max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
tests/h/search/index_test.py
BearerPipelineTest/h
2,103
11136914
import logging from unittest import mock from unittest.mock import sentinel import elasticsearch import pytest from h.search.index import BatchIndexer @pytest.mark.usefixtures("nipsa_service") class TestBatchIndexer: def test_it_indexes_all_annotations( self, batch_indexer, factories, get_indexed_ann ): annotations = factories.Annotation.create_batch(3) ids = [a.id for a in annotations] batch_indexer.index() for _id in ids: assert get_indexed_ann(_id) is not None @pytest.mark.parametrize("target_index", (None, "custom_index")) def test_it_accepts_different_indexes(self, target_index, es_client): indexer = BatchIndexer( session=sentinel.db, es_client=es_client, request=sentinel.request, target_index=target_index, ) assert ( indexer._target_index == target_index # pylint:disable=protected-access if target_index else es_client.index ) def test_it_indexes_specific_annotations( self, batch_indexer, factories, get_indexed_ann ): annotations = factories.Annotation.create_batch(5) ids = [a.id for a in annotations] ids_to_index = ids[:3] ids_not_to_index = ids[3:] batch_indexer.index(ids_to_index) for _id in ids_to_index: assert get_indexed_ann(_id) is not None for _id in ids_not_to_index: with pytest.raises(elasticsearch.exceptions.NotFoundError): get_indexed_ann(_id) def test_it_does_not_index_deleted_annotations( self, batch_indexer, factories, get_indexed_ann ): ann = factories.Annotation() # create deleted annotations ann_del = factories.Annotation(deleted=True) batch_indexer.index() assert get_indexed_ann(ann.id) is not None with pytest.raises(elasticsearch.exceptions.NotFoundError): get_indexed_ann(ann_del.id) def test_it_logs_indexing_status(self, caplog, batch_indexer, factories): num_annotations = 10 window_size = 3 num_index_records = 0 annotations = factories.Annotation.create_batch(num_annotations) ids = [a.id for a in annotations] with caplog.at_level(logging.INFO): batch_indexer.index(ids, window_size) for record in caplog.records: if record.filename == "index.py": num_index_records = num_index_records + 1 assert "indexed 0k annotations, rate=" in record.getMessage() assert num_index_records == num_annotations // window_size def test_it_correctly_indexes_fields_for_bulk_actions( self, batch_indexer, factories, get_indexed_ann ): annotations = factories.Annotation.create_batch(2, groupid="group_a") batch_indexer.index() for ann in annotations: result = get_indexed_ann(ann.id) assert result.get("group") == ann.groupid assert result.get("authority") == ann.authority assert result.get("user") == ann.userid assert result.get("uri") == ann.target_uri def test_it_returns_errored_annotation_ids(self, batch_indexer, factories): annotations = factories.Annotation.create_batch(3) expected_errored_ids = {annotations[0].id, annotations[2].id} elasticsearch.helpers.streaming_bulk = mock.Mock() elasticsearch.helpers.streaming_bulk.return_value = [ (False, {"index": {"error": "some error", "_id": annotations[0].id}}), (True, {}), (False, {"index": {"error": "some error", "_id": annotations[2].id}}), ] errored = batch_indexer.index() assert errored == expected_errored_ids def test_it_does_not_error_if_annotations_already_indexed( self, db_session, es_client, factories, pyramid_request ): annotations = factories.Annotation.create_batch(3) expected_errored_ids = {annotations[1].id} elasticsearch.helpers.streaming_bulk = mock.Mock() elasticsearch.helpers.streaming_bulk.return_value = [ (True, {}), (False, {"create": {"error": "some error", "_id": annotations[1].id}}), ( False, { "create": { "error": "document already exists", "_id": annotations[2].id, } }, ), ] errored = BatchIndexer( db_session, es_client, pyramid_request, es_client.index, "create" ).index() assert errored == expected_errored_ids @pytest.fixture def batch_indexer( # pylint:disable=unused-argument db_session, es_client, pyramid_request, moderation_service ): return BatchIndexer(db_session, es_client, pyramid_request) @pytest.fixture def get_indexed_ann(es_client): def _get(annotation_id): """ Return the annotation with the given ID from Elasticsearch. Raises if the annotation is not found. """ return es_client.conn.get( index=es_client.index, doc_type=es_client.mapping_type, id=annotation_id )["_source"] return _get
wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/unique_fragment_names.py
borisgrafx/client
3,968
11136920
from ...error import GraphQLError from .base import ValidationRule class UniqueFragmentNames(ValidationRule): __slots__ = 'known_fragment_names', def __init__(self, context): super(UniqueFragmentNames, self).__init__(context) self.known_fragment_names = {} def enter_OperationDefinition(self, node, key, parent, path, ancestors): return False def enter_FragmentDefinition(self, node, key, parent, path, ancestors): fragment_name = node.name.value if fragment_name in self.known_fragment_names: self.context.report_error(GraphQLError( self.duplicate_fragment_name_message(fragment_name), [self.known_fragment_names[fragment_name], node.name] )) else: self.known_fragment_names[fragment_name] = node.name return False @staticmethod def duplicate_fragment_name_message(field): return 'There can only be one fragment named "{}".'.format(field)
atomate/vasp/fireworks/tests/test_lobster.py
rkingsbury/atomate
167
11136932
<filename>atomate/vasp/fireworks/tests/test_lobster.py import os import unittest from atomate.vasp.fireworks.core import StaticFW from atomate.vasp.fireworks.lobster import LobsterFW from pymatgen.core.lattice import Lattice from pymatgen.core.structure import Structure __author__ = "<NAME>, <NAME>" __email__ = "<EMAIL>" module_dir = os.path.join(os.path.dirname(os.path.abspath(__file__))) db_dir = os.path.join(module_dir, "..", "..", "..", "common", "test_files") reference_dir = os.path.join(module_dir, "..", "..", "test_files") class TestLobsterFireworks(unittest.TestCase): def setUp(self): coords = [[0, 0, 0], [0.75, 0.5, 0.75]] lattice = Lattice( [ [3.8401979337, 0.00, 0.00], [1.9200989668, 3.3257101909, 0.00], [0.00, -2.2171384943, 3.1355090603], ] ) self.structure = Structure(lattice, ["Si", "Si"], coords) def testLobsterFW(self): static_fw = StaticFW(structure=self.structure).name self.assertEqual( LobsterFW(structure=self.structure, parents=static_fw).name, "Si-lobster_calculation", ) lobster_fw = LobsterFW( prev_calc_dir="/", delete_wavecar=True, delete_wavecar_previous_fw=True ) self.assertEqual(lobster_fw.name, "unknown-lobster_calculation") self.assertEqual(lobster_fw.tasks[0]["calc_dir"], "/") self.assertEqual(len(lobster_fw.tasks), 7) lobster_fw = LobsterFW( prev_calc_dir="/", delete_wavecar=False, delete_wavecar_previous_fw=False ) self.assertEqual(len(lobster_fw.tasks), 5) # check for ValueError when no parent or calc_dir are provided with self.assertRaises(ValueError): LobsterFW() if __name__ == "__main__": unittest.main()
SegNet_Conv/test.py
xwshi/Semantic-Segmentation
380
11136934
<gh_stars>100-1000 #---------------------------------------------# # 该部分用于查看网络结构 #---------------------------------------------# from nets.segnet import convnet_segnet if __name__ == "__main__": model = convnet_segnet(2, input_height=416, input_width=416) model.summary()
sympy/ntheory/bbp_pi.py
iamabhishek0/sympy
445
11136961
<reponame>iamabhishek0/sympy ''' This implementation is a heavily modified fixed point implementation of BBP_formula for calculating the nth position of pi. The original hosted at: http://en.literateprograms.org/Pi_with_the_BBP_formula_(Python) # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sub-license, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Modifications: 1.Once the nth digit and desired number of digits is selected, the number of digits of working precision is calculated to ensure that the hexadecimal digits returned are accurate. This is calculated as int(math.log(start + prec)/math.log(16) + prec + 3) --------------------------------------- -------- / / number of hex digits additional digits This was checked by the following code which completed without errors (and dig are the digits included in the test_bbp.py file): for i in range(0,1000): for j in range(1,1000): a, b = pi_hex_digits(i, j), dig[i:i+j] if a != b: print('%s\n%s'%(a,b)) Deceasing the additional digits by 1 generated errors, so '3' is the smallest additional precision needed to calculate the above loop without errors. The following trailing 10 digits were also checked to be accurate (and the times were slightly faster with some of the constant modifications that were made): >> from time import time >> t=time();pi_hex_digits(10**2-10 + 1, 10), time()-t ('e90c6cc0ac', 0.0) >> t=time();pi_hex_digits(10**4-10 + 1, 10), time()-t ('26aab49ec6', 0.17100000381469727) >> t=time();pi_hex_digits(10**5-10 + 1, 10), time()-t ('a22673c1a5', 4.7109999656677246) >> t=time();pi_hex_digits(10**6-10 + 1, 10), time()-t ('9ffd342362', 59.985999822616577) >> t=time();pi_hex_digits(10**7-10 + 1, 10), time()-t ('c1a42e06a1', 689.51800012588501) 2. The while loop to evaluate whether the series has converged quits when the addition amount `dt` has dropped to zero. 3. the formatting string to convert the decimal to hexadecimal is calculated for the given precision. 4. pi_hex_digits(n) changed to have coefficient to the formula in an array (perhaps just a matter of preference). ''' from __future__ import print_function, division import math from sympy.core.compatibility import range, as_int def _series(j, n, prec=14): # Left sum from the bbp algorithm s = 0 D = _dn(n, prec) D4 = 4 * D k = 0 d = 8 * k + j for k in range(n + 1): s += (pow(16, n - k, d) << D4) // d d += 8 # Right sum iterates to infinity for full precision, but we # stop at the point where one iteration is beyond the precision # specified. t = 0 k = n + 1 e = 4*(D + n - k) d = 8 * k + j while True: dt = (1 << e) // d if not dt: break t += dt # k += 1 e -= 4 d += 8 total = s + t return total def pi_hex_digits(n, prec=14): """Returns a string containing ``prec`` (default 14) digits starting at the nth digit of pi in hex. Counting of digits starts at 0 and the decimal is not counted, so for n = 0 the returned value starts with 3; n = 1 corresponds to the first digit past the decimal point (which in hex is 2). Examples ======== >>> from sympy.ntheory.bbp_pi import pi_hex_digits >>> pi_hex_digits(0) '3243f6a8885a30' >>> pi_hex_digits(0, 3) '324' References ========== .. [1] http://www.numberworld.org/digits/Pi/ """ n, prec = as_int(n), as_int(prec) if n < 0: raise ValueError('n cannot be negative') if prec == 0: return '' # main of implementation arrays holding formulae coefficients n -= 1 a = [4, 2, 1, 1] j = [1, 4, 5, 6] #formulae D = _dn(n, prec) x = + (a[0]*_series(j[0], n, prec) - a[1]*_series(j[1], n, prec) - a[2]*_series(j[2], n, prec) - a[3]*_series(j[3], n, prec)) & (16**D - 1) s = ("%0" + "%ix" % prec) % (x // 16**(D - prec)) return s def _dn(n, prec): # controller for n dependence on precision # n = starting digit index # prec = the number of total digits to compute n += 1 # because we subtract 1 for _series return int(math.log(n + prec)/math.log(16) + prec + 3)
Python/hello_hack_2018.py
PushpneetSingh/Hello-world
1,428
11136963
print ("Hello Hacktoberfest 2018 World")
octavia/statistics/drivers/logger.py
zhangi/octavia
129
11136965
<reponame>zhangi/octavia # Copyright 2018 GoDaddy # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_log import log as logging from octavia.statistics import stats_base LOG = logging.getLogger(__name__) class StatsLogger(stats_base.StatsDriverMixin): def update_stats(self, listener_stats, deltas=False): for stats_object in listener_stats: LOG.info("Logging listener stats%s for listener `%s` / " "amphora `%s`: %s", ' deltas' if deltas else '', stats_object.listener_id, stats_object.amphora_id, stats_object.get_stats())
onnxruntime/test/testdata/coreml_argmax_cast_test.py
mszhanyi/onnxruntime
669
11136975
import onnx from onnx import TensorProto, helper # CoreML EP currently handles a special case for supporting ArgMax op # Please see in <repo_root>/onnxruntime/core/providers/coreml/builders/impl/argmax_op_builder.cc and # <repo_root>/onnxruntime/core/providers/coreml/builders/impl/cast_op_builder.cc # We have this separated test script to generate graph for the case: An ArgMax followed by a Cast to int32 type def GenerateModel(model_name): nodes = [ helper.make_node("ArgMax", ["X"], ["argmax_output_int64"], "argmax", axis=1, keepdims=1), helper.make_node("Cast", ["argmax_output_int64"], ["Y"], "cast", to=6), # cast to int32 type ] graph = helper.make_graph( nodes, "CoreML_ArgMax_Cast_Test", [ # input helper.make_tensor_value_info("X", TensorProto.FLOAT, [3, 2, 2]), ], [ # output helper.make_tensor_value_info("Y", TensorProto.INT32, [3, 1, 2]), ], ) model = helper.make_model(graph) onnx.save(model, model_name) if __name__ == "__main__": GenerateModel("coreml_argmax_cast_test.onnx")
tests/someapp/models.py
oss-transfer/django-neomodel
166
11136981
<filename>tests/someapp/models.py from datetime import datetime from django.db import models from django_neomodel import DjangoNode from neomodel import StringProperty, DateTimeProperty, UniqueIdProperty class Library(models.Model): name = models.CharField(max_length=10) class Meta: app_label = 'someapp' class Book(DjangoNode): uid = UniqueIdProperty(primary_key=True) title = StringProperty(unique_index=True) format = StringProperty(required=True) # check required field can be omitted on update status = StringProperty(choices=( ('available', 'A'), ('on_loan', 'L'), ('damaged', 'D'), ), default='available', coerce=str) created = DateTimeProperty(default=datetime.utcnow) class Meta: app_label = "someapp" def __str__(self): return self.title class Shelf(DjangoNode): uid = UniqueIdProperty(primary_key=True) name = StringProperty() class Meta: app_label = "someapp" def __str__(self): return self.name
src/ui/uivar.py
JayHeng/-NXP-MCUBootUtility
174
11136987
<filename>src/ui/uivar.py #! /usr/bin/env python # -*- coding: utf-8 -*- import sys import os import json import uidef import RTyyyy_uidef import RTxxx_uidef g_exeTopRoot = None g_soundEffectType = None g_languageIndex = None g_hasSubWinBeenOpened = False g_efuseDict = {'0x400_lock':0x00000000, '0x450_bootCfg0':0x00000000, '0x460_bootCfg1':0x00000000, '0x470_bootCfg2':0x00000000, '0x6d0_miscConf0':0x00000000, '0x6e0_miscConf1':0x00000000 } g_cfgFilename = None g_toolCommDict = {'toolRunMode':None, 'isDymaticUsbDetection':None, 'soundEffectType':None, 'isSbFileEnabledToGen':None, 'isAutomaticImageReadback':None, 'flashloaderResident':None, 'efuseGroupSel':None, 'isAutomaticEfuseLocker':None, 'flexspiXipRegionSel':None, 'isIvtEntryResetHandler':None, 'isEnglishLanguage':None, 'secBootType':None, 'mcuSeries':None, 'mcuDevice':None, 'bootDevice':None, 'isUsbhidPortSelected':None, 'isOneStepChecked':None, 'certSerial':None, 'certKeyPass':None, 'appFilename':None, 'appFormat':None, 'appBinBaseAddr':None, 'keyStoreRegion':None, 'certOptForHwCrypto':None } g_flexspiNorOpt0 = None g_flexspiNorOpt1 = None g_flexspiNorDeviceModel = None g_isFdcbKept = None g_flexspiNandOpt0 = None g_flexspiNandOpt1 = None g_flexspiNandFcbOpt = None g_flexspiNandImageInfoList = [None] * 8 g_semcNorOpt = None g_semcNorSetting = None g_semcNorDeviceModel = None g_semcNandOpt = None g_semcNandFcbOpt = None g_semcNandImageInfoList = [None] * 8 g_usdhcSdOpt = None g_usdhcMmcOpt0 = None g_usdhcMmcOpt1 = None g_lpspiNorOpt0 = None g_lpspiNorOpt1 = None g_flexcommSpiNorOpt0 = None g_flexcommSpiNorOpt1 = None g_dcdCtrlDict = {'isDcdEnabled':None, 'dcdFileType':None} g_dcdSettingsDict = {'dcdSource':None, 'userBinFile':None, 'userCfgFile':None, 'dcdPurpose':None, 'sdramBase':None, 'deviceModel':None, 'dcdDesc':None} g_certSettingsDict = {'cstVersion':None, 'useExistingCaKey':None, 'useEllipticCurveCrypto':None, 'pkiTreeKeyLen':None, 'pkiTreeKeyCn':None, 'pkiTreeDuration':None, 'SRKs':None, 'caFlagSet':None} g_signSettingsDict = {'isPartSigned':None, 'signedStart0':None, 'signedSize0':None, 'signedStart1':None, 'signedSize1':None, 'signedStart2':None, 'signedSize2':None} g_otpmkKeyCommDict = {'secureBootType':None, 'opt':None, 'regionStartList':[None] * 4, 'regionLengthList':[None] * 4} g_userKeyCtrlDict = {'mcu_device':None, # For BEE 'engine_sel':None, 'engine0_key_src':None, 'engine0_fac_cnt':None, 'engine1_key_src':None, 'engine1_fac_cnt':None, # For OTFAD 'total_regions':None, 'kek_src':None, } g_userKeyCmdDict = {'base_addr':None, 'hw_eng':None, # For BEE 'engine0_key':None, 'engine0_arg':None, 'engine0_lock':None, 'engine1_key':None, 'engine1_arg':None, 'engine1_lock':None, 'use_zero_key':None, 'is_boot_image':None, # For OTFAD 'kek':None, 'otfad_arg':None, 'scramble':None, 'scramble_align':None, 'otfad_ctx_lock':None, } def initVar(cfgFilename): global g_hasSubWinBeenOpened global g_cfgFilename global g_toolCommDict global g_flexspiNorOpt0 global g_flexspiNorOpt1 global g_flexspiNorDeviceModel global g_isFdcbKept global g_flexspiNandOpt0 global g_flexspiNandOpt1 global g_flexspiNandFcbOpt global g_flexspiNandImageInfoList global g_semcNandOpt global g_semcNandFcbOpt global g_semcNandImageInfoList global g_lpspiNorOpt0 global g_lpspiNorOpt1 global g_flexcommSpiNorOpt0 global g_flexcommSpiNorOpt1 global g_semcNorOpt global g_semcNorSetting global g_semcNorDeviceModel global g_usdhcSdOpt global g_usdhcMmcOpt0 global g_usdhcMmcOpt1 global g_dcdCtrlDict global g_dcdSettingsDict global g_certSettingsDict global g_signSettingsDict global g_otpmkKeyCommDict global g_userKeyCtrlDict global g_userKeyCmdDict g_hasSubWinBeenOpened = False g_cfgFilename = cfgFilename if os.path.isfile(cfgFilename): cfgDict = None with open(cfgFilename, 'r') as fileObj: cfgDict = json.load(fileObj) fileObj.close() g_toolCommDict = cfgDict["cfgToolCommon"][0] g_flexspiNorOpt0 = cfgDict["cfgFlexspiNor"][0] g_flexspiNorOpt1 = cfgDict["cfgFlexspiNor"][1] g_flexspiNorDeviceModel = cfgDict["cfgFlexspiNor"][2] g_isFdcbKept = cfgDict["cfgFlexspiNor"][3] g_flexspiNandOpt0 = cfgDict["cfgFlexspiNand"][0] g_flexspiNandOpt1 = cfgDict["cfgFlexspiNand"][1] g_flexspiNandFcbOpt = cfgDict["cfgFlexspiNand"][2] g_flexspiNandImageInfoList = cfgDict["cfgFlexspiNand"][3] g_semcNandOpt = cfgDict["cfgSemcNand"][0] g_semcNandFcbOpt = cfgDict["cfgSemcNand"][1] g_semcNandImageInfoList = cfgDict["cfgSemcNand"][2] g_lpspiNorOpt0 = cfgDict["cfgLpspiNor"][0] g_lpspiNorOpt1 = cfgDict["cfgLpspiNor"][1] g_flexcommSpiNorOpt0 = cfgDict["cfgFlexcommSpiNor"][0] g_flexcommSpiNorOpt1 = cfgDict["cfgFlexcommSpiNor"][1] g_semcNorOpt = cfgDict["cfgSemcNor"][0] g_semcNorSetting = cfgDict["cfgSemcNor"][1] g_semcNorDeviceModel = cfgDict["cfgSemcNor"][2] g_usdhcSdOpt = cfgDict["cfgUsdhcSd"][0] g_usdhcMmcOpt0 = cfgDict["cfgUsdhcMmc"][0] g_usdhcMmcOpt1 = cfgDict["cfgUsdhcMmc"][1] g_dcdCtrlDict = cfgDict["cfgDcd"][0] g_dcdSettingsDict = cfgDict["cfgDcd"][1] g_certSettingsDict = cfgDict["cfgCertificate"][0] g_signSettingsDict = cfgDict["cfgSignature"][0] g_otpmkKeyCommDict = cfgDict["cfgSnvsKey"][0] g_userKeyCtrlDict = cfgDict["cfgUserKey"][0] g_userKeyCmdDict = cfgDict["cfgUserKey"][1] else: g_toolCommDict = {'toolRunMode':uidef.kToolRunMode_Master, 'isDymaticUsbDetection':True, 'soundEffectType':'contra', 'isSbFileEnabledToGen':False, 'isAutomaticImageReadback':False, 'flashloaderResident':None, 'efuseGroupSel':0, 'isAutomaticEfuseLocker':True, 'flexspiXipRegionSel':0, 'isIvtEntryResetHandler':False, 'isEnglishLanguage':True, 'secBootType':0, 'mcuSeries':0, 'mcuDevice':0, 'bootDevice':0, 'isUsbhidPortSelected':True, 'isOneStepChecked':True, 'certSerial':'12345678', 'certKeyPass':'<PASSWORD>', 'appFilename':None, 'appFormat':0, 'appBinBaseAddr':'Eg: 0x00003000', 'keyStoreRegion':1, 'certOptForHwCrypto':0 } g_flexspiNorOpt0 = 0xc0000007 g_flexspiNorOpt1 = 0x00000000 g_flexspiNorDeviceModel = uidef.kFlexspiNorDevice_None g_isFdcbKept = False g_flexspiNandOpt0 = 0xC0010023 g_flexspiNandOpt1 = 0x0000002C g_flexspiNandFcbOpt = 0xc2000104 g_flexspiNandImageInfoList = [None] * 8 g_flexspiNandImageInfoList[0] = 0x00040004 g_semcNandOpt = 0xD0010101 g_semcNandFcbOpt = 0x00010101 g_semcNandImageInfoList = [None] * 8 g_semcNandImageInfoList[0] = 0x00020001 g_lpspiNorOpt0 = 0xc1100500 g_lpspiNorOpt1 = 0x00000000 g_flexcommSpiNorOpt0 = 0xc0000000 g_flexcommSpiNorOpt1 = 0x00000000 g_semcNorOpt = 0xD0000600 g_semcNorSetting = 0x00010601 g_semcNorDeviceModel = uidef.kSemcNorDevice_None g_usdhcSdOpt = 0xD0000000 g_usdhcMmcOpt0 = 0xC0000000 g_usdhcMmcOpt1 = 0x00000000 g_dcdCtrlDict['isDcdEnabled'] = False g_dcdCtrlDict['dcdFileType'] = None g_dcdSettingsDict['dcdSource'] = 'Disable DCD' g_dcdSettingsDict['userBinFile'] = 'N/A' g_dcdSettingsDict['userCfgFile'] = 'N/A' g_dcdSettingsDict['dcdPurpose'] = 'SDRAM' g_dcdSettingsDict['sdramBase'] = '0x80000000' g_dcdSettingsDict['deviceModel'] = 'No' g_dcdSettingsDict['dcdDesc'] = None g_certSettingsDict['cstVersion'] = RTyyyy_uidef.kCstVersion_v3_0_1 g_certSettingsDict['useExistingCaKey'] = 'n' g_certSettingsDict['useEllipticCurveCrypto'] = 'n' g_certSettingsDict['pkiTreeKeyLen'] = 2048 g_certSettingsDict['pkiTreeDuration'] = 10 g_certSettingsDict['SRKs'] = 4 g_certSettingsDict['caFlagSet'] = 'y' g_signSettingsDict['isPartSigned'] = False g_signSettingsDict['signedStart0'] = 0x0 g_signSettingsDict['signedSize0'] = 0x0 g_signSettingsDict['signedStart1'] = 0x0 g_signSettingsDict['signedSize1'] = 0x0 g_signSettingsDict['signedStart2'] = 0x0 g_signSettingsDict['signedSize2'] = 0x0 g_otpmkKeyCommDict['opt'] = 0xe0100000 g_otpmkKeyCommDict['regionStartList'] = [None] * 4 g_otpmkKeyCommDict['regionLengthList'] = [None] * 4 g_userKeyCtrlDict['engine_sel'] = RTyyyy_uidef.kUserEngineSel_Engine0 g_userKeyCtrlDict['engine0_key_src'] = RTyyyy_uidef.kUserKeySource_SW_GP2 g_userKeyCtrlDict['engine0_fac_cnt'] = 1 g_userKeyCtrlDict['engine1_key_src'] = RTyyyy_uidef.kUserKeySource_SW_GP2 g_userKeyCtrlDict['engine1_fac_cnt'] = 1 g_userKeyCtrlDict['total_regions'] = 1 g_userKeyCtrlDict['kek_src'] = RTyyyy_uidef.kUserKeySource_SW_GP2 g_userKeyCmdDict['base_addr'] = '0x60000000' g_userKeyCmdDict['hw_eng'] = 'bee' g_userKeyCmdDict['engine0_key'] = '0123456789abcdeffedcba9876543210' g_userKeyCmdDict['engine0_arg'] = '1,[0x60001000,0x1000,0]' g_userKeyCmdDict['engine0_lock'] = '0' g_userKeyCmdDict['engine1_key'] = '0123456789abcdeffedcba9876543210' g_userKeyCmdDict['engine1_arg'] = '1,[0x60002000,0x1000,0]' g_userKeyCmdDict['engine1_lock'] = '0' g_userKeyCmdDict['use_zero_key'] = '1' g_userKeyCmdDict['is_boot_image'] = '1' g_userKeyCmdDict['kek'] = '0123456789abcdeffedcba9876543210' g_userKeyCmdDict['otfad_arg'] = '[0123456789abcdeffedcba9876543210,0020406001030507,0x60001000,0x1000]' g_userKeyCmdDict['scramble'] = '0x33aa55cc' g_userKeyCmdDict['scramble_align'] = '0x1b' g_userKeyCmdDict['otfad_ctx_lock'] = '0,0,0,0' def deinitVar(cfgFilename=None): global g_cfgFilename if cfgFilename == None and g_cfgFilename != None: cfgFilename = g_cfgFilename with open(cfgFilename, 'w') as fileObj: global g_toolCommDict global g_flexspiNorOpt0 global g_flexspiNorOpt1 global g_flexspiNorDeviceModel global g_isFdcbKept global g_flexspiNandOpt0 global g_flexspiNandOpt1 global g_flexspiNandFcbOpt global g_flexspiNandImageInfoList global g_semcNandOpt global g_semcNandFcbOpt global g_semcNandImageInfoList global g_lpspiNorOpt0 global g_lpspiNorOpt1 global g_flexcommSpiNorOpt0 global g_flexcommSpiNorOpt1 global g_usdhcSdOpt global g_usdhcMmcOpt0 global g_usdhcMmcOpt1 global g_dcdCtrlDict global g_dcdSettingsDict global g_certSettingsDict global g_signSettingsDict global g_otpmkKeyCommDict global g_userKeyCtrlDict global g_userKeyCmdDict cfgDict = { "cfgToolCommon": [g_toolCommDict], "cfgFlexspiNor": [g_flexspiNorOpt0, g_flexspiNorOpt1, g_flexspiNorDeviceModel, g_isFdcbKept], "cfgFlexspiNand": [g_flexspiNandOpt0, g_flexspiNandOpt1, g_flexspiNandFcbOpt, g_flexspiNandImageInfoList], "cfgSemcNor": [g_semcNorOpt, g_semcNorSetting, g_semcNorDeviceModel], "cfgSemcNand": [g_semcNandOpt, g_semcNandFcbOpt, g_semcNandImageInfoList], "cfgLpspiNor": [g_lpspiNorOpt0, g_lpspiNorOpt1], "cfgFlexcommSpiNor": [g_flexcommSpiNorOpt0, g_flexcommSpiNorOpt1], "cfgUsdhcSd": [g_usdhcSdOpt], "cfgUsdhcMmc": [g_usdhcMmcOpt0, g_usdhcMmcOpt1], "cfgDcd": [g_dcdCtrlDict, g_dcdSettingsDict], "cfgCertificate": [g_certSettingsDict], "cfgSignature": [g_signSettingsDict], "cfgSnvsKey": [g_otpmkKeyCommDict], "cfgUserKey": [g_userKeyCtrlDict, g_userKeyCmdDict] } json.dump(cfgDict, fileObj, indent=1) fileObj.close() def getBootDeviceConfiguration( group ): if group == uidef.kBootDevice_XspiNor or \ group == RTyyyy_uidef.kBootDevice_FlexspiNor or \ group == RTxxx_uidef.kBootDevice_FlexspiNor or \ group == RTxxx_uidef.kBootDevice_QuadspiNor: global g_flexspiNorOpt0 global g_flexspiNorOpt1 global g_flexspiNorDeviceModel global g_isFdcbKept return g_flexspiNorOpt0, g_flexspiNorOpt1, g_flexspiNorDeviceModel, g_isFdcbKept elif group == RTyyyy_uidef.kBootDevice_FlexspiNand: global g_flexspiNandOpt0 global g_flexspiNandOpt1 global g_flexspiNandFcbOpt global g_flexspiNandImageInfoList return g_flexspiNandOpt0, g_flexspiNandOpt1, g_flexspiNandFcbOpt, g_flexspiNandImageInfoList elif group == RTyyyy_uidef.kBootDevice_SemcNor: global g_semcNorOpt global g_semcNorSetting global g_semcNorDeviceModel return g_semcNorOpt, g_semcNorSetting, g_semcNorDeviceModel elif group == RTyyyy_uidef.kBootDevice_SemcNand: global g_semcNandOpt global g_semcNandFcbOpt global g_semcNandImageInfoList return g_semcNandOpt, g_semcNandFcbOpt, g_semcNandImageInfoList elif group == RTyyyy_uidef.kBootDevice_UsdhcSd or \ group == RTxxx_uidef.kBootDevice_UsdhcSd: global g_usdhcSdOpt return g_usdhcSdOpt elif group == RTyyyy_uidef.kBootDevice_UsdhcMmc or \ group == RTxxx_uidef.kBootDevice_UsdhcMmc: global g_usdhcMmcOpt0 global g_usdhcMmcOpt1 return g_usdhcMmcOpt0, g_usdhcMmcOpt1 elif group == RTyyyy_uidef.kBootDevice_LpspiNor: global g_lpspiNorOpt0 global g_lpspiNorOpt1 return g_lpspiNorOpt0, g_lpspiNorOpt1 elif group == RTxxx_uidef.kBootDevice_FlexcommSpiNor: global g_flexcommSpiNorOpt0 global g_flexcommSpiNorOpt1 return g_flexcommSpiNorOpt0, g_flexcommSpiNorOpt1 elif group == RTyyyy_uidef.kBootDevice_Dcd: global g_dcdCtrlDict global g_dcdSettingsDict return g_dcdCtrlDict, g_dcdSettingsDict else: pass def setBootDeviceConfiguration( group, *args ): if group == uidef.kBootDevice_XspiNor or \ group == RTyyyy_uidef.kBootDevice_FlexspiNor or \ group == RTxxx_uidef.kBootDevice_FlexspiNor or \ group == RTxxx_uidef.kBootDevice_QuadspiNor: global g_flexspiNorOpt0 global g_flexspiNorOpt1 global g_flexspiNorDeviceModel global g_isFdcbKept g_flexspiNorOpt0 = args[0] g_flexspiNorOpt1 = args[1] g_flexspiNorDeviceModel = args[2] g_isFdcbKept = args[3] elif group == RTyyyy_uidef.kBootDevice_FlexspiNand: global g_flexspiNandOpt0 global g_flexspiNandOpt1 global g_flexspiNandFcbOpt global g_flexspiNandImageInfoList g_flexspiNandOpt0 = args[0] g_flexspiNandOpt1 = args[1] g_flexspiNandFcbOpt = args[2] g_flexspiNandImageInfoList = args[3] elif group == RTyyyy_uidef.kBootDevice_SemcNor: global g_semcNorOpt global g_semcNorSetting global g_semcNorDeviceModel g_semcNorOpt = args[0] g_semcNorSetting = args[1] g_semcNorDeviceModel = args[2] elif group == RTyyyy_uidef.kBootDevice_SemcNand: global g_semcNandOpt global g_semcNandFcbOpt global g_semcNandImageInfoList g_semcNandOpt = args[0] g_semcNandFcbOpt = args[1] g_semcNandImageInfoList = args[2] elif group == RTyyyy_uidef.kBootDevice_UsdhcSd or \ group == RTxxx_uidef.kBootDevice_UsdhcSd: global g_usdhcSdOpt g_usdhcSdOpt = args[0] elif group == RTyyyy_uidef.kBootDevice_UsdhcMmc or \ group == RTxxx_uidef.kBootDevice_UsdhcMmc: global g_usdhcMmcOpt0 global g_usdhcMmcOpt1 g_usdhcMmcOpt0 = args[0] g_usdhcMmcOpt1 = args[1] elif group == RTyyyy_uidef.kBootDevice_LpspiNor: global g_lpspiNorOpt0 global g_lpspiNorOpt1 g_lpspiNorOpt0 = args[0] g_lpspiNorOpt1 = args[1] elif group == RTxxx_uidef.kBootDevice_FlexcommSpiNor: global g_flexcommSpiNorOpt0 global g_flexcommSpiNorOpt1 g_flexcommSpiNorOpt0 = args[0] g_flexcommSpiNorOpt1 = args[1] elif group == RTyyyy_uidef.kBootDevice_Dcd: global g_dcdCtrlDict global g_dcdSettingsDict g_dcdCtrlDict = args[0] g_dcdSettingsDict = args[1] else: pass def getAdvancedSettings( group ): if group == uidef.kAdvancedSettings_Tool: global g_toolCommDict return g_toolCommDict elif group == uidef.kAdvancedSettings_Cert: global g_certSettingsDict return g_certSettingsDict elif group == uidef.kAdvancedSettings_Sign: global g_signSettingsDict return g_signSettingsDict elif group == uidef.kAdvancedSettings_OtpmkKey: global g_otpmkKeyCommDict return g_otpmkKeyCommDict elif group == uidef.kAdvancedSettings_UserKeys: global g_userKeyCtrlDict global g_userKeyCmdDict return g_userKeyCtrlDict, g_userKeyCmdDict else: pass def setAdvancedSettings( group, *args ): if group == uidef.kAdvancedSettings_Tool: global g_toolCommDict g_toolCommDict = args[0] elif group == uidef.kAdvancedSettings_Cert: global g_certSettingsDict g_certSettingsDict = args[0] elif group == uidef.kAdvancedSettings_Sign: global g_signSettingsDict g_signSettingsDict = args[0] elif group == uidef.kAdvancedSettings_OtpmkKey: global g_otpmkKeyCommDict g_otpmkKeyCommDict = args[0] elif group == uidef.kAdvancedSettings_UserKeys: global g_userKeyCtrlDict global g_userKeyCmdDict g_userKeyCtrlDict = args[0] g_userKeyCmdDict = args[1] else: pass def getRuntimeSettings( ): global g_hasSubWinBeenOpened global g_exeTopRoot global g_soundEffectType global g_languageIndex return g_hasSubWinBeenOpened, g_exeTopRoot, g_soundEffectType, g_languageIndex def setRuntimeSettings( *args ): global g_hasSubWinBeenOpened if args[0] != None: g_hasSubWinBeenOpened = args[0] try: global g_exeTopRoot if args[1] != None: g_exeTopRoot = args[1] except: pass try: global g_soundEffectType if args[2] != None: g_soundEffectType = args[2] except: pass try: global g_languageIndex if args[3] != None: g_languageIndex = args[3] except: pass def getEfuseSettings( ): global g_efuseDict return g_efuseDict def setEfuseSettings( *args ): global g_efuseDict g_efuseDict = args[0]
textattack/models/tokenizers/glove_tokenizer.py
xinzhel/TextAttack
1,980
11136993
<reponame>xinzhel/TextAttack """ Glove Tokenizer ^^^^^^^^^^^^^^^^^ """ import json import tempfile import tokenizers as hf_tokenizers class WordLevelTokenizer(hf_tokenizers.implementations.BaseTokenizer): """WordLevelTokenizer. Represents a simple word level tokenization using the internals of BERT's tokenizer. Based off the `tokenizers` BertWordPieceTokenizer (https://github.com/huggingface/tokenizers/blob/704cf3fdd2f607ead58a561b892b510b49c301db/bindings/python/tokenizers/implementations/bert_wordpiece.py). """ def __init__( self, word_id_map={}, pad_token_id=None, unk_token_id=None, unk_token="[UNK]", sep_token="[SEP]", cls_token="[CLS]", pad_token="[PAD]", lowercase: bool = False, unicode_normalizer=None, ): if pad_token_id: word_id_map[pad_token] = pad_token_id if unk_token_id: word_id_map[unk_token] = unk_token_id max_id = max(word_id_map.values()) for idx, token in enumerate((unk_token, sep_token, cls_token, pad_token)): if token not in word_id_map: word_id_map[token] = max_id + idx # HuggingFace tokenizer expects a path to a `*.json` file to read the # vocab from. I think this is kind of a silly constraint, but for now # we write the vocab to a temporary file before initialization. word_list_file = tempfile.NamedTemporaryFile() word_list_file.write(json.dumps(word_id_map).encode()) word_level = hf_tokenizers.models.WordLevel( word_list_file.name, unk_token=str(unk_token) ) tokenizer = hf_tokenizers.Tokenizer(word_level) # Let the tokenizer know about special tokens if they are part of the vocab if tokenizer.token_to_id(str(unk_token)) is not None: tokenizer.add_special_tokens([str(unk_token)]) if tokenizer.token_to_id(str(sep_token)) is not None: tokenizer.add_special_tokens([str(sep_token)]) if tokenizer.token_to_id(str(cls_token)) is not None: tokenizer.add_special_tokens([str(cls_token)]) if tokenizer.token_to_id(str(pad_token)) is not None: tokenizer.add_special_tokens([str(pad_token)]) # Check for Unicode normalization first (before everything else) normalizers = [] if unicode_normalizer: normalizers += [ hf_tokenizers.normalizers.unicode_normalizer_from_str( unicode_normalizer ) ] if lowercase: normalizers += [hf_tokenizers.normalizers.Lowercase()] # Create the normalizer structure if len(normalizers) > 0: if len(normalizers) > 1: tokenizer.normalizer = hf_tokenizers.normalizers.Sequence(normalizers) else: tokenizer.normalizer = normalizers[0] tokenizer.pre_tokenizer = hf_tokenizers.pre_tokenizers.WhitespaceSplit() sep_token_id = tokenizer.token_to_id(str(sep_token)) if sep_token_id is None: raise TypeError("sep_token not found in the vocabulary") cls_token_id = tokenizer.token_to_id(str(cls_token)) if cls_token_id is None: raise TypeError("cls_token not found in the vocabulary") tokenizer.post_processor = hf_tokenizers.processors.BertProcessing( (str(sep_token), sep_token_id), (str(cls_token), cls_token_id) ) parameters = { "model": "WordLevel", "unk_token": unk_token, "sep_token": sep_token, "cls_token": cls_token, "pad_token": pad_token, "lowercase": lowercase, "unicode_normalizer": unicode_normalizer, } self.unk_token = unk_token self.pad_token = pad_token super().__init__(tokenizer, parameters) class GloveTokenizer(WordLevelTokenizer): """A word-level tokenizer with GloVe 200-dimensional vectors. Lowercased, since GloVe vectors are lowercased. """ def __init__( self, word_id_map={}, pad_token_id=None, unk_token_id=None, max_length=256 ): super().__init__( word_id_map=word_id_map, unk_token_id=unk_token_id, pad_token_id=pad_token_id, lowercase=True, ) self.pad_token_id = pad_token_id self.oov_token_id = unk_token_id self.convert_id_to_word = self.id_to_token self.model_max_length = max_length # Set defaults. self.enable_padding(length=max_length, pad_id=pad_token_id) self.enable_truncation(max_length=max_length) def _process_text(self, text_input): """A text input may be a single-input tuple (text,) or multi-input tuple (text, text, ...). In the single-input case, unroll the tuple. In the multi-input case, raise an error. """ if isinstance(text_input, tuple): if len(text_input) > 1: raise ValueError( "Cannot use `GloveTokenizer` to encode multiple inputs" ) text_input = text_input[0] return text_input def encode(self, text): text = self._process_text(text) return super().encode(text, add_special_tokens=False).ids def batch_encode(self, input_text_list): """The batch equivalent of ``encode``.""" input_text_list = list(map(self._process_text, input_text_list)) encodings = self.encode_batch( input_text_list, add_special_tokens=False, ) return [x.ids for x in encodings] def __call__(self, input_texts): if isinstance(input_texts, list): return self.batch_encode(input_texts) else: return self.encode(input_texts) def convert_ids_to_tokens(self, ids): return [self.convert_id_to_word(_id) for _id in ids]
backend/server/server/urls.py
Bonifase/django-react
508
11136997
from django.contrib import admin from django.urls import path from apps.accounts.urls import accounts_urlpatterns from apps.notes.urls import notes_urlpatterns urlpatterns = [ path('admin/', admin.site.urls), ] urlpatterns += accounts_urlpatterns # add URLs for authentication urlpatterns += notes_urlpatterns # notes URLs
test/com/facebook/buck/skylark/parser/testdata/attr/int_list/defs.bzl
Unknoob/buck
8,027
11137003
<reponame>Unknoob/buck """ Module docstring """ def well_formed(): """ Function docstring """ a = attr.int_list() if repr(a) != "<attr.int_list>": fail("Expected attr.int_list instance") a = attr.int_list(mandatory = True, doc = "Some int_list", default = [1]) if repr(a) != "<attr.int_list>": fail("Expected attr.int_list instance") a = attr.int_list(mandatory = True, doc = "Some int_list", default = [1], allow_empty = True) if repr(a) != "<attr.int_list>": fail("Expected attr.int_list instance") a = attr.int_list(mandatory = True, doc = "Some int_list", default = [1], allow_empty = False) if repr(a) != "<attr.int_list>": fail("Expected attr.int_list instance") def malformed(): """ Function docstring """ _a = attr.int_list(mandatory = True, doc = "Some int_list", default = 3, allow_empty = True)
test/regression/features/lambda/lambda_arity2.py
ppelleti/berp
137
11137012
l = lambda x,y: x + y print(l(3,9))
vumi/components/tests/test_window_manager.py
seidu626/vumi
199
11137015
<reponame>seidu626/vumi<filename>vumi/components/tests/test_window_manager.py<gh_stars>100-1000 from twisted.internet.defer import inlineCallbacks from twisted.internet.task import Clock from vumi.components.window_manager import WindowManager, WindowException from vumi.tests.helpers import VumiTestCase, PersistenceHelper class TestWindowManager(VumiTestCase): @inlineCallbacks def setUp(self): self.persistence_helper = self.add_helper(PersistenceHelper()) redis = yield self.persistence_helper.get_redis_manager() self.window_id = 'window_id' # Patch the clock so we can control time self.clock = Clock() self.patch(WindowManager, 'get_clock', lambda _: self.clock) self.wm = WindowManager(redis, window_size=10, flight_lifetime=10) self.add_cleanup(self.wm.stop) yield self.wm.create_window(self.window_id) self.redis = self.wm.redis @inlineCallbacks def test_windows(self): windows = yield self.wm.get_windows() self.assertTrue(self.window_id in windows) def test_strict_window_recreation(self): return self.assertFailure( self.wm.create_window(self.window_id, strict=True), WindowException) @inlineCallbacks def test_window_recreation(self): orig_clock_time = self.clock.seconds() clock_time = yield self.wm.create_window(self.window_id) self.assertEqual(clock_time, orig_clock_time) @inlineCallbacks def test_window_removal(self): yield self.wm.add(self.window_id, 1) yield self.assertFailure(self.wm.remove_window(self.window_id), WindowException) key = yield self.wm.get_next_key(self.window_id) item = yield self.wm.get_data(self.window_id, key) self.assertEqual(item, 1) self.assertEqual((yield self.wm.remove_window(self.window_id)), None) @inlineCallbacks def test_adding_to_window(self): for i in range(10): yield self.wm.add(self.window_id, i) window_key = self.wm.window_key(self.window_id) window_members = yield self.redis.llen(window_key) self.assertEqual(window_members, 10) @inlineCallbacks def test_fetching_from_window(self): for i in range(12): yield self.wm.add(self.window_id, i) flight_keys = [] for i in range(10): flight_key = yield self.wm.get_next_key(self.window_id) self.assertTrue(flight_key) flight_keys.append(flight_key) out_of_window_flight = yield self.wm.get_next_key(self.window_id) self.assertEqual(out_of_window_flight, None) # We should get data out in the order we put it in for i, flight_key in enumerate(flight_keys): data = yield self.wm.get_data(self.window_id, flight_key) self.assertEqual(data, i) # Removing one should allow for space for the next to fill up yield self.wm.remove_key(self.window_id, flight_keys[0]) next_flight_key = yield self.wm.get_next_key(self.window_id) self.assertTrue(next_flight_key) @inlineCallbacks def test_set_and_external_id(self): yield self.wm.set_external_id(self.window_id, "flight_key", "external_id") self.assertEqual( (yield self.wm.get_external_id(self.window_id, "flight_key")), "external_id") self.assertEqual( (yield self.wm.get_internal_id(self.window_id, "external_id")), "flight_key") @inlineCallbacks def test_remove_key_removes_external_and_internal_id(self): yield self.wm.set_external_id(self.window_id, "flight_key", "external_id") yield self.wm.remove_key(self.window_id, "flight_key") self.assertEqual( (yield self.wm.get_external_id(self.window_id, "flight_key")), None) self.assertEqual( (yield self.wm.get_internal_id(self.window_id, "external_id")), None) @inlineCallbacks def assert_count_waiting(self, window_id, amount): self.assertEqual((yield self.wm.count_waiting(window_id)), amount) @inlineCallbacks def assert_expired_keys(self, window_id, amount): # Stuff has taken too long and so we should get 10 expired keys expired_keys = yield self.wm.get_expired_flight_keys(window_id) self.assertEqual(len(expired_keys), amount) @inlineCallbacks def assert_in_flight(self, window_id, amount): self.assertEqual((yield self.wm.count_in_flight(window_id)), amount) @inlineCallbacks def slide_window(self, limit=10): for i in range(limit): yield self.wm.get_next_key(self.window_id) @inlineCallbacks def test_expiry_of_acks(self): def mock_clock_time(self): return self._clocktime self.patch(WindowManager, 'get_clocktime', mock_clock_time) self.wm._clocktime = 0 for i in range(30): yield self.wm.add(self.window_id, i) # We're manually setting the clock instead of using clock.advance() # so we can wait for the deferreds to finish before continuing to the # next clear_expired_flight_keys run since LoopingCall() will only fire # again if the previous run has completed. yield self.slide_window() self.wm._clocktime = 10 yield self.wm.clear_expired_flight_keys() self.assert_expired_keys(self.window_id, 10) yield self.slide_window() self.wm._clocktime = 20 yield self.wm.clear_expired_flight_keys() self.assert_expired_keys(self.window_id, 20) yield self.slide_window() self.wm._clocktime = 30 yield self.wm.clear_expired_flight_keys() self.assert_expired_keys(self.window_id, 30) self.assert_in_flight(self.window_id, 0) self.assert_count_waiting(self.window_id, 0) @inlineCallbacks def test_monitor_windows(self): yield self.wm.remove_window(self.window_id) window_ids = ['window_id_1', 'window_id_2'] for window_id in window_ids: yield self.wm.create_window(window_id) for i in range(20): yield self.wm.add(window_id, i) key_callbacks = {} def callback(window_id, key): key_callbacks.setdefault(window_id, []).append(key) cleanup_callbacks = [] def cleanup_callback(window_id): cleanup_callbacks.append(window_id) yield self.wm._monitor_windows(callback, False) self.assertEqual(set(key_callbacks.keys()), set(window_ids)) self.assertEqual(len(key_callbacks.values()[0]), 10) self.assertEqual(len(key_callbacks.values()[1]), 10) yield self.wm._monitor_windows(callback, False) # Nothing should've changed since we haven't removed anything. self.assertEqual(len(key_callbacks.values()[0]), 10) self.assertEqual(len(key_callbacks.values()[1]), 10) for window_id, keys in key_callbacks.items(): for key in keys: yield self.wm.remove_key(window_id, key) yield self.wm._monitor_windows(callback, False) # Everything should've been processed now self.assertEqual(len(key_callbacks.values()[0]), 20) self.assertEqual(len(key_callbacks.values()[1]), 20) # Now run again but cleanup the empty windows self.assertEqual(set((yield self.wm.get_windows())), set(window_ids)) for window_id, keys in key_callbacks.items(): for key in keys: yield self.wm.remove_key(window_id, key) yield self.wm._monitor_windows(callback, True, cleanup_callback) self.assertEqual(len(key_callbacks.values()[0]), 20) self.assertEqual(len(key_callbacks.values()[1]), 20) self.assertEqual((yield self.wm.get_windows()), []) self.assertEqual(set(cleanup_callbacks), set(window_ids)) class TestConcurrentWindowManager(VumiTestCase): @inlineCallbacks def setUp(self): self.persistence_helper = self.add_helper(PersistenceHelper()) redis = yield self.persistence_helper.get_redis_manager() self.window_id = 'window_id' # Patch the count_waiting so we can fake the race condition self.clock = Clock() self.patch(WindowManager, 'count_waiting', lambda _, window_id: 100) self.wm = WindowManager(redis, window_size=10, flight_lifetime=10) self.add_cleanup(self.wm.stop) yield self.wm.create_window(self.window_id) self.redis = self.wm.redis @inlineCallbacks def test_race_condition(self): """ A race condition can occur when multiple window managers try and access the same window at the same time. A LoopingCall loops over the available windows, for those windows it tries to get a next key. It does that by checking how many are waiting to be sent out and adding however many it can still carry to its own flight. Since there are concurrent workers, between the time of checking how many are available and how much room it has available, a different window manager may have already beaten it to it. If this happens Redis' `rpoplpush` method will return None since there are no more available keys for the given window. """ yield self.wm.add(self.window_id, 1) yield self.wm.add(self.window_id, 2) yield self.wm._monitor_windows(lambda *a: True, True) self.assertEqual((yield self.wm.get_next_key(self.window_id)), None)
inclearn/models/zil.py
Zotkin/incremental_learning.pytorch
277
11137033
import collections import copy import functools import logging import math import os import pickle import numpy as np import torch from sklearn import preprocessing as skpreprocessing from sklearn.svm import SVC from sklearn.utils.class_weight import compute_class_weight from torch import nn from torch.nn import functional as F from inclearn.lib import data, distance, factory, loops, losses, network, utils from inclearn.lib.data import samplers from inclearn.lib.network.autoencoder import AdvAutoEncoder from inclearn.lib.network.classifiers import (BinaryCosineClassifier, DomainClassifier) from inclearn.lib.network.word import Word2vec from inclearn.models.icarl import ICarl logger = logging.getLogger(__name__) class ZIL(ICarl): def __init__(self, args): self._disable_progressbar = args.get("no_progressbar", False) self._device = args["device"][0] self.device = args["device"][0] self._multiple_devices = args["device"] self._weight_decay = args["weight_decay"] # Steps definition self.unsupervised_config = args.get("unsupervised", {}) self.supervised_config = args.get("supervised", {}) self.gmmn_config = args.get("gmmn", {}) self.autoencoder_config = args.get("autoencoder", {}) self.fakeclassifier_config = args.get("fake_classifier", {}) # Losses definition self._pod_spatial_config = args.get("pod_spatial", {}) self._pod_flat_config = args.get("pod_flat", {}) self.ghost_config = args.get("ghost_regularization", {}) self.real_config = args.get("semantic_regularization", {}) self.hyperplan_config = args.get("hyperplan_regularization", {}) self.placement_config = args.get("ghost_placement_config", {}) self.adv_placement_config = args.get("adv_ghost_placement_config", {}) self.ucir_ranking_config = args.get("ucir_ranking", {}) self._nca_config = args.get("nca", {}) self._softmax_ce = args.get("softmax_ce", False) logger.info("Initializing ZIL") self._network = network.BasicNet( args["convnet"], convnet_kwargs=args.get("convnet_config", {}), classifier_kwargs=args.get("classifier_config"), postprocessor_kwargs=args.get("postprocessor_config", {}), device=self._device, extract_no_act=True, classifier_no_act=args.get("classifier_no_act", True), return_features=True, attention_hook=True, rotations_predictor=True ) self.args = args self._new_weights_config = args.get("weight_generation", {"type": "imprinted"}) self._w2v_path = args.get("word2vec_path") or args.get("data_path") if args.get("word_embeddings"): self._word_embeddings = Word2vec( **args["word_embeddings"], data_path=self._w2v_path, device=self._device ) else: self._word_embeddings = None self._old_word_embeddings = None self._args_we = args.get("word_embeddings") self._args_ae = args.get("autoencoder_archi") self._n_classes = 0 self._old_model = None self._data_memory, self._targets_memory = None, None self._examplars = {} self._class_means = None self._herding_indexes = [] self._fixed_memory = args.get("fixed_memory", True) self._memory_size = args["memory_size"] self._herding_selection = {"type": "icarl"} self._all_test_classes = args["all_test_classes"] self._preprocessing = None self._gen_preprocessing = None self._svm = None self._ghosts = None self._old_ghosts = None self._saved_weights = None self._cheat_pixels = None # --------- # Utilities # --------- def save_metadata(self, directory, run_id): path = os.path.join(directory, f"meta_{run_id}_task_{self._task}.pkl") logger.info("Saving metadata at {}.".format(path)) with open(path, "wb+") as f: pickle.dump( [self._data_memory, self._targets_memory, self._herding_indexes, self._class_means], f ) def load_metadata(self, directory, run_id): path = os.path.join(directory, f"meta_{run_id}_task_{self._task}.pkl") if not os.path.exists(path): return logger.info("Loading metadata at {}.".format(path)) with open(path, "rb") as f: self._data_memory, self._targets_memory, self._herding_indexes, self._class_means = pickle.load( f ) def save_parameters(self, directory, run_id): path = os.path.join(directory, f"net_{run_id}_task_{self._task}.pth") logger.info(f"Saving model at {path}.") torch.save(self.network.state_dict(), path) if self._word_embeddings is not None: path = os.path.join(directory, f"gen_{run_id}_task_{self._task}.pth") logger.info(f"Saving generator at {path}.") torch.save(self._word_embeddings.state_dict(), path) def load_parameters(self, directory, run_id): path = os.path.join(directory, f"net_{run_id}_task_{self._task}.pth") if not os.path.exists(path): return logger.info(f"Loading model at {path}.") try: self.network.load_state_dict(torch.load(path, map_location=self._device), strict=False) except Exception as e: logger.warning(f"Old method to save weights, it's deprecated!: {e}") self._network = torch.load(path) self.network.to(self._device) if self._saved_weights is not None: logger.info("Keeping previous weights anyway") self._network.classifier._weights = self._saved_weights path = os.path.join(directory, f"gen_{run_id}_task_{self._task}.pth") if os.path.exists(path): logger.info(f"Loading generator at {path}.") try: self._word_embeddings.load_state_dict( torch.load(path, map_location=self._device), strict=False ) self._word_embeddings.to(self._device) except Exception: logger.warning("Failed to reload generator, it was probably changed.") def get_class_label(self, fake_class_ids): """Class id in-code ==> Class id in datasets.""" return torch.tensor([self.inc_dataset.class_order[0][i] for i in fake_class_ids]) def get_inv_class_label(self, true_class_ids): """Class id in datasets ==> Class id in-code.""" return torch.tensor([self.inc_dataset.class_order[0].index(i) for i in true_class_ids]) @staticmethod def get_param_groups(network, config, base_lr, additional_parameters=None): """Returns the parameters per group with their own learning rate. :param network: The network whose parameters will be optimized. :param config: The config defining which parameters are learned, and how much. :param default_lr: A base learning rate :return: A list of dicts likewise {"params": <parameters>, "lr": <lr>}. """ groups = [] parameters_dict = [network.get_group_parameters()] if additional_parameters is not None: parameters_dict.append(additional_parameters) for group_dict in parameters_dict: for group_name, group_parameters in group_dict.items(): if group_parameters is None or group_name not in config: continue group_lr = config.get(group_name, 1.0) * base_lr logger.info(f"{group_name}, lr: {group_lr}") groups.append({"params": group_parameters, "lr": group_lr}) return groups def setup_training(self, config, additional_parameters=None): groups = self.get_param_groups( self._network, config["groupwise_lr"], config["lr"], additional_parameters=additional_parameters ) optimizer = factory.get_optimizer( groups, config["optimizer"], config["lr"], config.get("weight_decay", self._weight_decay) ) scheduler = factory.get_lr_scheduler( config["scheduling"], optimizer, nb_epochs=config["epochs"], task=self._task ) return optimizer, scheduler # --------------------------- # Crude descriptions of steps # Remember that resume skip the training step but do the before and after task. # --------------------------- def _before_task(self, train_loader, val_loader): self._cheat_pixels = None if self._task > 0 and self._task != self._n_tasks - 1: logger.info("Setup of the constraints...") self._n_classes += self._task_size self._old_ghosts = copy.deepcopy(self._ghosts) self._setup_constraints() self._n_classes -= self._task_size if self._task > 1 and self._new_weights_config["type"] == "ghosts": self._new_weights_config["ghosts"] = self._old_ghosts if self._task == 0: utils.add_new_weights( self._network, {"type": "basic"}, self._n_classes, self._task_size, self.inc_dataset ) elif self._task == 1: utils.add_new_weights( self._network, {"type": "imprinted"} if self._network.classifier.classifier_type == "cosine" else {"type": "basic"}, self._n_classes, self._task_size, self.inc_dataset ) elif self._new_weights_config["type"] == "neg_weights": # Take the neg weights logger.info("Promoting Ghost Centroids to fist-class status.") neg_weights = self._network.classifier._negative_weights to_promote = neg_weights[:self._task_size].data self._network.classifier.add_custom_weights( to_promote, ponderate=self._new_weights_config.get("ponderate") ) else: # Take mean of ghost per class utils.add_new_weights( self._network, self._new_weights_config, self._n_classes, self._task_size, self.inc_dataset ) if self._task == self._n_tasks - 1: # If we are on last task, disable negative weights self._network.classifier._negative_weights = None self._n_classes += self._task_size if "ghosts" in self._new_weights_config: del self._new_weights_config["ghosts"] def _train_task(self, train_loader, val_loader): if self._cheat_pixels is not None: train_loader.dataset.x = np.concatenate((train_loader.dataset.x, self._cheat_pixels[0])) train_loader.dataset.y = np.concatenate((train_loader.dataset.y, self._cheat_pixels[1])) train_loader.dataset.memory_flags = np.concatenate( (train_loader.dataset.memory_flags, self._cheat_pixels[2]) ) if self.placement_config.get("initial_centroids"): _, loader = self.inc_dataset.get_custom_loader( list(range(self._n_classes - self._task_size, self._n_classes)) ) c_features, c_targets = utils.compute_centroids(self._network, loader) self._c_features = torch.tensor(c_features).float().to(self._device) self._c_targets = torch.tensor(c_targets).long().to(self._device) else: self._c_features, self._c_targets = None, None if self._task > 0 and self.adv_placement_config: self._network.create_domain_classifier() if self.unsupervised_config \ and ((self._task > 0 and not self.unsupervised_config.get("only_first", False)) \ or self._task == 0): self.train_unsupervised(train_loader, val_loader) if self.supervised_config: self.train_supervised(train_loader, val_loader) def _after_task(self, inc_dataset): if self._task != self._n_tasks - 1: if self.gmmn_config: self.train_gmmn() elif self.autoencoder_config: self.train_autoencoder() if self._task > 0 and self.adv_placement_config: self._network.del_domain_classifier() self._old_model = self._network.copy().eval().to(self._device) self._network.on_task_end() if self._word_embeddings is not None: self._old_word_embeddings = copy.deepcopy(self._word_embeddings) self._old_word_embeddings.eval().to(self._device) def _eval_task(self, loader): self.eval() ypred, ytrue = [], [] if self.fakeclassifier_config and self._task != self._n_tasks - 1: logger.info("Generating weights for unseen classes.") real_clf_weights = copy.deepcopy(self._network.classifier._weights) nb_unseen_classes = self._total_n_classes - self._n_classes if self.fakeclassifier_config.get("what_post"): postprocessor = copy.deepcopy(self._network.post_processor) if isinstance(self.fakeclassifier_config.get("what_post"), float): self._network.post_processor.factor.data.fill_( self.fakeclassifier_config.get("what_post", 1.0) ) if hasattr( self._network.classifier, "_bias" ) and self._network.classifier._bias is not None: real_clf_bias = copy.deepcopy(self._network.classifier._bias) if self.fakeclassifier_config["what"] == "new": self._network.classifier._weights.append( nn.Parameter( torch.randn( nb_unseen_classes * self._network.classifier.proxy_per_class, self._network.convnet.out_dim ) ) ) if hasattr( self._network.classifier, "_bias" ) and self._network.classifier._bias is not None: logging.info("Generating also bias.") self._network.classifier._bias.append( nn.Parameter(torch.zeros(nb_unseen_classes)) ) elif self.fakeclassifier_config["what"] == "new_scaleOld": self._network.classifier._weights = nn.ParameterList( [ nn.Parameter( self._preprocessing.transform(self._network.classifier.weights.data) ), nn.Parameter( torch.randn( nb_unseen_classes * self._network.classifier.proxy_per_class, self._network.convnet.out_dim ) ) ] ) elif self.fakeclassifier_config["what"] == "negative": params = [ nn.Parameter( self._preprocessing.transform(self._network.classifier.weights.data) ) ] if self._task == 0: params.append( nn.Parameter( torch.randn( nb_unseen_classes * self._network.classifier.proxy_per_class, self._network.convnet.out_dim ) ) ) elif isinstance(self._network.classifier._negative_weights, nn.Parameter): params.append( nn.Parameter( self._preprocessing.transform( self._network.classifier._negative_weights.data ) ) ) else: params.append( nn.Parameter( self._preprocessing.transform( self._network.classifier._negative_weights ) ) ) self._network.classifier._weights = nn.ParameterList(params) elif self.fakeclassifier_config["what"] == "negative_no_tsrf": params = [nn.Parameter(self._network.classifier.weights.data)] if self._task == 0: params.append( nn.Parameter(torch.randn(nb_unseen_classes, self._network.convnet.out_dim)) ) elif isinstance(self._network.classifier._negative_weights, nn.Parameter): params.append(nn.Parameter(self._network.classifier._negative_weights.data)) else: params.append(nn.Parameter(self._network.classifier._negative_weights)) self._network.classifier._weights = nn.ParameterList(params) elif self.fakeclassifier_config["what"] == "negative_scaled": self._network.classifier._weights = nn.ParameterList( [ nn.Parameter( self._preprocessing.transform(self._network.classifier.weights.data) ), nn.Parameter( self._preprocessing.transform( self._network.classifier._negative_weights ) ) ] ) elif self.fakeclassifier_config["what"] == "all": self._network.classifier._weights = nn.ParameterList( [ nn.Parameter( torch.randn( self._n_classes * self._network.classifier.proxy_per_class, self._network.convnet.out_dim ) ), nn.Parameter( torch.randn( nb_unseen_classes * self._network.classifier.proxy_per_class, self._network.convnet.out_dim ) ) ] ) if hasattr( self._network.classifier, "_bias" ) and self._network.classifier._bias is not None: logging.info("Generating also bias.") self._network.classifier._bias = nn.ParameterList( [ nn.Parameter(torch.randn(self._n_classes)), nn.Parameter(torch.randn(nb_unseen_classes)) ] ) nn.init.kaiming_normal_(self._network.classifier._weights[0], nonlinearity="linear") nn.init.kaiming_normal_(self._network.classifier._weights[1], nonlinearity="linear") else: raise ValueError(self.fakeclassifier_config["what"]) self._network.classifier.to(self._device) if "training" in self.fakeclassifier_config: if self.fakeclassifier_config.get("only_first_task") and self._task == 0: self.train_fake_classifier(self.fakeclassifier_config["training"]) has_trained = True elif not self.fakeclassifier_config.get("only_first_task", False): self.train_fake_classifier(self.fakeclassifier_config["training"]) has_trained = True else: has_trained = False else: has_trained = False if self.fakeclassifier_config.get("postprocessing", "none") == "align_weights": self._network.classifier.align_weights() elif self.fakeclassifier_config.get("postprocessing", "none") == "align_inv_weights": self._network.classifier.align_inv_weights() elif self.fakeclassifier_config.get( "postprocessing", "none" ) == "align_inv_weights_unseen": logger.info("Align unseen to seen.") self._network.classifier.align_weights_i_to_j( list(range(self._n_classes)), list(range(self._n_classes, self._total_n_classes)) ) else: self._preprocessing = None self._network.eval() logger.info("Evaluating model...") for input_dict in loader: with torch.no_grad(): if self._preprocessing is None or not has_trained: logits = self._network(input_dict["inputs"].to(self._device))["logits"] else: features = self._network.convnet( input_dict["inputs"].to(self._device) )[self.gmmn_config.get("features_key", "raw_features")] if self.fakeclassifier_config: features = self._preprocessing.transform(features) if self._svm is None: logits = self._network.classifier(features)["logits"] else: preds = self._svm.predict(features.cpu().numpy()) nb_classes = self._network.classifier.weights.shape[1] logits = np.zeros((len(preds), nb_classes)) logits[np.arange(len(logits)), preds] = 1.0 ytrue.append(input_dict["targets"]) ypred.append(logits) self._network.train() if self._svm is not None: ypred = np.concatenate(ypred) else: ypred = torch.cat(ypred) ypred = F.softmax(ypred, dim=1) ypred = ypred.cpu().numpy() ytrue = torch.cat(ytrue).numpy() if self._task != self._n_tasks - 1 and self.fakeclassifier_config: if self.fakeclassifier_config.get("threshold") is not None: threshold1, threshold2 = self.fakeclassifier_config.get("threshold") logger.info(f"Using threshold ({threshold1}, {threshold2}).") maxes = ypred[..., :self._n_classes].max(axis=1) logger.info(f"Best confidence mean={maxes.mean()}, max={maxes.max()}.") ypred[maxes < threshold1, :self._n_classes] = 0. ypred[maxes > threshold2, self._n_classes:] = 0. elif self.fakeclassifier_config.get("bias") is not None: bias = self.fakeclassifier_config.get("bias") logger.info(f"Using bias {bias}.") ypred[..., :self._n_classes] += bias if self.fakeclassifier_config and self._task != self._n_tasks - 1: if self.fakeclassifier_config.get("keep_weights", "") == "all": logger.info("Keeping finetuned weights") self._network.classifier._weights = nn.ParameterList( [self._network.classifier._weights[0]] ) if self.fakeclassifier_config.get("keep_weights", "") == "all_not_first": if self._task == 0: if self.fakeclassifier_config.get("what_post"): self._network.post_processor = postprocessor self._network.classifier._weights = real_clf_weights else: logger.info("Keeping finetuned weights") self._network.classifier._weights = nn.ParameterList( [self._network.classifier._weights[0]] ) else: if self.fakeclassifier_config.get("what_post"): self._network.post_processor = postprocessor self._network.classifier._weights = real_clf_weights if hasattr( self._network.classifier, "_bias" ) and self._network.classifier._bias is not None: self._network.classifier._bias = real_clf_bias self.train() return ypred, ytrue # -------------- # Training steps # -------------- def train_unsupervised(self, train_loader, val_loader): logger.info("Training ConvNet with rotations prediction.") optimizer, scheduler = self.setup_training(self.unsupervised_config) loops.single_loop( train_loader, val_loader, self._multiple_devices, self._network, self.unsupervised_config["epochs"], optimizer, scheduler=scheduler, train_function=self.forward_unsupervised, eval_function=self._accuracy, task=self._task, n_tasks=self._n_tasks, disable_progressbar=self._disable_progressbar ) def train_supervised(self, train_loader, val_loader): logger.info("Finetuning ConvNet and classifier") if not isinstance(self.supervised_config, list): self.supervised_config = [self.supervised_config] for config in self.supervised_config: if not config["first_task"] and self._task == 0: continue if config.get("only_first_task") and self._task != 0: continue if config.get("min_task", 0) > self._task: continue if config.get("sampling", "none") == "undersample": self._data_memory, self._targets_memory, _, _ = self.build_examplars( self.inc_dataset, self._herding_indexes ) loader = self.inc_dataset.get_memory_loader(*self.get_memory()) else: loader = train_loader if config.get("class_weights"): logger.info("Computing class weights") self._class_weights = self.get_class_weights(loader) else: self._class_weights = None if config.get("update_gmmn", False) and self._task not in (0, self._n_tasks - 1): self.train_gmmn() self._setup_constraints() if config.get("update_constraints", False) and self._task not in (0, self._n_tasks - 1): self._setup_constraints() if config.get("update_sdc", False) and self._task not in (0, self._n_tasks - 1): logger.info("Update SDC") old_features, _ = utils.extract_features(self._old_model, loader) new_features, targets = utils.extract_features(self._network, loader) drift = losses.semantic_drift_compensation( torch.tensor(old_features).to(self._device), torch.tensor(new_features).to(self._device), torch.tensor(targets).to(self._device) ) with torch.no_grad(): self._ghosts = (self._ghosts[0] + drift, self._ghosts[1]) if self._network.classifier._negative_weights is not None: self._network.classifier._negative_weights = self._network.classifier._negative_weights + drift if config.get("del_neg_weights", False): logger.info("Disabling neg weights & ghosts.") self._network.classifier.use_neg_weights = False optimizer, scheduler = self.setup_training(config) loops.single_loop( loader, val_loader, self._multiple_devices, self._network, config["epochs"], optimizer, scheduler=scheduler, train_function=self.forward_supervised, eval_function=self._accuracy, task=self._task, n_tasks=self._n_tasks, config=config, disable_progressbar=self._disable_progressbar ) if config.get("align_weights") and self._task > 0: self._network.classifier.align_weights() if config.get("del_neg_weights", False): logger.info("Re-enabling neg weights & ghosts.") self._network.classifier.use_neg_weights = True def train_gmmn(self): logger.info("Training generator GMMN") config = self.gmmn_config # Fucking ugly, do something about it! if config.get("only_first") and self._task == 0: to_train = True elif config.get("only_first") and self._task > 0: to_train = False else: to_train = True if to_train: if config.get("reinit", "always") == "always" \ or (config.get("reinit", "first") and self._task == 0): logger.info("Reinit GMMN") self._word_embeddings = Word2vec( **self._args_we, data_path=self._w2v_path, device=self._device ) elif config.get("reinit") not in ("always", "first"): raise NotImplementedError(f"Unknown value for GMMN: {config.get('reinit')}.") optimizer = factory.get_optimizer( [{ "params": self._word_embeddings.parameters(), "lr": config["lr"] }], config["optimizer"], config["lr"], config.get("weight_decay", self._weight_decay) ) if config.get("preprocessing"): if isinstance(config["preprocessing"], list): self._preprocessing = Scaler(config["preprocessing"]) elif config["preprocessing"] == "robust": self._preprocessing = Scaler((0, 1), robust=1) elif config["preprocessing"] == "robust_scaled": self._preprocessing = Scaler((0, 1), robust=2) elif config["preprocessing"] == "normalize": self._preprocessing = Scaler((0, 1), normalize=True) elif config["preprocessing"] == "normalize_only": self._preprocessing = Scaler((0, 1), robust=-1, normalize=True) elif config["preprocessing"] == "normalize_truncate": self._preprocessing = Scaler((0, 1), robust=-1, normalize=True, truncate=True) elif config["preprocessing"] == "l2": self._preprocessing = Normalizer() else: raise ValueError(f"Unknown preprocessing: {config['preprocessing']}.") self._visual_features, self._visual_targets = loops.perclass_loop( self.inc_dataset, list(range(0, self._n_classes)), # All seen classes self._multiple_devices, config["epochs"] if to_train else 0, optimizer, self.forward_gmmn, self._task, self._n_tasks, network=self._network, word_embeddings=self._word_embeddings, target_to_word=self.get_class_label, disable_progressbar=self._disable_progressbar, scheduler=factory.get_lr_scheduler( config.get("scheduling"), optimizer, nb_epochs=config["epochs"] ), batch_size=config.get("batch_size", 128), preprocessing=self._preprocessing, memory_class_ids=[] if self._task == 0 else list(range(self._n_classes - self._task_size)), memory=self.get_memory(), features_key=config.get("features_key", "raw_features") ) if config.get("linear"): self._word_embeddings.eval() self._word_embeddings.add_linear_transform(bias=config["linear"]["bias"]) self._word_embeddings.linear_transform.train() loops.linear_loop( self._visual_features, self._visual_targets, self._multiple_devices, config["linear"]["epochs"] if to_train else 0, factory.get_optimizer( [ { "params": self._word_embeddings.linear_transform.parameters(), "lr": config["linear"]["lr"] } ], config["linear"]["optimizer"], config["linear"]["lr"], config.get("weight_decay", self._weight_decay) ), self.forward_gmmn_linear, self._task, self._n_tasks, word_embeddings=self._word_embeddings, target_to_word=self.get_class_label, disable_progressbar=self._disable_progressbar, scheduler=factory.get_lr_scheduler( config["linear"].get("scheduling"), optimizer, nb_epochs=config["linear"]["epochs"] ), batch_size=config["linear"].get("batch_size", 128), normalize=config["linear"].get("normalize", False) ) def train_autoencoder(self): logger.info("Training generator Adverserial AutoEncoder") config = self.autoencoder_config # Fucking ugly, do something about it! if config.get("only_first") and self._task == 0: to_train = True elif config.get("only_first") and self._task > 0: to_train = False else: to_train = True if to_train: if config.get("reinit", "always") == "always" \ or (config.get("reinit", "first") and self._task == 0): logger.info("Reinit AdvAutoEncoder") self._autoencoder = AdvAutoEncoder(**self._args_ae, device=self._device) elif config.get("reinit") not in ("always", "first"): raise NotImplementedError(f"Unknown value for AdvAE: {config.get('reinit')}.") if config.get("preprocessing"): if isinstance(config["preprocessing"], list): self._preprocessing = Scaler(config["preprocessing"]) elif config["preprocessing"] == "l2": self._preprocessing = Normalizer() else: raise ValueError(f"Unknown preprocessing: {config['preprocessing']}.") self._visual_features, self._visual_targets = loops.adv_autoencoder_loop( self.inc_dataset, list(range(0, self._n_classes)), # All seen classes self._multiple_devices, config["epochs"] if to_train else 0, self._task, self._n_tasks, network=self._network, autoencoder=self._autoencoder, target_to_word=self.get_class_label, disable_progressbar=self._disable_progressbar, batch_size=config.get("batch_size", 128), preprocessing=self._preprocessing, memory_class_ids=[] if self._task == 0 else list(range(self._n_classes - self._task_size)), memory=self.get_memory() ) def train_fake_classifier(self, config): logger.info("Finetuning ConvNet and classifier") if config.get("adversarial_classifier"): self._domain_classifier = DomainClassifier( self._network.convnet.out_dim, device=self._device ) optimizer, scheduler = self.setup_training( config, additional_parameters={"domain_classifier": self._domain_classifier.parameters()} ) else: self._domain_classifier = None optimizer, scheduler = self.setup_training(config) logger.info("Finetuning fake classifier with offline generation.") if self._word_embeddings is not None: self._word_embeddings.eval() else: self._autoencoder.eval() if "look_ahead" in config: max_class = config.get("look_ahead") + self._n_classes else: max_class = self._total_n_classes if isinstance(config["nb_samples"], int): nb_samples = config["nb_samples"] else: nb_samples = int(torch.bincount(self._visual_targets).float().mean().cpu().item()) logger.info(f"Gen {nb_samples} based on mean bincount.") fake_features, fake_targets = [], [] for class_id in range(self._n_classes, max_class): targets = [class_id for _ in range(nb_samples)] cifar_targets = self.get_class_label(targets).to(self._device) with torch.no_grad(): if self._word_embeddings is not None: fake_features.append(self._word_embeddings(cifar_targets)) else: fake_features.append(self._autoencoder.generate(cifar_targets)) fake_targets.append(torch.tensor(targets).long().to(self._device)) fake_features = torch.cat(fake_features) if self._word_embeddings is not None: self._word_embeddings.train() else: self._autoencoder.train() if config.get("preprocessing"): logger.info("fake features preprocessing") if isinstance(config["preprocessing"], list): self._gen_preprocessing = Scaler(config["preprocessing"]) fake_features = self._gen_preprocessing.fit_transform(fake_features) elif config["preprocessing"] == "l2": self._gen_preprocessing = Normalizer() fake_features = self._gen_preprocessing.fit_transform(fake_features) elif config["preprocessing"] == "reuse": self._gen_preprocessing = self._preprocessing fake_features = self._preprocessing.transform(fake_features) else: raise ValueError(f"Unknown preprocessing: {config['preprocessing']}.") features = torch.cat([self._visual_features, fake_features]) targets = torch.cat([self._visual_targets.to(self._device), *fake_targets]) flags = torch.cat((torch.ones(len(self._visual_features)), torch.zeros(len(fake_features)))) if not isinstance(config.get("class_weights"), str) and config.get("class_weights") is True: logger.info("Computing class weights.") np_targets = targets.cpu().numpy() unique_targets = np.unique(np_targets) class_weights = compute_class_weight('balanced', unique_targets, np_targets) self._class_weights_fake = torch.tensor(class_weights).to(self._device).float() elif config.get("class_weights", "") == "mean": logger.info("Computing class weights MEAN mode.") np_targets = self._visual_targets.cpu().numpy() unique_targets = np.unique(np_targets) class_weights = compute_class_weight('balanced', unique_targets, np_targets) class_weights_unseen = np.ones(max_class - self._n_classes) * class_weights.mean() class_weights = np.concatenate((class_weights, class_weights_unseen)) self._class_weights_fake = torch.tensor(class_weights).to(self._device).float() elif config.get("class_weights", "") == "one": logger.info("Computing class weights ONE mode.") np_targets = self._visual_targets.cpu().numpy() unique_targets = np.unique(np_targets) class_weights = compute_class_weight('balanced', unique_targets, np_targets) class_weights_unseen = np.ones(max_class - self._n_classes) class_weights = np.concatenate((class_weights, class_weights_unseen)) self._class_weights_fake = torch.tensor(class_weights).to(self._device).float() else: self._class_weights_fake = None if config.get("svm"): logger.info("Learning SVM") from sklearn.svm import SVC self._svm = SVC(**config.get("svm")) self._svm.fit(features.cpu().numpy(), targets.cpu().numpy()) else: if config.get("next_epochs") and self._task > 0: epochs = config["next_epochs"] else: epochs = config["epochs"] loops.features_to_classifier_loop( features, targets, flags, epochs, optimizer, self._network.classifier, self.forward_fakeclassifier, scheduler=scheduler ) # ----------------- # Losses definition # ----------------- def forward_unsupervised( self, training_network, inputs, targets, memory_flags, metrics, **kwargs ): inputs = inputs.to(self._device) loss, outputs = losses.unsupervised_rotations(inputs, memory_flags, training_network) metrics["rot"] += loss.item() for i in range(len(outputs["attention"])): outputs["attention"][i] = outputs["attention"][i][:len(inputs)] if self._old_model is not None: with torch.no_grad(): old_outputs = self._old_model(inputs) if self._pod_spatial_config: if self._pod_spatial_config.get("scheduled_factor", False): factor = self._pod_spatial_config["scheduled_factor"] * math.sqrt( self._n_classes / self._task_size ) else: factor = self._pod_spatial_config.get("factor", 1.) attention_loss = factor * losses.pod( old_outputs["attention"], outputs["attention"], memory_flags=memory_flags.bool(), task_percent=(self._task + 1) / self._n_tasks, **self._pod_spatial_config ) loss += attention_loss metrics["att"] += attention_loss.item() if self._pod_flat_config: factor = self._pod_flat_config.get("factor", 1.) if self._pod_flat_config.get("scheduled", False): factor = factor * math.sqrt(self._n_classes / self._task_size) distil_loss = factor * losses.embeddings_similarity( outputs["raw_features"], old_outputs["raw_features"] ) loss += distil_loss self._metrics["flat"] += distil_loss.item() return loss def forward_supervised( self, training_network, inputs, targets, memory_flags, metrics, epoch, epochs, config, **kwargs ): inputs = inputs.to(self._device) if config.get("features_process") is not None: # Create once the class for god sake scaler = Scaler(config.get("features_process")) else: scaler = None loss = 0. if self._task > 0 and self.ghost_config and self.ghost_config.get( "negative_weights_percent" ) and not config.get("del_neg_weights", False): percent = self.ghost_config["negative_weights_percent"] if self._task == self._n_tasks - 1: percent = self.ghost_config.get("negative_weights_percent_last", percent) if isinstance(percent, str) and percent == "hardest": percent = 0. if isinstance(percent, str) and percent == "hardest": ghost_targets = self.get_class_label( list(range(self._n_classes + self._task_size, self._total_n_classes)) ) ghost_targets = ghost_targets.to(self._device).long() ghost_similarities = self.similarity_matrix[targets.to( self._device )].index_select(dim=1, index=ghost_targets) if len(ghost_targets) == 0: additional_features = None ghost_flags = None ghost_batch_size = None else: most_similars = ghost_targets[ghost_similarities.max(dim=1)[1]] most_similars = self.get_inv_class_label(most_similars).to(self._device) additional_features = [] for real_t, ghost_t in zip(targets, most_similars): indexes = self._ghosts[1] == ghost_t sub_features = self._ghosts[0][indexes] rnd_index = torch.randint(low=0, high=len(sub_features), size=(1,))[0] additional_features.append(sub_features[rnd_index]) additional_features = torch.stack(additional_features) targets = torch.cat((targets.cpu(), most_similars.cpu())) ghost_flags = torch.cat( (torch.ones(len(additional_features)), torch.zeros(len(targets))) ).to(self._device) ghost_batch_size = len(additional_features) elif percent == 0.: additional_features = None ghost_flags = None ghost_batch_size = None else: batch_size = len(inputs) ghost_batch_size = max(int(batch_size * percent), 1) indexes = torch.randperm(len(self._ghosts[0]))[:ghost_batch_size] additional_features = self._ghosts[0][indexes] targets = torch.cat((targets, self._ghosts[1][indexes].cpu()), 0) ghost_flags = torch.cat( (torch.ones(batch_size), torch.zeros(len(additional_features))) ).to(self._device) else: additional_features = None ghost_flags = None ghost_batch_size = None outputs = training_network( inputs, features_processing=scaler, additional_features=additional_features ) if self._task >= 2 and self.placement_config and config.get("ghost_placement"): # Starting from third tasks, we should see the effect of the ghost # on the classes they were mimicking. Here we want to enforce the new # classes to place themselves in the empty space given by the ghost. features = outputs[self.gmmn_config.get("features_key", "raw_features")] placement_loss = losses.similarity_per_class( features, targets if ghost_batch_size is None else targets[:-ghost_batch_size], *self._old_ghosts, epoch=epoch, epochs=epochs, memory_flags=memory_flags, old_centroids_features=self._c_features, old_centroids_targets=self._c_targets, **self.placement_config ) if not isinstance(placement_loss, float): metrics["plc"] += placement_loss.item() loss += placement_loss if config.get("only_ghost_placement", False): return loss elif self._task >= 2 and self.adv_placement_config and config.get("ghost_placement"): real_features = outputs[self.gmmn_config.get("features_key", "raw_features")] real_features = real_features[~memory_flags.bool()] if len(real_features) == 0: # Batch is made only of memory data, rare but can happen. loss += 0. else: ghost_features = self._old_ghosts[0] real_targets = torch.ones(len(real_features)).float().to(self._device) ghost_targets = torch.zeros(len(ghost_features)).float().to(self._device) domain_features = torch.cat((real_features, ghost_features)) domain_targets = torch.cat((real_targets, ghost_targets)) domain_logits = self._network.domain_classifier(domain_features) adv_plc_loss = F.binary_cross_entropy_with_logits( domain_logits.squeeze(1), domain_targets ) adv_plc_loss = self.adv_placement_config["factor"] * adv_plc_loss if self.adv_placement_config["scheduled"]: adv_plc_loss = (1 - epoch / epochs) * adv_plc_loss metrics["advPlc"] += adv_plc_loss.item() loss += adv_plc_loss if config.get("only_ghost_placement", False): return loss if self._nca_config: nca_config = copy.deepcopy(self._nca_config) if self.ghost_config: nca_config.update(self.ghost_config.get("ams_loss", {})) if self._network.post_processor: nca_config["scale"] = self._network.post_processor.factor loss += losses.nca( outputs["logits"], targets, class_weights=self._class_weights, memory_flags=ghost_flags, **nca_config ) metrics["ams"] += loss.item() elif self._softmax_ce: loss += F.cross_entropy( self._network.post_process(outputs["logits"]), targets.to(outputs["logits"].device) ) metrics["cce"] += loss.item() else: raise ValueError("No classification loss defined!") if self._task > 0 and self.ucir_ranking_config: if ghost_batch_size is not None: r_logits = outputs["logits"][:-ghost_batch_size] r_targets = targets[:-ghost_batch_size] else: r_logits = outputs["logits"] r_targets = targets ranking_loss = self.ucir_ranking_config.get("factor", 1.0) * losses.ucir_ranking( r_logits, r_targets.to(r_logits.device), self._n_classes, self._task_size ) metrics["rnk"] += ranking_loss.item() loss += ranking_loss if self._old_model is not None: with torch.no_grad(): old_outputs = self._old_model(inputs) if self._pod_spatial_config: if self._pod_spatial_config.get("scheduled_factor", False): factor = self._pod_spatial_config["scheduled_factor"] * math.sqrt( self._n_classes / self._task_size ) else: factor = self._pod_spatial_config.get("factor", 1.) attention_loss = factor * losses.pod( old_outputs["attention"], outputs["attention"], task_percent=(self._task + 1) / self._n_tasks, **self._pod_spatial_config ) loss += attention_loss metrics["att"] += attention_loss.item() if self._pod_flat_config: factor = self._pod_flat_config.get("factor", 1.) if self._pod_flat_config.get("scheduled", False): factor = factor * math.sqrt(self._n_classes / self._task_size) distil_loss = factor * losses.embeddings_similarity( outputs["raw_features"], old_outputs["raw_features"] ) loss += distil_loss metrics["flat"] += distil_loss.item() if self._task != 0 and self._task != self._n_tasks - 1: if self.hyperplan_config: type_ = self.hyperplan_config.get("type", "ortho_abs") factor = self.hyperplan_config["factor"] if self.hyperplan_config.get("scheduled_factor", False): factor = factor * math.sqrt(self._total_n_classes - self._n_classes) features = outputs[self.gmmn_config.get("features_key", "raw_features")] if not self.hyperplan_config.get("apply_on_new", True): # Only applying on memory samples old_classes = list(range(self._n_classes - self._task_size)) indexes = np.where(np.isin(targets.cpu(), old_classes))[0] features = features[indexes] if len(features) == 0: # Can happen if we don't apply the reg on new classes and # that the batch has not a single memory sample. metrics["hyper"] += 0. else: if self.hyperplan_config.get("normalize_features", True): features = F.normalize(features, dim=1, p=2) if self._svm_weights is None: simi = torch.mm(features, self._hyperplan.T) if self.hyperplan_config.get("add_bias", False): simi = simi + self._hyperplan_bias simi = simi.view(-1) else: simi = [] for sv, gamma, dual_coef, intercept in zip( self._svm_weights["sv"], self._svm_weights["gamma"], self._svm_weights["dual_coef"], self._svm_weights["intercept"] ): diff = sv[None, :, :] - features[:, None, :] tmp = torch.exp(-gamma * diff.norm(dim=-1)**2) dec = dual_coef.mm(tmp.T) - intercept simi.append(dec.view(-1)) simi = torch.cat(simi) # simi should be in [-1 + b, +1 + b] if type_ == "anticorrelation": hinges = torch.clamp(simi + 1., min=0.) elif type_ == "anticorrelation_neg": hinges = torch.clamp(simi, min=0.) elif type_ in ("need_neg", "boundary"): # Check if the point is one the correct side of the hyperplan hinges = torch.clamp(simi, min=0) elif type_ == "support_vectors": # Check if the point is beyond its class support vectors hinges = torch.clamp(simi + 1, min=0) else: raise NotImplementedError(f"Unknow type {type_}.") if self.hyperplan_config.get("adamine"): nb_not_null = torch.nonzero(torch.clamp(hinges - 1e-6, min=0.)).shape[0] nb_not_null = max(nb_not_null, 1) hyper_loss = torch.sum(hinges) / nb_not_null else: hyper_loss = torch.mean(hinges) hyper_loss = factor * hyper_loss if self.hyperplan_config.get("scheduled"): hyper_loss = hyper_loss * math.sqrt(self._n_classes / self._task_size) metrics["hyper"] += hyper_loss.item() loss += hyper_loss elif self.ghost_config and self.ghost_config.get("factor"): features = outputs[self.gmmn_config.get("features_key", "raw_features")] ghost_reg = ghost_semantic_regularization( features, targets, *self._ghosts, self.similarity_matrix, **self.ghost_config ) if self.ghost_config.get("scheduled_factor", False): factor = math.sqrt(self._total_n_classes - self._n_classes) ghost_reg = factor * ghost_reg metrics["gho"] += ghost_reg.item() loss += ghost_reg if self.real_config: features = outputs[self.gmmn_config.get("features_key", "raw_features")] real_reg = semantic_regularization( features, targets, self.similarity_matrix, **self.real_config ) metrics["rea"] += real_reg.item() loss += real_reg if torch.isnan(loss): raise ValueError(f"Nan loss in {str(metrics)}") return loss def forward_gmmn(self, visual_features, semantic_features, class_id, words, metrics): loss = mmd(real=visual_features, fake=semantic_features, **self.gmmn_config["mmd"]) if self.gmmn_config.get("old_mmd") and self._old_word_embeddings is not None: old_unseen_limit = self._n_classes - self._task_size if not self.gmmn_config["old_mmd"].get( "apply_unseen", False ) and class_id >= old_unseen_limit: return loss with torch.no_grad(): old_semantic_features = self._old_word_embeddings(words) factor = self.gmmn_config["old_mmd"]["factor"] _type = self.gmmn_config["old_mmd"].get("type", "mmd") if _type == "mmd": old_loss = factor * mmd( real=old_semantic_features, fake=semantic_features, **self.gmmn_config["mmd"] ) elif _type == "kl": old_loss = factor * F.kl_div( semantic_features, old_semantic_features, reduction="batchmean" ) elif _type == "l2": old_loss = factor * torch.pairwise_distance( semantic_features, old_semantic_features, p=2 ).mean() elif _type == "cosine": old_loss = factor * ( 1 - torch.cosine_similarity(semantic_features, old_semantic_features) ).mean() else: raise ValueError(f"Unknown distillation: {_type}.") if self.gmmn_config.get("scheduled"): old_loss = old_loss * math.sqrt(self._n_classes / self._task_size) metrics["old"] += old_loss.item() return loss + old_loss return loss def forward_gmmn_linear(self, visual_features, semantic_features): return F.mse_loss(visual_features, semantic_features) def forward_fakeclassifier(self, logits, targets, flags, metrics): if self._nca_config: nca_config = copy.deepcopy(self._nca_config) nca_config.update(self.fakeclassifier_config.get("loss", {})) if self._network.post_processor: nca_config["scale"] = self._network.post_processor.factor try: loss = losses.nca( logits, targets, class_weights=self._class_weights_fake, memory_flags=flags, **nca_config, ) except: breakpoint() elif self._softmax_ce: loss = F.cross_entropy(self._network.post_process(logits), targets) else: raise ValueError("No classification loss defined!") metrics["clf"] += loss.item() if self._domain_classifier is not None: weights = self._network.classifier.weights domain_logits = self._domain_classifier(weights) nb_unseen = self._total_n_classes - self._n_classes domain_targets = torch.ones(self._total_n_classes).float() domain_targets[-nb_unseen:] = 0 factor = self.fakeclassifier_config["training"]["adversarial_classifier"]["factor"] domain_loss = factor * F.binary_cross_entropy_with_logits( domain_logits.view(-1), domain_targets.to(domain_logits.device) ) metrics["adv"] += domain_loss.item() loss += domain_loss return loss def get_class_weights(self, loader): targets = [] for input_dict in loader: targets.append(input_dict["targets"]) targets = torch.cat(targets).cpu().numpy() unique_targets = np.unique(targets) class_weights = compute_class_weight('balanced', unique_targets, targets) return torch.tensor(class_weights).to(self._device).float() def get_class_weights_raw(self, targets): unique_targets = np.unique(targets) class_weights = compute_class_weight('balanced', unique_targets, targets) return torch.tensor(class_weights).to(self._device).float() # ----------- # Constraints # ----------- def _setup_constraints(self): if self._word_embeddings is None: return self.similarity_matrix = generate_similarity_matrix( self._word_embeddings, self.get_class_label(list(range(self._total_n_classes))) ) if self.ghost_config: self._word_embeddings.eval() if self._ghosts is not None: self._old_ghosts = copy.deepcopy(self._ghosts) self._ghosts = self._gen_ghost_features(self.ghost_config) self._word_embeddings.train() if self.hyperplan_config: assert self.ghost_config if self.hyperplan_config.get("linear_nn"): self._hyperplan = self._gen_linear_hyperplan_constraints( self._ghosts[0], self._ghosts[1], one_per_ghost=self.hyperplan_config.get("one_per_ghost", False), epochs=self.hyperplan_config.get("epochs", 10), class_weights=self.hyperplan_config.get("class_weights", False), apply_current=self.hyperplan_config.get("apply_current", True), flip=self.hyperplan_config.get("flip", False) ) self._hyperplan_bias = None else: self._hyperplan, self._hyperplan_bias = self._gen_hyperplan_constraints( self._ghosts[0], self._ghosts[1], C=self.hyperplan_config.get("C", 1.0), end_normalize=self.hyperplan_config.get("end_normalize", False), end_normalize_bias=self.hyperplan_config.get( "end_normalize_bias", self.hyperplan_config.get("end_normalize", False) ), normalize_features=self.hyperplan_config.get("normalize_features", True), one_per_ghost=self.hyperplan_config.get("one_per_ghost", False), apply_current=self.hyperplan_config.get("apply_current", True), flip=self.hyperplan_config.get("flip", False), kernel=self.hyperplan_config.get("kernel", "linear") ) else: self._hyperplan = None self._hyperplan_bias = None def _gen_linear_hyperplan_constraints( self, ghost_features, ghost_targets, one_per_ghost=False, epochs=10, class_weights=False, apply_current=True, flip=False ): logger.info("Generating linear hyperplan constraint.") if apply_current: # Just previous tasks classes = list(range(self._n_classes - self._task_size, self._n_classes)) else: classes = [] _, loader = self.inc_dataset.get_custom_loader(classes, memory=self.get_memory()) real_features = utils.extract_features(self._network, loader)[0] if flip: _, loader = self.inc_dataset.get_custom_loader( classes, memory=self.get_memory(), mode="flip" ) real_features_flipped = utils.extract_features(self._network, loader)[0] real_features = np.concatenate((real_features, real_features_flipped)) real_features = torch.tensor(real_features).float().to(self._device) real_targets = torch.zeros(len(real_features)).long().to(self._device) if one_per_ghost: hyperplans = [] for target in torch.unique(ghost_targets): indexes = ghost_targets == target sub_f = ghost_features[indexes] sub_t = torch.ones((len(indexes))).long().to(self._device) clf = BinaryCosineClassifier(real_features.shape[1]).to(self._device) opt = torch.optim.Adam(clf.parameters(), lr=0.001) ghost_targets.fill_(1).long().to(self._device) features = torch.cat((real_features, sub_f)) targets = torch.cat((real_targets, sub_t)).float().to(self._device) if class_weights: cw = self.get_class_weights_raw(targets.cpu().numpy()) else: cw = None def func_loss(feats, t, fl, m): if cw is None: weight = None else: weight = cw[t.long()] return F.binary_cross_entropy_with_logits(feats.squeeze(1), t, weight=weight) loops.features_to_classifier_loop( features, targets, None, epochs, opt, clf, func_loss, disable_progressbar=True ) w = F.normalize(clf.weight.data, dim=1, p=2) hyperplans.append(w) return torch.cat(hyperplans) else: clf = BinaryCosineClassifier(real_features.shape[1]).to(self._device) opt = torch.optim.Adam(clf.parameters(), lr=0.001) ghost_targets.fill_(1).long().to(self._device) features = torch.cat((real_features, ghost_features)) targets = torch.cat((real_targets, ghost_targets)).float().to(self._device) if class_weights: cw = self.get_class_weights_raw(targets.cpu().numpy()) else: cw = None def func_loss(feats, t, fl, m): if cw is None: weight = None else: weight = cw[t.long()] return F.binary_cross_entropy_with_logits(feats.squeeze(1), t, weight=weight) loops.features_to_classifier_loop( features, targets, None, epochs, opt, clf, func_loss, disable_progressbar=True ) return F.normalize(clf.weight.data, dim=1, p=2) def _gen_hyperplan_constraints( self, ghost_features, ghost_targets, C=1.0, end_normalize=False, end_normalize_bias=False, normalize_features=True, one_per_ghost=False, apply_current=True, flip=False, kernel="linear" ): self._svm_weights = None logger.info("Generating hyperplan constraint.") if apply_current: # Just previous task classes = list(range(self._n_classes - self._task_size, self._n_classes)) else: classes = [] _, loader = self.inc_dataset.get_custom_loader(classes, memory=self.get_memory()) real_features = utils.extract_features(self._network, loader)[0] if flip: _, loader = self.inc_dataset.get_custom_loader( classes, memory=self.get_memory(), mode="flip" ) real_features_flipped = utils.extract_features(self._network, loader)[0] real_features = np.concatenate((real_features, real_features_flipped)) real_targets = np.zeros(len(real_features)) ghost_features = ghost_features.cpu().numpy() if one_per_ghost: ghost_targets = ghost_targets.cpu().numpy() if kernel == "linear": hyperplans, biases = [], [] else: self._svm_weights = collections.defaultdict(list) for class_id in np.unique(ghost_targets): tmp_ghost_features = ghost_features[np.where(ghost_targets == class_id)[0]] tmp_features = np.concatenate((real_features, tmp_ghost_features)) if normalize_features: tmp_features = tmp_features / np.linalg.norm( tmp_features, axis=1, keepdims=True ) tmp_targets = np.concatenate((real_targets, np.ones(len(tmp_ghost_features)))) svm = SVC(C=C, kernel=kernel, gamma="scale") svm.fit(tmp_features, tmp_targets) if kernel == "linear": hyperplans.append(torch.tensor(svm.coef_[0]).float().to(self._device)[None]) biases.append(torch.tensor(svm.intercept_[0]).float().to(self._device)) else: self._svm_weights["sv"].append( torch.tensor(svm.support_vectors_).float().to(self._device) ) self._svm_weights["gamma"].append( 1 / (tmp_features.shape[1] * tmp_features.var()) ) self._svm_weights["dual_coef"].append( torch.tensor(svm.dual_coef_).float().to(self._device) ) self._svm_weights["intercept"].append( torch.tensor(svm.intercept_).float().to(self._device) ) if kernel == "linear": hyperplan = torch.cat(hyperplans) bias = torch.stack(biases) else: hyperplan, bias = None, None else: ghost_targets = np.ones(len(ghost_features)) features = np.concatenate((real_features, ghost_features)) if normalize_features: features = features / np.linalg.norm(features, axis=1, keepdims=True) targets = np.concatenate((real_targets, ghost_targets)) svm = SVC(C=C, kernel=kernel, gamma="scale") svm.fit(features, targets) acc = svm.score(features, targets) logger.info(f"SVM got {acc} on the train set (binary, real vs ghost).") if kernel == "linear": hyperplan = torch.tensor(svm.coef_[0]).float().to(self._device)[None] bias = torch.tensor(svm.intercept_[0]).float().to(self._device) else: self._svm_weights = { "sv": [torch.tensor(svm.support_vectors_).float().to(self._device)], "gamma": [torch.tensor([1 / (features.shape[1] * features.var())]).float().to(self._device)], "dual_coef": [torch.tensor(svm.dual_coef_).float().to(self._device)], "intercept": [torch.tensor(svm.intercept_).float().to(self._device)] } hyperplan, bias = None, None if end_normalize: hyperplan = F.normalize(hyperplan, dim=1, p=2) if end_normalize_bias: if len(bias.shape) > 1: bias = F.normalize(bias, dim=1, p=2) else: bias = F.normalize(bias, dim=0, p=2) return hyperplan, bias def _gen_ghost_features(self, config): if config.get("nb_unseen_classes") is not None: classes_to_create = list( range(self._n_classes, self._n_classes + config["nb_unseen_classes"]) ) else: classes_to_create = list(range(self._n_classes, self._total_n_classes)) if config.get("cheat"): logger.info("Custom cheat for ghosts") # Test if real future taken in the past are really better than our fakes # This should be our upperbound if config["cheat"] == "pixels": logger.info("Cheat at pixel-level") _, loader = self.inc_dataset.get_custom_loader(classes_to_create) x, y, m = loader.dataset.x, loader.dataset.y, loader.dataset.memory_flags self._cheat_pixels = (x, y, m) f, t = utils.extract_features(self._network, loader) features = torch.tensor(f).to(self._device) targets = torch.tensor(t).long().to(self._device) else: if config["cheat"] == "own": martymcfly = self._network else: martymcfly = network.BasicNet( self.args["convnet"], convnet_kwargs=self.args.get("convnet_config", {}), classifier_kwargs=self.args.get("classifier_config"), postprocessor_kwargs=self.args.get("postprocessor_config", {}), device=self._device, extract_no_act=True, classifier_no_act=self.args.get("classifier_no_act", True), return_features=True, attention_hook=True, rotations_predictor=True ) state_dict = torch.load( os.path.join(config["cheat"], f"net_0_task_{self._task + 1}.pth") ) for key in list(state_dict.keys()): if "classifier" in key: del state_dict[key] martymcfly.load_state_dict(state_dict, strict=True) features, targets = [], [] for class_id in classes_to_create: _, loader = self.inc_dataset.get_custom_loader([class_id]) f, t = utils.extract_features(martymcfly, loader) if config["amount_per_class"] is not None: indexes = np.arange(len(f)) indexes = np.random.choice(indexes, size=config["amount_per_class"]) f = f[indexes] t = t[indexes] features.append(f) targets.append(t) features = np.concatenate(features) targets = np.concatenate(targets) features = torch.tensor(features).to(self._device) targets = torch.tensor(targets).long().to(self._device) else: features, targets = [], [] for class_id in classes_to_create: class_ids = [class_id for _ in range(config["amount_per_class"])] real_class_ids = self.get_class_label(class_ids).to(self._device) with torch.no_grad(): features.append(self._word_embeddings(real_class_ids)) targets.extend(class_ids) features = torch.cat(features).to(self._device) targets = torch.tensor(targets).long().to(self._device) if config.get("inverse_transform") and self._preprocessing is not None: logger.info("Inverse transform of ghost features.") features = self._preprocessing.inverse_transform(features) if config.get("align_features_per_class"): logger.info("Aligning features per class") new_features, new_targets = [], [] for t in torch.unique(targets): indexes = t == targets new_features.append(self._network.classifier.align_features(features[indexes])) new_targets.append(targets[indexes]) features = torch.cat(new_features) targets = torch.cat(new_targets) elif config.get("align_features"): logger.info("Aligning features") features = self._network.classifier.align_features(features) if config.get("average_per_class"): f, t = [], [] for i in classes_to_create: indexes = targets == i f.append(features[indexes].mean(dim=0)) t.append(i) avg_features = torch.stack(f) if config.get("subsample_per_class"): f, t = [], [] for i in classes_to_create: indexes = np.where(targets.cpu().numpy() == i)[0] indexes = np.random.choice( indexes, size=config["subsample_per_class"], replace=False ) f.append(features[indexes]) t.append(targets[indexes]) features = torch.cat(f) targets = torch.cat(t) if config.get("negative_weights", False): self._network.classifier.set_negative_weights( avg_features, config["negative_weights_ponderation"] ) return features, targets def get_fake_weights( self, real_weights, nb_samples=100, method="word_embeddings", weight_norm=True, **kwargs ): classes_to_create = list(range(self._n_classes, self._total_n_classes)) if method == "word_embeddings": self._word_embeddings.eval() weights = [] for class_id in classes_to_create: class_id = [class_id for _ in range(nb_samples)] real_class_id = self.get_class_label(class_id).to(self._device) weights.append(self._word_embeddings(real_class_id).mean(dim=0, keepdims=True)) weights = torch.cat(weights, dim=0) self._word_embeddings.train() elif method == "random": weights = torch.randn(len(classes_to_create), 128).float().to(self._device) else: raise NotImplementedError( "Unknown method {} to generate unseen weights.".format(method) ) if weight_norm: avg_weights_norm = torch.mean(real_weights.data.norm(dim=1, keepdim=True)) weights.mul_(avg_weights_norm) return weights def _accuracy(self, loader): ypred, ytrue = self._eval_task(loader) ypred = ypred.argmax(axis=1) return 100 * round(np.mean(ypred == ytrue), 3) def semantic_regularization( features, targets, similarity_matrix, margin=None, aggreg="mean", factor=1.0, metric="cosine" ): pair_indexes = [] np_targets = targets.cpu().numpy() for index, target in enumerate(np_targets): neg_indexes = np.where(np_targets != target)[0] neg_index = np.random.choice(neg_indexes) pair_indexes.append(tuple(sorted((index, neg_index)))) pair_indexes_ = list(set(pair_indexes)) pair_indexes = torch.tensor(pair_indexes_).long() left = features[pair_indexes[..., 0]] right = features[pair_indexes[..., 1]] if metric == "cosine": similarities = F.cosine_similarity(left, right) if margin is not None: margins = torch.ones_like(similarities) * margin else: margins = similarity_matrix[targets[pair_indexes[..., 0]], targets[pair_indexes[..., 1]]] hinges = torch.clamp(similarities - margins, min=0.) return factor * _aggreg(hinges, aggreg, features_dim=features.shape[1]) elif metric == "gor": similarities = torch.sum(torch.mul(left, right), 1) return factor * _aggreg(similarities, aggreg, features_dim=features.shape[1]) elif metric == "snr": noise = left - right var_noise = noise.var(axis=1, unbiased=True) var_anchor = right.var(axis=1, unbiased=True) dist = torch.mean(var_anchor / var_noise) return factor * dist else: raise NotImplementedError(f"Unknown metric: {metric}.") def ghost_semantic_regularization( features, targets, ghost_features, ghost_targets, similarity_matrix, margin=None, aggreg="mean", factor=1.0, metric="cosine", scale_real=False, scale_ghost=False, normalize=False, triplet=False, against_all=None, **kwargs ): if scale_real: scale(features, (0, 1)) if scale_ghost: scale(ghost_features, (0, 1)) if normalize: features = F.normalize(features, p=2, dim=-1) ghost_features = F.normalize(ghost_features, p=2, dim=-1) if triplet: # Anchor-positive distances dists = -torch.mm(features, features.T) indexes_not_equal = ~torch.eye(len(targets)).bool().to(features.device) labels_equal = targets.unsqueeze(0) == targets.unsqueeze(1) mask = indexes_not_equal & labels_equal.to(features.device) ap = (dists.to(features.device) * mask.to(features.device).float()).max(dim=1)[0] # Anchor-negative distances an = -torch.mm(features, ghost_features.T) an = an.min(dim=1)[0] hinges = torch.clamp(margin + ap - an, min=0.) return _aggreg(hinges, aggreg, features_dim=features.shape[1]) elif against_all is not None: assert normalize if margin is None: margin = 0. similarities = torch.mm(features, ghost_features.T) if isinstance(against_all, int): similarities = similarities.topk(against_all, dim=1)[0] hinges = torch.clamp(similarities.view(-1) - margin, min=0.) return _aggreg(hinges, aggreg, features_dim=features.shape[1]) else: neg_indexes = [] np_targets = targets.cpu().numpy() for index, target in enumerate(np_targets): neg_index = np.random.choice(len(ghost_targets)) neg_indexes.append(neg_index) selected_ghosts_features = ghost_features[neg_indexes] selected_ghosts_targets = ghost_targets[neg_indexes] if metric == "cosine": similarities = F.cosine_similarity(features, selected_ghosts_features) if margin is not None: margins = torch.ones_like(similarities) * margin else: margins = similarity_matrix[targets, selected_ghosts_targets] hinges = torch.clamp(similarities - margins, min=0.) return factor * _aggreg(hinges, aggreg, features_dim=features.shape[1]) elif metric == "gor": similarities = torch.sum(torch.mul(features, selected_ghosts_features), 1) return factor * _aggreg(similarities, aggreg, features_dim=features.shape[1]) elif metric == "snr": noise = selected_ghosts_features - features var_noise = noise.var(axis=1, unbiased=True) var_anchor = features.var(axis=1, unbiased=True) dist = torch.mean(var_anchor / var_noise) return factor * dist else: raise NotImplementedError(f"Unknown metric: {metric}.") def _aggreg(hinges, aggreg_method, features_dim): if isinstance(aggreg_method, int): return torch.mean(torch.topk(hinges, k=aggreg_method)[0]) elif aggreg_method == "mean": return torch.mean(hinges) elif aggreg_method == "adamine": nb_not_null = (torch.clamp(hinges - 1e-6, min=0.) != 0.).sum() if nb_not_null == 0.: nb_not_null = 1. return torch.sum(hinges) / nb_not_null elif aggreg_method == "gor": first_moment = torch.mean(hinges) second_moment = torch.mean(torch.pow(hinges, 2)) return torch.pow(first_moment, 2) + torch.clamp(second_moment - 1. / features_dim, min=0.) raise NotImplementedError("Unknown aggreg {}.".format(aggreg_method)) def generate_similarity_matrix(word_embeddings, class_ids): classes = class_ids.clone().detach().long().to(word_embeddings.device) with torch.no_grad(): embeddings = word_embeddings.forward(classes, only_word=True) embeddings = F.normalize(embeddings, dim=1, p=2) return torch.mm(embeddings, embeddings.t()) def mmd( fake, real, sigmas=[2, 5, 10, 20, 40, 80], normalize=True, scale_matrix=False, bucher=False, **kwargs ): """Maximum Mean Discrepancy with several Gaussian kernels.""" if normalize: real = F.normalize(real, dim=1, p=2) #fake = F.normalize(fake, dim=1, p=2) if bucher: return moment_loss(fake, real, sigma=sigmas, device=real.device) xy = torch.cat((fake, real), dim=0) if scale_matrix: scale = get_scale_matrix(len(fake), len(real), real.device) scale = torch.matmul(scale, scale.t()) else: scale = 1. xx = torch.mm(xy, xy.t()) x2 = torch.sum(xx**2, dim=1, keepdim=True) exponent = xx - 0.5 * x2 - 0.5 * x2.t() loss = 0. for sigma in sigmas: kernel_val = torch.exp(exponent / sigma) loss += torch.sum(scale * kernel_val) if torch.isnan(loss): breakpoint() return torch.sqrt(loss) def get_scale_matrix(M, N, device): s1 = torch.ones((N, 1)) * 1.0 / N s2 = torch.ones((M, 1)) * -1.0 / M s1, s2 = s1.to(device), s2.to(device) return torch.cat((s1, s2), 0) def moment_loss(gen_samples, x, sigma, device): X = torch.cat((gen_samples, x), 0) XX = torch.matmul(X, X.t()) X2 = torch.sum(X * X, 1, keepdim=True) exp = XX - 0.5 * X2 - 0.5 * X2.t() M = gen_samples.size()[0] N = x.size()[0] s = get_scale_matrix(M, N, device) S = torch.matmul(s, s.t()) loss = 0 for v in sigma: kernel_val = torch.exp(exp / v) loss += torch.sum(S * kernel_val) return torch.sqrt(loss) @functools.lru_cache(maxsize=1, typed=False) def _get_mmd_sigmas(sigmas, device): sigmas = torch.tensor(sigmas)[:, None, None].to(device).float() return -1 / (2 * sigmas) <EMAIL>(maxsize=1, typed=False) def get_scale_matrix(M, N, device): s1 = (torch.ones((N, 1)) * 1.0 / N) s2 = (torch.ones((M, 1)) * -1.0 / M) return torch.cat((s1, s2), 0).to(device) def scale(tensor, feature_range=(0, 1)): data_min = torch.min(tensor, dim=0)[0] data_max = torch.max(tensor, dim=0)[0] data_range = data_max - data_min # Handle null values data_range[data_range == 0.] = 1. scale_ = (feature_range[1] - feature_range[0]) / data_range min_ = feature_range[0] - data_min * scale_ return tensor.mul(scale_).add_(min_) class Scaler: """ Transforms each channel to the range [a, b]. """ def __init__(self, feature_range, robust=0, normalize=False, truncate=False): self.feature_range = feature_range self.robust = robust self.normalize = normalize self.truncate = truncate if self.robust: self.skprepro = skpreprocessing.RobustScaler() def fit(self, tensor): if self.normalize: self.mu, self.sigma = tensor.mean(dim=0), tensor.std(dim=0) tensor = (tensor - self.mu.expand_as(tensor)) / self.sigma.expand_as(tensor) if self.truncate: tensor = tensor.clamp(min=self.feature_range[0], max=self.feature_range[1]) if self.robust > 0: device = tensor.device tensor = tensor.cpu().numpy() tensor = self.skprepro.fit_transform(tensor) tensor = torch.tensor(tensor).to(device) if self.robust == 0 or self.robust == 2: data_min = torch.min(tensor, dim=0)[0] data_max = torch.max(tensor, dim=0)[0] data_range = data_max - data_min # Handle null values data_range[data_range == 0.] = 1. self.scale_ = (self.feature_range[1] - self.feature_range[0]) / data_range self.min_ = self.feature_range[0] - data_min * self.scale_ self.data_min_ = data_min self.data_max_ = data_max self.data_range_ = data_range return self def transform(self, tensor): if self.normalize: tensor = (tensor - self.mu.expand_as(tensor)) / self.sigma.expand_as(tensor) if self.robust > 0: device = tensor.device tensor = tensor.cpu().numpy() tensor = self.skprepro.transform(tensor) tensor = torch.tensor(tensor).to(device) if self.robust == 0 or self.robust == 2: return tensor.mul_(self.scale_).add_(self.min_) return tensor def inverse_transform(self, tensor): if self.normalize: tensor = (tensor * self.sigma.expand_as(tensor)) + self.mu.expand_as(tensor) if self.robust == 0 or self.robust == 2: tensor = tensor.sub_(self.min_).div_(self.scale_) if self.robust > 0: device = tensor.device tensor = tensor.cpu().numpy() tensor = self.skprepro.inverse_transform(tensor) tensor = torch.tensor(tensor).to(device) return tensor def fit_transform(self, tensor): self.fit(tensor) return self.transform(tensor) class Normalizer: def fit(self, tensor): return self def transform(self, tensor): return F.normalize(tensor, dim=1, p=2) def fit_transform(self, tensor): self.fit(tensor) return self.transform(tensor)
koku/api/report/test/azure/test_views.py
rubik-ai/koku
157
11137034
<filename>koku/api/report/test/azure/test_views.py # # Copyright 2021 Red Hat Inc. # SPDX-License-Identifier: Apache-2.0 # """Test the Azure Report views.""" from unittest.mock import patch from django.http import HttpRequest from django.http import QueryDict from django.urls import reverse from faker import Faker from rest_framework import status from rest_framework.request import Request from rest_framework.response import Response from rest_framework.test import APIClient from api.iam.test.iam_test_case import IamTestCase from api.models import User from api.report.azure.view import AzureCostView from api.report.view import _convert_units from api.utils import UnitConverter FAKE = Faker() class AzureReportViewTest(IamTestCase): """Azure report view test cases.""" def setUp(self): """Set up the customer view tests.""" super().setUp() self.report = { "group_by": {"subscription_guid": ["*"]}, "filter": { "resolution": "monthly", "time_scope_value": -1, "time_scope_units": "month", "resource_scope": [], }, "data": [ { "date": "2018-07", "subscription_guids": [ { "subscription_guid": "00000000-0000-0000-0000-000000000000", "values": [ { "date": "2018-07", "units": "GB-Mo", "subscription_guid": "00000000-0000-0000-0000-000000000000", "total": 1826.74238146924, } ], }, { "subscription_guid": "11111111-1111-1111-1111-111111111111", "values": [ { "date": "2018-07", "units": "GB-Mo", "subscription_guid": "11111111-1111-1111-1111-111111111111", "total": 1137.74036198065, } ], }, { "subscription_guid": "22222222-2222-2222-2222-222222222222", "values": [ { "date": "2018-07", "units": "GB-Mo", "subscription_guid": "22222222-2222-2222-2222-222222222222", "total": 1045.80659412797, } ], }, { "subscription_guid": "33333333-3333-3333-3333-333333333333", "values": [ { "date": "2018-07", "units": "GB-Mo", "subscription_guid": "33333333-3333-3333-3333-333333333333", "total": 807.326470618818, } ], }, { "subscription_guid": "44444444-4444-4444-4444-444444444444", "values": [ { "date": "2018-07", "units": "GB-Mo", "subscription_guid": "44444444-4444-4444-4444-444444444444", "total": 658.306642830709, } ], }, ], } ], "total": {"value": 5475.922451027388, "units": "GB-Mo"}, } def test_convert_units_success(self): """Test unit conversion succeeds.""" converter = UnitConverter() to_unit = "byte" expected_unit = f"{to_unit}-Mo" report_total = self.report.get("total", {}).get("value") result = _convert_units(converter, self.report, to_unit) result_unit = result.get("total", {}).get("units") result_total = result.get("total", {}).get("value") self.assertEqual(expected_unit, result_unit) self.assertEqual(report_total * 1e9, result_total) def test_convert_units_list(self): """Test that the list check is hit.""" converter = UnitConverter() to_unit = "byte" expected_unit = f"{to_unit}-Mo" report_total = self.report.get("total", {}).get("value") report = [self.report] result = _convert_units(converter, report, to_unit) result_unit = result[0].get("total", {}).get("units") result_total = result[0].get("total", {}).get("value") self.assertEqual(expected_unit, result_unit) self.assertEqual(report_total * 1e9, result_total) def test_convert_units_total_not_dict(self): """Test that the total not dict block is hit.""" converter = UnitConverter() to_unit = "byte" expected_unit = f"{to_unit}-Mo" report = self.report["data"][0]["subscription_guids"][0]["values"][0] report_total = report.get("total") result = _convert_units(converter, report, to_unit) result_unit = result.get("units") result_total = result.get("total") self.assertEqual(expected_unit, result_unit) self.assertEqual(report_total * 1e9, result_total) @patch("api.report.azure.query_handler.AzureReportQueryHandler") def test_costview_with_units_success(self, mock_handler): """Test unit conversion succeeds in AzureCostView.""" mock_handler.return_value.execute_query.return_value = self.report params = { "group_by[subscription_guid]": "*", "filter[resolution]": "monthly", "filter[time_scope_value]": "-1", "filter[time_scope_units]": "month", "units": "byte", "SERVER_NAME": "", } user = User.objects.get(username=self.user_data["username"]) django_request = HttpRequest() qd = QueryDict(mutable=True) qd.update(params) django_request.GET = qd request = Request(django_request) request.user = user response = AzureCostView().get(request) self.assertIsInstance(response, Response) def test_execute_query_w_delta_total(self): """Test that delta=total returns deltas.""" qs = "delta=cost" url = reverse("reports-azure-costs") + "?" + qs client = APIClient() response = client.get(url, **self.headers) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_execute_query_w_delta_bad_choice(self): """Test invalid delta value.""" bad_delta = "Invalid" expected = f'"{bad_delta}" is not a valid choice.' qs = f"group_by[subscription_guid]=*&filter[limit]=2&delta={bad_delta}" url = reverse("reports-azure-costs") + "?" + qs client = APIClient() response = client.get(url, **self.headers) result = str(response.data.get("delta")[0]) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual(result, expected)
corehq/apps/app_manager/__init__.py
dimagilg/commcare-hq
471
11137041
<gh_stars>100-1000 from django.apps import AppConfig from django.conf import settings from corehq.preindex import ExtraPreindexPlugin class AppManagerAppConfig(AppConfig): name = 'corehq.apps.app_manager' def ready(self): # Also sync this app's design docs to APPS_DB ExtraPreindexPlugin.register('app_manager', __file__, settings.APPS_DB) default_app_config = 'corehq.apps.app_manager.AppManagerAppConfig'
elkserver/docker/redelk-base/redelkinstalldata/scripts/modules/helpers.py
gitradar/RedELK
1,863
11137046
<reponame>gitradar/RedELK<filename>elkserver/docker/redelk-base/redelkinstalldata/scripts/modules/helpers.py #!/usr/bin/python3 """ Part of RedELK Authors: - <NAME>. / <NAME> (@xychix) - <NAME> (@fastlorenzo) """ import copy import datetime import json import logging import os from elasticsearch import Elasticsearch import urllib3 import config urllib3.disable_warnings() es = Elasticsearch(config.es_connection, verify_certs=False) logger = logging.getLogger('helpers') def pprint(to_print): """ Returns a visual representation of an object """ if isinstance(to_print, type(str)): return to_print out_string = json.dumps(to_print, indent=2, sort_keys=True) return out_string def get_value(path, source, default_value=None): """ Gets the value in source based on the provided path, or 'default_value' if not exists (default: None) """ split_path = path.split('.') if split_path[0] in source: if len(split_path) > 1: return get_value('.'.join(split_path[1:]), source[split_path[0]]) if split_path[0] == 'ip': if isinstance(source[split_path[0]], type([])): return source[split_path[0]][0] return source[split_path[0]] return default_value def get_query(query, size=5000, index='redirtraffic-*'): """ Get results via ES query. Returns [] if nothing found """ es_query = {'query': {'query_string': {'query': query}}} # pylint: disable=unexpected-keyword-arg es_result = es.search(index=index, body=es_query, size=size) if es_result['hits']['total']['value'] == 0: return [] return es_result['hits']['hits'] def get_hits_count(query, index='redirtraffic-*'): """ Returns the total number of hits for a given query """ es_query = {'query': {'query_string': {'query': query}}} # pylint: disable=unexpected-keyword-arg es_result = es.search(index=index, body=es_query, size=0) return es_result['hits']['total']['value'] def raw_search(query, size=10000, index='redirtraffic-*'): """ Execute a raw ES query. Returns the hits or None if no results """ # pylint: disable=unexpected-keyword-arg es_result = es.search(index=index, body=query, size=size) if es_result['hits']['total']['value'] == 0: return None return es_result def set_tags(tag, lst): """ Sets tag to all objects in lst """ for doc in lst: if 'tags' in doc['_source'] and tag not in doc['_source']['tags']: doc['_source']['tags'].append(tag) else: doc['_source']['tags'] = [tag] es.update(index=doc['_index'], id=doc['_id'], body={'doc': doc['_source']}) def add_tags_by_query(tags, query, index='redirtraffic-*'): """ Add tags by DSL query in batch """ tags_string = ','.join(map(repr, tags)) update_q = { 'script': { 'source': f'ctx._source.tags.add([{tags_string}])', 'lang': 'painless' }, 'query': query } return es.update_by_query(index=index, body=update_q) def add_alarm_data(doc, data, alarm_name, alarmed=True): """ Adds alarm extra data to the source doc in ES """ now_str = datetime.datetime.utcnow().isoformat() # Create the alarm field if it doesn't exist yet if 'alarm' not in doc['_source']: doc['_source']['alarm'] = {} # Set the last checked date data['last_checked'] = now_str doc['_source']['alarm']['last_checked'] = now_str # set the last alarmed date (if alarmed) if alarmed: doc['_source']['alarm']['last_alarmed'] = now_str data['last_alarmed'] = now_str # Add the extra data doc['_source']['alarm'][alarm_name] = data es.update(index=doc['_index'], id=doc['_id'], body={'doc': doc['_source']}) return doc def set_checked_date(doc): """ Sets the alarm.last_checked date to an ES doc """ if 'alarm' in doc['_source']: doc['_source']['alarm']['last_checked'] = datetime.datetime.utcnow().isoformat() else: doc['_source']['alarm'] = { 'last_checked': datetime.datetime.utcnow().isoformat() } es.update(index=doc['_index'], id=doc['_id'], body={'doc': doc['_source']}) return doc def group_hits(hits, groupby, res=None): """ Takes a list of hits and a list of field names (dot notation) and returns a grouped list """ if len(groupby) > 0: hits_list = {} # First time in the loop if res is None: for hit in hits: value = get_value(f'_source.{groupby[0]}', hit) if value in hits_list: hits_list[value].append(hit) else: hits_list[value] = [hit] else: for key, val in res.items(): for hit in val: value = get_value(f'_source.{groupby[0]}', hit) tmp_key = f'{key} / {value}' if tmp_key in hits_list: hits_list[tmp_key].append(hit) else: hits_list[tmp_key] = [hit] groupby.pop(0) return group_hits(hits, groupby, hits_list) if res is None: return hits tmp_hits = [] for key, value in res.items(): tmp_hits.append(value[0]) return tmp_hits def get_last_run(module_name): """ Returns the last time the module did run """ try: query = {'query': {'term': {'module.name': module_name}}} es_result = raw_search(query, index='redelk-modules') if len(es_result['hits']['hits']) > 0: es_timestamp = get_value('_source.module.last_run.timestamp', es_result['hits']['hits'][0]) es_date = datetime.datetime.strptime(es_timestamp, '%Y-%m-%dT%H:%M:%S.%f') return es_date return datetime.datetime.fromtimestamp(0) # pylint: disable=broad-except except Exception as error: logger.debug('Error parsing last run time: %s', error) return datetime.datetime.fromtimestamp(0) def module_did_run(module_name, module_type='unknown', status='unknown', message=None, count=0): """ Returns true if the module already ran, false otherwise """ logger.debug('Module did run: %s:%s [%s] %s', module_type, module_name, status, message) try: now_ts = datetime.datetime.utcnow().isoformat() doc = { 'module': { 'name': module_name, 'type': module_type, 'last_run': { 'timestamp': now_ts, 'status': status, 'count': count } } } if message: doc['module']['last_run']['message'] = message es.index(index='redelk-modules', id=module_name, body=doc) return True # pylint: disable=broad-except except Exception as error: logger.error('Error writting last run time for module %s: %s', module_name, os.path.join(config.TEMP_DIR, module_name)) logger.exception(error) return False def module_should_run(module_name, module_type): # pylint: disable=too-many-branches """Check if the module is enabled and when is the last time the module ran. If the last time is before now - interval, the module will be allowed to run""" if module_type == 'redelk_alarm': if module_name not in config.alarms: logger.warning('Missing configuration for alarm [%s]. Will not run!', module_name) return False if 'enabled' in config.alarms[module_name] and not config.alarms[module_name]['enabled']: logger.warning('Alarm module [%s] disabled in configuration file. Will not run!', module_name) return False if 'interval' in config.alarms[module_name]: interval = config.alarms[module_name]['interval'] else: interval = 360 elif module_type == 'redelk_enrich': if module_name not in config.enrich: logger.warning('Missing configuration for enrichment module [%s]. Will not run!', module_name) return False if 'enabled' in config.enrich[module_name] and not config.enrich[module_name]['enabled']: logger.warning('Enrichment module [%s] disabled in configuration file. Will not run!', module_name) return False if 'interval' in config.enrich[module_name]: interval = config.enrich[module_name]['interval'] else: interval = 360 else: logger.warning('Invalid module type for shouldModuleRun(%s, %s)', module_name, module_type) return False now = datetime.datetime.utcnow() last_run = get_last_run(module_name) interval = datetime.timedelta(seconds=interval) last_run_max = now - interval should_run = last_run < last_run_max if not should_run: logger.info('Module [%s] already ran within the interval of %s seconds (%s)', module_name, interval, last_run.isoformat()) else: logger.info('All checks ok for module [%s]. Module should run.', module_name) logger.debug('Last run: %s | Last run max: %s', last_run.isoformat(), last_run_max.isoformat()) return should_run def get_initial_alarm_result(): """ Returns the initial_alarm_result object """ return copy.deepcopy(initial_alarm_result) initial_alarm_result = { 'info': { 'version': 0.0, 'name': 'unknown', 'alarmmsg': 'unkown', 'description': 'unknown', 'type': 'redelk_alarm', 'submodule': 'unknown' }, 'hits': { 'hits': [], 'total': 0 }, 'mutations': {}, 'fields': ['host.name', 'user.name', '@timestamp', 'c2.message'], 'groupby': [] }
devtools/scripts/conda_env.py
jhrmnn/QCEngine
105
11137055
<reponame>jhrmnn/QCEngine import argparse import os import shutil import subprocess as sp # Args parser = argparse.ArgumentParser(description='Creates a conda environment from file for a given Python version.') parser.add_argument('-n', '--name', type=str, nargs=1, help='The name of the created Python environment') parser.add_argument('-p', '--python', type=str, nargs=1, help='The version of the created Python environment') parser.add_argument('conda_file', nargs='*', help='The file for the created Python environment') args = parser.parse_args() with open(args.conda_file[0], "r") as handle: script = handle.read() tmp_file = "tmp_env.yaml" script = script.replace("- python", "- python {}*".format(args.python[0])) with open(tmp_file, "w") as handle: handle.write(script) conda_path = shutil.which("conda") print("CONDA ENV NAME {}".format(args.name[0])) print("PYTHON VERSION {}".format(args.python[0])) print("CONDA FILE NAME {}".format(args.conda_file[0])) print("CONDA path {}".format(conda_path)) sp.call("{} env create -n {} -f {}".format(conda_path, args.name[0], tmp_file), shell=True) os.unlink(tmp_file)
scripts/speech/head.py
Steven1791/seq2seq
383
11137065
#!/usr/bin/env python3 import argparse import numpy as np parser = argparse.ArgumentParser() parser.add_argument('input') parser.add_argument('output') parser.add_argument('-n', type=int, default=10) args = parser.parse_args() with open(args.input, 'rb') as input_file, open(args.output, 'wb') as output_file: n, dim = np.load(input_file) n = min(args.n, n) np.save(output_file, (n, dim)) for _ in range(n): feats = np.load(input_file) np.save(output_file, feats)
mmdet/utils/__init__.py
cameronchoi/r3det-docker
176
11137090
<filename>mmdet/utils/__init__.py<gh_stars>100-1000 from .collect_env import collect_env from .flops_counter import get_model_complexity_info from .logger import get_root_logger from .rbbox_visualization import imshow_det_rbboxes __all__ = ['get_model_complexity_info', 'get_root_logger', 'collect_env', 'imshow_det_rbboxes']
track2/test-densemapnet.py
omshinde/dfc2019
123
11137098
<reponame>omshinde/dfc2019 import numpy as np import os from keras.models import load_model from keras.applications import imagenet_utils from tqdm import tqdm import tifffile import cv2 import glob from densemapnet import densemapnet import argparse NO_DATA = -999.0 COMPLETENESS_THRESHOLD_PIXELS = 3.0 #GPU="0" # default GPU GPU="-1" # no GPU if __name__=="__main__": # parse arguments parser = argparse.ArgumentParser() parser.add_argument('test_folder', type=str) parser.add_argument('output_folder', type=str) parser.add_argument('model_file', type=str) args = parser.parse_args() # load the model height = 1024 width = 1024 bands = 3 print(height, width, bands) os.environ["CUDA_VISIBLE_DEVICES"]=GPU settings = densemapnet.Settings() settings.xdim = width settings.ydim = height settings.channels = bands settings.nopadding = True settings.dropout_test = False settings.model_weights = args.model_file network = densemapnet.DenseMapNet(settings=settings) model = network.build_model() # predict disparities for all images in folder files = glob.glob(args.test_folder + '*LEFT_RGB.tif') nfiles = len(files) print('Number of files = ', nfiles) for i in tqdm(range(nfiles)): name = files[i] pos = name.find('LEFT_RGB') left_name = name right_name = name[0:pos] + 'RIGHT_RGB.tif' name = os.path.basename(name) pos = name.find('LEFT_RGB') dsp_name = args.output_folder + name[0:pos] + 'LEFT_DSP.tif' viz_name = args.output_folder + name[0:pos] + 'STEREO_GRAY.tif' left = tifffile.imread(left_name) right = tifffile.imread(right_name) left = np.expand_dims(left,axis=0) right = np.expand_dims(right,axis=0) # scale image values to [0,1] left = (left - 127.5)/255.0 right = (right - 127.5)/255.0 disp = model.predict([left, right])[0,:,:,:] tifffile.imsave(dsp_name, disp, compress=6) # save grayscale version of image for visual inspection disp = disp - disp.min() disp = ((disp / disp.max()) * 255.0).astype(np.uint8) disp = cv2.cvtColor(disp,cv2.COLOR_GRAY2RGB) tifffile.imsave(viz_name, disp, compress=6)
tf_agents/networks/nest_map_test.py
anair13/agents
3,175
11137113
<filename>tf_agents/networks/nest_map_test.py<gh_stars>1000+ # coding=utf-8 # Copyright 2020 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tf_agents.networks.nest_map.""" from __future__ import absolute_import from __future__ import division # Using Type Annotations. from __future__ import print_function import os from absl import flags import tensorflow.compat.v2 as tf from tf_agents.keras_layers import inner_reshape from tf_agents.networks import nest_map from tf_agents.networks import sequential from tf_agents.policies import policy_saver from tf_agents.policies import tf_policy from tf_agents.specs import tensor_spec from tf_agents.trajectories import policy_step from tf_agents.trajectories import time_step as ts from tf_agents.utils import common from tf_agents.utils import nest_utils from tf_agents.utils import test_utils FLAGS = flags.FLAGS class MyPolicy(tf_policy.TFPolicy): def __init__(self, time_step_spec, net): super(MyPolicy, self).__init__( time_step_spec, action_spec=tf.TensorSpec((None,), tf.float32)) self._net = net def _action(self, time_step, policy_state=(), seed=None): out, _ = self._net(time_step.observation) out = tf.math.add(*tf.nest.flatten(out)) return policy_step.PolicyStep(out, (), ()) class NestFlattenTest(test_utils.TestCase): def testNestFlatten(self): layer = nest_map.NestFlatten() outputs = layer({'a': 1, 'b': 2}) self.assertEqual(self.evaluate(outputs), [1, 2]) class NestMapTest(test_utils.TestCase): def setUp(self): if not common.has_eager_been_enabled(): self.skipTest('Only supported in TF2.x.') super(NestMapTest, self).setUp() def testCreateAndCall(self): net = sequential.Sequential([ nest_map.NestMap( {'inp1': tf.keras.layers.Dense(8), 'inp2': sequential.Sequential([ tf.keras.layers.Conv2D(2, 3), # Convert 3 inner dimensions to [8] for RNN. inner_reshape.InnerReshape([None] * 3, [8]), ]), 'inp3': tf.keras.layers.LSTM( 8, return_state=True, return_sequences=True)}), nest_map.NestFlatten(), tf.keras.layers.Add()]) self.assertEqual( net.state_spec, ({ 'inp1': (), 'inp2': (), 'inp3': (2 * (tf.TensorSpec(shape=(8,), dtype=tf.float32),),), },)) output_spec = net.create_variables( { 'inp1': tf.TensorSpec(shape=(3,), dtype=tf.float32), 'inp2': tf.TensorSpec(shape=(4, 4, 2,), dtype=tf.float32), 'inp3': tf.TensorSpec(shape=(3,), dtype=tf.float32), }) self.assertEqual(output_spec, tf.TensorSpec(shape=(8,), dtype=tf.float32)) inputs = { 'inp1': tf.ones((8, 10, 3), dtype=tf.float32), 'inp2': tf.ones((8, 10, 4, 4, 2), dtype=tf.float32), 'inp3': tf.ones((8, 10, 3), dtype=tf.float32) } output, next_state = net(inputs) self.assertEqual(output.shape, tf.TensorShape([8, 10, 8])) self.assertEqual( tf.nest.map_structure(lambda t: t.shape, next_state), ({ 'inp1': (), 'inp2': (), 'inp3': (2 * (tf.TensorShape([8, 8]),),), },)) # Test passing in a state. output, next_state = net(inputs, next_state) self.assertEqual(output.shape, tf.TensorShape([8, 10, 8])) self.assertEqual( tf.nest.map_structure(lambda t: t.shape, next_state), ({ 'inp1': (), 'inp2': (), 'inp3': (2 * (tf.TensorShape([8, 8]),),), },)) def testNestedNest(self): # layer structure: {'a': {'b': .}} net = nest_map.NestMap( {'a': nest_map.NestMap( {'b': tf.keras.layers.Dense(8)})}) net.create_variables({'a': {'b': tf.TensorSpec((1,), dtype=tf.float32)}}) def testNestedNestWithNestedState(self): # layer structure: (., {'a': {'b': .}}) net = nest_map.NestMap( (tf.keras.layers.Dense(7), {'a': nest_map.NestMap( {'b': tf.keras.layers.LSTM( 8, return_state=True, return_sequences=True)})})) # TODO(b/177337002): remove the forced tuple wrapping the LSTM # state once we make a generic KerasWrapper network and clean up # Sequential and NestMap to use that instead of singleton Sequential. out, state = net( (tf.ones((1, 2)), {'a': {'b': tf.ones((1, 2))}}), network_state=((), {'a': {'b': ((tf.ones((1, 8)), tf.ones((1, 8))),)}})) nest_utils.assert_matching_dtypes_and_inner_shapes( out, ( tf.TensorSpec(dtype=tf.float32, shape=(7,)), {'a': {'b': tf.TensorSpec(dtype=tf.float32, shape=(8,))}} ), caller=self, tensors_name='out', specs_name='out_expected') nest_utils.assert_matching_dtypes_and_inner_shapes( state, ( (), {'a': {'b': ((tf.TensorSpec(dtype=tf.float32, shape=(8,)), tf.TensorSpec(dtype=tf.float32, shape=(8,))),)}} ), caller=self, tensors_name='state', specs_name='state_expected') def testIncompatibleStructureInputs(self): with self.assertRaisesRegex( TypeError, r'`nested_layers` and `input_spec` do not have matching structures'): nest_map.NestMap( [tf.keras.layers.Dense(8)], input_spec={'ick': tf.TensorSpec(8, tf.float32)}) with self.assertRaisesRegex( TypeError, r'`self.nested_layers` and `inputs` do not have matching structures'): net = nest_map.NestMap([tf.keras.layers.Dense(8)]) net.create_variables({'ick': tf.TensorSpec((1,), dtype=tf.float32)}) with self.assertRaisesRegex( TypeError, r'`self.nested_layers` and `inputs` do not have matching structures'): net = nest_map.NestMap([tf.keras.layers.Dense(8)]) net({'ick': tf.constant([[1.0]])}) with self.assertRaisesRegex( ValueError, r'`network_state` and `state_spec` do not have matching structures'): net = nest_map.NestMap( tf.keras.layers.LSTM(8, return_state=True, return_sequences=True)) net(tf.ones((1, 2)), network_state=(tf.ones((1, 1)), ())) def testPolicySaverCompatibility(self): observation_spec = { 'a': tf.TensorSpec(4, tf.float32), 'b': tf.TensorSpec(3, tf.float32) } time_step_tensor_spec = ts.time_step_spec(observation_spec) net = nest_map.NestMap( {'a': tf.keras.layers.LSTM(8, return_state=True, return_sequences=True), 'b': tf.keras.layers.Dense(8)}) net.create_variables(observation_spec) policy = MyPolicy(time_step_tensor_spec, net) sample = tensor_spec.sample_spec_nest( time_step_tensor_spec, outer_dims=(5,)) step = policy.action(sample) self.assertEqual(step.action.shape.as_list(), [5, 8]) train_step = common.create_variable('train_step') saver = policy_saver.PolicySaver(policy, train_step=train_step) self.initialize_v1_variables() with self.cached_session(): saver.save(os.path.join(FLAGS.test_tmpdir, 'nest_map_model')) if __name__ == '__main__': test_utils.main()
tests/test_encoding/test_woe_encoder.py
janrito/feature_engine
650
11137115
<gh_stars>100-1000 import pandas as pd import pytest from sklearn.exceptions import NotFittedError from feature_engine.encoding import WoEEncoder def test_automatically_select_variables(df_enc): # test case 1: automatically select variables, woe encoder = WoEEncoder(variables=None) encoder.fit(df_enc[["var_A", "var_B"]], df_enc["target"]) X = encoder.transform(df_enc[["var_A", "var_B"]]) # transformed dataframe transf_df = df_enc.copy() transf_df["var_A"] = [ 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, 0.8472978603872037, 0.8472978603872037, 0.8472978603872037, 0.8472978603872037, ] transf_df["var_B"] = [ -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, 0.8472978603872037, 0.8472978603872037, 0.8472978603872037, 0.8472978603872037, ] # init params assert encoder.variables is None # fit params assert encoder.variables_ == ["var_A", "var_B"] assert encoder.encoder_dict_ == { "var_A": { "A": 0.15415067982725836, "B": -0.5389965007326869, "C": 0.8472978603872037, }, "var_B": { "A": -0.5389965007326869, "B": 0.15415067982725836, "C": 0.8472978603872037, }, } assert encoder.n_features_in_ == 2 # transform params pd.testing.assert_frame_equal(X, transf_df[["var_A", "var_B"]]) def test_error_target_is_not_passed(df_enc): # test case 2: raises error if target is not passed encoder = WoEEncoder(variables=None) with pytest.raises(TypeError): encoder.fit(df_enc) def test_warn_if_transform_df_contains_categories_not_seen_in_fit(df_enc, df_enc_rare): # test case 3: when dataset to be transformed contains categories not present # in training dataset encoder = WoEEncoder(variables=None) with pytest.warns(UserWarning): encoder.fit(df_enc[["var_A", "var_B"]], df_enc["target"]) encoder.transform(df_enc_rare[["var_A", "var_B"]]) def test_error_if_target_not_binary(): # test case 4: the target is not binary encoder = WoEEncoder(variables=None) with pytest.raises(ValueError): df = { "var_A": ["A"] * 6 + ["B"] * 10 + ["C"] * 4, "var_B": ["A"] * 10 + ["B"] * 6 + ["C"] * 4, "target": [1, 1, 2, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0], } df = pd.DataFrame(df) encoder.fit(df[["var_A", "var_B"]], df["target"]) def test_error_if_denominator_probability_is_zero(): # test case 5: when the denominator probability is zero encoder = WoEEncoder(variables=None) with pytest.raises(ValueError): df = { "var_A": ["A"] * 6 + ["B"] * 10 + ["C"] * 4, "var_B": ["A"] * 10 + ["B"] * 6 + ["C"] * 4, "target": [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0], } df = pd.DataFrame(df) encoder.fit(df[["var_A", "var_B"]], df["target"]) # # # test case 6: when the numerator probability is zero, woe # # with pytest.raises(ValueError): # # df = {'var_A': ['A'] * 6 + ['B'] * 10 + ['C'] * 4, # # 'var_B': ['A'] * 10 + ['B'] * 6 + ['C'] * 4, # # 'target': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, # 1, 0, 0]} # # df = pd.DataFrame(df) # # encoder.fit(df[['var_A', 'var_B']], df['target']) # # # # test case 7: when the denominator probability is zero, woe # # with pytest.raises(ValueError): # # df = {'var_A': ['A'] * 6 + ['B'] * 10 + ['C'] * 4, # # 'var_B': ['A'] * 10 + ['B'] * 6 + ['C'] * 4, # # 'target': [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, # 0, 0]} # # df = pd.DataFrame(df) # # encoder.fit(df[['var_A', 'var_B']], df['target']) def test_non_fitted_error(df_enc): # test case 8: non fitted error with pytest.raises(NotFittedError): imputer = WoEEncoder() imputer.transform(df_enc) def test_error_if_contains_na_in_fit(df_enc_na): # test case 9: when dataset contains na, fit method encoder = WoEEncoder(variables=None) with pytest.raises(ValueError): encoder.fit(df_enc_na[["var_A", "var_B"]], df_enc_na["target"]) def test_error_if_df_contains_na_in_transform(df_enc, df_enc_na): # test case 10: when dataset contains na, transform method} encoder = WoEEncoder(variables=None) with pytest.raises(ValueError): encoder.fit(df_enc[["var_A", "var_B"]], df_enc["target"]) encoder.transform(df_enc_na) def test_on_numerical_variables(df_enc_numeric): # ignore_format=True encoder = WoEEncoder(variables=None, ignore_format=True) encoder.fit(df_enc_numeric[["var_A", "var_B"]], df_enc_numeric["target"]) X = encoder.transform(df_enc_numeric[["var_A", "var_B"]]) # transformed dataframe transf_df = df_enc_numeric.copy() transf_df["var_A"] = [ 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, 0.8472978603872037, 0.8472978603872037, 0.8472978603872037, 0.8472978603872037, ] transf_df["var_B"] = [ -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, 0.8472978603872037, 0.8472978603872037, 0.8472978603872037, 0.8472978603872037, ] # init params assert encoder.variables is None # fit params assert encoder.variables_ == ["var_A", "var_B"] assert encoder.encoder_dict_ == { "var_A": { 1: 0.15415067982725836, 2: -0.5389965007326869, 3: 0.8472978603872037, }, "var_B": { 1: -0.5389965007326869, 2: 0.15415067982725836, 3: 0.8472978603872037, }, } assert encoder.n_features_in_ == 2 # transform params pd.testing.assert_frame_equal(X, transf_df[["var_A", "var_B"]]) def test_variables_cast_as_category(df_enc_category_dtypes): df = df_enc_category_dtypes.copy() encoder = WoEEncoder(variables=None) encoder.fit(df[["var_A", "var_B"]], df["target"]) X = encoder.transform(df[["var_A", "var_B"]]) # transformed dataframe transf_df = df.copy() transf_df["var_A"] = [ 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, 0.8472978603872037, 0.8472978603872037, 0.8472978603872037, 0.8472978603872037, ] transf_df["var_B"] = [ -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, -0.5389965007326869, 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, 0.15415067982725836, 0.8472978603872037, 0.8472978603872037, 0.8472978603872037, 0.8472978603872037, ] pd.testing.assert_frame_equal(X, transf_df[["var_A", "var_B"]], check_dtype=False) assert X["var_A"].dtypes == float
aws-blog-campanile/bin/multipartlist.py
securityscorecard/aws-big-data-blog
305
11137117
#!/usr/bin/python2.7 import sys import os import fileinput import argparse import math import uuid # ----------------------------------------------------------------------------- # Support for Hadoop Streaming Sandbox Env # ----------------------------------------------------------------------------- sys.path.append(os.environ.get('PWD')) os.environ["BOTO_PATH"] = '/etc/boto.cfg:~/.boto:./.boto' import campanile import boto from boto.s3.connection import S3Connection # ----------------------------------------------------------------------------- # Functions # ----------------------------------------------------------------------------- def main(): ## Args parser = argparse.ArgumentParser() parser.add_argument('--src-bucket', required=True, dest='src', help='Source S3 bucket') parser.add_argument('--dst-bucket', required=True, dest='dst', help='Destination S3 bucket') parser.add_argument('--src-endpoint', default=boto.s3.connection.NoHostProvided, help='S3 source endpoint') parser.add_argument('--dst-endpoint', default=boto.s3.connection.NoHostProvided, help='S3 destination endpoint') parser.add_argument('--src-profile', help='Boto profile used for source connection') parser.add_argument('--dst-profile', help='Boto profile used for destination connection') parser.add_argument('--dry-run', action="store_true", help='Auto generate multipart-uid') args = parser.parse_args() ## S3 Bucket Connections src_bucket = S3Connection(suppress_consec_slashes=False,\ host=args.src_endpoint,is_secure=True, profile_name=args.src_profile).\ get_bucket(args.src,validate=False) dst_bucket = S3Connection(suppress_consec_slashes=False,\ host=args.dst_endpoint,is_secure=True, profile_name=args.dst_profile).\ get_bucket(args.dst,validate=False) start_index = campanile.stream_index() for line in fileinput.input("-"): record = line.rstrip('\n').split('\t')[start_index:] name, etag, size = record[0:3] partcount = campanile.partcount(etag) if partcount == 0: print '\t'.join(record + [campanile.NULL] * 5) continue ## Find partsize partsize = campanile.cli_chunksize(int(size)) if partcount != int(math.ceil(float(size)/partsize)): campanile.status("Can't calculate partsize for %s/%s\n" % (args.src, name)) ## Add alert continue if args.dry_run: mid = uuid.uuid1() else: srckey = src_bucket.get_key(name, validate=True) metadata = srckey.metadata headers = {} ## Set Cache and Content Values if srckey.cache_control is not None: headers['Cache-Control'] = srckey.cache_control if srckey.content_type is not None: headers['Content-Type'] = srckey.content_type if srckey.content_encoding is not None: headers['Content-Encoding'] = srckey.content_encoding if srckey.content_disposition is not None: headers['Content-Disposition'] = srckey.content_disposition if srckey.content_language is not None: headers['Content-Language'] = srckey.content_language ## Initiate Multipart Upload mid = dst_bucket.initiate_multipart_upload(name, headers = headers, metadata = metadata, encrypt_key = srckey.encrypted).id for i in range(partcount): offset = partsize * i bytes = min(partsize, int(size) - offset) print '\t'.join(record) + "\t%s\t%s\t%s\t%s\t%s" % (mid, (i+1), partcount, offset, (offset + bytes - 1)) # ----------------------------------------------------------------------------- # Main # ----------------------------------------------------------------------------- if __name__ == "__main__": main()
REST/python/Targets/add-role-to-target.py
gdesai1234/OctopusDeploy-Api
199
11137132
<filename>REST/python/Targets/add-role-to-target.py<gh_stars>100-1000 import json import requests octopus_server_uri = 'https://your.octopus.app/api' octopus_api_key = 'API-YOURAPIKEY' headers = {'X-Octopus-ApiKey': octopus_api_key} def get_octopus_resource(uri): response = requests.get(uri, headers=headers) response.raise_for_status() return json.loads(response.content.decode('utf-8')) def get_by_name(uri, name): resources = get_octopus_resource(uri) return next((x for x in resources if x['Name'] == name), None) space_name = 'Default' target_name = 'Your Target Name' target_role = 'your-product-role' space = get_by_name('{0}/spaces/all'.format(octopus_server_uri), space_name) target = get_by_name('{0}/{1}/machines/all'.format(octopus_server_uri, space['Id']), target_name) target['Roles'].append(target_role) uri = '{0}/{1}/machines/{2}'.format(octopus_server_uri, space['Id'], target['Id']) response = requests.put(uri, headers=headers, json=target) response.raise_for_status()
src/visitpy/visit_flow/flow/src/core/__init__.py
visit-dav/vis
226
11137144
<filename>src/visitpy/visit_flow/flow/src/core/__init__.py<gh_stars>100-1000 # Copyright (c) Lawrence Livermore National Security, LLC and other VisIt # Project developers. See the top-level LICENSE file for dates and other # details. No copyright assignment is required to contribute to VisIt. """ file: __init__.py author: <NAME> <<EMAIL>> created: 10/14/2010 description: Init for flow.core. """ from .common import * from .registry import * from .filter_graph import * from .workspace import * from .state_control import * from .property_tree import * from . import errors
modules/tools/record_parse_save/parse_radar.py
jzjonah/apollo
22,688
11137151
<filename>modules/tools/record_parse_save/parse_radar.py #!/usr/bin/env python3 ############################################################################### # Copyright 2018 The Apollo Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### """ function to parse radar data from *.record files, created using Apollo-Auto parsed data is saved to *.txt file, for each scan currently implementation for: * Continental ARS-408 radar """ import json import os import sys from cyber.python.cyber_py3 import cyber from cyber.python.cyber_py3 import record from modules.drivers.proto.conti_radar_pb2 import ContiRadar class RadarMessageConti408(object): def __init__(self): self.radarDetectionList = [] self.timestamp_sec = None self.num_of_detections = None self.radar_module = None self.sequence_num = None self.radar_channel = None self.additional_notes = None def toJSON(self): return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True, indent=4) class ContiRadarARS408Detection(object): def __init__(self): self.clusterortrack = None self.obstacle_id = None self.longitude_dist = None self.lateral_dist = None self.longitude_vel = None self.lateral_vel = None self.rcs = None self.dynprop = None self.longitude_dist_rms = None self.lateral_dist_rms = None self.longitude_vel_rms = None self.lateral_vel_rms = None self.probexist = None self.meas_state = None self.longitude_accel = None self.lateral_accel = None self.oritation_angle = None self.longitude_accel_rms = None self.lateral_accel_rms = None self.oritation_angle_rms = None self.length = None self.width = None self.obstacle_class = None def pull_conti_radar_detections(obs): """ file to convert structure from c++ to python format """ dets = ContiRadarARS408Detection() dets.clusterortrack = obs.clusterortrack dets.obstacle_id = obs.obstacle_id dets.longitude_dist = obs.longitude_dist dets.lateral_dist = obs.lateral_dist dets.longitude_vel = obs.longitude_vel dets.lateral_vel = obs.lateral_vel dets.rcs = obs.rcs dets.dynprop = obs.dynprop dets.longitude_dist_rms = obs.longitude_dist_rms dets.lateral_dist_rms = obs.lateral_dist_rms dets.longitude_vel_rms = obs.longitude_vel_rms dets.lateral_vel_rms = obs.lateral_vel_rms dets.probexist = obs.probexist dets.meas_state = obs.meas_state dets.longitude_accel = obs.longitude_accel dets.lateral_accel = obs.lateral_accel dets.oritation_angle = obs.oritation_angle dets.longitude_accel_rms = obs.longitude_accel_rms dets.lateral_accel_rms = obs.lateral_accel_rms dets.oritation_angle_rms = obs.oritation_angle_rms dets.length = obs.length dets.width = obs.width dets.obstacle_class = obs.obstacle_class return dets def parse_data(channelname, msg, out_folder): """ parser for record-file data from continental ars-408 radar """ msg_contiradar = ContiRadar() msg_contiradar.ParseFromString(msg) n = len(msg_contiradar.contiobs) detections = [] radar_msg = RadarMessageConti408() head_msg = msg_contiradar.contiobs[0].header radar_msg.timestamp_sec = head_msg.timestamp_sec radar_msg.num_of_detections = n radar_msg.radar_module = head_msg.module_name radar_msg.sequence_num = head_msg.sequence_num radar_msg.radar_channel = channelname for i in range(len(msg_contiradar.contiobs)): detections.append(pull_conti_radar_detections(msg_contiradar.contiobs[i])) radar_msg.radarDetectionList = detections json_data = radar_msg.toJSON() tstamp = json_data.split()[-2].ljust(20, '0') # write this scan to file scan_filename = "radar_scan_" + tstamp.replace('.', '_') + ".txt" with open(out_folder + scan_filename, 'w') as outfile: outfile.write(json_data) return tstamp
qiskit/circuit/library/generalized_gates/pauli.py
Roshan-Thomas/qiskit-terra
1,456
11137204
# This code is part of Qiskit. # # (C) Copyright IBM 2020 # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Simulator command to perform multiple pauli gates in a single pass """ from qiskit.circuit.quantumregister import QuantumRegister from qiskit.circuit.library.standard_gates.x import XGate from qiskit.circuit.library.standard_gates.y import YGate from qiskit.circuit.library.standard_gates.z import ZGate from qiskit.circuit.gate import Gate from qiskit.circuit.exceptions import CircuitError class PauliGate(Gate): r"""A multi-qubit Pauli gate. This gate exists for optimization purposes for the quantum statevector simulation, since applying multiple pauli gates to different qubits at once can be done via a single pass on the statevector. The functionality is equivalent to applying the pauli gates sequentially using standard Qiskit gates """ def __init__(self, label): super().__init__("pauli", len(label), [label]) def _define(self): """ gate pauli (p1 a1,...,pn an) { p1 a1; ... ; pn an; } """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit gates = {"X": XGate, "Y": YGate, "Z": ZGate} q = QuantumRegister(len(self.params[0]), "q") qc = QuantumCircuit(q, name=f"{self.name}({self.params[0]})") paulis = self.params[0] rules = [(gates[p](), [q[i]], []) for (i, p) in enumerate(reversed(paulis)) if p != "I"] qc._data = rules self.definition = qc def inverse(self): r"""Return inverted pauli gate (itself).""" return PauliGate(self.params[0]) # self-inverse def __array__(self, dtype=None): """Return a Numpy.array for the pauli gate. i.e. tensor product of the paulis""" # pylint: disable=cyclic-import from qiskit.quantum_info.operators import Pauli return Pauli(self.params[0]).__array__(dtype=dtype) def validate_parameter(self, parameter): if isinstance(parameter, str): if all(c in ["I", "X", "Y", "Z"] for c in parameter): return parameter else: raise CircuitError( f"Parameter string {parameter} should contain only 'I', 'X', 'Y', 'Z' characters" ) else: raise CircuitError( f"Parameter {parameter} should be a string of 'I', 'X', 'Y', 'Z' characters" )
test/sample.py
vlcinsky/nameko
3,425
11137209
<filename>test/sample.py<gh_stars>1000+ import logging from nameko.rpc import rpc log = logging.getLogger('test.sample') class Service(object): name = "service" @rpc def ping(self): log.info('ping!')
venv/Lib/site-packages/scipy/linalg/tests/test_solvers.py
unbun/snake.ai
6,989
11137220
from __future__ import division, print_function, absolute_import import os import numpy as np from numpy.testing import assert_array_almost_equal import pytest from pytest import raises as assert_raises from scipy.linalg import solve_sylvester from scipy.linalg import solve_continuous_lyapunov, solve_discrete_lyapunov from scipy.linalg import solve_continuous_are, solve_discrete_are from scipy.linalg import block_diag, solve, LinAlgError def _load_data(name): """ Load npz data file under data/ Returns a copy of the data, rather than keeping the npz file open. """ filename = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'data', name) with np.load(filename) as f: return dict(f.items()) class TestSolveLyapunov(object): cases = [ (np.array([[1, 2], [3, 4]]), np.array([[9, 10], [11, 12]])), # a, q all complex. (np.array([[1.0+1j, 2.0], [3.0-4.0j, 5.0]]), np.array([[2.0-2j, 2.0+2j], [-1.0-1j, 2.0]])), # a real; q complex. (np.array([[1.0, 2.0], [3.0, 5.0]]), np.array([[2.0-2j, 2.0+2j], [-1.0-1j, 2.0]])), # a complex; q real. (np.array([[1.0+1j, 2.0], [3.0-4.0j, 5.0]]), np.array([[2.0, 2.0], [-1.0, 2.0]])), # An example from Kitagawa, 1977 (np.array([[3, 9, 5, 1, 4], [1, 2, 3, 8, 4], [4, 6, 6, 6, 3], [1, 5, 2, 0, 7], [5, 3, 3, 1, 5]]), np.array([[2, 4, 1, 0, 1], [4, 1, 0, 2, 0], [1, 0, 3, 0, 3], [0, 2, 0, 1, 0], [1, 0, 3, 0, 4]])), # Companion matrix example. a complex; q real; a.shape[0] = 11 (np.array([[0.100+0.j, 0.091+0.j, 0.082+0.j, 0.073+0.j, 0.064+0.j, 0.055+0.j, 0.046+0.j, 0.037+0.j, 0.028+0.j, 0.019+0.j, 0.010+0.j], [1.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j], [0.000+0.j, 1.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j], [0.000+0.j, 0.000+0.j, 1.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j], [0.000+0.j, 0.000+0.j, 0.000+0.j, 1.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j], [0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 1.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j], [0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 1.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j], [0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 1.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j], [0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 1.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j], [0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 1.000+0.j, 0.000+0.j, 0.000+0.j], [0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 1.000+0.j, 0.000+0.j]]), np.eye(11)), # https://github.com/scipy/scipy/issues/4176 (np.matrix([[0, 1], [-1/2, -1]]), (np.matrix([0, 3]).T * np.matrix([0, 3]).T.T)), # https://github.com/scipy/scipy/issues/4176 (np.matrix([[0, 1], [-1/2, -1]]), (np.array(np.matrix([0, 3]).T * np.matrix([0, 3]).T.T))), ] def test_continuous_squareness_and_shape(self): nsq = np.ones((3, 2)) sq = np.eye(3) assert_raises(ValueError, solve_continuous_lyapunov, nsq, sq) assert_raises(ValueError, solve_continuous_lyapunov, sq, nsq) assert_raises(ValueError, solve_continuous_lyapunov, sq, np.eye(2)) def check_continuous_case(self, a, q): x = solve_continuous_lyapunov(a, q) assert_array_almost_equal( np.dot(a, x) + np.dot(x, a.conj().transpose()), q) def check_discrete_case(self, a, q, method=None): x = solve_discrete_lyapunov(a, q, method=method) assert_array_almost_equal( np.dot(np.dot(a, x), a.conj().transpose()) - x, -1.0*q) def test_cases(self): for case in self.cases: self.check_continuous_case(case[0], case[1]) self.check_discrete_case(case[0], case[1]) self.check_discrete_case(case[0], case[1], method='direct') self.check_discrete_case(case[0], case[1], method='bilinear') def test_solve_continuous_are(): mat6 = _load_data('carex_6_data.npz') mat15 = _load_data('carex_15_data.npz') mat18 = _load_data('carex_18_data.npz') mat19 = _load_data('carex_19_data.npz') mat20 = _load_data('carex_20_data.npz') cases = [ # Carex examples taken from (with default parameters): # [1] P.BENNER, <NAME>, <NAME>: 'A Collection of Benchmark # Examples for the Numerical Solution of Algebraic Riccati # Equations II: Continuous-Time Case', Tech. Report SPC 95_23, # Fak. f. Mathematik, TU Chemnitz-Zwickau (Germany), 1995. # # The format of the data is (a, b, q, r, knownfailure), where # knownfailure is None if the test passes or a string # indicating the reason for failure. # # Test Case 0: carex #1 (np.diag([1.], 1), np.array([[0], [1]]), block_diag(1., 2.), 1, None), # Test Case 1: carex #2 (np.array([[4, 3], [-4.5, -3.5]]), np.array([[1], [-1]]), np.array([[9, 6], [6, 4.]]), 1, None), # Test Case 2: carex #3 (np.array([[0, 1, 0, 0], [0, -1.89, 0.39, -5.53], [0, -0.034, -2.98, 2.43], [0.034, -0.0011, -0.99, -0.21]]), np.array([[0, 0], [0.36, -1.6], [-0.95, -0.032], [0.03, 0]]), np.array([[2.313, 2.727, 0.688, 0.023], [2.727, 4.271, 1.148, 0.323], [0.688, 1.148, 0.313, 0.102], [0.023, 0.323, 0.102, 0.083]]), np.eye(2), None), # Test Case 3: carex #4 (np.array([[-0.991, 0.529, 0, 0, 0, 0, 0, 0], [0.522, -1.051, 0.596, 0, 0, 0, 0, 0], [0, 0.522, -1.118, 0.596, 0, 0, 0, 0], [0, 0, 0.522, -1.548, 0.718, 0, 0, 0], [0, 0, 0, 0.922, -1.64, 0.799, 0, 0], [0, 0, 0, 0, 0.922, -1.721, 0.901, 0], [0, 0, 0, 0, 0, 0.922, -1.823, 1.021], [0, 0, 0, 0, 0, 0, 0.922, -1.943]]), np.array([[3.84, 4.00, 37.60, 3.08, 2.36, 2.88, 3.08, 3.00], [-2.88, -3.04, -2.80, -2.32, -3.32, -3.82, -4.12, -3.96]] ).T * 0.001, np.array([[1.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.1], [0.0, 1.0, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.5, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.5, 0.1, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0], [0.0, 0.0, 0.5, 0.0, 0.0, 0.1, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.0], [0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1]]), np.eye(2), None), # Test Case 4: carex #5 (np.array( [[-4.019, 5.120, 0., 0., -2.082, 0., 0., 0., 0.870], [-0.346, 0.986, 0., 0., -2.340, 0., 0., 0., 0.970], [-7.909, 15.407, -4.069, 0., -6.450, 0., 0., 0., 2.680], [-21.816, 35.606, -0.339, -3.870, -17.800, 0., 0., 0., 7.390], [-60.196, 98.188, -7.907, 0.340, -53.008, 0., 0., 0., 20.400], [0, 0, 0, 0, 94.000, -147.200, 0., 53.200, 0.], [0, 0, 0, 0, 0, 94.000, -147.200, 0, 0], [0, 0, 0, 0, 0, 12.800, 0.000, -31.600, 0], [0, 0, 0, 0, 12.800, 0.000, 0.000, 18.800, -31.600]]), np.array([[0.010, -0.011, -0.151], [0.003, -0.021, 0.000], [0.009, -0.059, 0.000], [0.024, -0.162, 0.000], [0.068, -0.445, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000]]), np.eye(9), np.eye(3), None), # Test Case 5: carex #6 (mat6['A'], mat6['B'], mat6['Q'], mat6['R'], None), # Test Case 6: carex #7 (np.array([[1, 0], [0, -2.]]), np.array([[1e-6], [0]]), np.ones((2, 2)), 1., 'Bad residual accuracy'), # Test Case 7: carex #8 (block_diag(-0.1, -0.02), np.array([[0.100, 0.000], [0.001, 0.010]]), np.array([[100, 1000], [1000, 10000]]), np.ones((2, 2)) + block_diag(1e-6, 0), None), # Test Case 8: carex #9 (np.array([[0, 1e6], [0, 0]]), np.array([[0], [1.]]), np.eye(2), 1., None), # Test Case 9: carex #10 (np.array([[1.0000001, 1], [1., 1.0000001]]), np.eye(2), np.eye(2), np.eye(2), None), # Test Case 10: carex #11 (np.array([[3, 1.], [4, 2]]), np.array([[1], [1]]), np.array([[-11, -5], [-5, -2.]]), 1., None), # Test Case 11: carex #12 (np.array([[7000000., 2000000., -0.], [2000000., 6000000., -2000000.], [0., -2000000., 5000000.]]) / 3, np.eye(3), np.array([[1., -2., -2.], [-2., 1., -2.], [-2., -2., 1.]]).dot( np.diag([1e-6, 1, 1e6])).dot( np.array([[1., -2., -2.], [-2., 1., -2.], [-2., -2., 1.]])) / 9, np.eye(3) * 1e6, 'Bad Residual Accuracy'), # Test Case 12: carex #13 (np.array([[0, 0.4, 0, 0], [0, 0, 0.345, 0], [0, -0.524e6, -0.465e6, 0.262e6], [0, 0, 0, -1e6]]), np.array([[0, 0, 0, 1e6]]).T, np.diag([1, 0, 1, 0]), 1., None), # Test Case 13: carex #14 (np.array([[-1e-6, 1, 0, 0], [-1, -1e-6, 0, 0], [0, 0, 1e-6, 1], [0, 0, -1, 1e-6]]), np.ones((4, 1)), np.ones((4, 4)), 1., None), # Test Case 14: carex #15 (mat15['A'], mat15['B'], mat15['Q'], mat15['R'], None), # Test Case 15: carex #16 (np.eye(64, 64, k=-1) + np.eye(64, 64)*(-2.) + np.rot90( block_diag(1, np.zeros((62, 62)), 1)) + np.eye(64, 64, k=1), np.eye(64), np.eye(64), np.eye(64), None), # Test Case 16: carex #17 (np.diag(np.ones((20, )), 1), np.flipud(np.eye(21, 1)), np.eye(21, 1) * np.eye(21, 1).T, 1, 'Bad Residual Accuracy'), # Test Case 17: carex #18 (mat18['A'], mat18['B'], mat18['Q'], mat18['R'], None), # Test Case 18: carex #19 (mat19['A'], mat19['B'], mat19['Q'], mat19['R'], 'Bad Residual Accuracy'), # Test Case 19: carex #20 (mat20['A'], mat20['B'], mat20['Q'], mat20['R'], 'Bad Residual Accuracy') ] # Makes the minimum precision requirements customized to the test. # Here numbers represent the number of decimals that agrees with zero # matrix when the solution x is plugged in to the equation. # # res = array([[8e-3,1e-16],[1e-16,1e-20]]) --> min_decimal[k] = 2 # # If the test is failing use "None" for that entry. # min_decimal = (14, 12, 13, 14, 11, 6, None, 5, 7, 14, 14, None, 9, 14, 13, 14, None, 12, None, None) def _test_factory(case, dec): """Checks if 0 = XA + A'X - XB(R)^{-1} B'X + Q is true""" a, b, q, r, knownfailure = case if knownfailure: pytest.xfail(reason=knownfailure) x = solve_continuous_are(a, b, q, r) res = x.dot(a) + a.conj().T.dot(x) + q out_fact = x.dot(b) res -= out_fact.dot(solve(np.atleast_2d(r), out_fact.conj().T)) assert_array_almost_equal(res, np.zeros_like(res), decimal=dec) for ind, case in enumerate(cases): _test_factory(case, min_decimal[ind]) def test_solve_discrete_are(): cases = [ # Darex examples taken from (with default parameters): # [1] P.BENNER, <NAME>, <NAME>: 'A Collection of Benchmark # Examples for the Numerical Solution of Algebraic Riccati # Equations II: Discrete-Time Case', Tech. Report SPC 95_23, # <NAME>, TU Chemnitz-Zwickau (Germany), 1995. # [2] <NAME>, <NAME>, <NAME>: 'Scaling of the # Discrete-Time Algebraic Riccati Equation to Enhance Stability # of the Schur Solution Method', IEEE Trans.Aut.Cont., vol.37(4) # # The format of the data is (a, b, q, r, knownfailure), where # knownfailure is None if the test passes or a string # indicating the reason for failure. # # TEST CASE 0 : Complex a; real b, q, r (np.array([[2, 1-2j], [0, -3j]]), np.array([[0], [1]]), np.array([[1, 0], [0, 2]]), np.array([[1]]), None), # TEST CASE 1 :Real a, q, r; complex b (np.array([[2, 1], [0, -1]]), np.array([[-2j], [1j]]), np.array([[1, 0], [0, 2]]), np.array([[1]]), None), # TEST CASE 2 : Real a, b; complex q, r (np.array([[3, 1], [0, -1]]), np.array([[1, 2], [1, 3]]), np.array([[1, 1+1j], [1-1j, 2]]), np.array([[2, -2j], [2j, 3]]), None), # TEST CASE 3 : User-reported gh-2251 (Trac #1732) (np.array([[0.63399379, 0.54906824, 0.76253406], [0.5404729, 0.53745766, 0.08731853], [0.27524045, 0.84922129, 0.4681622]]), np.array([[0.96861695], [0.05532739], [0.78934047]]), np.eye(3), np.eye(1), None), # TEST CASE 4 : darex #1 (np.array([[4, 3], [-4.5, -3.5]]), np.array([[1], [-1]]), np.array([[9, 6], [6, 4]]), np.array([[1]]), None), # TEST CASE 5 : darex #2 (np.array([[0.9512, 0], [0, 0.9048]]), np.array([[4.877, 4.877], [-1.1895, 3.569]]), np.array([[0.005, 0], [0, 0.02]]), np.array([[1/3, 0], [0, 3]]), None), # TEST CASE 6 : darex #3 (np.array([[2, -1], [1, 0]]), np.array([[1], [0]]), np.array([[0, 0], [0, 1]]), np.array([[0]]), None), # TEST CASE 7 : darex #4 (skipped the gen. Ric. term S) (np.array([[0, 1], [0, -1]]), np.array([[1, 0], [2, 1]]), np.array([[-4, -4], [-4, 7]]) * (1/11), np.array([[9, 3], [3, 1]]), None), # TEST CASE 8 : darex #5 (np.array([[0, 1], [0, 0]]), np.array([[0], [1]]), np.array([[1, 2], [2, 4]]), np.array([[1]]), None), # TEST CASE 9 : darex #6 (np.array([[0.998, 0.067, 0, 0], [-.067, 0.998, 0, 0], [0, 0, 0.998, 0.153], [0, 0, -.153, 0.998]]), np.array([[0.0033, 0.0200], [0.1000, -.0007], [0.0400, 0.0073], [-.0028, 0.1000]]), np.array([[1.87, 0, 0, -0.244], [0, 0.744, 0.205, 0], [0, 0.205, 0.589, 0], [-0.244, 0, 0, 1.048]]), np.eye(2), None), # TEST CASE 10 : darex #7 (np.array([[0.984750, -.079903, 0.0009054, -.0010765], [0.041588, 0.998990, -.0358550, 0.0126840], [-.546620, 0.044916, -.3299100, 0.1931800], [2.662400, -.100450, -.9245500, -.2632500]]), np.array([[0.0037112, 0.0007361], [-.0870510, 9.3411e-6], [-1.198440, -4.1378e-4], [-3.192700, 9.2535e-4]]), np.eye(4)*1e-2, np.eye(2), None), # TEST CASE 11 : darex #8 (np.array([[-0.6000000, -2.2000000, -3.6000000, -5.4000180], [1.0000000, 0.6000000, 0.8000000, 3.3999820], [0.0000000, 1.0000000, 1.8000000, 3.7999820], [0.0000000, 0.0000000, 0.0000000, -0.9999820]]), np.array([[1.0, -1.0, -1.0, -1.0], [0.0, 1.0, -1.0, -1.0], [0.0, 0.0, 1.0, -1.0], [0.0, 0.0, 0.0, 1.0]]), np.array([[2, 1, 3, 6], [1, 2, 2, 5], [3, 2, 6, 11], [6, 5, 11, 22]]), np.eye(4), None), # TEST CASE 12 : darex #9 (np.array([[95.4070, 1.9643, 0.3597, 0.0673, 0.0190], [40.8490, 41.3170, 16.0840, 4.4679, 1.1971], [12.2170, 26.3260, 36.1490, 15.9300, 12.3830], [4.1118, 12.8580, 27.2090, 21.4420, 40.9760], [0.1305, 0.5808, 1.8750, 3.6162, 94.2800]]) * 0.01, np.array([[0.0434, -0.0122], [2.6606, -1.0453], [3.7530, -5.5100], [3.6076, -6.6000], [0.4617, -0.9148]]) * 0.01, np.eye(5), np.eye(2), None), # TEST CASE 13 : darex #10 (np.kron(np.eye(2), np.diag([1, 1], k=1)), np.kron(np.eye(2), np.array([[0], [0], [1]])), np.array([[1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 1, -1, 0], [0, 0, 0, -1, 1, 0], [0, 0, 0, 0, 0, 0]]), np.array([[3, 0], [0, 1]]), None), # TEST CASE 14 : darex #11 (0.001 * np.array( [[870.1, 135.0, 11.59, .5014, -37.22, .3484, 0, 4.242, 7.249], [76.55, 897.4, 12.72, 0.5504, -40.16, .3743, 0, 4.53, 7.499], [-127.2, 357.5, 817, 1.455, -102.8, .987, 0, 11.85, 18.72], [-363.5, 633.9, 74.91, 796.6, -273.5, 2.653, 0, 31.72, 48.82], [-960, 1645.9, -128.9, -5.597, 71.42, 7.108, 0, 84.52, 125.9], [-664.4, 112.96, -88.89, -3.854, 84.47, 13.6, 0, 144.3, 101.6], [-410.2, 693, -54.71, -2.371, 66.49, 12.49, .1063, 99.97, 69.67], [-179.9, 301.7, -23.93, -1.035, 60.59, 22.16, 0, 213.9, 35.54], [-345.1, 580.4, -45.96, -1.989, 105.6, 19.86, 0, 219.1, 215.2]]), np.array([[4.7600, -0.5701, -83.6800], [0.8790, -4.7730, -2.7300], [1.4820, -13.1200, 8.8760], [3.8920, -35.1300, 24.8000], [10.3400, -92.7500, 66.8000], [7.2030, -61.5900, 38.3400], [4.4540, -36.8300, 20.2900], [1.9710, -15.5400, 6.9370], [3.7730, -30.2800, 14.6900]]) * 0.001, np.diag([50, 0, 0, 0, 50, 0, 0, 0, 0]), np.eye(3), None), # TEST CASE 15 : darex #12 - numerically least accurate example (np.array([[0, 1e6], [0, 0]]), np.array([[0], [1]]), np.eye(2), np.array([[1]]), None), # TEST CASE 16 : darex #13 (np.array([[16, 10, -2], [10, 13, -8], [-2, -8, 7]]) * (1/9), np.eye(3), 1e6 * np.eye(3), 1e6 * np.eye(3), None), # TEST CASE 17 : darex #14 (np.array([[1 - 1/1e8, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]]), np.array([[1e-08], [0], [0], [0]]), np.diag([0, 0, 0, 1]), np.array([[0.25]]), None), # TEST CASE 18 : darex #15 (np.eye(100, k=1), np.flipud(np.eye(100, 1)), np.eye(100), np.array([[1]]), None) ] # Makes the minimum precision requirements customized to the test. # Here numbers represent the number of decimals that agrees with zero # matrix when the solution x is plugged in to the equation. # # res = array([[8e-3,1e-16],[1e-16,1e-20]]) --> min_decimal[k] = 2 # # If the test is failing use "None" for that entry. # min_decimal = (12, 14, 13, 14, 13, 16, 18, 14, 15, 13, 14, 13, 13, 14, 12, 2, 5, 6, 10) def _test_factory(case, dec): """Checks if X = A'XA-(A'XB)(R+B'XB)^-1(B'XA)+Q) is true""" a, b, q, r, knownfailure = case if knownfailure: pytest.xfail(reason=knownfailure) x = solve_discrete_are(a, b, q, r) res = a.conj().T.dot(x.dot(a)) - x + q res -= a.conj().T.dot(x.dot(b)).dot( solve(r+b.conj().T.dot(x.dot(b)), b.conj().T).dot(x.dot(a)) ) assert_array_almost_equal(res, np.zeros_like(res), decimal=dec) for ind, case in enumerate(cases): _test_factory(case, min_decimal[ind]) # An infeasible example taken from https://arxiv.org/abs/1505.04861v1 A = np.triu(np.ones((3, 3))) A[0, 1] = -1 B = np.array([[1, 1, 0], [0, 0, 1]]).T Q = -2*np.ones_like(A) + np.diag([8, -1, -1.9]) R = np.diag([-10, 0.1]) assert_raises(LinAlgError, solve_continuous_are, A, B, Q, R) def test_solve_generalized_continuous_are(): cases = [ # Two random examples differ by s term # in the absence of any literature for demanding examples. (np.array([[2.769230e-01, 8.234578e-01, 9.502220e-01], [4.617139e-02, 6.948286e-01, 3.444608e-02], [9.713178e-02, 3.170995e-01, 4.387444e-01]]), np.array([[3.815585e-01, 1.868726e-01], [7.655168e-01, 4.897644e-01], [7.951999e-01, 4.455862e-01]]), np.eye(3), np.eye(2), np.array([[6.463130e-01, 2.760251e-01, 1.626117e-01], [7.093648e-01, 6.797027e-01, 1.189977e-01], [7.546867e-01, 6.550980e-01, 4.983641e-01]]), np.zeros((3, 2)), None), (np.array([[2.769230e-01, 8.234578e-01, 9.502220e-01], [4.617139e-02, 6.948286e-01, 3.444608e-02], [9.713178e-02, 3.170995e-01, 4.387444e-01]]), np.array([[3.815585e-01, 1.868726e-01], [7.655168e-01, 4.897644e-01], [7.951999e-01, 4.455862e-01]]), np.eye(3), np.eye(2), np.array([[6.463130e-01, 2.760251e-01, 1.626117e-01], [7.093648e-01, 6.797027e-01, 1.189977e-01], [7.546867e-01, 6.550980e-01, 4.983641e-01]]), np.ones((3, 2)), None) ] min_decimal = (10, 10) def _test_factory(case, dec): """Checks if X = A'XA-(A'XB)(R+B'XB)^-1(B'XA)+Q) is true""" a, b, q, r, e, s, knownfailure = case if knownfailure: pytest.xfail(reason=knownfailure) x = solve_continuous_are(a, b, q, r, e, s) res = a.conj().T.dot(x.dot(e)) + e.conj().T.dot(x.dot(a)) + q out_fact = e.conj().T.dot(x).dot(b) + s res -= out_fact.dot(solve(np.atleast_2d(r), out_fact.conj().T)) assert_array_almost_equal(res, np.zeros_like(res), decimal=dec) for ind, case in enumerate(cases): _test_factory(case, min_decimal[ind]) def test_solve_generalized_discrete_are(): mat20170120 = _load_data('gendare_20170120_data.npz') cases = [ # Two random examples differ by s term # in the absence of any literature for demanding examples. (np.array([[2.769230e-01, 8.234578e-01, 9.502220e-01], [4.617139e-02, 6.948286e-01, 3.444608e-02], [9.713178e-02, 3.170995e-01, 4.387444e-01]]), np.array([[3.815585e-01, 1.868726e-01], [7.655168e-01, 4.897644e-01], [7.951999e-01, 4.455862e-01]]), np.eye(3), np.eye(2), np.array([[6.463130e-01, 2.760251e-01, 1.626117e-01], [7.093648e-01, 6.797027e-01, 1.189977e-01], [7.546867e-01, 6.550980e-01, 4.983641e-01]]), np.zeros((3, 2)), None), (np.array([[2.769230e-01, 8.234578e-01, 9.502220e-01], [4.617139e-02, 6.948286e-01, 3.444608e-02], [9.713178e-02, 3.170995e-01, 4.387444e-01]]), np.array([[3.815585e-01, 1.868726e-01], [7.655168e-01, 4.897644e-01], [7.951999e-01, 4.455862e-01]]), np.eye(3), np.eye(2), np.array([[6.463130e-01, 2.760251e-01, 1.626117e-01], [7.093648e-01, 6.797027e-01, 1.189977e-01], [7.546867e-01, 6.550980e-01, 4.983641e-01]]), np.ones((3, 2)), None), # user-reported (under PR-6616) 20-Jan-2017 # tests against the case where E is None but S is provided (mat20170120['A'], mat20170120['B'], mat20170120['Q'], mat20170120['R'], None, mat20170120['S'], None), ] min_decimal = (11, 11, 16) def _test_factory(case, dec): """Checks if X = A'XA-(A'XB)(R+B'XB)^-1(B'XA)+Q) is true""" a, b, q, r, e, s, knownfailure = case if knownfailure: pytest.xfail(reason=knownfailure) x = solve_discrete_are(a, b, q, r, e, s) if e is None: e = np.eye(a.shape[0]) if s is None: s = np.zeros_like(b) res = a.conj().T.dot(x.dot(a)) - e.conj().T.dot(x.dot(e)) + q res -= (a.conj().T.dot(x.dot(b)) + s).dot( solve(r+b.conj().T.dot(x.dot(b)), (b.conj().T.dot(x.dot(a)) + s.conj().T) ) ) assert_array_almost_equal(res, np.zeros_like(res), decimal=dec) for ind, case in enumerate(cases): _test_factory(case, min_decimal[ind]) def test_are_validate_args(): def test_square_shape(): nsq = np.ones((3, 2)) sq = np.eye(3) for x in (solve_continuous_are, solve_discrete_are): assert_raises(ValueError, x, nsq, 1, 1, 1) assert_raises(ValueError, x, sq, sq, nsq, 1) assert_raises(ValueError, x, sq, sq, sq, nsq) assert_raises(ValueError, x, sq, sq, sq, sq, nsq) def test_compatible_sizes(): nsq = np.ones((3, 2)) sq = np.eye(4) for x in (solve_continuous_are, solve_discrete_are): assert_raises(ValueError, x, sq, nsq, 1, 1) assert_raises(ValueError, x, sq, sq, sq, sq, sq, nsq) assert_raises(ValueError, x, sq, sq, np.eye(3), sq) assert_raises(ValueError, x, sq, sq, sq, np.eye(3)) assert_raises(ValueError, x, sq, sq, sq, sq, np.eye(3)) def test_symmetry(): nsym = np.arange(9).reshape(3, 3) sym = np.eye(3) for x in (solve_continuous_are, solve_discrete_are): assert_raises(ValueError, x, sym, sym, nsym, sym) assert_raises(ValueError, x, sym, sym, sym, nsym) def test_singularity(): sing = 1e12 * np.ones((3, 3)) sing[2, 2] -= 1 sq = np.eye(3) for x in (solve_continuous_are, solve_discrete_are): assert_raises(ValueError, x, sq, sq, sq, sq, sing) assert_raises(ValueError, solve_continuous_are, sq, sq, sq, sing) def test_finiteness(): nm = np.ones((2, 2)) * np.nan sq = np.eye(2) for x in (solve_continuous_are, solve_discrete_are): assert_raises(ValueError, x, nm, sq, sq, sq) assert_raises(ValueError, x, sq, nm, sq, sq) assert_raises(ValueError, x, sq, sq, nm, sq) assert_raises(ValueError, x, sq, sq, sq, nm) assert_raises(ValueError, x, sq, sq, sq, sq, nm) assert_raises(ValueError, x, sq, sq, sq, sq, sq, nm) class TestSolveSylvester(object): cases = [ # a, b, c all real. (np.array([[1, 2], [0, 4]]), np.array([[5, 6], [0, 8]]), np.array([[9, 10], [11, 12]])), # a, b, c all real, 4x4. a and b have non-trival 2x2 blocks in their # quasi-triangular form. (np.array([[1.0, 0, 0, 0], [0, 1.0, 2.0, 0.0], [0, 0, 3.0, -4], [0, 0, 2, 5]]), np.array([[2.0, 0, 0, 1.0], [0, 1.0, 0.0, 0.0], [0, 0, 1.0, -1], [0, 0, 1, 1]]), np.array([[1.0, 0, 0, 0], [0, 1.0, 0, 0], [0, 0, 1.0, 0], [0, 0, 0, 1.0]])), # a, b, c all complex. (np.array([[1.0+1j, 2.0], [3.0-4.0j, 5.0]]), np.array([[-1.0, 2j], [3.0, 4.0]]), np.array([[2.0-2j, 2.0+2j], [-1.0-1j, 2.0]])), # a and b real; c complex. (np.array([[1.0, 2.0], [3.0, 5.0]]), np.array([[-1.0, 0], [3.0, 4.0]]), np.array([[2.0-2j, 2.0+2j], [-1.0-1j, 2.0]])), # a and c complex; b real. (np.array([[1.0+1j, 2.0], [3.0-4.0j, 5.0]]), np.array([[-1.0, 0], [3.0, 4.0]]), np.array([[2.0-2j, 2.0+2j], [-1.0-1j, 2.0]])), # a complex; b and c real. (np.array([[1.0+1j, 2.0], [3.0-4.0j, 5.0]]), np.array([[-1.0, 0], [3.0, 4.0]]), np.array([[2.0, 2.0], [-1.0, 2.0]])), # not square matrices, real (np.array([[8, 1, 6], [3, 5, 7], [4, 9, 2]]), np.array([[2, 3], [4, 5]]), np.array([[1, 2], [3, 4], [5, 6]])), # not square matrices, complex (np.array([[8, 1j, 6+2j], [3, 5, 7], [4, 9, 2]]), np.array([[2, 3], [4, 5-1j]]), np.array([[1, 2j], [3, 4j], [5j, 6+7j]])), ] def check_case(self, a, b, c): x = solve_sylvester(a, b, c) assert_array_almost_equal(np.dot(a, x) + np.dot(x, b), c) def test_cases(self): for case in self.cases: self.check_case(case[0], case[1], case[2]) def test_trivial(self): a = np.array([[1.0, 0.0], [0.0, 1.0]]) b = np.array([[1.0]]) c = np.array([2.0, 2.0]).reshape(-1, 1) x = solve_sylvester(a, b, c) assert_array_almost_equal(x, np.array([1.0, 1.0]).reshape(-1, 1))
ote_sdk/ote_sdk/tests/entities/test_id.py
ntyukaev/training_extensions
775
11137263
<reponame>ntyukaev/training_extensions<gh_stars>100-1000 # Copyright (C) 2021-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 # import pytest from bson import ObjectId from ote_sdk.entities.id import ID from ote_sdk.tests.constants.ote_sdk_components import OteSdkComponent from ote_sdk.tests.constants.requirements import Requirements @pytest.mark.components(OteSdkComponent.OTE_SDK) class TestID: @pytest.mark.priority_medium @pytest.mark.unit @pytest.mark.reqids(Requirements.REQ_1) def test_id(self): """ <b>Description:</b> Check ID class object initialization <b>Input data:</b> ID object with specified representation parameter <b>Expected results:</b> Test passes if ID object representation property and __repr__ method return expected values <b>Steps</b> 1. Check representation property and __repr__ method for ID object with not specified representation parameter 2. Check representation property and __repr__ method for ID object with ObjectId class representation parameter 3. Check representation property and __repr__ method for ID object with str type representation parameter """ # Scenario for ID object with not specified representation parameter no_representation_id = ID() assert no_representation_id.representation == "" assert repr(no_representation_id.representation) == "ID()" # Scenario for ID object with ObjectId class representation parameter expected_oid = "61a8b869fb7665916a39eb95" oid_representation = ObjectId(expected_oid) oid_representation_id = ID(oid_representation) assert oid_representation_id.representation == "61a8b869fb7665916a39eb95" assert ( repr(oid_representation_id.representation) == "ID(61a8b869fb7665916a39eb95)" ) # Scenario for ID object with str-type representation parameter str_representation = " String-type representation ID_1 " str_representation_id = ID(str_representation) # Leading and trailing whitespaces should be removed, only uppercase letters should be replaced by lowercase assert str_representation_id.representation == "string-type representation id_1" assert repr(str_representation_id) == "ID(string-type representation id_1)"
library/src/greppo/layers/tile_layer.py
greppo-io/greppo
221
11137291
<gh_stars>100-1000 from dataclasses import dataclass import uuid @dataclass class TileLayerComponent: def __init__( self, url: str, name: str, description: str = '', visible: bool = True, opacity: float = 1.0, ): self.url = url self.name = name self.description = description self.visible = visible self.opacity = opacity def convert_to_dataclass(self): id = uuid.uuid4().hex return TileLayer(id=id, url=self.url, name=self.name, description=self.description, visible=self.visible, opacity=self.opacity) @dataclass() class TileLayer: id: str url: str name: str description: str visible: bool opacity: float
study/vowel_spectrum.py
Kshitiz-Bansal/wavetorch
470
11137302
"""Generate plot of the mean vowel sample spectra """ import torch import wavetorch from torch.utils.data import TensorDataset, DataLoader import argparse import yaml import time import os import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib.gridspec import GridSpec import pandas as pd import librosa try: from helpers.plot import mpl_set_latex mpl_set_latex() except ImportError: import warnings warnings.warn('The helpers package is unavailable', ImportWarning) n_fft = 2048 sr = 10000 vowels = ['ae', 'ei', 'iy'] colors = ['#fcaf3e', '#ad7fa8', '#ef2929'] # vowels = ['ae', 'eh', 'ih', 'oo', 'ah', 'ei', 'iy', 'uh', 'aw', 'er', 'oa', 'uw'] gender = 'both' fig,ax=plt.subplots(1,1,constrained_layout=True, figsize=(3.5,2.75)) for i, vowel in enumerate(vowels): X, _, _ = wavetorch.data.load_all_vowels([vowel], gender=gender, sr=sr) X_ft = [np.abs(librosa.core.stft(Xi.numpy(),n_fft=n_fft)) for Xi in X] X_ft_int = np.vstack([Xi.sum(axis=1) for Xi in X_ft]) X_ft_mean = np.mean(X_ft_int,axis=0) X_ft_std = np.std(X_ft_int,axis=0) ax.fill_between(librosa.core.fft_frequencies(sr=sr, n_fft=n_fft), X_ft_mean, alpha=0.30, color=colors[i], edgecolor="none", zorder=i ,lw=0) ax.plot(librosa.core.fft_frequencies(sr=sr, n_fft=n_fft), X_ft_mean, color=colors[i],zorder=i, label=vowel + ' vowel class', lw=1.0) # ax.plot(librosa.core.fft_frequencies(sr=sr, n_fft=n_fft), # X_ft_std, '-', # label=vowel + ' vowel class', color=colors[i], lw=1, zorder=i) # ax.set_xlim([0,5000]) # ax.set_ylim([0,13]) ax.set_xlabel("Frequency (Hz)") ax.set_ylabel("Mean energy spectrum (a.u.)") ax.legend() plt.show(block=False)
example/timestamp-as-a-service/services/web/app.py
fatash89/sanic
251
11137335
from datetime import datetime from flask import Flask, render_template from redis import Redis app = Flask(__name__) redis = Redis(host='redis', retry_on_timeout=True) @app.route('/') def index(): timestamp_id = redis.get('TIMESTAMP_ID') or 0 return render_template('index.html', timestamps=timestamp_id) if __name__ == '__main__': app.run(host='0.0.0.0', port=80)
jni-build/jni/include/tensorflow/contrib/learn/python/learn/tests/coordinated_session_test.py
rcelebi/android-elfali
680
11137353
# pylint: disable=g-bad-file-header # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for CoordinatedSession.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import threading import time import tensorflow as tf from tensorflow.contrib.learn.python.learn import coordinated_session def BusyWaitForCoordStop(coord): while not coord.should_stop(): time.sleep(0.001) class CoordinatedSessionTest(tf.test.TestCase): """CoordinatedSession tests.""" def test_properties(self): with self.test_session() as sess: tf.constant(0.0) coord = tf.train.Coordinator() coord_sess = coordinated_session.CoordinatedSession(sess, coord, []) self.assertEquals(sess.graph, coord_sess.graph) self.assertEquals(sess.sess_str, coord_sess.sess_str) def test_run(self): with self.test_session() as sess: c = tf.constant(0) v = tf.identity(c) coord = tf.train.Coordinator() coord_sess = coordinated_session.CoordinatedSession(sess, coord, []) self.assertEqual(42, coord_sess.run(v, feed_dict={c: 42})) def test_should_stop_on_close(self): with self.test_session() as sess: coord = tf.train.Coordinator() coord_sess = coordinated_session.CoordinatedSession(sess, coord, []) self.assertFalse(coord_sess.should_stop()) coord_sess.close() self.assertTrue(coord_sess.should_stop()) def test_should_stop_on_coord_stop(self): with self.test_session() as sess: coord = tf.train.Coordinator() coord_sess = coordinated_session.CoordinatedSession(sess, coord, []) self.assertFalse(coord_sess.should_stop()) coord.request_stop() self.assertTrue(coord_sess.should_stop()) def test_request_stop_on_exception(self): with self.test_session() as sess: c = tf.constant(0) v = tf.identity(c) coord = tf.train.Coordinator() coord_sess = coordinated_session.CoordinatedSession(sess, coord, []) self.assertFalse(coord_sess.should_stop()) self.assertEqual(0, coord_sess.run(c)) self.assertEqual(1, coord_sess.run(v, feed_dict={c: 1})) with self.assertRaisesRegexp(TypeError, 'None has invalid type'): coord_sess.run([None], feed_dict={c: 2}) self.assertTrue(coord.should_stop()) self.assertTrue(coord_sess.should_stop()) def test_stop_threads_on_exception(self): with self.test_session() as sess: c = tf.constant(0) v = tf.identity(c) coord = tf.train.Coordinator() threads = [threading.Thread(target=BusyWaitForCoordStop, args=(coord,)) for _ in range(3)] for t in threads: t.start() coord_sess = coordinated_session.CoordinatedSession(sess, coord, threads) self.assertFalse(coord_sess.should_stop()) for t in threads: self.assertTrue(t.is_alive()) self.assertEqual(0, coord_sess.run(c)) for t in threads: self.assertTrue(t.is_alive()) self.assertEqual(1, coord_sess.run(v, feed_dict={c: 1})) for t in threads: self.assertTrue(t.is_alive()) with self.assertRaisesRegexp(TypeError, 'None has invalid type'): coord_sess.run([None], feed_dict={c: 2}) for t in threads: self.assertFalse(t.is_alive()) self.assertTrue(coord.should_stop()) self.assertTrue(coord_sess.should_stop()) def test_stop_threads_on_close(self): with self.test_session() as sess: coord = tf.train.Coordinator() threads = [threading.Thread(target=BusyWaitForCoordStop, args=(coord,)) for _ in range(3)] for t in threads: t.start() coord_sess = coordinated_session.CoordinatedSession(sess, coord, threads) coord_sess.close() for t in threads: self.assertFalse(t.is_alive()) self.assertTrue(coord.should_stop()) self.assertTrue(coord_sess.should_stop()) if __name__ == '__main__': tf.test.main()
pundle.py
ksimmi/pundler
209
11137362
# encoding: utf-8 """ Data Model, start here to not get mad ===================================== Main entity will be distribution, like Flask. Per key Pundle tracks three state parts: 1. requirement, like Flask>0.12.2. 2. frozen version, like ==0.12.2 3. installed distributions, like [flask==0.12.2, flask==0.10.0] Requirement basically is from file, like requirements.txt, setup.py or Pipfile. This requirements have source like `requirements.txt`. And base requirements can have dependencies. This dependencies are turned to requirements too with source like `Flask-Admin << requirements.txt`. To track requirements we use `CustomReq` class. It can work with PyPi and VCS requirements. CustomReq can have `self.req = pkg_resources.Requirement` or custom vcs line. Distribution is one of VCSDist or pkg_resources.DistInfoDistribution. VCSDist is to track installed VCS packages and pkg_resources.DistInfoDistribution is for PyPi packages. All three states of distribution are tracked inside `RequirementState` object that includes info about requirement, frozen version and installed versions. `Suite` keeps state of all distributions like a dictionary of RequirentStates. To populate Suite and to parse all requirements, frozen versions and what we have installed pundle uses `Parser`. There is plenty of them - `Parser` that works with `requirements.txt`, `SetupParser` that works with `setup.py`, PipfileParser that works with Pipfile and Pipfile.lock. """ from __future__ import print_function import re try: from urllib.parse import urlparse, parse_qsl except ImportError: # pragma: no cover from urlparse import urlparse, parse_qsl from collections import defaultdict from base64 import b64encode, b64decode import platform import os.path as op import os from os import makedirs import stat import tempfile import shutil import subprocess import sys import shlex import json import hashlib import pkg_resources try: from pip import main as pip_exec except ImportError: from pip._internal import main as pip_exec from types import ModuleType if isinstance(pip_exec, ModuleType): pip_exec = pip_exec.main # TODO bundle own version of distlib. Perhaps try: from pip._vendor.distlib import locators except ImportError: # pragma: no cover from pip.vendor.distlib import locators try: str_types = (basestring,) except NameError: # pragma: no cover str_types = (str, bytes) try: pkg_resources_parse_version = pkg_resources.SetuptoolsVersion except AttributeError: # pragma: no cover pkg_resources_parse_version = pkg_resources.packaging.version.Version def print_message(*a, **kw): print(*a, **kw) class PundleException(Exception): pass def python_version_string(): """We use it to generate per python folder name, where we will install all packages. """ if platform.python_implementation() == 'PyPy': version_info = sys.pypy_version_info else: version_info = sys.version_info version_string = '{v.major}.{v.minor}.{v.micro}'.format(v=version_info) build, _ = platform.python_build() build = build.replace(':', '_') # windows do not understand `:` in path return '{}-{}-{}'.format(platform.python_implementation(), version_string, build) def parse_file(filename): """Helper to parse requirements.txt or frozen.txt. """ res = [] with open(filename) as f: for line in f: s = line.strip() if s and not s.startswith('#'): if s.startswith('-r'): continue if s.startswith('-e '): s = s[3:].strip() if parse_vcs_requirement(s): res.append(s) else: req = shlex.split(s, comments=True) res.append(req[0]) return res def test_vcs(req): """Checks if requirement line is for VCS. """ return '+' in req and req.index('+') == 3 def parse_vcs_requirement(req): """Parses VCS line to egg name, version etc. """ if '+' not in req: return None vcs, url = req.split('+', 1) if vcs not in ('git', 'svn', 'hg'): return None parsed_url = urlparse(url) parsed = dict(parse_qsl(parsed_url.fragment)) if 'egg' not in parsed: return None egg = parsed['egg'].rsplit('-', 1) if len(egg) > 1: try: pkg_resources_parse_version(egg[1]) except pkg_resources._vendor.packaging.version.InvalidVersion: return parsed['egg'].lower(), req, None return egg[0].lower(), req, egg[1] else: return parsed['egg'].lower(), req, None def parse_frozen_vcs(req): res = parse_vcs_requirement(req) if not res: return return res[0], res[1] class VCSDist(object): """ Represents installed VCS distribution. """ def __init__(self, directory): self.dir = directory name = op.split(directory)[-1] key, encoded = name.split('+', 1) self.key = key.lower() self.line = b64decode(encoded).decode('utf-8') egg, req, version = parse_vcs_requirement(self.line) version = version or '0.0.0' self.hashcmp = (pkg_resources_parse_version(version), -1, egg, self.dir) self.version = self.line self.pkg_resource = next(iter(pkg_resources.find_distributions(self.dir, True)), None) self.location = self.pkg_resource.location def requires(self, extras=[]): return self.pkg_resource.requires(extras=extras) def activate(self): return self.pkg_resource.activate() def __lt__(self, other): return self.hashcmp.__lt__(other.hashcmp) class CustomReq(object): """Represents PyPi or VCS requirement. Can locate and install it. """ def __init__(self, line, env, source=None): self.line = line self.egg = None if isinstance(line, pkg_resources.Requirement): self.req = line elif test_vcs(line): res = parse_vcs_requirement(line) if not res: raise PundleException('Bad url %r' % line) egg, req, version = res self.egg = egg self.req = None # pkg_resources.Requirement.parse(res) else: self.req = pkg_resources.Requirement.parse(line) self.sources = set([source]) self.envs = set() self.add_env(env) def __contains__(self, something): if self.req: return (something in self.req) elif self.egg: return something == self.line else: return False def __repr__(self): return '<CustomReq %r>' % self.__dict__ def why_str(self): if len(self.sources) < 2: return '{} << {}'.format(self.line, self.why_str_one(list(self.sources)[0])) causes = list(sorted(self.why_str_one(source) for source in self.sources)) return '{} << [{}]'.format(self.line, ' | '.join(causes)) def why_str_one(self, source): if isinstance(source, str_types): return source elif isinstance(source, CustomReq): return source.why_str() return '?' def adjust_with_req(self, req): if not self.req: return raise PundleException('VCS') versions = ','.join(''.join(t) for t in set(self.req.specs + req.req.specs)) self.requirement = pkg_resources.Requirement.parse('{} {}'.format( self.req.project_name, versions )) self.sources.update(req.sources) self.add_env(req.envs) @property def key(self): return self.req.key if self.req else self.egg @property def extras(self): return self.req.extras if self.req else [] def locate(self, suite, prereleases=False): # requirements can have something after `;` symbol that `locate` does not understand req = str(self.req).split(';', 1)[0] dist = suite.locate(req, prereleases=prereleases) if not dist: # have not find any releases so search for pre dist = suite.locate(req, prereleases=True) if not dist: raise PundleException('%s can not be located' % self.req) return dist def locate_and_install(self, suite, installed=None, prereleases=False): if self.egg: key = b64encode(self.line.encode('utf-8')).decode() target_dir = op.join(suite.parser.directory, '{}+{}'.format(self.egg, key)) target_req = self.line ready = [ installation for installation in (installed or []) if getattr(installation, 'line', None) == self.line ] else: loc_dist = self.locate(suite, prereleases=prereleases) ready = [ installation for installation in (installed or []) if installation.version == loc_dist.version ] target_dir = op.join(suite.parser.directory, '{}-{}'.format(loc_dist.key, loc_dist.version)) # DEL? target_req = '%s==%s' % (loc_dist.name, loc_dist.version) # If we use custom index, then we want not to configure PIP with it # and just give it URL target_req = loc_dist.download_url if ready: return ready[0] try: makedirs(target_dir) except OSError: pass tmp_dir = tempfile.mkdtemp() print('Use temp dir', tmp_dir) try: print('pip install --no-deps -t %s %s' % (tmp_dir, target_req)) pip_exec([ 'install', '--no-deps', '-t', tmp_dir, '-v', target_req ]) for item in os.listdir(tmp_dir): shutil.move(op.join(tmp_dir, item), op.join(target_dir, item)) except Exception as exc: raise PundleException('%s was not installed due error %s' % (self.egg or loc_dist.name, exc)) finally: shutil.rmtree(tmp_dir, ignore_errors=True) return next(iter(pkg_resources.find_distributions(target_dir, True)), None) def add_env(self, env): if isinstance(env, str): self.envs.add(env) else: self.envs.update(env) class RequirementState(object): """Holds requirement state, like what version do we have installed, is some version frozen or not, what requirement constrains do we have. """ def __init__(self, key, req=None, frozen=None, installed=None, hashes=None): self.key = key self.requirement = req self.frozen = frozen self.hashes = hashes self.installed = installed or [] self.installed.sort() self.installed.reverse() def __repr__(self): return '<RequirementState %r>' % self.__dict__ def adjust_with_req(self, req): if self.requirement: self.requirement.adjust_with_req(req) else: self.requirement = req def has_correct_freeze(self): return self.requirement and self.frozen and self.frozen in self.requirement def check_installed_version(self, suite, install=False): # install version of package if not installed dist = None if self.has_correct_freeze(): dist = [ installation for installation in self.installed if pkg_resources.parse_version(installation.version) == pkg_resources.parse_version(self.frozen) ] dist = dist[0] if dist else None if install and not dist: dist = self.install_frozen(suite) if install and not dist: dist = self.requirement.locate_and_install(suite, installed=self.get_installed()) if dist is None: raise PundleException('Package %s was not installed due some error' % self.key) self.frozen = dist.version self.installed.append(dist) self.frozen = dist.version return dist def get_installed(self): return [installation for installation in self.installed if installation.version in self.requirement] def upgrade(self, suite, prereleases=False): # check if we have fresh packages on PIPY dists = self.get_installed() dist = dists[0] if dists else None latest = self.requirement.locate(suite, prereleases=prereleases) if not dist or pkg_resources.parse_version(latest.version) > pkg_resources.parse_version(dist.version): print_message('Upgrade to', latest) dist = self.requirement.locate_and_install(suite, installed=self.get_installed(), prereleases=prereleases) # Anyway use latest available dist self.frozen = dist.version self.installed.append(dist) return dist def reveal_requirements(self, suite, install=False, upgrade=False, already_revealed=None, prereleases=False): already_revealed = already_revealed.copy() if already_revealed is not None else set() if self.key in already_revealed: return if upgrade: dist = self.upgrade(suite, prereleases=prereleases) else: dist = self.check_installed_version(suite, install=install) if not dist: return already_revealed.add(self.key) for req in dist.requires(extras=self.requirement.extras): suite.adjust_with_req( CustomReq(str(req), self.requirement.envs, source=self.requirement), install=install, upgrade=upgrade, already_revealed=already_revealed, ) def frozen_dump(self): if self.requirement.egg: return self.requirement.line main = '{}=={}'.format(self.key, self.frozen) comment = self.requirement.why_str() return '{:20s} # {}'.format(main, comment) def frozen_dist(self): if not self.frozen: return for dist in self.installed: if pkg_resources.parse_version(dist.version) == pkg_resources.parse_version(self.frozen): return dist def install_frozen(self, suite): if self.frozen_dist() or not self.frozen: return envs = self.requirement.envs if self.requirement else '' if test_vcs(self.frozen): frozen_req = CustomReq(self.frozen, envs) else: frozen_req = CustomReq("{}=={}".format(self.key, self.frozen), envs) dist = frozen_req.locate_and_install(suite) self.installed.append(dist) return dist def activate(self): dist = self.frozen_dist() if not dist: raise PundleException('Distribution is not installed %s' % self.key) dist.activate() pkg_resources.working_set.add_entry(dist.location) # find end execute *.pth sitedir = dist.location # noqa some PTH search for sitedir for filename in os.listdir(dist.location): if not filename.endswith('.pth'): continue try: for line in open(op.join(dist.location, filename)): if line.startswith('import '): exec(line.strip()) except Exception as e: print('Erroneous pth file %r' % op.join(dist.location, filename)) print(e) class AggregatingLocator(object): def __init__(self, locators): self.locators = locators def locate(self, req, **kw): for locator in self.locators: print_message('try', locator, 'for', req) revealed = locator.locate(req, **kw) if revealed: return revealed class Suite(object): """Main object that represents current directory pundle state. It tracks RequirementStates, envs, urls for package locator. """ def __init__(self, parser, envs=[], urls=None): self.states = {} self.parser = parser self.envs = envs self.urls = urls or ['https://pypi.python.org/simple/'] if 'PIP_EXTRA_INDEX_URL' in os.environ: self.urls.append(os.environ['PIP_EXTRA_INDEX_URL']) self.locators = [] for url in self.urls: self.locators.append( locators.SimpleScrapingLocator(url, timeout=3.0, scheme='legacy') ) self.locators.append(locators.JSONLocator(scheme='legacy')) self.locator = AggregatingLocator(self.locators) def use(self, key): """For single mode You can call suite.use('arrow') and then `import arrow` :key: package name """ self.adjust_with_req(CustomReq(key, '')) self.install() self.activate_all() def locate(self, *a, **kw): return self.locator.locate(*a, **kw) def add(self, key, state): self.states[key] = state def __repr__(self): return '<Suite %r>' % self.states def required_states(self): return [state for state in self.states.values() if state.requirement] def need_freeze(self, verbose=False): self.install(install=False) not_correct = not all(state.has_correct_freeze() for state in self.required_states()) if not_correct and verbose: for state in self.required_states(): if not state.has_correct_freeze(): print( state.key, 'Need', state.requirement, 'have not been frozen', state.frozen, ', installed', state.installed ) # TODO # unneeded = any(state.frozen for state in self.states.values() if not state.requirement) # if unneeded: # print('!!! Unneeded', [state.key for state in self.states.values() if not state.requirement]) return not_correct # or unneeded def adjust_with_req(self, req, install=False, upgrade=False, already_revealed=None): state = self.states.get(req.key) if not state: state = RequirementState(req.key, req=req) self.add(req.key, state) else: state.adjust_with_req(req) state.reveal_requirements(self, install=install, upgrade=upgrade, already_revealed=already_revealed or set()) def install(self, install=True): for state in self.required_states(): state.reveal_requirements(self, install=install) def upgrade(self, key=None, prereleases=False): states = [self.states[key]] if key else self.required_states() for state in states: print('Check', state.requirement.req) state.reveal_requirements(self, upgrade=True, prereleases=prereleases) def get_frozen_states(self, env): return [ state for state in self.required_states() if state.requirement and env in state.requirement.envs ] def need_install(self): return not all(state.frozen_dist() for state in self.states.values() if state.frozen) def install_frozen(self): for state in self.states.values(): state.install_frozen(self) def activate_all(self, envs=('',)): for state in self.required_states(): if '' in state.requirement.envs or any(env in state.requirement.envs for env in envs): state.activate() def save_frozen(self): "Saves frozen files to disk" states_by_env = dict( (env, self.get_frozen_states(env)) for env in self.parser.envs() ) self.parser.save_frozen(states_by_env) class Parser(object): """Gather environment info, requirements, frozen packages and create Suite object """ def __init__( self, base_path=None, directory='Pundledir', requirements_files=None, frozen_files=None, package=None, ): self.base_path = base_path or '.' self.directory = directory self.requirements_files = requirements_files if frozen_files is None: self.frozen_files = {'': 'frozen.txt'} else: self.frozen_files = frozen_files self.package = package self.package_envs = set(['']) def envs(self): if self.requirements_files: return list(self.requirements_files.keys()) or [''] elif self.package: return self.package_envs return [''] def get_frozen_file(self, env): if env in self.frozen_files: return self.frozen_files[env] else: return os.path.join(self.base_path, 'frozen_%s.txt' % env) def create_suite(self): reqs = self.parse_requirements() freezy = self.parse_frozen() hashes = self.parse_frozen_hashes() diry = self.parse_directory() state_keys = set(list(reqs.keys()) + list(freezy.keys()) + list(diry.keys())) suite = Suite(self, envs=self.envs()) for key in state_keys: suite.add( key, RequirementState( key, req=reqs.get(key), frozen=freezy.get(key), installed=diry.get(key, []), hashes=hashes.get(key), ), ) return suite def parse_directory(self): if not op.exists(self.directory): return {} dists = [ # this magic takes first element or None next(iter( pkg_resources.find_distributions(op.join(self.directory, item), True) ), None) for item in os.listdir(self.directory) if '-' in item ] dists.extend( VCSDist(op.join(self.directory, item)) for item in os.listdir(self.directory) if '+' in item ) dists = filter(None, dists) result = defaultdict(list) for dist in dists: result[dist.key].append(dist) return result def parse_frozen(self): frozen_versions = {} for env in self.envs(): frozen_file = self.get_frozen_file(env) if op.exists(frozen_file): frozen = [ (parse_frozen_vcs(line) or line.split('==')) for line in parse_file(frozen_file) ] else: frozen = [] for name, version in frozen: frozen_versions[name.lower()] = version return frozen_versions def parse_frozen_hashes(self): """This implementation does not support hashes yet """ return {} def parse_requirements(self): all_requirements = {} for env, req_file in self.requirements_files.items(): requirements = parse_file(req_file) if env: source = 'requirements %s file' % env else: source = 'requirements file' for line in requirements: req = CustomReq(line, env, source=source) if req.key in all_requirements: # if requirements exists in other env, then add this env too all_requirements[req.key].add_env(env) else: all_requirements[req.key] = req return all_requirements def save_frozen(self, states_by_env): for env, states in states_by_env.items(): data = '\n'.join(sorted( state.frozen_dump() for state in states )) + '\n' frozen_file = self.get_frozen_file(env) with open(frozen_file, 'w') as f: f.write(data) class SingleParser(Parser): """Parser for console mode. """ def parse_requirements(self): return {} class SetupParser(Parser): """Parser for `setup.py`. Because it mostly used to develop package, we do not freeze packages to setup.py. We use `frozen.txt`. """ def parse_requirements(self): setup_info = get_info_from_setup(self.package) if setup_info is None: raise PundleException('There is no requirements.txt nor setup.py') install_requires = setup_info.get('install_requires') or [] reqs = [ CustomReq(str(req), '', source='setup.py') for req in install_requires ] requirements = dict((req.key, req) for req in reqs) # we use `feature` as environment for pundle extras_require = (setup_info.get('extras_require') or {}) for feature, feature_requires in extras_require.items(): for req_line in feature_requires: req = CustomReq(req_line, feature, source='setup.py') # if this req already in dict, then add our feature as env if req.key in requirements: requirements[req.key].add_env(feature) else: requirements[req.key] = req self.package_envs.add(feature) return requirements class PipfileParser(Parser): """Parser for Pipfile and Pipfile.lock. """ DEFAULT_PIPFILE_SOURCES = [ { 'name': 'pypi', 'url': 'https://pypi.python.org/simple', 'verify_ssl': True, }, ] def __init__(self, **kw): self.pipfile = kw.pop('pipfile') self.pipfile_envs = set(['']) super(PipfileParser, self).__init__(**kw) # cache self.loaded_pipfile = None self.loaded_pipfile_lock = None def envs(self): return self.pipfile_envs def pipfile_content(self): import toml if self.loaded_pipfile: return self.loaded_pipfile self.loaded_pipfile = toml.load(open(self.pipfile)) return self.loaded_pipfile def pipfile_lock_content(self): if self.loaded_pipfile_lock: return self.loaded_pipfile_lock try: self.loaded_pipfile_lock = json.load(open(self.pipfile + '.lock')) except Exception: pass return self.loaded_pipfile_lock def parse_requirements(self): info = self.pipfile_content() all_requirements = {} for info_key in info: if not info_key.endswith('packages'): continue if '-' in info_key: env, _ = info_key.split('-', 1) else: env = '' self.pipfile_envs.add(env) for key, details in info[info_key].items(): if isinstance(details, str_types): if details != '*': key = key + details # details is a version requirement req = CustomReq(key, env, source='Pipfile') else: # a dict if 'file' in details or 'path' in details: raise PundleException('Unsupported Pipfile feature yet %s: %r' % (key, details)) if 'git' in details: # wow, this as a git package! req = CustomReq('git+%s#egg=%s' % (details['git'], key), env, source='Pipfile') else: # else just simple requirement req = CustomReq(key + details['version'], env, source='Pipfile') if req.key in all_requirements: # if requirements exists in other env, then add this env too all_requirements[req.key].add_env(env) else: all_requirements[req.key] = req return all_requirements def parse_frozen(self): parsed_frozen = self.pipfile_lock_content() if parsed_frozen is None: return {} frozen_versions = {} for env in parsed_frozen: if env.startswith('_'): # this is not an env continue for key, details in parsed_frozen[env].items(): if 'vcs' in details: frozen_versions[key] = details['vcs'] else: frozen_versions[key] = details.get('version', '0.0.0').lstrip('=') return frozen_versions def parse_frozen_hashes(self): parsed_frozen = self.pipfile_lock_content() if parsed_frozen is None: return {} frozen_versions = {} for env in parsed_frozen: if env.startswith('_'): # this is not an env continue for key, details in parsed_frozen[env].items(): frozen_versions[key] = details.get('hashes', []) return frozen_versions def hash(self): """Returns the SHA256 of the pipfile's data. From pipfile. """ pipfile_content = self.pipfile_content() data = { '_meta': { 'sources': pipfile_content.get('sources') or self.DEFAULT_PIPFILE_SOURCES, 'requires': pipfile_content.get('requires') or {}, }, 'default': pipfile_content.get('packages') or {}, 'develop': pipfile_content.get('dev-packages') or {}, } content = json.dumps(data, sort_keys=True, separators=(",", ":")) return hashlib.sha256(content.encode("utf8")).hexdigest() def save_frozen(self, states_by_env): """Implementation is not complete. """ data = self.pipfile_lock_content() or {} data.setdefault('_meta', { 'pipfile-spec': 5, 'requires': {}, 'sources': self.DEFAULT_PIPFILE_SOURCES, }) data.setdefault('_meta', {}).setdefault('hash', {})['sha256'] = self.hash() for env, states in states_by_env.items(): if env == '': env_key = 'default' elif env == 'dev': env_key = 'develop' else: env_key = env reqs = data.setdefault(env_key, {}) for state in states: if state.requirement.egg: egg, url, version = parse_vcs_requirement(state.requirement.line) reqs[state.key] = { 'vcs': url, } else: reqs[state.key] = { 'version': '==' + state.frozen, 'hashes': state.hashes or [], } with open(self.pipfile + '.lock', 'w') as f: f.write(json.dumps(data, sort_keys=True, indent=4)) def create_parser(**parser_args): """Utility function that tried to figure out what Parser to use in current directory. """ if parser_args.get('requirements_files'): return Parser(**parser_args) elif parser_args.get('package'): return SetupParser(**parser_args) elif parser_args.get('pipfile'): return PipfileParser(**parser_args) return SingleParser(**parser_args) # Utilities def get_info_from_setup(path): """Mock setuptools.setup(**kargs) to get package information about requirements and extras """ preserve = {} def _save_info(**setup_args): preserve['args'] = setup_args import setuptools original_setup = setuptools.setup setuptools.setup = _save_info import runpy runpy.run_path(os.path.join(path, 'setup.py'), run_name='__main__') setuptools.setup = original_setup return preserve.get('args') def search_files_upward(start_path=None): "Search for requirements.txt, setup.py or Pipfile upward" if not start_path: start_path = op.abspath(op.curdir) if any( op.exists(op.join(start_path, filename)) for filename in ('requirements.txt', 'setup.py', 'Pipfile') ): return start_path up_path = op.abspath(op.join(start_path, '..')) if op.samefile(start_path, up_path): return None return search_files_upward(start_path=up_path) def find_all_prefixed_files(directory, prefix): "find all requirements_*.txt files" envs = {} for entry in os.listdir(directory): if not entry.startswith(prefix): continue name, ext = op.splitext(entry) env = name[len(prefix):].lstrip('_') envs[env] = op.join(directory, entry) return envs def create_parser_parameters(): base_path = search_files_upward() if not base_path: raise PundleException('Can not find requirements.txt nor setup.py nor Pipfile') py_version_path = python_version_string() pundledir_base = os.environ.get('PUNDLEDIR') or op.join(op.expanduser('~'), '.pundledir') if op.exists(op.join(base_path, 'requirements.txt')): requirements_files = find_all_prefixed_files(base_path, 'requirements') else: requirements_files = {} envs = list(requirements_files.keys()) or [''] params = { 'base_path': base_path, 'frozen_files': { env: op.join(base_path, 'frozen_%s.txt' % env if env else 'frozen.txt') for env in envs }, 'directory': op.join(pundledir_base, py_version_path), } if requirements_files: params['requirements_files'] = requirements_files elif op.exists(op.join(base_path, 'setup.py')): params['package'] = base_path elif op.exists(op.join(base_path, 'Pipfile')): params['pipfile'] = op.join(base_path, 'Pipfile') else: return return params def create_parser_or_exit(): parser_kw = create_parser_parameters() if not parser_kw: print_message('You have not requirements.txt. Create it and run again.') exit(1) return parser_kw # Commands def upgrade_all(**kw): key = kw.pop('key') prereleases = kw.pop('prereleases') suite = create_parser(**kw).create_suite() suite.need_freeze() suite.upgrade(key=key, prereleases=prereleases) suite.install() suite.save_frozen() def install_all(**kw): suite = create_parser(**kw).create_suite() if suite.need_freeze() or suite.need_install(): print_message('Install some packages') suite.install() else: print_message('Nothing to do, all packages installed') suite.save_frozen() return suite def activate(): parser_kw = create_parser_parameters() if not parser_kw: raise PundleException('Can`t create parser parameters') suite = create_parser(**parser_kw).create_suite() if suite.need_freeze(verbose=True): raise PundleException('frozen file is outdated') if suite.need_install(): raise PundleException('Some dependencies not installed') envs = (os.environ.get('PUNDLEENV') or '').split(',') suite.activate_all(envs=envs) return suite FIXATE_TEMPLATE = """ # pundle user customization start import pundle; pundle.activate() # pundle user customization end """ def fixate(): "puts activation code to usercustomize.py for user" print_message('Fixate') import site userdir = site.getusersitepackages() if not userdir: raise PundleException('Can`t fixate due user have not site package directory') try: makedirs(userdir) except OSError: pass template = FIXATE_TEMPLATE.replace('op.dirname(__file__)', "'%s'" % op.abspath(op.dirname(__file__))) usercustomize_file = op.join(userdir, 'usercustomize.py') print_message('Will edit %s file' % usercustomize_file) if op.exists(usercustomize_file): content = open(usercustomize_file).read() if '# pundle user customization start' in content: regex = re.compile(r'\n# pundle user customization start.*# pundle user customization end\n', re.DOTALL) content, res = regex.subn(template, content) open(usercustomize_file, 'w').write(content) else: open(usercustomize_file, 'a').write(content) else: open(usercustomize_file, 'w').write(template) link_file = op.join(userdir, 'pundle.py') if op.lexists(link_file): print_message('Remove exist link to pundle') os.unlink(link_file) print_message('Create link to pundle %s' % link_file) os.symlink(op.abspath(__file__), link_file) print_message('Complete') def entry_points(): suite = activate() entries = {} for r in suite.states.values(): d = r.frozen_dist() if not d: continue if isinstance(d, VCSDist): continue scripts = d.get_entry_map().get('console_scripts', {}) for name in scripts: entries[name] = d return entries class CmdRegister: commands = {} ordered = [] @classmethod def cmdline(cls, *cmd_aliases): def wrap(func): for alias in cmd_aliases: cls.commands[alias] = func cls.ordered.append(alias) return wrap @classmethod def help(cls): for alias in cls.ordered: if not alias: continue print("{:15s} {}".format(alias, cls.commands[alias].__doc__)) @classmethod def main(cls): alias = '' if len(sys.argv) == 1 else sys.argv[1] if alias == 'help': cls.help() return if alias not in cls.commands: print('Unknown command\nTry this:') cls.help() sys.exit(1) cls.commands[alias]() @CmdRegister.cmdline('', 'install') def cmd_install(): "Install packages by frozen.txt and resolve ones that was not frozen" install_all(**create_parser_or_exit()) @CmdRegister.cmdline('upgrade') def cmd_upgrade(): """ [package [pre]] if package provided will upgrade it and dependencies or all packages from PyPI. If `pre` provided will look for prereleases. """ key = sys.argv[2] if len(sys.argv) > 2 else None prereleases = sys.argv[3] == 'pre' if len(sys.argv) > 3 else False upgrade_all(key=key, prereleases=prereleases, **create_parser_or_exit()) CmdRegister.cmdline('fixate')(fixate) @CmdRegister.cmdline('exec') def cmd_exec(): "executes setuptools entry" cmd = sys.argv[2] args = sys.argv[3:] entries = entry_points() if cmd not in entries: print_message('Script is not found. Check if package is installed, or look at the `pundle entry_points`') sys.exit(1) exc = entries[cmd].get_entry_info('console_scripts', cmd).load() sys.path.insert(0, '') sys.argv = [cmd] + args exc() @CmdRegister.cmdline('entry_points') def cmd_entry_points(): "prints available setuptools entries" for entry, package in entry_points().items(): print('%s (%s)' % (entry, package)) @CmdRegister.cmdline('edit') def cmd_edit(): "prints directory path to package" parser_kw = create_parser_parameters() suite = create_parser(**parser_kw).create_suite() if suite.need_freeze(): raise PundleException('%s file is outdated' % suite.parser.frozen_file) print(suite.states[sys.argv[2]].frozen_dist().location) @CmdRegister.cmdline('info') def cmd_info(): "prints info about Pundle state" parser_kw = create_parser_parameters() suite = create_parser(**parser_kw).create_suite() if suite.need_freeze(): print('frozen.txt is outdated') else: print('frozen.txt is up to date') for state in suite.required_states(): print( 'Requirement "{}", frozen {}, {}'.format( state.key, state.frozen, state.requirement.line if state.requirement else 'None' ) ) print('Installed versions:') for dist in state.installed: print(' ', repr(dist)) if not state.installed: print(' None') def run_console(glob): import readline import rlcompleter import atexit import code history_path = os.path.expanduser("~/.python_history") def save_history(history_path=history_path): readline.write_history_file(history_path) if os.path.exists(history_path): readline.read_history_file(history_path) atexit.register(save_history) readline.set_completer(rlcompleter.Completer(glob).complete) readline.parse_and_bind("tab: complete") code.InteractiveConsole(locals=glob).interact() @CmdRegister.cmdline('console') def cmd_console(): "[ipython|bpython|ptpython] starts python console with activated pundle environment" suite = activate() glob = { 'pundle_suite': suite, } interpreter = sys.argv[2] if len(sys.argv) > 2 else None if not interpreter: run_console(glob) elif interpreter == 'ipython': from IPython import embed embed() elif interpreter == 'ptpython': from ptpython.repl import embed embed(glob, {}) elif interpreter == 'bpython': from bpython import embed embed(glob) else: raise PundleException('Unknown interpreter: {}. Choose one of None, ipython, bpython, ptpython.') @CmdRegister.cmdline('run') def cmd_run(): "executes given script" activate() import runpy sys.path.insert(0, '') script = sys.argv[2] sys.argv = [sys.argv[2]] + sys.argv[3:] runpy.run_path(script, run_name='__main__') @CmdRegister.cmdline('module') def cmd_module(): "executes module like `python -m`" activate() import runpy sys.path.insert(0, '') module = sys.argv[2] sys.argv = [sys.argv[2]] + sys.argv[3:] runpy.run_module(module, run_name='__main__') @CmdRegister.cmdline('env') def cmd_env(): "populates PYTHONPATH with packages paths and executes command line in subprocess" activate() aug_env = os.environ.copy() aug_env['PYTHONPATH'] = ':'.join(sys.path) subprocess.call(sys.argv[2:], env=aug_env) @CmdRegister.cmdline('print_env') def cmd_print_env(): "Prints PYTHONPATH. For usage with mypy and MYPYPATH" suite = activate() path = ':'.join( state.frozen_dist().location for state in suite.states.values() if state.frozen_dist() ) print(path) ENTRY_POINT_TEMPLATE = '''#! /usr/bin/env python import pundle; pundle.activate() pundle.entry_points()['{entry_point}'].get_entry_info('console_scripts', '{entry_point}').load(require=False)() ''' @CmdRegister.cmdline('linkall') def link_all(): "links all packages to `.pundle_local` dir" local_dir = '.pundle_local' suite = activate() try: makedirs(local_dir) except OSError: pass local_dir_info = {de.name: de for de in os.scandir(local_dir)} for r in suite.states.values(): d = r.frozen_dist() if not d: continue for dir_entry in os.scandir(d.location): if dir_entry.name.startswith('__') or dir_entry.name.startswith('.') or dir_entry.name == 'bin': continue dest_path = os.path.join(local_dir, dir_entry.name) if dir_entry.name in local_dir_info: sym = local_dir_info.pop(dir_entry.name) existed = op.realpath(sym.path) if existed == dir_entry.path: continue os.remove(sym.path) os.symlink(dir_entry.path, dest_path) # create entry_points binaries try: makedirs(os.path.join(local_dir, 'bin')) except OSError: pass for bin_name, entry_point in entry_points().items(): bin_filename = os.path.join(local_dir, 'bin', bin_name) open(bin_filename, 'w').write(ENTRY_POINT_TEMPLATE.format(entry_point=bin_name)) file_stat = os.stat(bin_filename) os.chmod(bin_filename, file_stat.st_mode | stat.S_IEXEC) local_dir_info.pop('bin') # remove extra links for de in local_dir_info: os.remove(de.path) @CmdRegister.cmdline('show_requirements') def show_requirements(): "shows details requirements info" suite = activate() for name, state in suite.states.items(): if state.requirement: print( name, 'frozen:', state.frozen, 'required:', state.requirement.req if state.requirement.req else 'VCS', state.requirement.envs, ) # Single mode that you can use in console _single_mode_suite = {} # cache variable to keep current suite for single_mode def single_mode(): """ Create, cache and return Suite instance for single_mode. """ if not _single_mode_suite: py_version_path = python_version_string() pundledir_base = os.environ.get('PUNDLEDIR') or op.join(op.expanduser('~'), '.pundledir') directory = op.join(pundledir_base, py_version_path) _single_mode_suite['cache'] = create_parser(directory=directory).create_suite() return _single_mode_suite['cache'] def use(key): """ Installs `key` requirement, like `django==1.11` or just `django` """ suite = single_mode() suite.use(key) if __name__ == '__main__': CmdRegister.main()
kolla_ansible/kolla_address.py
okleinschmidt/kolla-ansible
531
11137370
<reponame>okleinschmidt/kolla-ansible # -*- coding: utf-8 -*- # # Copyright 2019 <NAME> (yoctozepto) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from jinja2.filters import contextfilter from jinja2.runtime import Undefined from kolla_ansible.exception import FilterError from kolla_ansible.helpers import _call_bool_filter @contextfilter def kolla_address(context, network_name, hostname=None): """returns IP address on the requested network The output is affected by '<network_name>_*' variables: '<network_name>_interface' sets the interface to obtain address for. '<network_name>_address_family' controls the address family (ipv4/ipv6). :param context: Jinja2 Context :param network_name: string denoting the name of the network to get IP address for, e.g. 'api' :param hostname: to override host which address is retrieved for :returns: string with IP address """ # NOTE(yoctozepto): watch out as Jinja2 'context' behaves not exactly like # the python 'dict' (but mimics it most of the time) # for example it returns a special object of type 'Undefined' instead of # 'None' or value specified as default for 'get' method # 'HostVars' shares this behavior if hostname is None: hostname = context.get('inventory_hostname') if isinstance(hostname, Undefined): raise FilterError("'inventory_hostname' variable is unavailable") hostvars = context.get('hostvars') if isinstance(hostvars, Undefined): raise FilterError("'hostvars' variable is unavailable") host = hostvars.get(hostname) if isinstance(host, Undefined): raise FilterError("'{hostname}' not in 'hostvars'" .format(hostname=hostname)) del hostvars # remove for clarity (no need for other hosts) # NOTE(yoctozepto): variable "host" will *not* return Undefined # same applies to all its children (act like plain dictionary) interface_name = host.get(network_name + '_interface') if interface_name is None: raise FilterError("Interface name undefined " "for network '{network_name}' " "(set '{network_name}_interface')" .format(network_name=network_name)) address_family = host.get(network_name + '_address_family') if address_family is None: raise FilterError("Address family undefined " "for network '{network_name}' " "(set '{network_name}_address_family')" .format(network_name=network_name)) address_family = address_family.lower() if address_family not in ['ipv4', 'ipv6']: raise FilterError("Unknown address family '{address_family}' " "for network '{network_name}'" .format(address_family=address_family, network_name=network_name)) ansible_interface_name = interface_name.replace('-', '_') interface = host['ansible_facts'].get(ansible_interface_name) if interface is None: raise FilterError("Interface '{interface_name}' " "not present " "on host '{hostname}'" .format(interface_name=interface_name, hostname=hostname)) af_interface = interface.get(address_family) if af_interface is None: raise FilterError("Address family '{address_family}' undefined " "on interface '{interface_name}' " "for host: '{hostname}'" .format(address_family=address_family, interface_name=interface_name, hostname=hostname)) if address_family == 'ipv4': address = af_interface.get('address') elif address_family == 'ipv6': # ipv6 has no concept of a secondary address # explicitly exclude the vip addresses # to avoid excluding all /128 haproxy_enabled = host.get('enable_haproxy') if haproxy_enabled is None: raise FilterError("'enable_haproxy' variable is unavailable") haproxy_enabled = _call_bool_filter(context, haproxy_enabled) if haproxy_enabled: vip_addresses = [ host.get('kolla_internal_vip_address'), host.get('kolla_external_vip_address'), ] else: # no addresses are virtual (kolla-wise) vip_addresses = [] global_ipv6_addresses = [x for x in af_interface if x['scope'] == 'global' and x['address'] not in vip_addresses] if global_ipv6_addresses: address = global_ipv6_addresses[0]['address'] else: address = None if address is None: raise FilterError("{address_family} address missing " "on interface '{interface_name}' " "for host '{hostname}'" .format(address_family=address_family, interface_name=interface_name, hostname=hostname)) return address
tools/app_reg/build.py
kokosing/hue
5,079
11137382
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Helpers to build the apps """ import logging import os import subprocess import common LOG = logging.getLogger(__name__) def runcmd(cmdv, additional_env=None): """ runcmd(cmdv, additional_env=None) -> status code """ env = os.environ.copy() if additional_env is not None: env.update(additional_env) env['PATH'] = os.path.join(common.INSTALL_ROOT, 'build', 'env', 'bin') + os.path.pathsep + env['PATH'] shell_command = ' '.join(cmdv) LOG.info("Running '%s' with %r" % (shell_command, additional_env)) popen = subprocess.Popen(shell_command, env=env, shell=True) return popen.wait() def make_app(app): """ make_app() -> True/False Call `make egg-info ext-eggs' on the app. """ cmdv = [ 'make', '-C', app.abs_path, 'egg-info', 'ext-eggs' ] return runcmd(cmdv, dict(ROOT=common.INSTALL_ROOT)) == 0 def make_syncdb(): """ make_syncdb() -> True/False """ statuses = [] hue_exec = os.path.join(common.INSTALL_ROOT, 'build', 'env', 'bin', 'hue') if os.path.exists(hue_exec): statuses.append( runcmd([ hue_exec, 'makemigrations', '--noinput' ]) ) statuses.append( runcmd([ hue_exec, 'migrate', '--fake-initial' ]) ) return not any(statuses) def make_collectstatic(): """ make_collectstatic() -> True/False """ statuses = [] hue_exec = os.path.join(common.INSTALL_ROOT, 'build', 'env', 'bin', 'hue') if os.path.exists(hue_exec): statuses.append( runcmd([ hue_exec, 'collectstatic', '--noinput' ]) ) return not any(statuses)
src/beanmachine/ppl/compiler/fix_problems.py
facebookresearch/beanmachine
177
11137389
<gh_stars>100-1000 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Callable, List, Set import beanmachine.ppl.compiler.profiler as prof from beanmachine.ppl.compiler.bm_graph_builder import BMGraphBuilder from beanmachine.ppl.compiler.error_report import ErrorReport from beanmachine.ppl.compiler.fix_additions import addition_fixer, sum_fixer from beanmachine.ppl.compiler.fix_arithmetic import negative_real_multiplication_fixer from beanmachine.ppl.compiler.fix_beta_conjugate_prior import ( beta_bernoulli_conjugate_fixer, beta_binomial_conjugate_fixer, ) from beanmachine.ppl.compiler.fix_bool_arithmetic import bool_arithmetic_fixer from beanmachine.ppl.compiler.fix_bool_comparisons import bool_comparison_fixer from beanmachine.ppl.compiler.fix_logsumexp import logsumexp_fixer from beanmachine.ppl.compiler.fix_matrix_scale import trivial_matmul_fixer from beanmachine.ppl.compiler.fix_multiary_ops import ( multiary_addition_fixer, multiary_multiplication_fixer, ) from beanmachine.ppl.compiler.fix_normal_conjugate_prior import ( normal_normal_conjugate_fixer, ) from beanmachine.ppl.compiler.fix_observations import observations_fixer from beanmachine.ppl.compiler.fix_observe_true import observe_true_fixer from beanmachine.ppl.compiler.fix_problem import ( ancestors_first_graph_fixer, conditional_graph_fixer, fixpoint_graph_fixer, GraphFixer, node_fixer_first_match, NodeFixer, sequential_graph_fixer, ) from beanmachine.ppl.compiler.fix_requirements import requirements_fixer from beanmachine.ppl.compiler.fix_unsupported import ( bad_matmul_reporter, unsupported_node_fixer, unsupported_node_reporter, untypable_node_reporter, ) from beanmachine.ppl.compiler.fix_vectorized_models import vectorized_model_fixer from beanmachine.ppl.compiler.lattice_typer import LatticeTyper default_skip_optimizations: Set[str] = { "beta_bernoulli_conjugate_fixer", "beta_binomial_conjugate_fixer", "normal_normal_conjugate_fixer", } _arithmetic_fixer_factories: List[ Callable[[BMGraphBuilder, LatticeTyper], NodeFixer] ] = [ addition_fixer, bool_arithmetic_fixer, bool_comparison_fixer, logsumexp_fixer, multiary_addition_fixer, multiary_multiplication_fixer, negative_real_multiplication_fixer, sum_fixer, trivial_matmul_fixer, unsupported_node_fixer, ] def arithmetic_graph_fixer(skip: Set[str], bmg: BMGraphBuilder) -> GraphFixer: typer = LatticeTyper() node_fixers = [ f(bmg, typer) for f in _arithmetic_fixer_factories if f.__name__ not in skip ] node_fixer = node_fixer_first_match(node_fixers) arith = ancestors_first_graph_fixer(bmg, typer, node_fixer) return fixpoint_graph_fixer(arith) _conjugacy_fixer_factories: List[Callable[[BMGraphBuilder], NodeFixer]] = [ beta_bernoulli_conjugate_fixer, beta_binomial_conjugate_fixer, normal_normal_conjugate_fixer, ] def conjugacy_graph_fixer(skip: Set[str], bmg: BMGraphBuilder) -> GraphFixer: node_fixers = [f(bmg) for f in _conjugacy_fixer_factories if f.__name__ not in skip] node_fixer = node_fixer_first_match(node_fixers) # TODO: Make the typer optional return ancestors_first_graph_fixer(bmg, LatticeTyper(), node_fixer) def fix_problems( bmg: BMGraphBuilder, skip_optimizations: Set[str] = default_skip_optimizations ) -> ErrorReport: bmg._begin(prof.fix_problems) all_fixers = sequential_graph_fixer( [ vectorized_model_fixer(bmg), arithmetic_graph_fixer(skip_optimizations, bmg), unsupported_node_reporter(bmg), bad_matmul_reporter(bmg), untypable_node_reporter(bmg), conjugacy_graph_fixer(skip_optimizations, bmg), requirements_fixer(bmg), observations_fixer(bmg), conditional_graph_fixer(bmg._fix_observe_true, observe_true_fixer(bmg)), ] ) _, errors = all_fixers() bmg._finish(prof.fix_problems) return errors
Trakttv.bundle/Contents/Libraries/Shared/trakt/interfaces/users/__init__.py
disrupted/Trakttv.bundle
1,346
11137433
from trakt.core.helpers import popitems from trakt.interfaces.base import Interface, authenticated from trakt.mapper import CommentMapper, ListMapper # Import child interfaces from trakt.interfaces.users.lists import UsersListInterface, UsersListsInterface from trakt.interfaces.users.settings import UsersSettingsInterface import logging log = logging.getLogger(__name__) __all__ = [ 'UsersInterface', 'UsersListsInterface', 'UsersListInterface', 'UsersSettingsInterface' ] class UsersInterface(Interface): path = 'users' @authenticated def likes(self, type=None, **kwargs): if type and type not in ['comments', 'lists']: raise ValueError('Unknown type specified: %r' % type) if kwargs.get('parse') is False: raise ValueError('Parse can\'t be disabled on this method') # Send request response = self.http.get( 'likes', params=[type], **popitems(kwargs, [ 'authenticated', 'validate_token' ]) ) # Parse response items = self.get_data(response, **kwargs) if not items: return # Map items to comment/list objects for item in items: item_type = item.get('type') if item_type == 'comment': yield CommentMapper.comment( self.client, item ) elif item_type == 'list': yield ListMapper.custom_list( self.client, item ) else: log.warn('Unknown item returned, type: %r', item_type)
aminator/plugins/manager.py
vijay-khanna/Netflix-aminator
721
11137434
<reponame>vijay-khanna/Netflix-aminator<gh_stars>100-1000 # -*- coding: utf-8 -*- # # # Copyright 2013 Netflix, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # """ aminator.plugins.manager ======================== Base plugin manager(s) and utils """ import abc import logging from stevedore.dispatch import NameDispatchExtensionManager log = logging.getLogger(__name__) class BasePluginManager(NameDispatchExtensionManager): """ Base plugin manager from which all managers *should* inherit Descendents *must* define a _entry_point class attribute Descendents *may* define a _check_func class attribute holding a function that determines whether a given plugin should or should not be enabled """ __metaclass__ = abc.ABCMeta _entry_point = None _check_func = None def __init__(self, check_func=None, invoke_on_load=True, invoke_args=None, invoke_kwds=None): invoke_args = invoke_args or () invoke_kwds = invoke_kwds or {} if self._entry_point is None: raise AttributeError('Plugin managers must declare their entry point in a class attribute _entry_point') check_func = check_func or self._check_func if check_func is None: check_func = lambda x: True super(BasePluginManager, self).__init__(namespace=self.entry_point, check_func=check_func, invoke_on_load=invoke_on_load, invoke_args=invoke_args, invoke_kwds=invoke_kwds) @property def entry_point(self): """ Base plugins for each plugin type must set a _entry_point class attribute to the entry point they are responsible for """ return self._entry_point
examples/optimistic_lock.py
rspadim/aiocache
459
11137438
<filename>examples/optimistic_lock.py import asyncio import logging import random from aiocache import Cache from aiocache.lock import OptimisticLock, OptimisticLockError logger = logging.getLogger(__name__) cache = Cache(Cache.REDIS, endpoint='127.0.0.1', port=6379, namespace='main') async def expensive_function(): logger.warning('Expensive is being executed...') await asyncio.sleep(random.uniform(0, 2)) return 'result' async def my_view(): async with OptimisticLock(cache, 'key') as lock: result = await expensive_function() try: await lock.cas(result) except OptimisticLockError: logger.warning( 'I failed setting the value because it is different since the lock started!') return result async def concurrent(): await cache.set('key', 'initial_value') # All three calls will read 'initial_value' as the value to check and only # the first one finishing will succeed because the others, when trying to set # the value, will see that the value is not the same as when the lock started await asyncio.gather(my_view(), my_view(), my_view()) def test_redis(): loop = asyncio.get_event_loop() loop.run_until_complete(concurrent()) loop.run_until_complete(cache.delete('key')) loop.run_until_complete(cache.close()) if __name__ == '__main__': test_redis()
development_playgrounds/TSexperiments/Oscillatory/result_loader.py
ai-di/Brancher
208
11137474
import pickle import numpy as np filename = 'Full_os_results.pickle' with open(filename, 'rb') as f: x = pickle.load(f) MSE = {"ASVI": (np.mean([np.sqrt(error) for error in x["PE"]["MSE"]]), np.std([np.sqrt(error) for error in x["PE"]["MSE"]])/np.sqrt(len(x["PE"]["MSE"]))), "ADVI (MF)": (np.mean([np.sqrt(error) for error in x["ADVI (MF)"]["MSE"]]), np.std([np.sqrt(error) for error in x["ADVI (MF)"]["MSE"]])/np.sqrt(len(x["ADVI (MF)"]["MSE"]))), "ADVI (MN)": (np.mean([np.sqrt(error) for error in x["ADVI (MN)"]["MSE"]]), np.std([np.sqrt(error) for error in x["ADVI (MN)"]["MSE"]])/np.sqrt(len(x["ADVI (MN)"]["MSE"]))), "NN": (np.mean([np.sqrt(error) for error in x["NN"]["MSE"]]), np.std([np.sqrt(error) for error in x["NN"]["MSE"]])/np.sqrt(len(x["NN"]["MSE"])))} for key, val in MSE.items(): print(key + ": {} +- {}".format(val[0], val[1]))
maskrcnn_benchmark/modeling/backbone/mixer.py
microsoft/GLIP
295
11137501
import torch from torch import nn class MixedOperationRandom(nn.Module): def __init__(self, search_ops): super(MixedOperationRandom, self).__init__() self.ops = nn.ModuleList(search_ops) self.num_ops = len(search_ops) def forward(self, x, x_path=None): if x_path is None: output = sum(op(x) for op in self.ops) / self.num_ops else: assert isinstance(x_path, (int, float)) and 0 <= x_path < self.num_ops or isinstance(x_path, torch.Tensor) if isinstance(x_path, (int, float)): x_path = int(x_path) assert 0 <= x_path < self.num_ops output = self.ops[x_path](x) elif isinstance(x_path, torch.Tensor): assert x_path.size(0) == x.size(0), 'batch_size should match length of y_idx' output = torch.cat([self.ops[int(x_path[i].item())](x.narrow(0, i, 1)) for i in range(x.size(0))], dim=0) return output
atest/testdata/running/binary_list.py
rdagum/robotframework
7,073
11137508
<filename>atest/testdata/running/binary_list.py LIST__illegal_values = ('illegal:\x00\x08\x0B\x0C\x0E\x1F', 'more:\uFFFE\uFFFF')
oncogemini/mendelianerror.py
fakedrtom/cancer_gemini
221
11137520
<filename>oncogemini/mendelianerror.py """ Calculate the probability of a mendelian error given the genotype likelihoods from a trio.""" from __future__ import print_function import sys from math import log10 import gzip nan = float('nan') class LowGenotypeException(Exception): pass def rescale(li): s = float(sum(li)) if s < 1e-40: raise LowGenotypeException return [v / s for v in li] def mendelian_error(mother, father, child, pls=False): """ Return the probability of a mendelian error given the log10 genotype likelihoods. A large value indicates a high probability of a mendelian error. Low values mean that the genotype-likelihoods indicate enough uncertainty that it could be a genotyping error. # everyone is het: >>> het = (-2.0, -0.1, -2.0) >>> mendelian_error(het, het, het) 0.047... # parents are hom, child is het. >>> father = mother = [-0.6, -2.5, -2.5] >>> child = [-2.5, -0.6, -2.5] >>> mendelian_error(mother, father, child) 0.987... # same as above, but more certainty in the called genotypes: >>> child[1] = 1e-6 >>> mother[0] = father[0] = 1e-6 >>> mendelian_error(mother, father, child) 0.996... # everyone is confidently homozygous alt >>> child = father = mother = [-11.0, -11.0, -0.1] >>> mendelian_error(mother, father, child) 7.55...e-11 # everyone is less confidently homozygous refs: >>> child = father = mother = [-0.1, -2.0, -2.0] >>> mendelian_error(mother, father, child) 0.071... mother and fater are homozygous alts >>> mother = father = [-3.0, -3.0, -0.1] # child is het >>> child = [-3., -0.1, -3.] >>> mendelian_error(mother, father, child) 0.998... # but when the hom-alt call is close... >>> child = [-3., -0.1, -0.15] >>> mendelian_error(mother, father, child) 0.53... # mother is hom_ref, dad is het, child is hom_alt >>> mother, father, child = (-0.1, -2, -2), (-2, -0.1, -2), (-2, -2, -0.1) >>> mendelian_error(mother, father, child) 0.976... # mother is hom_ref, dad is hom_alt, child is hom_ref >>> mother, father, child = (-0.1, -2.5, -2.5), (-2.5, -2.5, -0.1), (-0.1, -2.5, -2.5) >>> mendelian_error(mother, father, child) 0.993... # same, but child is hom_alt >>> mendelian_error(mother, father, (-5, -5, -0.01)) 0.994... # child should be het: >>> mendelian_error(mother, father, (-3, 0, -3)) 0.75... # NOTE: does oddish things if all have very low, equal values. >>> mendelian_error([-16.2, -16.2, -16.2], [-14.4, -15.0, -22.6], [-24.9, -21.2, -20.9]) 0.8629... >>> mendelian_error([-15.5, -15.8, -19.7], [-11.8, -9.9, -22.9], [-69.7, -55.9, -58.3]) >>> mendelian_error([-3.4, -0, -2.9], [-0, -1.8, -23.0], [-6.7, 0.0, -10.7]) 0.742... >>> mendelian_error([34, 0, 29], [0, 18, 23], [67, 0, 107], pls=True) 0.74... """ if pls: mother = [m / -10.0 for m in mother] father = [f / -10.0 for f in father] child = [c / -10.0 for c in child] try: M = rescale([10.**m for m in mother]) F = rescale([10.**f for f in father]) C = rescale([10.**c for c in child]) except LowGenotypeException: return None # by ref, and alt, we mean hom_ref, hom_alt p_two_ref = M[0] * F[0] p_two_het = M[1] * F[1] p_two_alt = M[2] * F[2] # only 1 of the parents is ... p_one_ref = (M[0] + F[0])/2 - p_two_ref p_one_het = (M[1] + F[1])/2 - p_two_het p_one_alt = (M[2] + F[2])/2 - p_two_alt # divide by 2 because parents independent. # all options covered because, e.g. p(two_ref) == p(zero_alt) assert abs(sum((p_one_ref, p_one_het, p_one_alt, p_two_ref, p_two_het, p_two_alt)) - 1) < 1e-4, \ abs(sum((p_one_ref, p_one_het, p_one_alt, p_two_ref, p_two_het, p_two_alt)) - 1) ################## # Non-violations # ################## # a. everyone is reference a = p_two_ref * C[0] # b. everyone is hom alt b = p_two_alt * C[2] # c. 1 het and 1 ref parent. child matches c = p_one_het * p_one_ref * (C[0] + C[1]) # d. 1 het and 1 alt parent. child matches d = p_one_het * p_one_alt * (C[1] + C[2]) # e. both parents hets. (child can be anything) e = p_two_het # f. one hom ref, one home alt. child is het f = p_one_ref * p_one_alt * C[1] #print a, b, c, d, e, f p_not_error = a + b + c + d + e + f return 1.0 - p_not_error def xopen(f): return gzip.open(f) if f.endswith(".gz") else sys.stdin if "-" == f else open(f) def main(fh, father, mother, child): for line in fh: if line.startswith("##"): print(line, end="") continue elif line.startswith("#CHROM"): print("##INFO=<ID=MEP,Number=1,Type=Float,Description=\"probability of mendelian error\">") print("##INFO=<ID=MER,Number=1,Type=Float,Description=\"log10 ratio of mendelian error\">") fields = line.rstrip().split("\t") samples = fields[9:] idxs = [9 + samples.index(s) for s in (father, mother, child)] print(line, end="") continue fields = line.rstrip().split("\t") samples = [fields[i].split(":") for i in idxs] fmt = fields[8].split(":") if "PL" in fmt: gli = fmt.index("PL") opls = [s[gli].split(",") for s in samples] gls = [[int(p)/-10. for p in pl] for pl in opls] else: gli = fmt.index("GL") ogls = [s[gli].split(",") for s in samples] gls = [[float(p) for g in gl] for gl in ogls] for i, gl in enumerate(gls): while sum(gls[i]) < -50: gls[i] = [p / 10. for p in gls[i]] p = mendelian_error(gls[0], gls[1], gls[2]) if p == 1: mer = 100 elif p == 0: mer = 0 elif p is None: mer = None else: mer = log10(p / (1.0 - p)) if p < 1 - 1e-5 or p is None: continue fields[7] += ";MEP=%.8g" % (nan if p is None else p) fields[7] += ";MER=%.8g" % (nan if p is None else mer) print("\t".join(fields)) def test(): from random import randint def gen3(): return [randint(-70, 1) / 10. for i in range(3)] ps = [] for i in range(100000): a, b, c = gen3(), gen3(), gen3() ps.append(mendelian_error(a, b, c)) if ps[-1] > 0.999999: print("mendelian error:", tuple(a), tuple(b), tuple(c)) elif ps[-1] < 0.00001: print("expected :", tuple(a), tuple(b), tuple(c)) try: import pylab as pl pl.hist(ps, 50) pl.show() except ImportError: pass def _main(): if len(sys.argv) > 1 and sys.argv[1] == "test": sys.exit(test()) elif len(sys.argv) != 5: print(__doc__) print("\nUsage: %s some.vcf father_id mother_id child_id > new.vcf\n" % sys.argv[0]) sys.exit() father, mother, child = sys.argv[2:] main(xopen(sys.argv[1]), father, mother, child) if __name__ == "__main__": import doctest sys.stderr.write(str(doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE | doctest.ELLIPSIS | doctest.REPORT_ONLY_FIRST_FAILURE, verbose=0)) + "\n") _main()
python/jupyter_flex/tests/test_pkg.py
ocefpaf/jupyter-flex
245
11137534
<reponame>ocefpaf/jupyter-flex import os import pytest import jupyter_flex from jupyter_flex.config import settings pytestmark = [pytest.mark.nondestructive, pytest.mark.pkg] def test_import(): assert jupyter_flex.__version__ is not None assert jupyter_flex.__version__ != "0.0.0" assert len(jupyter_flex.__version__) > 0 def test_assets_included(): nbconvert = os.path.join(settings.templates_dir, "nbconvert", "flex") assert os.path.exists(os.path.join(nbconvert, "conf.json")) assert os.path.exists(os.path.join(nbconvert, "flex.j2")) assert os.path.exists(os.path.join(nbconvert, "index.html.j2")) static = os.path.join(nbconvert, "static") assert os.path.exists(os.path.join(static, "favicon.png")) assert os.path.exists(os.path.join(static, "jupyter-flex-embed.css")) assert os.path.exists(os.path.join(static, "jupyter-flex-embed.js")) assert os.path.exists(os.path.join(static, "jupyter-flex-embed.js.map")) assert os.path.exists(os.path.join(static, "qgrid.js")) assert os.path.exists(os.path.join(static, "require.min.js")) voila = os.path.join(settings.templates_dir, "voila", "flex") assert os.path.exists(os.path.join(voila, "404.html")) assert os.path.exists(os.path.join(voila, "browser-open.html")) assert os.path.exists(os.path.join(voila, "error.html")) assert os.path.exists(os.path.join(voila, "index.html.j2")) assert os.path.exists(os.path.join(voila, "page.html")) assert os.path.exists(os.path.join(voila, "tree.html"))
scripts/test/test_import_point_cloud.py
sparsebase/facebook360_dep
221
11137538
#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. """Unit test class for ImportPointCloud. This class subclasses the DepTest class, which provides some utility functions around the base unittest.TestCase class. This script can be run as part of the overall test suite via run_tests.py or standalone. Example: To run the test independently (which will produce the standard Python unittest success output), simply run: $ python test_import_point_cloud.py \ --binary_dir=/path/to/facebook360_dep/build/bin \ --dataset_root=s3://example/dataset """ import os from .test_master_class import DepTest, generic_main class ImportPointCloudTest(DepTest): """Unit test class for ImportPointCloud. Attributes: name (str): String representation of the class name. """ def test_run(self): """Run test for ImportPointCloud. Raises: AssertionError: If incorrect results are produced. """ point_cloud_fn = "point_cloud.xyz" projected_disparity_dir = "projected_disparity" self.io_args.point_cloud = os.path.join( self.io_args.testing_dir, point_cloud_fn ) self.io_args.output = os.path.join( self.io_args.testing_dir, projected_disparity_dir ) self.run_app("ImportPointCloud") self.check_against_truth( truth=os.path.join(self.io_args.truth_dir, projected_disparity_dir), output=self.io_args.output, ) if __name__ == "__main__": generic_main([ImportPointCloudTest])
tools/codegen-diff-revisions.py
82marbag/smithy-rs
125
11137566
<reponame>82marbag/smithy-rs #!/usr/bin/env python3 # # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0. # # This script can be run and tested locally. To do so, you should check out # a second smithy-rs repository so that you can work on the script and still # run it without it immediately bailing for an unclean working tree. # # Example: # `smithy-rs/` - the main repo you're working out of # `test/smithy-rs/` - the repo you're testing against # # ``` # $ cd test/smithy-rs # $ ../../smithy-rs/tools/codegen-diff-revisions.py . <some commit hash to diff against> # ``` # # It will diff the generated code from HEAD against any commit hash you feed it. If you want to test # a specific range, change the HEAD of the test repository. # # This script requires `diff2html-cli` to be installed from NPM: # ``` # $ npm install -g [email protected] # ``` # Make sure the local version matches the version referenced from the GitHub Actions workflow. import os import sys import subprocess import tempfile import shlex HEAD_BRANCH_NAME = "__tmp-localonly-head" BASE_BRANCH_NAME = "__tmp-localonly-base" OUTPUT_PATH = "tmp-codegen-diff/" COMMIT_AUTHOR_NAME = "GitHub Action (generated code preview)" COMMIT_AUTHOR_EMAIL = "<EMAIL>" CDN_URL = "https://d2luzm2xt3nokh.cloudfront.net" def running_in_github_actions(): return os.environ.get("GITHUB_ACTIONS") == "true" def main(): if len(sys.argv) != 3: eprint("Usage: codegen-diff-revisions.py <repository root> <base commit sha>") sys.exit(1) repository_root = sys.argv[1] base_commit_sha = sys.argv[2] os.chdir(repository_root) head_commit_sha = get_cmd_output("git rev-parse HEAD") # Make sure the working tree is clean if get_cmd_status("git diff --quiet") != 0: eprint("working tree is not clean. aborting") sys.exit(1) if running_in_github_actions(): eprint(f"Fetching base revision {base_commit_sha} from GitHub...") run(f"git fetch --no-tags --progress --no-recurse-submodules --depth=1 origin {base_commit_sha}") # Generate code for HEAD eprint(f"Creating temporary branch with generated code for the HEAD revision {head_commit_sha}") run(f"git checkout {head_commit_sha} -b {HEAD_BRANCH_NAME}") generate_and_commit_generated_code(head_commit_sha) # Generate code for base eprint(f"Creating temporary branch with generated code for the base revision {base_commit_sha}") run(f"git checkout {base_commit_sha} -b {BASE_BRANCH_NAME}") generate_and_commit_generated_code(base_commit_sha) bot_message = make_diffs(base_commit_sha, head_commit_sha) write_to_file(f"{OUTPUT_PATH}/bot-message", bot_message) # Clean-up that's only really useful when testing the script in local-dev if not running_in_github_actions(): run("git checkout main") run(f"git branch -D {BASE_BRANCH_NAME}") run(f"git branch -D {HEAD_BRANCH_NAME}") def generate_and_commit_generated_code(revision_sha): # Clean the build artifacts before continuing run("rm -rf aws/sdk/build") # Generate code run("./gradlew --rerun-tasks :aws:sdk:assemble") run("./gradlew --rerun-tasks :codegen-server-test:assemble") # Move generated code into codegen-diff/ directory run(f"rm -rf {OUTPUT_PATH}") run(f"mkdir {OUTPUT_PATH}") run(f"mv aws/sdk/build/aws-sdk {OUTPUT_PATH}") run(f"mv codegen-server-test/build/smithyprojections/codegen-server-test {OUTPUT_PATH}") # Clean up the server-test folder run(f"rm -rf {OUTPUT_PATH}/codegen-server-test/source") run(f"find {OUTPUT_PATH}/codegen-server-test | " f"grep -E 'smithy-build-info.json|sources/manifest|model.json' | " f"xargs rm -f", shell=True) run(f"git add -f {OUTPUT_PATH}") run(f"git -c 'user.name=GitHub Action (generated code preview)' " f"-c 'user.name={COMMIT_AUTHOR_NAME}' " f"-c 'user.email={COMMIT_AUTHOR_EMAIL}' " f"commit --no-verify -m 'Generated code for {revision_sha}' --allow-empty") # Writes an HTML template for diff2html so that we can add contextual information def write_html_template(title, subtitle, tmp_file): tmp_file.writelines(map(lambda line: line.encode(), [ "<!doctype html>", "<html>", "<head>", ' <metadata charset="utf-8">', f' <title>Codegen diff for the {title}: {subtitle}</title>', ' <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.9.0/styles/github.min.css" / >', ' <!--diff2html-css-->', ' <!--diff2html-js-ui-->', ' <script>', ' document.addEventListener("DOMContentLoaded", () => {', ' const targetElement = document.getElementById("diff");', ' const diff2htmlUi = new Diff2HtmlUI(targetElement);', ' //diff2html-fileListToggle', ' //diff2html-synchronisedScroll', ' //diff2html-highlightCode', ' });', ' </script>', "</head>", "<body>", f" <h1>Codegen diff for the {title}</h1>", f" <p>{subtitle}</p>", ' <div id="diff">', ' <!--diff2html-diff-->', ' </div>', "</body>", "</html>", ])) tmp_file.flush() def make_diff(title, path_to_diff, base_commit_sha, head_commit_sha, suffix, whitespace): whitespace_flag = "" if whitespace else "-b" diff_exists = get_cmd_status(f"git diff --quiet {whitespace_flag} " f"{BASE_BRANCH_NAME} {HEAD_BRANCH_NAME} -- {path_to_diff}") if diff_exists == 0: eprint(f"No diff output for {base_commit_sha}..{head_commit_sha}") return None else: run(f"mkdir -p {OUTPUT_PATH}/{base_commit_sha}/{head_commit_sha}") dest_path = f"{base_commit_sha}/{head_commit_sha}/diff-{suffix}.html" whitespace_context = "" if whitespace else "(ignoring whitespace)" with tempfile.NamedTemporaryFile() as tmp_file: write_html_template(title, f"rev. {head_commit_sha} {whitespace_context}", tmp_file) # Generate HTML diff. This uses the diff2html-cli, which defers to `git diff` under the hood. # All arguments after the first `--` go to the `git diff` command. diff_cmd = f"diff2html -s line -f html -d word -i command --hwt "\ f"{tmp_file.name} -F {OUTPUT_PATH}/{dest_path} -- "\ f"-U20 {whitespace_flag} {BASE_BRANCH_NAME} {HEAD_BRANCH_NAME} -- {path_to_diff}" eprint(f"Running diff cmd: {diff_cmd}") run(diff_cmd) return dest_path def diff_link(diff_text, empty_diff_text, diff_location, alternate_text, alternate_location): if diff_location is None: return empty_diff_text else: return f"[{diff_text}]({CDN_URL}/codegen-diff/{diff_location}) ([{alternate_text}]({CDN_URL}/codegen-diff/{alternate_location}))" def make_diffs(base_commit_sha, head_commit_sha): sdk_ws = make_diff("AWS SDK", f"{OUTPUT_PATH}/aws-sdk", base_commit_sha, head_commit_sha, "aws-sdk", whitespace=True) sdk_nows = make_diff("AWS SDK", f"{OUTPUT_PATH}/aws-sdk", base_commit_sha, head_commit_sha, "aws-sdk-ignore-whitespace", whitespace=False) server_ws = make_diff("Server Test", f"{OUTPUT_PATH}/codegen-server-test", base_commit_sha, head_commit_sha, "server-test", whitespace=True) server_nows = make_diff("Server Test", f"{OUTPUT_PATH}/codegen-server-test", base_commit_sha, head_commit_sha, "server-test-ignore-whitespace", whitespace=False) sdk_links = diff_link('AWS SDK', 'No codegen difference in the AWS SDK', sdk_ws, 'ignoring whitespace', sdk_nows) server_links = diff_link('Server Test', 'No codegen difference in the Server Test', server_ws, 'ignoring whitespace', server_nows) # Save escaped newlines so that the GitHub Action script gets the whole message return "A new generated diff is ready to view.\\n"\ f"- {sdk_links}\\n"\ f"- {server_links}\\n" def write_to_file(path, text): with open(path, "w") as file: file.write(text) # Prints to stderr def eprint(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) # Runs a shell command def run(command, shell=False): if not shell: command = shlex.split(command) subprocess.run(command, stdout=sys.stderr, stderr=sys.stderr, shell=shell, check=True) # Returns the output from a shell command. Bails if the command failed def get_cmd_output(command): result = subprocess.run(shlex.split(command), capture_output=True, check=True) return result.stdout.decode("utf-8").strip() # Runs a shell command and returns its exit status def get_cmd_status(command): return subprocess.run(command, capture_output=True, shell=True).returncode if __name__ == "__main__": main()
test_integration/test_skill_tellina.py
cohmoti/clai
391
11137577
<reponame>cohmoti/clai # # Copyright (C) 2020 IBM. All Rights Reserved. # # See LICENSE.txt file in the root directory # of this source tree for licensing information. # from test_integration.contract_skills import ContractSkills class TestSkillTellina(ContractSkills): def get_skill_name(self): return 'tellina' def get_commands_to_execute(self): return ['pwd', 'clai "tellina" exit terminal', 'clai "tellina" show me all files'] def get_commands_expected(self): return ['/opt/IBM/clai', 'exit', 'find .']
sagemaker-python-sdk/tensorflow_serving_container/sample_utils.py
pollyrolly/amazon-sagemaker-examples
2,610
11137581
<reponame>pollyrolly/amazon-sagemaker-examples import cv2 import numpy as np import tensorflow as tf import tensorflow_hub as hub def tfhub_to_savedmodel( model_name, export_path, uri_pattern="https://tfhub.dev/google/imagenet/{}/classification/2" ): """Download a model from TensorFlow Hub, add inputs and outputs suitable for serving inference requests, and export the resulting graph as a SavedModel. This function should work for most image classification model on TensorFlow Hub. Args: model_name (str): The model name (e.g. mobilenet_v2_140_224) export_path (str): The exported model will be saved at <export_path>/<model_name> uri_pattern (str): Optional. The model name is combined with this pattern to form a TensorFlow Hub uri. The default value works for MobileNetV2, but a different pattern may be needed for other models. Returns: str: The path to the exported SavedModel (including model_name and version). """ # the model will output the topk predicted classes and probabilities topk = 3 model_path = "{}/{}/00000001".format(export_path, model_name) tfhub_uri = uri_pattern.format(model_name) with tf.compat.v1.Session(graph=tf.Graph()) as sess: module = hub.Module(tfhub_uri) input_params = module.get_input_info_dict() dtype = input_params["images"].dtype shape = input_params["images"].get_shape() # define the model inputs inputs = {"images": tf.compat.v1.placeholder(dtype, shape, "images")} # define the model outputs # we want the class ids and probabilities for the top 3 classes logits = module(inputs["images"]) softmax = tf.nn.softmax(logits, name=None) probs, classes = tf.nn.top_k(softmax, k=topk, sorted=True, name=None) outputs = {"classes": classes, "probabilities": probs} # export the model sess.run([tf.compat.v1.global_variables_initializer(), tf.compat.v1.tables_initializer()]) tf.compat.v1.saved_model.simple_save(sess, model_path, inputs=inputs, outputs=outputs) return model_path def image_file_to_tensor(path): """Reads an image file and coverts it to a tensor (ndarray). Resizing of input is done (224x224 for the mobilenet_v2_140_224 model). Args: path (str): The file name or path to the image file. """ image = cv2.imread(path) image = cv2.resize(image, dsize=(224, 224), interpolation=cv2.INTER_CUBIC) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = np.asarray(image) image = cv2.normalize(image.astype("float"), None, 0, 1, cv2.NORM_MINMAX) image = np.expand_dims(image, axis=0) return image def add_imagenet_labels(prediction_result): """Add imagenet class labels to the prediction result. The prediction_result argument will be modified in place. """ # read the labels from a file labels = [] with open("labels.txt", "r") as f: labels = [l.strip() for l in f] # add labels to the result dict for pred in prediction_result["predictions"]: prediction_labels = [labels[x - 1] for x in pred["classes"]] pred["labels"] = prediction_labels def print_probabilities_and_labels(labelled_result): """Print the labelled results." """ for pred in labelled_result["predictions"]: for i in range(0, len(pred["labels"])): print( "{:1.7f} {}".format( pred["probabilities"][i], pred["labels"][i], ) ) print()
Tools/heatcalculator.py
zhyinty/HeliumRain
646
11137607
<reponame>zhyinty/HeliumRain<gh_stars>100-1000 #!/usr/bin/python3 # -*- coding: utf-8 -*- import configparser import math import sys OVERHEAT_TEMPERATURE = 1200 BURN_TEMPERATURE = 1500 SOLAR_POWER = 3.094 def print_u(str): bytes_str = (str + "\n").encode('utf8') sys.stdout.buffer.write(bytes_str) class Ship: name = "Unnamed" min_heatsink_ratio = 0.0 max_heatsink = 0.0 min_heatsink = 0.0 passive_power = 0.0 active_power = 0.0 boosting_power = 0.0 firing_power = 0.0 heat_capacity = 0.0 max_passive_equilibrium = 0.0 max_active_equilibrium = 0.0 max_boosting_equilibrium = 0.0 max_firing_equilibrium = 0.0 max_all_equilibrium = 0.0 min_passive_equilibrium = 0.0 min_active_equilibrium = 0.0 min_boosting_equilibrium = 0.0 min_firing_equilibrium = 0.0 min_all_equilibrium = 0.0 def __init__(self, path): config = configparser.ConfigParser() config.read(path) for section in config.sections(): count = 1. if "count" in config[section]: count = float(config[section]["count"]) for key in config[section]: value = config[section][key] if key == "shipname": self.name = value elif key == "minheatsinkratio": self.min_heatsink_ratio = float(value) elif key == "maxheatsink": self.max_heatsink += count * float(value) self.min_heatsink += count * float(value) * self.min_heatsink_ratio elif key == "heatcapacity": self.heat_capacity += count * float(value) elif key == "passivepower": self.passive_power += count * float(value) elif key == "activepower": self.active_power += count * float(value) elif key == "boostingpower": self.boosting_power += count * float(value) elif key == "firingpower": self.firing_power += count * float(value) elif key == "count": # Already treated pass else: print("unknown key "+key) def compute_equilibrium(self, power, surface): # Radiation in KJ = surface * 5.670373e-8 * FMath::Pow(Temperature, 4) / 1000 # Production in KJ = power # Equilibrium when production equals radiation return math.pow(1000 * power / (surface * 5.60373e-8), 1/4) def compute_boost_duration(self, initial_temperature, final_temperature, power, surface, heat_capacity): # Radiation in KJ = surface * 5.670373e-8 * FMath::Pow(Temperature, 4) / 1000 # Production in KJ = power # temperature variation is : dT/dt = (1000 * power - surface * 5.670373e-8 * FMath::Pow(T, 4)) / heat_capacity # T(t) = 1000 * power t - (surface * k * FMath::Pow(T, 5)/(5 * heat_capacity) if self.compute_equilibrium(power, surface) < final_temperature: # The final temperature will never be reach return -1; delta_seconds = 0.001 time = 0.0; heat = initial_temperature * heat_capacity temperature = heat / heat_capacity while temperature < final_temperature: heat = heat + (power - surface * 5.670373e-8 * math.pow(temperature, 4) / 1000) * delta_seconds time = time + delta_seconds temperature = heat / heat_capacity return time def compute_cooling_duration(self, initial_temperature, final_temperature, power, surface, heat_capacity): # Radiation in KJ = surface * 5.670373e-8 * FMath::Pow(Temperature, 4) / 1000 # Production in KJ = power # temperature variation is : dT/dt = (1000 * power - surface * 5.670373e-8 * FMath::Pow(T, 4)) / heat_capacity # T(t) = 1000 * power t - (surface * k * FMath::Pow(T, 5)/(5 * heat_capacity) if self.compute_equilibrium(power, surface) > final_temperature: # The final temperature will never be reach return -1; delta_seconds = 0.001 time = 0.0; heat = initial_temperature * heat_capacity temperature = heat / heat_capacity while temperature > final_temperature: heat = heat + (power - surface * 5.670373e-8 * math.pow(temperature, 4) / 1000) * delta_seconds time = time + delta_seconds temperature = heat / heat_capacity return time def compute(self): max_solar_power = self.max_heatsink * SOLAR_POWER * 0.5 active_max_usage = 0.26 self.max_passive_equilibrium = self.compute_equilibrium(self.passive_power + max_solar_power, self.max_heatsink) self.max_active_equilibrium = self.compute_equilibrium(self.passive_power + self.active_power * active_max_usage + max_solar_power, self.max_heatsink) self.max_boosting_equilibrium = self.compute_equilibrium(self.passive_power + self.active_power * active_max_usage + self.boosting_power + max_solar_power, self.max_heatsink) self.max_firing_equilibrium = self.compute_equilibrium(self.passive_power + self.firing_power + max_solar_power, self.max_heatsink) self.max_all_equilibrium = self.compute_equilibrium(self.passive_power + self.active_power * active_max_usage + self.boosting_power + self.firing_power + max_solar_power, self.max_heatsink) min_solar_power = self.min_heatsink * SOLAR_POWER * 0.5 self.min_passive_equilibrium = self.compute_equilibrium(self.passive_power + min_solar_power, self.min_heatsink) self.min_active_equilibrium = self.compute_equilibrium(self.passive_power + self.active_power * active_max_usage + min_solar_power, self.min_heatsink) self.min_boosting_equilibrium = self.compute_equilibrium(self.passive_power + self.active_power * active_max_usage + self.boosting_power + min_solar_power, self.min_heatsink) self.min_firing_equilibrium = self.compute_equilibrium(self.passive_power + self.firing_power + min_solar_power, self.min_heatsink) self.min_all_equilibrium = self.compute_equilibrium(self.passive_power + self.active_power * active_max_usage + self.boosting_power + self.firing_power + min_solar_power, self.min_heatsink) self.passive_boost_duration = self.compute_boost_duration(self.max_passive_equilibrium, OVERHEAT_TEMPERATURE, self.passive_power + self.active_power * active_max_usage + self.boosting_power + max_solar_power, self.max_heatsink, self.heat_capacity) self.active_boost_duration = self.compute_boost_duration(self.max_active_equilibrium, OVERHEAT_TEMPERATURE, self.passive_power + self.active_power * active_max_usage + self.boosting_power + max_solar_power, self.max_heatsink, self.heat_capacity) self.passive_firing_duration = self.compute_boost_duration(self.max_passive_equilibrium, OVERHEAT_TEMPERATURE, self.passive_power + self.firing_power + max_solar_power, self.max_heatsink, self.heat_capacity) self.active_firing_duration = self.compute_boost_duration(self.max_active_equilibrium, OVERHEAT_TEMPERATURE, self.passive_power + self.active_power * active_max_usage + self.firing_power + max_solar_power, self.max_heatsink, self.heat_capacity) self.burning_to_overheat_cooling = self.compute_cooling_duration(BURN_TEMPERATURE, OVERHEAT_TEMPERATURE, self.passive_power + max_solar_power, self.max_heatsink, self.heat_capacity) self.boosting_to_active_cooling = self.compute_cooling_duration(self.max_boosting_equilibrium, self.max_active_equilibrium, self.passive_power + max_solar_power, self.max_heatsink, self.heat_capacity) def dump(self): print("-------------------") print("Ship " + self.name) print("-------------------") print_u("Heat capacity: "+ str(self.heat_capacity) + " KJ/°K") print_u("Solar power: "+ str(SOLAR_POWER) + " KW/m²") print_u("Min heatsink ratio: "+ str(self.min_heatsink_ratio)) print("Heatsink") print_u(" - Maximum: "+ str(self.max_heatsink) + " m²") print_u(" - Minimum: "+ str(self.min_heatsink) + " m²") print("Heat production") print(" - Passive: "+ str(self.passive_power) + " KW") print(" - Active: "+ str(self.active_power) + " KW") print(" - Boosting: "+ str(self.boosting_power) + " KW") print(" - Firing: "+ str(self.firing_power) + " KW") print("Equilibium at max heatsink") print_u(" - Passive: "+ str(self.max_passive_equilibrium) + " °K") print_u(" - Active: "+ str(self.max_active_equilibrium) + " °K") print_u(" - Boosting: "+ str(self.max_boosting_equilibrium) + " °K") print_u(" - Firing: "+ str(self.max_firing_equilibrium) + " °K") print_u(" - All: "+ str(self.max_all_equilibrium) + " °K") print("Equilibium at min heatsink") print_u(" - Passive: "+ str(self.min_passive_equilibrium) + " °K") print_u(" - Active: "+ str(self.min_active_equilibrium) + " °K") print_u(" - Boosting: "+ str(self.min_boosting_equilibrium) + " °K") print_u(" - Firing: "+ str(self.min_firing_equilibrium) + " °K") print_u(" - All: "+ str(self.min_all_equilibrium) + " °K") print("Usage duration") print(" - Boosting from passive: "+ (str(self.passive_boost_duration) + " s" if self.passive_boost_duration > 0 else "No overheat")) print(" - Boosting from active: "+ (str(self.active_boost_duration) + " s" if self.active_boost_duration > 0 else "No overheat")) print(" - Firing from passive: "+ (str(self.passive_firing_duration) + " s" if self.passive_firing_duration > 0 else "No overheat")) print(" - Firing from active: "+ (str(self.active_firing_duration) + " s" if self.active_firing_duration > 0 else "No overheat")) print("Cooling duration") print(" - Burning to Overheat: "+ str(self.burning_to_overheat_cooling) + " s") print(" - Boosting to active: "+ str(self.boosting_to_active_cooling) + " s") ship = Ship("ghoul.ship") ship.compute() ship.dump() ship = Ship("orca.ship") ship.compute() ship.dump() ship = Ship("omen.ship") ship.compute() ship.dump() ship = Ship("invader.ship") ship.compute() ship.dump()
uberduck_ml_dev/_nbdev.py
Cris140/uberduck-ml-dev
167
11137618
<filename>uberduck_ml_dev/_nbdev.py # AUTOGENERATED BY NBDEV! DO NOT EDIT! __all__ = ["index", "modules", "custom_doc_links", "git_url"] index = {"ensure_speaker_table": "data.cache.ipynb", "STANDARD_MULTISPEAKER": "data.parse.ipynb", "STANDARD_SINGLESPEAKER": "data.parse.ipynb", "VCTK": "data.parse.ipynb", "word_frequencies": "data.statistics.ipynb", "create_wordcloud": "data.statistics.ipynb", "count_frequency": "data.statistics.ipynb", "pace_character": "data.statistics.ipynb", "pace_phoneme": "data.statistics.ipynb", "get_sample_format": "data.statistics.ipynb", "AbsoluteMetrics": "data.statistics.ipynb", "pad_sequences": "data_loader.ipynb", "prepare_input_sequence": "data_loader.ipynb", "oversample": "data_loader.ipynb", "TextMelDataset": "data_loader.ipynb", "TextMelCollate": "data_loader.ipynb", "TextAudioSpeakerLoader": "data_loader.ipynb", "TextAudioSpeakerCollate": "data_loader.ipynb", "DistributedBucketSampler": "data_loader.ipynb", "tts": "e2e.ipynb", "rhythm_transfer": "e2e.ipynb", "get_summary_statistics": "exec.dataset_statistics.ipynb", "calculate_statistics": "exec.dataset_statistics.ipynb", "generate_markdown": "exec.dataset_statistics.ipynb", "parse_args": "utils.exec.ipynb", "run": "exec.train_vits.ipynb", "FORMATS": "exec.parse_data.ipynb", "batch": "exec.preprocess_vits.ipynb", "flatten": "exec.preprocess_vits.ipynb", "write_filenames": "exec.split_train_val.ipynb", "VITSEncoder": "models.attentions.ipynb", "Decoder": "models.tacotron2.ipynb", "MultiHeadAttention": "models.gradtts.ipynb", "FFN": "models.gradtts.ipynb", "TTSModel": "models.base.ipynb", "DEFAULTS": "trainer.tacotron2.ipynb", "Conv1d": "models.common.ipynb", "LinearNorm": "models.common.ipynb", "LocationLayer": "models.common.ipynb", "Attention": "models.common.ipynb", "STFT": "models.common.ipynb", "MelSTFT": "models.common.ipynb", "ReferenceEncoder": "models.common.ipynb", "STL": "models.common.ipynb", "GST": "models.common.ipynb", "LayerNorm": "models.gradtts.ipynb", "Flip": "models.common.ipynb", "Log": "models.common.ipynb", "ElementwiseAffine": "models.common.ipynb", "DDSConv": "models.common.ipynb", "ConvFlow": "models.common.ipynb", "WN": "models.common.ipynb", "ResidualCouplingLayer": "models.common.ipynb", "ResBlock1": "vocoders.hifigan.ipynb", "ResBlock2": "vocoders.hifigan.ipynb", "LRELU_SLOPE": "vocoders.hifigan.ipynb", "fix_len_compatibility_text_edit": "models.editts.ipynb", "EdiTTS": "models.editts.ipynb", "BaseModule": "models.gradtts.ipynb", "Mish": "models.gradtts.ipynb", "Upsample": "models.gradtts.ipynb", "Downsample": "models.gradtts.ipynb", "Rezero": "models.gradtts.ipynb", "Block": "models.gradtts.ipynb", "ResnetBlock": "models.gradtts.ipynb", "LinearAttention": "models.gradtts.ipynb", "Residual": "models.gradtts.ipynb", "SinusoidalPosEmb": "models.gradtts.ipynb", "GradLogPEstimator2d": "models.gradtts.ipynb", "get_noise": "models.gradtts.ipynb", "Diffusion": "models.gradtts.ipynb", "sequence_mask": "utils.utils.ipynb", "fix_len_compatibility": "models.gradtts.ipynb", "convert_pad_shape": "utils.utils.ipynb", "generate_path": "utils.utils.ipynb", "duration_loss": "models.gradtts.ipynb", "ConvReluNorm": "models.gradtts.ipynb", "DurationPredictor": "models.vits.ipynb", "Encoder": "models.tacotron2.ipynb", "TextEncoder": "models.vits.ipynb", "GradTTS": "models.gradtts.ipynb", "Postnet": "models.tacotron2.ipynb", "Prenet": "models.tacotron2.ipynb", "Mellotron": "models.mellotron.ipynb", "config": "trainer.tacotron2.ipynb", "Tacotron2": "models.tacotron2.ipynb", "SPECIAL_PREFIX": "models.torchmoji.ipynb", "SPECIAL_TOKENS": "models.torchmoji.ipynb", "NB_TOKENS": "models.torchmoji.ipynb", "NB_EMOJI_CLASSES": "models.torchmoji.ipynb", "FINETUNING_METHODS": "models.torchmoji.ipynb", "FINETUNING_METRICS": "models.torchmoji.ipynb", "EMOJIS": "models.torchmoji.ipynb", "LSTMHardSigmoid": "models.torchmoji.ipynb", "AutogradRNN": "models.torchmoji.ipynb", "Recurrent": "models.torchmoji.ipynb", "variable_recurrent_factory": "models.torchmoji.ipynb", "VariableRecurrent": "models.torchmoji.ipynb", "VariableRecurrentReverse": "models.torchmoji.ipynb", "StackedRNN": "models.torchmoji.ipynb", "LSTMCell": "models.torchmoji.ipynb", "hard_sigmoid": "models.torchmoji.ipynb", "tokenize": "models.torchmoji.ipynb", "RE_NUM": "models.torchmoji.ipynb", "RE_WORD": "models.torchmoji.ipynb", "RE_WHITESPACE": "models.torchmoji.ipynb", "RE_ANY": "models.torchmoji.ipynb", "RE_COMB": "models.torchmoji.ipynb", "RE_CONTRACTIONS": "models.torchmoji.ipynb", "TITLES": "models.torchmoji.ipynb", "RE_TITLES": "models.torchmoji.ipynb", "SYMBOLS": "models.torchmoji.ipynb", "RE_SYMBOL": "models.torchmoji.ipynb", "SPECIAL_SYMBOLS": "models.torchmoji.ipynb", "RE_ABBREVIATIONS": "models.torchmoji.ipynb", "RE_HASHTAG": "models.torchmoji.ipynb", "RE_MENTION": "models.torchmoji.ipynb", "RE_URL": "models.torchmoji.ipynb", "RE_EMAIL": "models.torchmoji.ipynb", "RE_HEART": "models.torchmoji.ipynb", "EMOTICONS_START": "models.torchmoji.ipynb", "EMOTICONS_MID": "models.torchmoji.ipynb", "EMOTICONS_END": "models.torchmoji.ipynb", "EMOTICONS_EXTRA": "models.torchmoji.ipynb", "RE_EMOTICON": "models.torchmoji.ipynb", "RE_EMOJI": "models.torchmoji.ipynb", "TOKENS": "models.torchmoji.ipynb", "IGNORED": "models.torchmoji.ipynb", "RE_PATTERN": "models.torchmoji.ipynb", "TorchmojiAttention": "models.torchmoji.ipynb", "VocabBuilder": "models.torchmoji.ipynb", "MasterVocab": "models.torchmoji.ipynb", "all_words_in_sentences": "models.torchmoji.ipynb", "extend_vocab_in_file": "models.torchmoji.ipynb", "extend_vocab": "models.torchmoji.ipynb", "SentenceTokenizer": "models.torchmoji.ipynb", "coverage": "models.torchmoji.ipynb", "torchmoji_feature_encoding": "models.torchmoji.ipynb", "torchmoji_emojis": "models.torchmoji.ipynb", "torchmoji_transfer": "models.torchmoji.ipynb", "TorchMoji": "models.torchmoji.ipynb", "load_specific_weights": "models.torchmoji.ipynb", "load_benchmark": "models.torchmoji.ipynb", "calculate_batchsize_maxlen": "models.torchmoji.ipynb", "freeze_layers": "models.torchmoji.ipynb", "change_trainable": "models.torchmoji.ipynb", "find_f1_threshold": "models.torchmoji.ipynb", "finetune": "models.torchmoji.ipynb", "tune_trainable": "models.torchmoji.ipynb", "evaluate_using_weighted_f1": "models.torchmoji.ipynb", "evaluate_using_acc": "models.torchmoji.ipynb", "chain_thaw": "models.torchmoji.ipynb", "train_by_chain_thaw": "models.torchmoji.ipynb", "calc_loss": "models.torchmoji.ipynb", "fit_model": "models.torchmoji.ipynb", "get_data_loader": "models.torchmoji.ipynb", "DeepMojiDataset": "models.torchmoji.ipynb", "DeepMojiBatchSampler": "models.torchmoji.ipynb", "relabel": "models.torchmoji.ipynb", "class_avg_finetune": "models.torchmoji.ipynb", "prepare_labels": "models.torchmoji.ipynb", "prepare_generators": "models.torchmoji.ipynb", "class_avg_tune_trainable": "models.torchmoji.ipynb", "class_avg_chainthaw": "models.torchmoji.ipynb", "read_english": "models.torchmoji.ipynb", "read_wanted_emojis": "models.torchmoji.ipynb", "read_non_english_users": "models.torchmoji.ipynb", "is_special_token": "models.torchmoji.ipynb", "mostly_english": "models.torchmoji.ipynb", "correct_length": "models.torchmoji.ipynb", "punct_word": "models.torchmoji.ipynb", "load_non_english_user_set": "models.torchmoji.ipynb", "non_english_user": "models.torchmoji.ipynb", "separate_emojis_and_text": "models.torchmoji.ipynb", "extract_emojis": "models.torchmoji.ipynb", "remove_variation_selectors": "models.torchmoji.ipynb", "shorten_word": "models.torchmoji.ipynb", "detect_special_tokens": "models.torchmoji.ipynb", "process_word": "models.torchmoji.ipynb", "remove_control_chars": "models.torchmoji.ipynb", "convert_nonbreaking_space": "models.torchmoji.ipynb", "convert_linebreaks": "models.torchmoji.ipynb", "AtMentionRegex": "models.torchmoji.ipynb", "urlRegex": "models.torchmoji.ipynb", "VARIATION_SELECTORS": "models.torchmoji.ipynb", "ALL_CHARS": "models.torchmoji.ipynb", "CONTROL_CHARS": "models.torchmoji.ipynb", "CONTROL_CHAR_REGEX": "models.torchmoji.ipynb", "WordGenerator": "models.torchmoji.ipynb", "TweetWordGenerator": "models.torchmoji.ipynb", "RETWEETS_RE": "models.torchmoji.ipynb", "URLS_RE": "models.torchmoji.ipynb", "MENTION_RE": "models.torchmoji.ipynb", "ALLOWED_CONVERTED_UNICODE_PUNCTUATION": "models.torchmoji.ipynb", "TorchMojiInterface": "models.torchmoji.ipynb", "piecewise_rational_quadratic_transform": "models.transforms.ipynb", "searchsorted": "models.transforms.ipynb", "unconstrained_rational_quadratic_spline": "models.transforms.ipynb", "rational_quadratic_spline": "models.transforms.ipynb", "DEFAULT_MIN_BIN_WIDTH": "models.transforms.ipynb", "DEFAULT_MIN_BIN_HEIGHT": "models.transforms.ipynb", "DEFAULT_MIN_DERIVATIVE": "models.transforms.ipynb", "StochasticDurationPredictor": "models.vits.ipynb", "ResidualCouplingBlock": "models.vits.ipynb", "PosteriorEncoder": "models.vits.ipynb", "Generator": "vocoders.hifigan.ipynb", "DiscriminatorP": "vocoders.hifigan.ipynb", "DiscriminatorS": "vocoders.hifigan.ipynb", "MultiPeriodDiscriminator": "vocoders.hifigan.ipynb", "SynthesizerTrn": "models.vits.ipynb", "get_alignment_metrics": "monitoring.statistics.ipynb", "CMUDict": "text.cmudict.ipynb", "valid_symbols": "text.cmudict.ipynb", "symbols_portuguese": "text.symbols.ipynb", "PORTUGUESE_SYMBOLS": "text.symbols.ipynb", "symbols_polish": "text.symbols.ipynb", "POLISH_SYMBOLS": "text.symbols.ipynb", "symbols_dutch": "text.symbols.ipynb", "DUTCH_SYMBOLS": "text.symbols.ipynb", "symbols_spanish": "text.symbols.ipynb", "SPANISH_SYMBOLS": "text.symbols.ipynb", "symbols": "text.symbols.ipynb", "symbols_nvidia_taco2": "text.symbols.ipynb", "symbols_with_ipa": "text.symbols.ipynb", "grad_tts_symbols": "text.symbols.ipynb", "DEFAULT_SYMBOLS": "text.symbols.ipynb", "IPA_SYMBOLS": "text.symbols.ipynb", "NVIDIA_TACO2_SYMBOLS": "text.symbols.ipynb", "GRAD_TTS_SYMBOLS": "text.symbols.ipynb", "SYMBOL_SETS": "text.symbols.ipynb", "symbols_to_sequence": "text.symbols.ipynb", "arpabet_to_sequence": "text.symbols.ipynb", "should_keep_symbol": "text.symbols.ipynb", "symbol_to_id": "text.symbols.ipynb", "id_to_symbol": "text.symbols.ipynb", "curly_re": "text.symbols.ipynb", "words_re": "text.symbols.ipynb", "normalize_numbers": "text.util.ipynb", "expand_abbreviations": "text.util.ipynb", "expand_numbers": "text.util.ipynb", "lowercase": "text.util.ipynb", "collapse_whitespace": "text.util.ipynb", "convert_to_ascii": "text.util.ipynb", "convert_to_arpabet": "text.util.ipynb", "basic_cleaners": "text.util.ipynb", "transliteration_cleaners": "text.util.ipynb", "english_cleaners": "text.util.ipynb", "english_cleaners_phonemizer": "text.util.ipynb", "batch_english_cleaners_phonemizer": "text.util.ipynb", "g2p": "text.util.ipynb", "batch_clean_text": "text.util.ipynb", "clean_text": "text.util.ipynb", "english_to_arpabet": "text.util.ipynb", "cleaned_text_to_sequence": "text.util.ipynb", "text_to_sequence": "text.util.ipynb", "sequence_to_text": "text.util.ipynb", "BATCH_CLEANERS": "text.util.ipynb", "CLEANERS": "text.util.ipynb", "text_to_sequence_for_editts": "text.util.ipynb", "random_utterance": "text.util.ipynb", "utterances": "text.util.ipynb", "TTSTrainer": "trainer.base.ipynb", "GradTTSTrainer": "trainer.gradtts.ipynb", "MellotronTrainer": "trainer.mellotron.ipynb", "Tacotron2Loss": "trainer.tacotron2.ipynb", "Tacotron2Trainer": "trainer.tacotron2.ipynb", "feature_loss": "vocoders.hifigan.ipynb", "discriminator_loss": "vocoders.hifigan.ipynb", "generator_loss": "vocoders.hifigan.ipynb", "kl_loss": "trainer.vits.ipynb", "VITSTrainer": "trainer.vits.ipynb", "mel_to_audio": "utils.audio.ipynb", "differenceFunction": "utils.audio.ipynb", "cumulativeMeanNormalizedDifferenceFunction": "utils.audio.ipynb", "getPitch": "utils.audio.ipynb", "compute_yin": "utils.audio.ipynb", "convert_to_wav": "utils.audio.ipynb", "match_target_amplitude": "utils.audio.ipynb", "modify_leading_silence": "utils.audio.ipynb", "normalize_audio_segment": "utils.audio.ipynb", "normalize_audio": "utils.audio.ipynb", "trim_audio": "utils.audio.ipynb", "MAX_WAV_INT16": "utils.audio.ipynb", "load_wav_to_torch": "utils.audio.ipynb", "overlay_mono": "utils.audio.ipynb", "overlay_stereo": "utils.audio.ipynb", "mono_to_stereo": "utils.audio.ipynb", "stereo_to_mono": "utils.audio.ipynb", "resample": "utils.audio.ipynb", "get_audio_max": "utils.audio.ipynb", "to_int16": "utils.audio.ipynb", "save_figure_to_numpy": "utils.plot.ipynb", "plot_tensor": "utils.plot.ipynb", "plot_spectrogram": "utils.plot.ipynb", "plot_attention": "utils.plot.ipynb", "plot_attention_phonemes": "utils.plot.ipynb", "plot_gate_outputs": "utils.plot.ipynb", "load_filepaths_and_text": "utils.utils.ipynb", "window_sumsquare": "utils.utils.ipynb", "griffin_lim": "utils.utils.ipynb", "dynamic_range_compression": "utils.utils.ipynb", "dynamic_range_decompression": "utils.utils.ipynb", "to_gpu": "utils.utils.ipynb", "get_mask_from_lengths": "utils.utils.ipynb", "reduce_tensor": "utils.utils.ipynb", "subsequent_mask": "utils.utils.ipynb", "slice_segments": "utils.utils.ipynb", "rand_slice_segments": "utils.utils.ipynb", "init_weights": "vocoders.hifigan.ipynb", "get_padding": "vocoders.hifigan.ipynb", "fused_add_tanh_sigmoid_multiply": "utils.utils.ipynb", "clip_grad_value_": "utils.utils.ipynb", "intersperse": "utils.utils.ipynb", "intersperse_emphases": "utils.utils.ipynb", "parse_values": "vendor.tfcompat.hparam.ipynb", "HParams": "vendor.tfcompat.hparam.ipynb", "PARAM_RE": "vendor.tfcompat.hparam.ipynb", "HiFiGanGenerator": "vocoders.hifigan.ipynb", "MultiScaleDiscriminator": "vocoders.hifigan.ipynb", "AttrDict": "vocoders.hifigan.ipynb", "build_env": "vocoders.hifigan.ipynb", "apply_weight_norm": "vocoders.hifigan.ipynb"} modules = ["data/cache.py", "data/parse.py", "data/statistics.py", "data_loader.py", "e2e.py", "exec/dataset_statistics.py", "exec/gather_dataset.py", "exec/generate_filelist.py", "exec/normalize_audio.py", "exec/parse_data.py", "exec/preprocess_vits.py", "exec/split_train_val.py", "exec/train_gradtts.py", "exec/train_mellotron.py", "exec/train_tacotron2.py", "exec/train_vits.py", "models/attentions.py", "models/base.py", "models/common.py", "models/editts.py", "models/gradtts.py", "models/mellotron.py", "models/tacotron2.py", "models/torchmoji.py", "models/transforms.py", "models/vits.py", "monitoring/generate.py", "monitoring/statistics.py", "text/cmudict.py", "text/symbols.py", "text/util.py", "trainer/base.py", "trainer/gradtts.py", "trainer/mellotron.py", "trainer/tacotron2.py", "trainer/vits.py", "utils/argparse.py", "utils/audio.py", "utils/plot.py", "utils/utils.py", "vendor/tfcompat/hparam.py", "vocoders/hifigan.py"] doc_url = "https://uberduck-ai.github.io/uberduck_ml_dev/" git_url = "https://github.com/uberduck-ai/uberduck_ml_dev/tree/master/" def custom_doc_links(name): return None
rl_agents/agents/tree_search/mdp_gape.py
RockWenJJ/rl-agents
342
11137619
import logging import numpy as np from rl_agents.agents.common.factory import safe_deepcopy_env from rl_agents.agents.tree_search.olop import OLOP, OLOPAgent, OLOPNode from rl_agents.utils import max_expectation_under_constraint, kl_upper_bound logger = logging.getLogger(__name__) class MDPGapE(OLOP): """ Best-Arm Identification MCTS. """ def __init__(self, env, config=None): super().__init__(env, config) self.next_observation = None self.budget_used = 0 @classmethod def default_config(cls): cfg = super().default_config() cfg.update( { "accuracy": 1.0, "confidence": 0.9, "continuation_type": "uniform", "horizon_from_accuracy": False, "max_next_states_count": 1, "upper_bound": { "type": "kullback-leibler", "time": "global", "threshold": "3*np.log(1 + np.log(count))" "+ horizon*np.log(actions)" "+ np.log(1/(1-confidence))", "transition_threshold": "0.1*np.log(time)" }, } ) return cfg def reset(self): if "horizon" not in self.config: self.allocate_budget() self.root = DecisionNode(parent=None, planner=self) def allocate_budget(self): """ Allocate the computational budget into tau episodes of fixed horizon H. """ if self.config["horizon_from_accuracy"]: self.config["horizon"] = int(np.ceil(np.log(self.config["accuracy"] * (1 - self.config["gamma"]) / 2) \ / np.log(self.config["gamma"]))) self.config["episodes"] = self.config["budget"] // self.config["horizon"] assert self.config["episodes"] > 1 logger.debug("Planning at depth H={}".format(self.config["horizon"])) else: super().allocate_budget() def run(self, state): """ Run an MDP-GapE episode. :param state: the initial environment state """ # We need randomness state.seed(self.np_random.randint(2**30)) best, challenger = None, None if self.root.children: logger.debug(" / ".join(["a{} ({}): [{:.3f}, {:.3f}]".format(k, n.count, n.value_lower, n.value_upper) for k, n in self.root.children.items()])) else: self.root.expand(state) # Follow selection policy, expand tree if needed, collect rewards and update confidence bounds. decision_node = self.root for h in range(self.config["horizon"]): action = decision_node.sampling_rule(n_actions=state.action_space.n) # Perform transition chance_node, action = decision_node.get_child(action, state) observation, reward, done, _ = self.step(state, action) decision_node = chance_node.get_child(observation) # Update local statistics chance_node.update(np.nan, False) decision_node.update(reward, done) # Backup global statistics decision_node.backup_to_root() _, best, challenger = self.root.best_arm_identification_selection() return best, challenger def plan(self, state, observation): done = False episode = 0 while not done: best, challenger = self.run(safe_deepcopy_env(state)) # Stopping rule done = challenger.value_upper - best.value_lower < self.config["accuracy"] if best is not None else False done = done or episode > self.config["episodes"] episode += 1 if episode % 10 == 0: logger.debug('Episode {}: delta = {}/{}'.format(episode, challenger.value_upper - best.value_lower, self.config["accuracy"])) self.budget_used = episode * self.config["horizon"] return self.get_plan() def step_tree(self, actions): """ Update the planner tree when the agent performs an action and observes the next state :param actions: a sequence of actions to follow from the root node """ if self.config["step_strategy"] == "reset": self.step_by_reset() elif self.config["step_strategy"] == "subtree": if actions: self.step_by_subtree(actions[0]) self.step_by_subtree(str(self.next_observation)) # Step to the observed next state else: self.step_by_reset() else: logger.warning("Unknown step strategy: {}".format(self.config["step_strategy"])) self.step_by_reset() def get_plan(self): """Only return the first action, the rest is conditioned on observations""" return [self.root.selection_rule()] class DecisionNode(OLOPNode): def __init__(self, parent, planner): super().__init__(parent, planner) self.depth = 0 if parent is None else parent.depth + 1 self.mu_lcb = -np.infty """ Lower bound of the node mean reward. """ if self.planner.config["upper_bound"]["type"] == "kullback-leibler": self.mu_lcb = 0 gamma = self.planner.config["gamma"] H = self.planner.config["horizon"] self.value_upper = (1 - gamma ** (H - self.depth)) / (1 - gamma) """ Lower bound on the node optimal reward-to-go """ self.value_lower = 0 self.gap = -np.infty """ Maximum possible gap from this node to its neighbours, based on their value confidence intervals """ def get_child(self, action, state): if not self.children: self.expand(state) if action not in self.children: # Default action may not be available action = list(self.children.keys())[0] # Pick first available action instead return self.children[action], action def expand(self, state): if state is None: raise Exception("The state should be set before expanding a node") try: actions = state.get_available_actions() except AttributeError: actions = range(state.action_space.n) for action in actions: self.children[action] = ChanceNode(self, self.planner) def selection_rule(self): # Best arm identification at the root if self.planner.root == self: _, best_node, _ = self.best_arm_identification_selection() return next(best_node.path()) # Then follow the conservative values actions = list(self.children.keys()) index = self.random_argmax([self.children[a].value_lower for a in actions]) return actions[index] def sampling_rule(self, n_actions): # Best arm identification at the root if self == self.planner.root: # Run BAI at the root selected_child, _, _ = self.best_arm_identification_selection() action = next(selected_child.path()) # Elsewhere, follow the optimistic values elif self.children: actions = list(self.children.keys()) index = self.random_argmax([self.children[a].value_upper for a in actions]) action = actions[index] # Break ties at leaves else: action = self.planner.np_random.randint(n_actions) \ if self.planner.config["continuation_type"] == "uniform" else 0 return action def compute_reward_ucb(self): if self.planner.config["upper_bound"]["type"] == "kullback-leibler": # Variables available for threshold evaluation horizon = self.planner.config["horizon"] actions = self.planner.env.action_space.n confidence = self.planner.config["confidence"] count = self.count time = self.planner.config["episodes"] threshold = eval(self.planner.config["upper_bound"]["threshold"]) self.mu_ucb = kl_upper_bound(self.cumulative_reward, self.count, threshold) self.mu_lcb = kl_upper_bound(self.cumulative_reward, self.count, threshold, lower=True) else: logger.error("Unknown upper-bound type") def backup_to_root(self): """ Bellman V(s) = max_a Q(s,a) """ if self.children: self.value_upper = np.amax([child.value_upper for child in self.children.values()]) self.value_lower = np.amax([child.value_lower for child in self.children.values()]) else: assert self.depth == self.planner.config["horizon"] self.value_upper = 0 # Maybe count bound over r(H..inf) ? self.value_lower = 0 # Maybe count bound over r(H..inf) ? if self.parent: self.parent.backup_to_root() def compute_children_gaps(self): """ For best arm identification: compute for each child how much the other actions are potentially better. """ for child in self.children.values(): child.gap = -np.infty for other in self.children.values(): if other is not child: child.gap = max(child.gap, other.value_upper - child.value_lower) def best_arm_identification_selection(self): """ Run UGapE on the children on this node, based on their value confidence intervals. :return: selected arm, best candidate, challenger """ # Best candidate child has the lowest potential gap self.compute_children_gaps() best = min(self.children.values(), key=lambda c: c.gap) # Challenger: not best and highest value upper bound challenger = max([c for c in self.children.values() if c is not best], key=lambda c: c.value_upper) # Selection: the one with highest uncertainty return max([best, challenger], key=lambda n: n.value_upper - n.value_lower), best, challenger class ChanceNode(OLOPNode): def __init__(self, parent, planner): assert parent is not None super().__init__(parent, planner) self.depth = parent.depth gamma = self.planner.config["gamma"] self.value_upper = (1 - gamma ** (self.planner.config["horizon"] - self.depth)) / (1 - gamma) self.value_lower = 0 self.p_hat, self.p_plus, self.p_minus = None, None, None delattr(self, 'cumulative_reward') delattr(self, 'mu_ucb') def update(self, reward, done): self.count += 1 def expand(self, state): # Generate placeholder nodes for i in range(self.planner.config["max_next_states_count"]): self.children["placeholder_{}".format(i)] = DecisionNode(self, self.planner) def get_child(self, observation, hash=False): if not self.children: self.expand(None) import hashlib state_id = hashlib.sha1(str(observation).encode("UTF-8")).hexdigest()[:5] if hash else str(observation) if state_id not in self.children: # Assign the first available placeholder to the observation for i in range(self.planner.config["max_next_states_count"]): if "placeholder_{}".format(i) in self.children: self.children[state_id] = self.children.pop("placeholder_{}".format(i)) break else: raise ValueError("No more placeholder nodes available, we observed more next states than " "the 'max_next_states_count' config") return self.children[state_id] def backup_to_root(self): """ Bellman Q(s,a) = r(s,a) + gamma E_s' V(s') """ assert self.children assert self.parent gamma = self.planner.config["gamma"] children = list(self.children.values()) u_next = np.array([c.mu_ucb + gamma * c.value_upper for c in children]) l_next = np.array([c.mu_lcb + gamma * c.value_lower for c in children]) self.p_hat = np.array([child.count for child in children]) / self.count threshold = self.transition_threshold() / self.count self.p_plus = max_expectation_under_constraint(u_next, self.p_hat, threshold) self.p_minus = max_expectation_under_constraint(-l_next, self.p_hat, threshold) self.value_upper = self.p_plus @ u_next self.value_lower = self.p_minus @ l_next self.parent.backup_to_root() def transition_threshold(self): horizon = self.planner.config["horizon"] actions = self.planner.env.action_space.n confidence = self.planner.config["confidence"] count = self.count time = self.planner.config["episodes"] return eval(self.planner.config["upper_bound"]["transition_threshold"]) class MDPGapEAgent(OLOPAgent): """ An agent that uses best-arm-identification to plan a sequence of actions in an MDP. """ PLANNER_TYPE = MDPGapE def step(self, actions): """ Handle receding horizon mechanism with chance nodes """ replanning_required = self.remaining_horizon == 0 # Cannot check remaining actions here if replanning_required: self.remaining_horizon = self.config["receding_horizon"] - 1 self.planner.step_by_reset() else: self.remaining_horizon -= 1 self.planner.step_tree(actions) # Check for remaining children here instead if self.planner.root.children: self.previous_actions.extend(self.planner.get_plan()) else: # After stepping the transition in the tree, the subtree is empty replanning_required = True self.planner.step_by_reset() return replanning_required def record(self, state, action, reward, next_state, done, info): self.planner.next_observation = next_state
BitsParser.py
fireeye/BitsParser
104
11137624
# Copyright 2021 FireEye, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. import os import sys import json import string import struct import hashlib import argparse import datetime import traceback from ese.ese import ESENT_DB # On Windows advapi32 will be used to resolve SIDs try: import advapi32 except Exception: pass import bits from bits.structs import FILE, CONTROL, JOB # XFER_HEADER defined as bytes XFER_HEADER = b'\x36\xDA\x56\x77\x6F\x51\x5A\x43\xAC\xAC\x44\xA2\x48\xFF\xF3\x4D' # File and job delimiter constants for Windows 10 WIN10_FILE_DELIMITER = b'\xE4\xCF\x9E\x51\x46\xD9\x97\x43\xB7\x3E\x26\x85\x13\x05\x1A\xB2' WIN10_JOB_DELIMITERS = [ b'\xA1\x56\x09\xE1\x43\xAF\xC9\x42\x92\xE6\x6F\x98\x56\xEB\xA7\xF6', b'\x9F\x95\xD4\x4C\x64\x70\xF2\x4B\x84\xD7\x47\x6A\x7E\x62\x69\x9F', b'\xF1\x19\x26\xA9\x32\x03\xBF\x4C\x94\x27\x89\x88\x18\x95\x88\x31', b'\xC1\x33\xBC\xDD\xFB\x5A\xAF\x4D\xB8\xA1\x22\x68\xB3\x9D\x01\xAD', b'\xd0\x57\x56\x8f\x2c\x01\x3e\x4e\xad\x2c\xf4\xa5\xd7\x65\x6f\xaf', b'\x50\x67\x41\x94\x57\x03\x1d\x46\xa4\xcc\x5d\xd9\x99\x07\x06\xe4' ] class BitsParser: def __init__(self, queue_dir, carve_db, carve_all, out_file): self.queue_dir = queue_dir self.carve_db_files = carve_db self.carve_all_files = carve_all self.out_file = out_file self.sid_user_cache = {} self.visited_jobs = set() # Assume files are from Windows 10 by default -- will be verified later self.is_win_10 = True def get_username_from_sid(self, sid): """ Returns the username associated with the given SID by calling LookupAccountSid """ # Cache usernames to improve efficiency with repeated lookups if sid in self.sid_user_cache: return self.sid_user_cache[sid] try: name, domain, _ = advapi32.LookupAccountSid(advapi32.ConvertStringSidToSid(sid)) username = domain+"\\"+name self.sid_user_cache[sid] = username return username except Exception as e: print(f'Failed to resolve sid {sid}: ' + str(e), file=sys.stderr) self.sid_user_cache[sid] = None return None def is_qmgr_database(file_data): """ Attempts to locate pattern at 0x10 found in qmgr databases (prior to Windows 10) """ if file_data[0x10:0x20] == b'\x13\xf7\x2b\xc8\x40\x99\x12\x4a\x9f\x1a\x3a\xae\xbd\x89\x4e\xea': return True return False def is_qmgr10_database(file_data): """ Attempts to locate ESE database magic number found in Windows 10 qmgr databases """ if file_data[4:8] == b'\xEF\xCD\xAB\x89': return True return False def load_qmgr_jobs(self, file_path): """ Processes the given qmgr database file with ANSSI-FR, parses jobs (possibly carves jobs), and returns a list of discovered jobs. """ jobs = [] analyzer = bits.Bits.load_file(file_path) if self.carve_db_files or self.carve_all_files: for job in analyzer: jobs.append(BitsJob(job, self)) else: for job in analyzer.parse(): jobs.append(BitsJob(job, self)) return jobs def load_non_qmgr_jobs(self, file_data): """ Attempts to "carve" jobs from non-qmgr files (sometimes job remnants can be found in other files) """ jobs = [] analyzer = bits.Bits() # Search for the XFER header and get 2KB of data around it for sample in bits.sample_disk(file_data, XFER_HEADER, 2048): analyzer.append_data(sample) # Attempt to parse jobs from memory block analyzer.guess_info() for job in analyzer: jobs.append(BitsJob(job, self)) return jobs def parse_qmgr10_job(self, job_data): """Attempt to parse job data from the Win10 qmgr database""" # Skip small entires that are not valid if len(job_data) < 128: return None try: # Because it can be expensive to parse a JOB structure if the data is not valid, # do a simple check to see if the job name length is valid name_length = struct.unpack_from("<L", job_data, 32)[0] if 32 + name_length * 2 > len(job_data): return None # Parse as a JOB try: parsed_job = JOB.parse(job_data) except Exception: # If it fails to parse as a JOB, at least try to parse as a CONTROL struct try: parsed_job = CONTROL.parse(job_data) except Exception: return None try: # Following the JOB entry, there are usually XFER refs to FILE GUIDs parsed_job['files'] = [] xfer_parts = job_data.split(XFER_HEADER) file_ref_data = xfer_parts[1] num_file_refs = struct.unpack_from("<L", file_ref_data)[0] # Validate the number of file references to avoid expensive parsing failures if 4 + num_file_refs * 16 > len(file_ref_data): return None for i in range(0, num_file_refs): # Parse the GUID and attempt to find correlated FILE cur_guid = file_ref_data[4+i*16:4+(i+1)*16] file_job = self.file_entries.pop(cur_guid, None) if file_job: parsed_job['files'].extend(file_job['files']) except Exception: pass # Build a BitsJob for the job entry new_job = BitsJob(parsed_job, self) return new_job except Exception: print(f'Exception occurred parsing job: ' + traceback.format_exc(), file=sys.stderr) return None def parse_qmgr10_file(self, file_data, suppress_duplicates): """Attempt to parse file data from the Win10 qmgr database""" # Skip small entires that are not valid if len(file_data) < 256: return None try: # Because it can be expensive to parse a FILE structure if the data is not valid, # do a simple check to see if the filename length is valid filename_length = struct.unpack_from("<L", file_data)[0] if 4 + filename_length * 2 > len(file_data): return None # Parse the FILE parsed_file = FILE.parse(file_data) # Build a BitsJob for the file entry (set entry as files list) cur_job = {} cur_job['files'] = [parsed_file] # There is usually a timestamp 29 bytes into the file structure, which appears to correlate to creation time filetime = struct.unpack_from("<Q", file_data, parsed_file.offset + 29)[0] if filetime != 0: cur_job['ctime'] = datetime.datetime(1601, 1, 1) + datetime.timedelta(microseconds=(filetime / 10)) return cur_job except Exception: return None @staticmethod def process_qmgr10_rows(table): """Given a table, processes the rows by getting data and excluding leading GUIDs""" # Enumerate records for i in range(table.get_number_of_records()): cur_record = table.get_record(i) num_values = cur_record.get_number_of_values() if num_values != 2: continue try: # Get the record Id GUID if cur_record.is_long_value(0): guid = cur_record.get_value_data_as_long_value(0).data else: guid = cur_record.get_value_data(0) # Get the record Blob data if cur_record.is_long_value(1): val = cur_record.get_value_data_as_long_value(1).data else: val = cur_record.get_value_data(1) # Return the data if it's at least 16 bytes (exclude the first 16 bytes) if len(val) > 16: yield guid, val[16:] except Exception: pass def load_qmgr10_db(self, file_data): """Loads the qmgr.db and attempts to enumerate the Jobs and Files tables to parse records""" jobs = [] self.file_entries = {} # Parse the database ese = ESENT_DB(file_data) # Enumerate files, store file entries to file_entries mapping files_table = ese.openTable("Files") while True: file_record = ese.getNextRow(files_table) if file_record is None: break guid = file_record.get(b'Id') new_job = self.parse_qmgr10_file(file_record.get(b'Blob', b''), False) if guid and new_job: self.file_entries[guid] = new_job # Enumerate jobs (and correlate to files) jobs_table = ese.openTable("Jobs") while True: job_record = ese.getNextRow(jobs_table) if job_record is None: break guid = job_record.get(b'Id') job_data = job_record.get(b'Blob', b'')[16:] new_job = self.parse_qmgr10_job(job_data) if guid and new_job: jobs.append(new_job) # If any file records were not correlated to JOBs just add them as their own jobs for guid, file_job in self.file_entries.items(): jobs.append(BitsJob(file_job, self)) return jobs def carve_qmgr10_records(self, file_data): """ Attempts to carve jobs from a qmgr database file using expected file and job GUIDs""" jobs = [] self.file_entries = {} # Carve file entries from the database, store to file_entries mapping cur_offset = file_data.find(WIN10_FILE_DELIMITER) while cur_offset > 0: next_offset = file_data.find(WIN10_FILE_DELIMITER, cur_offset+len(WIN10_FILE_DELIMITER)) if next_offset > 0: file_job = self.parse_qmgr10_file(file_data[cur_offset+16:next_offset], True) else: file_job = self.parse_qmgr10_file(file_data[cur_offset+16:], True) if file_job: guid = file_data[cur_offset-22:cur_offset-6] self.file_entries[guid] = file_job cur_offset = next_offset # Carve jobs from the database (note that there are multiple potential job delimiters) for job_delimiter in WIN10_JOB_DELIMITERS: carved_jobs = file_data.split(job_delimiter) if len(carved_jobs) == 1: continue for i in range(1, len(carved_jobs)): new_job = self.parse_qmgr10_job(carved_jobs[i]) if new_job: new_job.job_dict['Carved'] = True jobs.append(new_job) # If any file records were not correlated to JOBs just add them as their own jobs for guid, carved_job in self.file_entries.items(): file_job = BitsJob(carved_job, self) file_job.job_dict['Carved'] = True jobs.append(file_job) return jobs def load_qmgr10_jobs(self, file_data): """ Attempt to parse Windows 10 qmgr jobs by carving JOB and FILE records out of the database using record identifiers. Unfortunately there is not a way to correlate job and file entries in Win10 qmgr databases, so we have to create separate entries for each. """ # Parse active job and file records in the database jobs = self.load_qmgr10_db(file_data) # Carve deleted job and file entires if requested if self.carve_db_files or self.carve_all_files: jobs.extend(self.carve_qmgr10_records(file_data)) return jobs def output_jobs(self, file_path, jobs): """Cleans up and outputs the parsed jobs from the qmgr database files""" # If an output file is specified, open it and use it instead of stdout if self.out_file: orig_stdout = sys.stdout sys.stdout = open(self.out_file, "w") try: for job in jobs: # Skip incomplete carved jobs as they do not contain useful info if job.is_carved() and not job.is_useful_for_analysis(): continue # Output unique jobs if job.hash not in self.visited_jobs: formatted_job = json.dumps(job.job_dict, indent=4) print(formatted_job) self.visited_jobs.add(job.hash) finally: if self.out_file: sys.stdout.close() sys.stdout = orig_stdout def process_file(self, file_path): """ Processes the given BITS file. Attempts to find/parse jobs. """ try: # Read the file (may need to raw read) print("Processing file "+file_path, file=sys.stderr) file_data = None with open(file_path, "rb") as f: file_data = f.read() # Parse as a qmgr database (support old and Win10 formats) jobs = [] if BitsParser.is_qmgr_database(file_data): jobs = self.load_qmgr_jobs(file_path) elif BitsParser.is_qmgr10_database(file_data): jobs = self.load_qmgr10_jobs(file_data) # Try to "carve" jobs if the file is not a qmgr database (and carving is enabled) elif self.carve_all_files: if self.is_win_10: jobs = self.carve_qmgr10_records(file_data) else: jobs = self.load_non_qmgr_jobs(file_data) self.output_jobs(file_path, jobs) except Exception: print(f'Exception occurred processing file {file_path}: ' + traceback.format_exc(), file=sys.stderr) def determine_directory_architecture(self, path): """ Determines if the files within the directory suggest it came from a Windows 10 system or an older system """ if os.path.exists(path + os.sep + "qmgr.db"): self.is_win_10 = True elif os.path.exists(path + os.sep + "qmgr0.dat"): self.is_win_10 = False def run(self): """ Finds and processes BITS database files """ # If the queue "directory" is a file, just process the file if os.path.isfile(self.queue_dir): self.process_file(self.queue_dir) return # Determine if the directory appears to belong to a Windows 10 system or an older system for carving self.determine_directory_architecture(self.queue_dir) # List files in the queue directory and process for f in os.listdir(self.queue_dir): cur_path = self.queue_dir + os.sep + f if not os.path.isfile(cur_path): continue self.process_file(cur_path) class BitsJob: """ Provides methods for reformatting parsed jobs from the ANSSI-FR library """ # Mappings between types returned by ANSSI-FR library and our output fields FILE_MAP = dict( src_fn="SourceURL", dest_fn="DestFile", tmp_fn="TmpFile", download_size="DownloadByteSize", transfer_size="TransferByteSize", vol_guid="VolumeGUID" ) JOB_MAP = dict( job_id="JobId", type="JobType", priority="JobPriority", state="JobState", name="JobName", desc="JobDesc", cmd="CommandExecuted", args="CommandArguments", sid="OwnerSID", ctime="CreationTime", mtime="ModifiedTime", carved="Carved", files="Files", queue_path="QueuePath" ) def __init__(self, job, bits_parser): """ Initialize a BitsJob with a parsed job dictionary and a reference to BitsParser """ self.job = job self.bits_parser = bits_parser self.hash = None self.job_dict = {} if bits_parser.carve_db_files or bits_parser.carve_all_files: self.job_dict = {'Carved': False} self.parse() def is_useful_for_analysis(self, cur_dict=None): """ Returns True if the job contains at least one "useful" field (discards useless "carved" entries) and the ctime field exists """ useful_fields = ['SourceURL', 'DestFile', 'TmpFile', 'JobId', 'JobState', 'CommandExecuted', 'CommandArguments'] if not cur_dict: cur_dict = self.job_dict for k, v in cur_dict.items(): if k in useful_fields and v: return True # Handle lists of dicts, like we have for the Files field if isinstance(v, list): for d in v: if self.is_useful_for_analysis(d): return True return False def is_carved(self): """ Simple function returns True if the job was carved """ return self.job_dict.get('Carved') is True @staticmethod def escape(input_str): """ Simple escape function to eliminating non-printable characters from strings """ if not isinstance(input_str, str) or input_str.isprintable(): return input_str return ''.join(filter(lambda x: x in string.printable, input_str)) def parse(self): """ Converts the fields in self.job into format used for output and separates file entries. Does some formatting and type conversion. Also computes a hash of the job for quick comparison. """ file_fields = ['args', 'cmd', 'dest_fn', 'tmp_fn'] job_hash = hashlib.md5() for k, v in self.job.items(): # Map the attribute name, skip empty or unmapped values alias = self.JOB_MAP.get(k) if not alias: continue elif not v or str(v).strip() == '': continue # Convert timestamps into normal isoformat elif isinstance(v, datetime.datetime): self.job_dict[alias] = v.replace(microsecond=0).isoformat() + 'Z' # Convert boolean values to lowercase elif isinstance(v, bool): self.job_dict[alias] = str(v).lower() # If this is a SID, convert to username and set owner elif alias == self.JOB_MAP['sid']: self.job_dict[alias] = str(v) owner = self.bits_parser.get_username_from_sid(v) if owner: self.job_dict["Owner"] = owner # The files field contains a list of files -- perform attribute mapping and environment variable resolution elif alias == self.JOB_MAP['files']: files_list = [] for file in v: file_dict = {} for k1, v1 in file.items(): # Map the transaction attribute name, skip empty, unmapped, or invalid values t_alias = self.FILE_MAP.get(k1) if not t_alias: continue elif v1 is None or str(v1).strip() == '' or not str(v1).isprintable(): continue # Skip certain invalid values (if there is no value or if the value is -1 (DWORD64)) if v1 is None or v1 == 0xFFFFFFFFFFFFFFFF: continue # If this is a file field, resolve and add to the list of files if k1 in file_fields: file_dict[t_alias] = os.path.expandvars(v1) else: file_dict[t_alias] = v1 # Update the object hash job_hash.update(str(file_dict[t_alias]).encode('utf-8')) files_list.append(file_dict) self.job_dict['Files'] = files_list else: self.job_dict[alias] = v # Escape non-printable chars if appropriate self.job_dict[alias] = self.escape(self.job_dict[alias]) # Update the object hash if type(v) is not 'Dict': job_hash.update(str(v).encode('utf-8')) self.hash = job_hash.hexdigest() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--input', '-i', default='%ALLUSERSPROFILE%\\Microsoft\\Network\\Downloader', help='Optionally specify the directory containing QMGR databases or the path to a file to process.') parser.add_argument('--output', '-o', help='Optionally specify a file for JSON output. If not specified the output will be printed to stdout.') parser.add_argument('--carvedb', action='store_true', help='Carve deleted records from database files') parser.add_argument('--carveall', action='store_true', help='Carve deleted records from all other files') parsed_args = parser.parse_args() queue_dir = os.path.expandvars(parsed_args.input) bits_parser = BitsParser(queue_dir, parsed_args.carvedb, parsed_args.carveall, parsed_args.output) bits_parser.run()
office365/sharepoint/folders/folder.py
vgrem/Office365-REST-Python-Client
544
11137653
from office365.runtime.client_result import ClientResult from office365.runtime.queries.create_entity_query import CreateEntityQuery from office365.runtime.queries.service_operation_query import ServiceOperationQuery from office365.runtime.queries.update_entity_query import UpdateEntityQuery from office365.runtime.paths.resource_path import ResourcePath from office365.runtime.paths.service_operation import ServiceOperationPath from office365.sharepoint.base_entity import BaseEntity from office365.sharepoint.changes.change_collection import ChangeCollection from office365.sharepoint.changes.change_query import ChangeQuery from office365.sharepoint.contenttypes.content_type_id import ContentTypeId from office365.sharepoint.listitems.listitem import ListItem from office365.sharepoint.storagemetrics.storage_metrics import StorageMetrics from office365.sharepoint.utilities.move_copy_options import MoveCopyOptions from office365.sharepoint.utilities.move_copy_util import MoveCopyUtil from office365.sharepoint.types.resource_path import ResourcePath as SPResPath from office365.runtime.compat import urlparse class Folder(BaseEntity): """Represents a folder in a SharePoint Web site.""" @staticmethod def from_url(abs_url): """ Addresses a Folder by absolute url :type abs_url: str """ from office365.sharepoint.client_context import ClientContext ctx = ClientContext.from_url(abs_url) relative_url = abs_url.replace(ctx.base_url, "") return ctx.web.get_folder_by_server_relative_url(relative_url) def recycle(self): """Moves the folder to the Recycle Bin and returns the identifier of the new Recycle Bin item.""" result = ClientResult(self.context) qry = ServiceOperationQuery(self, "Recycle", None, None, None, result) self.context.add_query(qry) return result def recycle_with_parameters(self, parameters): """ :type parameters: office365.sharepoint.folders.folder_delete_parameters.FolderDeleteParameters """ result = ClientResult(self.context) qry = ServiceOperationQuery(self, "RecycleWithParameters", None, parameters, "parameters", result) self.context.add_query(qry) return result def get_changes(self, query=None): """Returns the collection of changes from the change log that have occurred within the folder, based on the specified query. :param office365.sharepoint.changeQuery.ChangeQuery query: Specifies which changes to return """ if query is None: query = ChangeQuery(folder=True) changes = ChangeCollection(self.context) qry = ServiceOperationQuery(self, "getChanges", None, query, "query", changes) self.context.add_query(qry) return changes def get_list_item_changes(self, query): """ :param office365.sharepoint.changeQuery.ChangeQuery query: Specifies which changes to return """ changes = ChangeCollection(self.context) qry = ServiceOperationQuery(self, "getListItemChanges", None, query, "query", changes) self.context.add_query(qry) return changes def add(self, name): """Adds the folder that is located under a current folder :type name: str """ new_folder = Folder(self.context) def _add_sub_folder(): new_folder_url = "/".join([self.serverRelativeUrl, name]) new_folder.set_property("ServerRelativeUrl", new_folder_url) qry = CreateEntityQuery(self.folders, new_folder, new_folder) self.context.add_query(qry) self.ensure_property("ServerRelativeUrl", _add_sub_folder) return new_folder def rename(self, name): """Rename a Folder resource :type name: str """ item = self.list_item_all_fields item.set_property('Title', name) item.set_property('FileLeafRef', name) qry = UpdateEntityQuery(item) self.context.add_query(qry) return self def upload_file(self, file_name, content): """Uploads a file into folder :type file_name: str :type content: str :rtype: office365.sharepoint.files.file.File """ return self.files.upload(file_name, content) def copy_to(self, new_relative_url, keep_both=False, reset_author_and_created=False): """Copies the folder with files to the destination URL. :type new_relative_url: str :type keep_both: bool :type reset_author_and_created: bool """ target_folder = Folder(self.context) target_folder.set_property("ServerRelativeUrl", new_relative_url) def _copy_folder(): opts = MoveCopyOptions(keep_both=keep_both, reset_author_and_created_on_copy=reset_author_and_created) MoveCopyUtil.copy_folder(self.context, self._build_full_url(self.serverRelativeUrl), self._build_full_url(new_relative_url), opts) self.ensure_property("ServerRelativeUrl", _copy_folder) return target_folder def copy_to_by_path(self, new_relative_path, keep_both=False, reset_author_and_created=False): """Copies the folder with files to the destination Path. :type new_relative_path: str :type keep_both: bool :type reset_author_and_created: bool """ target_folder = Folder(self.context) target_folder.set_property("ServerRelativePath", SPResPath(new_relative_path)) def _copy_folder(): opts = MoveCopyOptions(keep_both=keep_both, reset_author_and_created_on_copy=reset_author_and_created) MoveCopyUtil.copy_folder_by_path(self.context, self._build_full_url(self.server_relative_path.DecodedUrl), self._build_full_url(new_relative_path), opts) self.ensure_property("ServerRelativePath", _copy_folder) return target_folder def move_to(self, new_relative_url, retain_editor_and_modified=False): """Moves the folder with files to the destination URL. :type new_relative_url: str :type retain_editor_and_modified: bool """ target_folder = Folder(self.context) target_folder.set_property("ServerRelativeUrl", new_relative_url) def _move_folder(): MoveCopyUtil.move_folder(self.context, self._build_full_url(self.serverRelativeUrl), self._build_full_url(new_relative_url), MoveCopyOptions(retain_editor_and_modified_on_move=retain_editor_and_modified)) self.ensure_property("ServerRelativeUrl", _move_folder) return target_folder def move_to_by_path(self, new_relative_path, retain_editor_and_modified=False): """Moves the folder with files to the destination Path. :type new_relative_path: str :type retain_editor_and_modified: bool """ target_folder = Folder(self.context) target_folder.set_property("ServerRelativePath", SPResPath(new_relative_path)) def _move_folder(): MoveCopyUtil.move_folder_by_path(self.context, self._build_full_url(self.server_relative_path.DecodedUrl), self._build_full_url(new_relative_path), MoveCopyOptions( retain_editor_and_modified_on_move=retain_editor_and_modified)) self.ensure_property("ServerRelativePath", _move_folder) return target_folder @property def storage_metrics(self): """""" return self.properties.get("StorageMetrics", StorageMetrics(self.context, ResourcePath("StorageMetrics", self.resource_path))) @property def list_item_all_fields(self): """Specifies the list item fields (2) values for the list item corresponding to the folder.""" return self.properties.get("ListItemAllFields", ListItem(self.context, ResourcePath("ListItemAllFields", self.resource_path))) @property def files(self): """Get a file collection""" from office365.sharepoint.files.file_collection import FileCollection return self.properties.get("Files", FileCollection(self.context, ResourcePath("Files", self.resource_path))) @property def folders(self): """Specifies the collection of list folders contained within the list folder. """ from office365.sharepoint.folders.folder_collection import FolderCollection return self.properties.get("Folders", FolderCollection(self.context, ResourcePath("Folders", self.resource_path))) @property def parent_folder(self): """Specifies the list folder. """ return self.properties.get("ParentFolder", Folder(self.context, ResourcePath("ParentFolder", self.resource_path))) @property def name(self): """Specifies the list folder name. :rtype: str or None """ return self.properties.get("Name", None) @property def is_wopi_enabled(self): return self.properties.get("IsWOPIEnabled", None) @property def prog_id(self): """Gets the identifier (ID) of the application in which the folder was created.""" return self.properties.get("ProgID", None) @property def unique_id(self): """Gets the unique ID of the folder. :rtype: str or None """ return self.properties.get("UniqueId", None) @property def exists(self): """Gets a Boolean value that indicates whether the folder exists. :rtype: bool or None """ return self.properties.get("Exists", None) @property def welcome_page(self): """Specifies the server-relative URL for the list folder Welcome page. :rtype: str or None """ return self.properties.get("WelcomePage", None) @property def unique_content_type_order(self): """Specifies the content type order for the list folder. :rtype: office365.sharepoint.contenttypes.content_type_id.ContentTypeId or None """ return self.properties.get("UniqueContentTypeOrder", ContentTypeId()) @property def content_type_order(self): """Specifies the content type order for the list folder. :rtype: office365.sharepoint.contenttypes.content_type_id.ContentTypeId or None """ return self.properties.get("ContentTypeOrder", ContentTypeId()) @property def time_last_modified(self): """Gets the last time this folder or a direct child was modified in UTC. :rtype: str or None """ return self.properties.get("TimeLastModified", None) @property def serverRelativeUrl(self): """Gets the server-relative URL of the list folder. :rtype: str or None """ return self.properties.get("ServerRelativeUrl", None) @property def server_relative_path(self): """Gets the server-relative Path of the list folder. :rtype: SPResPath or None """ return self.properties.get("ServerRelativePath", SPResPath(None)) def get_property(self, name, default_value=None): if default_value is None: property_mapping = { "ContentTypeOrder": self.content_type_order, "UniqueContentTypeOrder": self.unique_content_type_order, "ListItemAllFields": self.list_item_all_fields, "ParentFolder": self.parent_folder, "ServerRelativePath": self.server_relative_path, "StorageMetrics": self.storage_metrics } default_value = property_mapping.get(name, None) return super(Folder, self).get_property(name, default_value) def set_property(self, name, value, persist_changes=True): super(Folder, self).set_property(name, value, persist_changes) # fallback: create a new resource path if name == "ServerRelativeUrl": self._resource_path = ServiceOperationPath("getFolderByServerRelativeUrl", [value], ResourcePath("Web")) elif name == "ServerRelativePath": self._resource_path = ServiceOperationPath("getFolderByServerRelativePath", [value], ResourcePath("Web")) elif name == "UniqueId": self._resource_path = ServiceOperationPath("getFolderById", [value], ResourcePath("Web")) return self def _build_full_url(self, rel_url): """ :type rel_url: str """ site_path = urlparse(self.context.base_url).path return self.context.base_url.replace(site_path, "") + rel_url
panel/models/layout.py
sthagen/holoviz-panel
601
11137679
<reponame>sthagen/holoviz-panel from bokeh.core.properties import ( Bool, List, Nullable, String, ) from bokeh.models import Column class Card(Column): active_header_background = Nullable(String, help="Background color of active Card header.") button_css_classes = List(String, help="CSS classes to add to the Card collapse button.") collapsed = Bool(True, help="Whether the Card is collapsed.") collapsible = Bool(True, help="Whether the Card should have a button to collapse it.") header_background = Nullable(String, help="Background color of the Card header.") header_color = Nullable(String, help="Color of the header text and button.") header_css_classes = List(String, help="CSS classes to add to the Card header.") header_tag = String('div', help="HTML tag to use for the Card header.") hide_header = Bool(False, help="Whether to hide the Card header") tag = String('tag', help="CSS class to use for the Card as a whole.")
greykite/sklearn/transform/build_timeseries_features_transformer.py
CaduceusInc/greykite
1,503
11137684
<filename>greykite/sklearn/transform/build_timeseries_features_transformer.py # BSD 2-CLAUSE LICENSE # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR # #ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # original author: <NAME> import pandas as pd from sklearn.base import BaseEstimator from sklearn.base import TransformerMixin from sklearn.exceptions import NotFittedError from greykite.common.constants import TIME_COL from greykite.common.features.timeseries_features import build_time_features_df from greykite.common.features.timeseries_features import convert_date_to_continuous_time class BuildTimeseriesFeaturesTransformer(BaseEstimator, TransformerMixin): """Calculates time series features (e.g. year, month, hour etc.) of the input time series Parameters ---------- time_col : string, default=TIME_COL issues warning if fraction of nulls is above this value Attributes ---------- origin_for_time_vars : float (e.g. 2019.2) sets default origin so that "ct1" feature from `build_time_features_df` starts at 0 on start date of fitted data """ def __init__(self, time_col: str = TIME_COL): self.time_col = time_col self.origin_for_time_vars = None def fit(self, X, y=None): """Sets the time origin for input time series""" assert isinstance(X, pd.DataFrame) dt = X[self.time_col] self.origin_for_time_vars = convert_date_to_continuous_time(dt[0]) return self def transform(self, X): """ Calculates time series features of the input time series Parameters ---------- X : pd.DataFrame Returns ------- A copy of the data frame with original time points and calculated features """ if self.origin_for_time_vars is None: raise NotFittedError( "This instance is not fitted yet. Call 'fit' with appropriate arguments " "before calling 'transform'.") assert isinstance(X, pd.DataFrame) dt = X[self.time_col] features_ts = build_time_features_df(dt, conti_year_origin=self.origin_for_time_vars) output = pd.concat([dt, features_ts], axis=1) return output
diffusion/models/models.py
DazhiZhong/v-diffusion-pytorch
393
11137693
<filename>diffusion/models/models.py from . import cc12m_1, danbooru_128, imagenet_128, wikiart_128, wikiart_256, yfcc_1, yfcc_2 models = { 'cc12m_1': cc12m_1.CC12M1Model, 'cc12m_1_cfg': cc12m_1.CC12M1Model, 'danbooru_128': danbooru_128.Danbooru128Model, 'imagenet_128': imagenet_128.ImageNet128Model, 'wikiart_128': wikiart_128.WikiArt128Model, 'wikiart_256': wikiart_256.WikiArt256Model, 'yfcc_1': yfcc_1.YFCC1Model, 'yfcc_2': yfcc_2.YFCC2Model, } def get_model(model): return models[model] def get_models(): return list(models.keys())
utils.py
tolleybot/fast-depth
759
11137714
import os import torch import shutil import numpy as np import matplotlib.pyplot as plt from PIL import Image import math cmap = plt.cm.viridis def parse_command(): data_names = ['nyudepthv2'] from dataloaders.dataloader import MyDataloader modality_names = MyDataloader.modality_names import argparse parser = argparse.ArgumentParser(description='FastDepth') parser.add_argument('--data', metavar='DATA', default='nyudepthv2', choices=data_names, help='dataset: ' + ' | '.join(data_names) + ' (default: nyudepthv2)') parser.add_argument('--modality', '-m', metavar='MODALITY', default='rgb', choices=modality_names, help='modality: ' + ' | '.join(modality_names) + ' (default: rgb)') parser.add_argument('-j', '--workers', default=16, type=int, metavar='N', help='number of data loading workers (default: 16)') parser.add_argument('--print-freq', '-p', default=50, type=int, metavar='N', help='print frequency (default: 50)') parser.add_argument('-e', '--evaluate', default='', type=str, metavar='PATH',) parser.add_argument('--gpu', default='0', type=str, metavar='N', help="gpu id") parser.set_defaults(cuda=True) args = parser.parse_args() return args def colored_depthmap(depth, d_min=None, d_max=None): if d_min is None: d_min = np.min(depth) if d_max is None: d_max = np.max(depth) depth_relative = (depth - d_min) / (d_max - d_min) return 255 * cmap(depth_relative)[:,:,:3] # H, W, C def merge_into_row(input, depth_target, depth_pred): rgb = 255 * np.transpose(np.squeeze(input.cpu().numpy()), (1,2,0)) # H, W, C depth_target_cpu = np.squeeze(depth_target.cpu().numpy()) depth_pred_cpu = np.squeeze(depth_pred.data.cpu().numpy()) d_min = min(np.min(depth_target_cpu), np.min(depth_pred_cpu)) d_max = max(np.max(depth_target_cpu), np.max(depth_pred_cpu)) depth_target_col = colored_depthmap(depth_target_cpu, d_min, d_max) depth_pred_col = colored_depthmap(depth_pred_cpu, d_min, d_max) img_merge = np.hstack([rgb, depth_target_col, depth_pred_col]) return img_merge def merge_into_row_with_gt(input, depth_input, depth_target, depth_pred): rgb = 255 * np.transpose(np.squeeze(input.cpu().numpy()), (1,2,0)) # H, W, C depth_input_cpu = np.squeeze(depth_input.cpu().numpy()) depth_target_cpu = np.squeeze(depth_target.cpu().numpy()) depth_pred_cpu = np.squeeze(depth_pred.data.cpu().numpy()) d_min = min(np.min(depth_input_cpu), np.min(depth_target_cpu), np.min(depth_pred_cpu)) d_max = max(np.max(depth_input_cpu), np.max(depth_target_cpu), np.max(depth_pred_cpu)) depth_input_col = colored_depthmap(depth_input_cpu, d_min, d_max) depth_target_col = colored_depthmap(depth_target_cpu, d_min, d_max) depth_pred_col = colored_depthmap(depth_pred_cpu, d_min, d_max) img_merge = np.hstack([rgb, depth_input_col, depth_target_col, depth_pred_col]) return img_merge def add_row(img_merge, row): return np.vstack([img_merge, row]) def save_image(img_merge, filename): img_merge = Image.fromarray(img_merge.astype('uint8')) img_merge.save(filename)
pythonz/installer/versions.py
saghul/pythonz
358
11137740
versions = { 'cpython': { '2.4': 'ff746de0fae8691c082414b42a2bb172da8797e6e8ff66c9a39d2e452f7034e9', '2.4.1': 'f449c3b167389324c525ad99d02376c518ac11e163dbbbc13bc88a5c7101fd00', '2.4.2': '2653e1846e87fd9b3ee287fefc965c80c54646548b4913a22265b0dd54493adf', '2.4.3': '985a413932f5e31e6280b37da6b285a3a0b2748c6786643989ed9b23de97e2d5', '2.4.4': '92be6e20cbc3111d9dd0c016d72ef7914c23b879dc52df7ba28df97afbf12e2e', '2.4.5': '6ae6f67a388a7f70ed3a20eebab5aae995ee433089d1f1724095c62f4b7389a1', '2.4.6': 'b03f269e826927f05c966cf4f4414f3c93ee2314960859e7f8375e24e82f8b02', '2.5': 'd7bbf42e36003c6065cd19f3e67d283521858515ee923220f654131cebe1d8f2', '2.5.1': '1f5caee846049ca30d996f9403eefdb996295c4af664867e35dcc5eb36e4e7e8', '2.5.2': '834afe8a88adaf623b05ac5dd6700dd5bb5d0d5553fc74ad529359a3496e4ae3', '2.5.3': 'c3fee607d20a77dfb72ea2e627eb4d95d25c735603435abde62c57015a0445bd', '2.5.4': '3d3b205611ee503a38a9433d5645a571668420bb219242c7f51af85f05664da6', '2.5.5': '03be1019c4fe93daeb53ba9e4294bf22a8ed4cb854cbd57e24e16f6bf63e2392', '2.5.6': 'c2e4377597241b1065677d23327c04d0f41945d370c61a491cc88be367234c5d', '2.6': '7c2f21a968a737a59ed0729f4b1dc154dc3aa183c20be96055186fe43c6742d0', '2.6.1': 'fb65e93678e1327e3e8559cc56e1e00ed8c07162b21287a3502677892c5c515c', '2.6.2': 'e37ecdf249f248f4fea227adbca09c778670b64fcb5e45947ec3e093cbc12c86', '2.6.3': 'a71b55540690425fd82ab00819aeb92c1b23cbb4730a0ccd2e25c833b22a812e', '2.6.4': '<KEY>', '2.6.5': 'b331dafdce3361834fee783795d4f68ae7cf7d379e9137c2d8e8531cea615ede', '2.6.6': '372f66db46d773214e4619df1794a26449158f626138d4d2141a64c2f017fae1', '2.6.7': 'a8093eace4cfd3e06b05f0deb5d765e3c6cec65908048640a8cadd7a948b3826', '2.6.8': '5bf02a75ffa2fcaa5a3cabb8201998519b045541975622316888ea468d9512f7', '2.6.9': '7277b1285d8a82f374ef6ebaac85b003266f7939b3f2a24a3af52f9523ac94db', '2.7': '5670dd6c0c93b0b529781d070852f7b51ce6855615b16afcd318341af2910fb5', '2.7.1': 'ca13e7b1860821494f70de017202283ad73b1fb7bd88586401c54ef958226ec8', '2.7.2': '1d54b7096c17902c3f40ffce7e5b84e0072d0144024184fff184a84d563abbb3', '2.7.3': 'd4c20f2b5faf95999fd5fecb3f7d32071b0820516224a6d2b72932ab47a1cb8e', '2.7.4': '98c5eb9c8e65effcc0122112ba17a0bce880aa23ecb560af56b55eb55632b81a', '2.7.5': '8e1b5fa87b91835afb376a9c0d319d41feca07ffebc0288d97ab08d64f48afbf', '2.7.6': '99c6860b70977befa1590029fae092ddb18db1d69ae67e8b9385b66ed104ba58', '2.7.7': '7f49c0a6705ad89d925181e27d0aaa025ee4731ce0de64776c722216c3e66c42', '2.7.8': '74d70b914da4487aa1d97222b29e9554d042f825f26cb2b93abd20fdda56b557', '2.7.9': 'c8bba33e66ac3201dabdc556f0ea7cfe6ac11946ec32d357c4c6f9b018c12c5b', '2.7.10': 'eda8ce6eec03e74991abb5384170e7c65fcd7522e409b8e83d7e6372add0f12a', '2.7.11': '82929b96fd6afc8da838b149107078c02fa1744b7e60999a8babbc0d3fa86fc6', '2.7.12': '3cb522d17463dfa69a155ab18cffa399b358c966c0363d6c8b5b3bf1384da4b6', '2.7.13': 'a4f05a0720ce0fd92626f0278b6b433eee9a6173ddf2bced7957dfb599a5ece1', '2.7.14': '304c9b202ea6fbd0a4a8e0ad3733715fbd4749f2204a9173a58ec53c32ea73e8', '2.7.15': '18617d1f15a380a919d517630a9cd85ce17ea602f9bbdc58ddc672df4b0239db', '2.7.16': '01da813a3600876f03f46db11cc5c408175e99f03af2ba942ef324389a83bad5', '2.7.17': 'f22059d09cdf9625e0a7284d24a13062044f5bf59d93a7f3382190dfa94cecde', '2.7.18': 'da3080e3b488f648a3d7a4560ddee895284c3380b11d6de75edb986526b9a814', '3.0': '4d5d6ab2f893144a382ae1ea1de88a7825eb98111e26cfde627b9f3d9fd462b4', '3.0.1': '7d5f2feae9035f1d3d9e6bb7f092dbf374d6bb4b25abd0d2d11f13bba1cb04de', '3.1': '99a034cf574ea3c26412b0a0728126d7fd6ea9593d099d807a25d216ed031e6a', '3.1.1': '5d85d7bff11c4db44920af99f64f4227c816f897f6bfa9dd8a2611165ca5f0a1', '3.1.2': 'dffbc0561a161a4a576c6059e6990a9859a0be16ba9b5736eabe4abbb2700d1c', '3.1.3': '6311823aeda8be6a7a2b67caaeff48abce6626c9940ba7ed81f9c978666a36bd', '3.1.4': 'fadc05ea6d05360cff189944a85ecd2180bbc308784d168b350450e70bbdd846', '3.1.5': 'd12dae6d06f52ef6bf1271db4d5b4d14b5dd39813e324314e72b648ef1bc0103', '3.2': '27b35bfcbbf01de9564c0265d72b58ba3ff3d56df0615765372f2aa09dc20da9', '3.2.1': '7cff29d984696d9fe8c7bea54da5b9ad36acef33ff5cf0d3e37e4d12fb21c572', '3.2.2': 'acc6a13cb4fed0b7e86716324a8437e326645b8076177eede5a0cad99ec0313c', '3.2.3': '74c33e165edef7532cef95fd9a325a06878b5bfc8a5d038161573f283eaf9809', '3.2.4': '71c3139908ccc1c544ba1e331a3c22b3f1c09f562438a054fd6f4e2628de8b9a', '3.2.5': '5eae0ab92a0bb9e3a1bf9c7cd046bc3de58996b049bd894d095978b6b085099f', '3.3.0': 'cfe531eaace2503e13a74addc7f4a89482e99f8b8fca51b469ae5c83f450604e', '3.3.1': '671dc3632f311e63c6733703aa0a1ad90c99277ddc8299d39e487718a50319bd', '3.3.2': 'de664fca3b8e0ab20fb42bfed1a36e26f116f1853e88ada12dbc938761036172', '3.3.3': '30b60839bfe0ae8a2dba11e909328459bb8ee4a258afe7494b06b2ceda080efc', '3.3.4': 'ea055db9dd004a6ecd7690abc9734573763686dd768122316bae2dfd026412af', '3.3.5': '916bc57dd8524dc27429bebae7b39d6942742cf9699b875b2b496a3d960c7168', '3.3.6': '0a58ad1f1def4ecc90b18b0c410a3a0e1a48cf7692c75d1f83d0af080e5d2034', '3.4.0': 'd2c83ea0217769a73e8b1ee33ffbca814903f8568e30f8d13e68e3d1f743449c', '3.4.1': '8d007e3ef80b128a292be101201e75dec5480e5632e994771e7c231d17720b66', '3.4.2': '44a3c1ef1c7ca3e4fd25242af80ed72da941203cb4ed1a8c1b724d9078965dd8', '3.4.3': '8b743f56e9e50bf0923b9e9c45dd927c071d7aa56cd46569d8818add8cf01147', '3.4.4': 'bc93e944025816ec360712b4c42d8d5f729eaed2b26585e9bc8844f93f0c382e', '3.4.5': '997aca4dd8692f3c954658a3db11c1d0862bcbf8eadd6a164746eb33d317c034', '3.4.6': 'fe59daced99549d1d452727c050ae486169e9716a890cffb0d468b376d916b48', '3.4.7': '1614734847fd07e2a1ab1c65ae841db2433f8b845f49b34b7b5cabcb1c3f491f', '3.4.8': '8b1a1ce043e132082d29a5d09f2841f193c77b631282a82f98895a5dbaba1639', '3.4.9': 'e02e565372750a6678efe35ddecbe5ccd5330a8a2e8bbe38d3060713492e3dab', '3.4.10': '217757699249ab432571b381386d441e12b433100ab5f908051fcb7cced2539d', '3.5.0': '584e3d5a02692ca52fce505e68ecd77248a6f2c99adf9db144a39087336b0fe0', '3.5.1': '687e067d9f391da645423c7eda8205bae9d35edc0c76ef5218dcbe4cc770d0d7', '3.5.2': '1524b840e42cf3b909e8f8df67c1724012c7dc7f9d076d4feef2d3eff031e8a0', '3.5.3': 'd8890b84d773cd7059e597dbefa510340de8336ec9b9e9032bf030f19291565a', '3.5.4': '6ed87a8b6c758cc3299a8b433e8a9a9122054ad5bc8aad43299cff3a53d8ca44', '3.5.5': '2f988db33913dcef17552fd1447b41afb89dbc26e3cdfc068ea6c62013a3a2a5', '3.5.6': '30d2ff093988e74283e1abfee823292c6b59590796b9827e95ba4940b27d26f8', '3.5.7': '542d94920a2a06a471a73b51614805ad65366af98145b0369bc374cf248b521b', '3.5.8': '18c88dfd260147bc7247e6356010e5d4916dfbfc480f6434917f88e61228177a', '3.5.9': '67a1d4fc6e4540d6a092cadc488e533afa961b3c9becc74dc3d6b55cb56e0cc1', '3.5.10': '3496a0daf51913718a6f10e3eda51fa43634cb6151cb096f312d48bdbeff7d3a', '3.6.0': '<KEY>', '3.6.1': 'aa50b0143df7c89ce91be020fe41382613a817354b33acdc6641b44f8ced3828', '3.6.2': '7919489310a5f17f7acbab64d731e46dca0702874840dadce8bd4b2b3b8e7a82', '3.6.3': '<KEY>', '3.6.4': '7dc453e1a93c083388eb1a23a256862407f8234a96dc4fae0fc7682020227486', '3.6.5': '<KEY>', '3.6.6': '7d56dadf6c7d92a238702389e80cfe66fbfae73e584189ed6f89c75bbf3eda58', '3.6.7': '<KEY>', '3.6.8': '7f5b1f08b3b0a595387ef6c64c85b1b13b38abef0dd871835ee923262e4f32f0', '3.6.9': '47fc92a1dcb946b9ed0abc311d3767b7215c54e655b17fd1d3f9b538195525aa', '3.6.10': '7034dd7cba98d4f94c74f9edd7345bac71c8814c41672c64d9044fa2f96f334d', '3.6.11': '<KEY>', '3.6.12': '12dddbe52385a0f702fb8071e12dcc6b3cb2dde07cd8db3ed60e90d90ab78693', '3.6.13': '614950d3d54f6e78dac651b49c64cfe2ceefea5af3aff3371a9e4b27a53b2669', '3.6.14': '70064897bc434d6eae8bcc3e5678f282b5ea776d60e695da548a1219ccfd27a5', '3.7.0': '85bb9feb6863e04fb1700b018d9d42d1caac178559ffa453d7e6a436e259fd0d', '3.7.1': '36c1b81ac29d0f8341f727ef40864d99d8206897be96be73dc34d4739c9c9f06', '3.7.2': 'f09d83c773b9cc72421abba2c317e4e6e05d919f9bcf34468e192b6a6c8e328d', '3.7.3': 'd62e3015f2f89c970ac52343976b406694931742fbde2fed8d1ce8ebb4e1f8ff', '3.7.4': 'd63e63e14e6d29e17490abbe6f7d17afb3db182dbd801229f14e55f4157c4ba3', '3.7.5': '<KEY>', '3.7.6': 'aeee681c235ad336af116f08ab6563361a0c81c537072c1b309d6e4050aa2114', '3.7.7': '8c8be91cd2648a1a0c251f04ea0bb4c2a5570feb9c45eaaa2241c785585b475a', '3.7.8': '0e25835614dc221e3ecea5831b38fa90788b5389b99b675a751414c858789ab0', '3.7.9': '39b018bc7d8a165e59aa827d9ae45c45901739b0bbb13721e4f973f3521c166a', '3.7.10': 'c9649ad84dc3a434c8637df6963100b2e5608697f9ba56d82e3809e4148e0975', '3.7.11': 'b4fba32182e16485d0a6022ba83c9251e6a1c14676ec243a9a07d3722cd4661a', '3.8.0': 'f1069ad3cae8e7ec467aa98a6565a62a48ef196cb8f1455a245a08db5e1792df', '3.8.1': 'c7cfa39a43b994621b245e029769e9126caa2a93571cee2e743b213cceac35fb', '3.8.2': 'e634a7a74776c2b89516b2e013dda1728c89c8149b9863b8cea21946daf9d561', '3.8.3': '6af6d4d2e010f9655518d0fc6738c7ff7069f10a4d2fbd55509e467f092a8b90', '3.8.4': '32c4d9817ef11793da4d0d95b3191c4db81d2e45544614e8449255ca9ae3cc18', '3.8.5': '015115023c382eb6ab83d512762fe3c5502fa0c6c52ffebc4831c4e1a06ffc49', '3.8.6': '<KEY>', '3.8.7': '20e5a04262f0af2eb9c19240d7ec368f385788bba2d8dfba7e74b20bab4d2bac', '3.8.8': '76c0763f048e4f9b861d24da76b7dd5c7a3ba7ec086f40caedeea359263276f7', '3.8.9': '9779ec1df000bf86914cdd40860b88da56c1e61db59d37784beca14a259ac9e9', '3.8.10': 'b37ac74d2cbad2590e7cd0dd2b3826c29afe89a734090a87bf8c03c45066cb65', '3.8.11': 'b77464ea80cec14581b86aeb7fb2ff02830e0abc7bcdc752b7b4bdfcd8f3e393', '3.9.0': 'df796b2dc8ef085edae2597a41c1c0a63625ebd92487adaef2fed22b567873e8', '3.9.1': '29cb91ba038346da0bd9ab84a0a55a845d872c341a4da6879f462e94c741f117', '3.9.2': '7899e8a6f7946748830d66739f2d8f2b30214dad956e56b9ba216b3de5581519', '3.9.4': '<KEY>', '3.9.5': 'e0fbd5b6e1ee242524430dee3c91baf4cbbaba4a72dd1674b90fda87b713c7ab', '3.9.6': 'd0a35182e19e416fc8eae25a3dcd4d02d4997333e4ad1f2eee6010aadc3fe866' }, 'stackless': { '2.6.5': 'ac1956d7f9715cc56e92992d39b24f0869cd9955fd2b8cf52b163530194d07b1', '2.7.2': 'e2e2706b22839e3e3f45085d0ec8030dd7374d8a65d3297981b7189a7c613197', '3.1.3': '7aab20f509b5e3ad14a8e7c316401ac51377048ae85325ac3838a1494c019863', '3.2.2': '779700f12b451a350fe7af4cd2849842adc7006dc83fe14712dd1a0999277b07', '3.2.5': 'b021125e578ddd267d38feee9e1cbdb675f6aab247a2b88f4494abcf23babb05', '3.3.5': '6558d1cb8c768ad95339fb9ca8b23106ce54c03ae67e9f75a84334d08489d240' }, 'pypy': { '1.8': { 'linux': '9c293d8540780260718f8fd8dc433c97b614a31b115ccfe2d68df720ad7e55b1', 'linux64': '<KEY>', 'darwin': 'b823b6b919082cfb67861b8253313b877618672377164086c0364fa8eaa88b8a' }, '1.9': { 'linux': '<KEY>', 'linux64': '4298252515e78c96f4ecd9f25be957411c060ece02d9213eef8d781cf528d18f', 'darwin': '4858f200e32c1070c77c1234ea0e9473eeda98bcd3832c4231f3e46e4e3b74b1' }, '2.0': { 'linux': '275dbbee67eac527a1177403a0386b17d008740f83030544800d87994edd46b9', 'linux64': '14c716d53a507eece89606d547456b886dbdfc0ba6e3fb29062fafe86d1b6038', 'darwin': '<KEY>' }, '2.0.1': { 'linux': '548686c5b95b424c79586d9a303ed41fca8eba52bd35c1527f39f5cd8fa35ea9', 'linux64': '0eb57e28f2bd5f2a4ad396df322de5adf711eb7d9a2bfeb8be2d9eb9e125c5cc', 'darwin': '337f2fda672827f2d706fd98e3344a83a8b80675e21b83dd6933da38d110c857' }, '2.0.2': { 'linux': '<KEY>', 'linux64': '<KEY>', 'darwin': '34f5a7bf22a8bca3b9d79ae3186016c34638669ab19b4af6e38412181c757761' }, '2.1': { 'linux': '9c0a38a40d3b4e642a159e51abef2827b33e3f7a254365daa24eae85d840eaf5', 'linux64': '<KEY>', 'darwin': 'd0d788c6d54bb866ace67a1740133cb5bc62357b5ca4783244097f1f648876f0' }, '2.2': { 'linux': '<KEY>', 'linux64': '<KEY>', 'darwin': '<KEY>' }, '2.2.1': { 'linux': '4d13483a0e13fc617a7b3d36918ed0e63cf07a7d2827c0a08132b80bc401a55a', 'linux64': '022d611ac62a276890d3e262f4f7cc839fcf9f5e1416df01dcd83ba335eacb16', 'darwin': '93e215dcffc9073acf41c63518f47fb59de60386aca4416cfe32190c7a096f29' }, '2.3': { 'linux': '<KEY>', 'linux64': '777dbdd9c67ad1b8906288b01ae76bc9f7b80c95e967836f9a700a1679b80008', 'darwin': 'df7ca23ba6c8a63149d910b482be04f069b26dd1f7d0ca15e6342cac94e759d7' }, '2.3.1': { 'linux': '<KEY>', 'linux64': 'dab7940496d96f1f255a8ef402fa96b94444775e373484e057d2fcabc3928b42', 'darwin': '<KEY>' }, '2.4.0': { 'linux': 'a24adb366f87ac0eba829d7188a156a7d897e71893689fab06502c3f4152ac0e', 'linux64': '<KEY>', 'darwin': '<KEY>' }, '2.5.0': { 'linux': '3dfd56a986d25929b4ed9f40a5484f72f1d513cd816cf8aaa683106c3391247c', 'linux64': '<KEY>', 'darwin': '30b392b969b54cde281b07f5c10865a7f2e11a229c46b8af384ca1d3fe8d4e6e' }, '2.5.1': { 'linux': '<KEY>', 'linux64': '68e0955dbc80a0d51dfa9a8a76d8623f34920ece1bcbc6d910c2be019a653ba8', 'darwin': '<KEY>' }, '2.6.0': { 'linux': '<KEY>', 'linux64': 'f5d2b0e3594cec57e32d3e43a951041ec330e1e962a836be470d591633e51388', 'darwin': '77f1d056484e40e0a8e2e2b2b489eedfe785605ef36b144ffce05f7b748f6acd' }, '2.6.1': { 'linux': 'd010b1f1aafdb01beb107f16843985508ce81698260ce830690686d9b2768c88', 'linux64': '<KEY>', 'darwin': '4a78ef76ec38a49a9de40225c337e89486fa09938c600df2bd2dd60110066f65' }, '4.0.0': { 'linux': '<KEY>', 'linux64': '30365cf4fa6cd8e9ff44126f06dcaebefda35c2543ddcf9b9e8516c29cabe726', 'darwin': 'd9e590fe5b9461bbdff56c76636e844ef90a297f82d0d2e204866c8a21759a50' }, '4.0.1': { 'linux': '721920fcbb6aefc9a98e868e32b7f4ea5fd68b7f9305d08d0a2595327c9c0611', 'linux64': '0d6090cee59f4b9bab91ddbea76580d0c232b78dae65aaa9e8fa8d4449ba25b4', 'darwin': '<KEY>' }, '5.0.0': { 'linux': None, 'linux64': None, 'darwin': None }, '5.0.1': { 'linux': None, 'linux64': None, 'darwin': None }, '5.1.0': { 'linux': None, 'linux64': None, 'darwin': None }, '5.1.1': { 'linux': None, 'linux64': None, 'darwin': None }, '5.3.0': { 'linux': None, 'linux64': None, 'darwin': None }, '5.3.1': { 'linux': None, 'linux64': None, 'darwin': None }, }, 'pypy3': { '2.3.1': { 'linux': '7eddc6826e58c9c89e68b59ec8caf1596b76401517ad8d26ad5e18e0ffa45db9', 'linux64': '303df2cf4766db20ec77786d9091dce284fdab01d7173c5828a35e86bc931b99', 'darwin': '600d4dad2039b8035582c0e0ce9b71e8236d95db26cff48c84c6d1e0ea6814c1' }, '2.4.0': { 'linux': '108fdcccfddb9b2cb2fc3cbca5e6f7902ed3ab74a24c8ae29da7fbdadbab4345', 'linux64': '24e680b1742af7361107876a421dd793f5ef852dd5f097546f84b1378f7f70cc', 'darwin': 'dcd86bdb753e93dbf55e1f3af3ffa97eea328b8b77aa60e92ea2260a6258cedb' } }, 'jython': { '2.5.0': 'e3d8209ef9eb143df8101a5da6b3482cf457084e3a6247031fd510d71c13ab98', '2.5.1': '229dfd1ed9728aa7e00c71f111d08fa777a4edcd03383779c74216765098f9c5', '2.5.2': '1b7168b961e31ddd89012a36cde611c340dadfd8b60b81c4248b026730ee2f29', '2.5.3': '05405966cdfa57abc8e705dd6aab92b8240097ce709fb916c8a0dbcaa491f99e', '2.7.0': 'b44352ece72382268a60e2848741c96609a91d796bb9a9c6ebeff62f0c12c9cf' } }
test.py
ATrain951/01.python_function-milaan9
167
11137761
<filename>test.py # Python Module example def fun(): print("something here inside fun()")
vis/python/plot_mesh.py
dfielding14/athena-public-version
174
11137768
#! /usr/bin/env python """ Script for plotting mesh structure in mesh_structure.dat (default) file produced by running Athena++ with "-m <np>" argument. Can optionally specify "-i <input_file>" and/or "-o <output_file>". Output defaults to using "show()" command rather than saving to file. """ # Python modules import argparse # Main function def main(**kwargs): # Extract inputs input_file = kwargs['input'] output_file = kwargs['output'] # Load Python plotting modules if output_file != 'show': import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt # not used explicitly, but required for 3D projections from mpl_toolkits.mplot3d import Axes3D # noqa # Read and plot block edges fig = plt.figure() ax = fig.gca(projection='3d') x = [] y = [] z = [] with open(input_file) as f: for line in f: if line[0] != '\n' and line[0] != '#': numbers_str = line.split() x.append(float(numbers_str[0])) y.append(float(numbers_str[1])) # append zero if 2D if(len(numbers_str) > 2): z.append(float(numbers_str[2])) else: z.append(0.0) if line[0] == '\n' and len(x) != 0: ax.plot(x, y, z, 'k-') x = [] y = [] z = [] if output_file == 'show': plt.show() else: plt.savefig(output_file, bbox_inches='tight') # Execute main function if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-i', '--input', default='mesh_structure.dat', help='name of mesh structure file') parser.add_argument('-o', '--output', default='show', help=('name of output image file to create; omit to ' 'display rather than save image')) args = parser.parse_args() main(**vars(args))
modules/roamresearch.py
hwiorn/orger
241
11137815
#!/usr/bin/env python3 from itertools import chain from typing import Iterable from orger import Mirror from orger.inorganic import node, link, OrgNode from orger.common import dt_heading from orger import pandoc import my.roamresearch as roamresearch # todo ^^ ^^ things are highlight? def roam_text_to_org(text: str) -> str: """ Cleans up Roam artifacts and adapts for better Org rendering """ for f, t in [ ('{{[[slider]]}}', ''), ]: text = text.replace(f, t) org = pandoc.to_org(text, from_='markdown') org = org.replace(r'\_', '_') # unescape, it's a bit aggressive.. return org def roam_note_to_org(node: roamresearch.Node, top=False) -> Iterable[OrgNode]: """ Converts Roam node into Org-mode representation """ children = list(chain.from_iterable(map(roam_note_to_org, node.children))) empty = len(node.body or '') == 0 and len(children) == 0 if empty: # sometimes nodes are empty. two cases: # - no heading -- child notes, like accidental enter presses I guess # - heading -- notes that haven't been created yet # just don't do anything in this case # todo make this logic conditional? return title = node.title # org-mode target allows jumping straight into # conveniently, links in Roam are already represented as [[link]] ! target = '' if title is None else f'<<{title}>> ' heading = target + link(title='x', url=node.permalink) todo = None body = node.body if body is not None: for t in ('TODO', 'DONE'): ts = '{{[[' + t + ']]}}' if body.startswith(ts): todo = t body = body[len(ts):] body = roam_text_to_org(body) lines = body.splitlines(keepends=True) # display first link of the body as the heading if len(lines) > 0: heading = heading + ' ' + lines[0] body = ''.join(lines[1:]) if len(body) == 0: body = None if top: heading = dt_heading(node.created, heading) yield OrgNode( todo=todo, heading=heading, body=body, children=children, ) class RoamView(Mirror): def get_items(self): rr = roamresearch.roam() from concurrent.futures import ThreadPoolExecutor # todo might be an overkill, only using because of pandoc.. with ThreadPoolExecutor() as pool: items = list(chain.from_iterable(pool.map(roam_note_to_org, rr.notes))) # move the ones with no children to the bottom items = list(sorted(items, key=lambda n: len(n.children), reverse=True)) yield from items if __name__ == '__main__': RoamView.main()
app.py
kougou/DialogStateTracking
246
11137834
from flask import Flask, render_template, request from flask import jsonify import main as botmodule # global bot = None app = Flask(__name__,static_url_path="/static") ''' Routing ''' # @GET # PATH : /query @app.route('/query', methods=['GET']) def reply(): return bot.reply(request.args['msg']) ''' return jsonify( { 'ans' : 'dummy text' }) ''' # render page "index.html" # PATH : / @app.route("/") def index(): return render_template("index.html") if (__name__ == "__main__"): # before starting the app, init model bot = botmodule.main(['--ui', '--task_id=1']) # start app app.run(port = 5000)
it/structures/python3/default_naming-default/test.py
reproto/reproto
108
11137849
import lower_camel as lower_camel import lower_snake as lower_snake import upper_camel as upper_camel import upper_snake as upper_snake class Entry: def __init__(self, _lower_camel, _lower_snake, _upper_camel, _upper_snake): self._lower_camel = _lower_camel self._lower_snake = _lower_snake self._upper_camel = _upper_camel self._upper_snake = _upper_snake @property def lower_camel(self): return self._lower_camel @property def lower_snake(self): return self._lower_snake @property def upper_camel(self): return self._upper_camel @property def upper_snake(self): return self._upper_snake @staticmethod def decode(data): f_lower_camel = None if "lower_camel" in data: f_lower_camel = data["lower_camel"] if f_lower_camel is not None: f_lower_camel = lower_camel.Value.decode(f_lower_camel) f_lower_snake = None if "lower_snake" in data: f_lower_snake = data["lower_snake"] if f_lower_snake is not None: f_lower_snake = lower_snake.Value.decode(f_lower_snake) f_upper_camel = None if "upper_camel" in data: f_upper_camel = data["upper_camel"] if f_upper_camel is not None: f_upper_camel = upper_camel.Value.decode(f_upper_camel) f_upper_snake = None if "upper_snake" in data: f_upper_snake = data["upper_snake"] if f_upper_snake is not None: f_upper_snake = upper_snake.Value.decode(f_upper_snake) return Entry(f_lower_camel, f_lower_snake, f_upper_camel, f_upper_snake) def encode(self): data = dict() if self._lower_camel is not None: data["lower_camel"] = self._lower_camel.encode() if self._lower_snake is not None: data["lower_snake"] = self._lower_snake.encode() if self._upper_camel is not None: data["upper_camel"] = self._upper_camel.encode() if self._upper_snake is not None: data["upper_snake"] = self._upper_snake.encode() return data def __repr__(self): return "<Entry lower_camel:{!r}, lower_snake:{!r}, upper_camel:{!r}, upper_snake:{!r}>".format(self._lower_camel, self._lower_snake, self._upper_camel, self._upper_snake)
Diagnostic/watcherutil.py
shridpant/azure-linux-extensions
266
11137860
<reponame>shridpant/azure-linux-extensions #!/usr/bin/env python # # Azure Linux extension # # Linux Azure Diagnostic Extension (Current version is specified in manifest.xml) # Copyright (c) Microsoft Corporation # All rights reserved. # MIT License # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated # documentation files (the ""Software""), to deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the # Software. # THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import subprocess import os import datetime import time import string import traceback class Watcher: """ A class that handles periodic monitoring activities that are requested for LAD to perform. The first such activity is to watch /etc/fstab and report (log to console) if there's anything wrong with that. There might be other such monitoring activities that will be added later. """ def __init__(self, hutil_error, hutil_log, log_to_console=False): """ Constructor. :param hutil_error: Error logging function (e.g., hutil.error). This is not a stream. :param hutil_log: Normal logging function (e.g., hutil.log). This is not a stream. :param log_to_console: Indicates whether to log any issues to /dev/console or not. """ # This is only for the /etc/fstab watcher feature. self._fstab_last_mod_time = os.path.getmtime('/etc/fstab') self._hutil_error = hutil_error self._hutil_log = hutil_log self._log_to_console = log_to_console self._imds_logger = None def _do_log_to_console_if_enabled(self, message): """ Write 'message' to console. Stolen from waagent LogToCon(). """ if self._log_to_console: try: with open('/dev/console', 'w') as console: message = filter(lambda x: x in string.printable, message) console.write(message.encode('ascii', 'ignore') + '\n') except IOError as e: self._hutil_error('Error writing to console. Exception={0}'.format(e)) def handle_fstab(self, ignore_time=False): """ Watches if /etc/fstab is modified and verifies if it's OK. Otherwise, report it in logs or to /dev/console. :param ignore_time: Disable the default logic of delaying /etc/fstab verification by 1 minute. This is to allow any test code to avoid waiting 1 minute unnecessarily. :return: None """ try_mount = False if ignore_time: try_mount = True else: current_mod_time = os.path.getmtime('/etc/fstab') current_mod_date_time = datetime.datetime.fromtimestamp(current_mod_time) # Only try to mount if it's been at least 1 minute since the # change to fstab was done, to prevent spewing out erroneous spew if (current_mod_time != self._fstab_last_mod_time and datetime.datetime.now() > current_mod_date_time + datetime.timedelta(minutes=1)): try_mount = True self._fstab_last_mod_time = current_mod_time ret = 0 if try_mount: ret = subprocess.call(['sudo', 'mount', '-a', '-vf']) if ret != 0: # There was an error running mount, so log error_msg = 'fstab modification failed mount validation. Please correct before reboot.' self._hutil_error(error_msg) self._do_log_to_console_if_enabled(error_msg) else: # No errors self._hutil_log('fstab modification passed mount validation') return ret def set_imds_logger(self, imds_logger): self._imds_logger = imds_logger def watch(self): """ Main loop performing various monitoring activities periodically. Currently iterates every 5 minutes, and other periodic activities might be added in the loop later. :return: None """ while True: # /etc/fstab watcher self.handle_fstab() # IMDS probe (only sporadically, inside the function) if self._imds_logger: try: self._imds_logger.log_imds_data_if_right_time() except Exception as e: self._hutil_error('ImdsLogger exception: {0}\nStacktrace: {1}'.format(e, traceback.format_exc())) # Sleep 5 minutes time.sleep(60 * 5) pass
python/test/utils/test_graph_converters/test_identity.py
daniel-falk/nnabla
2,792
11137892
<reponame>daniel-falk/nnabla # Copyright 2020,2021 Sony Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import pytest import numpy as np import nnabla as nn import nnabla.experimental.graph_converters as GC from .ref_graphs.resnets import small_cf_resnet, small_id_resnet from .ref_graphs.lenets import lenet, id_lenet batch_size = 1 lenet_ref = id_lenet resnet_ref = small_id_resnet @pytest.mark.parametrize('seed', [313]) @pytest.mark.parametrize('test', [False, True]) @pytest.mark.parametrize('diff_batchsize', [True, False]) @pytest.mark.parametrize('graph_ref, graph_act', [(lenet_ref, lenet), (resnet_ref, small_cf_resnet)]) def test_identity(seed, test, diff_batchsize, graph_ref, graph_act): from .graph_converter_test_utils import structure_tester, value_tester # Random number np.random.seed(seed) rng = np.random.RandomState(seed) # Graph x_data = rng.randn(batch_size, 3, 32, 32) x = nn.Variable.from_numpy_array(x_data) x1_data = rng.randn(128, 3, 32, 32) x1 = nn.Variable.from_numpy_array(x1_data) # Alter value and copy option inp_x = x cp_val = True if diff_batchsize: inp_x = x1 cp_val = False y_tgt = graph_act(x, test=test) # FunctionModifier modifiers = [] modifiers.append(GC.IdentityModifier({x: inp_x}, copy_value=cp_val)) y_act = GC.GraphConverter(modifiers).convert(y_tgt) # Ref Graph y_ref = graph_ref(inp_x, test=test) # Test structure_tester(y_ref, y_act) if diff_batchsize == False: value_tester(y_tgt, y_act, rtol=6e-02, atol=5e-02)
jcvi/assembly/kmer.py
inspirewind/jcvi
517
11137905
<reponame>inspirewind/jcvi #!/usr/bin/env python # -*- coding: UTF-8 -*- """ Deals with K-mers and K-mer distribution from reads or genome """ import os.path as op import sys import logging import math import numpy as np from collections import defaultdict from jcvi.graphics.base import ( plt, adjust_spines, asciiplot, set_human_axis, savefig, markup, panel_labels, normalize_axes, set_ticklabels_helvetica, write_messages, ) from jcvi.formats.fasta import Fasta from jcvi.formats.base import BaseFile, must_open, get_number from jcvi.utils.cbook import thousands, percentage from jcvi.assembly.automaton import iter_project from jcvi.apps.grid import MakeManager from jcvi.apps.base import OptionParser, ActionDispatcher, sh, need_update, Popen, PIPE KMERYL, KSOAP, KALLPATHS = range(3) class KmerSpectrum(BaseFile): def __init__(self, histfile): super(KmerSpectrum, self).__init__(histfile) self.load_data(histfile) def load_data(self, histfile): self.data = [] self.totalKmers = 0 self.hist = {} kformat = self.guess_format(histfile) kformats = ("Meryl", "Soap", "AllPaths") logging.debug("Guessed format: {0}".format(kformats[kformat])) fp = open(histfile) for rowno, row in enumerate(fp): if row[0] == "#": continue if kformat == KSOAP: K = rowno + 1 counts = int(row.strip()) else: # meryl histogram K, counts = row.split()[:2] K, counts = int(K), int(counts) Kcounts = K * counts self.totalKmers += Kcounts self.hist[K] = Kcounts self.data.append((K, counts)) def guess_format(self, histfile): # Guess the format of the Kmer histogram fp = open(histfile) for row in fp: if row.startswith("# 1:"): return KALLPATHS if len(row.split()) == 1: return KSOAP return KMERYL def get_xy(self, vmin=1, vmax=100): self.counts = sorted((a, b) for a, b in self.hist.items() if vmin <= a <= vmax) return zip(*self.counts) def analyze(self, K=23, maxiter=100, method="nbinom"): """Analyze K-mer histogram. Args: K (int, optional): K-mer size. Defaults to 23. maxiter (int): Iterations to run. Defaults to 100. method (str, optional): Method to use, either 'nbinom' or 'allpaths'. Defaults to "nbinom". Returns: A dictionary containing info for annotating the plot. analyze() also sets the following properties: - lambda_: Main peak - repetitive: Repeats message - snprate: SNP rate message """ if method == "nbinom": return self.analyze_nbinom(K=K, maxiter=maxiter) return self.analyze_allpaths(K=K) def analyze_nbinom(self, K=23, maxiter=100): """Analyze the K-mer histogram using negative binomial distribution. Args: K (int, optional): K-mer size used when generating the histogram. Defaults to 23. """ from scipy.stats import nbinom from scipy.optimize import minimize_scalar from functools import lru_cache method, xopt = "bounded", "xatol" MAX_1CN_SIZE = 1e10 MAX_OPTIMIZED_SIZE = 9.9e9 # Generate bins for the decomposed negative binomial distributions bins = [ (i, i) for i in range(1, 9) ] # The first 8 CN are critical often determines ploidy for i in (8, 16, 32, 64, 128, 256, 512): # 14 geometricly sized bins a, b = i + 1, int(round(i * 2 ** 0.5)) bins.append((a, b)) a, b = b + 1, i * 2 bins.append((a, b)) # Convert histogram to np array so we can index by CN kf_ceil = max([cov for cov, _ in self.data]) N = kf_ceil + 1 hist = np.zeros(N, dtype=int) for cov, count in self.data: hist[cov] = count # min1: find first minimum _kf_min1 = 5 while ( _kf_min1 - 1 >= 2 and hist[_kf_min1 - 1] * (_kf_min1 - 1) < hist[_kf_min1] * _kf_min1 ): _kf_min1 -= 1 while ( _kf_min1 <= kf_ceil and hist[_kf_min1 + 1] * (_kf_min1 + 1) < hist[_kf_min1] * _kf_min1 ): _kf_min1 += 1 # max2: find absolute maximum mx2 above first minimum min1 _kf_max2 = _kf_min1 for kf in range(_kf_min1 + 1, int(0.8 * kf_ceil)): if hist[kf] * kf > hist[_kf_max2] * _kf_max2: _kf_max2 = kf # Discard the last entry as that is usually an inflated number hist = hist[:-1] kf_range = np.arange(_kf_min1, len(hist), dtype=int) P = hist[kf_range] * kf_range # Target distribution print("==> Start nbinom method on range ({}, {})".format(_kf_min1, len(hist))) # Below is the optimization schemes, we optimize one variable at a time @lru_cache(maxsize=None) def nbinom_pmf_range(lambda_: int, rho: int, bin_id: int): stacked = np.zeros(len(kf_range), dtype=np.float64) lambda_ /= 100 # 2-digit precision rho /= 100 # 2-digit precision n = lambda_ / (rho - 1) p = 1 / rho start, end = bins[bin_id] for i in range(start, end + 1): stacked += nbinom.pmf(kf_range, n * i, p) return stacked def generative_model(G, lambda_, rho): stacked = np.zeros(len(kf_range), dtype=np.float64) lambda_ = int(round(lambda_ * 100)) rho = int(round(rho * 100)) for bin_id, g in enumerate(G): stacked += g * nbinom_pmf_range(lambda_, rho, bin_id) stacked *= kf_range return stacked def func(lambda_, rho, G): stacked = generative_model(G, lambda_, rho) return np.sum((P - stacked) ** 2) # L2 norm def optimize_func(lambda_, rho, G): # Iterate over all G for i, g in enumerate(G): G_i = optimize_func_Gi(lambda_, rho, G, i) if ( not 1 < G_i < MAX_OPTIMIZED_SIZE ): # Optimizer did not optimize this G_i break # Also remove the last bin since it is subject to marginal effect G[i - 1] = 0 lambda_ = optimize_func_lambda_(lambda_, rho, G) rho = optimize_func_rho(lambda_, rho, G) score = func(lambda_, rho, G) return lambda_, rho, G, score def optimize_func_lambda_(lambda_, rho, G): def f(arg): return func(arg, rho, G) res = minimize_scalar( f, bounds=(_kf_min1, 100), method=method, options={xopt: 0.01} ) return res.x def optimize_func_rho(lambda_, rho, G): def f(arg): return func(lambda_, arg, G) res = minimize_scalar( f, bounds=(1.001, 5), method=method, options={xopt: 0.01} ) return res.x def optimize_func_Gi(lambda_, rho, G, i): # Iterate a single G_i def f(arg): G[i] = arg return func(lambda_, rho, G) res = minimize_scalar( f, bounds=(0, MAX_1CN_SIZE), method=method, options={xopt: 100} ) return res.x def run_optimization(termination=0.999, maxiter=100): ll, rr, GG = l0, r0, G0 prev_score = np.inf for i in range(maxiter): print("Iteration", i + 1, file=sys.stderr) ll, rr, GG, score = optimize_func(ll, rr, GG) if score / prev_score > termination: break prev_score = score if i % 10 == 0: print(ll, rr, GG, score, file=sys.stderr) print("Success!", file=sys.stderr) # Remove bogus values that are close to the bounds final_GG = [g for g in GG if 1 < g < MAX_OPTIMIZED_SIZE] return ll, rr, final_GG # Optimization - very slow G0 = np.zeros(len(bins)) l0 = _kf_max2 r0 = 1.5 print(l0, r0, G0, file=sys.stderr) ll, rr, GG = run_optimization(maxiter=maxiter) print(ll, rr, GG, file=sys.stderr) # Ready for genome summary m = "\n==> Kmer (K={0}) Spectrum Analysis\n".format(K) genome_size = int(round(self.totalKmers / ll)) inferred_genome_size = 0 for i, g in enumerate(GG): start, end = bins[i] mid = (start + end) / 2 inferred_genome_size += g * mid * (end - start + 1) inferred_genome_size = int(round(inferred_genome_size)) genome_size = max(genome_size, inferred_genome_size) m += "Genome size estimate = {0}\n".format(thousands(genome_size)) copy_series = [] copy_messages = [] for i, g in enumerate(GG): start, end = bins[i] mid = (start + end) / 2 copy_num = start if start == end else "{}-{}".format(start, end) g_copies = int(round(g * mid * (end - start + 1))) copy_series.append((mid, copy_num, g_copies, g)) copy_message = "CN {}: {:.1f} Mb ({:.1f} percent)".format( copy_num, g_copies / 1e6, g_copies * 100 / genome_size ) copy_messages.append(copy_message) m += copy_message + "\n" if genome_size > inferred_genome_size: g_copies = genome_size - inferred_genome_size copy_num = "{}+".format(end + 1) copy_series.append((end + 1, copy_num, g_copies, g_copies / (end + 1))) m += "CN {}: {:.1f} Mb ({:.1f} percent)\n".format( copy_num, g_copies / 1e6, g_copies * 100 / genome_size ) # Determine ploidy def determine_ploidy(copy_series, threshold=0.15): counts_so_far = 1 ploidy_so_far = 0 for mid, copy_num, g_copies, g in copy_series: if g_copies / counts_so_far < threshold: break counts_so_far += g_copies ploidy_so_far = mid return int(ploidy_so_far) ploidy = determine_ploidy(copy_series) self.ploidy = ploidy self.ploidy_message = "Ploidy: {}".format(ploidy) m += self.ploidy_message + "\n" self.copy_messages = copy_messages[:ploidy] # Repeat content def calc_repeats(copy_series, ploidy, genome_size): unique = 0 for mid, copy_num, g_copies, g in copy_series: if mid <= ploidy: unique += g_copies else: break return 1 - unique / genome_size repeats = calc_repeats(copy_series, ploidy, genome_size) self.repetitive = "Repeats: {:.1f} percent".format(repeats * 100) m += self.repetitive + "\n" # SNP rate def calc_snp_rate(copy_series, ploidy, genome_size, K): # We can calculate the SNP rate s, assuming K-mer of length K: # s = 1-(1-L/G)^(1/K) # L: # of unique K-mers under 'het' peak # G: genome size # K: K-mer length L = 0 for mid, copy_num, g_copies, g in copy_series: if mid < ploidy: L += g else: break return 1 - (1 - L / genome_size) ** (1 / K) snp_rate = calc_snp_rate(copy_series, ploidy, genome_size, K) self.snprate = "SNP rate: {:.2f} percent".format(snp_rate * 100) m += self.snprate + "\n" print(m, file=sys.stderr) self.lambda_ = ll return { "generative_model": generative_model, "Gbins": GG, "lambda": ll, "rho": rr, "kf_range": kf_range, } def analyze_allpaths(self, ploidy=2, K=23, covmax=1000000): """ Analyze Kmer spectrum, calculations derived from allpathslg/src/kmers/KmerSpectra.cc """ from math import sqrt data = self.data kf_ceil = max(K for (K, c) in data) if kf_ceil > covmax: exceeds = sum(1 for (K, c) in data if K > covmax) logging.debug( "A total of {0} distinct K-mers appear > " "{1} times. Ignored ...".format(exceeds, covmax) ) kf_ceil = covmax nkf = kf_ceil + 1 a = [0] * nkf for kf, c in data: if kf > kf_ceil: continue a[kf] = c ndk = a # number of distinct kmers nk = [k * c for k, c in enumerate(a)] # number of kmers cndk = [0] * nkf # cumulative number of distinct kmers cnk = [0] * nkf # cumulative number of kmers for kf in range(1, nkf): cndk[kf] = cndk[kf - 1] + 0.5 * (ndk[kf - 1] + ndk[kf]) cnk[kf] = cnk[kf - 1] + 0.5 * (nk[kf - 1] + nk[kf]) # Separate kmer spectrum in 5 regions based on the kf # 1 ... kf_min1 : bad kmers with low frequency # kf_min1 ... kf_min2 : good kmers CN = 1/2 (SNPs) # kf_min2 ... kf_min3 : good kmers CN = 1 # kf_min3 ... kf_hi : good kmers CN > 1 (repetitive) # kf_hi ... inf : bad kmers with high frequency # min1: find first minimum _kf_min1 = 10 while _kf_min1 - 1 >= 2 and nk[_kf_min1 - 1] < nk[_kf_min1]: _kf_min1 -= 1 while _kf_min1 <= kf_ceil and nk[_kf_min1 + 1] < nk[_kf_min1]: _kf_min1 += 1 # max2: find absolute maximum mx2 above first minimum min1 _kf_max2 = _kf_min1 for kf in range(_kf_min1 + 1, int(0.8 * kf_ceil)): if nk[kf] > nk[_kf_max2]: _kf_max2 = kf # max2: resetting max2 for cases of very high polymorphism if ploidy == 2: ndk_half = ndk[_kf_max2 // 2] ndk_double = ndk[_kf_max2 * 2] if ndk_double > ndk_half: _kf_max2 *= 2 # max1: SNPs local maximum max1 as half global maximum max2 _kf_max1 = _kf_max2 // 2 # min2: SNPs local minimum min2 between max1 and max2 _kf_min2 = ( _kf_max1 * (2 * ndk[_kf_max1] + ndk[_kf_max2]) // (ndk[_kf_max1] + ndk[_kf_max2]) ) # min1: refine between min1 and max2/2 for kf in range(_kf_min1 + 1, _kf_max1): if nk[kf] < nk[_kf_min1]: _kf_min1 = kf # min3: not a minimum, really. upper edge of main peak _kf_min3 = _kf_max2 * 3 // 2 print("kfs:", _kf_min1, _kf_max1, _kf_min2, _kf_max2, _kf_min3, file=sys.stderr) self.min1 = _kf_min1 self.max1 = _kf_max1 self.min2 = _kf_min2 self.max2 = _kf_max2 self.min3 = _kf_min3 self.lambda_ = self.max2 # Main peak # Define maximum kf above which we neglect data _kf_hi = ( _kf_max2 * sqrt(4 * ndk[2 * _kf_max2] * _kf_max2) if 2 * _kf_max2 < len(ndk) else _kf_max2 * sqrt(4 * ndk[len(ndk) - 1] * _kf_max2) ) _kf_hi = int(_kf_hi) if _kf_hi > kf_ceil: _kf_hi = kf_ceil _nk_total = cnk[len(cnk) - 1] _nk_bad_low_kf = cnk[_kf_min1] _nk_good_uniq = cnk[_kf_min3] - cnk[_kf_min2] _nk_bad_high_kf = _nk_total - cnk[_kf_hi] _ndk_good_snp = cndk[_kf_min2] - cndk[_kf_min1] _ndk_good_uniq = cndk[_kf_min3] - cndk[_kf_min2] # kmer coverage C_k _kf_ave_uniq = _nk_good_uniq * 1.0 / _ndk_good_uniq _genome_size = (_nk_total - _nk_bad_low_kf - _nk_bad_high_kf) / _kf_ave_uniq _genome_size_unique = _ndk_good_uniq + _ndk_good_snp / 2 _genome_size_repetitive = _genome_size - _genome_size_unique _coverage = _nk_total / _genome_size if _genome_size else 0 # SNP rate estimation, assumes uniform distribution of SNPs over the # genome and accounts for the reduction in SNP kmer counts when # polymorphism is very high if ploidy == 2: _d_SNP = ( 1.0 / (1.0 - (1.0 - 0.5 * _ndk_good_snp / _genome_size) ** (1.0 / K)) if _ndk_good_snp > 0 else 1000000 ) G = int(_genome_size) G1 = int(_genome_size_unique) GR = int(_genome_size_repetitive) coverage = int(_coverage) m = "Kmer (K={0}) Spectrum Analysis\n".format(K) m += "Genome size estimate = {0}\n".format(thousands(G)) m += "Genome size estimate CN = 1 = {0} ({1})\n".format( thousands(G1), percentage(G1, G) ) m += "Genome size estimate CN > 1 = {0} ({1})\n".format( thousands(GR), percentage(GR, G) ) m += "Coverage estimate: {0} x\n".format(coverage) self.repetitive = "Repeats: {0} percent".format(GR * 100 // G) if ploidy == 2: d_SNP = int(_d_SNP) self.snprate = "SNP rate ~= 1/{0}".format(d_SNP) else: self.snprate = "SNP rate not computed (Ploidy = {0})".format(ploidy) m += self.snprate + "\n" self.genomesize = int(round(self.totalKmers * 1.0 / self.max2)) print(m, file=sys.stderr) return {} class KMCComplex(object): def __init__(self, indices): self.indices = indices def write(self, outfile, filename="stdout", action="union"): assert action in ("union", "intersect") op = " + sum " if action == "union" else " * " fw = must_open(filename, "w") print("INPUT:", file=fw) ss = [] pad = len(str(len(self.indices))) for i, e in enumerate(self.indices): s = "s{0:0{1}d}".format(i + 1, pad) ss.append(s) print("{} = {}".format(s, e.rsplit(".", 1)[0]), file=fw) print("OUTPUT:", file=fw) print("{} = {}".format(outfile, op.join(ss)), file=fw) fw.close() def main(): actions = ( # K-mer counting ("jellyfish", "count kmers using `jellyfish`"), ("meryl", "count kmers using `meryl`"), ("kmc", "count kmers using `kmc`"), ("kmcop", "intersect or union kmc indices"), ("entropy", "calculate entropy for kmers from kmc dump"), ("bed", "map kmers on FASTA"), # K-mer histogram ("histogram", "plot the histogram based on meryl K-mer distribution"), ("multihistogram", "plot histogram across a set of K-mer sizes"), # These forms a pipeline to count K-mers for given FASTA seq ("dump", "convert FASTA sequences to list of K-mers"), ("bin", "serialize counts to bitarrays"), ("bincount", "count K-mers in the bin"), ("count", "run dump - jellyfish - bin - bincount in serial"), ("logodds", "compute log likelihood between two db"), ("model", "model kmer distribution given error rate"), ) p = ActionDispatcher(actions) p.dispatch(globals()) def entropy_score(kmer): """ Schmieder and Edwards. Quality control and preprocessing of metagenomic datasets. (2011) Bioinformatics https://academic.oup.com/bioinformatics/article/27/6/863/236283/Quality-control-and-preprocessing-of-metagenomic """ l = len(kmer) - 2 k = l if l < 64 else 64 counts = defaultdict(int) for i in range(l): trinuc = kmer[i : i + 3] counts[trinuc] += 1 logk = math.log(k) res = 0 for k, v in counts.items(): f = v * 1.0 / l res += f * math.log(f) / logk return res * -100 def entropy(args): """ %prog entropy kmc_dump.out kmc_dump.out contains two columns: AAAAAAAAAAAGAAGAAAGAAA 34 """ p = OptionParser(entropy.__doc__) p.add_option( "--threshold", default=0, type="int", help="Complexity needs to be above" ) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) (kmc_out,) = args fp = open(kmc_out) for row in fp: kmer, count = row.split() score = entropy_score(kmer) if score >= opts.threshold: print(" ".join((kmer, count, "{:.2f}".format(score)))) def bed(args): """ %prog bed fastafile kmer.dump.txt Map kmers on FASTA. """ from jcvi.formats.fasta import rc, parse_fasta p = OptionParser(bed.__doc__) opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) fastafile, dumpfile = args fp = open(dumpfile) KMERS = set() for row in fp: kmer = row.split()[0] kmer_rc = rc(kmer) KMERS.add(kmer) KMERS.add(kmer_rc) K = len(kmer) logging.debug("Imported {} {}-mers".format(len(KMERS), K)) for name, seq in parse_fasta(fastafile): name = name.split()[0] for i in range(len(seq) - K): if i % 5000000 == 0: print("{}:{}".format(name, i), file=sys.stderr) kmer = seq[i : i + K] if kmer in KMERS: print("\t".join(str(x) for x in (name, i, i + K, kmer))) def kmcop(args): """ %prog kmcop *.kmc_suf Intersect or union kmc indices. """ p = OptionParser(kmcop.__doc__) p.add_option( "--action", choices=("union", "intersect"), default="union", help="Action" ) p.add_option("-o", default="results", help="Output name") opts, args = p.parse_args(args) if len(args) < 2: sys.exit(not p.print_help()) indices = args ku = KMCComplex(indices) ku.write(opts.o, action=opts.action) def kmc(args): """ %prog kmc folder Run kmc3 on Illumina reads. """ p = OptionParser(kmc.__doc__) p.add_option("-k", default=21, type="int", help="Kmer size") p.add_option( "--ci", default=2, type="int", help="Exclude kmers with less than ci counts" ) p.add_option("--cs", default=2, type="int", help="Maximal value of a counter") p.add_option( "--cx", default=None, type="int", help="Exclude kmers with more than cx counts" ) p.add_option( "--single", default=False, action="store_true", help="Input is single-end data, only one FASTQ/FASTA", ) p.add_option( "--fasta", default=False, action="store_true", help="Input is FASTA instead of FASTQ", ) p.set_cpus() opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) (folder,) = args K = opts.k n = 1 if opts.single else 2 pattern = ( "*.fa,*.fa.gz,*.fasta,*.fasta.gz" if opts.fasta else "*.fq,*.fq.gz,*.fastq,*.fastq.gz" ) mm = MakeManager() for p, pf in iter_project(folder, pattern=pattern, n=n, commonprefix=False): pf = pf.split("_")[0] + ".ms{}".format(K) infiles = pf + ".infiles" fw = open(infiles, "w") print("\n".join(p), file=fw) fw.close() cmd = "kmc -k{} -m64 -t{}".format(K, opts.cpus) cmd += " -ci{} -cs{}".format(opts.ci, opts.cs) if opts.cx: cmd += " -cx{}".format(opts.cx) if opts.fasta: cmd += " -fm" cmd += " @{} {} .".format(infiles, pf) outfile = pf + ".kmc_suf" mm.add(p, outfile, cmd) mm.write() def meryl(args): """ %prog meryl folder Run meryl on Illumina reads. """ p = OptionParser(meryl.__doc__) p.add_option("-k", default=19, type="int", help="Kmer size") p.set_cpus() opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) (folder,) = args K = opts.k cpus = opts.cpus mm = MakeManager() for p, pf in iter_project(folder): cmds = [] mss = [] for i, ip in enumerate(p): ms = "{}{}.ms{}".format(pf, i + 1, K) mss.append(ms) cmd = "meryl -B -C -m {} -threads {}".format(K, cpus) cmd += " -s {} -o {}".format(ip, ms) cmds.append(cmd) ams, bms = mss pms = "{}.ms{}".format(pf, K) cmd = "meryl -M add -s {} -s {} -o {}".format(ams, bms, pms) cmds.append(cmd) cmd = "rm -f {}.mcdat {}.mcidx {}.mcdat {}.mcidx".format(ams, ams, bms, bms) cmds.append(cmd) mm.add(p, pms + ".mcdat", cmds) mm.write() def model(args): """ %prog model erate Model kmer distribution given error rate. See derivation in FIONA paper: <http://bioinformatics.oxfordjournals.org/content/30/17/i356.full> """ from scipy.stats import binom, poisson p = OptionParser(model.__doc__) p.add_option("-k", default=23, type="int", help="Kmer size") p.add_option("--cov", default=50, type="int", help="Expected coverage") opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) (erate,) = args erate = float(erate) cov = opts.cov k = opts.k xy = [] # Range include c although it is unclear what it means to have c=0 for c in range(0, cov * 2 + 1): Prob_Yk = 0 for i in range(k + 1): # Probability of having exactly i errors pi_i = binom.pmf(i, k, erate) # Expected coverage of kmer with exactly i errors mu_i = cov * (erate / 3) ** i * (1 - erate) ** (k - i) # Probability of seeing coverage of c Prob_Yk_i = poisson.pmf(c, mu_i) # Sum i over 0, 1, ... up to k errors Prob_Yk += pi_i * Prob_Yk_i xy.append((c, Prob_Yk)) x, y = zip(*xy) asciiplot(x, y, title="Model") def logodds(args): """ %prog logodds cnt1 cnt2 Compute log likelihood between two db. """ from math import log from jcvi.formats.base import DictFile p = OptionParser(logodds.__doc__) opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) cnt1, cnt2 = args d = DictFile(cnt2) fp = open(cnt1) for row in fp: scf, c1 = row.split() c2 = d[scf] c1, c2 = float(c1), float(c2) c1 += 1 c2 += 1 score = int(100 * (log(c1) - log(c2))) print("{0}\t{1}".format(scf, score)) def get_K(jfdb): """ Infer K from jellyfish db. """ j = jfdb.rsplit("_", 1)[0].rsplit("-", 1)[-1] assert j[0] == "K" return int(j[1:]) def count(args): """ %prog count fastafile jf.db Run dump - jellyfish - bin - bincount in serial. """ from bitarray import bitarray p = OptionParser(count.__doc__) opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) fastafile, jfdb = args K = get_K(jfdb) cmd = "jellyfish query {0} -C | cut -d' ' -f 2".format(jfdb) t = must_open("tmp", "w") proc = Popen(cmd, stdin=PIPE, stdout=t) t.flush() f = Fasta(fastafile, lazy=True) for name, rec in f.iteritems_ordered(): kmers = list(make_kmers(rec.seq, K)) print("\n".join(kmers), file=proc.stdin) proc.stdin.close() logging.debug(cmd) proc.wait() a = bitarray() binfile = ".".join((fastafile, jfdb, "bin")) fw = open(binfile, "w") t.seek(0) for row in t: c = row.strip() a.append(int(c)) a.tofile(fw) logging.debug("Serialize {0} bits to `{1}`.".format(len(a), binfile)) fw.close() sh("rm {0}".format(t.name)) logging.debug( "Shared K-mers (K={0}) between `{1}` and `{2}` written to `{3}`.".format( K, fastafile, jfdb, binfile ) ) cntfile = ".".join((fastafile, jfdb, "cnt")) bincount([fastafile, binfile, "-o", cntfile, "-K {0}".format(K)]) logging.debug("Shared K-mer counts written to `{0}`.".format(cntfile)) def bincount(args): """ %prog bincount fastafile binfile Count K-mers in the bin. """ from bitarray import bitarray from jcvi.formats.sizes import Sizes p = OptionParser(bincount.__doc__) p.add_option("-K", default=23, type="int", help="K-mer size") p.set_outfile() opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) fastafile, binfile = args K = opts.K fp = open(binfile) a = bitarray() a.fromfile(fp) f = Sizes(fastafile) tsize = 0 fw = must_open(opts.outfile, "w") for name, seqlen in f.iter_sizes(): ksize = seqlen - K + 1 b = a[tsize : tsize + ksize] bcount = b.count() print("\t".join(str(x) for x in (name, bcount)), file=fw) tsize += ksize def bin(args): """ %prog bin filename filename.bin Serialize counts to bitarrays. """ from bitarray import bitarray p = OptionParser(bin.__doc__) opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) inp, outp = args fp = must_open(inp) fw = must_open(outp, "w") a = bitarray() for row in fp: c = row.split()[-1] a.append(int(c)) a.tofile(fw) fw.close() def make_kmers(seq, K): seq = str(seq).upper().replace("N", "A") seqlen = len(seq) for i in range(seqlen - K + 1): yield seq[i : i + K] def dump(args): """ %prog dump fastafile Convert FASTA sequences to list of K-mers. """ p = OptionParser(dump.__doc__) p.add_option("-K", default=23, type="int", help="K-mer size") p.set_outfile() opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) (fastafile,) = args K = opts.K fw = must_open(opts.outfile, "w") f = Fasta(fastafile, lazy=True) for name, rec in f.iteritems_ordered(): kmers = list(make_kmers(rec.seq, K)) print("\n".join(kmers), file=fw) fw.close() def jellyfish(args): """ %prog jellyfish [*.fastq|*.fasta] Run jellyfish to dump histogram to be used in kmer.histogram(). """ from jcvi.apps.base import getfilesize from jcvi.utils.cbook import human_size p = OptionParser(jellyfish.__doc__) p.add_option("-K", default=23, type="int", help="K-mer size") p.add_option( "--coverage", default=40, type="int", help="Expected sequence coverage", ) p.add_option("--prefix", default="jf", help="Database prefix") p.add_option( "--nohist", default=False, action="store_true", help="Do not print histogram", ) p.set_home("jellyfish") p.set_cpus() opts, args = p.parse_args(args) if len(args) < 1: sys.exit(not p.print_help()) fastqfiles = args K = opts.K coverage = opts.coverage totalfilesize = sum(getfilesize(x) for x in fastqfiles) fq = fastqfiles[0] pf = opts.prefix gzip = fq.endswith(".gz") hashsize = totalfilesize / coverage logging.debug( "Total file size: {0}, hashsize (-s): {1}".format( human_size(totalfilesize, a_kilobyte_is_1024_bytes=True), hashsize ) ) jfpf = "{0}-K{1}".format(pf, K) jfdb = jfpf fastqfiles = " ".join(fastqfiles) jfcmd = op.join(opts.jellyfish_home, "jellyfish") cmd = jfcmd cmd += " count -t {0} -C -o {1}".format(opts.cpus, jfpf) cmd += " -s {0} -m {1}".format(hashsize, K) if gzip: cmd = "gzip -dc {0} | ".format(fastqfiles) + cmd + " /dev/fd/0" else: cmd += " " + fastqfiles if need_update(fastqfiles, jfdb): sh(cmd) if opts.nohist: return jfhisto = jfpf + ".histogram" cmd = jfcmd + " histo -t 64 {0} -o {1}".format(jfdb, jfhisto) if need_update(jfdb, jfhisto): sh(cmd) def merylhistogram(merylfile): """ Run meryl to dump histogram to be used in kmer.histogram(). The merylfile are the files ending in .mcidx or .mcdat. """ pf, sf = op.splitext(merylfile) outfile = pf + ".histogram" if need_update(merylfile, outfile): cmd = "meryl -Dh -s {0}".format(pf) sh(cmd, outfile=outfile) return outfile def multihistogram(args): """ %prog multihistogram *.histogram species Plot the histogram based on a set of K-mer hisotograms. The method is based on Star et al.'s method (Atlantic Cod genome paper). """ p = OptionParser(multihistogram.__doc__) p.add_option("--kmin", default=15, type="int", help="Minimum K-mer size, inclusive") p.add_option("--kmax", default=30, type="int", help="Maximum K-mer size, inclusive") p.add_option("--vmin", default=2, type="int", help="Minimum value, inclusive") p.add_option("--vmax", default=100, type="int", help="Maximum value, inclusive") opts, args, iopts = p.set_image_options(args, figsize="10x5", dpi=300) if len(args) < 1: sys.exit(not p.print_help()) histfiles = args[:-1] species = args[-1] fig = plt.figure(1, (iopts.w, iopts.h)) root = fig.add_axes([0, 0, 1, 1]) A = fig.add_axes([0.08, 0.12, 0.38, 0.76]) B = fig.add_axes([0.58, 0.12, 0.38, 0.76]) lines = [] legends = [] genomesizes = [] for histfile in histfiles: ks = KmerSpectrum(histfile) x, y = ks.get_xy(opts.vmin, opts.vmax) K = get_number(op.basename(histfile).split(".")[0].split("-")[-1]) if not opts.kmin <= K <= opts.kmax: continue (line,) = A.plot(x, y, "-", lw=1) lines.append(line) legends.append("K = {0}".format(K)) ks.analyze(K=K, method="allpaths") genomesizes.append((K, ks.genomesize / 1e6)) leg = A.legend(lines, legends, shadow=True, fancybox=True) leg.get_frame().set_alpha(0.5) title = "{0} genome K-mer histogram".format(species) A.set_title(markup(title)) xlabel, ylabel = "Coverage (X)", "Counts" A.set_xlabel(xlabel) A.set_ylabel(ylabel) set_human_axis(A) title = "{0} genome size estimate".format(species) B.set_title(markup(title)) x, y = zip(*genomesizes) B.plot(x, y, "ko", mfc="w") t = np.linspace(opts.kmin - 0.5, opts.kmax + 0.5, 100) p = np.poly1d(np.polyfit(x, y, 2)) B.plot(t, p(t), "r:") xlabel, ylabel = "K-mer size", "Estimated genome size (Mb)" B.set_xlabel(xlabel) B.set_ylabel(ylabel) set_ticklabels_helvetica(B) labels = ((0.04, 0.96, "A"), (0.54, 0.96, "B")) panel_labels(root, labels) normalize_axes(root) imagename = species + ".multiK.pdf" savefig(imagename, dpi=iopts.dpi, iopts=iopts) def histogram(args): """ %prog histogram meryl.histogram species K Plot the histogram based on meryl K-mer distribution, species and N are only used to annotate the graphic. """ p = OptionParser(histogram.__doc__) p.add_option( "--vmin", dest="vmin", default=1, type="int", help="minimum value, inclusive", ) p.add_option( "--vmax", dest="vmax", default=100, type="int", help="maximum value, inclusive", ) p.add_option( "--pdf", default=False, action="store_true", help="Print PDF instead of ASCII plot", ) p.add_option( "--method", choices=("nbinom", "allpaths"), default="nbinom", help="'nbinom' - slow but more accurate for het or polyploid genome; 'allpaths' - fast and works for homozygous enomes", ) p.add_option( "--maxiter", default=100, type="int", help="Max iterations for optimization. Only used with --method nbinom", ) p.add_option( "--coverage", default=0, type="int", help="Kmer coverage [default: auto]" ) p.add_option( "--nopeaks", default=False, action="store_true", help="Do not annotate K-mer peaks", ) opts, args, iopts = p.set_image_options(args, figsize="7x7") if len(args) != 3: sys.exit(not p.print_help()) histfile, species, N = args method = opts.method vmin, vmax = opts.vmin, opts.vmax ascii = not opts.pdf peaks = not opts.nopeaks and method == "allpaths" N = int(N) if histfile.rsplit(".", 1)[-1] in ("mcdat", "mcidx"): logging.debug("CA kmer index found") histfile = merylhistogram(histfile) ks = KmerSpectrum(histfile) method_info = ks.analyze(K=N, maxiter=opts.maxiter, method=method) Total_Kmers = int(ks.totalKmers) coverage = opts.coverage Kmer_coverage = ks.lambda_ if not coverage else coverage Genome_size = int(round(Total_Kmers * 1.0 / Kmer_coverage)) Total_Kmers_msg = "Total {0}-mers: {1}".format(N, thousands(Total_Kmers)) Kmer_coverage_msg = "{0}-mer coverage: {1:.1f}x".format(N, Kmer_coverage) Genome_size_msg = "Estimated genome size: {0:.1f} Mb".format(Genome_size / 1e6) Repetitive_msg = ks.repetitive SNPrate_msg = ks.snprate for msg in (Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg): print(msg, file=sys.stderr) x, y = ks.get_xy(vmin, vmax) title = "{0} {1}-mer histogram".format(species, N) if ascii: asciiplot(x, y, title=title) return Genome_size plt.figure(1, (iopts.w, iopts.h)) plt.bar(x, y, fc="#b2df8a", lw=0) # Plot the negative binomial fit if method == "nbinom": generative_model = method_info["generative_model"] GG = method_info["Gbins"] ll = method_info["lambda"] rr = method_info["rho"] kf_range = method_info["kf_range"] stacked = generative_model(GG, ll, rr) plt.plot( kf_range, stacked, ":", color="#6a3d9a", lw=2, ) ax = plt.gca() if peaks: # Only works for method 'allpaths' t = (ks.min1, ks.max1, ks.min2, ks.max2, ks.min3) tcounts = [(x, y) for x, y in ks.counts if x in t] if tcounts: x, y = zip(*tcounts) tcounts = dict(tcounts) plt.plot(x, y, "ko", lw=3, mec="k", mfc="w") ax.text(ks.max1, tcounts[ks.max1], "SNP peak") ax.text(ks.max2, tcounts[ks.max2], "Main peak") ymin, ymax = ax.get_ylim() ymax = ymax * 7 / 6 if method == "nbinom": # Plot multiple CN locations, CN1, CN2, ... up to ploidy cn_color = "#a6cee3" for i in range(1, ks.ploidy + 1): x = i * ks.lambda_ plt.plot((x, x), (0, ymax), "-.", color=cn_color) plt.text( x, ymax * 0.95, "CN{}".format(i), ha="right", va="center", color=cn_color, rotation=90, ) messages = [ Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg, Repetitive_msg, SNPrate_msg, ] if method == "nbinom": messages += [ks.ploidy_message] + ks.copy_messages write_messages(ax, messages) ax.set_title(markup(title)) ax.set_xlim((0, vmax)) ax.set_ylim((0, ymax)) adjust_spines(ax, ["left", "bottom"], outward=True) xlabel, ylabel = "Coverage (X)", "Counts" ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) set_human_axis(ax) imagename = histfile.split(".")[0] + "." + iopts.format savefig(imagename, dpi=100) return Genome_size if __name__ == "__main__": main()
scripts/external_libs/ansi2html/ansi2html/style.py
timgates42/trex-core
956
11137920
# This file is part of ansi2html. # Copyright (C) 2012 <NAME> <<EMAIL>> # Copyright (C) 2013 <NAME> <<EMAIL>> # # This program is free software: you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3 of # the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see # <http://www.gnu.org/licenses/>. class Rule(object): def __init__(self, klass, **kw): self.klass = klass self.kw = '; '.join([(k.replace('_', '-')+': '+kw[k]) for k in sorted(kw.keys())]).strip() self.kwl = [(k.replace('_', '-'), kw[k][1:]) for k in sorted(kw.keys())] def __str__(self): return '%s { %s; }' % (self.klass, self.kw) def index(r, g, b): return str(16 + (r * 36) + (g * 6) + b) def color(r, g, b): return "#%.2x%.2x%.2x" % (r * 42, g * 42, b * 42) def level(grey): return "#%.2x%.2x%.2x" % (((grey * 10) + 8,) * 3) def index2(grey): return str(232 + grey) # http://en.wikipedia.org/wiki/ANSI_escape_code#Colors SCHEME = { # black red green brown/yellow blue magenta cyan grey/white 'ansi2html': ( "#000316", "#aa0000", "#00aa00", "#aa5500", "#0000aa", "#E850A8", "#00aaaa", "#F5F1DE", "#7f7f7f", "#ff0000", "#00ff00", "#ffff00", "#5c5cff", "#ff00ff", "#00ffff", "#ffffff"), 'xterm': ( "#000000", "#cd0000", "#00cd00", "#cdcd00", "#0000ee", "#cd00cd", "#00cdcd", "#e5e5e5", "#7f7f7f", "#ff0000", "#00ff00", "#ffff00", "#5c5cff", "#ff00ff", "#00ffff", "#ffffff"), 'osx': ( "#000000", "#c23621", "#25bc24", "#adad27", "#492ee1", "#d338d3", "#33bbc8", "#cbcccd") * 2, # http://ethanschoonover.com/solarized 'solarized': ( "#262626", "#d70000", "#5f8700", "#af8700", "#0087ff", "#af005f", "#00afaf", "#e4e4e4", "#1c1c1c", "#d75f00", "#585858", "#626262", "#808080", "#5f5faf", "#8a8a8a", "#ffffd7"), } def get_styles(dark_bg=True, scheme='ansi2html'): css = [ Rule('.ansi2html-content', white_space='pre-wrap', word_wrap='break-word', display='inline'), Rule('.body_foreground', color=('#000000', '#AAAAAA')[dark_bg]), Rule('.body_background', background_color=('#AAAAAA', '#000000')[dark_bg]), Rule('.body_foreground > .bold,.bold > .body_foreground, body.body_foreground > pre > .bold', color=('#000000', '#FFFFFF')[dark_bg], font_weight=('bold', 'normal')[dark_bg]), Rule('.inv_foreground', color=('#000000', '#FFFFFF')[not dark_bg]), Rule('.inv_background', background_color=('#AAAAAA', '#000000')[not dark_bg]), Rule('.ansi1', font_weight='bold'), Rule('.ansi2', font_weight='lighter'), Rule('.ansi3', font_style='italic'), Rule('.ansi4', text_decoration='underline'), Rule('.ansi5', text_decoration='blink'), Rule('.ansi6', text_decoration='blink'), Rule('.ansi8', visibility='hidden'), Rule('.ansi9', text_decoration='line-through'), ] # set palette pal = SCHEME[scheme] for _index in range(8): css.append(Rule('.ansi3%s' % _index, color=pal[_index])) css.append(Rule('.inv3%s' % _index, background_color=pal[_index])) for _index in range(8): css.append(Rule('.ansi4%s' % _index, background_color=pal[_index])) css.append(Rule('.inv4%s' % _index, color=pal[_index])) # set palette colors in 256 color encoding pal = SCHEME[scheme] for _index in range(len(pal)): css.append(Rule('.ansi38-%s' % _index, color=pal[_index])) css.append(Rule('.inv38-%s' % _index, background_color=pal[_index])) for _index in range(len(pal)): css.append(Rule('.ansi48-%s' % _index, background_color=pal[_index])) css.append(Rule('.inv48-%s' % _index, color=pal[_index])) # css.append("/* Define the explicit color codes (obnoxious) */\n\n") for green in range(0, 6): for red in range(0, 6): for blue in range(0, 6): css.append(Rule(".ansi38-%s" % index(red, green, blue), color=color(red, green, blue))) css.append(Rule(".inv38-%s" % index(red, green, blue), background=color(red, green, blue))) css.append(Rule(".ansi48-%s" % index(red, green, blue), background=color(red, green, blue))) css.append(Rule(".inv48-%s" % index(red, green, blue), color=color(red, green, blue))) for grey in range(0, 24): css.append(Rule('.ansi38-%s' % index2(grey), color=level(grey))) css.append(Rule('.inv38-%s' % index2(grey), background=level(grey))) css.append(Rule('.ansi48-%s' % index2(grey), background=level(grey))) css.append(Rule('.inv48-%s' % index2(grey), color=level(grey))) return css
universe/remotes/docker_remote.py
BitJetKit/universe
8,120
11137926
<reponame>BitJetKit/universe from __future__ import absolute_import import base64 import logging import os import pipes import sys import threading import uuid import time, random import docker import six.moves.urllib.parse as urlparse from gym.utils import closer from universe import error from universe.remotes import healthcheck, remote from universe import error, utils from universe.remotes.compose import container, log_printer, progress_stream logger = logging.getLogger(__name__) docker_closer = closer.Closer() def random_alphanumeric(length=14): buf = [] while len(buf) < length: entropy = base64.encodestring(uuid.uuid4().bytes).decode('utf-8') bytes = [c for c in entropy if c.isalnum()] buf += bytes return ''.join(buf)[:length] def pretty_command(command): return ' '.join(pipes.quote(c) for c in command) class DockerManager(object): def __init__(self, runtime, n, reuse=False, start_timeout=None): super(DockerManager, self).__init__() self.runtime = runtime self.supports_reconnect = False self.connect_vnc = True self.connect_rewarder = True self._assigner = PortAssigner(reuse=reuse) self._popped = False self.lock = threading.Lock() self.envs = [] self._n = n if start_timeout is None: start_timeout = 2 * self._n + 5 self.start_timeout = start_timeout self._start() def allocate(self, handles, initial=False, params={}): self._handles = handles def pop(self, n=None): """Call from main thread. Returns the list of newly-available (handle, env) pairs.""" if self._popped: assert n is None return [] self._popped = True envs = [] for i, instance in enumerate(self.instances): env = remote.Remote( handle=self._handles[i], vnc_address='{}:{}'.format(instance.host, instance.vnc_port), vnc_password='openai', rewarder_address='{}:{}'.format(instance.host, instance.rewarder_port), rewarder_password='<PASSWORD>', ) envs.append(env) return envs def _start(self): self.instances = [DockerInstance(self._assigner, self.runtime, label=str(i)) for i in range(self._n)] [instance.start() for instance in self.instances] if int(os.environ.get('OPENAI_REMOTE_VERBOSE', '1')) > 0: self.start_logging(self.instances) self.healthcheck(self.instances) def close(self): with self.lock: [instance.close() for instance in self.instances] def start_logging(self, instances): containers = [instance._container for instance in instances] labels = [str(instance.label) for instance in instances] if all(instance.reusing for instance in instances): # All containers are being reused, so only bother showing # a subset of the backlog. tail = 0 else: # At least one container is new, so just show # everything. It'd be nice to have finer-grained control, # but this would require patching the log printer. tail = 'all' log_printer.build(containers, labels, log_args={'tail': tail}) def healthcheck(self, instances): # Wait for boot healthcheck.run( ['{}:{}'.format(instance.assigner.info['host'], instance.vnc_port) for instance in instances], ['{}:{}'.format(instance.assigner.info['host'], instance.rewarder_port) for instance in instances], start_timeout=30, ) def get_client(): """ Set DOCKER_HOST (and probably DOCKER_TLS_VERIFY and DOCKER_CERT_PATH) to connect to a docker instance through TCP. Leave DOCKER_HOST unset and it will use the default, typically unix:/var/run/docker.sock It also needs to know how to connect to ports on the docker container after creating it. Set DOCKER_NET_HOST to provide an IP address to connect to the VNC ports on otherwise if DOCKER_HOST has a hostname, it will connect to the VNC ports using that name. otherwise it connects using localhost """ info = {} host = os.environ.get('DOCKER_HOST') net_host = os.environ.get('DOCKER_NET_HOST') client_api_version = os.environ.get('DOCKER_API_VERSION') if not client_api_version: client_api_version = "auto" # IP to use for started containers if net_host: info['host'] = net_host elif host: info['host'] = urlparse.urlparse(host).netloc.split(':')[0] else: info['host'] = 'localhost' verify = os.environ.get('DOCKER_TLS_VERIFY') == '1' if verify: # use TLS assert_hostname = None cert_path = os.environ.get('DOCKER_CERT_PATH') if cert_path: client_cert = (os.path.join(cert_path, 'cert.pem'), os.path.join(cert_path, 'key.pem')) ca_cert = os.path.join(cert_path, 'ca.pem') else: client_cert = ca_cert = None tls_config = docker.tls.TLSConfig( client_cert=client_cert, ca_cert=ca_cert, verify=verify, assert_hostname=assert_hostname, ) return docker.Client(base_url=host, tls=tls_config, version=client_api_version), info else: return docker.Client(base_url=host, version=client_api_version), info class PortAssigner(object): def __init__(self, reuse=False): self.reuse = reuse self.instance_id = 'universe-' + random_alphanumeric(length=6) self.client, self.info = get_client() self._next_port = 5900 self._refresh_ports() def _refresh_ports(self): ports = {} for container in self.client.containers(): for port in container['Ports']: # {u'IP': u'0.0.0.0', u'Type': u'tcp', u'PublicPort': 5000, u'PrivatePort': 500} if port['Type'] == 'tcp' and 'PublicPort' in port: ports[port['PublicPort']] = container['Id'] logger.info('Ports used: %s', ports.keys()) self._ports = ports def allocate_ports(self, num): if self.reuse and self._next_port in self._ports: vnc_id = self._ports[self._next_port] rewarder_id = self._ports.get(self._next_port+10000) # Reuse an existing docker container if it exists if (self._next_port+10000) not in self._ports: raise error.Error("Port {} was allocated but {} was not. This indicates unexpected state with spun-up VNC docker instances.".format(self._next_port, self._next_port+1)) elif vnc_id != rewarder_id: raise error.Error("Port {} is exposed from {} while {} is exposed from {}. Both should come from a single Docker instance running your environment.".format(vnc_id, self._next_port, rewarder_id, self._next_port+10000)) base = self._next_port self._next_port += 1 return base, base+10000, vnc_id elif not self.reuse: # Otherwise, allocate find the lowest free pair of # ports. This doesn't work for the reuse case since on # restart we won't remember where we spun up our # containers. while self._next_port in self._ports or (self._next_port+10000) in self._ports: self._next_port += 1 base = self._next_port self._next_port += 1 # And get started! return base, base+10000, None class DockerInstance(object): def __init__(self, assigner, runtime, label='main'): self._docker_closer_id = docker_closer.register(self) self.label = label self.assigner = assigner self.name='{}-{}'.format(self.assigner.instance_id, self.label), self.runtime = runtime self._container_id = None self._closed = False self._container = None self.host = self.assigner.info['host'] self.vnc_port = None self.rewarder_port = None self.reusing = None self.started = False def start(self, attempts=None): if attempts is None: # If we're reusing, we don't scan through ports for a free # one. if not self.assigner.reuse: attempts = 20 else: attempts = 1 for attempt in range(attempts): self._spawn() e = self._start() if e is None: return time.sleep(random.uniform(1.0, 5.0)) self.assigner._refresh_ports() raise error.Error('[{}] Could not start container after {} attempts. Last error: {}'.format(self.label, attempts, e)) def _spawn(self): if self.runtime.image is None: raise error.Error('No image specified') assert self._container_id is None self.vnc_port, self.rewarder_port, self._container_id = self.assigner.allocate_ports(2) if self._container_id is not None: logger.info('[%s] Reusing container %s on ports %s and %s', self.label, self._container_id[:12], self.vnc_port, self.rewarder_port) self.reusing = True self.started = True return self.reusing = False logger.info('[%s] Creating container: image=%s. Run the same thing by hand as: %s', self.label, self.runtime.image, pretty_command(self.runtime.cli_command(self.vnc_port, self.rewarder_port))) try: container = self._spawn_container() except docker.errors.NotFound as e: # Looks like we need to pull the image assert 'No such image' in e.explanation.decode('utf-8'), 'Expected NotFound error message message to include "No such image", but it was: {}. This is probably just a bug in this assertion and the assumption was incorrect'.format(e.explanation) logger.info('Image %s not present locally; pulling', self.runtime.image) self._pull_image() # If we called pull_image from multiple processes (as we do with universe-starter-agent A3C) # these will all return at the same time. We probably all got the same port numbers before the pull started, # so wait a short random time and refresh our port numbers time.sleep(random.uniform(0.5, 2.5)) self.assigner._refresh_ports() self.vnc_port, self.rewarder_port, self._container_id = self.assigner.allocate_ports(2) if self._container_id is not None: logger.info('[%s] Reusing container %s on ports %s and %s', self.label, self._container_id[:12], self.vnc_port, self.rewarder_port) self.reusing = True self.started = True return # Try spawning again. container = self._spawn_container() self._container_id = container['Id'] def _pull_image(self): output = self.client.pull(self.runtime.image, stream=True) return progress_stream.get_digest_from_pull( progress_stream.stream_output(output, sys.stdout)) # docker-compose uses this: # try: # except StreamOutputError as e: # if not ignore_pull_failures: # raise # else: # log.error(six.text_type(e)) def _spawn_container(self): # launch instance, and refresh if error container = self.client.create_container( image=self.runtime.image, command=self.runtime.command, # environment=self.runtime.environment, name=self.name, host_config=self.client.create_host_config( port_bindings={ 5900: self.vnc_port, 15900: self.rewarder_port, }, **self.runtime.host_config), labels={ 'com.openai.automanaged': 'true', } ) return container def _start(self): # Need to start up the container! if not self.started: logger.debug('[%s] Starting container: id=%s', self.label, self._container_id) try: self.client.start(container=self._container_id) except docker.errors.APIError as e: if 'port is already allocated' in str(e.explanation): logger.info('[%s] Could not start container: %s', self.label, e) self._remove() return e else: raise else: self.started = True self._container = container.Container.from_id(self.client, self._container_id) return None def _remove(self): logger.info("Killing and removing container: id=%s", self._container_id) try: self.client.remove_container(container=self._container_id, force=True) except docker.errors.APIError as e: # This seems to happen occasionally when we try to delete a container immediately after creating it. # But although we get an error trying to remove it, it usually goes away shortly # A typical error message is # Driver aufs failed to remove root filesystem 0015803583d91741d25fce28ae0ef540b436853d1c90061caacaef97e3682403: \ # rename /var/lib/docker/aufs/mnt/69a72854511f1fbb9d7cb0ef0ce0787e573af0887c1213ba3a0c3a0cfd71efd2 \ # /var/lib/docker/aufs/mnt/69a72854511f1fbb9d7cb0ef0ce0787e573af0887c1213ba3a0c3a0cfd71efd2-removing: \ # device or resource busy # Just proceed as if it had gone away if 'device or resource busy' in str(e.explanation): logger.info("[%s] Could not remove container: %s. You can always kill all automanaged environments on this Docker daemon via: docker rm -f $(docker ps -q -a -f 'label=com.openai.automanaged=true')", self.label, e) self._container_id = None return e else: raise self._container_id = None def __del__(self): self.close() def close(self): if self._closed: return docker_closer.unregister(self._docker_closer_id) # Make sure 1. we were the onse who started it, 2. it's # actually been started, and 3. we're meant to kill it. if self._container_id and not self.assigner.reuse: self._remove() self._closed = True @property def client(self): return self.assigner.client if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) from universe.runtimes import registration # docker run --name test --rm -ti -p 5900:5900 -p 15900:15900 quay.io/openai/universe.gym-core instance = DockerManager( runtime=registration.runtime_spec('gym-core'), n=2, ) instance.start() import ipdb;ipdb.set_trace()
pymoo/vendor/go_benchmark_functions/go_funcs_F.py
gabicavalcante/pymoo
762
11137944
<gh_stars>100-1000 # -*- coding: utf-8 -*- from __future__ import division, print_function, absolute_import from .go_benchmark import Benchmark class FreudensteinRoth(Benchmark): r""" FreudensteinRoth objective function. This class defines the Freudenstein & Roth [1]_ global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\text{FreudensteinRoth}}(x) = \left\{x_1 - 13 + \left[(5 - x_2) x_2 - 2 \right] x_2 \right\}^2 + \left \{x_1 - 29 + \left[(x_2 + 1) x_2 - 14 \right] x_2 \right\}^2 with :math:`x_i \in [-10, 10]` for :math:`i = 1, 2`. *Global optimum*: :math:`f(x) = 0` for :math:`x = [5, 4]` .. [1] <NAME>. & <NAME>. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = list(zip([-10.0] * self.N, [10.0] * self.N)) self.custom_bounds = [(-3, 3), (-5, 5)] self.global_optimum = [[5.0, 4.0]] self.fglob = 0.0 def fun(self, x, *args): self.nfev += 1 f1 = (-13.0 + x[0] + ((5.0 - x[1]) * x[1] - 2.0) * x[1]) ** 2 f2 = (-29.0 + x[0] + ((x[1] + 1.0) * x[1] - 14.0) * x[1]) ** 2 return f1 + f2
tests/test_guid_type.py
nyejon/fastapi-utils
994
11137964
import uuid from fastapi import FastAPI from starlette.testclient import TestClient from fastapi_utils.session import context_session from tests.conftest import User, session_maker def test_guid(test_app: FastAPI) -> None: name1 = "test_name_1" name2 = "test_name_2" user_id_1 = str(uuid.uuid4()) with context_session(session_maker.cached_engine) as session: user1 = User(id=user_id_1, name=name1) session.add(user1) session.commit() assert str(user1.id) == user_id_1 assert user1.related_id is None with session_maker.context_session() as session: user2 = User(name=name2) assert user2.id is None session.add(user2) session.commit() user_id_2 = user2.id assert user_id_2 is not None assert user2.related_id is None test_client = TestClient(test_app) assert test_client.get(f"/{user_id_1}").json() == name1 assert test_client.get(f"/{user_id_2}").json() == name2
data_capture/decorators.py
mepsd/CLAC
126
11137990
<filename>data_capture/decorators.py from functools import wraps from django.shortcuts import redirect from frontend import ajaxform def handle_cancel(*args, redirect_name='index', key_prefix='data_capture:'): ''' Decorator to handle cancel behavior in Data Capture flows. The associated request's POST data is checked for a 'cancel' key, and, if found, all session keys that start with `key_prefix` are deleted and the request is redirected to `redirect_name`. ''' no_args = False if len(args) == 1 and callable(args[0]): # We were called without args function = args[0] no_args = True def decorator(function): @wraps(function) def wrapper(request, *args, **kwargs): if request.method == 'POST' and 'cancel' in request.POST: if key_prefix: # .keys() returns an iterator, which can't be deleted from # while in a loop, so we use list() to get an actual list session_keys = list(request.session.keys()) for k in session_keys: if k.startswith(key_prefix): del request.session[k] # if AJAX request, then send JSON response # that has a 'redirect_url' property if request.is_ajax(): return ajaxform.ajax_redirect(redirect_name) # redirect to the view named redirect_name return redirect(redirect_name) else: # pass through return function(request, *args, **kwargs) return wrapper if no_args: return decorator(function) else: return decorator
piGAN_lib/eval_metrics.py
zihangJiang/CIPS-3D
308
11137993
import os import shutil import torch import math from torch_fidelity import calculate_metrics from torchvision.utils import save_image from tqdm import tqdm import copy import argparse import shutil import curriculums if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('generator_file', type=str) parser.add_argument('--real_image_dir', type=str, required=True) parser.add_argument('--output_dir', type=str, default='temp') parser.add_argument('--num_images', type=int, default=2048) parser.add_argument('--max_batch_size', type=int, default=94800000) parser.add_argument('--curriculum', type=str, default='CELEBA') opt = parser.parse_args() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if os.path.exists(opt.output_dir) and os.path.isdir(opt.output_dir): shutil.rmtree(opt.output_dir) os.makedirs(opt.output_dir, exist_ok=False) generator = torch.load(opt.generator_file, map_location=device) generator.set_device(device) ema_file = opt.generator_file.split('generator')[0] + 'ema.pth' ema = torch.load(ema_file) ema.copy_to(generator.parameters()) generator.eval() curriculum = curriculums.extract_metadata(getattr(curriculums, opt.curriculum), generator.step) curriculum['img_size'] = 128 curriculum['psi'] = 1 curriculum['last_back'] = curriculum.get('eval_last_back', False) curriculum['nerf_noise'] = 0 for img_counter in tqdm(range(opt.num_images)): z = torch.randn(1, 256, device=device) with torch.no_grad(): img = generator.staged_forward(z, max_batch_size=opt.max_batch_size, **curriculum)[0].to(device) save_image(img, os.path.join(opt.output_dir, f'{img_counter:0>5}.jpg'), normalize=True, range=(-1, 1)) metrics_dict = calculate_metrics(opt.output_dir, opt.real_image_dir, cuda=True, isc=True, fid=True, kid=True, verbose=False) print(metrics_dict)
lib/jnpr/junos/command/__init__.py
kimcharli/py-junos-eznc
576
11137999
import sys import os import yaml import types from jnpr.junos.factory.factory_loader import FactoryLoader import yamlordereddictloader __all__ = [] class MetaPathFinder(object): def find_module(self, fullname, path=None): mod = fullname.split(".")[-1] if mod in [ os.path.splitext(i)[0] for i in os.listdir(os.path.dirname(__file__)) ]: return MetaPathLoader() class MetaPathLoader(object): def load_module(self, fullname): if fullname in sys.modules: return sys.modules[fullname] mod = fullname.split(".")[-1] modObj = types.ModuleType( mod, "Module created to provide a context for %s" % mod ) with open(os.path.join(os.path.dirname(__file__), mod + ".yml"), "r") as stream: try: modules = FactoryLoader().load( yaml.load(stream, Loader=yamlordereddictloader.Loader) ) except yaml.YAMLError as exc: raise ImportError("%s is not loaded" % mod) for k, v in modules.items(): setattr(modObj, k, v) sys.modules[fullname] = modObj return modObj sys.meta_path.insert(0, MetaPathFinder())
test/test_utils/io/test_traj_logging.py
TheVinhLuong102/AutoML-SMAC3
711
11138005
import tempfile import logging import json import os import unittest.mock from unittest.mock import patch from smac.utils.io.traj_logging import TrajLogger from smac.utils.io.traj_logging import TrajEntry from smac.configspace import ConfigurationSpace,\ Configuration, CategoricalHyperparameter, Constant, UniformFloatHyperparameter, UniformIntegerHyperparameter from smac.scenario.scenario import Scenario from smac.stats.stats import Stats __copyright__ = "Copyright 2021, AutoML.org Freiburg-Hannover" __license__ = "3-clause BSD" class TrajLoggerTest(unittest.TestCase): def mocked_get_used_wallclock_time(self): self.value += 1 return self.value def setUp(self): logging.basicConfig() self.logger = logging.getLogger(self.__module__ + "." + self.__class__.__name__) self.logger.setLevel(logging.DEBUG) self.value = 0 self.cs = ConfigurationSpace() self.cs.add_hyperparameters([ UniformFloatHyperparameter('param_a', -0.2, 1.77, 1.1), UniformIntegerHyperparameter('param_b', -3, 10, 1), Constant('param_c', 'value'), CategoricalHyperparameter('ambigous_categorical', choices=['True', True, 5]), # True is ambigous here ]) self.test_config = Configuration(self.cs, {'param_a': 0.5, 'param_b': 1, 'param_c': 'value', 'ambigous_categorical': 5}) def test_init(self): scen = Scenario(scenario={'run_obj': 'quality', 'cs': self.cs, 'output_dir': ''}) stats = Stats(scen) with tempfile.TemporaryDirectory() as tmpdir: path = os.path.join(tmpdir, 'tmp_test_folder') TrajLogger(output_dir=path, stats=stats) self.assertTrue(os.path.exists(path)) def test_oserror(self): scen = Scenario(scenario={'run_obj': 'quality', 'cs': self.cs, 'output_dir': ''}) stats = Stats(scen) # test OSError with patch('os.makedirs') as osMock: osMock.side_effect = OSError() self.assertRaises(OSError, TrajLogger, output_dir='random_directory', stats=stats) @patch('smac.stats.stats.Stats') def test_add_entries(self, mock_stats): # Mock stats mock_stats.ta_time_used = .5 mock_stats.get_used_wallclock_time = self.mocked_get_used_wallclock_time mock_stats.finished_ta_runs = 1 with tempfile.TemporaryDirectory() as tmpdir: tl = TrajLogger(output_dir=tmpdir, stats=mock_stats) # Add some entries tl.add_entry(0.9, 1, self.test_config, 0) mock_stats.ta_runs = 2 mock_stats.ta_time_used = 0 tl.add_entry(1.3, 1, self.test_config, 10) mock_stats.ta_time_used = 0 tl.add_entry(0.7, 2, Configuration(self.cs, dict(self.test_config.get_dictionary(), **{'param_a': 0.})), 10) # Test the list that's added to the trajectory class self.assertEqual(tl.trajectory[0], TrajEntry(0.9, 1, self.test_config, 1, 0.5, 1, 0)) # Test named-tuple-access: self.assertEqual(tl.trajectory[0].train_perf, 0.9) self.assertEqual(tl.trajectory[0].incumbent_id, 1) self.assertEqual(tl.trajectory[0].ta_runs, 1) self.assertEqual(tl.trajectory[0].ta_time_used, 0.5) self.assertEqual(tl.trajectory[0].wallclock_time, 1) self.assertEqual(tl.trajectory[0].budget, 0) self.assertEqual(len(tl.trajectory), 3) # Check if the trajectories are generated for fn in ['traj_old.csv', 'traj_aclib2.json', 'traj.json']: self.assertTrue(os.path.exists(os.path.join(tmpdir, fn))) # Load trajectories with open(os.path.join(tmpdir, 'traj_old.csv')) as to: data = to.read().split('\n') with open(os.path.join(tmpdir, 'traj_aclib2.json')) as js_aclib: json_dicts_aclib2 = [json.loads(line) for line in js_aclib.read().splitlines()] with open(os.path.join(tmpdir, 'traj.json')) as js: json_dicts_alljson = [json.loads(line) for line in js.read().splitlines()] # Check old format header = data[0].split(',') self.assertEqual(header[0], '"CPU Time Used"') self.assertEqual(header[-1], '"Configuration..."') data = list(map(lambda x: x.split(', '), data[1:])) frmt_str = '%1.6f' self.assertEqual(frmt_str % 0.5, data[0][0]) self.assertEqual(frmt_str % 0.9, data[0][1]) self.assertEqual(frmt_str % 0.5, data[0][4]) self.assertEqual(frmt_str % 0, data[1][0]) self.assertEqual(frmt_str % 1.3, data[1][1]) self.assertEqual(frmt_str % 2, data[1][4]) self.assertEqual(frmt_str % 0, data[2][0]) self.assertEqual(frmt_str % .7, data[2][1]) self.assertEqual(frmt_str % 3, data[2][4]) # Check aclib2-format self.assertEqual(json_dicts_aclib2[0]['cpu_time'], .5) self.assertEqual(json_dicts_aclib2[0]['cost'], 0.9) self.assertEqual(len(json_dicts_aclib2[0]['incumbent']), 4) self.assertTrue("param_a='0.5'" in json_dicts_aclib2[0]['incumbent']) self.assertTrue("param_a='0.0'" in json_dicts_aclib2[2]['incumbent']) # Check alljson-format self.assertEqual(json_dicts_alljson[0]['cpu_time'], .5) self.assertEqual(json_dicts_alljson[0]['cost'], 0.9) self.assertEqual(len(json_dicts_alljson[0]['incumbent']), 4) self.assertTrue(json_dicts_alljson[0]["incumbent"]["param_a"] == 0.5) self.assertTrue(json_dicts_alljson[2]["incumbent"]["param_a"] == 0.0) self.assertEqual(json_dicts_alljson[0]['budget'], 0) self.assertEqual(json_dicts_alljson[2]['budget'], 10) @patch('smac.stats.stats.Stats') def test_ambigious_categoricals(self, mock_stats): mock_stats.ta_time_used = 0.5 mock_stats.get_used_wallclock_time = self.mocked_get_used_wallclock_time mock_stats.finished_ta_runs = 1 with tempfile.TemporaryDirectory() as tmpdir: tl = TrajLogger(output_dir=tmpdir, stats=mock_stats) problem_config = Configuration(self.cs, {'param_a': 0.0, 'param_b': 2, 'param_c': 'value', 'ambigous_categorical': True}) # not recoverable without json tl.add_entry(0.9, 1, problem_config) from_aclib2 = tl.read_traj_aclib_format(os.path.join(tmpdir, 'traj_aclib2.json'), self.cs) from_alljson = tl.read_traj_alljson_format(os.path.join(tmpdir, 'traj.json'), self.cs) # Wrong! but passes: self.assertIsInstance(from_aclib2[0]['incumbent']['ambigous_categorical'], str) # Works good for alljson: self.assertIsInstance(from_alljson[0]['incumbent']['ambigous_categorical'], bool) if __name__ == "__main__": unittest.main()
tests/filters/filters.py
pyllyukko/plaso
1,253
11138023
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Tests for the event filter expression parser filter classes.""" import unittest from plaso.containers import events from plaso.filters import filters from plaso.lib import definitions from tests import test_lib as shared_test_lib from tests.containers import test_lib as containers_test_lib class FalseFilter(filters.Operator): """A filter which always evaluates to False for testing.""" def Matches(self, event, event_data, event_data_stream, event_tag): """Determines if the event, data and tag match the filter. Args: event (EventObject): event to compare against the filter. event_data (EventData): event data to compare against the filter. event_data_stream (EventDataStream): event data stream. event_tag (EventTag): event tag to compare against the filter. Returns: bool: True if the event, data and tag match the filter, False otherwise. """ return False class TrueFilter(filters.Operator): """A filter which always evaluates to True for testing.""" def Matches(self, event, event_data, event_data_stream, event_tag): """Determines if the event, data and tag match the filter. Args: event (EventObject): event to compare against the filter. event_data (EventData): event data to compare against the filter. event_data_stream (EventDataStream): event data stream. event_tag (EventTag): event tag to compare against the filter. Returns: bool: True if the event, data and tag match the filter, False otherwise. """ return True class FilterTest(shared_test_lib.BaseTestCase): """Tests the filter.""" # pylint: disable=protected-access def testInitialize(self): """Tests the __init__ function.""" filter_object = filters.Filter() self.assertIsNotNone(filter_object) def testCopyValueToString(self): """Tests the _CopyValueToString function.""" filter_object = filters.Filter() string = filter_object._CopyValueToString(['1', '2', '3']) self.assertEqual(string, '123') string = filter_object._CopyValueToString([1, 2, 3]) self.assertEqual(string, '123') string = filter_object._CopyValueToString(123) self.assertEqual(string, '123') string = filter_object._CopyValueToString(b'123') self.assertEqual(string, '123') string = filter_object._CopyValueToString('123') self.assertEqual(string, '123') class AndFilterTest(shared_test_lib.BaseTestCase): """Tests the boolean AND filter.""" _TEST_EVENTS = [ {'data_type': 'test:event', 'test_value': 1, 'timestamp': 5134324321, 'timestamp_desc': definitions.TIME_DESCRIPTION_UNKNOWN}] def testMatches(self): """Tests the Matches function.""" event, event_data, _ = containers_test_lib.CreateEventFromValues( self._TEST_EVENTS[0]) false_filter_object = FalseFilter() true_filter_object = TrueFilter() filter_object = filters.AndFilter(arguments=[ true_filter_object, true_filter_object]) result = filter_object.Matches(event, event_data, None, None) self.assertTrue(result) filter_object = filters.AndFilter(arguments=[ false_filter_object, true_filter_object]) result = filter_object.Matches(event, event_data, None, None) self.assertFalse(result) class OrFilterTest(shared_test_lib.BaseTestCase): """Tests the boolean OR filter.""" _TEST_EVENTS = [ {'data_type': 'test:event', 'test_value': 1, 'timestamp': 5134324321, 'timestamp_desc': definitions.TIME_DESCRIPTION_UNKNOWN}] def testMatches(self): """Tests the Matches function.""" event, event_data, _ = containers_test_lib.CreateEventFromValues( self._TEST_EVENTS[0]) false_filter_object = FalseFilter() true_filter_object = TrueFilter() filter_object = filters.OrFilter(arguments=[ false_filter_object, true_filter_object]) result = filter_object.Matches(event, event_data, None, None) self.assertTrue(result) filter_object = filters.OrFilter(arguments=[ false_filter_object, false_filter_object]) result = filter_object.Matches(event, event_data, None, None) self.assertFalse(result) class IdentityFilterTest(shared_test_lib.BaseTestCase): """Tests the filter which always evaluates to True.""" _TEST_EVENTS = [ {'data_type': 'test:event', 'test_value': 1, 'timestamp': 5134324321, 'timestamp_desc': definitions.TIME_DESCRIPTION_UNKNOWN}] def testMatches(self): """Tests the Matches function.""" event, event_data, _ = containers_test_lib.CreateEventFromValues( self._TEST_EVENTS[0]) filter_object = filters.IdentityFilter() result = filter_object.Matches(event, event_data, None, None) self.assertTrue(result) class BinaryOperatorTest(shared_test_lib.BaseTestCase): """Tests the binary operators interface.""" def testInitialize(self): """Tests the __init__ function.""" filter_object = filters.BinaryOperator(arguments=['test_value', 1]) self.assertIsNotNone(filter_object) class GenericBinaryOperatorTest(shared_test_lib.BaseTestCase): """Tests the shared functionality for common binary operators.""" # pylint: disable=protected-access _TEST_EVENTS = [ {'data_type': 'test:event', 'test_value': 1, 'timestamp': 5134324321, 'timestamp_desc': definitions.TIME_DESCRIPTION_UNKNOWN}] def testInitialize(self): """Tests the __init__ function.""" filter_object = filters.GenericBinaryOperator(arguments=['test_value', 1]) self.assertIsNotNone(filter_object) def testGetValue(self): """Tests the _GetValue function.""" event, event_data, _ = containers_test_lib.CreateEventFromValues( self._TEST_EVENTS[0]) event_tag = events.EventTag() event_tag.AddLabel('browser_search') filter_object = filters.GenericBinaryOperator(arguments=['test_value', 1]) test_value = filter_object._GetValue( 'test_value', event, event_data, None, event_tag) self.assertEqual(test_value, 1) test_value = filter_object._GetValue( 'timestamp', event, event_data, None, event_tag) self.assertIsNotNone(test_value) self.assertEqual(test_value.timestamp, 5134324321) test_value = filter_object._GetValue( 'tag', event, event_data, None, event_tag) self.assertEqual(test_value, ['browser_search']) # TODO: add tests for FlipBool function class EqualsOperatorTest(shared_test_lib.BaseTestCase): """Tests the equals operator.""" # pylint: disable=protected-access def testCompareValue(self): """Tests the _CompareValue function.""" filter_object = filters.EqualsOperator(arguments=['first', 'second']) result = filter_object._CompareValue(0, 10) self.assertFalse(result) result = filter_object._CompareValue(10, 10) self.assertTrue(result) class NotEqualsOperatorTest(shared_test_lib.BaseTestCase): """Tests the not equals operator.""" # pylint: disable=protected-access def testCompareValue(self): """Tests the _CompareValue function.""" filter_object = filters.NotEqualsOperator(arguments=['first', 'second']) result = filter_object._CompareValue(0, 10) self.assertTrue(result) result = filter_object._CompareValue(10, 10) self.assertFalse(result) class LessThanOperatorTest(shared_test_lib.BaseTestCase): """Tests the less than operator.""" # pylint: disable=protected-access def testCompareValue(self): """Tests the _CompareValue function.""" filter_object = filters.LessThanOperator(arguments=['first', 'second']) result = filter_object._CompareValue(0, 10) self.assertTrue(result) result = filter_object._CompareValue(10, 10) self.assertFalse(result) result = filter_object._CompareValue(20, 10) self.assertFalse(result) class LessEqualOperatorTest(shared_test_lib.BaseTestCase): """Tests the less equal operator.""" # pylint: disable=protected-access def testCompareValue(self): """Tests the _CompareValue function.""" filter_object = filters.LessEqualOperator(arguments=['first', 'second']) result = filter_object._CompareValue(0, 10) self.assertTrue(result) result = filter_object._CompareValue(10, 10) self.assertTrue(result) result = filter_object._CompareValue(20, 10) self.assertFalse(result) class GreaterThanOperatorTest(shared_test_lib.BaseTestCase): """Tests the greater than operator.""" # pylint: disable=protected-access def testCompareValue(self): """Tests the _CompareValue function.""" filter_object = filters.GreaterThanOperator(arguments=['first', 'second']) result = filter_object._CompareValue(0, 10) self.assertFalse(result) result = filter_object._CompareValue(10, 10) self.assertFalse(result) result = filter_object._CompareValue(20, 10) self.assertTrue(result) class GreaterEqualOperatorTest(shared_test_lib.BaseTestCase): """Tests the greater equal operator.""" # pylint: disable=protected-access def testCompareValue(self): """Tests the _CompareValue function.""" filter_object = filters.GreaterEqualOperator(arguments=['first', 'second']) result = filter_object._CompareValue(0, 10) self.assertFalse(result) result = filter_object._CompareValue(10, 10) self.assertTrue(result) result = filter_object._CompareValue(20, 10) self.assertTrue(result) # TODO: add tests for Contains # TODO: add tests for InSet # TODO: add tests for Regexp # TODO: add tests for RegexpInsensitive if __name__ == "__main__": unittest.main()
examples/testapp/testapp/views.py
benthomasson/gevent-socketio
625
11138027
<gh_stars>100-1000 from pyramid.view import view_config import gevent from socketio import socketio_manage from socketio.namespace import BaseNamespace from socketio.mixins import RoomsMixin, BroadcastMixin from gevent import socket def index(request): """ Base view to load our template """ return {} """ ACK model: The client sends a message of the sort: {type: 'message', id: 140, ack: true, endpoint: '/tobi', data: '' } The 'ack' value is 'true', marking that we want an automatic 'ack' when it receives the packet. The Node.js version sends the ack itself, without any server-side code interaction. It dispatches the packet only after sending back an ack, so the ack isn't really a reply. It's just marking the server received it, but not if the event/message/json was properly processed. The automated reply from such a request is: {type: 'ack', ackId: '140', endpoint: '', args: [] } Where 'ackId' corresponds to the 'id' of the originating message. Upon reception of this 'ack' message, the client then looks in an object if there is a callback function to call associated with this message id (140). If so, runs it, otherwise, drops the packet. There is a second way to ask for an ack, sending a packet like this: {type: 'event', id: 1, ack: 'data', endpoint: '', name: 'chat', args: ['', ''] } {type: 'json', id: 1, ack: 'data', endpoint: '', data: {a: 'b'} } .. the same goes for a 'message' packet, which has the 'ack' equal to 'data'. When the server receives such a packet, it dispatches the corresponding event (either the named event specified in an 'event' type packet, or 'message' or 'json, if the type is so), and *adds* as a parameter, in addition to the 'args' passed by the event (or 'data' for 'message'/'json'), the ack() function to call (it encloses the packet 'id' already). Any number of arguments passed to that 'ack()' function will be passed on to the client-side, and given as parameter on the client-side function. That is the returning 'ack' message, with the data ready to be passed as arguments to the saved callback on the client side: {type: 'ack', ackId: '12', endpoint: '', args: ['woot', 'wa'] } """ class GlobalIONamespace(BaseNamespace, BroadcastMixin): def on_chat(self, *args): self.emit("bob", {'hello': 'world'}) print "Received chat message", args self.broadcast_event_not_me('chat', *args) def recv_connect(self): print "CONNNNNNNN" self.emit("you_just_connected", {'bravo': 'kid'}) self.spawn(self.cpu_checker_process) def recv_json(self, data): self.emit("got_some_json", data) def on_bob(self, *args): self.broadcast_event('broadcasted', args) self.socket['/chat'].emit('bob') def cpu_checker_process(self): """This will be a greenlet""" ret = os.system("cat /proc/cpu/stuff") self.emit("cpu_value", ret) class ChatIONamespace(BaseNamespace, RoomsMixin): def on_mymessage(self, msg): print "In on_mymessage" self.send("little message back") self.send({'blah': 'blah'}, json=True) for x in xrange(2): self.emit("pack", {'the': 'more', 'you': 'can'}) def on_my_callback(self, packet): return (1, 2) def on_trigger_server_callback(self, superbob): def cb(): print "OK, WE WERE CALLED BACK BY THE ACK! THANKS :)" self.emit('callmeback', 'this is a first param', 'this is the last param', callback=cb) def cb2(param1, param2): print "OK, GOT THOSE VALUES BACK BY CB", param1, param2 self.emit('callmeback', 'this is a first param', 'this is the last param', callback=cb2) def on_rtc_invite(self, sdp): print "Got an RTC invite, now pushing to others..." self.emit_to_room('room1', 'rtc_invite', self.session['nickname'], sdp) def recv_connect(self): self.session['nickname'] = 'guest123' self.join('room1') def recv_message(self, data): print "Received a 'message' with data:", data def on_disconnect_me(self, data): print "Disconnecting you buddy", data self.disconnect() nsmap = {'': GlobalIONamespace, '/chat': ChatIONamespace} @view_config(route_name='socket_io') def socketio_service(request): """ The view that will launch the socketio listener """ socketio_manage(request.environ, namespaces=nsmap, request=request) return {}
tests/io/test_everest.py
jorgemarpa/lightkurve
235
11138048
import pytest from lightkurve import search_lightcurve @pytest.mark.remote_data def test_search_everest(): """Can we search and download an EVEREST light curve?""" search = search_lightcurve("GJ 9827", author="EVEREST", campaign=12) assert len(search) == 1 assert search.table["author"][0] == "EVEREST" lc = search.download() assert type(lc).__name__ == "KeplerLightCurve" assert lc.campaign == 12
Chapter02/calendar_form.py
trappn/Mastering-GUI-Programming-with-Python
138
11138050
<reponame>trappn/Mastering-GUI-Programming-with-Python<gh_stars>100-1000 import sys from PyQt5 import QtWidgets as qtw from PyQt5 import QtCore as qtc class MainWindow(qtw.QWidget): def __init__(self): """MainWindow constructor.""" super().__init__() # Configure the window self.setWindowTitle("My Calendar App") self.resize(800, 600) # Create our widgets self.calendar = qtw.QCalendarWidget() self.event_list = qtw.QListWidget() self.event_title = qtw.QLineEdit() self.event_category = qtw.QComboBox() self.event_time = qtw.QTimeEdit(qtc.QTime(8, 0)) self.allday_check = qtw.QCheckBox('All Day') self.event_detail = qtw.QTextEdit() self.add_button = qtw.QPushButton('Add/Update') self.del_button = qtw.QPushButton('Delete') # Configure some widgets # Add event categories self.event_category.addItems( ['Select category…', 'New…', 'Work', 'Meeting', 'Doctor', 'Family'] ) # disable the first category item self.event_category.model().item(0).setEnabled(False) # Arrange the widgets main_layout = qtw.QHBoxLayout() self.setLayout(main_layout) main_layout.addWidget(self.calendar) # Calendar expands to fill the window self.calendar.setSizePolicy( qtw.QSizePolicy.Expanding, qtw.QSizePolicy.Expanding ) right_layout = qtw.QVBoxLayout() main_layout.addLayout(right_layout) right_layout.addWidget(qtw.QLabel('Events on Date')) right_layout.addWidget(self.event_list) # Event list expands to fill the right area self.event_list.setSizePolicy( qtw.QSizePolicy.Expanding, qtw.QSizePolicy.Expanding ) # Create a sub-layout for the event view/add form event_form = qtw.QGroupBox('Event') right_layout.addWidget(event_form) event_form_layout = qtw.QGridLayout() event_form.setLayout(event_form_layout) event_form_layout.addWidget(self.event_title, 1, 1, 1, 3) event_form_layout.addWidget(self.event_category, 2, 1) event_form_layout.addWidget(self.event_time, 2, 2,) event_form_layout.addWidget(self.allday_check, 2, 3) event_form_layout.addWidget(self.event_detail, 3, 1, 1, 3) event_form_layout.addWidget(self.add_button, 4, 2) event_form_layout.addWidget(self.del_button, 4, 3) self.show() if __name__ == '__main__': app = qtw.QApplication(sys.argv) # it's required to save a reference to MainWindow. # if it goes out of scope, it will be destroyed. mw = MainWindow() sys.exit(app.exec())
tests/www/views/test_views_pool.py
ChaseKnowlden/airflow
15,947
11138124
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import flask import pytest from airflow.models import Pool from airflow.utils.session import create_session from tests.test_utils.www import check_content_in_response, check_content_not_in_response POOL = { 'pool': 'test-pool', 'slots': 777, 'description': 'test-pool-description', } @pytest.fixture(autouse=True) def clear_pools(): with create_session() as session: session.query(Pool).delete() @pytest.fixture() def pool_factory(session): def factory(**values): pool = Pool(**{**POOL, **values}) # Passed in values override defaults. session.add(pool) session.commit() return pool return factory def test_create_pool_with_same_name(admin_client): # create test pool resp = admin_client.post('/pool/add', data=POOL, follow_redirects=True) check_content_in_response('Added Row', resp) # create pool with the same name resp = admin_client.post('/pool/add', data=POOL, follow_redirects=True) check_content_in_response('Already exists.', resp) def test_create_pool_with_empty_name(admin_client): resp = admin_client.post( '/pool/add', data={**POOL, "pool": ""}, follow_redirects=True, ) check_content_in_response('This field is required.', resp) def test_odd_name(admin_client, pool_factory): pool_factory(pool="test-pool<script></script>") resp = admin_client.get('/pool/list/') check_content_in_response('test-pool&lt;script&gt;', resp) check_content_not_in_response('test-pool<script>', resp) def test_list(app, admin_client, pool_factory): pool_factory(pool="test-pool") resp = admin_client.get('/pool/list/') # We should see this link with app.test_request_context(): url = flask.url_for('TaskInstanceModelView.list', _flt_3_pool='test-pool', _flt_3_state='running') used_tag = flask.Markup("<a href='{url}'>{slots}</a>").format(url=url, slots=0) url = flask.url_for('TaskInstanceModelView.list', _flt_3_pool='test-pool', _flt_3_state='queued') queued_tag = flask.Markup("<a href='{url}'>{slots}</a>").format(url=url, slots=0) check_content_in_response(used_tag, resp) check_content_in_response(queued_tag, resp) def test_pool_muldelete(session, admin_client, pool_factory): pool = pool_factory() resp = admin_client.post( "/pool/action_post", data={"action": "muldelete", "rowid": [pool.id]}, follow_redirects=True, ) assert resp.status_code == 200 assert session.query(Pool).filter(Pool.id == pool.id).count() == 0 def test_pool_muldelete_default(session, admin_client, pool_factory): pool = pool_factory(pool="default_pool") resp = admin_client.post( "/pool/action_post", data={"action": "muldelete", "rowid": [pool.id]}, follow_redirects=True, ) check_content_in_response("default_pool cannot be deleted", resp) assert session.query(Pool).filter(Pool.id == pool.id).count() == 1
tests/test_metrics.py
vpeopleonatank/segmentation
122
11138157
import numpy as np import pytest import torch from sklearn.metrics import f1_score from src.metrics.f1_score import F1Score from src.utils.utils import set_seed @torch.no_grad() @pytest.mark.parametrize('average', ['micro', 'macro', 'weighted']) def test_f1score_metric(average: str) -> None: set_seed(42) labels = torch.randint(1, 10, (4096, 100)).flatten() predictions = torch.randint(1, 10, (4096, 100)).flatten() labels_numpy = labels.numpy() predictions_numpy = predictions.numpy() f1_metric = F1Score(average) my_pred = f1_metric(predictions, labels) f1_pred = f1_score(labels_numpy, predictions_numpy, average=average) assert np.isclose(my_pred.item(), f1_pred.item())
frontend/src/indexesfrontend.py
grofers/PGObserver
274
11138162
import flotgraph import time import indexdata import hosts import datetime import tplE class IndexesFrontend(object): def default(self, *p, **params): if len(p) < 2: return "" hostId = int(p[0]) if p[0].isdigit() else hosts.uiShortnameToHostId(p[0]) hostUiName = p[0] if not p[0].isdigit() else hosts.hostIdToUiShortname(p[0]) table_name = p[1] if table_name.find('.') == -1: raise Exception('Full table name needed, e.g. schema_x.table_y') schema = table_name.split('.')[0] if 'from' in params and 'to' in params: interval = {} interval['from'] = params['from'] interval['to'] = params['to'] else: interval = {} interval['from'] = (datetime.datetime.now() - datetime.timedelta(days=14)).strftime('%Y-%m-%d') interval['to'] = (datetime.datetime.now() + datetime.timedelta(days=1)).strftime('%Y-%m-%d') data = indexdata.getIndexesDataForTable(hostId, table_name, interval['from'], interval['to']) all_graphs=[] i=0 for x in data: one_index_graphs=[] for k,v in x['data'].iteritems(): i+=1 if k == 'size': graph = flotgraph.SizeGraph ("index"+str(i),"right") else: graph = flotgraph.Graph ("index"+str(i),"right") graph.addSeries(k,k) for p in v: graph.addPoint(k, int(time.mktime(p[0].timetuple()) * 1000) , p[1]) graph = graph.render() one_index_graphs.append({'data':graph, 'i':i, 'type':k}) one_index_graphs.sort(key=lambda x:x['type']) all_graphs.append({'name':x['index_name'], 'graphs': one_index_graphs, 'last_index_size':x['last_index_size'], 'total_end_size':x['total_end_size'], 'pct_of_total_end_size':x['pct_of_total_end_size']}) all_graphs = sorted(all_graphs, key=lambda x:x['last_index_size'], reverse=True) tpl = tplE.env.get_template('table_indexes.html') return tpl.render(table_name=table_name, host=hostId, schema=schema, interval=interval, hostuiname = hostUiName, hostname = hosts.getHosts()[hostId]['uilongname'], all_graphs=all_graphs, target='World') def raw(self, host, table, from_date=None, to_date=None): host = int(host) if host.isdigit() else hosts.uiShortnameToHostId(host) if not from_date: from_date = (datetime.datetime.now() - datetime.timedelta(days=14)).strftime('%Y-%m-%d') if not to_date: to_date = (datetime.datetime.now() + datetime.timedelta(days=1)).strftime('%Y-%m-%d') return indexdata.getIndexesDataForTable(host, table, from_date, to_date) default.exposed = True
openpoiservice/server/db_import/models.py
larsrinn/openpoiservice
131
11138178
<reponame>larsrinn/openpoiservice<filename>openpoiservice/server/db_import/models.py # openpoiservice/server/models.py from openpoiservice.server import db, ops_settings from geoalchemy2 import Geography import logging logger = logging.getLogger(__name__) class POIs(db.Model): __tablename__ = ops_settings['provider_parameters']['table_name'] logger.info(f"Table name for POIs: {__tablename__}") osm_type = db.Column(db.Integer, primary_key=True) osm_id = db.Column(db.BigInteger, primary_key=True) geom = db.Column(Geography(geometry_type="POINT", srid=4326, spatial_index=True), nullable=False) src_index = db.Column(db.Integer, index=True) delflag = db.Column(db.Boolean, nullable=False, index=True) tags = db.relationship("Tags", backref=db.backref("POIs", cascade="delete"), lazy='dynamic') categories = db.relationship("Categories", backref=db.backref("POIs", cascade="delete"), lazy='dynamic') def __repr__(self): return '<osm id %r>' % self.osm_id class Categories(db.Model): __tablename__ = ops_settings['provider_parameters']['table_name'] + "_categories" logger.info(f"Table name for categories: {__tablename__}") id = db.Column(db.Integer, primary_key=True, autoincrement=True) osm_type = db.Column(db.Integer, nullable=False, index=True) osm_id = db.Column(db.BigInteger, nullable=False, index=True) category = db.Column(db.Integer, index=True, nullable=False) __table_args__ = (db.ForeignKeyConstraint([osm_type, osm_id], [POIs.osm_type, POIs.osm_id], ondelete="CASCADE"),) def __repr__(self): return '<category %r>' % self.category class Tags(db.Model): __tablename__ = ops_settings['provider_parameters']['table_name'] + "_tags" logger.info(f"Table name for tags: {__tablename__}") id = db.Column(db.Integer, primary_key=True, autoincrement=True) osm_type = db.Column(db.Integer, nullable=False, index=True) osm_id = db.Column(db.BigInteger, nullable=False, index=True) key = db.Column(db.Text, nullable=True, index=True) value = db.Column(db.Text, nullable=True, index=True) __table_args__ = (db.ForeignKeyConstraint([osm_type, osm_id], [POIs.osm_type, POIs.osm_id], ondelete="CASCADE"),) def __repr__(self): return '<osm id %r>' % self.osm_id
play-1.2.4/python/Lib/site-packages/win32/lib/sspicon.py
AppSecAI-TEST/restcommander
550
11138201
# Generated by h2py from c:\microsoft sdk\include\sspi.h ISSP_LEVEL = 32 ISSP_MODE = 1 ISSP_LEVEL = 32 ISSP_MODE = 0 ISSP_LEVEL = 32 ISSP_MODE = 1 def SEC_SUCCESS(Status): return ((Status) >= 0) SECPKG_FLAG_INTEGRITY = 1 SECPKG_FLAG_PRIVACY = 2 SECPKG_FLAG_TOKEN_ONLY = 4 SECPKG_FLAG_DATAGRAM = 8 SECPKG_FLAG_CONNECTION = 16 SECPKG_FLAG_MULTI_REQUIRED = 32 SECPKG_FLAG_CLIENT_ONLY = 64 SECPKG_FLAG_EXTENDED_ERROR = 128 SECPKG_FLAG_IMPERSONATION = 256 SECPKG_FLAG_ACCEPT_WIN32_NAME = 512 SECPKG_FLAG_STREAM = 1024 SECPKG_FLAG_NEGOTIABLE = 2048 SECPKG_FLAG_GSS_COMPATIBLE = 4096 SECPKG_FLAG_LOGON = 8192 SECPKG_FLAG_ASCII_BUFFERS = 16384 SECPKG_FLAG_FRAGMENT = 32768 SECPKG_FLAG_MUTUAL_AUTH = 65536 SECPKG_FLAG_DELEGATION = 131072 SECPKG_FLAG_READONLY_WITH_CHECKSUM = 262144 SECPKG_ID_NONE = 65535 SECBUFFER_VERSION = 0 SECBUFFER_EMPTY = 0 SECBUFFER_DATA = 1 SECBUFFER_TOKEN = 2 SECBUFFER_PKG_PARAMS = 3 SECBUFFER_MISSING = 4 SECBUFFER_EXTRA = 5 SECBUFFER_STREAM_TRAILER = 6 SECBUFFER_STREAM_HEADER = 7 SECBUFFER_NEGOTIATION_INFO = 8 SECBUFFER_PADDING = 9 SECBUFFER_STREAM = 10 SECBUFFER_MECHLIST = 11 SECBUFFER_MECHLIST_SIGNATURE = 12 SECBUFFER_TARGET = 13 SECBUFFER_CHANNEL_BINDINGS = 14 SECBUFFER_ATTRMASK = (-268435456) SECBUFFER_READONLY = (-2147483648) SECBUFFER_READONLY_WITH_CHECKSUM = 268435456 SECBUFFER_RESERVED = 1610612736 SECURITY_NATIVE_DREP = 16 SECURITY_NETWORK_DREP = 0 SECPKG_CRED_INBOUND = 1 SECPKG_CRED_OUTBOUND = 2 SECPKG_CRED_BOTH = 3 SECPKG_CRED_DEFAULT = 4 SECPKG_CRED_RESERVED = -268435456 ISC_REQ_DELEGATE = 1 ISC_REQ_MUTUAL_AUTH = 2 ISC_REQ_REPLAY_DETECT = 4 ISC_REQ_SEQUENCE_DETECT = 8 ISC_REQ_CONFIDENTIALITY = 16 ISC_REQ_USE_SESSION_KEY = 32 ISC_REQ_PROMPT_FOR_CREDS = 64 ISC_REQ_USE_SUPPLIED_CREDS = 128 ISC_REQ_ALLOCATE_MEMORY = 256 ISC_REQ_USE_DCE_STYLE = 512 ISC_REQ_DATAGRAM = 1024 ISC_REQ_CONNECTION = 2048 ISC_REQ_CALL_LEVEL = 4096 ISC_REQ_FRAGMENT_SUPPLIED = 8192 ISC_REQ_EXTENDED_ERROR = 16384 ISC_REQ_STREAM = 32768 ISC_REQ_INTEGRITY = 65536 ISC_REQ_IDENTIFY = 131072 ISC_REQ_NULL_SESSION = 262144 ISC_REQ_MANUAL_CRED_VALIDATION = 524288 ISC_REQ_RESERVED1 = 1048576 ISC_REQ_FRAGMENT_TO_FIT = 2097152 ISC_REQ_HTTP = 0x10000000 ISC_RET_DELEGATE = 1 ISC_RET_MUTUAL_AUTH = 2 ISC_RET_REPLAY_DETECT = 4 ISC_RET_SEQUENCE_DETECT = 8 ISC_RET_CONFIDENTIALITY = 16 ISC_RET_USE_SESSION_KEY = 32 ISC_RET_USED_COLLECTED_CREDS = 64 ISC_RET_USED_SUPPLIED_CREDS = 128 ISC_RET_ALLOCATED_MEMORY = 256 ISC_RET_USED_DCE_STYLE = 512 ISC_RET_DATAGRAM = 1024 ISC_RET_CONNECTION = 2048 ISC_RET_INTERMEDIATE_RETURN = 4096 ISC_RET_CALL_LEVEL = 8192 ISC_RET_EXTENDED_ERROR = 16384 ISC_RET_STREAM = 32768 ISC_RET_INTEGRITY = 65536 ISC_RET_IDENTIFY = 131072 ISC_RET_NULL_SESSION = 262144 ISC_RET_MANUAL_CRED_VALIDATION = 524288 ISC_RET_RESERVED1 = 1048576 ISC_RET_FRAGMENT_ONLY = 2097152 ASC_REQ_DELEGATE = 1 ASC_REQ_MUTUAL_AUTH = 2 ASC_REQ_REPLAY_DETECT = 4 ASC_REQ_SEQUENCE_DETECT = 8 ASC_REQ_CONFIDENTIALITY = 16 ASC_REQ_USE_SESSION_KEY = 32 ASC_REQ_ALLOCATE_MEMORY = 256 ASC_REQ_USE_DCE_STYLE = 512 ASC_REQ_DATAGRAM = 1024 ASC_REQ_CONNECTION = 2048 ASC_REQ_CALL_LEVEL = 4096 ASC_REQ_EXTENDED_ERROR = 32768 ASC_REQ_STREAM = 65536 ASC_REQ_INTEGRITY = 131072 ASC_REQ_LICENSING = 262144 ASC_REQ_IDENTIFY = 524288 ASC_REQ_ALLOW_NULL_SESSION = 1048576 ASC_REQ_ALLOW_NON_USER_LOGONS = 2097152 ASC_REQ_ALLOW_CONTEXT_REPLAY = 4194304 ASC_REQ_FRAGMENT_TO_FIT = 8388608 ASC_REQ_FRAGMENT_SUPPLIED = 8192 ASC_REQ_NO_TOKEN = <PASSWORD> ASC_RET_DELEGATE = 1 ASC_RET_MUTUAL_AUTH = 2 ASC_RET_REPLAY_DETECT = 4 ASC_RET_SEQUENCE_DETECT = 8 ASC_RET_CONFIDENTIALITY = 16 ASC_RET_USE_SESSION_KEY = 32 ASC_RET_ALLOCATED_MEMORY = 256 ASC_RET_USED_DCE_STYLE = 512 ASC_RET_DATAGRAM = 1024 ASC_RET_CONNECTION = 2048 ASC_RET_CALL_LEVEL = 8192 ASC_RET_THIRD_LEG_FAILED = 16384 ASC_RET_EXTENDED_ERROR = 32768 ASC_RET_STREAM = 65536 ASC_RET_INTEGRITY = 131072 ASC_RET_LICENSING = 262144 ASC_RET_IDENTIFY = 524288 ASC_RET_NULL_SESSION = 1048576 ASC_RET_ALLOW_NON_USER_LOGONS = 2097152 ASC_RET_ALLOW_CONTEXT_REPLAY = 4194304 ASC_RET_FRAGMENT_ONLY = 8388608 SECPKG_CRED_ATTR_NAMES = 1 SECPKG_ATTR_SIZES = 0 SECPKG_ATTR_NAMES = 1 SECPKG_ATTR_LIFESPAN = 2 SECPKG_ATTR_DCE_INFO = 3 SECPKG_ATTR_STREAM_SIZES = 4 SECPKG_ATTR_KEY_INFO = 5 SECPKG_ATTR_AUTHORITY = 6 SECPKG_ATTR_PROTO_INFO = 7 SECPKG_ATTR_PASSWORD_EXPIRY = 8 SECPKG_ATTR_SESSION_KEY = 9 SECPKG_ATTR_PACKAGE_INFO = 10 SECPKG_ATTR_USER_FLAGS = 11 SECPKG_ATTR_NEGOTIATION_INFO = 12 SECPKG_ATTR_NATIVE_NAMES = 13 SECPKG_ATTR_FLAGS = 14 SECPKG_ATTR_USE_VALIDATED = 15 SECPKG_ATTR_CREDENTIAL_NAME = 16 SECPKG_ATTR_TARGET_INFORMATION = 17 SECPKG_ATTR_ACCESS_TOKEN = 18 SECPKG_ATTR_TARGET = 19 SECPKG_ATTR_AUTHENTICATION_ID = 20 ## attributes from schannel.h SECPKG_ATTR_REMOTE_CERT_CONTEXT = 83 SECPKG_ATTR_LOCAL_CERT_CONTEXT = 84 SECPKG_ATTR_ROOT_STORE = 85 SECPKG_ATTR_SUPPORTED_ALGS = 86 SECPKG_ATTR_CIPHER_STRENGTHS = 87 SECPKG_ATTR_SUPPORTED_PROTOCOLS = 88 SECPKG_ATTR_ISSUER_LIST_EX = 89 SECPKG_ATTR_CONNECTION_INFO = 90 SECPKG_ATTR_EAP_KEY_BLOCK = 91 SECPKG_ATTR_MAPPED_CRED_ATTR = 92 SECPKG_ATTR_SESSION_INFO = 93 SECPKG_ATTR_APP_DATA = 94 SECPKG_NEGOTIATION_COMPLETE = 0 SECPKG_NEGOTIATION_OPTIMISTIC = 1 SECPKG_NEGOTIATION_IN_PROGRESS = 2 SECPKG_NEGOTIATION_DIRECT = 3 SECPKG_NEGOTIATION_TRY_MULTICRED = 4 SECPKG_CONTEXT_EXPORT_RESET_NEW = 1 SECPKG_CONTEXT_EXPORT_DELETE_OLD = 2 SECQOP_WRAP_NO_ENCRYPT = (-2147483647) SECURITY_ENTRYPOINT_ANSIW = "InitSecurityInterfaceW" SECURITY_ENTRYPOINT_ANSIA = "InitSecurityInterfaceA" SECURITY_ENTRYPOINT16 = "INITSECURITYINTERFACEA" SECURITY_ENTRYPOINT_ANSI = SECURITY_ENTRYPOINT_ANSIW SECURITY_ENTRYPOINT_ANSI = SECURITY_ENTRYPOINT_ANSIA SECURITY_ENTRYPOINT = SECURITY_ENTRYPOINT16 SECURITY_ENTRYPOINT_ANSI = SECURITY_ENTRYPOINT16 SECURITY_SUPPORT_PROVIDER_INTERFACE_VERSION = 1 SECURITY_SUPPORT_PROVIDER_INTERFACE_VERSION_2 = 2 SASL_OPTION_SEND_SIZE = 1 SASL_OPTION_RECV_SIZE = 2 SASL_OPTION_AUTHZ_STRING = 3 SASL_OPTION_AUTHZ_PROCESSING = 4 SEC_WINNT_AUTH_IDENTITY_ANSI = 1 SEC_WINNT_AUTH_IDENTITY_UNICODE = 2 SEC_WINNT_AUTH_IDENTITY_VERSION = 512 SEC_WINNT_AUTH_IDENTITY_MARSHALLED = 4 SEC_WINNT_AUTH_IDENTITY_ONLY = 8 SECPKG_OPTIONS_TYPE_UNKNOWN = 0 SECPKG_OPTIONS_TYPE_LSA = 1 SECPKG_OPTIONS_TYPE_SSPI = 2 SECPKG_OPTIONS_PERMANENT = 1 SEC_E_INSUFFICIENT_MEMORY = -2146893056 SEC_E_INVALID_HANDLE = -2146893055 SEC_E_UNSUPPORTED_FUNCTION = -2146893054 SEC_E_TARGET_UNKNOWN = -2146893053 SEC_E_INTERNAL_ERROR = -2146893052 SEC_E_SECPKG_NOT_FOUND = -2146893051 SEC_E_NOT_OWNER = -2146893050 SEC_E_CANNOT_INSTALL = -2146893049 SEC_E_INVALID_TOKEN = -2146893048 SEC_E_CANNOT_PACK = -2146893047 SEC_E_QOP_NOT_SUPPORTED = -2146893046 SEC_E_NO_IMPERSONATION = -2146893045 SEC_E_LOGON_DENIED = -2146893044 SEC_E_UNKNOWN_CREDENTIALS = -2146893043 SEC_E_NO_CREDENTIALS = -2146893042 SEC_E_MESSAGE_ALTERED = -2146893041 SEC_E_OUT_OF_SEQUENCE = -2146893040 SEC_E_NO_AUTHENTICATING_AUTHORITY = -2146893039 SEC_I_CONTINUE_NEEDED = 590610 SEC_I_COMPLETE_NEEDED = 590611 SEC_I_COMPLETE_AND_CONTINUE = 590612 SEC_I_LOCAL_LOGON = 590613 SEC_E_BAD_PKGID = -2146893034 SEC_E_CONTEXT_EXPIRED = -2146893033 SEC_I_CONTEXT_EXPIRED = 590615 SEC_E_INCOMPLETE_MESSAGE = -2146893032 SEC_E_INCOMPLETE_CREDENTIALS = -2146893024 SEC_E_BUFFER_TOO_SMALL = -2146893023 SEC_I_INCOMPLETE_CREDENTIALS = 590624 SEC_I_RENEGOTIATE = 590625 SEC_E_WRONG_PRINCIPAL = -2146893022 SEC_I_NO_LSA_CONTEXT = 590627 SEC_E_TIME_SKEW = -2146893020 SEC_E_UNTRUSTED_ROOT = -2146893019 SEC_E_ILLEGAL_MESSAGE = -2146893018 SEC_E_CERT_UNKNOWN = -2146893017 SEC_E_CERT_EXPIRED = -2146893016 SEC_E_ENCRYPT_FAILURE = -2146893015 SEC_E_DECRYPT_FAILURE = -2146893008 SEC_E_ALGORITHM_MISMATCH = -2146893007 SEC_E_SECURITY_QOS_FAILED = -2146893006 SEC_E_UNFINISHED_CONTEXT_DELETED = -2146893005 SEC_E_NO_TGT_REPLY = -2146893004 SEC_E_NO_IP_ADDRESSES = -2146893003 SEC_E_WRONG_CREDENTIAL_HANDLE = -2146893002 SEC_E_CRYPTO_SYSTEM_INVALID = -2146893001 SEC_E_MAX_REFERRALS_EXCEEDED = -2146893000 SEC_E_MUST_BE_KDC = -2146892999 SEC_E_STRONG_CRYPTO_NOT_SUPPORTED = -2146892998 SEC_E_TOO_MANY_PRINCIPALS = -2146892997 SEC_E_NO_PA_DATA = -2146892996 SEC_E_PKINIT_NAME_MISMATCH = -2146892995 SEC_E_SMARTCARD_LOGON_REQUIRED = -2146892994 SEC_E_SHUTDOWN_IN_PROGRESS = -2146892993 SEC_E_KDC_INVALID_REQUEST = -2146892992 SEC_E_KDC_UNABLE_TO_REFER = -2146892991 SEC_E_KDC_UNKNOWN_ETYPE = -2146892990 SEC_E_UNSUPPORTED_PREAUTH = -2146892989 SEC_E_DELEGATION_REQUIRED = -2146892987 SEC_E_BAD_BINDINGS = -2146892986 SEC_E_MULTIPLE_ACCOUNTS = -2146892985 SEC_E_NO_KERB_KEY = -2146892984 ERROR_IPSEC_QM_POLICY_EXISTS = 13000L ERROR_IPSEC_QM_POLICY_NOT_FOUND = 13001L ERROR_IPSEC_QM_POLICY_IN_USE = 13002L ERROR_IPSEC_MM_POLICY_EXISTS = 13003L ERROR_IPSEC_MM_POLICY_NOT_FOUND = 13004L ERROR_IPSEC_MM_POLICY_IN_USE = 13005L ERROR_IPSEC_MM_FILTER_EXISTS = 13006L ERROR_IPSEC_MM_FILTER_NOT_FOUND = 13007L ERROR_IPSEC_TRANSPORT_FILTER_EXISTS = 13008L ERROR_IPSEC_TRANSPORT_FILTER_NOT_FOUND = 13009L ERROR_IPSEC_MM_AUTH_EXISTS = 13010L ERROR_IPSEC_MM_AUTH_NOT_FOUND = 13011L ERROR_IPSEC_MM_AUTH_IN_USE = 13012L ERROR_IPSEC_DEFAULT_MM_POLICY_NOT_FOUND = 13013L ERROR_IPSEC_DEFAULT_MM_AUTH_NOT_FOUND = 13014L ERROR_IPSEC_DEFAULT_QM_POLICY_NOT_FOUND = 13015L ERROR_IPSEC_TUNNEL_FILTER_EXISTS = 13016L ERROR_IPSEC_TUNNEL_FILTER_NOT_FOUND = 13017L ERROR_IPSEC_MM_FILTER_PENDING_DELETION = 13018L ERROR_IPSEC_TRANSPORT_FILTER_PENDING_DELETION = 13019L ERROR_IPSEC_TUNNEL_FILTER_PENDING_DELETION = 13020L ERROR_IPSEC_MM_POLICY_PENDING_DELETION = 13021L ERROR_IPSEC_MM_AUTH_PENDING_DELETION = 13022L ERROR_IPSEC_QM_POLICY_PENDING_DELETION = 13023L WARNING_IPSEC_MM_POLICY_PRUNED = 13024L WARNING_IPSEC_QM_POLICY_PRUNED = 13025L ERROR_IPSEC_IKE_NEG_STATUS_BEGIN = 13800L ERROR_IPSEC_IKE_AUTH_FAIL = 13801L ERROR_IPSEC_IKE_ATTRIB_FAIL = 13802L ERROR_IPSEC_IKE_NEGOTIATION_PENDING = 13803L ERROR_IPSEC_IKE_GENERAL_PROCESSING_ERROR = 13804L ERROR_IPSEC_IKE_TIMED_OUT = 13805L ERROR_IPSEC_IKE_NO_CERT = 13806L ERROR_IPSEC_IKE_SA_DELETED = 13807L ERROR_IPSEC_IKE_SA_REAPED = 13808L ERROR_IPSEC_IKE_MM_ACQUIRE_DROP = 13809L ERROR_IPSEC_IKE_QM_ACQUIRE_DROP = 13810L ERROR_IPSEC_IKE_QUEUE_DROP_MM = 13811L ERROR_IPSEC_IKE_QUEUE_DROP_NO_MM = 13812L ERROR_IPSEC_IKE_DROP_NO_RESPONSE = 13813L ERROR_IPSEC_IKE_MM_DELAY_DROP = 13814L ERROR_IPSEC_IKE_QM_DELAY_DROP = 13815L ERROR_IPSEC_IKE_ERROR = 13816L ERROR_IPSEC_IKE_CRL_FAILED = 13817L ERROR_IPSEC_IKE_INVALID_KEY_USAGE = 13818L ERROR_IPSEC_IKE_INVALID_CERT_TYPE = 13819L ERROR_IPSEC_IKE_NO_PRIVATE_KEY = 13820L ERROR_IPSEC_IKE_DH_FAIL = 13822L ERROR_IPSEC_IKE_INVALID_HEADER = 13824L ERROR_IPSEC_IKE_NO_POLICY = 13825L ERROR_IPSEC_IKE_INVALID_SIGNATURE = 13826L ERROR_IPSEC_IKE_KERBEROS_ERROR = 13827L ERROR_IPSEC_IKE_NO_PUBLIC_KEY = 13828L ERROR_IPSEC_IKE_PROCESS_ERR = 13829L ERROR_IPSEC_IKE_PROCESS_ERR_SA = 13830L ERROR_IPSEC_IKE_PROCESS_ERR_PROP = 13831L ERROR_IPSEC_IKE_PROCESS_ERR_TRANS = 13832L ERROR_IPSEC_IKE_PROCESS_ERR_KE = 13833L ERROR_IPSEC_IKE_PROCESS_ERR_ID = 13834L ERROR_IPSEC_IKE_PROCESS_ERR_CERT = 13835L ERROR_IPSEC_IKE_PROCESS_ERR_CERT_REQ = 13836L ERROR_IPSEC_IKE_PROCESS_ERR_HASH = 13837L ERROR_IPSEC_IKE_PROCESS_ERR_SIG = 13838L ERROR_IPSEC_IKE_PROCESS_ERR_NONCE = 13839L ERROR_IPSEC_IKE_PROCESS_ERR_NOTIFY = 13840L ERROR_IPSEC_IKE_PROCESS_ERR_DELETE = 13841L ERROR_IPSEC_IKE_PROCESS_ERR_VENDOR = 13842L ERROR_IPSEC_IKE_INVALID_PAYLOAD = 13843L ERROR_IPSEC_IKE_LOAD_SOFT_SA = 13844L ERROR_IPSEC_IKE_SOFT_SA_TORN_DOWN = 13845L ERROR_IPSEC_IKE_INVALID_COOKIE = 13846L ERROR_IPSEC_IKE_NO_PEER_CERT = 13847L ERROR_IPSEC_IKE_PEER_CRL_FAILED = 13848L ERROR_IPSEC_IKE_POLICY_CHANGE = 13849L ERROR_IPSEC_IKE_NO_MM_POLICY = 13850L ERROR_IPSEC_IKE_NOTCBPRIV = 13851L ERROR_IPSEC_IKE_SECLOADFAIL = 13852L ERROR_IPSEC_IKE_FAILSSPINIT = 13853L ERROR_IPSEC_IKE_FAILQUERYSSP = 13854L ERROR_IPSEC_IKE_SRVACQFAIL = 13855L ERROR_IPSEC_IKE_SRVQUERYCRED = 13856L ERROR_IPSEC_IKE_GETSPIFAIL = 13857L ERROR_IPSEC_IKE_INVALID_FILTER = 13858L ERROR_IPSEC_IKE_OUT_OF_MEMORY = 13859L ERROR_IPSEC_IKE_ADD_UPDATE_KEY_FAILED = 13860L ERROR_IPSEC_IKE_INVALID_POLICY = 13861L ERROR_IPSEC_IKE_UNKNOWN_DOI = 13862L ERROR_IPSEC_IKE_INVALID_SITUATION = 13863L ERROR_IPSEC_IKE_DH_FAILURE = 13864L ERROR_IPSEC_IKE_INVALID_GROUP = 13865L ERROR_IPSEC_IKE_ENCRYPT = 13866L ERROR_IPSEC_IKE_DECRYPT = 13867L ERROR_IPSEC_IKE_POLICY_MATCH = 13868L ERROR_IPSEC_IKE_UNSUPPORTED_ID = 13869L ERROR_IPSEC_IKE_INVALID_HASH = 13870L ERROR_IPSEC_IKE_INVALID_HASH_ALG = 13871L ERROR_IPSEC_IKE_INVALID_HASH_SIZE = 13872L ERROR_IPSEC_IKE_INVALID_ENCRYPT_ALG = 13873L ERROR_IPSEC_IKE_INVALID_AUTH_ALG = 13874L ERROR_IPSEC_IKE_INVALID_SIG = 13875L ERROR_IPSEC_IKE_LOAD_FAILED = 13876L ERROR_IPSEC_IKE_RPC_DELETE = 13877L ERROR_IPSEC_IKE_BENIGN_REINIT = 13878L ERROR_IPSEC_IKE_INVALID_RESPONDER_LIFETIME_NOTIFY = 13879L ERROR_IPSEC_IKE_INVALID_CERT_KEYLEN = 13881L ERROR_IPSEC_IKE_MM_LIMIT = 13882L ERROR_IPSEC_IKE_NEGOTIATION_DISABLED = 13883L ERROR_IPSEC_IKE_NEG_STATUS_END = 13884L CRYPT_E_MSG_ERROR = ((-2146889727)) CRYPT_E_UNKNOWN_ALGO = ((-2146889726)) CRYPT_E_OID_FORMAT = ((-2146889725)) CRYPT_E_INVALID_MSG_TYPE = ((-2146889724)) CRYPT_E_UNEXPECTED_ENCODING = ((-2146889723)) CRYPT_E_AUTH_ATTR_MISSING = ((-2146889722)) CRYPT_E_HASH_VALUE = ((-2146889721)) CRYPT_E_INVALID_INDEX = ((-2146889720)) CRYPT_E_ALREADY_DECRYPTED = ((-2146889719)) CRYPT_E_NOT_DECRYPTED = ((-2146889718)) CRYPT_E_RECIPIENT_NOT_FOUND = ((-2146889717)) CRYPT_E_CONTROL_TYPE = ((-2146889716)) CRYPT_E_ISSUER_SERIALNUMBER = ((-2146889715)) CRYPT_E_SIGNER_NOT_FOUND = ((-2146889714)) CRYPT_E_ATTRIBUTES_MISSING = ((-2146889713)) CRYPT_E_STREAM_MSG_NOT_READY = ((-2146889712)) CRYPT_E_STREAM_INSUFFICIENT_DATA = ((-2146889711)) CRYPT_I_NEW_PROTECTION_REQUIRED = (593938) CRYPT_E_BAD_LEN = ((-2146885631)) CRYPT_E_BAD_ENCODE = ((-2146885630)) CRYPT_E_FILE_ERROR = ((-2146885629)) CRYPT_E_NOT_FOUND = ((-2146885628)) CRYPT_E_EXISTS = ((-2146885627)) CRYPT_E_NO_PROVIDER = ((-2146885626)) CRYPT_E_SELF_SIGNED = ((-2146885625)) CRYPT_E_DELETED_PREV = ((-2146885624)) CRYPT_E_NO_MATCH = ((-2146885623)) CRYPT_E_UNEXPECTED_MSG_TYPE = ((-2146885622)) CRYPT_E_NO_KEY_PROPERTY = ((-2146885621)) CRYPT_E_NO_DECRYPT_CERT = ((-2146885620)) CRYPT_E_BAD_MSG = ((-2146885619)) CRYPT_E_NO_SIGNER = ((-2146885618)) CRYPT_E_PENDING_CLOSE = ((-2146885617)) CRYPT_E_REVOKED = ((-2146885616)) CRYPT_E_NO_REVOCATION_DLL = ((-2146885615)) CRYPT_E_NO_REVOCATION_CHECK = ((-2146885614)) CRYPT_E_REVOCATION_OFFLINE = ((-2146885613)) CRYPT_E_NOT_IN_REVOCATION_DATABASE = ((-2146885612)) CRYPT_E_INVALID_NUMERIC_STRING = ((-2146885600)) CRYPT_E_INVALID_PRINTABLE_STRING = ((-2146885599)) CRYPT_E_INVALID_IA5_STRING = ((-2146885598)) CRYPT_E_INVALID_X500_STRING = ((-2146885597)) CRYPT_E_NOT_CHAR_STRING = ((-2146885596)) CRYPT_E_FILERESIZED = ((-2146885595)) CRYPT_E_SECURITY_SETTINGS = ((-2146885594)) CRYPT_E_NO_VERIFY_USAGE_DLL = ((-2146885593)) CRYPT_E_NO_VERIFY_USAGE_CHECK = ((-2146885592)) CRYPT_E_VERIFY_USAGE_OFFLINE = ((-2146885591)) CRYPT_E_NOT_IN_CTL = ((-2146885590)) CRYPT_E_NO_TRUSTED_SIGNER = ((-2146885589)) CRYPT_E_MISSING_PUBKEY_PARA = ((-2146885588)) CRYPT_E_OSS_ERROR = ((-2146881536)) ## Kerberos message types for LsaCallAuthenticationPackage (from ntsecapi.h) KerbDebugRequestMessage = 0 KerbQueryTicketCacheMessage = 1 KerbChangeMachinePasswordMessage = 2 KerbVerifyPacMessage = 3 KerbRetrieveTicketMessage = 4 KerbUpdateAddressesMessage = 5 KerbPurgeTicketCacheMessage = 6 KerbChangePasswordMessage = 7 KerbRetrieveEncodedTicketMessage = 8 KerbDecryptDataMessage = 9 KerbAddBindingCacheEntryMessage = 10 KerbSetPasswordMessage = 11 KerbSetPasswordExMessage = 12 KerbVerifyCredentialsMessage = 13 KerbQueryTicketCacheExMessage = 14 KerbPurgeTicketCacheExMessage = 15 KerbRefreshSmartcardCredentialsMessage = 16 KerbAddExtraCredentialsMessage = 17 KerbQuerySupplementalCredentialsMessage = 18 ## messages used with msv1_0 from ntsecapi.h MsV1_0Lm20ChallengeRequest = 0 MsV1_0Lm20GetChallengeResponse = 1 MsV1_0EnumerateUsers = 2 MsV1_0GetUserInfo = 3 MsV1_0ReLogonUsers = 4 MsV1_0ChangePassword = 5 MsV1_0ChangeCachedPassword = 6 MsV1_0GenericPassthrough = 7 MsV1_0CacheLogon = 8 MsV1_0SubAuth = 9 MsV1_0DeriveCredential = 10 MsV1_0CacheLookup = 11 MsV1_0SetProcessOption = 12 SEC_E_OK = 0
terrascript/testing/d.py
mjuenema/python-terrascript
507
11138229
# terrascript/testing/d.py # Automatically generated by tools/makecode.py () import warnings warnings.warn( "using the 'legacy layout' is deprecated", DeprecationWarning, stacklevel=2 ) import terrascript class testing_assertions(terrascript.Data): pass class testing_tap(terrascript.Data): pass
octoprint/tests/test_octoprint.py
divyamamgai/integrations-extras
158
11138262
import mock import pytest from datadog_checks.octoprint import OctoPrintCheck @pytest.mark.skip @pytest.mark.integration @pytest.mark.usefixtures('dd_environment') @mock.patch('datadog_checks.octoprint.OctoPrintCheck.get_rpi_core_temp') def test_check(mock_rpi_temp, aggregator, mock_api_request, instance): mock_rpi_temp.return_value = 49.0 check = OctoPrintCheck('octoprint', {}, [instance]) check.check(instance) aggregator.assert_metric("octoprint.rpi_core_temp", 0.0, count=1) aggregator.assert_metric("octoprint.printer_state", 1, count=1) aggregator.assert_metric("octoprint.pct_completed", 0, count=1) aggregator.assert_metric("octoprint.print_job_time", 1, count=1) aggregator.assert_metric("octoprint.print_job_time_left", 9999999, count=1) aggregator.assert_metric("octoprint.current_tool_temp", 50.0, count=1) aggregator.assert_metric("octoprint.target_tool_temp", 190.0, count=1) aggregator.assert_metric("octoprint.current_bed_temp", 68.0, count=1) aggregator.assert_metric("octoprint.target_bed_temp", 70.0, count=1) aggregator.assert_all_metrics_covered() @pytest.mark.unit @mock.patch('datadog_checks.octoprint.OctoPrintCheck.get_rpi_core_temp') def test_empty_job(mock_rpi_temp, aggregator, mock_empty_api_request, instance): mock_rpi_temp.return_value = 49.0 check = OctoPrintCheck('octoprint', {}, [instance]) check.check(instance) aggregator.assert_metric("octoprint.rpi_core_temp", 49.0, count=1) aggregator.assert_metric("octoprint.printer_state", 0, count=1) aggregator.assert_metric("octoprint.current_tool_temp", 25.0, count=1) aggregator.assert_metric("octoprint.target_tool_temp", 200.0, count=1) aggregator.assert_metric("octoprint.current_bed_temp", 24.77, count=1) aggregator.assert_metric("octoprint.target_bed_temp", 70.0, count=1) aggregator.assert_all_metrics_covered() @pytest.mark.unit @mock.patch('datadog_checks.octoprint.OctoPrintCheck.get_rpi_core_temp') def test_active_job(mock_rpi_temp, aggregator, mock_active_api_request, instance): mock_rpi_temp.return_value = 49.0 check = OctoPrintCheck('octoprint', {}, [instance]) check.check(instance) aggregator.assert_metric("octoprint.rpi_core_temp", 49.0, count=1) aggregator.assert_metric("octoprint.printer_state", 2, count=1) aggregator.assert_metric("octoprint.est_print_time", 146, count=1) aggregator.assert_metric("octoprint.pct_completed", 0.22, count=1) aggregator.assert_metric("octoprint.print_job_time", 4, count=1) aggregator.assert_metric("octoprint.print_job_time_left", 15, count=1) aggregator.assert_metric("octoprint.current_tool_temp", 25.0, count=1) aggregator.assert_metric("octoprint.target_tool_temp", 200.0, count=1) aggregator.assert_metric("octoprint.current_bed_temp", 24.77, count=1) aggregator.assert_metric("octoprint.target_bed_temp", 70.0, count=1) aggregator.assert_all_metrics_covered() @pytest.mark.e2e def test_e2e(): return True
examples/kddcup2021/MAG240M/r_unimp/dataset/sage_all_data.py
zbmain/PGL
1,389
11138264
<filename>examples/kddcup2021/MAG240M/r_unimp/dataset/sage_all_data.py import os import yaml import pgl import time import copy import numpy as np import os.path as osp from pgl.utils.logger import log from pgl.graph import Graph from pgl import graph_kernel from pgl.sampling.custom import subgraph from ogb.lsc import MAG240MDataset, MAG240MEvaluator import time from tqdm import tqdm class MAG240M(object): """Iterator""" def __init__(self, data_dir): self.num_features = 768 self.num_classes = 153 self.data_dir = data_dir def prepare_data(self): dataset = MAG240MDataset(self.data_dir) graph_file_list = [] paper_edge_path = f'{dataset.dir}/paper_to_paper_symmetric_pgl_split' graph_file_list.append(paper_edge_path) t = time.perf_counter() if not osp.exists(paper_edge_path): log.info('Converting adjacency matrix...') edge_index = dataset.edge_index('paper', 'cites', 'paper') edge_index = edge_index.T edges_new = np.zeros((edge_index.shape[0], 2)) edges_new[:, 0] = edge_index[:, 1] edges_new[:, 1] = edge_index[:, 0] edge_index = np.vstack((edge_index, edges_new)) edge_types = np.full([edge_index.shape[0], ], 0, dtype='int32') graph = Graph(edge_index, num_nodes=dataset.num_papers, edge_feat={'edge_type': edge_types}) graph.adj_dst_index graph.dump(paper_edge_path) log.info(f'Done! [{time.perf_counter() - t:.2f}s]') author_edge_path = f'{dataset.dir}/paper_to_author_symmetric_pgl_split_src' graph_file_list.append(author_edge_path) t = time.perf_counter() if not osp.exists(author_edge_path): log.info('Converting author matrix...') # author log.info('adding author edges') edge_index = dataset.edge_index('author', 'writes', 'paper') edge_index = edge_index.T row, col = edge_index[:, 0], edge_index[:, 1] log.info(row[:10]) row += dataset.num_papers edge_types = np.full(row.shape, 1, dtype='int32') edge_index = np.stack([row, col], axis=1) graph = Graph(edge_index, edge_feat={'edge_type': edge_types}) graph.adj_dst_index graph.dump(author_edge_path) log.info(f'Done! finish author_edge [{time.perf_counter() - t:.2f}s]') author_edge_path = f'{dataset.dir}/paper_to_author_symmetric_pgl_split_dst' graph_file_list.append(author_edge_path) t = time.perf_counter() if not osp.exists(author_edge_path): log.info('Converting author matrix...') # author log.info('adding author edges') edge_index = dataset.edge_index('author', 'writes', 'paper') edge_index = edge_index.T row, col = edge_index[:, 0], edge_index[:, 1] log.info(row[:10]) row += dataset.num_papers edge_types = np.full(row.shape, 2, dtype='int32') edge_index = np.stack([col, row], axis=1) graph = Graph(edge_index, edge_feat={'edge_type': edge_types}) graph.adj_dst_index graph.dump(author_edge_path) log.info(f'Done! finish author_edge [{time.perf_counter() - t:.2f}s]') institution_edge_path = f'{dataset.dir}/institution_edge_symmetric_pgl_split_src' graph_file_list.append(institution_edge_path) t = time.perf_counter() if not osp.exists(institution_edge_path): log.info('Converting institution matrix...') # institution log.info('adding institution edges') edge_index = dataset.edge_index('author', 'institution') edge_index = edge_index.T row, col = edge_index[:, 0], edge_index[:, 1] log.info(row[:10]) row += dataset.num_papers col += dataset.num_papers + dataset.num_authors # edge_type log.info('building edge type') edge_types = np.full(row.shape, 3, dtype='int32') edge_index = np.stack([row, col], axis=1) graph = Graph(edge_index, edge_feat={'edge_type': edge_types}) graph.adj_dst_index graph.dump(institution_edge_path) log.info(f'Done! finish institution_edge [{time.perf_counter() - t:.2f}s]') institution_edge_path = f'{dataset.dir}/institution_edge_symmetric_pgl_split_dst' graph_file_list.append(institution_edge_path) t = time.perf_counter() if not osp.exists(institution_edge_path): log.info('Converting institution matrix...') # institution log.info('adding institution edges') edge_index = dataset.edge_index('author', 'institution') edge_index = edge_index.T row, col = edge_index[:, 0], edge_index[:, 1] log.info(row[:10]) row += dataset.num_papers col += dataset.num_papers + dataset.num_authors # edge_type log.info('building edge type') edge_types = np.full(row.shape, 4, dtype='int32') edge_index = np.stack([col, row], axis=1) graph = Graph(edge_index, edge_feat={'edge_type': edge_types}) graph.adj_dst_index graph.dump(institution_edge_path) log.info(f'Done! finish institution_edge [{time.perf_counter() - t:.2f}s]') path = f'{dataset.dir}/full_feat.npy' author_feat_path = f'{dataset.dir}/author_feat.npy' institution_feat_path = f'{dataset.dir}/institution_feat.npy' t = time.perf_counter() if not osp.exists(path): # Will take ~3 hours... print('Generating full feature matrix...') node_chunk_size = 100000 N = (dataset.num_papers + dataset.num_authors + dataset.num_institutions) paper_feat = dataset.paper_feat author_feat = np.memmap(author_feat_path, dtype=np.float16, shape=(dataset.num_authors, self.num_features), mode='r') institution_feat = np.memmap(institution_feat_path, dtype=np.float16, shape=(dataset.num_institutions, self.num_features), mode='r') x = np.memmap(path, dtype=np.float16, mode='w+', shape=(N, self.num_features)) print('Copying paper features...') start_idx = 0 end_idx = dataset.num_papers for i in tqdm(range(start_idx, end_idx, node_chunk_size)): j = min(i + node_chunk_size, end_idx) x[i: j] = paper_feat[i: j] del paper_feat print('Copying author feature...') start_idx = dataset.num_papers end_idx = dataset.num_papers + dataset.num_authors for i in tqdm(range(start_idx, end_idx, node_chunk_size)): j = min(i + node_chunk_size, end_idx) x[i: j] = author_feat[i - start_idx: j - start_idx] del author_feat print('Copying institution feature...') start_idx = dataset.num_papers + dataset.num_authors end_idx = dataset.num_papers + dataset.num_authors + dataset.num_institutions for i in tqdm(range(start_idx, end_idx, node_chunk_size)): j = min(i + node_chunk_size, end_idx) x[i: j] = institution_feat[i - start_idx: j - start_idx] del institution_feat x.flush() del x print(f'feature x Done! [{time.perf_counter() - t:.2f}s]') path = f'{dataset.dir}/all_feat_year.npy' author_year_path = f'{dataset.dir}/author_feat_year.npy' institution_year_path = f'{dataset.dir}/institution_feat_year.npy' t = time.perf_counter() if not osp.exists(path): # Will take ~3 hours... print('Generating full year matrix...') node_chunk_size = 100000 N = (dataset.num_papers + dataset.num_authors + dataset.num_institutions) paper_year_feat = dataset.all_paper_year author_year_feat = np.memmap(author_year_path, dtype=np.int32, shape=(dataset.num_authors), mode='r') institution_year_feat = np.memmap(institution_year_path, dtype=np.int32, shape=(dataset.num_institutions), mode='r') x = np.memmap(path, dtype=np.int32, mode='w+', shape=(N)) print('Copying paper features...') start_idx = 0 end_idx = dataset.num_papers for i in tqdm(range(start_idx, end_idx, node_chunk_size)): j = min(i + node_chunk_size, end_idx) x[i: j] = paper_year_feat[i: j] del paper_year_feat print('Copying author feature...') start_idx = dataset.num_papers end_idx = dataset.num_papers + dataset.num_authors for i in tqdm(range(start_idx, end_idx, node_chunk_size)): j = min(i + node_chunk_size, end_idx) x[i: j] = author_year_feat[i - start_idx: j - start_idx] del author_year_feat print('Copying institution feature...') start_idx = dataset.num_papers + dataset.num_authors end_idx = dataset.num_papers + dataset.num_authors + dataset.num_institutions for i in tqdm(range(start_idx, end_idx, node_chunk_size)): j = min(i + node_chunk_size, end_idx) x[i: j] = institution_year_feat[i - start_idx: j - start_idx] del institution_year_feat x.flush() del x print(f'year feature Done! [{time.perf_counter() - t:.2f}s]') if __name__ == "__main__": root = 'dataset_path' print(root) dataset = MAG240M(root) dataset.prepare_data()
v7.0/mania_analyze.py
jsstwright/osumapper
296
11138267
# -*- coding: utf-8 -*- # # JSON osu! map analysis (for osu!mania) # import numpy as np; def get_map_timing_array(map_json, length=-1, divisor=4): if length == -1: length = map_json["obj"][-1]["time"] + 1000; # it has an extra time interval after the last note if map_json["obj"][-1]["type"] & 8: # spinner end length = map_json["obj"][-1]["spinnerEndTime"] + 1000; uts_a = map_json["timing"]["uts"]; out = []; for i, uts in enumerate(uts_a): begin_time = uts["beginTime"]; mspb = uts["tickLength"]; if i < len(uts_a)-1: end_time = uts_a[i+1]["beginTime"]; else: end_time = length; arr = np.floor(np.arange(begin_time, end_time, mspb / divisor)); out = out + list(map(lambda f: int(f), arr)); return out; def get_tick_len(map_json, tick): uts_a = map_json["timing"]["uts"]; if tick < uts_a[0]["beginTime"]: return uts_a[0]["tickLength"]; _out = 600; for uts in uts_a: if tick >= uts["beginTime"]: _out = uts["tickLength"]; else: return _out; return _out; def get_slider_len(map_json, tick): ts_a = map_json["timing"]["ts"]; if tick < ts_a[0]["beginTime"]: return ts_a[0]["sliderLength"]; _out = 100; for ts in ts_a: if tick >= ts["beginTime"]: _out = ts["sliderLength"]; else: return _out; return _out; def get_slider_len_ts(ts_a, tick): if tick < ts_a[0]["beginTime"]: return ts_a[0]["sliderLength"]; _out = 100; for ts in ts_a: if tick >= ts["beginTime"]: _out = ts["sliderLength"]; else: return _out; return _out; def get_end_time(note): if note["type"] & 8: return note["spinnerEndTime"]; # elif note["type"] & 2: # return note["sliderData"]["endTime"]; elif note["type"] & 128: return note["holdEndTime"]; else: return note["time"]; # edited from uts to ts def get_all_ticks_and_lengths_from_ts(uts_array, ts_array, end_time, divisor=4): # Returns array of all timestamps, ticklens and sliderlens. endtimes = ([uts["beginTime"] for uts in uts_array] + [end_time])[1:]; timestamps = [np.arange(uts["beginTime"], endtimes[i], uts["tickLength"] / divisor) for i, uts in enumerate(uts_array)]; ticks_from_uts = [list(range(len(timestamp_group))) for timestamp_group in timestamps]; tick_len = [[uts["tickLength"]] * len(np.arange(uts["beginTime"], endtimes[i], uts["tickLength"] / divisor)) for i, uts in enumerate(uts_array)]; # slider_len = [[ts["sliderLength"]] * len(np.arange(ts["beginTime"], endtimes[i], ts["tickLength"] / divisor)) for i, ts in enumerate(ts_array)]; slider_len = [get_slider_len_ts(ts_array, timestamp) for timestamp in np.concatenate(timestamps)]; return np.concatenate(ticks_from_uts), np.round(np.concatenate(timestamps)).astype(int), np.concatenate(tick_len), np.array(slider_len); def is_uts_begin(map_json, tick): uts_a = map_json["timing"]["uts"]; begin_times = [uts["beginTime"] for uts in uts_a]; for t in begin_times: if tick > t - 1 and tick < t + 5: return True return False def get_metronome_count(map_json, tick): uts_a = map_json["timing"]["uts"]; if tick < uts_a[0]["beginTime"]: return uts_a[0]["whiteLines"]; for uts in reversed(uts_a): if tick >= uts["beginTime"]: return uts["whiteLines"]; def get_map_notes_and_patterns(map_json, **kwargs): """ Reads JSON map data and creates a list for every tick Returns: data = list of data array: [TICK, TIME, NOTE, NOTE_TYPE, SLIDING, SPINNING, MOMENTUM, Ex1, Ex2, Ex3] patterns = numpy array shape (num_groups, main_metronome * divisor, 2 * key_count + 1) [:, :, 0] pattern_avail_hold [:, :, 1:1+key_count] pattern_note_begin [:, :, 1+key_count:1+2*key_count] pattern_note_end Ex1, Ex2, Ex3 = tickLength/500, BPM/120, sliderLength/150 """ # keyword arguments length = kwargs.get("length", -1); divisor = kwargs.get("divisor", 4); note_max_wait_time = kwargs.get("note_max_wait_time", 1000); main_metronome = kwargs.get("main_metronome", 4); # constant multipliers and subtractions tlen_mp = 1/500; tlen_s = 1; bpm_mp = 1/120; bpm_s = 1; slen_mp = 1/150; slen_s = 1; # get the timing array of timestamps of each tick tick_times = get_map_timing_array(map_json, length = length, divisor = divisor); objs_all = map_json["obj"]; key_count = map_json["diff"]["CS"]; objs_each = [[] for i in range(key_count)]; for obj in objs_all: x = obj["x"] obj_key = np.floor(x * key_count / 512).astype(int) objs_each[obj_key].append(obj) def get_note_type_mania(obj): if not obj: return 0; if obj["type"] & 128: return 4; return 1; # object times each key obj_times_each = [] for objs in objs_each: obj_times = [obj["time"] for obj in objs] obj_times_each.append(obj_times) # object end times each key obj_end_times_each = [] for objs in objs_each: obj_end_times = [get_end_time(obj) for obj in objs] obj_end_times_each.append(obj_end_times) obj_ptr_each = [0] * key_count obj_end_ptr_each = [0] * key_count po = 0; start_time = obj_times[0] - note_max_wait_time; last_obj_time = start_time; holding_each = [0] * key_count data = []; pattern_avail_hold = [] pattern_data = [] pattern_data_end = [] pattern_avail_hold_grouped = [] pattern_data_grouped = [] pattern_data_end_grouped = [] # tick count from start of uninherited timing section uts_i = 0; # tick is timestamp here for i, tick in enumerate(tick_times): if is_uts_begin(map_json, tick): uts_i = 0; else: uts_i += 1; # save group in a metronome when at the start of next metronome metronome = get_metronome_count(map_json, tick) if uts_i % (metronome * divisor) == 0: if len(pattern_data) > 0 and np.sum(pattern_data) > 0 and np.sum(pattern_data_end) > 0: pattern_avail_hold_grouped.append(pattern_avail_hold) pattern_data_grouped.append(pattern_data) pattern_data_end_grouped.append(pattern_data_end) pattern_avail_hold = [] pattern_data = [] pattern_data_end = [] # Attach extra vars at the end of each tick date point tlen = get_tick_len(map_json, tick); bpm = 60000 / tlen; slen = get_slider_len(map_json, tick); ex1 = tlen * tlen_mp - tlen_s; ex2 = bpm * bpm_mp - bpm_s; ex3 = slen * slen_mp - slen_s; has_note = False has_note_end = False has_hold = False # list of length (key_count) for pattern on current tick tick_pattern = [] tick_pattern_end = [] for k in range(key_count): objs = objs_each[k] obj_times = obj_times_each[k] obj_end_times = obj_end_times_each[k] # locate pointers while obj_times[obj_ptr_each[k]] < tick - 5 and obj_ptr_each[k] < len(obj_times) - 1: obj_ptr_each[k] += 1; while obj_end_times[obj_end_ptr_each[k]] < tick - 5 and obj_end_ptr_each[k] < len(obj_end_times) - 1: obj_end_ptr_each[k] += 1; obj_ptr = obj_ptr_each[k] obj_end_ptr = obj_end_ptr_each[k] if obj_times[obj_ptr] >= tick - 5 and obj_times[obj_ptr] <= tick + 5: # found note on key has_note = True note_type = get_note_type_mania(objs[obj_ptr]) if note_type == 4: has_hold = True tick_pattern.append(1) else: tick_pattern.append(0) if obj_end_times[obj_end_ptr] >= tick - 5 and obj_end_times[obj_end_ptr] <= tick + 5: # found note end on key has_note_end = True tick_pattern_end.append(1) else: tick_pattern_end.append(0) if has_note: # TICK, TIME, NOTE, NOTE_TYPE, SLIDING, SPINNING, MOMENTUM, Ex1, Ex2, Ex3 # For mania, NOTE_TYPE = Hit(1) HoldStartOnly(2) HoldStart+Note(3) HoldEndOnly(4) # SLIDING = SPINNING = MOMENTUM = 0 if has_note_end: if has_hold: data.append([i, tick, 1, 3, 0, 0, 0, ex1, ex2, ex3]) else: data.append([i, tick, 1, 1, 0, 0, 0, ex1, ex2, ex3]) else: data.append([i, tick, 1, 2, 0, 0, 0, ex1, ex2, ex3]) else: if has_note_end: data.append([i, tick, 0, 4, 0, 0, 0, ex1, ex2, ex3]) else: data.append([i, tick, 0, 0, 0, 0, 0, ex1, ex2, ex3]) pattern_avail_hold.append(1 if has_hold else 0) pattern_data.append(tick_pattern) pattern_data_end.append(tick_pattern_end) # everything limit to 4 metronomes (main_metronome) for i, pattern_avail_hold in enumerate(pattern_avail_hold_grouped): pattern_data = pattern_data_grouped[i] pattern_data_end = pattern_data_end_grouped[i] if len(pattern_avail_hold) < main_metronome * divisor: added_len = main_metronome * divisor - len(pattern_avail_hold) pattern_avail_hold += [0] * added_len pattern_avail_hold_grouped[i] = pattern_avail_hold pattern_data += [[0] * key_count] * added_len pattern_data_grouped[i] = pattern_data pattern_data_end += [[0] * key_count] * added_len pattern_data_end_grouped[i] = pattern_data_end if len(pattern_avail_hold) > main_metronome * divisor: pattern_avail_hold = pattern_avail_hold[:main_metronome * divisor] pattern_avail_hold_grouped[i] = pattern_avail_hold pattern_data = pattern_data[:main_metronome * divisor] pattern_data_grouped[i] = pattern_data pattern_data_end = pattern_data_end[:main_metronome * divisor] pattern_data_end_grouped[i] = pattern_data_end if len(pattern_avail_hold_grouped) > 0: pattern_avail_hold_expanded = np.expand_dims(pattern_avail_hold_grouped, axis=2) pattern_data = np.concatenate([pattern_avail_hold_expanded, pattern_data_grouped, pattern_data_end_grouped], axis=2) else: pattern_data = np.zeros((0, main_metronome * divisor, 1 + 2 * key_count)) return data, pattern_data;
tests_tensorflow/test_sphere.py
aferrall/redner
1,146
11138272
<gh_stars>1000+ # Tensorflow by default allocates all GPU memory, leaving very little for rendering. # We set the environment variable TF_FORCE_GPU_ALLOW_GROWTH to true to enforce on demand # memory allocation to reduce page faults. import os os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' import tensorflow as tf tf.compat.v1.enable_eager_execution() import pyredner_tensorflow as pyredner vertices, indices, uvs, normals = pyredner.generate_sphere(64, 128) m = pyredner.Material(diffuse_reflectance = tf.constant((0.5, 0.5, 0.5))) obj = pyredner.Object(vertices = vertices, indices = indices, uvs = uvs, normals = normals, material = m) cam = pyredner.automatic_camera_placement([obj], resolution = (480, 640)) scene = pyredner.Scene(objects = [obj], camera = cam) img = pyredner.render_g_buffer(scene, channels = [pyredner.channels.uv, pyredner.channels.shading_normal]) uv_img = tf.concat([img[:, :, :2], tf.zeros((480, 640, 1))], axis=2) normal_img = img[:, :, 2:] pyredner.imwrite(uv_img, 'results/test_sphere/uv.png') pyredner.imwrite(normal_img, 'results/test_sphere/normal.png')
lib/cli_output.py
bingpo/Vxscan
1,511
11138329
import sys import time import pyfiglet from lib.bcolors import Bcolors from lib.settings import POC, THREADS, SCANDIR, PING, SOCKS5, CHECK_DB def banner(): ascii_banner = pyfiglet.figlet_format("Vxscan") print(Bcolors.RED + ascii_banner + Bcolors.ENDC) def start_out(hosts): sys.stdout.write(Bcolors.OKBLUE + "[*] https://github.com/al0ne/Vxscan\n" + Bcolors.ENDC) sys.stdout.write(Bcolors.OKBLUE + "[*] Scanning POC: " + Bcolors.ENDC) sys.stdout.write(Bcolors.OKBLUE + str(POC) + "\n" + Bcolors.ENDC) sys.stdout.write(Bcolors.OKBLUE + "[*] Threads: " + Bcolors.ENDC) sys.stdout.write(Bcolors.OKBLUE + str(THREADS) + "\n" + Bcolors.ENDC) sys.stdout.write(Bcolors.OKBLUE + "[*] Target quantity: " + Bcolors.ENDC) if type(hosts) == list: sys.stdout.write(Bcolors.OKBLUE + str(len(hosts)) + "\n" + Bcolors.ENDC) else: sys.stdout.write(Bcolors.OKBLUE + '1' + "\n" + Bcolors.ENDC) sys.stdout.write(Bcolors.OKBLUE + "[*] Scanning Dir: " + Bcolors.ENDC) sys.stdout.write(Bcolors.OKBLUE + str(SCANDIR) + "\n" + Bcolors.ENDC) sys.stdout.write(Bcolors.OKBLUE + "[*] Ping: " + Bcolors.ENDC) sys.stdout.write(Bcolors.OKBLUE + str(PING) + "\n" + Bcolors.ENDC) sys.stdout.write(Bcolors.OKBLUE + "[*] CHECK_DB: " + Bcolors.ENDC) sys.stdout.write(Bcolors.OKBLUE + str(CHECK_DB) + "\n" + Bcolors.ENDC) sys.stdout.write(Bcolors.OKBLUE + "[*] Socks5 Proxy: " + Bcolors.ENDC) sys.stdout.write(Bcolors.OKBLUE + str(SOCKS5) + "\n\n" + Bcolors.ENDC) def console(plugins, domain, text): timestamp = time.strftime("%H:%M:%S", time.localtime()) timestamp = Bcolors.OKBLUE + '[' + timestamp + ']' + Bcolors.ENDC plugins = Bcolors.RED + plugins + Bcolors.ENDC text = Bcolors.OKGREEN + text + Bcolors.ENDC sys.stdout.write(timestamp + ' - ' + plugins + ' - ' + domain + ' ' + text)
examples/contrib/magic_square_and_cards.py
klorel/or-tools
279
11138346
# Copyright 2010 <NAME> <EMAIL> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Magic squares and cards problem in Google CP Solver. <NAME> (July 1971) ''' Allowing duplicates values, what is the largest constant sum for an order-3 magic square that can be formed with nine cards from the deck. ''' This model was created by <NAME> (<EMAIL>) Also see my other Google CP Solver models: http://www.hakank.org/google_or_tools/ """ from __future__ import print_function import sys from ortools.constraint_solver import pywrapcp def main(n=3): # Create the solver. solver = pywrapcp.Solver("n-queens") # # data # # n = 3 # # declare variables # x = {} for i in range(n): for j in range(n): x[(i, j)] = solver.IntVar(1, 13, "x(%i,%i)" % (i, j)) x_flat = [x[(i, j)] for i in range(n) for j in range(n)] s = solver.IntVar(1, 13 * 4, "s") counts = [solver.IntVar(0, 4, "counts(%i)" % i) for i in range(14)] # # constraints # solver.Add(solver.Distribute(x_flat, list(range(14)), counts)) # the standard magic square constraints (sans all_different) [solver.Add(solver.Sum([x[(i, j)] for j in range(n)]) == s) for i in range(n)] [solver.Add(solver.Sum([x[(i, j)] for i in range(n)]) == s) for j in range(n)] solver.Add(solver.Sum([x[(i, i)] for i in range(n)]) == s) # diag 1 solver.Add(solver.Sum([x[(i, n - i - 1)] for i in range(n)]) == s) # diag 2 # redundant constraint solver.Add(solver.Sum(counts) == n * n) # objective objective = solver.Maximize(s, 1) # # solution and search # solution = solver.Assignment() solution.Add(x_flat) solution.Add(s) solution.Add(counts) # db: DecisionBuilder db = solver.Phase(x_flat, solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_MAX_VALUE) solver.NewSearch(db, [objective]) num_solutions = 0 while solver.NextSolution(): print("s:", s.Value()) print("counts:", [counts[i].Value() for i in range(14)]) for i in range(n): for j in range(n): print(x[(i, j)].Value(), end=" ") print() print() num_solutions += 1 solver.EndSearch() print() print("num_solutions:", num_solutions) print("failures:", solver.Failures()) print("branches:", solver.Branches()) print("WallTime:", solver.WallTime()) n = 3 if __name__ == "__main__": if len(sys.argv) > 1: n = int(sys.argv[1]) main(n)
recipes/Python/347810_Load_datweb_browser_without_using_temp/recipe-347810.py
tdiprima/code
2,023
11138351
import BaseHTTPServer import webbrowser def LoadInDefaultBrowser(html): """Display html in the default web browser without creating a temp file. Instantiates a trivial http server and calls webbrowser.open with a URL to retrieve html from that server. """ class RequestHandler(BaseHTTPServer.BaseHTTPRequestHandler): def do_GET(self): bufferSize = 1024*1024 for i in xrange(0, len(html), bufferSize): self.wfile.write(html[i:i+bufferSize]) server = BaseHTTPServer.HTTPServer(('127.0.0.1', 0), RequestHandler) webbrowser.open('http://127.0.0.1:%s' % server.server_port) server.handle_request() if __name__ == '__main__': LoadInDefaultBrowser('<b>Hello World</b>')
runtests.py
efeslab/llvmlite
1,384
11138372
<gh_stars>1000+ #!/usr/bin/env python import sys from llvmlite.tests import main if __name__ == "__main__": main()
mpcomp/client.py
sanjay051099/try2-
199
11138389
<reponame>sanjay051099/try2-<filename>mpcomp/client.py #!/usr/bin/env python # # Copyright (C) 2008, 2009 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This module is used for version 2 of the Google Data APIs. """Provides a client to interact with Google Data API servers. This module is used for version 2 of the Google Data APIs. The primary class in this module is GDClient. GDClient: handles auth and CRUD operations when communicating with servers. GDataClient: deprecated client for version one services. Will be removed. """ __author__ = "<EMAIL> (<NAME>)" from mpcomp import atom_client from mpcomp import core from mpcomp import http_core from mpcomp import gdata_data class Error(Exception): pass class RequestError(Error): status = None reason = None body = None headers = None class RedirectError(RequestError): pass class CaptchaChallenge(RequestError): captcha_url = None captcha_token = None class ClientLoginTokenMissing(Error): pass class MissingOAuthParameters(Error): pass class ClientLoginFailed(RequestError): pass class UnableToUpgradeToken(RequestError): pass class Unauthorized(Error): pass class BadAuthenticationServiceURL(RedirectError): pass class BadAuthentication(RequestError): pass class NotModified(RequestError): pass class NotImplemented(RequestError): pass def error_from_response(message, http_response, error_class, response_body=None): """Creates a new exception and sets the HTTP information in the error. Args: message: str human readable message to be displayed if the exception is not caught. http_response: The response from the server, contains error information. error_class: The exception to be instantiated and populated with information from the http_response response_body: str (optional) specify if the response has already been read from the http_response object. """ if response_body is None: body = http_response.read() else: body = response_body error = error_class("%s: %i, %s" % (message, http_response.status, body)) error.status = http_response.status error.reason = http_response.reason error.body = body error.headers = http_core.get_headers(http_response) return error def get_xml_version(version): """Determines which XML schema to use based on the client API version. Args: version: string which is converted to an int. The version string is in the form 'Major.Minor.x.y.z' and only the major version number is considered. If None is provided assume version 1. """ if version is None: return 1 return int(version.split(".")[0]) class GDClient(atom_client.AtomPubClient): """Communicates with Google Data servers to perform CRUD operations. This class is currently experimental and may change in backwards incompatible ways. This class exists to simplify the following three areas involved in using the Google Data APIs. CRUD Operations: The client provides a generic 'request' method for making HTTP requests. There are a number of convenience methods which are built on top of request, which include get_feed, get_entry, get_next, post, update, and delete. These methods contact the Google Data servers. Auth: Reading user-specific private data requires authorization from the user as do any changes to user data. An auth_token object can be passed into any of the HTTP requests to set the Authorization header in the request. You may also want to set the auth_token member to a an object which can use modify_request to set the Authorization header in the HTTP request. If you are authenticating using the email address and password, you can use the client_login method to obtain an auth token and set the auth_token member. If you are using browser redirects, specifically AuthSub, you will want to use gdata.gauth.AuthSubToken.from_url to obtain the token after the redirect, and you will probably want to updgrade this since use token to a multiple use (session) token using the upgrade_token method. API Versions: This client is multi-version capable and can be used with Google Data API version 1 and version 2. The version should be specified by setting the api_version member to a string, either '1' or '2'. """ # The gsessionid is used by Google Calendar to prevent redirects. __gsessionid = None api_version = None # Name of the Google Data service when making a ClientLogin request. auth_service = None # URL prefixes which should be requested for AuthSub and OAuth. auth_scopes = None # Name of alternate auth service to use in certain cases alt_auth_service = None def request( self, method=None, uri=None, auth_token=None, http_request=None, converter=None, desired_class=None, redirects_remaining=4, **kwargs ): """Make an HTTP request to the server. See also documentation for atom_client.AtomPubClient.request. If a 302 redirect is sent from the server to the client, this client assumes that the redirect is in the form used by the Google Calendar API. The same request URI and method will be used as in the original request, but a gsessionid URL parameter will be added to the request URI with the value provided in the server's 302 redirect response. If the 302 redirect is not in the format specified by the Google Calendar API, a RedirectError will be raised containing the body of the server's response. The method calls the client's modify_request method to make any changes required by the client before the request is made. For example, a version 2 client could add a GData-Version: 2 header to the request in its modify_request method. Args: method: str The HTTP verb for this request, usually 'GET', 'POST', 'PUT', or 'DELETE' uri: http_core.Uri, str, or unicode The URL being requested. auth_token: An object which sets the Authorization HTTP header in its modify_request method. Recommended classes include gdata.gauth.ClientLoginToken and gdata.gauth.AuthSubToken among others. http_request: (optional) http_core.HttpRequest converter: function which takes the body of the response as its only argument and returns the desired object. desired_class: class descended from core.XmlElement to which a successful response should be converted. If there is no converter function specified (converter=None) then the desired_class will be used in calling the core.parse function. If neither the desired_class nor the converter is specified, an HTTP reponse object will be returned. redirects_remaining: (optional) int, if this number is 0 and the server sends a 302 redirect, the request method will raise an exception. This parameter is used in recursive request calls to avoid an infinite loop. Any additional arguments are passed through to atom_client.AtomPubClient.request. Returns: An HTTP response object (see http_core.HttpResponse for a description of the object's interface) if no converter was specified and no desired_class was specified. If a converter function was provided, the results of calling the converter are returned. If no converter was specified but a desired_class was provided, the response body will be converted to the class using core.parse. """ if isinstance(uri, str): uri = http_core.Uri.parse_uri(uri) # Add the gsession ID to the URL to prevent further redirects. # TODO: If different sessions are using the same client, there will be a # multitude of redirects and session ID shuffling. # If the gsession ID is in the URL, adopt it as the standard location. if uri is not None and uri.query is not None and "gsessionid" in uri.query: self.__gsessionid = uri.query["gsessionid"] # The gsession ID could also be in the HTTP request. elif ( http_request is not None and http_request.uri is not None and http_request.uri.query is not None and "gsessionid" in http_request.uri.query ): self.__gsessionid = http_request.uri.query["gsessionid"] # If the gsession ID is stored in the client, and was not present in the # URI then add it to the URI. elif self.__gsessionid is not None: uri.query["gsessionid"] = self.__gsessionid # The AtomPubClient should call this class' modify_request before # performing the HTTP request. # http_request = self.modify_request(http_request) response = atom_client.AtomPubClient.request( self, method=method, uri=uri, auth_token=auth_token, http_request=http_request, **kwargs ) # On success, convert the response body using the desired converter # function if present. # print (response) print(response.status) if response is None: return None if response.status == 200 or response.status == 201: # print (converter) # print (desired_class) if converter is not None: return converter(response) elif desired_class is not None: # print (self.api_version) if self.api_version is not None: return core.parse( response.read(), desired_class, version=get_xml_version(self.api_version), ) # No API version was specified, so allow parse to # use the default version. return core.parse(response.read(), desired_class) return response # TODO: move the redirect logic into the Google Calendar client once it # exists since the redirects are only used in the calendar API. elif response.status == 302: if redirects_remaining > 0: location = response.getheader("Location") or response.getheader( "location" ) if location is not None: # Make a recursive call with the gsession ID in the URI to follow # the redirect. return self.request( method=method, uri=location, auth_token=auth_token, http_request=http_request, converter=converter, desired_class=desired_class, redirects_remaining=redirects_remaining - 1, **kwargs ) else: raise error_from_response( "302 received without Location header", response, RedirectError ) else: raise error_from_response( "Too many redirects from server", response, RedirectError ) elif response.status == 401: raise error_from_response( "Unauthorized - Server responded with", response, Unauthorized ) elif response.status == 304: raise error_from_response( "Entry Not Modified - Server responded with", response, NotModified ) elif response.status == 501: raise error_from_response( "This API operation is not implemented. - Server responded with", response, NotImplemented, ) # If the server's response was not a 200, 201, 302, 304, 401, or 501, raise # an exception. else: raise error_from_response("Server responded with", response, RequestError) def modify_request(self, http_request): """Adds or changes request before making the HTTP request. This client will add the API version if it is specified. Subclasses may override this method to add their own request modifications before the request is made. """ http_request = atom_client.AtomPubClient.modify_request(self, http_request) if self.api_version is not None: http_request.headers["GData-Version"] = self.api_version return http_request ModifyRequest = modify_request def get_feed( self, uri, auth_token=None, converter=None, desired_class=gdata_data.GDFeed, **kwargs ): abc = self.request( method="GET", uri=uri, auth_token=auth_token, converter=converter, desired_class=desired_class, **kwargs ) print(abc) return self.request( method="GET", uri=uri, auth_token=auth_token, converter=converter, desired_class=desired_class, **kwargs ) GetFeed = get_feed def get_entry( self, uri, auth_token=None, converter=None, desired_class=gdata_data.GDEntry, etag=None, **kwargs ): http_request = http_core.HttpRequest() # Conditional retrieval if etag is not None: http_request.headers["If-None-Match"] = etag return self.request( method="GET", uri=uri, auth_token=auth_token, http_request=http_request, converter=converter, desired_class=desired_class, **kwargs ) GetEntry = get_entry def get_next( self, feed, auth_token=None, converter=None, desired_class=None, **kwargs ): """Fetches the next set of results from the feed. When requesting a feed, the number of entries returned is capped at a service specific default limit (often 25 entries). You can specify your own entry-count cap using the max-results URL query parameter. If there are more results than could fit under max-results, the feed will contain a next link. This method performs a GET against this next results URL. Returns: A new feed object containing the next set of entries in this feed. """ if converter is None and desired_class is None: desired_class = feed.__class__ return self.get_feed( feed.find_next_link(), auth_token=auth_token, converter=converter, desired_class=desired_class, **kwargs ) GetNext = get_next # TODO: add a refresh method to re-fetch the entry/feed from the server # if it has been updated. def post( self, entry, uri, auth_token=None, converter=None, desired_class=None, **kwargs ): if converter is None and desired_class is None: desired_class = entry.__class__ http_request = http_core.HttpRequest() http_request.add_body_part( entry.to_string(get_xml_version(self.api_version)), "application/atom+xml" ) return self.request( method="POST", uri=uri, auth_token=<PASSWORD>_token, http_request=http_request, converter=converter, desired_class=desired_class, **kwargs ) Post = post def update(self, entry, auth_token=None, force=False, uri=None, **kwargs): """Edits the entry on the server by sending the XML for this entry. Performs a PUT and converts the response to a new entry object with a matching class to the entry passed in. Args: entry: auth_token: force: boolean stating whether an update should be forced. Defaults to False. Normally, if a change has been made since the passed in entry was obtained, the server will not overwrite the entry since the changes were based on an obsolete version of the entry. Setting force to True will cause the update to silently overwrite whatever version is present. uri: The uri to put to. If provided, this uri is PUT to rather than the inferred uri from the entry's edit link. Returns: A new Entry object of a matching type to the entry which was passed in. """ http_request = http_core.HttpRequest() http_request.add_body_part( entry.to_string(get_xml_version(self.api_version)), "application/atom+xml" ) # Include the ETag in the request if present. if force: http_request.headers["If-Match"] = "*" elif hasattr(entry, "etag") and entry.etag: http_request.headers["If-Match"] = entry.etag if uri is None: uri = entry.find_edit_link() return self.request( method="PUT", uri=uri, auth_token=auth_token, http_request=http_request, desired_class=entry.__class__, **kwargs ) Update = update def delete(self, entry_or_uri, auth_token=None, force=False, **kwargs): http_request = http_core.HttpRequest() # Include the ETag in the request if present. if force: http_request.headers["If-Match"] = "*" elif hasattr(entry_or_uri, "etag") and entry_or_uri.etag: http_request.headers["If-Match"] = entry_or_uri.etag # If the user passes in a URL, just delete directly, may not work as # the service might require an ETag. if isinstance(entry_or_uri, (str, http_core.Uri)): return self.request( method="DELETE", uri=entry_or_uri, http_request=http_request, auth_token=auth_token, **kwargs ) return self.request( method="DELETE", uri=entry_or_uri.find_edit_link(), http_request=http_request, auth_token=auth_token, **kwargs ) Delete = delete def batch(self, feed, uri=None, force=False, auth_token=None, **kwargs): """Sends a batch request to the server to execute operation entries. Args: feed: A batch feed containing batch entries, each is an operation. uri: (optional) The uri to which the batch request feed should be POSTed. If none is provided, then the feed's edit link will be used. force: (optional) boolean set to True if you want the batch update to clobber all data. If False, the version in the information in the feed object will cause the server to check to see that no changes intervened between when you fetched the data and when you sent the changes. auth_token: (optional) An object which sets the Authorization HTTP header in its modify_request method. Recommended classes include gdata.gauth.ClientLoginToken and gdata.gauth.AuthSubToken among others. """ http_request = http_core.HttpRequest() http_request.add_body_part( feed.to_string(get_xml_version(self.api_version)), "application/atom+xml" ) if force: http_request.headers["If-Match"] = "*" elif hasattr(feed, "etag") and feed.etag: http_request.headers["If-Match"] = feed.etag if uri is None: uri = feed.find_edit_link() return self.request( method="POST", uri=uri, auth_token=auth_token, http_request=http_request, desired_class=feed.__class__, **kwargs ) Batch = batch # TODO: add a refresh method to request a conditional update to an entry # or feed. def _add_query_param(param_string, value, http_request): if value: http_request.uri.query[param_string] = value class Query(object): def __init__( self, text_query=None, categories=None, author=None, alt=None, updated_min=None, updated_max=None, pretty_print=False, published_min=None, published_max=None, start_index=None, max_results=None, strict=False, **custom_parameters ): """Constructs a Google Data Query to filter feed contents serverside. Args: text_query: Full text search str (optional) categories: list of strings (optional). Each string is a required category. To include an 'or' query, put a | in the string between terms. For example, to find everything in the Fitz category and the Laurie or Jane category (Fitz and (Laurie or Jane)) you would set categories to ['Fitz', 'Laurie|Jane']. author: str (optional) The service returns entries where the author name and/or email address match your query string. alt: str (optional) for the Alternative representation type you'd like the feed in. If you don't specify an alt parameter, the service returns an Atom feed. This is equivalent to alt='atom'. alt='rss' returns an RSS 2.0 result feed. alt='json' returns a JSON representation of the feed. alt='json-in-script' Requests a response that wraps JSON in a script tag. alt='atom-in-script' Requests an Atom response that wraps an XML string in a script tag. alt='rss-in-script' Requests an RSS response that wraps an XML string in a script tag. updated_min: str (optional), RFC 3339 timestamp format, lower bounds. For example: 2005-08-09T10:57:00-08:00 updated_max: str (optional) updated time must be earlier than timestamp. pretty_print: boolean (optional) If True the server's XML response will be indented to make it more human readable. Defaults to False. published_min: str (optional), Similar to updated_min but for published time. published_max: str (optional), Similar to updated_max but for published time. start_index: int or str (optional) 1-based index of the first result to be retrieved. Note that this isn't a general cursoring mechanism. If you first send a query with ?start-index=1&max-results=10 and then send another query with ?start-index=11&max-results=10, the service cannot guarantee that the results are equivalent to ?start-index=1&max-results=20, because insertions and deletions could have taken place in between the two queries. max_results: int or str (optional) Maximum number of results to be retrieved. Each service has a default max (usually 25) which can vary from service to service. There is also a service-specific limit to the max_results you can fetch in a request. strict: boolean (optional) If True, the server will return an error if the server does not recognize any of the parameters in the request URL. Defaults to False. custom_parameters: other query parameters that are not explicitly defined. """ self.text_query = text_query self.categories = categories or [] self.author = author self.alt = alt self.updated_min = updated_min self.updated_max = updated_max self.pretty_print = pretty_print self.published_min = published_min self.published_max = published_max self.start_index = start_index self.max_results = max_results self.strict = strict self.custom_parameters = custom_parameters def add_custom_parameter(self, key, value): self.custom_parameters[key] = value AddCustomParameter = add_custom_parameter def modify_request(self, http_request): _add_query_param("q", self.text_query, http_request) if self.categories: http_request.uri.query["category"] = ",".join(self.categories) _add_query_param("author", self.author, http_request) _add_query_param("alt", self.alt, http_request) _add_query_param("updated-min", self.updated_min, http_request) _add_query_param("updated-max", self.updated_max, http_request) if self.pretty_print: http_request.uri.query["prettyprint"] = "true" _add_query_param("published-min", self.published_min, http_request) _add_query_param("published-max", self.published_max, http_request) if self.start_index is not None: http_request.uri.query["start-index"] = str(self.start_index) if self.max_results is not None: http_request.uri.query["max-results"] = str(self.max_results) if self.strict: http_request.uri.query["strict"] = "true" http_request.uri.query.update(self.custom_parameters) ModifyRequest = modify_request class GDQuery(http_core.Uri): def _get_text_query(self): return self.query["q"] def _set_text_query(self, value): self.query["q"] = value text_query = property( _get_text_query, _set_text_query, doc="The q parameter for searching for an exact text match on content", )
geoq/core/admin.py
kaydoh/geoq
471
11138393
<reponame>kaydoh/geoq # -*- coding: utf-8 -*- # This technical data was produced for the U. S. Government under Contract No. W15P7T-13-C-F600, and # is subject to the Rights in Technical Data-Noncommercial Items clause at DFARS 252.227-7013 (FEB 2012) from reversion.admin import VersionAdmin from django.contrib.gis import admin from django.shortcuts import render from django.contrib.gis import admin from django.http import HttpResponseRedirect from django import forms from .models import Project, Job, AOI, Setting, Organization, AOITimer, Responder from guardian.admin import GuardedModelAdmin class ObjectAdmin(admin.OSMGeoAdmin, VersionAdmin,): list_display = ('name', 'created_at', 'updated_at') @admin.register(AOI) class AOIAdmin(ObjectAdmin): filter_horizontal = ("reviewers",) save_on_top = True actions = ['rename_aois'] search_fields = ['name', 'id'] class NameInputForm(forms.Form): _selected_action = forms.CharField(widget=forms.MultipleHiddenInput) name_field = forms.CharField(max_length=200, required=True, label="Workcell Name") def rename_aois(self, request, queryset): form = None if 'apply' in request.POST: form = self.NameInputForm(request.POST) if form.is_valid(): namestring = form.cleaned_data['name_field'] queryset.update(name=namestring) self.message_user(request, "Succesfully renamed selected Workcells") return HttpResponseRedirect(request.get_full_path()) if not form: form = self.NameInputForm(initial={'_selected_action': request.POST.getlist('_selected_action')}) return render(request, 'core/name_input.html', {'name_form': form}) rename_aois.short_description = "Rename Workcells" @admin.register(Job) class JobAdmin(GuardedModelAdmin, ObjectAdmin): filter_horizontal = ("analysts", "reviewers", "feature_types", "required_courses") list_display = ('name', 'project', 'created_at', 'updated_at', 'map') fields = ('name', 'map', 'workflow', 'analysts', 'reviewers', 'feature_types', \ 'required_courses', 'project', 'tags', 'editor') readonly_fields = ('created_at', 'updated_at') save_on_top = True save_as = True @admin.register(Setting) class SettingAdmin(admin.ModelAdmin): list_display = ['name', 'value'] @admin.register(Project) class ProjectAdmin(admin.ModelAdmin): list_display = ('name', 'created_at', 'updated_at') filter_horizontal = ('project_admins', 'contributors',) @admin.register(AOITimer) class AOITimerAdmin(admin.ModelAdmin): list_display = ('user', 'aoi', 'status', 'started_at', 'completed_at',) fields = ('user','aoi','status','started_at','completed_at',) admin.site.register(Organization) @admin.register(Responder) class ResponderAdmin(admin.ModelAdmin): list_display = ('name', 'contact_instructions', 'in_field','last_seen', 'longitude', 'latitude') fields = ('name', 'contact_instructions', 'in_field','last_seen', 'longitude', 'latitude')
tools/build/test/chain.py
Manu343726/boost-cmake
2,831
11138395
<reponame>Manu343726/boost-cmake #!/usr/bin/python # Copyright 2003 <NAME> # Copyright 2002, 2003 <NAME> # Distributed under the Boost Software License, Version 1.0. # (See accompanying file LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt) # This tests that : # 1) the 'make' correctly assigns types to produced targets # 2) if 'make' creates targets of type CPP, they are correctly used. import BoostBuild t = BoostBuild.Tester(use_test_config=False) # In order to correctly link this app, 'b.cpp', created by a 'make' rule, should # be compiled. t.write("jamroot.jam", "import gcc ;") t.write("jamfile.jam", r''' import os ; if [ os.name ] = NT { actions create { echo int main() {} > $(<) } } else { actions create { echo "int main() {}" > $(<) } } IMPORT $(__name__) : create : : create ; exe a : l dummy.cpp ; # Needs to be a static lib for Windows - main() cannot appear in DLL. static-lib l : a.cpp b.cpp ; make b.cpp : : create ; ''') t.write("a.cpp", "") t.write("dummy.cpp", "// msvc needs at least one object file\n") t.run_build_system() t.expect_addition("bin/$toolset/debug/a.exe") t.cleanup()