+ |Length |Format | +=======+===========+ |4 |``%Y`` | | | | +-------+-----------+ |6 |``%Y%m`` | | | | +-------+-----------+ |8 |``%Y%m%d`` | | | | +-------+-----------+ Some examples that work are: >>> from hl7apy.base_datatypes import DT >>> date_factory("1974", DT) #doctest: +ELLIPSIS <hl7apy.base_datatypes.DT object at 0x...> >>> date_factory("198302", DT) #doctest: +ELLIPSIS <hl7apy.base_datatypes.DT object at 0x...> >>> date_factory("19880312", DT) #doctest: +ELLIPSIS <hl7apy.base_datatypes.DT object at 0x...> If the value does not match one of the valid format it raises :exc:`ValueError` :type value: ``str`` :param value: the value to assign the date object :type datatype_cls: `class` :param value: the :class:`DT <hl7apy.base_datatypes.DT>` class to use. It has to be one implementation of the different version modules :type validation_level: ``int`` :param validation_level: It must be a value from class :attr:`validation_level` :class:`VALIDATION_LEVEL hl7apy.consts.VALIDATION_LEVEL` or ``None`` to use the default value :rtype: :class:`hl7apy.base_datatypes.DT` """ dt_value, fmt = get_date_info(value) return datatype_cls(dt_value, fmt) def timestamp_factory(value, datatype_cls, validation_level=None): """ Creates a :class:`TM <hl7apy.base_datatypes.TM>` object The value in input must be a string parsable with :meth:`datetime.strptime`. It can also have an offset part specified with the format +/-HHMM. The offset can be added with all the allowed format The date format is chosen according to the length of the value as stated in this table: +-------+-----------------+ |Length |Format | +=======+=================+ |2 |``%H`` | +-------+-----------------+ |4 |``%H%M`` | +-------+-----------------+ |6 |``%H%M%S`` | +-------+-----------------+ |10-13 |``%H%M%S.%f`` | +-------+-----------------+ Some examples that work are: >>> from hl7apy.base_datatypes import TM >>> timestamp_factory("12", TM) #doctest: +ELLIPSIS <hl7apy.base_datatypes.TM object at 0x...> >>> timestamp_factory("12+0300", TM) #doctest: +ELLIPSIS <hl7apy.base_datatypes.TM object at 0x...> >>> timestamp_factory("1204", TM) #doctest: +ELLIPSIS <hl7apy.base_datatypes.TM object at 0x...> >>> timestamp_factory("120434", TM) #doctest: +ELLIPSIS <hl7apy.base_datatypes.TM object at 0x...> >>> timestamp_factory("120434-0400", TM) #doctest: +ELLIPSIS <hl7apy.base_datatypes.TM object at 0x...> If the value does not match one of the valid format it raises :exc:ValueError` :type value: ``str`` :param value: the value to assign the date object :type datatype_cls: `class` :param value: the :class:`TM <hl7apy.base_datatypes.TM>` class to use. It has to be one implementation of the different version modules :type validation_level: ``int`` :param validation_level: It must be a value from class :attr:`validation_level` :class:`VALIDATION_LEVEL hl7apy.consts.VALIDATION_LEVEL` or ``None`` to use the default value :rtype: :class:`TM <hl7apy.base_datatypes.TM>` """ dt_value, fmt, offset, microsec = get_timestamp_info(value) return datatype_cls(dt_value, fmt, offset, microsec) def datetime_factory(value, datatype_cls, validation_level=None): """ Creates a :class:`hl7apy.base_datatypes.DTM` object The value in input must be a string parsable with :meth:`datetime.strptime`. It can also have an offset part specified with the format +HHMM -HHMM. The offset can be added with all the allowed format. The date format is chosen according to the length of the value as stated in this table: +-------+-----------------------+ |Length |Format | +=======+=======================+ |4 |``%Y`` | +-------+-----------------------+ |6 |``%Y%m`` | +-------+-----------------------+ |8 |``%Y%m%d`` | +-------+-----------------------+ |10 |``%Y%m%d%H`` | +-------+-----------------------+ |12 |``%Y%m%d%H%M`` | +-------+-----------------------+ |14 |``%Y%m%d%H%M%S`` | +-------+-----------------------+ |18-21 |``%Y%m%d%H%M%S.%f`` | +-------+-----------------------+ Some examples that work are: >>> from hl7apy.base_datatypes import DTM >>> datetime_factory("1924", DTM) #doctest: +ELLIPSIS <hl7apy.base_datatypes.DTM object at 0x...> >>> datetime_factory("1924+0300", DTM) #doctest: +ELLIPSIS <hl7apy.base_datatypes.DTM object at 0x...> >>> datetime_factory("19220430", DTM) #doctest: +ELLIPSIS <hl7apy.base_datatypes.DTM object at 0x...> >>> datetime_factory("19220430-0400", DTM) #doctest: +ELLIPSIS <hl7apy.base_datatypes.DTM object at 0x...> If the value does not match one of the valid format it raises :exc:`ValueError` :type value: ``str`` :param value: the value to assign the date object :type datatype_cls: `class` :param value: the :class:`DTM <hl7apy.base_datatypes.DTM>` class to use. It has to be one implementation of the different version modules :type validation_level: ``int`` :param validation_level: It must be a value from class :attr:`validation_level` :class:`VALIDATION_LEVEL hl7apy.consts.VALIDATION_LEVEL` or ``None`` to use the default value :rtype: :class:`DTM <hl7apy.base_datatypes.DTM>` """ dt_value, fmt, offset, microsec = get_datetime_info(value) return datatype_cls(dt_value, fmt, offset, microsec) def numeric_factory(value, datatype_cls, validation_level=None): """ Creates a :class:`NM <hl7apy.base_datatypes.NM>` object The value in input can be a string representing a decimal number or a ``float``. (i.e. a string valid for :class:`decimal.Decimal()`). If it's not, a :exc:`ValueError` is raised Also an empty string or ``None`` are allowed :type value: ``str`` or ``None`` :param value: the value to assign the numeric object :type datatype_cls: :class:`class` :param value: the :class:`NM <hl7apy.base_datatypes.NM>` class to use. It has to be one implementation of the different version modules :type validation_level: ``int`` :param validation_level: It must be a value from class :class:`VALIDATION_LEVEL hl7apy.consts.VALIDATION_LEVEL` or ``None`` to use the default value :rtype: :class:`NM <hl7apy.base_datatypes.NM>` """ if not value: return datatype_cls(validation_level=validation_level) try: return datatype_cls(Decimal(value), validation_level=validation_level) except InvalidOperation: raise ValueError('{0} is not an HL7 valid NM value'.format(value)) def sequence_id_factory(value, datatype_cls, validation_level=None): """ Creates a :class:`SI <hl7apy.base_datatypes.SI>` object The value in input can be a string representing an integer number or an ``int``. (i.e. a string valid for ``int()`` ). If it's not, a :exc:`ValueError` is raised Also an empty string or ``None`` are allowed :type value: ``str`` or ``None`` :param value: the value to assign the date object :type datatype_cls: `class` :param value: the SI class to use. It has to be loaded from one implementation of the different version modules :type validation_level: ``int`` :param validation_level: It must be a value from class :class:`VALIDATION_LEVEL hl7apy.consts.VALIDATION_LEVEL` or ``None`` to use the default value :rtype: :class:`SI <hl7apy.base_datatypes.SI>` """ if not value: return datatype_cls(validation_level=validation_level) try: return datatype_cls(int(value), validation_level=validation_level) except ValueError: raise ValueError('{0} is not an HL7 valid SI value'.format(value)) if __name__ == '__main__': import doctest doctest.testmod()
am4/rom/tools/disa29.py
yshestakov/cpu11
118
11102650
<reponame>yshestakov/cpu11<filename>am4/rom/tools/disa29.py<gh_stars>100-1000 #!/usr/bin/python3 # # Disassembler for M4 processor Am2900 microcode # Copyright 2015 <NAME> <<EMAIL>> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 # as published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # Command line example: # meta29.py am29_m4.def m4.mic -l m4.lst -o m4.mif # import argparse import sys import re import os # concatenation patterns CON = '#' CONT = '\n' + CON + '\t' CONS = ' ' + CON + ' ' MCU = (20, 4) NAF = (44, 12) CC = (25, 4) # mnemo, addr, cond mcu_t = ( ('jz ', False, False), ('cjs ', True, True), ('jmap', False, False), ('cjp ', True, True), ('push', False, True), ('jsrp', True, True), ('cjv ', True, True), ('jrp ', True, True), ('rfct', False, True), ('rpct', True, True), ('crtn', False, True), ('cjpp', True, True), ('ldct', False, False), ('loop', False, True), ('cont', False, False), ('jp ', True, False), ) # PDP-11 instruction predecoder map entries (0x11 xor correction is done) map_t = { 0x10: 'undef', 0x11: 'halt', 0x12: 'wait', 0x13: 'rti/rtt', 0x15: 'bpt', 0x16: 'iot', 0x17: 'reset', 0x18: 'mark', 0x19: 'sxt', 0x1A: 'xor', 0x1B: 'sob', 0x1C: 'adc', 0x1D: 'mfps', 0x1E: 'fis', 0x1F: 'jmp', 0x01: 'bis', 0x02: 'cmp', 0x03: 'clr', 0x04: 'ror', 0x05: 'com', 0x06: 'rol', 0x07: 'inc', 0x08: 'sub', 0x09: 'dec', 0x0A: 'asr', 0x0B: 'neg', 0x0C: 'asl', 0x0D: 'bit', 0x0E: 'br', 0x0F: 'bic', 0x30: 'bicb', 0x31: 'bis Rs, Rd', 0x32: 'bisb', 0x33: 'clr Rd', 0x34: 'clrb', 0x35: 'com Rd', 0x36: 'comb', 0x37: 'inc Rd', 0x38: 'incb', 0x39: 'dec Rd', 0x3A: 'decb', 0x3B: 'neg Rd', 0x3C: 'negb', 0x3D: 'tst', 0x3E: 'tstb', 0x3F: 'mtps', 0x20: 'mov', 0x21: 'mov Rs, Rd', 0x22: 'movb', 0x23: 'movb Rd, Rs', 0x24: 'add', 0x25: 'add Rs, xx', 0x26: 'jsr', 0x27: 'rts', 0x28: 'emt', 0x29: 'trap', 0x2A: 'sub Rd, Rs', 0x2B: 'cmp Rs, Rd', 0x2C: 'cmpb', 0x2D: 'bit Rs, Rd', 0x2E: 'bitb', 0x2F: 'bic Rs, Rd', 0x50: 'swab', 0x51: 'clx', 0x52: 'sex', 0x53: 'ash', 0x54: 'ashc', 0x55: 'swab Rd', 0x56: 'mul', 0x59: 'div', 0x5B: 'sbc Rd', 0x5C: 'adc Rd', 0x40: 'adcb', 0x42: 'sbc', 0x43: 'sbcb', 0x44: 'ror Rd', 0x45: 'rorb', 0x47: 'rol Rd', 0x48: 'rolb', 0x4A: 'asr Rd', 0x4B: 'asrb', 0x4D: 'asl Rd', 0x4E: 'aslb', 0x65: 'add Rs, Rd', 0x7D: 'tst Rd' } OR_nEN = (24, 1) OMX = (41, 3) omx_t = ( 'OR_MD', # destination mode 'OR_MS', # source mode 'OR_RR', # register mode 'OR_IV', # interrupt vector 'OR_LD', # bootloader mode 'OR_BT', # byte exchange 'OR_TC', # timer/counter 'OR_R67' # not SP/PC ) ALU_S = (0, 3) # ALU source control ALU_F = (3, 3) # ALU function control ALU_Q = (6, 3) # ALU destination control ALU_M = (0, 10) # integrated for tst and none ALU_TST = 0b0001011100 # or 0, NOP, ZA ALU_TSTD = 0b0001011111 # or 0, NOP, DZ ALU_NOPA = 0b0001100111 # and 0, NOP, DZ ALU_N = (9, 11) alus_t = ('AQ', 'AB', 'ZQ', 'ZB', 'ZA', 'DA', 'DQ', 'DZ') aluf_t = ('add', 'subr', 'subs', 'or', 'and', 'nand', 'xor', 'xnor') aluq_t = ('QREG', 'NOP', 'RAMA', 'RAMF', 'RAMQD', 'RAMD', 'RAMQU', 'RAMU') ALU_CI = (9, 1) ALU_AS = (10, 1) ALU_BS = (11, 1) ALU_A = (12, 4) ALU_B = (16, 4) porta_t = ('Ad0', 'Ad1', 'As0', 'As1') portb_t = ('Bs0', 'Bs1', 'Bd0', 'Bd1') cc_t = ( 'CCC', 'CCV', 'CCN', 'CCZ', 'CCT', 'CCIN', 'CCE', 'CCA', 'CCCN', 'CCVN', 'CCNN', 'CCZN', 'CCTN', 'CCI', 'CCEN', 'CCAN' ) D_MUX = (33, 2) D_IMM = (40, 16) S_MUX = (44, 12) dmux_t = ('dpsw', 'dbus', 'dimm', 'dswp') REG_C = (29, 4) pswc_t = ( 'SPSW', 'WPSW', 'BPSW', 'LPSW', 'SPSW' + CONS + 'CSAV', 'WPSW' + CONS + 'CSAV', 'BPSW' + CONS + 'CSAV', 'LPSW' + CONS + 'CSAV' ) TTL_M = (50, 3) ttl_t = ( 'NONE0', 'INITC', 'REFC', 'REFS', 'INITS', 'NONE5', 'ACLOC', 'EVENTC' ) QIO = (35, 9) qio_t = ( 'WAIT', 'IOEN', 'DOUT', 'SYNC', 'WFIN', 'IAKO', 'DIN', 'RDIN', 'WTBT' ) # # Table scanned from documentation # # ASHCR 1111 0101 0110 -> F56, RAMQD # RORB 0101 X1X1 11XX -> *55C, RAMD # ASRB 0111 X1X1 0X00 -> *750, RAMD # ROR 1001 X101 11XX -> *95C, RAMD # ASR 1011 X101 0110 -> *B56, RAMD # ASHR 1011 X101 0110 -> *B56, RAMD - dup # ASHCL 0011 1010 1010 -> 3AA, RAMQU # ASLB 0010 1X11 1001 -> *2B9, RAMU # ROLB 0010 1X11 1011 -> *2BB, RAMU # ROL 0011 1X10 1011 -> *3AB, RAMU # ASL 0011 1X10 1001 -> *3A9, RAMU # ASHL 0011 1X10 1001 -> *3A9, RAMU - dup # ash_t = { # actually used in microcode 0x2B9: ('ASLB', 'U'), # 0010 1X11 1001 RAMU 0x2BB: ('ROLB', 'U'), # 0010 1X11 1011 RAMU 0x3A9: ('ASL', 'U'), # 0011 1X10 1001 RAMU 0x3AA: ('ASHCL', 'U'), # 0011 1010 1010 RAMQU 0x3AB: ('ROL', 'U'), # 0011 1X10 1011 RAMU 0x55C: ('RORB', 'D'), # 0101 X1X1 11XX RAMD 0x756: ('ASRB', 'D'), # 0111 X1X1 0X?0 RAMD 0x95C: ('ROR', 'D'), # 1001 X101 11XX RAMD 0xB56: ('ASR', 'D'), # 1011 X101 0110 RAMD 0xF55: ('ASHXR', 'D'), # 1111 0101 0101 RAMQD 0xF56: ('ASHCR', 'D'), # 1111 0101 0110 RAMQD } def zhex(value, width): s = hex(value)[2:].upper() if width == 0: return s return s.rjust((width + 3) // 4, '0') class Bf(object): ''' Arbitrary records data buffer ''' def __init__(self, size=1024): self.ecnt = 0 # error counter self.wcnt = 0 # warning counter self.width = 8 # record width self.size = size # buffer size self.aradx = 16 # address radix self.dradx = 16 # data radix self.data = [None] * size self.npas = 0 self.flst = None self.label = [] self.word = 0 def close_file(self, file): if file is not None: file.close() return def load_mif(self, name): # # Add the default file name extension if needed # if not os.path.splitext(name)[1]: name += '.mif' try: f = open(name, 'r', -1, None, None) except OSError as err: raise RuntimeError(err) # # Compiled regular expressions # re_comment = re.compile(r'(?:--)') re_depth = re.compile(r'DEPTH\s*=\s*([0-9]+)\s*;\s*$') re_width = re.compile(r'WIDTH\s*=\s*([0-9]+)\s*;\s*$') re_aradx = re.compile(r'ADDRESS_RADIX\s*=\s*(HEX|DEC|OCT|BIN)\s*;\s*$') re_dradx = re.compile(r'DATA_RADIX\s*=\s*(HEX|DEC|OCT|BIN)\s*;\s*$') re_skip = re.compile(r'(BEGIN$|^END|^CONTENT)') re_single = re.compile(r'([A-Z0-9]+)\s*:\s*([A-Z0-9]+)\s*;\s*$') re_range = re.compile( r'\[([A-Z0-9]+)..([A-Z0-9]+)\]\s*:\s*([A-Z0-9]+)\s*;\s*$') lnum = 0 for text in f: lnum += 1 line = text.strip('\r\n \t') if not line: continue line = line.upper() match = re_comment.match(line) if match is not None: line = line[0:match.start()] line = line.strip('\r\n \t') if not line: continue match = re_single.match(line) if match is not None: addr = int(match.group(1), self.aradx) data = int(match.group(2), self.dradx) if addr >= self.size: raise SyntaxError('line %d addr out of range: %s' % (lnum, text)) if data >= 1 << self.width: raise SyntaxError('line %d data out of range: %s' % (lnum, text)) self.data.insert(addr, data) continue match = re_range.match(line) if match is not None: beg = int(match.group(1), self.aradx) end = int(match.group(2), self.aradx) + 1 data = int(match.group(3), self.dradx) for addr in range(beg, end): if addr >= self.size: raise SyntaxError('line %d addr out of range: %s' % (lnum, text)) if data >= 1 << self.width: raise SyntaxError('line %d data out of range: %s' % (lnum, text)) self.data.insert(addr, data) continue match = re_skip.match(line) if match is not None: continue match = re_depth.match(line) if match is not None: self.size = int(match.group(1), 10) self.data = [None] * self.size continue match = re_width.match(line) if match is not None: self.width = int(match.group(1), 10) continue match = re_aradx.match(line) if match is not None: radix = match.group(1) if radix == 'HEX': self.aradx = 16 continue if radix == 'DEC': self.aradx = 10 continue if radix == 'OCT': self.aradx = 8 continue if radix == 'BIN': self.aradx = 2 continue raise SyntaxError('line %d invalid radix: %s' % (lnum, text)) match = re_dradx.match(line) if match is not None: radix = match.group(1) if radix == 'HEX': self.dradx = 16 continue if radix == 'DEC': self.dradx = 10 continue if radix == 'OCT': self.dradx = 8 continue if radix == 'BIN': self.dradx = 2 continue raise SyntaxError('line %d invalid radix: %s' % (lnum, text)) raise SyntaxError('line %d syntax error: %s' % (lnum, text)) self.close_file(f) return def set_pass(self, npas): self.npas = npas if npas == 1: self.label = [] return def set_list(self, flst): self.flst = flst return def fiw(self, field): start = field[0] width = field[1] assert(start >= 0) assert(width >= 0) assert(start < self.width) assert(start + width <= self.width) return (self.word >> start) & ((1 << width) - 1) def get_raw(self, addr): bmask = bin(self.word)[2:] bmask = bmask.rjust(self.width, '0') line = '' if addr & 0x7 == 0 and map_t.get(addr >> 3) is not None: line += '; "%s" opcode\n' % map_t.get(addr >> 3) line += '; %04X\t%s.%s.%s.%s\n' % (addr, bmask[0:16], bmask[16:32], bmask[32:47], bmask[47:]) return line def get_mcu(self, addr, mcu): line = '' if mcu_t[mcu][1]: naf = self.fiw(NAF) if naf >= self.size: line = '; Warning: next address is out of range\n' self.wcnt += 1 if addr in self.label: line += 'L%03X:' % addr line += '\t%s' % mcu_t[mcu][0] if mcu_t[mcu][1]: line += '\tL%03X' % naf if mcu == 0: return line if self.fiw(OR_nEN) == 0: if mcu_t[mcu][1]: line += ', ' else: line += '\t' line += omx_t[self.fiw(OMX)] if self.fiw(CC) or mcu_t[mcu][2]: line += CONS + cc_t[self.fiw(CC)] elif self.fiw(CC) or mcu_t[mcu][2]: if mcu_t[mcu][1]: line += ', ' else: line += '\t' line += cc_t[self.fiw(CC)] return line def get_alu(self): bshown = 0 line = CONT alum = self.fiw(ALU_M) alus = self.fiw(ALU_S) aluq = self.fiw(ALU_Q) if alum == ALU_TST: line += 'tst\t' elif alum == ALU_TSTD: line += 'tstd' if self.fiw(ALU_N) == 0: return line line += '\t' elif alum == ALU_NOPA: line += 'nopa' if self.fiw(ALU_N) == 0: if self.fiw(D_MUX) == 3 and (self.fiw(REG_C) & 1) == 0: line = '' return line line += '\t' else: line += aluf_t[self.fiw(ALU_F)] + '\t' if (alum != ALU_TST and alum != ALU_TSTD) or \ self.fiw(ALU_B) or self.fiw(ALU_BS) or \ alus == 1 or alus == 3 or aluq >= 2: if self.fiw(ALU_BS): line += portb_t[self.fiw(ALU_B) & 3] else: line += 'B%d' % self.fiw(ALU_B) bshown = 1 if self.fiw(ALU_AS) or (alus & 3) <= 1 or aluq == 2: if bshown: line += CONS if self.fiw(ALU_AS): line += porta_t[self.fiw(ALU_A) & 3] else: line += 'A%d' % self.fiw(ALU_A) if alum == ALU_TST or alum == ALU_TSTD or alum == ALU_NOPA: return line line += ', C%d' % self.fiw(ALU_CI) line += ', ' + aluq_t[aluq] line += ', ' + alus_t[alus] return line def get_dmux(self): line = '' dmux = self.fiw(D_MUX) alum = self.fiw(ALU_M) if alum == ALU_NOPA and dmux == 3: return line if alum == ALU_TST and dmux == 3: return line if self.fiw(ALU_S) >= 5: line = CONT + dmux_t[dmux] if dmux_t[dmux] == 'dimm': line += '\t0x%X' % self.fiw(D_IMM) if self.fiw(ALU_Q) != 2 and dmux == 3: line += '\n; Warning: dswp combinatorial loop' self.wcnt += 1 else: if dmux == 3: line = '' else: line = CONT + dmux_t[dmux] if dmux_t[dmux] == 'dimm': line += '\t0x%X' % self.fiw(D_IMM) return line def get_shift(self): line = '' q = self.fiw(ALU_Q) s = self.fiw(S_MUX) if q < 4: return line line = CONT + 'shift\t' sh = ash_t.get(s) if sh is None: line += 'B#' + bin(s)[2:] line += '\n; Warning: unrecognized shift configuration' self.wcnt += 1 return line line += sh[0] if sh[1] == 'U' and q & 2 != 2: line += '\n; Warning: shift configuration requires RAMU/RAMQU' self.wcnt += 1 return line if sh[1] == 'D' and q & 2 != 0: line += '\n; Warning: shift configuration requires RAMD/RAMQD' self.wcnt += 1 return line return line def get_rc(self): line = '' rc = self.fiw(REG_C) if rc == 0: return line if rc & 1: line = CONT + 'cpsw\t' + pswc_t[rc >> 1] else: if rc & 2: line += CONT + 'pl\t' + '0x%X' % self.fiw(NAF) if rc & 4: line += CONT + 'ir' if rc & 8: line += CONT + 'ttl' if self.fiw(TTL_M): line += '\t' + ttl_t[self.fiw(TTL_M)] return line def get_io(self): shown = 0 line = '' rc = self.fiw(QIO) if rc & 0x18 == 0x18: line = CONT + 'dreq' if rc & 3 == 2 and rc & 0x8: if self.fiw(NAF) == 0x2C and self.fiw(MCU) == 0xF: line += CONT + 'nqio' # workaround for inactive silly RDIN return line line = CONT + 'qio' rc = rc ^ 0x8A for i in range(9): if rc & (1 << i): if shown: line += CONS else: shown = 1 line += '\t' line += qio_t[i] if rc & 0x80 == 0: if shown: line += CONS else: line += '\t' line += 'NORD' return line def get_hint(self): d = dmux_t[self.fiw(D_MUX)] d = d[1:].upper() if d == 'IMM': d = '0x' + zhex(self.fiw(D_IMM), 16) s = alus_t[self.fiw(ALU_S)] r = s[0] s = s[1] if self.fiw(ALU_AS): if self.fiw(ALU_A) & 2: a = 'Rs' else: a = 'Rd' else: a = 'R%d' % self.fiw(ALU_A) if self.fiw(ALU_BS): if self.fiw(ALU_B) & 2: b = 'Rd' else: b = 'Rs' else: b = 'R%d' % self.fiw(ALU_B) if r == 'A': r = a elif r == 'D': r = d else: assert(r == 'Z') if s == 'A': s = a elif s == 'B': s = b elif s == 'Q': s = 'Q' else: assert(s == 'Z') f = self.fiw(ALU_F) c = self.fiw(ALU_CI) if f == 0: # add R + S if c: c = ' + 1' else: c = '' if r == 'Z': f = s + c elif s == 'Z': f = r + c else: f = r + ' + ' + s + c elif f == 1: # subr S - R if c: c = '' else: c = ' - 1' if r == 'Z': f = s + c elif s == 'Z': f = '-' + r + c else: f = s + ' - ' + r + c elif f == 2: # subs R - S if c: c = '' else: c = ' - 1' if s == 'Z': f = r + c elif r == 'Z': f = '-' + s + c else: f = r + ' - ' + s + c elif f == 3: # or R | S if r == 'Z': f = s elif s == 'Z': f = r else: f = r + ' | ' + s elif f == 4: # and R & S if r == 'Z' or s == 'Z': f = 'Z' else: f = r + ' & ' + s elif f == 5: # nand ~R & S f = '~' + r + ' & ' + s elif f == 6: # xor R ^ S f = r + ' ^ ' + s else: # nxor ~R ^ S f = '~' + r + ' ^ ' + s q = self.fiw(ALU_Q) if q == 2: y = a else: y = f if q == 2 or q == 3: ram = '=' elif q == 4 or q == 5: ram = '>>=' elif q == 6 or q == 7: ram = '<<=' else: ram = '' if q == 0: q = '=' elif q == 4: q = '>>=' elif q == 6: q = '<<=' else: q = '' if f == 'SWP': f += '(%s)' % y items = [] if ram != '': items.append('%s %s %s' % (b, ram, f)) if q != '': if q == '=': items.append('Q %s %s' % (q, f)) else: items.append('Q %s Q' % q) rc = self.fiw(REG_C) if rc & 7 == 7: items.append('PSW = %s' % y) if self.fiw(ALU_CI) and self.fiw(ALU_F) & 0x4: items.append('SXT') if not items: return '' line = '; ' + items[0] for s in items[1:]: line += ', %s' % s return line + '\n' def get_loc(self, addr): return '\t.loc\t0x%03X\n' % addr def do_disasm(self): for addr in range(self.size): data = self.data[addr] if data is None: continue self.word = data # # Gather target addresses for the label database # line = '' mcu = self.fiw(MCU) if mcu == 0b0000 and data != 0: line += '\n; Warning: jump zero with not zero word at %X' % addr if self.npas == 1: if mcu_t[mcu][1]: target = self.fiw(NAF) if target not in self.label: self.label.append(target) continue if self.npas != 2: continue # # Build the listing # line += self.get_raw(addr) # # Check page boundary crossing # # if addr & 7 == 7 and \ # mcu != 15 and mcu != 7 and mcu != 2 and \ # not (mcu == 10 and self.fiw(CC) == 14): # line += '; Warning: not jp/jrp/jmap/crtn at page boundary\n' # self.wcnt += 1 # # Provide the hint comment # line += self.get_hint() # # Provide the location counter directive # line += self.get_loc(addr) if self.word: # # Analyze microsequencer instruction # line += self.get_mcu(addr, mcu) # # Analyze ALU opcode and operands # line += self.get_alu() # # Analyze data mux # line += self.get_dmux() # # Analyze shift mux field # line += self.get_shift() # # Analyze PSW and register control # line += self.get_rc() # # Analyze IO transaction # line += self.get_io() else: line += '\tresv\n' # # Output result to listing file # print('%s\n' % line, file=self.flst) if self.npas == 2: # # Final .end directive # print('\t.end', file=self.flst) # # Show final statistics # line = '\r\nErrors: %d\r\nWarnings: %d\r\n' % (self.ecnt, self.wcnt) if self.ecnt or self.wcnt: print(line, file=sys.stderr) return def createParser(): p = argparse.ArgumentParser( description='Am2900 M4 Microcode Disassembler, ' 'Version 20.06a, (c) 1801BM1') p.add_argument('mif', nargs=1, help='input microcode file', metavar='file') p.add_argument('-l', '--lst', help='output listing file', type=argparse.FileType('w'), nargs='?', default = sys.stdout, metavar='file') return p def main(): parser = createParser() params = parser.parse_args() try: code = Bf() # # Load the microcode from source file # code.load_mif(params.mif[0]) code.set_list(params.lst) code.set_pass(1) code.do_disasm() code.set_pass(2) code.do_disasm() except RuntimeError as err: print('\r\nerror: %s' % err, file=sys.stderr) sys.exit(1) except SyntaxError as err: print('\r\nerror: %s' % err, file=sys.stderr) sys.exit(1) if __name__ == '__main__': main()
examples/hf_transformers/custom/loss.py
AhmedHussKhalifa/torchdistill
576
11102701
import torch from torch import nn from torch.nn import functional from torchdistill.losses.single import register_org_loss from torchdistill.losses.util import register_func2extract_org_output @register_func2extract_org_output def extract_transformers_loss(org_criterion, student_outputs, teacher_outputs, targets, uses_teacher_output, **kwargs): org_loss_dict = dict() org_loss_dict['loss'] = student_outputs.loss return org_loss_dict @register_org_loss class KDLoss4Transformer(nn.KLDivLoss): """ "Distilling the Knowledge in a Neural Network" """ def __init__(self, temperature, alpha=None, reduction='batchmean', **kwargs): super().__init__(reduction=reduction) self.temperature = temperature self.alpha = alpha self.beta = 1 - alpha def compute_soft_loss(self, student_logits, teacher_logits): return super().forward(torch.log_softmax(student_logits / self.temperature, dim=1), torch.softmax(teacher_logits / self.temperature, dim=1)) def compute_hard_loss(self, logits, positions, ignored_index): return functional.cross_entropy(logits, positions, reduction=self.cel_reduction, ignore_index=ignored_index) def forward(self, student_output, teacher_output, targets=None, *args, **kwargs): soft_loss = self.compute_soft_loss(student_output.logits, teacher_output.logits) if self.alpha is None or self.alpha == 0 or targets is None: return soft_loss hard_loss = student_output.loss return self.alpha * hard_loss + self.beta * (self.temperature ** 2) * soft_loss
falkon/hopt/optimization/gd_train.py
mohamad-amin/falkon
130
11102705
import time from functools import reduce from typing import Dict, List, Any, Optional import numpy as np import torch from falkon.hopt.objectives.objectives import HyperoptObjective, FakeTorchModelMixin from falkon.hopt.optimization.reporting import pred_reporting, EarlyStop, epoch_bookkeeping __all__ = [ "train_complexity_reg", "train_complexity_reg_mb", ] def hp_grad(model: FakeTorchModelMixin, *loss_terms, accumulate_grads=True, verbose=True, losses_are_grads=False): grads = [] hparams = model.parameters() if not losses_are_grads: if verbose: for loss in loss_terms: grads.append(torch.autograd.grad(loss, hparams, retain_graph=True, allow_unused=True)) else: loss = reduce(torch.add, loss_terms) grads.append(torch.autograd.grad(loss, hparams, retain_graph=False)) else: grads = loss_terms if accumulate_grads: for g in grads: for i in range(len(hparams)): hp = hparams[i] if hp.grad is None: hp.grad = torch.zeros_like(hp) if g[i] is not None: hp.grad += g[i] return grads def create_optimizer(opt_type: str, model: HyperoptObjective, learning_rate: float): center_lr_div = 1 schedule = None named_params = model.named_parameters() print("Creating optimizer with the following parameters:") for k, v in named_params.items(): print(f"\t{k} : {v.shape}") if opt_type == "adam": if 'penalty' not in named_params: opt_modules = [ {"params": named_params.values(), 'lr': learning_rate} ] else: opt_modules = [] if 'sigma' in named_params: opt_modules.append({"params": named_params['sigma'], 'lr': learning_rate}) if 'penalty' in named_params: opt_modules.append({"params": named_params['penalty'], 'lr': learning_rate}) if 'centers' in named_params: opt_modules.append({ "params": named_params['centers'], 'lr': learning_rate / center_lr_div}) opt_hp = torch.optim.Adam(opt_modules) # schedule = torch.optim.lr_scheduler.ReduceLROnPlateau(opt_hp, factor=0.5, patience=1) # schedule = torch.optim.lr_scheduler.MultiStepLR(opt_hp, [2, 10, 40], gamma=0.5) schedule = torch.optim.lr_scheduler.StepLR(opt_hp, 200, gamma=0.1) elif opt_type == "sgd": opt_hp = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9) elif opt_type == "lbfgs": if model.losses_are_grads: raise ValueError("L-BFGS not valid for model %s" % (model)) opt_hp = torch.optim.LBFGS(model.parameters(), lr=learning_rate, history_size=100, ) elif opt_type == "rmsprop": opt_hp = torch.optim.RMSprop(model.parameters(), lr=learning_rate) else: raise ValueError("Optimizer type %s not recognized" % (opt_type)) return opt_hp, schedule def train_complexity_reg( Xtr: torch.Tensor, Ytr: torch.Tensor, Xts: torch.Tensor, Yts: torch.Tensor, model: HyperoptObjective, err_fn, learning_rate: float, num_epochs: int, cuda: bool, verbose: bool, loss_every: int, early_stop_epochs: int, cgtol_decrease_epochs: Optional[int], optimizer: str, retrain_nkrr: bool = False, ) -> List[Dict[str, float]]: if cuda: Xtr, Ytr, Xts, Yts = Xtr.cuda(), Ytr.cuda(), Xts.cuda(), Yts.cuda() opt_hp, schedule = create_optimizer(optimizer, model, learning_rate) print(f"Starting hyperparameter optimization on model {model}.") print(f"Will run for {num_epochs} epochs with {opt_hp} optimizer.") logs = [] cum_time = 0 with torch.autograd.profiler.profile(enabled=False) as prof: for epoch in range(num_epochs): t_start = time.time() grads: Any = None losses: Any = None def closure(): opt_hp.zero_grad() nonlocal grads, losses losses = model.hp_loss(Xtr, Ytr) grads = hp_grad(model, *losses, accumulate_grads=True, losses_are_grads=model.losses_are_grads, verbose=False) loss = reduce(torch.add, losses) return float(loss) try: opt_hp.step(closure) except RuntimeError as e: if "Cholesky" not in str(e): raise e print(f"Cholesky failure at epoch {epoch}. Exiting optimization!") break cum_time += time.time() - t_start try: epoch_bookkeeping(epoch=epoch, model=model, data={'Xtr': Xtr, 'Ytr': Ytr, 'Xts': Xts, 'Yts': Yts}, err_fn=err_fn, grads=grads, losses=losses, loss_every=loss_every, early_stop_patience=early_stop_epochs, schedule=schedule, minibatch=None, logs=logs, cum_time=cum_time, verbose=verbose, accuracy_increase_patience=cgtol_decrease_epochs) except EarlyStop as e: print(e) break finally: del grads, losses torch.cuda.empty_cache() if prof is not None: print(prof.key_averages().table()) if retrain_nkrr: print(f"Final retrain after {num_epochs} epochs:") pred_dict = pred_reporting( model=model, Xtr=Xtr, Ytr=Ytr, Xts=Xts, Yts=Yts, err_fn=err_fn, epoch=num_epochs, cum_time=cum_time, resolve_model=True) logs.append(pred_dict) return logs def train_complexity_reg_mb( Xtr: torch.Tensor, Ytr: torch.Tensor, Xts: torch.Tensor, Yts: torch.Tensor, model: HyperoptObjective, err_fn, learning_rate: float, num_epochs: int, cuda: bool, verbose: bool, loss_every: int, early_stop_epochs: int, cgtol_decrease_epochs: Optional[int], optimizer: str, minibatch: int, retrain_nkrr: bool = False, ) -> List[Dict[str, float]]: Xtrc, Ytrc, Xtsc, Ytsc = Xtr, Ytr, Xts, Yts if cuda: Xtrc, Ytrc, Xtsc, Ytsc = Xtr.cuda(), Ytr.cuda(), Xts.cuda(), Yts.cuda() opt_hp, schedule = create_optimizer(optimizer, model, learning_rate) print(f"Starting hyperparameter optimization on model {model}.") print(f"Will run for {num_epochs} epochs with {opt_hp} optimizer, " f"mini-batch size {minibatch}.") logs = [] cum_time = 0 mb_indices = np.arange(Xtr.shape[0]) for epoch in range(num_epochs): t_start = time.time() np.random.shuffle(mb_indices) for mb_start in range(0, Xtr.shape[0], minibatch): Xtr_batch = (Xtr[mb_indices[mb_start: mb_start + minibatch], :]).contiguous() Ytr_batch = (Ytr[mb_indices[mb_start: mb_start + minibatch], :]).contiguous() if cuda: Xtr_batch, Ytr_batch = Xtr_batch.cuda(), Ytr_batch.cuda() opt_hp.zero_grad() loss = model.hp_loss(Xtr_batch, Ytr_batch)[0] # There is only one loss! loss.backward() opt_hp.step() cum_time += time.time() - t_start try: epoch_bookkeeping(epoch=epoch, model=model, data={'Xtr': Xtrc, 'Ytr': Ytrc, 'Xts': Xtsc, 'Yts': Ytsc}, err_fn=err_fn, grads=None, losses=None, loss_every=loss_every, early_stop_patience=early_stop_epochs, schedule=schedule, minibatch=minibatch, logs=logs, cum_time=cum_time, verbose=verbose, accuracy_increase_patience=cgtol_decrease_epochs) except EarlyStop as e: print(e) break if retrain_nkrr: print(f"Final retrain after {num_epochs} epochs:") pred_dict = pred_reporting( model=model, Xtr=Xtrc, Ytr=Ytrc, Xts=Xtsc, Yts=Ytsc, err_fn=err_fn, epoch=num_epochs, cum_time=cum_time, resolve_model=True) logs.append(pred_dict) return logs
libsortvis/algos/mergesort.py
tknuth/sortvis
117
11102767
<gh_stars>100-1000 def mergesort(lst, left=0, right=None): if right is None: right = len(lst) - 1 if left >= right: return middle = (left + right) // 2 mergesort(lst, left, middle) mergesort(lst, middle + 1, right) i, end_i, j = left, middle, middle + 1 while i <= end_i and j <= right: if lst[i] < lst[j]: i += 1 continue lst[i], lst[i+1:j+1] = lst[j], lst[i:j] lst.log() i, end_i, j = i + 1, end_i + 1, j + 1
tests/__init__.py
peddamat/home-assistant-supervisor-test
597
11102774
<filename>tests/__init__.py """Supervisor Testframework."""
etl/parsers/etw/Microsoft_Windows_OneX.py
IMULMUL/etl-parser
104
11102831
# -*- coding: utf-8 -*- """ Microsoft-Windows-OneX GUID : ab0d8ef9-866d-4d39-b83f-453f3b8f6325 """ from construct import Int8sl, Int8ul, Int16ul, Int16sl, Int32sl, Int32ul, Int64sl, Int64ul, Bytes, Double, Float32l, Struct from etl.utils import WString, CString, SystemTime, Guid from etl.dtyp import Sid from etl.parsers.etw.core import Etw, declare, guid @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=1, version=0) class Microsoft_Windows_OneX_1_0(Etw): pattern = Struct( "PortId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=2, version=0) class Microsoft_Windows_OneX_2_0(Etw): pattern = Struct( "PortId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=3, version=0) class Microsoft_Windows_OneX_3_0(Etw): pattern = Struct( "PortId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=4, version=0) class Microsoft_Windows_OneX_4_0(Etw): pattern = Struct( "PortId" / Int32ul, "WinError" / Int32ul, "ReasonCode" / Int32ul, "EAPMethodType" / Int8ul, "RootCauseString" / WString ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=5, version=0) class Microsoft_Windows_OneX_5_0(Etw): pattern = Struct( "PortId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=6, version=0) class Microsoft_Windows_OneX_6_0(Etw): pattern = Struct( "PortId" / Int32ul, "WinError" / Int32ul, "ReasonCode" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=7, version=0) class Microsoft_Windows_OneX_7_0(Etw): pattern = Struct( "PortId" / Int32ul, "UserDataSize" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=8, version=0) class Microsoft_Windows_OneX_8_0(Etw): pattern = Struct( "PortId" / Int32ul, "UserDataSize" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=9, version=0) class Microsoft_Windows_OneX_9_0(Etw): pattern = Struct( "PortId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=10, version=0) class Microsoft_Windows_OneX_10_0(Etw): pattern = Struct( "PortId" / Int32ul, "Response" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=11, version=0) class Microsoft_Windows_OneX_11_0(Etw): pattern = Struct( "PortId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=12, version=0) class Microsoft_Windows_OneX_12_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "Location" / Int32ul, "Context" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=13, version=0) class Microsoft_Windows_OneX_13_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "Location" / Int32ul, "Context" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=14, version=0) class Microsoft_Windows_OneX_14_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "Location" / Int32ul, "Context" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=15, version=0) class Microsoft_Windows_OneX_15_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "Location" / Int32ul, "Context" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=16, version=0) class Microsoft_Windows_OneX_16_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "Location" / Int32ul, "Context" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=17, version=0) class Microsoft_Windows_OneX_17_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "Location" / Int32ul, "Context" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=18, version=0) class Microsoft_Windows_OneX_18_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "Location" / Int32ul, "Context" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=19, version=0) class Microsoft_Windows_OneX_19_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "Location" / Int32ul, "Context" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=20, version=0) class Microsoft_Windows_OneX_20_0(Etw): pattern = Struct( "PortId" / Int32ul, "UIRequestCode" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=21, version=0) class Microsoft_Windows_OneX_21_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "Location" / Int32ul, "Context" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=22, version=0) class Microsoft_Windows_OneX_22_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "Location" / Int32ul, "Context" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=23, version=0) class Microsoft_Windows_OneX_23_0(Etw): pattern = Struct( "PortId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=24, version=0) class Microsoft_Windows_OneX_24_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "Location" / Int32ul, "Context" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=25, version=0) class Microsoft_Windows_OneX_25_0(Etw): pattern = Struct( "WarningCode" / Int32ul, "Location" / Int32ul, "Context" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=26, version=0) class Microsoft_Windows_OneX_26_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "Location" / Int32ul, "Context" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=27, version=0) class Microsoft_Windows_OneX_27_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "Location" / Int32ul, "Context" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=28, version=0) class Microsoft_Windows_OneX_28_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "Location" / Int32ul, "Context" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=29, version=0) class Microsoft_Windows_OneX_29_0(Etw): pattern = Struct( "EAPMethodType" / Int8ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=30, version=0) class Microsoft_Windows_OneX_30_0(Etw): pattern = Struct( "EAPMethodType" / Int8ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=31, version=0) class Microsoft_Windows_OneX_31_0(Etw): pattern = Struct( "ProfilesCount" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=32, version=0) class Microsoft_Windows_OneX_32_0(Etw): pattern = Struct( "EAPMethodType" / Int8ul, "AuthMode" / WString ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=33, version=0) class Microsoft_Windows_OneX_33_0(Etw): pattern = Struct( "EAPMethodType" / Int8ul, "MediaType" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=34, version=0) class Microsoft_Windows_OneX_34_0(Etw): pattern = Struct( "PortId" / Int32ul, "UIRequestCode" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=35, version=0) class Microsoft_Windows_OneX_35_0(Etw): pattern = Struct( "ChangeType" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=36, version=0) class Microsoft_Windows_OneX_36_0(Etw): pattern = Struct( "PortId" / Int32ul, "FriendlyName" / WString ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=37, version=0) class Microsoft_Windows_OneX_37_0(Etw): pattern = Struct( "PortId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=38, version=0) class Microsoft_Windows_OneX_38_0(Etw): pattern = Struct( "PortId" / Int32ul, "UIRequestCode" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=39, version=0) class Microsoft_Windows_OneX_39_0(Etw): pattern = Struct( "PortId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=40, version=0) class Microsoft_Windows_OneX_40_0(Etw): pattern = Struct( "PortId" / Int32ul, "PacketLength" / Int16ul, "PacketType" / Int32ul, "Identifier" / Int8ul, "EapMethodType" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=41, version=0) class Microsoft_Windows_OneX_41_0(Etw): pattern = Struct( "PortId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=42, version=0) class Microsoft_Windows_OneX_42_0(Etw): pattern = Struct( "PortId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=43, version=0) class Microsoft_Windows_OneX_43_0(Etw): pattern = Struct( "PortId" / Int32ul, "Reason" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=44, version=0) class Microsoft_Windows_OneX_44_0(Etw): pattern = Struct( "PortId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=45, version=0) class Microsoft_Windows_OneX_45_0(Etw): pattern = Struct( "PortId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=46, version=0) class Microsoft_Windows_OneX_46_0(Etw): pattern = Struct( "PortId" / Int32ul, "TimeTaken" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=47, version=0) class Microsoft_Windows_OneX_47_0(Etw): pattern = Struct( "PortId" / Int32ul, "AuthIdentity" / WString, "SessionId" / Int32ul, "Username" / WString, "Domain" / WString ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=48, version=0) class Microsoft_Windows_OneX_48_0(Etw): pattern = Struct( "PortId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=49, version=0) class Microsoft_Windows_OneX_49_0(Etw): pattern = Struct( "PortId" / Int32ul, "Reason" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=50, version=0) class Microsoft_Windows_OneX_50_0(Etw): pattern = Struct( "PortId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=51, version=0) class Microsoft_Windows_OneX_51_0(Etw): pattern = Struct( "PortId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=52, version=0) class Microsoft_Windows_OneX_52_0(Etw): pattern = Struct( "PortId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=53, version=0) class Microsoft_Windows_OneX_53_0(Etw): pattern = Struct( "PortId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=54, version=0) class Microsoft_Windows_OneX_54_0(Etw): pattern = Struct( "PortId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=55, version=0) class Microsoft_Windows_OneX_55_0(Etw): pattern = Struct( "PortId" / Int32ul, "SessionId" / Int32ul, "UIRequestSessionId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=56, version=0) class Microsoft_Windows_OneX_56_0(Etw): pattern = Struct( "PortId" / Int32ul, "Size" / Int32ul, "SessionId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=57, version=0) class Microsoft_Windows_OneX_57_0(Etw): pattern = Struct( "PortId" / Int32ul, "Reason" / Int32ul, "SessionId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=58, version=0) class Microsoft_Windows_OneX_58_0(Etw): pattern = Struct( "PortId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=59, version=0) class Microsoft_Windows_OneX_59_0(Etw): pattern = Struct( "PortId" / Int32ul, "WinError" / Int32ul, "ReasonCode" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=60, version=0) class Microsoft_Windows_OneX_60_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "Location" / Int32ul, "Context" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=61, version=0) class Microsoft_Windows_OneX_61_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "Location" / Int32ul, "Context" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=62, version=0) class Microsoft_Windows_OneX_62_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "Location" / Int32ul, "Context" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=63, version=0) class Microsoft_Windows_OneX_63_0(Etw): pattern = Struct( "Result" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=64, version=0) class Microsoft_Windows_OneX_64_0(Etw): pattern = Struct( "PortId" / Int32ul, "PacketLength" / Int16ul, "PacketType" / Int32ul, "Identifier" / Int8ul, "EapMethodType" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=65, version=0) class Microsoft_Windows_OneX_65_0(Etw): pattern = Struct( "PortId" / Int32ul, "Identity" / CString ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=66, version=0) class Microsoft_Windows_OneX_66_0(Etw): pattern = Struct( "PortId" / Int32ul, "ExplicitCredentials" / Int8ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=68, version=0) class Microsoft_Windows_OneX_68_0(Etw): pattern = Struct( "PortId" / Int32ul, "ExplicitCredentials" / Int8ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=70, version=0) class Microsoft_Windows_OneX_70_0(Etw): pattern = Struct( "PortId" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=60001, version=0) class Microsoft_Windows_OneX_60001_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "Location" / Int32ul, "Context" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=60002, version=0) class Microsoft_Windows_OneX_60002_0(Etw): pattern = Struct( "WarningCode" / Int32ul, "Location" / Int32ul, "Context" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=60003, version=0) class Microsoft_Windows_OneX_60003_0(Etw): pattern = Struct( "NextState" / Int8ul, "Context" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=60004, version=0) class Microsoft_Windows_OneX_60004_0(Etw): pattern = Struct( "Context" / Int32ul, "UpdateReasonCode" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=60101, version=0) class Microsoft_Windows_OneX_60101_0(Etw): pattern = Struct( "SourceAddress" / Int32ul, "SourcePort" / Int32ul, "DestinationAddress" / Int32ul, "DestinationPort" / Int32ul, "Protocol" / Int32ul, "ReferenceContext" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=60102, version=0) class Microsoft_Windows_OneX_60102_0(Etw): pattern = Struct( "SourcePort" / Int32ul, "DestinationPort" / Int32ul, "Protocol" / Int32ul, "ReferenceContext" / Int32ul ) @declare(guid=guid("ab0d8ef9-866d-4d39-b83f-453f3b8f6325"), event_id=60103, version=0) class Microsoft_Windows_OneX_60103_0(Etw): pattern = Struct( "IfGuid" / Guid, "IfIndex" / Int32ul, "IfLuid" / Int64ul, "ReferenceContext" / Int32ul )
05-record-like/cards.py
hdcpereira/example-code-2e
990
11102840
<gh_stars>100-1000 from dataclasses import dataclass @dataclass(order=True) class Card: rank: str suit: str ranks = [str(n) for n in range(2, 10)] + list('JQKA') suits = 'spades diamonds clubs hearts'.split()
aif360/metrics/mdss/generator.py
sumacm/fairattr
982
11102875
<reponame>sumacm/fairattr import pandas as pd import numpy as np def get_entire_subset(): """ Returns the entire subset, which is an empty dictionary :return: empty dictionary """ return {} def get_random_subset(coordinates: pd.DataFrame, prob: float, min_elements: int = 0): """ Returns a random subset :param coordinates: data frame containing having as columns the features :param prob: probability to select a value of a feature :param min_elements: minimum number of elements to be included in the randomly generated sub-population :return: dictionary representing a random sub-population """ subset_random_values = {} shuffled_column_names = np.random.permutation(coordinates.columns.values) # consider each column once, in random order for column_name in shuffled_column_names: # get unique values of the current column temp = coordinates[column_name].unique() # include each attribute value with probability = prob mask_values = np.random.rand(len(temp)) < prob if mask_values.sum() < len(temp): # set values for the current column subset_random_values[column_name] = temp[mask_values].tolist() # compute the remaining records mask_subset = coordinates[subset_random_values.keys()].isin(subset_random_values).all(axis=1) remaining_records = len(coordinates.loc[mask_subset]) # only filter on this attribute if at least min_elements records would be kept if remaining_records < min_elements: del subset_random_values[column_name] return subset_random_values
recipes/Python/552739_Mixing_features_tree_md5sum__treemd5_/recipe-552739.py
tdiprima/code
2,023
11102882
<gh_stars>1000+ #!/usr/bin/python import os import os.path import sys import md5 from stat import * from optparse import OptionParser class Stats: def __init__(self): self.filenb = 0 self.dirnb = 0 self.othernb = 0 self.unstatablenb = 0 def scan_tree(lst, maxlen, dirname, dirpath, prefix, nxt_prefix, options, stats): """params: lst: I/O list of (tree_ascii_art_repr_line, path_if_regular_file_else_None) where both are strings and the second one can also be None maxlen: integer that contains the rightmost column number of ascii repr of the tree known by the caller dirname: name of the directory from which a tree repr is wanted dirpath: path to the directory from which a tree repr is wanted prefix: string to prepend to the dirname to form the first line of the ascii repr of the subtree nxt_prefix: string to prepend to every lines of the repr of the subtree but the first one (which uses prefix) options: options as extracted by the optparse module from cmd line options stats: Stats instance returns a new value for maxlen """ try: dir_content = os.listdir(dirpath) dir_content.sort() except OSError: dir_content = None ascii_art_tree_repr = prefix + dirname maxlen = max(maxlen, len(ascii_art_tree_repr)) if dir_content is None: lst.append((ascii_art_tree_repr + ' [error reading dir]', None)) return maxlen if not options.all: dir_content = [child for child in dir_content if child[0] != '.'] lst.append((ascii_art_tree_repr, None)) sub_prefix = nxt_prefix + '|-- ' sub_nxt_prefix = nxt_prefix + '| ' for num, child in enumerate(dir_content): if num == len(dir_content) - 1: sub_prefix = nxt_prefix + '`-- ' sub_nxt_prefix = nxt_prefix + ' ' joined_path = os.path.join(dirpath, child) try: lmode = os.lstat(joined_path)[ST_MODE] except: lmode = None ascii_art_tree_repr = sub_prefix + child maxlen = max(maxlen, len(ascii_art_tree_repr)) if lmode is None: stats.unstatablenb += 1 lst.append((ascii_art_tree_repr + ' [error stating child]', None)) elif S_ISREG(lmode): stats.filenb += 1 lst.append((ascii_art_tree_repr, joined_path)) elif S_ISDIR(lmode): stats.dirnb += 1 maxlen = scan_tree(lst, maxlen, child, joined_path, sub_prefix, sub_nxt_prefix, options, stats) elif S_ISLNK(lmode): stats.filenb += 1 try: lst.append((ascii_art_tree_repr + ' -> ' + os.readlink(joined_path), None)) except OSError: lst.append((ascii_art_tree_repr + ' [cannot read symlink]', None)) elif S_ISCHR(lmode): stats.othernb += 1 lst.append((ascii_art_tree_repr + ' [char device]', None)) elif S_ISBLK(lmode): stats.othernb += 1 lst.append((ascii_art_tree_repr + ' [block device]', None)) elif S_ISFIFO(lmode): stats.othernb += 1 lst.append((ascii_art_tree_repr + ' [fifo]', None)) elif S_ISSOCK(lmode): stats.othernb += 1 lst.append((ascii_art_tree_repr + ' [socket]', None)) else: stats.othernb += 1 lst.append((ascii_art_tree_repr + ' [unknown]', None)) return maxlen def md5_from_path(path): """Returns an hex repr of the md5sum of the file content path points to. On IOError returns '<unable to read file>'. """ try: f = open(path) m = md5.new() while True: b = f.read(262144) if not b: break m.update(b) f.close() return m.hexdigest() except IOError: return '<unable to read file>' def main(): parser = OptionParser(usage="usage: %prog [options] [dir1 [dir2 [...]]]") parser.add_option("-a", "--all", action='store_true', dest='all', default=False, help="All files are listed.") options, roots = parser.parse_args() stats = Stats() if not roots: roots = ['.'] for root in roots: lst = [] maxlen = scan_tree(lst, 0, root, root, "", "", options, stats) for line, path in lst: if path is not None: m = md5_from_path(path) print line + ' ' * (maxlen+1-len(line)) + m else: print line print print ', '.join(( ('%d directory', '%d directories')[stats.dirnb > 1] % stats.dirnb, ('%d file', '%d files')[stats.filenb > 1] % stats.filenb, ('%d other', '%d others')[stats.othernb > 1] % stats.othernb, ('%d unstatable', '%d unstatables')[stats.unstatablenb > 1] % stats.unstatablenb)) if __name__ == "__main__": main()
fugue/extensions/_builtins/processors.py
kvnkho/fugue
547
11102922
<reponame>kvnkho/fugue from typing import Any, List, Type, no_type_check from fugue.collections.partition import PartitionCursor from fugue.dataframe import ( ArrayDataFrame, DataFrame, DataFrames, LocalDataFrame, to_local_bounded_df, ) from fugue.column import ColumnExpr, SelectColumns as ColumnsSelect from fugue.exceptions import FugueWorkflowError from fugue.execution import make_sql_engine from fugue.execution.execution_engine import _generate_comap_empty_dfs from fugue.extensions.processor import Processor from fugue.extensions.transformer import CoTransformer, Transformer, _to_transformer from fugue.rpc import EmptyRPCHandler, to_rpc_handler from triad.collections import ParamDict from triad.collections.schema import Schema from triad.utils.assertion import assert_or_throw from triad.utils.convert import to_type class RunTransformer(Processor): @no_type_check def process(self, dfs: DataFrames) -> DataFrame: df = dfs[0] tf = _to_transformer( self.params.get_or_none("transformer", object), self.params.get_or_none("schema", object), ) tf._workflow_conf = self.execution_engine.conf tf._params = self.params.get("params", ParamDict()) # type: ignore tf._partition_spec = self.partition_spec rpc_handler = to_rpc_handler(self.params.get_or_throw("rpc_handler", object)) if not isinstance(rpc_handler, EmptyRPCHandler): tf._rpc_client = self.execution_engine.rpc_server.make_client(rpc_handler) ie = self.params.get("ignore_errors", []) self._ignore_errors = [to_type(x, Exception) for x in ie] tf.validate_on_runtime(df) if isinstance(tf, Transformer): return self.transform(df, tf) else: return self.cotransform(df, tf) def transform(self, df: DataFrame, tf: Transformer) -> DataFrame: tf._key_schema = self.partition_spec.get_key_schema(df.schema) # type: ignore tf._output_schema = Schema(tf.get_output_schema(df)) # type: ignore tr = _TransformerRunner(df, tf, self._ignore_errors) # type: ignore return self.execution_engine.map( df=df, map_func=tr.run, output_schema=tf.output_schema, # type: ignore partition_spec=tf.partition_spec, on_init=tr.on_init, ) @no_type_check def cotransform(self, df: DataFrame, tf: CoTransformer) -> DataFrame: assert_or_throw( df.metadata.get("serialized", False), "must use serialized dataframe" ) tf._key_schema = df.schema - list(df.metadata["serialized_cols"].values()) # TODO: currently, get_output_schema only gets empty dataframes empty_dfs = _generate_comap_empty_dfs( df.metadata["schemas"], df.metadata.get("serialized_has_name", False) ) tf._output_schema = Schema(tf.get_output_schema(empty_dfs)) tr = _CoTransformerRunner(df, tf, self._ignore_errors) return self.execution_engine.comap( df=df, map_func=tr.run, output_schema=tf.output_schema, partition_spec=tf.partition_spec, on_init=tr.on_init, ) class RunJoin(Processor): def process(self, dfs: DataFrames) -> DataFrame: if len(dfs) == 1: return dfs[0] how = self.params.get_or_throw("how", str) on = self.params.get("on", []) df = dfs[0] for i in range(1, len(dfs)): df = self.execution_engine.join(df, dfs[i], how=how, on=on) return df class RunSetOperation(Processor): def process(self, dfs: DataFrames) -> DataFrame: if len(dfs) == 1: return dfs[0] how = self.params.get_or_throw("how", str) func: Any = { "union": self.execution_engine.union, "subtract": self.execution_engine.subtract, "intersect": self.execution_engine.intersect, }[how] distinct = self.params.get("distinct", True) df = dfs[0] for i in range(1, len(dfs)): df = func(df, dfs[i], distinct=distinct) return df class Distinct(Processor): def process(self, dfs: DataFrames) -> DataFrame: assert_or_throw(len(dfs) == 1, FugueWorkflowError("not single input")) return self.execution_engine.distinct(dfs[0]) class Dropna(Processor): def process(self, dfs: DataFrames) -> DataFrame: assert_or_throw(len(dfs) == 1, FugueWorkflowError("not single input")) how = self.params.get("how", "any") assert_or_throw( how in ["any", "all"], FugueWorkflowError("how' needs to be either 'any' or 'all'"), ) thresh = self.params.get_or_none("thresh", int) subset = self.params.get_or_none("subset", list) return self.execution_engine.dropna( dfs[0], how=how, thresh=thresh, subset=subset ) class Fillna(Processor): def process(self, dfs: DataFrames) -> DataFrame: assert_or_throw(len(dfs) == 1, FugueWorkflowError("not single input")) value = self.params.get_or_none("value", object) assert_or_throw( (not isinstance(value, list)) and (value is not None), FugueWorkflowError("fillna value cannot be None or list"), ) if isinstance(value, dict): assert_or_throw( (None not in value.values()) and (any(value.values())), FugueWorkflowError( "fillna dict can't contain None and must have len > 1" ), ) subset = self.params.get_or_none("subset", list) return self.execution_engine.fillna(dfs[0], value=value, subset=subset) class RunSQLSelect(Processor): def process(self, dfs: DataFrames) -> DataFrame: statement = self.params.get_or_throw("statement", str) engine = self.params.get_or_none("sql_engine", object) engine_params = self.params.get("sql_engine_params", ParamDict()) sql_engine = make_sql_engine(engine, self.execution_engine, **engine_params) return sql_engine.select(dfs, statement) class Zip(Processor): def process(self, dfs: DataFrames) -> DataFrame: how = self.params.get("how", "inner") partition_spec = self.partition_spec # TODO: this should also search on workflow conf temp_path = self.params.get_or_none("temp_path", str) to_file_threshold = self.params.get_or_none("to_file_threshold", object) return self.execution_engine.zip_all( dfs, how=how, partition_spec=partition_spec, temp_path=temp_path, to_file_threshold=to_file_threshold, ) class Select(Processor): def validate_on_compile(self): sc = self.params.get_or_throw("columns", ColumnsSelect) sc.assert_all_with_names() def process(self, dfs: DataFrames) -> DataFrame: assert_or_throw(len(dfs) == 1, FugueWorkflowError("not single input")) columns = self.params.get_or_throw("columns", ColumnsSelect) where = None if "where" not in self.params else self.params["where"] having = None if "having" not in self.params else self.params["having"] return self.execution_engine.select( df=dfs[0], cols=columns, where=where, having=having ) class Filter(Processor): def validate_on_compile(self): self.params.get_or_throw("condition", ColumnExpr) def process(self, dfs: DataFrames) -> DataFrame: assert_or_throw(len(dfs) == 1, FugueWorkflowError("not single input")) condition = self.params.get_or_throw("condition", ColumnExpr) return self.execution_engine.filter(df=dfs[0], condition=condition) class Assign(Processor): def validate_on_compile(self): self.params.get_or_throw("columns", list) def process(self, dfs: DataFrames) -> DataFrame: assert_or_throw(len(dfs) == 1, FugueWorkflowError("not single input")) columns = self.params.get_or_throw("columns", list) return self.execution_engine.assign(df=dfs[0], columns=columns) class Aggregate(Processor): def validate_on_compile(self): self.params.get_or_throw("columns", list) def process(self, dfs: DataFrames) -> DataFrame: assert_or_throw(len(dfs) == 1, FugueWorkflowError("not single input")) columns = self.params.get_or_throw("columns", list) return self.execution_engine.aggregate( df=dfs[0], partition_spec=self.partition_spec, agg_cols=columns ) class Rename(Processor): def validate_on_compile(self): self.params.get_or_throw("columns", dict) def process(self, dfs: DataFrames) -> DataFrame: assert_or_throw(len(dfs) == 1, FugueWorkflowError("not single input")) columns = self.params.get_or_throw("columns", dict) return dfs[0].rename(columns) class AlterColumns(Processor): def validate_on_compile(self): Schema(self.params.get_or_throw("columns", object)) def process(self, dfs: DataFrames) -> DataFrame: assert_or_throw(len(dfs) == 1, FugueWorkflowError("not single input")) columns = self.params.get_or_throw("columns", object) return dfs[0].alter_columns(columns) class DropColumns(Processor): def validate_on_compile(self): self.params.get_or_throw("columns", list) def process(self, dfs: DataFrames) -> DataFrame: assert_or_throw(len(dfs) == 1, FugueWorkflowError("not single input")) if_exists = self.params.get("if_exists", False) columns = self.params.get_or_throw("columns", list) if if_exists: columns = set(columns).intersection(dfs[0].schema.keys()) return dfs[0].drop(list(columns)) class SelectColumns(Processor): def validate_on_compile(self): self.params.get_or_throw("columns", list) def process(self, dfs: DataFrames) -> DataFrame: assert_or_throw(len(dfs) == 1, FugueWorkflowError("not single input")) columns = self.params.get_or_throw("columns", list) return dfs[0][columns] class Sample(Processor): def validate_on_compile(self): n = self.params.get_or_none("n", int) frac = self.params.get_or_none("frac", float) assert_or_throw( (n is None and frac is not None) or (n is not None and frac is None), ValueError("one and only one of n and frac should be set"), ) def process(self, dfs: DataFrames) -> DataFrame: assert_or_throw(len(dfs) == 1, FugueWorkflowError("not single input")) n = self.params.get_or_none("n", int) frac = self.params.get_or_none("frac", float) replace = self.params.get("replace", False) seed = self.params.get_or_none("seed", int) return self.execution_engine.sample( dfs[0], n=n, frac=frac, replace=replace, seed=seed ) class Take(Processor): def process(self, dfs: DataFrames) -> DataFrame: assert_or_throw(len(dfs) == 1, FugueWorkflowError("not single input")) # All _get_or operations convert float to int n = self.params.get_or_none("n", int) presort = self.params.get_or_none("presort", str) na_position = self.params.get("na_position", "last") partition_spec = self.partition_spec return self.execution_engine.take( dfs[0], n, presort=presort, na_position=na_position, partition_spec=partition_spec, ) class SaveAndUse(Processor): def process(self, dfs: DataFrames) -> DataFrame: assert_or_throw(len(dfs) == 1, FugueWorkflowError("not single input")) kwargs = self.params.get("params", dict()) path = self.params.get_or_throw("path", str) format_hint = self.params.get("fmt", "") mode = self.params.get("mode", "overwrite") partition_spec = self.partition_spec force_single = self.params.get("single", False) self.execution_engine.save_df( df=dfs[0], path=path, format_hint=format_hint, mode=mode, partition_spec=partition_spec, force_single=force_single, **kwargs ) return self.execution_engine.load_df(path=path, format_hint=format_hint) class _TransformerRunner(object): def __init__( self, df: DataFrame, transformer: Transformer, ignore_errors: List[type] ): self.schema = df.schema self.metadata = df.metadata self.transformer = transformer self.ignore_errors = tuple(ignore_errors) def run(self, cursor: PartitionCursor, df: LocalDataFrame) -> LocalDataFrame: self.transformer._cursor = cursor # type: ignore df._metadata = self.metadata if len(self.ignore_errors) == 0: return self.transformer.transform(df) else: try: return to_local_bounded_df(self.transformer.transform(df)) except self.ignore_errors: # type: ignore # pylint: disable=E0712 return ArrayDataFrame([], self.transformer.output_schema) def on_init(self, partition_no: int, df: DataFrame) -> None: s = self.transformer.partition_spec self.transformer._cursor = s.get_cursor( # type: ignore self.schema, partition_no ) df._metadata = self.metadata self.transformer.on_init(df) class _CoTransformerRunner(object): def __init__( self, df: DataFrame, transformer: CoTransformer, ignore_errors: List[Type[Exception]], ): self.schema = df.schema self.metadata = df.metadata self.transformer = transformer self.ignore_errors = tuple(ignore_errors) def run(self, cursor: PartitionCursor, dfs: DataFrames) -> LocalDataFrame: self.transformer._cursor = cursor # type: ignore if len(self.ignore_errors) == 0: return self.transformer.transform(dfs) else: try: return to_local_bounded_df(self.transformer.transform(dfs)) except self.ignore_errors: # type: ignore # pylint: disable=E0712 return ArrayDataFrame([], self.transformer.output_schema) def on_init(self, partition_no: int, dfs: DataFrames) -> None: s = self.transformer.partition_spec self.transformer._cursor = s.get_cursor( # type: ignore self.schema, partition_no ) self.transformer.on_init(dfs)
chapter5_语音降噪/C5_4_y.py
busyyang/python_sound_open
165
11102960
from chapter2_基础.soundBase import * from chapter5_语音降噪.Wavelet import * plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False def awgn(x, snr): snr = 10 ** (snr / 10.0) xpower = np.sum(x ** 2) / len(x) npower = xpower / snr return x + np.random.randn(len(x)) * np.sqrt(npower) data, fs = soundBase('C5_4_y.wav').audioread() data -= np.mean(data) data /= np.max(np.abs(data)) SNR = 5 N = len(data) s = awgn(data, SNR) time = [i / fs for i in range(N)] # 设置时间 wname = 'db7' jN = 6 res_s = Wavelet_Soft(s, jN, wname) res_d = Wavelet_Hard(s, jN, wname) res_hs = Wavelet_hardSoft(s, jN, wname) res_a = Wavelet_average(s, jN, wname) plt.figure(figsize=(14, 10)) plt.subplot(3, 2, 1) plt.plot(time, data) plt.ylabel('原始信号') plt.subplot(3, 2, 2) plt.plot(time, s) plt.ylabel('加噪声信号') plt.subplot(3, 2, 3) plt.ylabel('小波软阈值滤波') plt.plot(time, res_s) plt.subplot(3, 2, 4) plt.ylabel('小波硬阈值滤波') plt.plot(time, res_d) plt.subplot(3, 2, 5) plt.ylabel('小波折中阈值滤波') plt.plot(time, res_hs) plt.subplot(3, 2, 6) plt.ylabel('小波加权滤波') plt.plot(time, res_a) plt.savefig('images/wavelet.png') plt.close()
jsonrpcserver/main.py
bcb/jsonrpcserver
144
11102982
<gh_stars>100-1000 """The public functions. These three public functions all perform the same function of dispatching a JSON-RPC request, but they each give a different return value. - dispatch_to_responses: Returns Response(s) (or None for notifications). - dispatch_to_serializable: Returns a Python dict or list of dicts (or None for notifications). - dispatch_to_json/dispatch: Returns a JSON-RPC response string (or an empty string for notifications). """ from typing import Any, Callable, Dict, List, Optional, Union, cast import json from jsonschema.validators import validator_for # type: ignore from pkg_resources import resource_string from .dispatcher import dispatch_to_response_pure, Deserialized from .methods import Methods, global_methods from .response import Response, to_serializable_one from .sentinels import NOCONTEXT from .utils import identity default_deserializer = json.loads # Prepare the jsonschema validator. This is global so it loads only once, not every # time dispatch is called. schema = json.loads(resource_string(__name__, "request-schema.json")) klass = validator_for(schema) klass.check_schema(schema) default_validator = klass(schema).validate def dispatch_to_response( request: str, methods: Optional[Methods] = None, *, context: Any = NOCONTEXT, deserializer: Callable[[str], Deserialized] = json.loads, validator: Callable[[Deserialized], Deserialized] = default_validator, post_process: Callable[[Response], Any] = identity, ) -> Union[Response, List[Response], None]: """Takes a JSON-RPC request string and dispatches it to method(s), giving Response namedtuple(s) or None. This is a public wrapper around dispatch_to_response_pure, adding globals and default values to be nicer for end users. Args: request: The JSON-RPC request string. methods: Dictionary of methods that can be called - mapping of function names to functions. If not passed, uses the internal global_methods dict which is populated with the @method decorator. context: If given, will be passed as the first argument to methods. deserializer: Function that deserializes the request string. validator: Function that validates the JSON-RPC request. The function should raise an exception if the request is invalid. To disable validation, pass lambda _: None. post_process: Function that will be applied to Responses. Returns: A Response, list of Responses or None. Examples: >>> dispatch('{"jsonrpc": "2.0", "method": "ping", "id": 1}') '{"jsonrpc": "2.0", "result": "pong", "id": 1}' """ return dispatch_to_response_pure( deserializer=deserializer, validator=validator, post_process=post_process, context=context, methods=global_methods if methods is None else methods, request=request, ) def dispatch_to_serializable( *args: Any, **kwargs: Any ) -> Union[Dict[str, Any], List[Dict[str, Any]], None]: """Takes a JSON-RPC request string and dispatches it to method(s), giving responses as dicts (or None). """ return cast( Union[Dict[str, Any], List[Dict[str, Any]], None], dispatch_to_response(*args, post_process=to_serializable_one, **kwargs), ) def dispatch_to_json( *args: Any, serializer: Callable[ [Union[Dict[str, Any], List[Dict[str, Any]], str]], str ] = json.dumps, **kwargs: Any, ) -> str: """Takes a JSON-RPC request string and dispatches it to method(s), giving a JSON-RPC response string. This is the main public method, it goes through the entire JSON-RPC process - it's a function from JSON-RPC request string to JSON-RPC response string. Args: serializer: A function to serialize a Python object to json. The rest: Passed through to dispatch_to_serializable. """ response = dispatch_to_serializable(*args, **kwargs) # Better to respond with the empty string instead of json "null", because "null" is # an invalid JSON-RPC response. return "" if response is None else serializer(response) # "dispatch" aliases dispatch_to_json. dispatch = dispatch_to_json
packages/core/minos-microservice-common/minos/common/testing/database/__init__.py
minos-framework/minos-python
247
11103000
<gh_stars>100-1000 from .clients import ( MockedDatabaseClient, ) from .factories import ( MockedLockDatabaseOperationFactory, MockedManagementDatabaseOperationFactory, ) from .operations import ( MockedDatabaseOperation, )
backend/conduit/settings/docker.py
fivehoho75/aws-workshop
135
11103012
<filename>backend/conduit/settings/docker.py import json import os from conduit.settings.defaults import * DEBUG = os.environ.get('DJANGO_DEBUG', 'False') == 'True' STATIC_ROOT = '/data/static/' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': os.environ['DATABASE_NAME'], 'USER': os.environ['DATABASE_USER'], 'PASSWORD': os.environ['DATABASE_PASSWORD'], 'HOST': os.environ['DATABASE_HOST'], 'PORT': os.environ.get('DATABASE_PORT', '5432'), } } LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'handlers': { 'django.file': { 'level': 'DEBUG', 'class': 'logging.FileHandler', 'filename': '/data/django.log', }, 'django.security.file': { 'level': 'DEBUG', 'class': 'logging.FileHandler', 'filename': '/data/django.security.log', }, }, 'loggers': { 'django.request': { 'handlers': ['django.file'], 'level': 'DEBUG', 'propagate': True, }, 'django.security': { 'handlers': ['django.security.file'], 'level': 'DEBUG', 'propagate': True, }, 'django.db.backends': { 'handlers': [], 'level': 'DEBUG', 'propagate': True, }, }, } CORS_ORIGIN_WHITELIST = tuple(json.loads(os.environ.get( 'DJANGO_CORS_ORIGIN_WHITELIST', '[]' )))
backend/category/ssh/ssh_connection.py
zerlee/open-cmdb
126
11103027
import paramiko from rest_framework.exceptions import ParseError ''' https://blog.csdn.net/qq_24674131/article/details/95618304 免密登陆的用户 1. 本机到远程做免密 2. 远程用户加入sudoers,并设置免密sudo ''' class SSHConnection: # 初始化连接创建Transport通道 def __init__(self, host='xxx.xxx.xxx.xxx', port=22, user='xxx', pwd='<PASSWORD>', key_file=''): self.host = host self.port = port self.user = user self.pwd = <PASSWORD> self.key_file = key_file transport = paramiko.Transport((self.host, self.port)) if self.key_file: try: private_key = paramiko.RSAKey.from_private_key_file(self.key_file) transport.connect(username=self.user, pkey=private_key) except Exception as e: raise ParseError(f'用户{self.key_file}免密连接{self.user}@{self.host}:{self.port}失败,') else: transport.connect(username=self.user, password=<PASSWORD>) self.__transport = transport self.sftp = paramiko.SFTPClient.from_transport(self.__transport) # 关闭通道 def close(self): self.sftp.close() self.__transport.close() # 上传文件到远程主机 def upload(self, local_path, remote_path): self.sftp.put(local_path, remote_path) # 从远程主机下载文件到本地 def download(self, local_path, remote_path): self.sftp.get(remote_path, local_path) # 在远程主机上创建目录 def mkdir(self, target_path, mode='0777'): self.sftp.mkdir(target_path, mode) # 删除远程主机上的目录 def rmdir(self, target_path): self.sftp.rmdir(target_path) # 查看目录下文件以及子目录(如果需要更加细粒度的文件信息建议使用listdir_attr) def listdir(self, target_path): return self.sftp.listdir(target_path) # 删除文件 def remove(self, target_path): self.sftp.remove(target_path) # 查看目录下文件以及子目录的详细信息(包含内容和参考os.stat返回一个FSTPAttributes对象,对象的具体属性请用__dict__查看) def listdir_attr(self, target_path): try: files = self.sftp.listdir_attr(target_path) except BaseException as e: print(e) return files # 获取文件详情 def stat(self, remote_path): return self.sftp.stat(remote_path) # SSHClient输入命令远程操作主机 def cmd(self, command): ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy) ssh._transport = self.__transport stdin, stdout, stderr = ssh.exec_command(command) result = stdout.read() return result.decode('utf8')
src/pretix/helpers/escapejson.py
fabm3n/pretix
1,248
11103065
# # This file is part of pretix (Community Edition). # # Copyright (C) 2014-2020 <NAME> and contributors # Copyright (C) 2020-2021 rami.io GmbH and contributors # # This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General # Public License as published by the Free Software Foundation in version 3 of the License. # # ADDITIONAL TERMS APPLY: Pursuant to Section 7 of the GNU Affero General Public License, additional terms are # applicable granting you additional permissions and placing additional restrictions on your usage of this software. # Please refer to the pretix LICENSE file to obtain the full terms applicable to this work. If you did not receive # this file, see <https://pretix.eu/about/en/license>. # # This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied # warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more # details. # # You should have received a copy of the GNU Affero General Public License along with this program. If not, see # <https://www.gnu.org/licenses/>. # from django.utils.encoding import force_str from django.utils.functional import keep_lazy from django.utils.safestring import SafeText, mark_safe _json_escapes = { ord('>'): '\\u003E', ord('<'): '\\u003C', ord('&'): '\\u0026', } _json_escapes_attr = { ord('>'): '\\u003E', ord('<'): '\\u003C', ord('&'): '\\u0026', ord('"'): '&#34;', ord("'"): '&#39;', ord("="): '&#61;', } @keep_lazy(str, SafeText) def escapejson(value): """Hex encodes characters for use in a application/json type script.""" return mark_safe(force_str(value).translate(_json_escapes)) @keep_lazy(str, SafeText) def escapejson_attr(value): """Hex encodes characters for use in a html attributw script.""" return mark_safe(force_str(value).translate(_json_escapes_attr))
test/specs/openapi/parameters/test_simple_payloads.py
gluhar2006/schemathesis
659
11103068
<gh_stars>100-1000 """Tests for behavior not specific to forms.""" import pytest from schemathesis.parameters import PayloadAlternatives from schemathesis.specs.openapi.parameters import OpenAPI20Body, OpenAPI30Body @pytest.mark.parametrize( "consumes", ( ["application/json"], # Multiple values in "consumes" implies multiple payload variants ["application/json", "application/xml"], ), ) def test_payload_open_api_2( consumes, assert_parameters, make_openapi_2_schema, open_api_2_user_form_with_file_parameters, open_api_2_user_in_body, user_jsonschema, ): # A single "body" parameter is used for all payload variants schema = make_openapi_2_schema(consumes, [open_api_2_user_in_body]) assert_parameters( schema, PayloadAlternatives( [OpenAPI20Body(definition=open_api_2_user_in_body, media_type=value) for value in consumes] ), # For each one the schema is extracted from the parameter definition and transformed to the proper JSON Schema [user_jsonschema] * len(consumes), ) @pytest.mark.parametrize( "media_types", ( ["application/json"], # Each media type corresponds to a payload variant ["application/json", "application/xml"], # Forms can be also combined ["application/x-www-form-urlencoded", "multipart/form-data"], ), ) def test_payload_open_api_3(media_types, assert_parameters, make_openapi_3_schema, open_api_3_user, user_jsonschema): schema = make_openapi_3_schema( { "required": True, "content": {media_type: {"schema": open_api_3_user} for media_type in media_types}, } ) assert_parameters( schema, PayloadAlternatives( [ OpenAPI30Body(definition={"schema": open_api_3_user}, media_type=media_type, required=True) for media_type in media_types ] ), # The converted schema should correspond the schema in the relevant "requestBody" part # In this case they are the same [user_jsonschema] * len(media_types), )
tests/nlu_hc_tests/training_tests/chunk_resolution/chunk_resolver_tests.py
milyiyo/nlu
480
11103078
<gh_stars>100-1000 import unittest import pandas as pd import nlu from sparknlp.annotator import BertSentenceEmbeddings import tests.nlu_hc_tests.secrets as sct class ChunkResolverTrainingTests(unittest.TestCase): def test_chunk_resolver_training(self): """When training a chunk resolver, word_embedding are required. If none specifeid, the default `glove` word_embeddings will be used Alternatively, if a Word Embedding is specified in the load command before the train.chunk_resolver, it will be used instead of the default glove """ cols = ["y","_y","text"] p='/home/ckl/Documents/freelance/jsl/nlu/nlu4realgit2/tests/datasets/AskAPatient.fold-0.train.txt' dataset = pd.read_csv(p,sep="\t",encoding="ISO-8859-1",header=None) dataset.columns = cols SPARK_NLP_LICENSE = sct.SPARK_NLP_LICENSE AWS_ACCESS_KEY_ID = sct.AWS_ACCESS_KEY_ID AWS_SECRET_ACCESS_KEY = sct.AWS_SECRET_ACCESS_KEY JSL_SECRET = sct.JSL_SECRET nlu.auth(SPARK_NLP_LICENSE,AWS_ACCESS_KEY_ID,AWS_SECRET_ACCESS_KEY,JSL_SECRET) trainable_pipe = nlu.load('train.resolve_chunks', verbose=True) trainable_pipe.print_info() fitted_pipe = trainable_pipe.fit(dataset) res = fitted_pipe.predict(dataset, multithread=False) for c in res : print(c) print(res[c]) def test_chunk_resolver_training_custom_embeds(self): pass """When training a chunk resolver, word_embedding are required. If none specifeid, the default `glove` word_embeddings will be used Alternatively, if a Word Embedding is specified in the load command before the train.chunk_resolver, it will be used instead of the default glove """ dataset = pd.DataFrame({ 'text': ['The Tesla company is good to invest is', 'TSLA is good to invest','TESLA INC. we should buy','PUT ALL MONEY IN TSLA inc!!'], 'y': ['23','23','23','23'], '_y': ['TESLA','TESLA','TESLA','TESLA'], }) cols = ["y","_y","text"] p='/home/ckl/Documents/freelance/jsl/nlu/nlu4realgit2/tests/datasets/AskAPatient.fold-0.train.txt' dataset = pd.read_csv(p,sep="\t",encoding="ISO-8859-1",header=None) dataset.columns = cols SPARK_NLP_LICENSE = sct.SPARK_NLP_LICENSE AWS_ACCESS_KEY_ID = sct.AWS_ACCESS_KEY_ID AWS_SECRET_ACCESS_KEY = sct.AWS_SECRET_ACCESS_KEY JSL_SECRET = sct.JSL_SECRET nlu.auth(SPARK_NLP_LICENSE,AWS_ACCESS_KEY_ID,AWS_SECRET_ACCESS_KEY,JSL_SECRET) # trainable_pipe = nlu.load('glove train.resolve_chunks', verbose=True) # trainable_pipe = nlu.load('bert train.resolve_chunks', verbose=True) # trainable_pipe = nlu.load('bert train.resolve_chunks', verbose=True) trainable_pipe = nlu.load('en.embed.glove.healthcare_100d train.resolve_chunks') trainable_pipe['chunk_resolver'].setNeighbours(350) # TODO bert/elmo give wierd storage ref errors... # TODO WRITE ISSUE IN HEALTHCARE LIB ABOUT THIS!!! # ONLY GLOVE WORKS!! # trainable_pipe = nlu.load('bert train.resolve_chunks', verbose=True) trainable_pipe.print_info() fitted_pipe = trainable_pipe.fit(dataset) res = fitted_pipe.predict(dataset, multithread=False) for c in res : print(c) print(res[c]) # print(res) if __name__ == '__main__': ChunkResolverTrainingTests().test_entities_config()
2017-07_Seminar/Session 3 - Relation CNN/code/cnn.py
dineshsonachalam/deeplearning4nlp-tutorial
593
11103110
<reponame>dineshsonachalam/deeplearning4nlp-tutorial """ This is a CNN for relation classification within a sentence. The architecture is based on: <NAME>, <NAME>, <NAME>, <NAME> and <NAME>, 2014, Relation Classification via Convolutional Deep Neural Network Performance (without hyperparameter optimization): Accuracy: 0.7943 Macro-Averaged F1 (without Other relation): 0.7612 Performance Zeng et al. Macro-Averaged F1 (without Other relation): 0.789 Code was tested with: - Python 2.7 & Python 3.6 - Theano 0.9.0 & TensorFlow 1.2.1 - Keras 2.0.5 """ from __future__ import print_function import numpy as np np.random.seed(1337) # for reproducibility import gzip import sys if (sys.version_info > (3, 0)): import pickle as pkl else: #Python 2.7 imports import cPickle as pkl import keras from keras.models import Model from keras.layers import Input, Dense, Dropout, Activation, Flatten, concatenate from keras.layers import Embedding from keras.layers import Convolution1D, MaxPooling1D, GlobalMaxPooling1D from keras.regularizers import Regularizer from keras.preprocessing import sequence batch_size = 64 nb_filter = 100 filter_length = 3 hidden_dims = 100 nb_epoch = 100 position_dims = 50 print("Load dataset") f = gzip.open('pkl/sem-relations.pkl.gz', 'rb') data = pkl.load(f) f.close() embeddings = data['wordEmbeddings'] yTrain, sentenceTrain, positionTrain1, positionTrain2 = data['train_set'] yTest, sentenceTest, positionTest1, positionTest2 = data['test_set'] max_position = max(np.max(positionTrain1), np.max(positionTrain2))+1 n_out = max(yTrain)+1 #train_y_cat = np_utils.to_categorical(yTrain, n_out) max_sentence_len = sentenceTrain.shape[1] print("sentenceTrain: ", sentenceTrain.shape) print("positionTrain1: ", positionTrain1.shape) print("yTrain: ", yTrain.shape) print("sentenceTest: ", sentenceTest.shape) print("positionTest1: ", positionTest1.shape) print("yTest: ", yTest.shape) print("Embeddings: ",embeddings.shape) words_input = Input(shape=(max_sentence_len,), dtype='int32', name='words_input') words = Embedding(embeddings.shape[0], embeddings.shape[1], weights=[embeddings], trainable=False)(words_input) distance1_input = Input(shape=(max_sentence_len,), dtype='int32', name='distance1_input') distance1 = Embedding(max_position, position_dims)(distance1_input) distance2_input = Input(shape=(max_sentence_len,), dtype='int32', name='distance2_input') distance2 = Embedding(max_position, position_dims)(distance2_input) output = concatenate([words, distance1, distance2]) output = Convolution1D(filters=nb_filter, kernel_size=filter_length, padding='same', activation='tanh', strides=1)(output) # we use standard max over time pooling output = GlobalMaxPooling1D()(output) output = Dropout(0.25)(output) output = Dense(n_out, activation='softmax')(output) model = Model(inputs=[words_input, distance1_input, distance2_input], outputs=[output]) model.compile(loss='sparse_categorical_crossentropy',optimizer='Adam', metrics=['accuracy']) model.summary() print("Start training") max_prec, max_rec, max_acc, max_f1 = 0,0,0,0 def getPrecision(pred_test, yTest, targetLabel): #Precision for non-vague targetLabelCount = 0 correctTargetLabelCount = 0 for idx in range(len(pred_test)): if pred_test[idx] == targetLabel: targetLabelCount += 1 if pred_test[idx] == yTest[idx]: correctTargetLabelCount += 1 if correctTargetLabelCount == 0: return 0 return float(correctTargetLabelCount) / targetLabelCount def predict_classes(prediction): return prediction.argmax(axis=-1) for epoch in range(nb_epoch): model.fit([sentenceTrain, positionTrain1, positionTrain2], yTrain, batch_size=batch_size, verbose=True,epochs=1) pred_test = predict_classes(model.predict([sentenceTest, positionTest1, positionTest2], verbose=False)) dctLabels = np.sum(pred_test) totalDCTLabels = np.sum(yTest) acc = np.sum(pred_test == yTest) / float(len(yTest)) max_acc = max(max_acc, acc) print("Accuracy: %.4f (max: %.4f)" % (acc, max_acc)) f1Sum = 0 f1Count = 0 for targetLabel in range(1, max(yTest)): prec = getPrecision(pred_test, yTest, targetLabel) recall = getPrecision(yTest, pred_test, targetLabel) f1 = 0 if (prec+recall) == 0 else 2*prec*recall/(prec+recall) f1Sum += f1 f1Count +=1 macroF1 = f1Sum / float(f1Count) max_f1 = max(max_f1, macroF1) print("Non-other Macro-Averaged F1: %.4f (max: %.4f)\n" % (macroF1, max_f1))
keanu-python/tests/test_proposal_distributions.py
rs992214/keanu
153
11103117
<filename>keanu-python/tests/test_proposal_distributions.py<gh_stars>100-1000 import numpy as np import pytest from keanu import BayesNet, Model from keanu.algorithm._proposal_distribution import ProposalDistribution from keanu.vertex import Gamma, Gaussian from keanu.vartypes import tensor_arg_types @pytest.fixture def net() -> BayesNet: with Model() as m: m.gamma = Gamma(1., 1.) m.gaussian = Gaussian(0., m.gamma) return m.to_bayes_net() def test_you_can_create_a_prior_proposal_distribution(net) -> None: ProposalDistribution("prior", latents=list(net.iter_latent_vertices())) @pytest.mark.parametrize("sigma", [1., np.array(1.), [1., 2.], [np.array(1.), np.array(2.)]]) def test_you_can_create_a_gaussian_proposal_distribution(sigma: tensor_arg_types, net: BayesNet) -> None: ProposalDistribution("gaussian", latents=list(net.iter_latent_vertices()), sigma=sigma) def test_it_throws_if_you_specify_gaussian_without_a_value_for_sigma(net: BayesNet) -> None: with pytest.raises( TypeError, match=r"Gaussian Proposal Distribution requires a sigma or a list of sigmas for each latent"): ProposalDistribution("gaussian", latents=list(net.iter_latent_vertices())) def test_it_throws_if_you_specify_gaussian_with_not_enough_sigmas_for_each_latent(net: BayesNet) -> None: with pytest.raises( TypeError, match=r"Gaussian Proposal Distribution requires a sigma or a list of sigmas for each latent"): ProposalDistribution("gaussian", latents=list(net.iter_latent_vertices()), sigma=[1.]) def test_it_throws_if_you_specify_gaussian_without_values_for_latents() -> None: with pytest.raises(TypeError, match=r"Gaussian Proposal Distribution requires values for latents"): ProposalDistribution("gaussian", sigma=1.) def test_it_throws_if_you_specify_gaussian_with_empty_list_of_latents(net: BayesNet) -> None: with pytest.raises(TypeError, match=r"Gaussian Proposal Distribution requires values for latents"): ProposalDistribution("gaussian", latents=[], sigma=[]) def test_it_throws_if_you_specify_sigma_but_the_type_isnt_gaussian() -> None: with pytest.raises(TypeError, match=r'Parameter sigma is not valid unless type is "gaussian"'): ProposalDistribution("prior", sigma=1.) def test_it_throws_if_it_doesnt_recognise_the_type() -> None: with pytest.raises(KeyError, match=r"'foo'"): ProposalDistribution("foo")
pliers/utils/__init__.py
nickduran/pliers
229
11103181
<filename>pliers/utils/__init__.py """ Utilities """ from .base import (listify, flatten, batch_iterable, classproperty, isiterable, isgenerator, progress_bar_wrapper, attempt_to_import, EnvironmentKeyMixin, verify_dependencies, set_iterable_type, APIDependent, flatten_dict, resample) __all__ = [ 'listify', 'flatten', 'flatten_dict', 'batch_iterable', 'classproperty', 'isiterable', 'isgenerator', 'progress_bar_wrapper', 'attempt_to_import', 'EnvironmentKeyMixin', 'verify_dependencies', 'set_iterable_type', 'APIDependent', 'resample' ]
src/ralph/dashboards/migrations/0003_graph_push_to_statsd.py
DoNnMyTh/ralph
1,668
11103200
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('dashboards', '0002_auto_20170509_1404'), ] operations = [ migrations.AddField( model_name='graph', name='push_to_statsd', field=models.BooleanField(default=False, help_text="Push graph's data to statsd."), ), ]
template_filters.py
simon987/od-database
133
11103248
<filename>template_filters.py import datetime import time import od_util def setup_template_filters(app): app.jinja_env.globals.update(truncate_path=od_util.truncate_path) app.jinja_env.globals.update(get_color=od_util.get_color) app.jinja_env.globals.update(get_mime=od_util.get_category) @app.template_filter("date_format") def date_format(value, format='%Y-%m-%d'): return time.strftime(format, time.gmtime(value)) @app.template_filter("datetime_format") def datetime_format(value, format='%Y-%m-%d %H:%M:%S'): return time.strftime(format, time.gmtime(value)) @app.template_filter("duration_format") def duration_format(value): delay = datetime.timedelta(seconds=value) if delay.days > 0: out = str(delay).replace(" days, ", ":") else: out = str(delay) out_ar = out.split(':') out_ar = ["%02d" % (int(float(x))) for x in out_ar] out = ":".join(out_ar) return out @app.template_filter("from_timestamp") def from_timestamp(value): return datetime.datetime.fromtimestamp(value)
2021/visuals/day_02/submarine/commands.py
salt-die/Advent-of-Code
105
11103256
import yaml import re from pathlib import Path _THIS_DIR = Path(__file__).parent _INPUTS = _THIS_DIR.parent.parent.parent / "aoc_helper" / "inputs.yaml" _RAW = yaml.full_load(_INPUTS.read_text())["2"] COMMANDS = [ (command, int(amount)) for command, amount in re.findall(r"(\w+) (\d+)", _RAW) ]
tests/integration/exception_test.py
markowanga/stweet
101
11103276
import pytest import stweet as st from stweet import WebClient from stweet.auth import SimpleAuthTokenProvider from stweet.exceptions import RefreshTokenException, ScrapBatchBadResponse from stweet.exceptions.too_many_requests_exception import TooManyRequestsException from stweet.http_request import RequestResponse from stweet.twitter_api.twitter_auth_web_client_interceptor import TwitterAuthWebClientInterceptor from tests.mock_web_client import MockWebClient def get_client_with_default_response(response: RequestResponse = RequestResponse(None, None)) -> WebClient: return MockWebClient( default_response=response, interceptors=[TwitterAuthWebClientInterceptor()] ) def test_get_simple_auth_token_with_incorrect_response_1(): with pytest.raises(RefreshTokenException): SimpleAuthTokenProvider().get_new_token(get_client_with_default_response(RequestResponse(400, None))) def test_get_auth_token_with_incorrect_response_2(): with pytest.raises(TooManyRequestsException): SimpleAuthTokenProvider(50, 150).get_new_token(get_client_with_default_response(RequestResponse(429, None))) def test_get_auth_token_with_incorrect_response_3(): with pytest.raises(RefreshTokenException): SimpleAuthTokenProvider().get_new_token(get_client_with_default_response(RequestResponse(200, '{}'))) def test_get_auth_token_with_incorrect_response_4(): with pytest.raises(RefreshTokenException): SimpleAuthTokenProvider().get_new_token(get_client_with_default_response(RequestResponse(200, 'LALA'))) def test_runner_exceptions(): class TokenExpiryExceptionWebClient(st.WebClient): count_dict = dict({ 'https://api.twitter.com/2/search/adaptive.json': 0, 'https://api.twitter.com/1.1/guest/activate.json': 0 }) def run_clear_request(self, params: st.http_request.RequestDetails) -> st.http_request.RequestResponse: self.count_dict[params.url] = self.count_dict[params.url] + 1 if params.url == 'https://api.twitter.com/2/search/adaptive.json': if self.count_dict[params.url] == 1: return st.http_request.RequestResponse(429, None) else: return st.http_request.RequestResponse(400, '') else: return st.http_request.RequestResponse(200, '{"guest_token":"<PASSWORD>"}') with pytest.raises(ScrapBatchBadResponse): search_tweets_task = st.SearchTweetsTask( all_words='#koronawirus' ) st.TweetSearchRunner( search_tweets_task=search_tweets_task, tweet_outputs=[], web_client=TokenExpiryExceptionWebClient(interceptors=[TwitterAuthWebClientInterceptor()]), ).run() def test_get_not_existing_user(): task = st.GetUsersTask(['fcbewkjdsncvjwkfs']) result = st.GetUsersRunner(task, []).run() assert result.users_count == 0
InvenTree/stock/migrations/0066_stockitem_scheduled_for_deletion.py
carlos-riquelme/InvenTree
656
11103349
<reponame>carlos-riquelme/InvenTree<filename>InvenTree/stock/migrations/0066_stockitem_scheduled_for_deletion.py # Generated by Django 3.2.4 on 2021-09-07 06:27 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('stock', '0065_auto_20210701_0509'), ] operations = [ migrations.AddField( model_name='stockitem', name='scheduled_for_deletion', field=models.BooleanField(default=False, help_text='This StockItem will be deleted by the background worker', verbose_name='Scheduled for deletion'), ), ]
sdk/python/pulumi_gcp/compute/get_health_check.py
sisisin/pulumi-gcp
121
11103356
<reponame>sisisin/pulumi-gcp<gh_stars>100-1000 # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs __all__ = [ 'GetHealthCheckResult', 'AwaitableGetHealthCheckResult', 'get_health_check', 'get_health_check_output', ] @pulumi.output_type class GetHealthCheckResult: """ A collection of values returned by getHealthCheck. """ def __init__(__self__, check_interval_sec=None, creation_timestamp=None, description=None, grpc_health_checks=None, healthy_threshold=None, http2_health_checks=None, http_health_checks=None, https_health_checks=None, id=None, log_configs=None, name=None, project=None, self_link=None, ssl_health_checks=None, tcp_health_checks=None, timeout_sec=None, type=None, unhealthy_threshold=None): if check_interval_sec and not isinstance(check_interval_sec, int): raise TypeError("Expected argument 'check_interval_sec' to be a int") pulumi.set(__self__, "check_interval_sec", check_interval_sec) if creation_timestamp and not isinstance(creation_timestamp, str): raise TypeError("Expected argument 'creation_timestamp' to be a str") pulumi.set(__self__, "creation_timestamp", creation_timestamp) if description and not isinstance(description, str): raise TypeError("Expected argument 'description' to be a str") pulumi.set(__self__, "description", description) if grpc_health_checks and not isinstance(grpc_health_checks, list): raise TypeError("Expected argument 'grpc_health_checks' to be a list") pulumi.set(__self__, "grpc_health_checks", grpc_health_checks) if healthy_threshold and not isinstance(healthy_threshold, int): raise TypeError("Expected argument 'healthy_threshold' to be a int") pulumi.set(__self__, "healthy_threshold", healthy_threshold) if http2_health_checks and not isinstance(http2_health_checks, list): raise TypeError("Expected argument 'http2_health_checks' to be a list") pulumi.set(__self__, "http2_health_checks", http2_health_checks) if http_health_checks and not isinstance(http_health_checks, list): raise TypeError("Expected argument 'http_health_checks' to be a list") pulumi.set(__self__, "http_health_checks", http_health_checks) if https_health_checks and not isinstance(https_health_checks, list): raise TypeError("Expected argument 'https_health_checks' to be a list") pulumi.set(__self__, "https_health_checks", https_health_checks) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if log_configs and not isinstance(log_configs, list): raise TypeError("Expected argument 'log_configs' to be a list") pulumi.set(__self__, "log_configs", log_configs) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if project and not isinstance(project, str): raise TypeError("Expected argument 'project' to be a str") pulumi.set(__self__, "project", project) if self_link and not isinstance(self_link, str): raise TypeError("Expected argument 'self_link' to be a str") pulumi.set(__self__, "self_link", self_link) if ssl_health_checks and not isinstance(ssl_health_checks, list): raise TypeError("Expected argument 'ssl_health_checks' to be a list") pulumi.set(__self__, "ssl_health_checks", ssl_health_checks) if tcp_health_checks and not isinstance(tcp_health_checks, list): raise TypeError("Expected argument 'tcp_health_checks' to be a list") pulumi.set(__self__, "tcp_health_checks", tcp_health_checks) if timeout_sec and not isinstance(timeout_sec, int): raise TypeError("Expected argument 'timeout_sec' to be a int") pulumi.set(__self__, "timeout_sec", timeout_sec) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) if unhealthy_threshold and not isinstance(unhealthy_threshold, int): raise TypeError("Expected argument 'unhealthy_threshold' to be a int") pulumi.set(__self__, "unhealthy_threshold", unhealthy_threshold) @property @pulumi.getter(name="checkIntervalSec") def check_interval_sec(self) -> int: return pulumi.get(self, "check_interval_sec") @property @pulumi.getter(name="creationTimestamp") def creation_timestamp(self) -> str: return pulumi.get(self, "creation_timestamp") @property @pulumi.getter def description(self) -> str: return pulumi.get(self, "description") @property @pulumi.getter(name="grpcHealthChecks") def grpc_health_checks(self) -> Sequence['outputs.GetHealthCheckGrpcHealthCheckResult']: return pulumi.get(self, "grpc_health_checks") @property @pulumi.getter(name="healthyThreshold") def healthy_threshold(self) -> int: return pulumi.get(self, "healthy_threshold") @property @pulumi.getter(name="http2HealthChecks") def http2_health_checks(self) -> Sequence['outputs.GetHealthCheckHttp2HealthCheckResult']: return pulumi.get(self, "http2_health_checks") @property @pulumi.getter(name="httpHealthChecks") def http_health_checks(self) -> Sequence['outputs.GetHealthCheckHttpHealthCheckResult']: return pulumi.get(self, "http_health_checks") @property @pulumi.getter(name="httpsHealthChecks") def https_health_checks(self) -> Sequence['outputs.GetHealthCheckHttpsHealthCheckResult']: return pulumi.get(self, "https_health_checks") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter(name="logConfigs") def log_configs(self) -> Sequence['outputs.GetHealthCheckLogConfigResult']: return pulumi.get(self, "log_configs") @property @pulumi.getter def name(self) -> str: return pulumi.get(self, "name") @property @pulumi.getter def project(self) -> Optional[str]: return pulumi.get(self, "project") @property @pulumi.getter(name="selfLink") def self_link(self) -> str: return pulumi.get(self, "self_link") @property @pulumi.getter(name="sslHealthChecks") def ssl_health_checks(self) -> Sequence['outputs.GetHealthCheckSslHealthCheckResult']: return pulumi.get(self, "ssl_health_checks") @property @pulumi.getter(name="tcpHealthChecks") def tcp_health_checks(self) -> Sequence['outputs.GetHealthCheckTcpHealthCheckResult']: return pulumi.get(self, "tcp_health_checks") @property @pulumi.getter(name="timeoutSec") def timeout_sec(self) -> int: return pulumi.get(self, "timeout_sec") @property @pulumi.getter def type(self) -> str: return pulumi.get(self, "type") @property @pulumi.getter(name="unhealthyThreshold") def unhealthy_threshold(self) -> int: return pulumi.get(self, "unhealthy_threshold") class AwaitableGetHealthCheckResult(GetHealthCheckResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetHealthCheckResult( check_interval_sec=self.check_interval_sec, creation_timestamp=self.creation_timestamp, description=self.description, grpc_health_checks=self.grpc_health_checks, healthy_threshold=self.healthy_threshold, http2_health_checks=self.http2_health_checks, http_health_checks=self.http_health_checks, https_health_checks=self.https_health_checks, id=self.id, log_configs=self.log_configs, name=self.name, project=self.project, self_link=self.self_link, ssl_health_checks=self.ssl_health_checks, tcp_health_checks=self.tcp_health_checks, timeout_sec=self.timeout_sec, type=self.type, unhealthy_threshold=self.unhealthy_threshold) def get_health_check(name: Optional[str] = None, project: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetHealthCheckResult: """ Get information about a HealthCheck. ## Example Usage ```python import pulumi import pulumi_gcp as gcp health_check = gcp.compute.get_health_check(name="my-hc") ``` :param str name: Name of the resource. :param str project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. """ __args__ = dict() __args__['name'] = name __args__['project'] = project if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('gcp:compute/getHealthCheck:getHealthCheck', __args__, opts=opts, typ=GetHealthCheckResult).value return AwaitableGetHealthCheckResult( check_interval_sec=__ret__.check_interval_sec, creation_timestamp=__ret__.creation_timestamp, description=__ret__.description, grpc_health_checks=__ret__.grpc_health_checks, healthy_threshold=__ret__.healthy_threshold, http2_health_checks=__ret__.http2_health_checks, http_health_checks=__ret__.http_health_checks, https_health_checks=__ret__.https_health_checks, id=__ret__.id, log_configs=__ret__.log_configs, name=__ret__.name, project=__ret__.project, self_link=__ret__.self_link, ssl_health_checks=__ret__.ssl_health_checks, tcp_health_checks=__ret__.tcp_health_checks, timeout_sec=__ret__.timeout_sec, type=__ret__.type, unhealthy_threshold=__ret__.unhealthy_threshold) @_utilities.lift_output_func(get_health_check) def get_health_check_output(name: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[Optional[str]]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetHealthCheckResult]: """ Get information about a HealthCheck. ## Example Usage ```python import pulumi import pulumi_gcp as gcp health_check = gcp.compute.get_health_check(name="my-hc") ``` :param str name: Name of the resource. :param str project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. """ ...