max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
routeros_api/api_communicator/async_decorator.py
davidc/RouterOS-api
183
11151867
class AsyncApiCommunicator(object): def __init__(self, inner): self.inner = inner def call(self, *args, **kwargs): tag = self.inner.send(*args, **kwargs) return ResponsePromise(self.inner, tag) class ResponsePromise(object): def __init__(self, receiver, tag): self.receiver = receiver self.tag = tag self.response = None def get(self): if self.response is None: self.response = self.receiver.receive(self.tag) return self.response def __iter__(self): return self.receiver.receive_iterator(self.tag)
external/gprof2dot/hotshotmain.py
sean-v8/RMG-Py
1,348
11151877
#!/usr/bin/env python # # Copyright 2007 <NAME> # # This program is free software: you can redistribute it and/or modify it # under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # def run(statement, filename=None, sort=-1): import os, tempfile, hotshot, hotshot.stats logfd, logfn = tempfile.mkstemp() prof = hotshot.Profile(logfn) try: prof = prof.run(statement) except SystemExit: pass try: try: prof = prof.run(statement) except SystemExit: pass prof.close() finally: stats = hotshot.stats.load(logfn) stats.strip_dirs() stats.sort_stats(sort) if filename is not None: result = stats.dump_stats(filename) else: result = stats.print_stats() os.unlink(logfn) return result def main(): import os, sys from optparse import OptionParser usage = "hotshotmain.py [-o output_file_path] [-s sort] scriptfile [arg] ..." parser = OptionParser(usage=usage) parser.allow_interspersed_args = False parser.add_option('-o', '--outfile', dest="outfile", help="Save stats to <outfile>", default=None) parser.add_option('-s', '--sort', dest="sort", help="Sort order when printing to stdout, based on pstats.Stats class", default=-1) if not sys.argv[1:]: parser.print_usage() sys.exit(2) (options, args) = parser.parse_args() sys.argv[:] = args if (len(sys.argv) > 0): sys.path.insert(0, os.path.dirname(sys.argv[0])) run('execfile(%r)' % (sys.argv[0],), options.outfile, options.sort) else: parser.print_usage() return parser if __name__ == "__main__": main()
modoboa/limits/migrations/0006_auto_20170216_1112.py
HarshCasper/modoboa
1,602
11151879
# Generated by Django 1.10.5 on 2017-02-16 10:12 from django.db import migrations def create_quota_limits(apps, schema_editor): """Create quota limits.""" User = apps.get_model("core", "User") if not User.objects.exists(): return ContentType = apps.get_model("contenttypes", "ContentType") UserObjectLimit = apps.get_model("limits", "UserObjectLimit") to_create = [] ct = ContentType.objects.get(app_label="admin", model="domain") for u in User.objects.all(): to_create.append( UserObjectLimit(user=u, name="quota", max_value=0, content_type=ct) ) UserObjectLimit.objects.bulk_create(to_create) class Migration(migrations.Migration): dependencies = [ ('limits', '0005_auto_20160415_1654'), ] operations = [ migrations.RunPython(create_quota_limits) ]
archai/common/model_summary.py
shatadru99/archai
344
11151885
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from typing import Iterable, Mapping, Sized, Sequence import math import torch import torch.nn as nn from collections import OrderedDict import numpy as np from numbers import Number def summary(model, input_size): result, params_info = summary_string(model, input_size) print(result) return params_info def is_scaler(o): return isinstance(o, Number) or isinstance(o, str) or o is None def get_tensor_stat(tensor): assert isinstance(tensor, torch.Tensor) # some pytorch low-level memory management constant # the minimal allocate memory size (Byte) PYTORCH_MIN_ALLOCATE = 2 ** 9 # the minimal cache memory size (Byte) PYTORCH_MIN_CACHE = 2 ** 20 numel = tensor.numel() element_size = tensor.element_size() fact_numel = tensor.storage().size() fact_memory_size = fact_numel * element_size # since pytorch allocate at least 512 Bytes for any tensor, round # up to a multiple of 512 memory_size = math.ceil(fact_memory_size / PYTORCH_MIN_ALLOCATE) \ * PYTORCH_MIN_ALLOCATE # tensor.storage should be the actual object related to memory # allocation data_ptr = tensor.storage().data_ptr() size = tuple(tensor.size()) # torch scalar has empty size if not size: size = (1,) return ([size], numel, memory_size) def get_all_tensor_stats(o): if is_scaler(o): return ([[]], 0, 0) elif isinstance(o, torch.Tensor): return get_tensor_stat(o) elif isinstance(o, Mapping): return get_all_tensor_stats(o.values()) elif isinstance(o, Iterable): # tuple, list, maps stats = [[]], 0, 0 for oi in o: tz = get_all_tensor_stats(oi) stats = tuple(x+y for x,y in zip(stats, tz)) return stats elif hasattr(o, '__dict__'): return get_all_tensor_stats(o.__dict__) else: return ([[]], 0, 0) def get_shape(o): if is_scaler(o): return str(o) elif hasattr(o, 'shape'): return f'shape{o.shape}' elif hasattr(o, 'size'): return f'size{o.size()}' elif isinstance(o, Sequence): if len(o)==0: return 'seq[]' elif is_scaler(o[0]): return f'seq[{len(o)}]' return f'seq{[get_shape(oi) for oi in o]}' elif isinstance(o, Mapping): if len(o)==0: return 'map[]' elif is_scaler(next(o)): return f'map[{len(o)}]' arr = [(get_shape(ki), get_shape(vi)) for ki, vi in o] return f'map{arr}' else: return 'N/A' def summary_string(model, input_size, dtype=torch.float32): summary_str = '' # create properties summary = OrderedDict() hooks = [] def register_hook(module): def hook(module, input, output): class_name = str(module.__class__).split(".")[-1].split("'")[0] module_idx = len(summary) m_key = "%s-%i" % (class_name, module_idx + 1) summary[m_key] = OrderedDict() summary[m_key]["input"] = get_all_tensor_stats(input) summary[m_key]["output"] = get_all_tensor_stats(output) params = 0 if hasattr(module, "weight") and hasattr(module.weight, "size"): params += torch.prod(torch.LongTensor(list(module.weight.size()))).item() summary[m_key]["trainable"] = module.weight.requires_grad if hasattr(module, "bias") and hasattr(module.bias, "size"): params += torch.prod(torch.LongTensor(list(module.bias.size()))).item() summary[m_key]["nb_params"] = params if ( not isinstance(module, nn.Sequential) and not isinstance(module, nn.ModuleList) ): hooks.append(module.register_forward_hook(hook)) # batch_size of 2 for batchnorm x = torch.rand(input_size, dtype=dtype, device=next(model.parameters()).device) # register hook model.apply(register_hook) # make a forward pass # print(x.shape) model(x) # remove these hooks for h in hooks: h.remove() summary_str += "----------------------------------------------------------------" + "\n" line_new = "{:>20} {:>25} {:>15}".format( "Layer (type)", "Output (elments, mem)", "Param #") summary_str += line_new + "\n" summary_str += "================================================================" + "\n" total_params = 0 total_input = get_tensor_stat(x) total_output = ([[], 0, 0]) trainable_params = 0 for layer in summary: # input_shape, output_shape, trainable, nb_params line_new = "{:>20} {:>25} {:>15}".format( layer, str(summary[layer]["output"][1:]), "{0:,}".format(summary[layer]["nb_params"]), ) total_params += summary[layer]["nb_params"] total_output = tuple(x+y for x,y in zip(total_output, summary[layer]["output"])) if "trainable" in summary[layer]: if summary[layer]["trainable"] == True: trainable_params += summary[layer]["nb_params"] summary_str += line_new + "\n" total_numel = total_params + total_output[1] + total_input[1] summary_str += "================================================================" + "\n" summary_str += "Total params: {0:,}".format(total_params) + "\n" summary_str += "Trainable params: {0:,}".format(trainable_params) + "\n" summary_str += "Non-trainable params: {0:,}".format(total_params - trainable_params) + "\n" summary_str += "----------------------------------------------------------------" + "\n" summary_str += f"Input Elments: {total_input[1]:.4e}\n" summary_str += f"Input Mem: {total_input[2]:.4e}\n" summary_str += f"Layer Output Elements: {total_output[1]:.4e}\n" summary_str += f"Layer Output Mem: {total_output[2]:.4e}\n" summary_str += f"Params {total_params:.4e}\n" summary_str += f"Total Elements {total_numel:.4e}\n" summary_str += "----------------------------------------------------------------" + "\n" # return summary return summary_str, (total_params, trainable_params)
tests/common/test_op/ascend/lstm_rnn_grad.py
tianjiashuo/akg
286
11151905
# Copyright 2019-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """lstm_rnn_gard""" import akg.topi import akg.tvm from akg.utils.format_transform import get_shape from akg.ops.math.ascend import Tanh from tests.common.test_op.ascend.dense import dense from akg.ops.array.ascend import Concat from akg.ops.array.ascend import Split from tests.common.test_op.ascend.sigmoid import sigmoid def lstmcell_grad_h(input, hx, cx, w_ih, w_hh, b_ih, b_hh, dh, dc, target="cce"): """ Computes dh w.r.t. dw, db, dcx, dhx, dx. Args: input: akg.tvm.Tensor of type float16, float32. hx: akg.tvm.Tensor for hidden variable from previous cell. cx: akg.tvm.Tensor for state variable from previous cell. w_ih: akg.tvm.Tensor for input weights. w_hh: akg.tvm.Tensor for hidden weights. b_ih: akg.tvm.Tensor for input bias. b_hh: akg.tvm.Tensor for hidden bias. Returns: dw_ih: akg.tvm.Tensor for dh/dw_ih. dw_hh: akg.tvm.Tensor for dh/dw_hh. db_ih: akg.tvm.Tensor for dh/db_ih. db_hh: akg.tvm.Tensor for dh/db_hh. dcx: akg.tvm.Tensor for dh/dcx. dhx: akg.tvm.Tensor for dh/dhx. dx: akg.tvm.Tensor for dh/dx. """ # things from fwd batch, input_size = get_shape(input) _, hidden_size = get_shape(hx) xh = akg.topi.concatenate((hx, input), 1) whl = [w_ih, w_hh] W = Concat(whl, 1) # [4*hidden_size, input_size+hidden_size] gates = dense(input, w_ih, b_ih, True) + dense(hx, w_hh, b_hh, True) ingate_in, forgetgate_in, cellgate_in, outgate_in = Split(gates, 4, 1) ingate = sigmoid(ingate_in) forgetgate = sigmoid(forgetgate_in) cellgate = Tanh(cellgate_in) outgate = sigmoid(outgate_in) cy = (forgetgate * cx) + (ingate * cellgate) tanh_cy = Tanh(cy) #hy = outgate * tanh_cy # starts bwd # head * dh/do shape [n,] doutgate = dh * tanh_cy doutgate_in = outgate * (1 - outgate) * doutgate kk = akg.tvm.reduce_axis((0, batch)) dWo = akg.tvm.compute((hidden_size, hidden_size + input_size), lambda i, j: akg.tvm.sum(xh[kk, j] * doutgate_in(kk, i), axis=kk), name="dWo") dtanh_cy = dh * outgate dc = (1 - tanh_cy * tanh_cy) * dtanh_cy dingate = cellgate * dc dingate_in = ingate * (1 - ingate) * dingate kk3 = akg.tvm.reduce_axis((0, batch)) dWi = akg.tvm.compute((hidden_size, hidden_size + input_size), lambda i, j: akg.tvm.sum(xh[kk3, j] * dingate_in(kk3, i), axis=kk3), name="dWi") dforgetgate = dc * cx dforgetgate_in = forgetgate * (1 - forgetgate) * dforgetgate kk2 = akg.tvm.reduce_axis((0, batch)) dWf = akg.tvm.compute((hidden_size, hidden_size + input_size), lambda i, j: akg.tvm.sum(xh[kk2, j] * dforgetgate_in(kk2, i), axis=kk2), name="dWf") dcellgate = ingate * dc dcellgate_in = (1 - cellgate * cellgate) * dcellgate kk4 = akg.tvm.reduce_axis((0, batch)) dWc = akg.tvm.compute((hidden_size, hidden_size + input_size), lambda i, j: akg.tvm.sum(xh[kk4, j] * dcellgate_in(kk4, i), axis=kk4), name="dWc") dW = akg.topi.concatenate((dWi, dWf, dWc, dWo)) db = akg.topi.concatenate((dingate_in, dforgetgate_in, dcellgate_in, doutgate_in), 1) kk5 = akg.tvm.reduce_axis((0, 4 * hidden_size)) dxh = akg.tvm.compute((batch, hidden_size + input_size), lambda i, j: akg.tvm.sum(W[kk5, j] * db[i, kk5], axis=kk5), name="dxh") dhx = akg.tvm.compute((batch, hidden_size), lambda i, j: dxh[i, j], name="dhx") dx = akg.tvm.compute((batch, input_size), lambda i, j: dxh[i, j + hidden_size], name="dx") dcx = forgetgate * dc dw_ih = akg.tvm.compute(w_ih.shape, lambda i, j: dW[i, j]) #dw_hh = akg.tvm.compute(w_hh.shape, lambda i, j: dW[i, j + input_size]) bhr = akg.tvm.reduce_axis((0, batch)) db_ih = akg.tvm.compute((4 * hidden_size,), lambda i: akg.tvm.sum(db[i, bhr], axis=bhr), name="dbih") bir = akg.tvm.reduce_axis((0, batch)) db_hh = akg.tvm.compute((4 * hidden_size,), lambda i: akg.tvm.sum(db[i, bir], axis=bir), name="dbhh") return dw_ih, w_hh, db_ih, db_hh, dcx, dhx, dx def lstmcell_grad_c(input, hx, cx, w_ih, w_hh, b_ih, b_hh, dc, target="cce"): """ Computes dc w.r.t. dw, db, dcx, dhx, dx. Args: input: akg.tvm.Tensor of type float16, float32. hx: akg.tvm.Tensor for hidden variable from previous cell. cx: akg.tvm.Tensor for state variable from previous cell. w_ih: akg.tvm.Tensor for input weights. w_hh: akg.tvm.Tensor for hidden weights. b_ih: akg.tvm.Tensor for input bias. b_hh: akg.tvm.Tensor for hidden bias. Returns: dw_ih: akg.tvm.Tensor for dc/dw_ih. dw_hh: akg.tvm.Tensor for dc/dw_hh. db_ih: akg.tvm.Tensor for dc/db_ih. db_hh: akg.tvm.Tensor for dc/db_hh. dcx: akg.tvm.Tensor for dc/dcx. dhx: akg.tvm.Tensor for dc/dhx. dx: akg.tvm.Tensor for dc/dx. """ # things from fwd whl = [w_ih, w_hh] W = Concat(whl, 1) # [4*hidden_size, input_size+hidden_size] b = b_ih + b_hh batch, input_size = get_shape(input) _, hidden_size = get_shape(hx) xh = akg.topi.concatenate((hx, input), 1) t = akg.topi.nn.dense(xh, W, b) temp_i = akg.tvm.compute((batch, hidden_size), lambda i, j: t(i, j), name="temp_i") i = sigmoid(temp_i) temp_f = akg.tvm.compute((batch, hidden_size), lambda i, j: t(i, j + hidden_size), name="temp_f") f = sigmoid(temp_f) temp_c_ = akg.tvm.compute((batch, hidden_size), lambda i, j: t(i, j + 2 * hidden_size), name="temp_c") c_ = Tanh(temp_c_) # starts bwd # head * dh/do shape [n,] dtemp_o = akg.tvm.compute((batch, hidden_size), lambda *i: 0) dWo = akg.tvm.compute((hidden_size, hidden_size + input_size), lambda i, j: 0, name="dWo") df = dc * cx dtemp_f = f * (1 - f) * df kk2 = akg.tvm.reduce_axis((0, batch)) dWf = akg.tvm.compute((hidden_size, hidden_size + input_size), lambda i, j: akg.tvm.sum(xh[kk2, j] * dtemp_f(kk2, i), axis=kk2), name="dWf") di = c_ * dc dtemp_i = i * (1 - i) * di kk3 = akg.tvm.reduce_axis((0, batch)) dWi = akg.tvm.compute((hidden_size, hidden_size + input_size), lambda i, j: akg.tvm.sum(xh[kk3, j] * dtemp_i(kk3, i), axis=kk3), name="dWi") dc_ = i * dc dtemp_c_ = (1 - c_ * c_) * dc_ kk4 = akg.tvm.reduce_axis((0, batch)) dWc = akg.tvm.compute((hidden_size, hidden_size + input_size), lambda i, j: akg.tvm.sum(xh[kk4, j] * dtemp_c_(kk4, i), axis=kk4), name="dWc") dW = akg.topi.concatenate((dWi, dWf, dWc, dWo)) db = akg.topi.concatenate((dtemp_i, dtemp_f, dtemp_c_, dtemp_o), 1) kk5 = akg.tvm.reduce_axis((0, 4 * hidden_size)) dxh = akg.tvm.compute((batch, hidden_size + input_size), lambda i, j: akg.tvm.sum(W[kk5, j] * db[i, kk5], axis=kk5), name="dxh") dhx = akg.tvm.compute((batch, hidden_size), lambda i, j: dxh[i, j], name="dhx") dx = akg.tvm.compute((batch, input_size), lambda i, j: dxh[i, j + hidden_size], name="dx") dcx = f * dc dw_ih = akg.tvm.compute(w_ih.shape, lambda i, j: dW[i, j]) #dw_hh = akg.tvm.compute(w_hh.shape, lambda i, j: dW[i, j + input_size]) bhr = akg.tvm.reduce_axis((0, batch)) db_ih = akg.tvm.compute((4 * hidden_size,), lambda i: akg.tvm.sum(db[i, bhr], axis=bhr), name="dbih") bir = akg.tvm.reduce_axis((0, batch)) db_hh = akg.tvm.compute((4 * hidden_size,), lambda i: akg.tvm.sum(db[i, bir], axis=bir), name="dbhh") return dw_ih, w_hh, db_ih, db_hh, dcx, dhx, dx def rnn_tanh_cell_grad(input, hidden, w_ih, w_hh, b_ih, b_hh, grad, target="cce"): """ Computes dgrad w.r.t. dinput (di), dhidden_input (dhid), dweights (dWih, dWhh), dbias (db). Args: input: akg.tvm.Tensor of type float16, float32 with shape [batch, input_size]. hidden: akg.tvm.Tensor for hidden variable from previous cell with shape [batch, hidden_size]. w_ih: akg.tvm.Tensor for input weights with shape [hidden_size, input_size]. w_hh: akg.tvm.Tensor for hidden weights with shape [hidden_size, hidden_size]. b_ih: akg.tvm.Tensor for input bias with shape [hidden_size]. b_hh: akg.tvm.Tensor for hidden bias with shape [hidden_size]. grad: akg.tvm.Tensor representing dy with shape [batch, hidden_size]. Returns: di: akg.tvm.Tensor for dy/di. dhid: akg.tvm.Tensor for dy/dhid. dWih: akg.tvm.Tensor for dy/dWih (input weights). dWhh: akg.tvm.Tensor for dy/dWhh (hidden weights). db: akg.tvm.Tensor for dy/db. """ batch, input_size = get_shape(input) _, hidden_size = get_shape(hidden) igates = akg.topi.nn.dense(input, w_ih, b_ih) hgates = akg.topi.nn.dense(hidden, w_hh, b_hh) h = Tanh(igates + hgates) dh = (1 - h * h) * grad kk = akg.tvm.reduce_axis((0, batch)) dWih = akg.tvm.compute((hidden_size, input_size), lambda i, j: akg.tvm.sum(input[kk, j] * dh(kk, i), axis=kk), name="dWih") kk2 = akg.tvm.reduce_axis((0, batch)) dWhh = akg.tvm.compute((hidden_size, hidden_size), lambda i, j: akg.tvm.sum(hidden[kk2, j] * dh(kk2, i), axis=kk2), name="dWhh") kk3 = akg.tvm.reduce_axis((0, hidden_size)) di = akg.tvm.compute((batch, input_size), lambda i, j: akg.tvm.sum(w_ih[kk3, j] * dh[i, kk3], axis=kk3), name="di") kk4 = akg.tvm.reduce_axis((0, hidden_size)) dhid = akg.tvm.compute((batch, hidden_size), lambda i, j: akg.tvm.sum(w_hh[kk4, j] * dh[i, kk4], axis=kk4), name="dhid") db = akg.topi.sum(dh, 0) return di, dhid, dWih, dWhh, db # dbih/dbhh are the same and returning it twice causes CCEbuild to fail due to some SSA error # return di, dhid, dWih, dWhh, db, db def rnn_relu_cell_grad(input, hidden, w_ih, w_hh, b_ih, b_hh, grad, target="cce"): """ Computes dgrad w.r.t. dinput (di), dhidden_input (dhi), dweights (dWih, dWhh), dbias (db). Args: input: akg.tvm.Tensor of type float16, float32 with shape [batch, input_size]. hidden: akg.tvm.Tensor for hidden variable from previous cell with shape [batch, hidden_size]. w_ih: akg.tvm.Tensor for input weights with shape [hidden_size, input_size]. w_hh: akg.tvm.Tensor for hidden weights with shape [hidden_size, hidden_size]. b_ih: akg.tvm.Tensor for input bias with shape [hidden_size]. b_hh: akg.tvm.Tensor for hidden bias with shape [hidden_size]. grad: akg.tvm.Tensor representing dy with shape [batch, hidden_size]. Returns: di: akg.tvm.Tensor for dy/di. dhi: akg.tvm.Tensor for dy/dhi. dWih: akg.tvm.Tensor for dy/dWih (input weights). dWhh: akg.tvm.Tensor for dy/dWhh (hidden weights). db: akg.tvm.Tensor for dy/db. """ batch, input_size = get_shape(input) _, hidden_size = get_shape(hidden) igates = akg.topi.nn.dense(input, w_ih, b_ih) hgates = akg.topi.nn.dense(hidden, w_hh, b_hh) h = akg.topi.nn.relu(igates + hgates) dh = akg.tvm.compute((batch, hidden_size), lambda *i: grad(*i) * akg.tvm.expr.Select(h(*i) >= 0, 1, 0), name="dh") kk = akg.tvm.reduce_axis((0, batch)) dWih = akg.tvm.compute((hidden_size, input_size), lambda i, j: akg.tvm.sum(input[kk, j] * dh(kk, i), axis=kk), name="dWih") kk2 = akg.tvm.reduce_axis((0, batch)) dWhh = akg.tvm.compute((hidden_size, hidden_size), lambda i, j: akg.tvm.sum(hidden[kk2, j] * dh(kk2, i), axis=kk2), name="dWhh") kk3 = akg.tvm.reduce_axis((0, hidden_size)) di = akg.tvm.compute((batch, input_size), lambda i, j: akg.tvm.sum(w_ih[kk3, j] * dh[i, kk3], axis=kk3), name="di") kk4 = akg.tvm.reduce_axis((0, hidden_size)) dhi = akg.tvm.compute((batch, hidden_size), lambda i, j: akg.tvm.sum(w_hh[kk4, j] * dh[i, kk4], axis=kk4), name="dhi") db = akg.topi.sum(dh, 0) return di, dhi, dWih, dWhh, db # dbih/dbhh are the same and returning it twice causes CCEbuild to fail due to some SSA error # return di, dhi, dWih, dWhh, db, db
angr/engines/soot/values/paramref.py
Kyle-Kyle/angr
6,132
11151912
<filename>angr/engines/soot/values/paramref.py from .base import SimSootValue class SimSootValue_ParamRef(SimSootValue): __slots__ = [ 'id', 'index', 'type' ] def __init__(self, index, type_): self.id = "param_%d" % index self.index = index self.type = type_ def __repr__(self): return self.id @classmethod def from_sootvalue(cls, soot_value, state): return cls(soot_value.index, soot_value.type)
src/test/python/test_exec.py
tschoonj/jep
698
11151958
import unittest from jep_pipe import jep_pipe from jep_pipe import build_java_process_cmd class TestRunScript(unittest.TestCase): def test_compiledScript(self): jep_pipe(build_java_process_cmd('jep.test.TestExec'))
tests/testnode/addons.py
BabisK/microk8s
6,286
11151965
<reponame>BabisK/microk8s #!/bin/env python3 from pathlib import Path import datetime import time from jinja2 import Template import requests class Addon: """ Base class for testing Microk8s addons. Validation requires a Kubernetes instance on the node """ name = None def __init__(self, node): self.node = node def enable(self): return self.node.microk8s.enable([self.name]) def disable(self): return self.node.microk8s.disable([self.name]) def apply_template(self, template, context={}, yml=False): # Create manifest cwd = Path(__file__).parent template = cwd / "templates" / template with template.open() as f: rendered = Template(f.read()).render(context) render_path = f"/tmp/{template.stem}.yaml" self.node.write(render_path, rendered) return self.node.microk8s.kubectl.apply(["-f", render_path], yml=yml) def delete_template(self, template, context={}, yml=False): path = Path(template) render_path = f"/tmp/{path.stem}.yaml" return self.node.microk8s.kubectl.delete(["-f", render_path], yml=yml) class Dns(Addon): """Microk8s dns addon""" name = "dns" def validate(self): self.node.kubernetes.wait_containers_ready( "kube-system", label="k8s-app=kube-dns", timeout=120 ) class Dashboard(Addon): """Dashboard addon""" name = "dashboard" def validate(self): self.node.kubernetes.wait_containers_ready( "kube-system", label="k8s-app=kubernetes-dashboard", timeout=90, ) self.node.kubernetes.wait_containers_ready( "kube-system", label="k8s-app=dashboard-metrics-scraper" ) name = "https:kubernetes-dashboard:" result = self.node.kubernetes.get_service_proxy(name=name, namespace="kube-system") assert "Kubernetes Dashboard" in result class Storage(Addon): """Storage addon""" name = "storage" def validate(self): self.node.kubernetes.wait_containers_ready( "kube-system", label="k8s-app=hostpath-provisioner" ) claim = self.node.kubernetes.create_pvc( "testpvc", "kube-system", storage_class="microk8s-hostpath", wait=True ) assert claim.spec.storage_class_name == "microk8s-hostpath" self.node.kubernetes.delete_pvc("testpvc", "kube-system") class Ingress(Addon): """Ingress addon""" name = "ingress" def validate(self): # TODO: Is this still needed? # self.node.kubernetes.wait_containers_ready("default", label="app=default-http-backend") # self.node.kubernetes.wait_containers_ready("default", label="name=nginx-ingress-microk8s") self.node.kubernetes.wait_containers_ready("ingress", label="name=nginx-ingress-microk8s") # Create manifest context = { "arch": "amd64", "address": self.node.get_primary_address(), } self.apply_template("ingress.j2", context) self.node.kubernetes.wait_containers_ready("default", label="app=microbot") nip_addresses = self.node.kubernetes.wait_ingress_ready("microbot-ingress-nip", "default") assert "127.0.0.1" in nip_addresses[0].ip deadline = datetime.datetime.now() + datetime.timedelta(seconds=30) while True: resp = requests.get(f"http://microbot.{context['address']}.nip.io/") if resp.status_code == 200 or datetime.datetime.now() > deadline: break time.sleep(1) assert resp.status_code == 200 assert "microbot.png" in resp.content.decode("utf8") self.delete_template("ingress.j2", context) class Gpu(Addon): """Gpu addon""" name = "gpu" def validate(self): self.node.kubernetes.wait_containers_ready( "kube-system", label="name=nvidia-device-plugin-ds" ) # Create manifest context = {} self.apply_template("cuda-add.j2", context) # TODO: Finish validator on hardware with GPU self.delete_template("cuda-add.j2", context) class Registry(Addon): """Registry addon""" name = "registry" def validate(self): self.node.kubernetes.wait_containers_ready( "container-registry", label="app=registry", timeout=300 ) claim = self.node.kubernetes.wait_pvc_phase("registry-claim", "container-registry") assert "20Gi" in claim.status.capacity["storage"] self.node.docker.cmd(["pull", "busybox"]) self.node.docker.cmd(["tag", "busybox", "localhost:32000/my-busybox"]) self.node.docker.cmd(["push", "localhost:32000/my-busybox"]) context = {"image": "localhost:32000/my-busybox"} self.apply_template("bbox.j2", context) self.node.kubernetes.wait_containers_ready("default", field="metadata.name=busybox") pods = self.node.kubernetes.get_pods("default", field="metadata.name=busybox") assert pods[0].spec.containers[0].image == "localhost:32000/my-busybox" self.delete_template("bbox.j2", context) class MetricsServer(Addon): name = "metrics-server" def validate(self): self.node.kubernetes.wait_containers_ready("kube-system", label="k8s-app=metrics-server") metrics_uri = "/apis/metrics.k8s.io/v1beta1/pods" reply = self.node.kubernetes.get_raw_api(metrics_uri) assert reply["kind"] == "PodMetricsList" class Fluentd(Addon): name = "fluentd" def validate(self): self.node.kubernetes.wait_containers_ready( "kube-system", field="metadata.name=elasticsearch-logging-0", timeout=300 ) self.node.kubernetes.wait_containers_ready( "kube-system", label="k8s-app=fluentd-es", timeout=300 ) self.node.kubernetes.wait_containers_ready( "kube-system", label="k8s-app=kibana-logging", timeout=300 ) class Jaeger(Addon): name = "jaeger" def validate(self): self.node.kubernetes.wait_containers_ready("default", label="name=jaeger-operator") self.node.kubernetes.wait_ingress_ready("simplest-query", "default", timeout=180) class Metallb(Addon): name = "metallb" def enable(self, ip_ranges=None): if not ip_ranges: return self.node.microk8s.enable([self.name]) else: return self.node.microk8s.enable([f"{self.name}:{ip_ranges}"]) def validate(self, ip_ranges=None): context = {} self.apply_template("load-balancer.j2", context) ip = self.node.kubernetes.wait_load_balancer_ip("default", "example-service") if ip_ranges: assert ip in ip_ranges self.delete_template("load-balancer.j2", context)
rocketqa/predict/dual_encoder.py
procedure2012/RocketQA
210
11151968
<filename>rocketqa/predict/dual_encoder.py # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Finetuning on classification tasks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import import os import json import multiprocessing import numpy as np # NOTE(paddle-dev): All of these flags should be # set before `import paddle`. Otherwise, it would # not take any effect. os.environ['FLAGS_eager_delete_tensor_gb'] = '0' # enable gc import paddle.fluid as fluid from rocketqa.reader import reader_de_predict from rocketqa.model.ernie import ErnieConfig from rocketqa.model.dual_encoder_model import create_model from rocketqa.utils.args import print_arguments, check_cuda, prepare_logger from rocketqa.utils.init import init_pretraining_params, init_checkpoint from rocketqa.utils.finetune_args import parser class DualEncoder(object): def __init__(self, conf_path, use_cuda=False, device_id=0, batch_size=1, **kwargs): if "model_path" in kwargs: args = self._parse_args(conf_path, model_path=kwargs["model_path"]) else: args = self._parse_args(conf_path) if "model_name" in kwargs: args.model_name = kwargs["model_name"].replace('/', '-') else: args.model_name = "my_de" args.use_cuda = use_cuda ernie_config = ErnieConfig(args.ernie_config_path) #ernie_config.print_config() self.batch_size = batch_size if args.use_cuda: dev_list = fluid.cuda_places() place = dev_list[device_id] dev_count = len(dev_list) else: place = fluid.CPUPlace() dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) self.exe = fluid.Executor(place) self.reader = reader_de_predict.DEPredictorReader( vocab_path=args.vocab_path, label_map_config=args.label_map_config, q_max_seq_len=args.q_max_seq_len, p_max_seq_len=args.p_max_seq_len, do_lower_case=args.do_lower_case, in_tokens=args.in_tokens, random_seed=args.random_seed, tokenizer=args.tokenizer, for_cn=args.for_cn, task_id=args.task_id) startup_prog = fluid.Program() self.test_prog = fluid.Program() with fluid.program_guard(self.test_prog, startup_prog): with fluid.unique_name.guard(): self.test_pyreader, self.graph_vars = create_model( args, pyreader_name=args.model_name + '_test_reader', ernie_config=ernie_config, is_prediction=True, share_parameter=args.share_parameter) self.test_prog = self.test_prog.clone(for_test=True) self.exe = fluid.Executor(place) self.exe.run(startup_prog) if not args.init_checkpoint: raise ValueError("args 'init_checkpoint' should be set if" "only doing validation or testing!") init_checkpoint( self.exe, args.init_checkpoint, main_program=startup_prog) def _parse_args(self, conf_path, model_path=''): args, unknown = parser.parse_known_args() with open(conf_path, 'r', encoding='utf8') as json_file: config_dict = json.load(json_file) args.do_train = False args.do_val = False args.do_test = True args.use_fast_executor = True args.q_max_seq_len = config_dict['q_max_seq_len'] args.p_max_seq_len = config_dict['p_max_seq_len'] args.ernie_config_path = model_path + config_dict['model_conf_path'] args.vocab_path = model_path + config_dict['model_vocab_path'] args.init_checkpoint = model_path + config_dict['model_checkpoint_path'] if 'share_parameter' in config_dict: args.share_parameter = config_dict['share_parameter'] else: args.share_parameter = 0 return args def encode_query(self, query): data = [] for q in query: data.append(q + '\t-\t-') self.test_pyreader.decorate_tensor_provider( self.reader.data_generator( data, self.batch_size, shuffle=False)) self.test_pyreader.start() fetch_list = [self.graph_vars["q_rep"]] embs = [] while True: try: q_rep = self.exe.run(program=self.test_prog, fetch_list=fetch_list) embs.append(q_rep[0]) except fluid.core.EOFException: self.test_pyreader.reset() break return np.concatenate(embs)[:len(data)] def encode_para(self, para, title=[]): data = [] if len(title) != 0: assert (len(para) == len(title)), "The input para(List) and title(List) should be the same length" for t, p in zip(title, para): data.append('-\t' + t + '\t' + p) else: for p in para: data.append('-\t-\t' + p) self.test_pyreader.decorate_tensor_provider( self.reader.data_generator( data, self.batch_size, shuffle=False)) self.test_pyreader.start() fetch_list = [self.graph_vars["p_rep"]] embs = [] while True: try: p_rep = self.exe.run(program=self.test_prog, fetch_list=fetch_list) embs.append(p_rep[0]) except fluid.core.EOFException: self.test_pyreader.reset() break return np.concatenate(embs)[:len(data)] def matching(self, query, para, title=[]): data = [] assert (len(para) == len(query)), "The input query(List) and para(List) should be the same length" if len(title) != 0: assert (len(para) == len(title)), "The input query(List) and para(List) should be the same length" for q, t, p in zip(query, title, para): data.append(q + '\t' + t + '\t' + p) else: for q, p in zip(query, para): data.append(q + '\t-\t' + p) self.test_pyreader.decorate_tensor_provider( self.reader.data_generator( data, self.batch_size, shuffle=False)) self.test_pyreader.start() fetch_list = [self.graph_vars["probs"]] inner_probs = [] while True: try: probs = self.exe.run(program=self.test_prog, fetch_list=fetch_list) inner_probs.extend(probs[0].tolist()) except fluid.core.EOFException: self.test_pyreader.reset() break return inner_probs
iotbx/regression/tst_symmetry.py
dperl-sol/cctbx_project
155
11152029
<filename>iotbx/regression/tst_symmetry.py from __future__ import absolute_import, division, print_function import iotbx.symmetry from cctbx import sgtbx, uctbx from libtbx.test_utils import Exception_expected from libtbx.utils import Sorry from six.moves import cStringIO as StringIO def exercise(): m = iotbx.symmetry.manager(prefer_pdb_space_group=True) (uc_mismatch, sg_mismatch) = m.add_reflections_file( file_name="data.mtz", space_group=sgtbx.space_group_info("P222"), unit_cell=uctbx.unit_cell("50 60 70 90 90 90")) assert (m.get_current_as_strings() == ('P 2 2 2', '50 60 70 90 90 90')) (uc_mismatch, sg_mismatch) = m.add_pdb_file( file_name="model.pdb", space_group=sgtbx.space_group_info("P212121"), unit_cell=uctbx.unit_cell("50 60 70 90 90 90")) assert (not (uc_mismatch or sg_mismatch)) (uc_mismatch, sg_mismatch) = m.add_pdb_file( file_name="reference_model.pdb", space_group=sgtbx.space_group_info("P63"), unit_cell=uctbx.unit_cell("40 40 75 90 90 120")) assert ((uc_mismatch, sg_mismatch) == (True, True)) assert (m.get_current_as_strings() == ('P 21 21 21', '50 60 70 90 90 90')) (uc_mismatch, sg_mismatch) = m.add_reflections_file( file_name="data_neutron.mtz", space_group=sgtbx.space_group_info("P222"), unit_cell=uctbx.unit_cell("50.1 60 70.1 90 90 90")) assert (not (uc_mismatch or sg_mismatch)) (uc_mismatch, sg_mismatch) = m.add_reflections_file( file_name="data_rfree.hkl", space_group=None, unit_cell=None) assert (not (uc_mismatch or sg_mismatch)) assert (m.get_current_as_strings() == ('P 21 21 21', '50 60 70 90 90 90')) assert (m.check_cell_compatibility("phenix.refine")) symm_choices = m.get_symmetry_choices() assert (symm_choices.space_group_files == [('model.pdb', 'P 21 21 21'), ('reference_model.pdb', 'P 63'), ('data.mtz', 'P 2 2 2'), ('data_neutron.mtz', 'P 2 2 2')]) assert (symm_choices.unit_cell_files == [ ('model.pdb', '(50, 60, 70, 90, 90, 90)'), ('reference_model.pdb', '(40, 40, 75, 90, 90, 120)'), ('data.mtz', '(50, 60, 70, 90, 90, 90)'), ('data_neutron.mtz', '(50.1, 60, 70.1, 90, 90, 90)')]) m.set_current_as_strings("P63", "50 60 70 90 90 90") try : m.check_cell_compatibility( program_name="phenix.refine", raise_error_if_incomplete=True) except Sorry : pass else : raise Exception_expected out = StringIO() m.show(out=out) assert (out.getvalue() == """\ model.pdb: (50, 60, 70, 90, 90, 90) P 21 21 21 reference_model.pdb: (40, 40, 75, 90, 90, 120) P 63 data.mtz: (50, 60, 70, 90, 90, 90) P 2 2 2 data_neutron.mtz: (50.1, 60, 70.1, 90, 90, 90) P 2 2 2 data_rfree.hkl: None None """) if (__name__ == "__main__"): exercise() print("OK")
test/config_test.py
tamirzb/logcat-color
373
11152041
from common import * from logcatcolor.column import * from logcatcolor.config import * from logcatcolor.layout import * from logcatcolor.profile import * from logcatcolor.reader import * import unittest this_dir = os.path.abspath(os.path.dirname(__file__)) configs_dir = os.path.join(this_dir, "configs") def config_test(config_file, wrap=None, stay_connected=None): def run_config_test(fn): def wrapped(self): path = os.path.join(configs_dir, config_file) options = MockObject(config=path, wrap=wrap, stay_connected=stay_connected) fn(self, LogcatColorConfig(options)) return wrapped return run_config_test class ConfigTest(unittest.TestCase): def setUp(self): self.tag_column = MockObject(NAME="tag", DEFAULT_WIDTH=20) @config_test("") def test_default_config(self, config): self.assertEqual(config.get_default_layout(), config.DEFAULT_LAYOUT) self.assertEqual(config.get_column_width(self.tag_column), 20) self.assertEqual(config.get_wrap(), config.DEFAULT_WRAP) self.assertEqual(config.get_adb(), config.DEFAULT_ADB) self.assertEqual(config.get_stay_connected(), config.DEFAULT_STAY_CONNECTED) @config_test("simple_config") def test_simple_config(self, config): self.assertEqual(config.get_default_layout(), "test") self.assertEqual(config.get_column_width(self.tag_column), 1) self.assertFalse(config.get_wrap()) self.assertEqual(config.get_adb(), "/path/to/adb") self.assertEqual(config.get_stay_connected(), True) @config_test("simple_config", wrap=True, stay_connected=True) def test_simple_config_overrides(self, config): self.assertTrue(config.get_wrap()) self.assertTrue(config.get_stay_connected())
research/src/get_family_names.py
vbarceloscs/serenata-de-amor
3,001
11152043
import os import re import datetime import requests import numpy as np import pandas as pd from bs4 import BeautifulSoup DATE = datetime.date.today().strftime('%Y-%m-%d') DATA_DIR = 'data' PROCESSED_DATA_FILE = '{}-congressperson-relatives.xz' PROCESSED_DATA_PATH = os.path.join(DATA_DIR, PROCESSED_DATA_FILE).format(DATE) RAW_DATA_FILE = '{}-congressperson-relatives-raw.xz' RAW_DATA_PATH = os.path.join(DATA_DIR, RAW_DATA_FILE).format(DATE) write_csv_params = { 'compression': 'xz', 'encoding': 'utf-8', 'index': False} def format_string(s): return s.strip().replace(':', '') def extract_contents_from_div(div): return list(map(format_string, filter(lambda x: '\n' not in x, div[0].strings))) def convert_to_dict(contents): return dict(zip(contents[1:-2:2], contents[2:-1:2])) def is_single_word(s): return (' ' not in s) def fix_when_theres_a_single_surname_after_the_split(names): pairs = [(i, name) for i, name in enumerate(names) if is_single_word(name)] while pairs: i, name = pairs.pop(0) if i == 0: continue names_to_join = names[i - 1:i + 1] name = ' e '.join(names_to_join) for n in names_to_join: names.remove(n) names.append(name) pairs = [(i, name) for i, name in enumerate(names) if is_single_word(name)] return names def split_names(s): names = s.split(' e ') names = fix_when_theres_a_single_surname_after_the_split(names) return names def create_one_row_per_parent(df): result = [] dict_df = df.to_dict(orient='records')[0] for name in dict_df['parents_list']: result.append({'id': dict_df['id'], 'relative_name': name, 'relationship': 'son_of'}) return pd.DataFrame(data=result) def get_all_congress_people_ids(): print('Fetching all congresspeople ids', end='\r') ids_series = [read_csv(name)['congressperson_id'] for name in ['current-year', 'last-year', 'previous-years']] return list(pd.concat(ids_series).unique()) def find_newest_file(name): """ Assuming that the files will be in the form of : yyyy-mm-dd-type_of_file.xz we can try to find the newest file based on the date, but if the file doesn't exist fallback to another date until all dates are exhausted """ date_regex = re.compile('\d{4}-\d{2}-\d{2}') matches = (date_regex.findall(f) for f in os.listdir(DATA_DIR)) dates = sorted(set([l[0] for l in matches if l]), reverse=True) for date in dates: filename = os.path.join(DATA_DIR, '{}-{}.xz'.format(date, name)) if os.path.isfile(filename): return filename return None def read_csv(name): filename = find_newest_file(name) if filename is None: raise TypeError('could not find the dataset for {}.'.format(name)) return pd.read_csv(filename, parse_dates=[16], dtype={'document_id': np.str, 'congressperson_id': np.str, 'congressperson_document': np.str, 'term_id': np.str, 'cnpj_cpf': np.str, 'reimbursement_number': np.str}) def write_formatted_data(df): people_with_two_or_less_parents = ( df [df.parents_list.apply(len) <= 2] [['id', 'parents_list']]) final = ( people_with_two_or_less_parents .groupby('id') .apply(create_one_row_per_parent) .reset_index(drop=True)) final.rename(inplace=True, columns={'id': 'congressperson_id'}) final.to_csv(PROCESSED_DATA_PATH, **write_csv_params) def write_raw_data(df): people_with_more_than_two_parents = ( df [df.parents_list.apply(len) > 2] [['id', 'Filiação']]) people_with_more_than_two_parents.rename(inplace=True, columns={ 'id': 'congressperson_id', 'Filiação': 'parents'}) if len(people_with_more_than_two_parents): people_with_more_than_two_parents.to_csv( RAW_DATA_PATH, **write_csv_params ) def get_congresspeople_parents_names(): url = 'http://www2.camara.leg.br/deputados/pesquisa/layouts_deputados_' \ 'biografia?pk={}' ids = get_all_congress_people_ids() dicts = [] total = len(ids) for i, id in enumerate(ids): id = str(id).replace('\n', '').strip() try: data = requests.get(url.format(id)).content.decode('utf8') soup = BeautifulSoup(str(data), 'html.parser') bio_details = soup.findAll('div', {'class': 'bioDetalhes'}) contents_bio_details = extract_contents_from_div(bio_details) dict_bio_details = convert_to_dict(contents_bio_details) dict_bio_details['id'] = id dicts.append(dict_bio_details) except IndexError: print('Could not parse data') msg = 'Processed {} out of {} ({:.2f}%)' print(msg.format(i, total, i / total * 100), end='\r') df = pd.DataFrame(data=dicts) df = df[df['Filiação'].notnull()] df = df[~(df['Filiação'].str.contains('Escolaridade'))] df['parents_list'] = df['Filiação'].apply(split_names) write_formatted_data(df) write_raw_data(df) if __name__ == '__main__': get_congresspeople_parents_names()
homeassistant/components/unifi_direct/__init__.py
domwillcode/home-assistant
30,023
11152072
"""The unifi_direct component."""
Vecihi/Backend/vecihi/users/migrations/0002_auto_20171201_2311.py
developertqw2017/migrationDjango
220
11152078
<filename>Vecihi/Backend/vecihi/users/migrations/0002_auto_20171201_2311.py # -*- coding: utf-8 -*- # Generated by Django 1.10.8 on 2017-12-01 23:11 from __future__ import unicode_literals import django.core.validators from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.AlterModelManagers( name='user', managers=[ ], ), migrations.RemoveField( model_name='user', name=b'name', ), migrations.AddField( model_name='user', name='created_at', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now), preserve_default=False, ), migrations.AddField( model_name='user', name='image', field=models.ImageField(blank=True, default='Images/None/No-img.jpg', null=True, upload_to='Images/'), ), migrations.AddField( model_name='user', name='updated_at', field=models.DateTimeField(auto_now=True), ), migrations.AlterField( model_name='user', name=b'email', field=models.EmailField(max_length=255, unique=True, verbose_name='email address'), ), migrations.AlterField( model_name='user', name=b'username', field=models.CharField(help_text='Required. 30 characters or fewer. Letters, digits and ./+/-/_ only.', max_length=30, unique=True, validators=[django.core.validators.RegexValidator('^[\\w.+-]+$', 'Enter a valid username jebal.', 'invalid')], verbose_name='username'), ), ]
crits/signatures/signature.py
dutrow/crits
738
11152086
<reponame>dutrow/crits import uuid try: from django_mongoengine import Document except ImportError: from mongoengine import Document from mongoengine import EmbeddedDocument from mongoengine import StringField, ListField from mongoengine import UUIDField from mongoengine import IntField, BooleanField from django.conf import settings from crits.core.crits_mongoengine import CritsBaseAttributes, CritsDocumentFormatter from crits.core.crits_mongoengine import CritsSourceDocument, CritsDocument, CritsSchemaDocument from crits.core.crits_mongoengine import CommonAccess, CritsActionsDocument class SignatureDependency(CritsDocument, CritsSchemaDocument, Document): """ Signature dependency class. """ meta = { "collection": settings.COL_SIGNATURE_DEPENDENCY, "auto_create_index": False, "crits_type": 'SignatureDependency', "latest_schema_version": 1, "schema_doc": { 'name': 'The name of this data dependency', 'active': 'Enabled in the UI (on/off)' }, } name = StringField() active = StringField(default="on") class SignatureType(CritsDocument, CritsSchemaDocument, Document): """ Signature type class. """ meta = { "collection": settings.COL_SIGNATURE_TYPES, "auto_create_index": False, "crits_type": 'SignatureType', "latest_schema_version": 1, "schema_doc": { 'name': 'The name of this data type', 'active': 'Enabled in the UI (on/off)' }, } name = StringField() active = StringField(default="on") class Signature(CritsBaseAttributes, CritsSourceDocument, CritsActionsDocument, Document): """ Signature class. """ meta = { "collection": settings.COL_SIGNATURES, "auto_create_index": False, "crits_type": 'Signature', "latest_schema_version": 1, "schema_doc": { }, "jtable_opts": { 'details_url': 'crits-signatures-views-signature_detail', 'details_url_key': 'id', 'default_sort': "modified DESC", 'searchurl': 'crits-signatures-views-signatures_listing', 'fields': [ "title", "data_type", "data_type_min_version", "data_type_max_version", "data_type_dependency", "version", "modified", "source", "campaign", "id", "status"], 'jtopts_fields': [ "details", "title", "data_type", "data_type_min_version", "data_type_max_version", "data_type_dependency", "version", "modified", "source", "campaign", "status", "favorite", "id"], 'hidden_fields': [], 'linked_fields': ["source", "campaign"], 'details_link': 'details', 'no_sort': ['details'] } } data_type = StringField() data_type_min_version = StringField() data_type_max_version = StringField() data_type_dependency = ListField() data = StringField() link_id = UUIDField(binary=True, required=True, default=uuid.uuid4) md5 = StringField() title = StringField() version = IntField() class SignatureAccess(EmbeddedDocument, CritsDocumentFormatter, CommonAccess): """ ACL for Signatures. """ upload_new_version = BooleanField(default=False) data_type_read = BooleanField(default=False) data_type_edit = BooleanField(default=False) data_type_min_version_read = BooleanField(default=False) data_type_min_version_edit = BooleanField(default=False) data_type_max_version_read = BooleanField(default=False) data_type_max_version_edit = BooleanField(default=False) data_read = BooleanField(default=False) data_edit = BooleanField(default=False) dependencies_read = BooleanField(default=False) dependencies_edit = BooleanField(default=False)
爬虫小demo/04 fileHandler.py
lb2281075105/Python-Spider
713
11152122
# -*- coding:utf-8 -*- import csv # 1、txt文件 file = open('file.txt','r') # 获取所有的信息 print file.read() file.write("你好") # 获取所有并且在所有行存在一个数组 print file.readlines() # 获取第一行 print file.readline() # 2、读取csv文件 writer = csv.writer(open('test.csv','wb')) writer.writerow(['col1','col2','col3']) data = [range(3) for i in range(3)] for item in data: writer.writerow(item) filelist = csv.reader(open('./test.csv','r')) for item in filelist: print item # 3、读取xml文件 from xml.dom import minidom # parse打开xml文件 dom = minidom.parse("info.xml") # 获取根节点 root = dom.documentElement print root.nodeName print root.nodeValue print root.nodeType print root.ELEMENT_NODE print "--" * 8 province = root.getElementsByTagName("province") print province[0].tagName print province[0].getAttribute("username") print province[0].firstChild.data
lldb/test/API/lang/cpp/diamond/TestDiamond.py
acidburn0zzz/llvm-project
2,338
11152139
<gh_stars>1000+ """ Tests that bool types work """ import lldb from lldbsuite.test.lldbtest import * import lldbsuite.test.lldbutil as lldbutil class CPPTestDiamondInheritance(TestBase): mydir = TestBase.compute_mydir(__file__) def test_with_run_command(self): """Test that virtual base classes work in when SBValue objects are used to explore the variable value""" self.build() exe = self.getBuildArtifact("a.out") target = self.dbg.CreateTarget(exe) self.assertTrue(target, VALID_TARGET) self.set_breakpoint(line_number('main.cpp', '// breakpoint 1')) self.set_breakpoint(line_number('main.cpp', '// breakpoint 2')) process = target.LaunchSimple( None, None, self.get_process_working_directory()) self.assertTrue(process, PROCESS_IS_VALID) thread = lldbutil.get_stopped_thread( process, lldb.eStopReasonBreakpoint) self.assertIsNotNone(thread) frame = thread.GetFrameAtIndex(0) j1 = frame.FindVariable("j1") j1_Derived1 = j1.GetChildAtIndex(0) j1_Derived2 = j1.GetChildAtIndex(1) j1_Derived1_VBase = j1_Derived1.GetChildAtIndex(0) j1_Derived2_VBase = j1_Derived2.GetChildAtIndex(0) j1_Derived1_VBase_m_value = j1_Derived1_VBase.GetChildAtIndex(0) j1_Derived2_VBase_m_value = j1_Derived2_VBase.GetChildAtIndex(0) self.assertEqual( j1_Derived1_VBase.GetLoadAddress(), j1_Derived2_VBase.GetLoadAddress(), "ensure virtual base class is the same between Derived1 and Derived2") self.assertTrue(j1_Derived1_VBase_m_value.GetValueAsUnsigned( 1) == j1_Derived2_VBase_m_value.GetValueAsUnsigned(2), "ensure m_value in VBase is the same") self.assertTrue(frame.FindVariable("d").GetChildAtIndex(0).GetChildAtIndex( 0).GetValueAsUnsigned(0) == 12345, "ensure Derived2 from j1 is correct") thread.StepOver() self.assertTrue(frame.FindVariable("d").GetChildAtIndex(0).GetChildAtIndex( 0).GetValueAsUnsigned(0) == 12346, "ensure Derived2 from j2 is correct") def set_breakpoint(self, line): # Some compilers (for example GCC 4.4.7 and 4.6.1) emit multiple locations for the statement with the ternary # operator in the test program, while others emit only 1. lldbutil.run_break_set_by_file_and_line( self, "main.cpp", line, num_expected_locations=-1, loc_exact=False)
RecoMET/METFilters/python/hcalLaserBadEvents_2011.py
ckamtsikis/cmssw
852
11152145
# File last updated on 16:58:23 28 Nov 2011 # A total of 281 bad events badEvents=[ 160957,146483131, 160957,146483132, 160957,367078426, 163289,120704451, 163289,120704452, 163332,300924904, 163587,5705088, 163588,86700074, 163659,269761831, 163659,379050220, 165415,696548170, 165415,696548171, 165617,295894671, 165617,295894672, 165993,120876169, 165993,120876170, 166011,58123616, 166011,58123617, 166380,833988349, 166380,833988350, 166380,874735805, 166380,874735806, 166380,915050480, 166380,1037024294, 166512,1222721981, 166512,1222721982, 166563,299342294, 166563,299431306, 166563,299431307, 166563,299645965, 166699,908134746, 166699,908134747, 167281,115904577, 167282,286707493, 167282,286707494, 167282,286766119, 167282,286766120, 167284,44118160, 167284,44118161, 167551,365086623, 167551,365086624, 167674,59067344, 167674,59067345, 167675,227610655, 167675,227610656, 167754,73011356, 167754,73011357, 167807,1202030368, 167807,1202030369, 167898,568063754, 167898,568063755, 167898,718530727, 167969,3462839, 167969,3462840, 167969,9442755, 167969,9442756, 167969,11435992, 167969,11435993, 170255,83361834, 170255,83361835, 170304,57541359, 170304,57541360, 170854,291050200, 170854,291050201, 170854,329611102, 170854,329611103, 170899,39787119, 170899,39787120, 171091,9021397, 171091,9021398, 171091,97261559, 171091,97261560, 171156,369378017, 171156,369378018, 171897,353709470, 172033,412685841, 172033,412685842, 172033,885328695, 172033,982705197, 172033,982705198, 172163,530358965, 172389,45660388, 172389,45660389, 172411,173742880, 172411,173742881, 172478,53762243, 172478,53762244, 172478,54053290, 172478,54092625, 172478,54092626, 172478,54092948, 172478,98093904, 172478,98093905, 172485,424192588, 172485,424192589, 172791,966404647, 172802,464891113, 172802,464891114, 172802,464892883, 172802,464892884, 172819,81201593, 172822,1074244840, 172822,2836941609, 172868,393947631, 172868,393947632, 172868,1421063049, 172868,1421063050, 172868,1421076216, 172868,1421076217, 172868,2012432054, 172868,2012432055, 172868,2137890207, 172868,2137890208, 173198,741435194, 173198,741435195, 173198,1009198868, 173198,1009198869, 173226,781573, 173226,781574, 173241,746837625, 173241,746837626, 173380,21324672, 173380,21324673, 173659,128113809, 173659,128113810, 173662,10511470, 173662,10511471, 173692,755803939, 173692,2597438478, 173692,2597438479, 174809,777532, 174809,777533, 175560,2368923, 175560,2368924, 175560,7580776, 175834,105072341, 175834,105072342, 175866,343429213, 175866,343429214, 175875,182390835, 175875,182390836, 175888,49192628, 175888,49192629, 175888,128999776, 175888,128999777, 175973,122366434, 175973,122366435, 175976,80421989, 175976,80421990, 175990,6376426, 175990,6376427, 175990,75007084, 175990,75007085, 175990,146437701, 175990,146437702, 176161,15560079, 176161,15560080, 176202,119772380, 176202,119772381, 176202,324604001, 176202,324604002, 176309,233512658, 176309,233512659, 176309,935495115, 176309,935495116, 176309,1331935829, 176309,1331935830, 176309,2496631352, 176697,403510, 176697,403511, 176701,73573187, 176701,73573188, 176702,11693970, 176702,11693971, 176702,67569367, 176702,67569368, 176801,410530622, 176929,460082240, 176929,460082241, 176954,138469, 176954,138470, 177053,327815438, 177053,327815439, 177074,154911610, 177074,154911611, 177140,785923000, 177317,72936561, 177317,72936562, 177317,73219012, 177317,73219013, 177449,275466422, 177449,275466423, 177452,226991391, 177452,226991392, 177509,99081581, 177509,99081582, 177509,314204437, 177509,314204438, 177509,314319381, 177509,314319382, 177515,291757022, 177515,291757023, 177515,1103056195, 177515,1103056196, 177515,1534353246, 177515,1534353247, 177718,890704274, 177718,890704275, 177719,294071879, 177719,294071880, 177730,1850737398, 177730,1850737399, 177730,2007600403, 177730,2007600404, 177730,2563818242, 177730,2563818243, 177790,507968788, 177790,507968789, 177790,772640382, 177790,772640383, 177791,89470582, 177791,89470583, 177875,647616276, 177875,647616277, 178041,783372, 178041,783394, 178041,783395, 178041,784044, 178041,784045, 178041,784499, 178041,784500, 178041,784551, 178041,784552, 178041,786438, 178041,786439, 178041,786770, 178041,786771, 178041,787142, 178041,787143, 178041,787202, 178100,898633273, 178100,1566052885, 178100,1566052886, 178116,453801141, 178116,453801142, 178424,630485076, 178424,630485077, 178667,494184, 178667,494185, 178667,51504048, 178667,51504049, 178825,149780, 178825,149781, 178866,410333501, 178866,410333502, 178866,651783943, 178866,651783944, 178871,236100751, 178970,660540406, 178970,660540407, 178985,85355292, 178985,85355293, 179547,21999275, 179547,21999276, 179563,143108913, 179563,143108914, 179563,391201547, 179563,391201548, 180163,7578238, 180163,7578239, 180222,6076323, 180222,24642472, 180241,500046589, 180241,500562971, 180241,500562972, 180250,371542986, 180250,371542987, 180275,10578469, 180275,10578470, 180275,10583104, 180275,10583105, ]
library/oci_suppression_facts.py
slmjy/oci-ansible-modules
106
11152171
<gh_stars>100-1000 #!/usr/bin/python # Copyright (c) 2018, 2019, Oracle and/or its affiliates. # This software is made available to you under the terms of the GPL 3.0 license or the Apache 2.0 license. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Apache License v2.0 # See LICENSE.TXT for details. from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { "metadata_version": "1.1", "status": ["preview"], "supported_by": "community", } DOCUMENTATION = """ --- module: oci_suppression_facts short_description: Fetches details of OCI Suppression. description: - Fetches details of all OCI Suppression in a compartment or a specific OCI Suppression version_added: "2.5" options: compartment_id: description: Identifier of the compartment from which details of all Suppressions must be fetched. required: false suppression_id: description: Identifier of the Suppression whose details needs to be fetched. required: false aliases: ['id'] email_address: description: A filter to only return Suppression that match the given Email Adress. required: false time_created_greater_than_or_equal_to: description: Search for suppressions that were created within a specific date range, using this parameter to specify the earliest creation date for the returned list (inclusive). Specifying this parameter without the corresponding time_created_less_than parameter will retrieve suppressions created from the given time_created_greater_than_or_equal_to to the current time, in "YYYY-MM-ddThh:mmZ" format with a Z offset, as defined by RFC 3339. required: false time_created_less_than: description: Search for suppressions that were created within a specific date range, using this parameter to specify the latest creation date for the returned list (exclusive). Specifying this parameter without the corresponding time_created_greater_than_or_equal_to parameter will retrieve all suppressions created before the specified end date, in "YYYY-MM-ddThh:mmZ" format with a Z offset, as defined by RFC 3339. required: false author: - "<NAME>(@debayan_gupta)" extends_documentation_fragment: [ oracle ] """ EXAMPLES = """ # Fetch Suppression - name: List all Suppressions in a compartment oci_suppression_facts: compartment_id: 'ocid1.compartment..xxxxxEXAMPLExxxxx' # Fetch Suppression with specific Email Address - name: List suppression in a compartment, filetered by Email Address oci_suppression_facts: compartment_id: 'ocid1.compartment..xxxxxEXAMPLExxxxx' email_address: '<EMAIL>' # Fetch Suppression filtered by time_created_greater_than_or_equal_to - name: List Suppression in a compartment, filetered by time_created_greater_than_or_equal_to oci_suppression_facts: compartment_id: 'ocid1.compartment..xxxxxEXAMPLExxxxx' time_created_greater_than_or_equal_to: '2018-10-31T09:27:14Z' # Fetch Suppression filtered by time_created_less_than - name: List Suppression in a compartment, filetered by time_created_less_than oci_suppression_facts: compartment_id: 'ocid1.compartment..xxxxxEXAMPLExxxxx' time_created_less_than: '2018-10-31T09:27:14Z' # Fetch Suppression filtered by time_created_greater_than_or_equal_to and time_created_less_than - name: List Suppression in a compartment, filetered by time_created_greater_than_or_equal_to and time_created_less_than oci_suppression_facts: compartment_id: 'ocid1.compartment..xxxxxEXAMPLExxxxx' time_created_greater_than_or_equal_to: '2018-10-31T09:25:14Z' time_created_less_than: '2018-10-31T09:27:14Z' # Fetch a specific Suppression - name: List a specific Suppression oci_suppression_facts: suppression_id: 'ocid1.emailsuppression.oc1..xxxxxEXAMPLExxxxx..qndq' """ RETURN = """ suppressions: description: Attributes of the Fetched Suppression. returned: success type: complex contains: email_address: description: Email Address of the Suppression returned: always type: string sample: <EMAIL> reason: description: The reason that the email address was suppressed. returned: always type: string sample: MANUAL time_created: description: Date and time when the Suppression was created, in the format defined by RFC3339 returned: always type: datetime sample: 2016-08-25T21:10:29.600Z id: description: The identifier of the Suppression returned: always type: string sample: ocid1.emailsuppression.oc1.xzvf..xxxxxEXAMPLExxxxx sample: [{ "email_address":"<EMAIL>", "id":"ocid1.emailsuppression.oc1.iad.xxxxxEXAMPLExxxxx", "reason":"MANUAL", "time_created":"2018-10-31T09:20:52.245000+00:00" }, { "email_address":"<EMAIL>", "id":"ocid1.emailsuppression.oc1.iad.xxxxxEXAMPLExxxxx", "reason":"MANUAL", "time_created":"2018-10-31T09:25:52.245000+00:00" }] """ from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.oracle import oci_utils try: from oci.email.email_client import EmailClient from oci.exceptions import ServiceError from oci.util import to_dict HAS_OCI_PY_SDK = True except ImportError: HAS_OCI_PY_SDK = False logger = None def list_suppressions(email_client, module): result = dict(suppressions="") compartment_id = module.params.get("compartment_id") suppression_id = module.params.get("suppression_id") try: if compartment_id: get_logger().debug( "Listing all suppressions under compartment %s", compartment_id ) optional_list_method_params = [ "email_address", "time_created_greater_than_or_equal_to", "time_created_less_than", ] optional_kwargs = dict( (param, module.params[param]) for param in optional_list_method_params if module.params.get(param) is not None ) existing_suppressions_summary = to_dict( oci_utils.list_all_resources( email_client.list_suppressions, compartment_id=compartment_id, **optional_kwargs ) ) existing_suppressions = [ oci_utils.call_with_backoff( email_client.get_suppression, suppression_id=suppression["id"] ).data for suppression in existing_suppressions_summary ] elif suppression_id: get_logger().debug("Listing suppression %s", suppression_id) response = oci_utils.call_with_backoff( email_client.get_suppression, suppression_id=suppression_id ) existing_suppressions = [response.data] except ServiceError as ex: get_logger().error("Unable to list suppressions due to %s", ex.message) module.fail_json(msg=ex.message) result["suppressions"] = to_dict(existing_suppressions) return result def set_logger(input_logger): global logger logger = input_logger def get_logger(): return logger def main(): logger = oci_utils.get_logger("oci_suppression_facts") set_logger(logger) module_args = oci_utils.get_common_arg_spec() module_args.update( dict( compartment_id=dict(type="str", required=False), suppression_id=dict(type="str", required=False, aliases=["id"]), time_created_greater_than_or_equal_to=dict(type="str", required=False), time_created_less_than=dict(type="str", required=False), email_address=dict(type=str, required=False), ) ) module = AnsibleModule( argument_spec=module_args, mutually_exclusive=[["compartment_id", "suppression_id"]], ) if not HAS_OCI_PY_SDK: module.fail_json(msg="oci python sdk required for this module") email_client = oci_utils.create_service_client(module, EmailClient) result = list_suppressions(email_client, module) module.exit_json(**result) if __name__ == "__main__": main()
L1Trigger/L1TMuonBarrel/test/kalmanTools/validation.py
ckamtsikis/cmssw
852
11152186
<reponame>ckamtsikis/cmssw<filename>L1Trigger/L1TMuonBarrel/test/kalmanTools/validation.py from __future__ import print_function import ROOT,itertools,math # from array import array # from DataFormats.FWLite import Events, Handle ROOT.FWLiteEnabler.enable() # tag='output' ##A class to keep BMTF data ###Common methods############ def fetchStubsOLD(event,ontime=False,isData=True): phiSeg = Handle ('L1MuDTChambPhContainer') if not isData: event.getByLabel('simTwinMuxDigis',phiSeg) else: event.getByLabel('bmtfDigis',phiSeg) if ontime: filtered=filter(lambda x: x.bxNum()==0, phiSeg.product().getContainer()) return filtered else: return phiSeg.product().getContainer() def fetchStubs(event,ontime=True): phiSeg2 = Handle ('std::vector<L1MuKBMTCombinedStub>') event.getByLabel('simKBmtfStubs',phiSeg2) if ontime: filtered=filter(lambda x: x.bxNum()==0, phiSeg2.product()) return filtered else: return phiSeg2.product() def globalBMTFPhi(muon): temp=muon.processor()*48+muon.hwPhi() temp=temp*2*math.pi/576.0-math.pi*15.0/180.0; if temp>math.pi: temp=temp-2*math.pi; K=1.0/muon.hwPt() if muon.hwSign()>0: K=-1.0/muon.hwPt() return temp+5.740*K def fetchKMTF(event,etaMax,collection): kbmtfH = Handle ('BXVector<l1t::RegionalMuonCand>') event.getByLabel(collection,kbmtfH) kbmtf=kbmtfH.product() kbmtfMuons={} for bx in [-3,-2,-1,0,1,2,3]: kbmtfMuons[bx]=[] for bx in range(kbmtf.getFirstBX(),kbmtf.getLastBX()+1): for j in range(0,kbmtf.size(bx)): mu = kbmtf.at(bx,j) kbmtfMuons[bx].append(mu) # kbmtfMuons[bx]=sorted(kbmtfMuons[bx],key=lambda x: x.hwPt(),reverse=True) return kbmtfMuons def curvResidual(a,b): return (a.charge()/a.pt()-b.charge()/b.pt())*b.pt()/b.charge() def ptResidual(a,b): return (a.pt()-b.pt())/b.pt() def curvResidualSTA(a,b): return (a.charge()/a.ptUnconstrained()-b.charge()/b.pt())*b.pt()/b.charge() def deltaPhi( p1, p2): '''Computes delta phi, handling periodic limit conditions.''' res = p1 - p2 while res > math.pi: res -= 2*math.pi while res < -math.pi: res += 2*math.pi return res def deltaR( *args ): return math.sqrt( deltaR2(*args) ) def deltaR2( e1, p1, e2, p2): de = e1 - e2 dp = deltaPhi(p1, p2) return de*de + dp*dp def log(event,counter,mystubs,kmtf,bmtf): print("--------EVENT"+str(counter)+"------------") print('RUN={run} LUMI={lumi} EVENT={event}'.format(run=event.eventAuxiliary().id().run(),lumi=event.eventAuxiliary().id().luminosityBlock(),event=event.eventAuxiliary().id().event())) print("-----------------------------") print("-----------------------------") print('Stubs:') for stub in mystubs: print('wheel={w} sector={sc} station={st} high/low={ts} phi={phi} phiB={phiB} qual={qual} BX={BX}'.format(w=stub.whNum(),sc=stub.scNum(),st=stub.stNum(),ts=stub.Ts2Tag(),phi=stub.phi(),phiB=stub.phiB(),qual=stub.code(),BX=stub.bxNum())) print('EMU:') for g in bmtf : print("EMU sector={sector} pt={pt} eta={eta} phi={phi} qual={qual} dxy={dxy} pt2={pt2} hasFineEta={HF}".format(sector=g.processor(), pt=g.hwPt(),eta=g.hwEta(),phi=g.hwPhi(),qual=g.hwQual(),dxy=g.hwDXY(),pt2=g.hwPtUnconstrained(),HF=g.hwHF())) print('DATA:') for g in kmtf : print("DATA sector={sector} pt={pt} eta={eta} phi={phi} qual={qual} dxy={dxy} pt2={pt2} hasFineEta={HF}".format(sector=g.processor(),pt=g.hwPt(),eta=g.hwEta(),phi=g.hwPhi(),qual=g.hwQual(),dxy=g.hwDXY(),pt2=g.hwPtUnconstrained(),HF=g.hwHF())) print("-----------------------------") print("-----------------------------") print("c + enter to continue") import pdb;pdb.set_trace() ############################### #########Histograms############# histos={} histos['fw']={} histos['fw']['pt1']=ROOT.TH1D("fw_pt1","HW p_{T}",512,0,511) histos['fw']['eta1']=ROOT.TH1D("fw_eta1","HW #eta",256,-127,128) histos['fw']['phi1']=ROOT.TH1D("fw_phi1","HW #phi",256,-127,128) histos['fw']['HF1']=ROOT.TH1D("fw_HF1","HW HF",256,-127,128) histos['fw']['qual1']=ROOT.TH1D("fw_qual1","HW qual",16,0,16) histos['fw']['dxy1']=ROOT.TH1D("fw_dxy1","HW DXY",4,0,4) histos['fw']['ptSTA1']=ROOT.TH1D("fw_ptSTA1","HW STA PT",256,0,255) histos['fw']['pt2']=ROOT.TH1D("fw_pt2","HW p_{T}",512,0,511) histos['fw']['eta2']=ROOT.TH1D("fw_eta2","HW #eta",256,-127,128) histos['fw']['phi2']=ROOT.TH1D("fw_phi2","HW #phi",256,-127,128) histos['fw']['HF2']=ROOT.TH1D("fw_HF2","HW HF",256,-127,128) histos['fw']['qual2']=ROOT.TH1D("fw_qual2","HW qual",16,0,16) histos['fw']['dxy2']=ROOT.TH1D("fw_dxy2","HW DXY",4,0,4) histos['fw']['ptSTA2']=ROOT.TH1D("fw_ptSTA2","HW STA PT",256,0,255) histos['fw']['pt3']=ROOT.TH1D("fw_pt3","HW p_{T}",512,0,511) histos['fw']['eta3']=ROOT.TH1D("fw_eta3","HW #eta",256,-127,128) histos['fw']['phi3']=ROOT.TH1D("fw_phi3","HW #phi",256,-127,128) histos['fw']['HF3']=ROOT.TH1D("fw_HF3","HW HF",256,-127,128) histos['fw']['qual3']=ROOT.TH1D("fw_qual3","HW qual",16,0,16) histos['fw']['dxy3']=ROOT.TH1D("fw_dxy3","HW DXY",4,0,4) histos['fw']['ptSTA3']=ROOT.TH1D("fw_ptSTA3","HW STA PT",256,0,255) histos['emu']={} histos['emu']['pt1']=ROOT.TH1D("emu_pt1","HW p_{T}",512,0,511) histos['emu']['eta1']=ROOT.TH1D("emu_eta1","HW #eta",256,-127,128) histos['emu']['phi1']=ROOT.TH1D("emu_phi1","HW #phi",256,-127,128) histos['emu']['HF1']=ROOT.TH1D("emu_HF1","HW HF",256,-127,128) histos['emu']['qual1']=ROOT.TH1D("emu_qual1","HW qual",16,0,16) histos['emu']['dxy1']=ROOT.TH1D("emu_dxy1","HW DXY",4,0,4) histos['emu']['ptSTA1']=ROOT.TH1D("emu_ptSTA1","HW STA PT",256,0,255) histos['emu']['pt2']=ROOT.TH1D("emu_pt2","HW p_{T}",512,0,511) histos['emu']['eta2']=ROOT.TH1D("emu_eta2","HW #eta",256,-127,128) histos['emu']['phi2']=ROOT.TH1D("emu_phi2","HW #phi",256,-127,128) histos['emu']['HF2']=ROOT.TH1D("emu_HF2","HW HF",256,-127,128) histos['emu']['qual2']=ROOT.TH1D("emu_qual2","HW qual",16,0,16) histos['emu']['dxy2']=ROOT.TH1D("emu_dxy2","HW DXY",4,0,4) histos['emu']['ptSTA2']=ROOT.TH1D("emu_ptSTA2","HW STA PT",256,0,255) histos['emu']['pt3']=ROOT.TH1D("emu_pt3","HW p_{T}",512,0,511) histos['emu']['eta3']=ROOT.TH1D("emu_eta3","HW #eta",256,-127,128) histos['emu']['phi3']=ROOT.TH1D("emu_phi3","HW #phi",256,-127,128) histos['emu']['HF3']=ROOT.TH1D("emu_HF3","HW HF",256,-127,128) histos['emu']['qual3']=ROOT.TH1D("emu_qual3","HW qual",16,0,16) histos['emu']['dxy3']=ROOT.TH1D("emu_dxy3","HW DXY",4,0,4) histos['emu']['ptSTA3']=ROOT.TH1D("emu_ptSTA3","HW STA PT",256,0,255) for key,histo in histos['fw'].iteritems(): histo.Sumw2() def fill(info,mu): if len(mu)>0: info['pt1'].Fill(mu[0].hwPt()) info['eta1'].Fill(mu[0].hwEta()) info['phi1'].Fill(mu[0].hwPhi()) info['HF1'].Fill(mu[0].hwHF()) info['qual1'].Fill(mu[0].hwQual()) info['dxy1'].Fill(mu[0].hwDXY()) info['ptSTA1'].Fill(mu[0].hwPtUnconstrained()) else: info['pt1'].Fill(0) info['eta1'].Fill(0) info['phi1'].Fill(0) info['HF1'].Fill(0) info['qual1'].Fill(0) info['dxy1'].Fill(0) info['ptSTA1'].Fill(0) if len(mu)>1: info['pt2'].Fill(mu[1].hwPt()) info['eta2'].Fill(mu[1].hwEta()) info['phi2'].Fill(mu[1].hwPhi()) info['HF2'].Fill(mu[1].hwHF()) info['qual2'].Fill(mu[1].hwQual()) info['dxy2'].Fill(mu[1].hwDXY()) info['ptSTA2'].Fill(mu[1].hwPtUnconstrained()) else: info['pt2'].Fill(0) info['eta2'].Fill(0) info['phi2'].Fill(0) info['HF2'].Fill(0) info['qual2'].Fill(0) info['dxy2'].Fill(0) info['ptSTA2'].Fill(0) if len(mu)>2: info['pt3'].Fill(mu[2].hwPt()) info['eta3'].Fill(mu[2].hwEta()) info['phi3'].Fill(mu[2].hwPhi()) info['HF3'].Fill(mu[2].hwHF()) info['qual3'].Fill(mu[2].hwQual()) info['dxy3'].Fill(mu[2].hwDXY()) info['ptSTA3'].Fill(mu[2].hwPtUnconstrained()) else: info['pt3'].Fill(0) info['eta3'].Fill(0) info['phi3'].Fill(0) info['HF3'].Fill(0) info['qual3'].Fill(0) info['dxy3'].Fill(0) info['ptSTA3'].Fill(0) ############################## BUNCHES=[0] events=Events([tag+'.root']) counter=-1 for event in events: counter=counter+1 #fetch stubs stubs=fetchStubsOLD(event,True) unpacker=fetchKMTF(event,100.0,'bmtfDigis:kBMTF') emulator=fetchKMTF(event,100.0,'simKBmtfDigis:BMTF') for processor in range(0,12): for bx in BUNCHES: emu=filter(lambda x: x.processor()==processor,emulator[bx]) data=filter(lambda x: x.processor()==processor,unpacker[bx]) if (len(emu)+len(data))>0: fill(histos['emu'],emu) fill(histos['fw'],data) # if len(emu)!=0 and len(data)==0: # log(event,counter,stubs,data,emu) # import pdb;pdb.set_trace() f=ROOT.TFile("validationResults.root","RECREATE") for key,histo in histos['fw'].iteritems(): histo.SetMarkerStyle(7) histo.Write() for key,histo in histos['emu'].iteritems(): histo.SetLineColor(ROOT.kRed) histo.Write() #make fancy plots histonames=['pt1','eta1','phi1','HF1','qual1','dxy1','ptSTA1'] for h in histonames: c=ROOT.TCanvas(h) c.cd() histos['emu'][h].Draw("HIST") histos['emu'][h].GetXaxis().SetTitle(histos['emu'][h].GetTitle()) histos['emu'][h].GetYaxis().SetTitle("events") histos['fw'][h].Draw("SAME") c.SetLogy() l=ROOT.TLegend(0.6,0.6,0.9,0.8) l.AddEntry(histos['emu'][h],"emulator","l") l.AddEntry(histos['fw'][h],"data","p") l.Draw() c.Write("plot_"+h) f.Close()
code/baseline_ptbdb_transfer_fullupdate.py
Dr-Anonymous/ECG_Heartbeat_Classification
123
11152202
<filename>code/baseline_ptbdb_transfer_fullupdate.py import pandas as pd import numpy as np from keras import optimizers, losses, activations, models from keras.callbacks import ModelCheckpoint, EarlyStopping, LearningRateScheduler, ReduceLROnPlateau from keras.layers import Dense, Input, Dropout, Convolution1D, MaxPool1D, GlobalMaxPool1D, GlobalAveragePooling1D, \ concatenate from sklearn.metrics import accuracy_score, f1_score from sklearn.model_selection import train_test_split df_1 = pd.read_csv("../input/ptbdb_normal.csv", header=None) df_2 = pd.read_csv("../input/ptbdb_abnormal.csv", header=None) df = pd.concat([df_1, df_2]) df_train, df_test = train_test_split(df, test_size=0.2, random_state=1337, stratify=df[187]) Y = np.array(df_train[187].values).astype(np.int8) X = np.array(df_train[list(range(187))].values)[..., np.newaxis] Y_test = np.array(df_test[187].values).astype(np.int8) X_test = np.array(df_test[list(range(187))].values)[..., np.newaxis] def get_model(): nclass = 1 inp = Input(shape=(187, 1)) img_1 = Convolution1D(16, kernel_size=5, activation=activations.relu, padding="valid")(inp) img_1 = Convolution1D(16, kernel_size=5, activation=activations.relu, padding="valid")(img_1) img_1 = MaxPool1D(pool_size=2)(img_1) img_1 = Dropout(rate=0.1)(img_1) img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1) img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1) img_1 = MaxPool1D(pool_size=2)(img_1) img_1 = Dropout(rate=0.1)(img_1) img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1) img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1) img_1 = MaxPool1D(pool_size=2)(img_1) img_1 = Dropout(rate=0.1)(img_1) img_1 = Convolution1D(256, kernel_size=3, activation=activations.relu, padding="valid")(img_1) img_1 = Convolution1D(256, kernel_size=3, activation=activations.relu, padding="valid")(img_1) img_1 = GlobalMaxPool1D()(img_1) img_1 = Dropout(rate=0.2)(img_1) dense_1 = Dense(64, activation=activations.relu, name="dense_1")(img_1) dense_1 = Dense(64, activation=activations.relu, name="dense_2")(dense_1) dense_1 = Dense(nclass, activation=activations.sigmoid, name="dense_3_ptbdb")(dense_1) model = models.Model(inputs=inp, outputs=dense_1) opt = optimizers.Adam(0.001) model.compile(optimizer=opt, loss=losses.binary_crossentropy, metrics=['acc']) model.summary() return model model = get_model() file_path = "baseline_cnn_ptbdb_transfer_fullupdate.h5" checkpoint = ModelCheckpoint(file_path, monitor='val_acc', verbose=1, save_best_only=True, mode='max') early = EarlyStopping(monitor="val_acc", mode="max", patience=5, verbose=1) redonplat = ReduceLROnPlateau(monitor="val_acc", mode="max", patience=3, verbose=2) callbacks_list = [checkpoint, early, redonplat] # early model.load_weights("baseline_cnn_mitbih.h5", by_name=True) model.fit(X, Y, epochs=1000, verbose=2, callbacks=callbacks_list, validation_split=0.1) model.load_weights(file_path) pred_test = model.predict(X_test) pred_test = (pred_test>0.5).astype(np.int8) f1 = f1_score(Y_test, pred_test) print("Test f1 score : %s "% f1) acc = accuracy_score(Y_test, pred_test) print("Test accuracy score : %s "% acc)
setup.py
songhongxiang/symoro
109
11152225
#!/usr/bin/env python # -*- coding: utf-8 -*- import os from setuptools import setup, find_packages BIN_FOLDER = 'bin' def readme(): with open('README.md') as f: return f.read() def apply_folder_join(item): return os.path.join(BIN_FOLDER, item) if os.name is 'nt': bin_scripts = ['symoro-bin.py'] else: bin_scripts = ['symoro-bin'] bin_scripts = map(apply_folder_join, bin_scripts) setup( name='symoro', version='0.2', description='SYmoblic MOdelling of RObots software package', url='http://github.com/symoro/symoro', license='MIT', scripts=bin_scripts, packages=find_packages(exclude=['*.tests', '*.tests.*', 'tests.*', 'tests']), install_requires=[ 'sympy==0.7.3', 'numpy>=1.6.1', 'wxPython>=2.8.11', 'PyOpenGL>=3.0.1b2' ], dependency_links=[ 'https://github.com/sympy/sympy/archive/sympy-0.7.3.zip' ], zip_safe=False )
lib/django-0.96/django/middleware/gzip.py
MiCHiLU/google_appengine_sdk
790
11152231
<reponame>MiCHiLU/google_appengine_sdk<gh_stars>100-1000 import re from django.utils.text import compress_string from django.utils.cache import patch_vary_headers re_accepts_gzip = re.compile(r'\bgzip\b') class GZipMiddleware(object): """ This middleware compresses content if the browser allows gzip compression. It sets the Vary header accordingly, so that caches will base their storage on the Accept-Encoding header. """ def process_response(self, request, response): patch_vary_headers(response, ('Accept-Encoding',)) # Avoid gzipping if we've already got a content-encoding or if the # content-type is Javascript (silly IE...) is_js = "javascript" in response.headers.get('Content-Type', '').lower() if response.has_header('Content-Encoding') or is_js: return response ae = request.META.get('HTTP_ACCEPT_ENCODING', '') if not re_accepts_gzip.search(ae): return response response.content = compress_string(response.content) response['Content-Encoding'] = 'gzip' response['Content-Length'] = str(len(response.content)) return response
tests/api/test_deploy_queue.py
sobolevn/paasta
1,711
11152245
<reponame>sobolevn/paasta # Copyright 2015-2020 Yelp Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import mock from zake.fake_client import FakeClient from paasta_tools.api import settings from paasta_tools.api.views import deploy_queue from paasta_tools.deployd.common import ServiceInstance from paasta_tools.utils import SystemPaastaConfig @mock.patch("paasta_tools.api.views.deploy_queue.KazooClient", autospec=True) @mock.patch("paasta_tools.api.views.deploy_queue.ZKDelayDeadlineQueue", autospec=True) def test_list_deploy_queue(mock_delay_deadline_queue_class, mock_kazoo_client): mock_request = mock.Mock() settings.system_paasta_config = mock.create_autospec(SystemPaastaConfig) mock_kazoo_client.return_value = FakeClient() available_service_instance = ServiceInstance( service="fake_service1", instance="fake_instance1", watcher="worker0", bounce_by=1577952000, wait_until=1577952000, enqueue_time=1577952000, bounce_start_time=1577952000, failures=1, processed_count=2, ) unavailable_service_instance = ServiceInstance( service="fake_service2", instance="fake_instance2", watcher="worker1", bounce_by=1577952100, wait_until=1577952200, enqueue_time=1577952100, bounce_start_time=1577952100, failures=2, processed_count=3, ) mock_delay_deadline_queue = mock_delay_deadline_queue_class.return_value mock_delay_deadline_queue.get_available_service_instances.return_value = [ (mock.Mock(), available_service_instance) ] mock_delay_deadline_queue.get_unavailable_service_instances.return_value = [ (mock.Mock(), mock.Mock(), unavailable_service_instance) ] output = deploy_queue.list_deploy_queue(mock_request) assert output == { "available_service_instances": [ { "service": "fake_service1", "instance": "fake_instance1", "watcher": "worker0", "bounce_by": 1577952000, "wait_until": 1577952000, "enqueue_time": 1577952000, "bounce_start_time": 1577952000, "failures": 1, "processed_count": 2, } ], "unavailable_service_instances": [ { "service": "fake_service2", "instance": "fake_instance2", "watcher": "worker1", "bounce_by": 1577952100, "wait_until": 1577952200, "enqueue_time": 1577952100, "bounce_start_time": 1577952100, "failures": 2, "processed_count": 3, } ], }
vendor-local/lib/python/south/tests/brokenapp/models.py
glogiotatidis/affiliates
285
11152253
# -*- coding: UTF-8 -*- from django.db import models from django.contrib.auth.models import User as UserAlias def default_func(): return "yays" # An empty case. class Other1(models.Model): pass # Nastiness. class HorribleModel(models.Model): "A model to test the edge cases of model parsing" ZERO, ONE = range(2) # First, some nice fields name = models.CharField(max_length=255) short_name = models.CharField(max_length=50) slug = models.SlugField(unique=True) # A ForeignKey, to a model above, and then below o1 = models.ForeignKey(Other1) o2 = models.ForeignKey('Other2') # Now to something outside user = models.ForeignKey(UserAlias, related_name="horribles") # Unicode! code = models.CharField(max_length=25, default="↑↑↓↓←→←→BA") # Odd defaults! class_attr = models.IntegerField(default=ZERO) func = models.CharField(max_length=25, default=default_func) # Time to get nasty. Define a non-field choices, and use it choices = [('hello', '1'), ('world', '2')] choiced = models.CharField(max_length=20, choices=choices) class Meta: db_table = "my_fave" verbose_name = "Dr. Strangelove," + \ """or how I learned to stop worrying and love the bomb""" # Now spread over multiple lines multiline = \ models.TextField( ) # Special case. class Other2(models.Model): # Try loading a field without a newline after it (inspect hates this) close_but_no_cigar = models.PositiveIntegerField(primary_key=True)
tests/trac/test-trac-0207.py
eLBati/pyxb
123
11152257
# -*- coding: utf-8 -*- import logging if __name__ == '__main__': logging.basicConfig() _log = logging.getLogger(__name__) import pyxb import pyxb.utils.utility import pyxb.binding.datatypes as xsd from pyxb.utils.six.moves import cPickle as pickle import unittest class TestTrac0207 (unittest.TestCase): def testDuration (self): dur = xsd.duration("P10675199DT2H48M5.4775807S") self.assertEqual(dur.days, 10675199) self.assertEqual(dur.seconds, 10085) self.assertEqual(dur.microseconds, 477580) serialized = pickle.dumps(dur) xdur = pickle.loads(serialized) self.assertEqual(dur, xdur) def testDateTime (self): now = xsd.dateTime.now() serialized = pickle.dumps(now) xnow = pickle.loads(serialized) self.assertEqual(now, xnow) if __name__ == '__main__': unittest.main()
setup.py
Hamz-a/frida-ios-hook
354
11152274
<filename>setup.py import os from setuptools import setup, find_packages def _package_files(directory: str, suffix: str) -> list: """ Get all of the file paths in the directory specified by suffix. :param directory: :return: """ paths = [] for (path, directories, filenames) in os.walk(directory): for filename in filenames: if filename.endswith(suffix): paths.append(os.path.join('..', path, filename)) return paths with open ("README.md", "r") as fh: long_description = fh.read() path = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(path, 'requirements.txt'), 'r') as f: requirements = f.readlines() setup( name='Frida-iOS-Hook', version='3.4', description='Trace Class/Function & Modify Return Value', author='noobpk', author_email='<EMAIL>', long_description =long_description, long_description_content_type="text/markdown", url='https://github.com/noobpk/frida-ios-hook/', packages=find_packages(), # include other files package_data={ '': _package_files(os.path.join(path, 'frida-ios-hook'), '.js') + _package_files(os.path.join(path, 'frida-ios-hook/frida-scripts'), '.js') + _package_files(os.path.join(path, 'frida-ios-hook/methods'), '.js') }, install_requires=requirements, classifiers=[ "Programming Language :: Python :: 3 :: Only", 'Natural Language :: English', "License :: OSI Approved :: MIT License", "Operating System :: OS Independent" ], python_requires='>=3.0', entry_points={ 'console_scripts': [ 'ioshook=core.hook.run:run', ], }, )
alipay/aop/api/domain/AlipayEcoPrinterStatusNotifyModel.py
antopen/alipay-sdk-python-all
213
11152289
<filename>alipay/aop/api/domain/AlipayEcoPrinterStatusNotifyModel.py #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AlipayEcoPrinterStatusNotifyModel(object): def __init__(self): self._eprint_sign = None self._machine_code = None self._oauth_type = None self._online = None self._push_time = None @property def eprint_sign(self): return self._eprint_sign @eprint_sign.setter def eprint_sign(self, value): self._eprint_sign = value @property def machine_code(self): return self._machine_code @machine_code.setter def machine_code(self, value): self._machine_code = value @property def oauth_type(self): return self._oauth_type @oauth_type.setter def oauth_type(self, value): self._oauth_type = value @property def online(self): return self._online @online.setter def online(self, value): self._online = value @property def push_time(self): return self._push_time @push_time.setter def push_time(self, value): self._push_time = value def to_alipay_dict(self): params = dict() if self.eprint_sign: if hasattr(self.eprint_sign, 'to_alipay_dict'): params['eprint_sign'] = self.eprint_sign.to_alipay_dict() else: params['eprint_sign'] = self.eprint_sign if self.machine_code: if hasattr(self.machine_code, 'to_alipay_dict'): params['machine_code'] = self.machine_code.to_alipay_dict() else: params['machine_code'] = self.machine_code if self.oauth_type: if hasattr(self.oauth_type, 'to_alipay_dict'): params['oauth_type'] = self.oauth_type.to_alipay_dict() else: params['oauth_type'] = self.oauth_type if self.online: if hasattr(self.online, 'to_alipay_dict'): params['online'] = self.online.to_alipay_dict() else: params['online'] = self.online if self.push_time: if hasattr(self.push_time, 'to_alipay_dict'): params['push_time'] = self.push_time.to_alipay_dict() else: params['push_time'] = self.push_time return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayEcoPrinterStatusNotifyModel() if 'eprint_sign' in d: o.eprint_sign = d['eprint_sign'] if 'machine_code' in d: o.machine_code = d['machine_code'] if 'oauth_type' in d: o.oauth_type = d['oauth_type'] if 'online' in d: o.online = d['online'] if 'push_time' in d: o.push_time = d['push_time'] return o
netpyne/network/__init__.py
adamjhn/netpyne
120
11152297
""" Package for dealing with network models """ from __future__ import unicode_literals from __future__ import print_function from __future__ import division from __future__ import absolute_import from future import standard_library standard_library.install_aliases() from .network import Network from .pop import Pop
samcli/lib/utils/lock_distributor.py
praneetap/aws-sam-cli
2,285
11152299
"""LockDistributor for creating and managing a set of locks""" import threading import multiprocessing import multiprocessing.managers from typing import Dict, Set, Optional, cast from enum import Enum, auto class LockChain: """Wrapper class for acquiring multiple locks in the same order to prevent dead locks Can be used with `with` statement""" def __init__(self, lock_mapping: Dict[str, threading.Lock]): """ Parameters ---------- lock_mapping : Dict[str, threading.Lock] Dictionary of locks with keys being used as generating reproduciable order for aquiring and releasing locks. """ self._locks = [value for _, value in sorted(lock_mapping.items())] def acquire(self) -> None: """Aquire all locks in the LockChain""" for lock in self._locks: lock.acquire() def release(self) -> None: """Release all locks in the LockChain""" for lock in self._locks: lock.release() def __enter__(self) -> "LockChain": self.acquire() return self def __exit__(self, exception_type, exception_value, traceback) -> None: self.release() class LockDistributorType(Enum): """Types of LockDistributor""" THREAD = auto() PROCESS = auto() class LockDistributor: """Dynamic lock distributor that supports threads and processes. In the case of processes, both manager(server process) or shared memory can be used. """ _lock_type: LockDistributorType _manager: Optional[multiprocessing.managers.SyncManager] _dict_lock: threading.Lock _locks: Dict[str, threading.Lock] def __init__( self, lock_type: LockDistributorType = LockDistributorType.THREAD, manager: Optional[multiprocessing.managers.SyncManager] = None, ): """[summary] Parameters ---------- lock_type : LockDistributorType, optional Whether locking with threads or processes, by default LockDistributorType.THREAD manager : Optional[multiprocessing.managers.SyncManager], optional Optional process sync mananger for creating proxy locks, by default None """ self._lock_type = lock_type self._manager = manager self._dict_lock = self._create_new_lock() self._locks = ( self._manager.dict() if self._lock_type == LockDistributorType.PROCESS and self._manager is not None else dict() ) def _create_new_lock(self) -> threading.Lock: """Create a new lock based on lock type Returns ------- threading.Lock Newly created lock """ if self._lock_type == LockDistributorType.THREAD: return threading.Lock() return self._manager.Lock() if self._manager is not None else cast(threading.Lock, multiprocessing.Lock()) def get_lock(self, key: str) -> threading.Lock: """Retrieve a lock associating with the key If the lock does not exist, a new lock will be created. Parameters ---------- key : Key for retrieving the lock Returns ------- threading.Lock Lock associated with the key """ with self._dict_lock: if key not in self._locks: self._locks[key] = self._create_new_lock() return self._locks[key] def get_locks(self, keys: Set[str]) -> Dict[str, threading.Lock]: """Retrieve a list of locks associating with keys Parameters ---------- keys : Set[str] Set of keys for retrieving the locks Returns ------- Dict[str, threading.Lock] Dictionary mapping keys to locks """ lock_mapping = dict() for key in keys: lock_mapping[key] = self.get_lock(key) return lock_mapping def get_lock_chain(self, keys: Set[str]) -> LockChain: """Similar to get_locks, but retrieves a LockChain object instead of a dictionary Parameters ---------- keys : Set[str] Set of keys for retrieving the locks Returns ------- LockChain LockChain object containing all the locks associated with keys """ return LockChain(self.get_locks(keys))
src/py-opentimelineio/opentimelineio/console/otiocat.py
desruie/OpenTimelineIO
1,021
11152353
#!/usr/bin/env python # # Copyright Contributors to the OpenTimelineIO project # # Licensed under the Apache License, Version 2.0 (the "Apache License") # with the following modification; you may not use this file except in # compliance with the Apache License and the following modification to it: # Section 6. Trademarks. is deleted and replaced with: # # 6. Trademarks. This License does not grant permission to use the trade # names, trademarks, service marks, or product names of the Licensor # and its affiliates, except as required to comply with Section 4(c) of # the License and to reproduce the content of the NOTICE file. # # You may obtain a copy of the Apache License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the Apache License with the above modification is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the Apache License for the specific # language governing permissions and limitations under the Apache License. # """Print the contents of an OTIO file to stdout.""" import argparse import sys import opentimelineio as otio def _parsed_args(): """ parse commandline arguments with argparse """ parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( 'filepath', type=str, nargs='+', help='files to print the contents of' ) parser.add_argument( '-a', '--adapter-arg', type=str, default=[], action='append', help='Extra arguments to be passed to input adapter in the form of ' 'key=value. Values are strings, numbers or Python literals: True, ' 'False, etc. Can be used multiple times: -a burrito="bar" -a taco=12.' ) parser.add_argument( '-m', '--media-linker', type=str, default="Default", help=( "Specify a media linker. 'Default' means use the " "$OTIO_DEFAULT_MEDIA_LINKER if set, 'None' or '' means explicitly " "disable the linker, and anything else is interpreted as the name" " of the media linker to use." ) ) parser.add_argument( '-H', '--hook-function-arg', type=str, default=[], action='append', help='Extra arguments to be passed to the hook functions in the form of ' 'key=value. Values are strings, numbers or Python literals: True, ' 'False, etc. Can be used multiple times: -H burrito="bar" -H taco=12.' ) parser.add_argument( '-M', '--media-linker-arg', type=str, default=[], action='append', help='Extra arguments to be passed to the media linker in the form of ' 'key=value. Values are strings, numbers or Python literals: True, ' 'False, etc. Can be used multiple times: -M burrito="bar" -M taco=12.' ) return parser.parse_args() def _otio_compatible_file_to_json_string( fpath, media_linker_name, hooks_args, media_linker_argument_map, adapter_argument_map ): """Read the file at fpath with the default otio adapter and return the json as a string. """ adapter = otio.adapters.from_name("otio_json") return adapter.write_to_string( otio.adapters.read_from_file( fpath, hook_function_argument_map=hooks_args, media_linker_name=media_linker_name, media_linker_argument_map=media_linker_argument_map, **adapter_argument_map ) ) def main(): """Parse arguments and call _otio_compatible_file_to_json_string.""" args = _parsed_args() media_linker_name = otio.console.console_utils.media_linker_name( args.media_linker ) try: read_adapter_arg_map = otio.console.console_utils.arg_list_to_map( args.adapter_arg, "adapter" ) hooks_args = otio.console.console_utils.arg_list_to_map( args.hook_function_arg, "hook function" ) media_linker_argument_map = otio.console.console_utils.arg_list_to_map( args.media_linker_arg, "media linker" ) except ValueError as exc: sys.stderr.write("\n" + str(exc) + "\n") sys.exit(1) for fpath in args.filepath: print( _otio_compatible_file_to_json_string( fpath, media_linker_name, hooks_args, media_linker_argument_map, read_adapter_arg_map ) ) if __name__ == '__main__': main()
mac/pyobjc-framework-Quartz/PyObjCTest/test_cifiltergenerator.py
albertz/music-player
132
11152389
from PyObjCTools.TestSupport import * from Quartz.QuartzCore import * try: unicode except NameError: unicode = str class TestCIFilterGenerator (TestCase): def testConstants(self): self.assertIsInstance(kCIFilterGeneratorExportedKey, unicode) self.assertIsInstance(kCIFilterGeneratorExportedKeyTargetObject, unicode) self.assertIsInstance(kCIFilterGeneratorExportedKeyName, unicode) def testMethods(self): self.assertResultIsBOOL(CIFilterGenerator.writeToURL_atomically_) self.assertArgIsBOOL(CIFilterGenerator.writeToURL_atomically_, 1) if __name__ == "__main__": main()
accounting/libs/templatetags/url_tags.py
Abdur-rahmaanJ/django-accounting
127
11152411
<filename>accounting/libs/templatetags/url_tags.py # encoding: utf-8 from django import template from django.http import QueryDict from classytags.core import Tag, Options from classytags.arguments import MultiKeywordArgument, MultiValueArgument register = template.Library() class QueryParameters(Tag): name = 'query' options = Options( MultiKeywordArgument('kwa'), ) def render_tag(self, context, kwa): q = QueryDict('').copy() q.update(kwa) return q.urlencode() register.tag(QueryParameters) class GetParameters(Tag): """ {% get_parameters [except_field, ] %} """ name = 'get_parameters' options = Options( MultiValueArgument('except_fields', required=False), ) def render_tag(self, context, except_fields): try: # If there's an exception (500), default context_processors may not # be called. request = context['request'] except KeyError: return context getvars = request.GET.copy() for field in except_fields: if field in getvars: del getvars[field] return getvars.urlencode() register.tag(GetParameters)
helper/linear_regression.py
dahjeong/gittest_ssh
639
11152457
<filename>helper/linear_regression.py import tensorflow as tf import numpy as np import scipy.io as sio import scipy.optimize as opt import pandas as pd import matplotlib.pyplot as plt from helper import general as general # support functions ------------------------------------------------------------ def load_data(): """for ex5 d['X'] shape = (12, 1) pandas has trouble taking this 2d ndarray to construct a dataframe, so I ravel the results """ d = sio.loadmat('ex5data1.mat') return map(np.ravel, [d['X'], d['y'], d['Xval'], d['yval'], d['Xtest'], d['ytest']]) def poly_features(x, power, as_ndarray=False): data = {'f{}'.format(i): np.power(x, i) for i in range(1, power + 1)} df = pd.DataFrame(data) return df.as_matrix() if as_ndarray else df def prepare_poly_data(*args, power): """ args: keep feeding in X, Xval, or Xtest will return in the same order """ def prepare(x): # expand feature df = poly_features(x, power=power) # normalization ndarr = general.normalize_feature(df).as_matrix() # add intercept term return np.insert(ndarr, 0, np.ones(ndarr.shape[0]), axis=1) return [prepare(x) for x in args] def plot_learning_curve(X, y, Xval, yval, l=0): training_cost, cv_cost = [], [] m = X.shape[0] for i in range(1, m + 1): # regularization applies here for fitting parameters res = linear_regression_np(X[:i, :], y[:i], l=l) # remember, when you compute the cost here, you are computing # non-regularized cost. Regularization is used to fit parameters only tc = cost(res.x, X[:i, :], y[:i]) cv = cost(res.x, Xval, yval) training_cost.append(tc) cv_cost.append(cv) plt.plot(np.arange(1, m + 1), training_cost, label='training cost') plt.plot(np.arange(1, m + 1), cv_cost, label='cv cost') plt.legend(loc=1) # linear regression functions -------------------------------------------------- def cost(theta, X, y): """ X: R(m*n), m records, n features y: R(m) theta : R(n), linear regression parameters """ m = X.shape[0] inner = X @ theta - y # R(m*1) # 1*m @ m*1 = 1*1 in matrix multiplication # but you know numpy didn't do transpose in 1d array, so here is just a # vector inner product to itselves square_sum = inner.T @ inner cost = square_sum / (2 * m) return cost def regularized_cost(theta, X, y, l=1): m = X.shape[0] regularized_term = (l / (2 * m)) * np.power(theta[1:], 2).sum() return cost(theta, X, y) + regularized_term def gradient(theta, X, y): m = X.shape[0] inner = X.T @ (X @ theta - y) # (m,n).T @ (m, 1) -> (n, 1) return inner / m def regularized_gradient(theta, X, y, l=1): m = X.shape[0] regularized_term = theta.copy() # same shape as theta regularized_term[0] = 0 # don't regularize intercept theta regularized_term = (l / m) * regularized_term return gradient(theta, X, y) + regularized_term def batch_gradient_decent(theta, X, y, epoch, alpha=0.01): """fit the linear regression, return the parameter and cost epoch: how many pass to run through whole batch """ cost_data = [cost(theta, X, y)] _theta = theta.copy() # don't want to mess up with original theta for _ in range(epoch): _theta = _theta - alpha * gradient(_theta, X, y) cost_data.append(cost(_theta, X, y)) return _theta, cost_data def linear_regression_np(X, y, l=1): """linear regression args: X: feature matrix, (m, n+1) # with incercept x0=1 y: target vector, (m, ) l: lambda constant for regularization return: trained parameters """ # init theta theta = np.ones(X.shape[1]) # train it res = opt.minimize(fun=regularized_cost, x0=theta, args=(X, y, l), method='TNC', jac=regularized_gradient, options={'disp': True}) return res def linear_regression(X_data, y_data, alpha, epoch, optimizer=tf.train.GradientDescentOptimizer): """tensorflow implementation""" # placeholder for graph input X = tf.placeholder(tf.float32, shape=X_data.shape) y = tf.placeholder(tf.float32, shape=y_data.shape) # construct the graph with tf.variable_scope('linear-regression'): W = tf.get_variable("weights", (X_data.shape[1], 1), initializer=tf.constant_initializer()) # n*1 y_pred = tf.matmul(X, W) # m*n @ n*1 -> m*1 loss = 1 / (2 * len(X_data)) * tf.matmul((y_pred - y), (y_pred - y), transpose_a=True) # (m*1).T @ m*1 = 1*1 opt = optimizer(learning_rate=alpha) opt_operation = opt.minimize(loss) # run the session with tf.Session() as sess: sess.run(tf.initialize_all_variables()) loss_data = [] for i in range(epoch): _, loss_val, W_val = sess.run([opt_operation, loss, W], feed_dict={X: X_data, y: y_data}) loss_data.append(loss_val[0, 0]) # because every loss_val is 1*1 ndarray if len(loss_data) > 1 and np.abs(loss_data[-1] - loss_data[-2]) < 10 ** -9: # early break when it's converged # print('Converged at epoch {}'.format(i)) break # clear the graph tf.reset_default_graph() return {'loss': loss_data, 'parameters': W_val} # just want to return in row vector format
release/stubs.min/Autodesk/Revit/DB/Lighting.py
htlcnn/ironpython-stubs
182
11152463
# encoding: utf-8 # module Autodesk.Revit.DB.Lighting calls itself Lighting # from RevitAPI,Version=17.0.0.0,Culture=neutral,PublicKeyToken=null # by generator 1.145 # no doc # no imports # no functions # classes class LossFactor(object,IDisposable): """ This class is the base class for calculating lighting loss factor. """ def Clone(self): """ Clone(self: LossFactor) -> LossFactor Creates a copy of the LossFactor derived object. """ pass def Dispose(self): """ Dispose(self: LossFactor) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: LossFactor,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass IsValidObject=property(lambda self: object(),lambda self,v: None,lambda self: None) """Specifies whether the .NET object represents a valid Revit entity. Get: IsValidObject(self: LossFactor) -> bool """ LossFactorValue=property(lambda self: object(),lambda self,v: None,lambda self: None) """The calculated loss factor value Get: LossFactorValue(self: LossFactor) -> float """ class AdvancedLossFactor(LossFactor,IDisposable): """ This class encapsulates advanced lighting loss factor calculation. AdvancedLossFactor(other: AdvancedLossFactor) AdvancedLossFactor(ballastLossFactorIn: float,lampLumenDepreciationIn: float,lampTiltLossFactorIn: float,luminaireDirtDepreciationIn: float,surfaceDepreciationLossFactorIn: float,temperatureLossFactorIn: float,voltageLossFactorIn: float) AdvancedLossFactor() """ def Dispose(self): """ Dispose(self: LossFactor,A_0: bool) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: LossFactor,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,*__args): """ __new__(cls: type,other: AdvancedLossFactor) __new__(cls: type,ballastLossFactorIn: float,lampLumenDepreciationIn: float,lampTiltLossFactorIn: float,luminaireDirtDepreciationIn: float,surfaceDepreciationLossFactorIn: float,temperatureLossFactorIn: float,voltageLossFactorIn: float) __new__(cls: type) """ pass BallastLossFactor=property(lambda self: object(),lambda self,v: None,lambda self: None) """The ballast loss factor. Get: BallastLossFactor(self: AdvancedLossFactor) -> float Set: BallastLossFactor(self: AdvancedLossFactor)=value """ LampLumenDepreciation=property(lambda self: object(),lambda self,v: None,lambda self: None) """The lamp lumen depreciation loss factor. Get: LampLumenDepreciation(self: AdvancedLossFactor) -> float Set: LampLumenDepreciation(self: AdvancedLossFactor)=value """ LampTiltLossFactor=property(lambda self: object(),lambda self,v: None,lambda self: None) """The lamp tilt loss factor. Get: LampTiltLossFactor(self: AdvancedLossFactor) -> float Set: LampTiltLossFactor(self: AdvancedLossFactor)=value """ LuminaireDirtDepreciation=property(lambda self: object(),lambda self,v: None,lambda self: None) """The luminaire dirt depreciation loss factor. Get: LuminaireDirtDepreciation(self: AdvancedLossFactor) -> float Set: LuminaireDirtDepreciation(self: AdvancedLossFactor)=value """ SurfaceDepreciationLossFactor=property(lambda self: object(),lambda self,v: None,lambda self: None) """The surface depreciation loss factor. Get: SurfaceDepreciationLossFactor(self: AdvancedLossFactor) -> float Set: SurfaceDepreciationLossFactor(self: AdvancedLossFactor)=value """ TemperatureLossFactor=property(lambda self: object(),lambda self,v: None,lambda self: None) """The temperature loss factor. Get: TemperatureLossFactor(self: AdvancedLossFactor) -> float Set: TemperatureLossFactor(self: AdvancedLossFactor)=value """ VoltageLossFactor=property(lambda self: object(),lambda self,v: None,lambda self: None) """The voltage loss factor. Get: VoltageLossFactor(self: AdvancedLossFactor) -> float Set: VoltageLossFactor(self: AdvancedLossFactor)=value """ class BasicLossFactor(LossFactor,IDisposable): """ This class encapsulates basic lighting loss factor calculation. BasicLossFactor(other: BasicLossFactor) BasicLossFactor(lossFactorIn: float) BasicLossFactor() """ def Dispose(self): """ Dispose(self: LossFactor,A_0: bool) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: LossFactor,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,*__args): """ __new__(cls: type,other: BasicLossFactor) __new__(cls: type,lossFactorIn: float) __new__(cls: type) """ pass LossFactor=property(lambda self: object(),lambda self,v: None,lambda self: None) """The loss factor. Get: LossFactor(self: BasicLossFactor) -> float Set: LossFactor(self: BasicLossFactor)=value """ class LightShape(object,IDisposable): """ This class is the base class for specifying light shape. """ def Clone(self): """ Clone(self: LightShape) -> LightShape Creates a copy of the LightShape derived object. """ pass def Dispose(self): """ Dispose(self: LightShape) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: LightShape,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass IsValidObject=property(lambda self: object(),lambda self,v: None,lambda self: None) """Specifies whether the .NET object represents a valid Revit entity. Get: IsValidObject(self: LightShape) -> bool """ class CircleLightShape(LightShape,IDisposable): """ This class encapsulates a circle light shape. CircleLightShape(other: CircleLightShape) CircleLightShape(emitDiameter: float) CircleLightShape() """ def Dispose(self): """ Dispose(self: LightShape,A_0: bool) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: LightShape,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,*__args): """ __new__(cls: type,other: CircleLightShape) __new__(cls: type,emitDiameter: float) __new__(cls: type) """ pass EmitDiameter=property(lambda self: object(),lambda self,v: None,lambda self: None) """The emit diameter. Get: EmitDiameter(self: CircleLightShape) -> float Set: EmitDiameter(self: CircleLightShape)=value """ class ColorPreset(Enum,IComparable,IFormattable,IConvertible): """ Preset values of initial colors for specific lighting types enum ColorPreset,values: D50 (1),D65 (0),FluorescentCool (7),FluorescentDayLight (9),FluorescentLightWhite (10),FluorescentWarm (6),FluorescentWhite (8),Halogen (2),HighPressureSodium (12),Incandescent (3),LowPressureSodium (13),Mercury (14),MetalHalide (11),PhosphorMercury (15),Quartz (5),Xenon (4) """ def __eq__(self,*args): """ x.__eq__(y) <==> x==yx.__eq__(y) <==> x==yx.__eq__(y) <==> x==y """ pass def __format__(self,*args): """ __format__(formattable: IFormattable,format: str) -> str """ pass def __ge__(self,*args): pass def __gt__(self,*args): pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __le__(self,*args): pass def __lt__(self,*args): pass def __ne__(self,*args): pass def __reduce_ex__(self,*args): pass def __str__(self,*args): pass D50=None D65=None FluorescentCool=None FluorescentDayLight=None FluorescentLightWhite=None FluorescentWarm=None FluorescentWhite=None Halogen=None HighPressureSodium=None Incandescent=None LowPressureSodium=None Mercury=None MetalHalide=None PhosphorMercury=None Quartz=None value__=None Xenon=None class InitialColor(object,IDisposable): """ This class is the base class for calculating initial light color. """ def Clone(self): """ Clone(self: InitialColor) -> InitialColor Creates a copy of the InitialColor derived object. """ pass def Dispose(self): """ Dispose(self: InitialColor) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: InitialColor,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass IsValidObject=property(lambda self: object(),lambda self,v: None,lambda self: None) """Specifies whether the .NET object represents a valid Revit entity. Get: IsValidObject(self: InitialColor) -> bool """ TemperatureValue=property(lambda self: object(),lambda self,v: None,lambda self: None) """The light color temperature value in Kelvins. Get: TemperatureValue(self: InitialColor) -> float """ class CustomInitialColor(InitialColor,IDisposable): """ This class encapsulates a custom initial lighting color. CustomInitialColor(other: CustomInitialColor) CustomInitialColor(temperature: float) """ def Dispose(self): """ Dispose(self: InitialColor,A_0: bool) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: InitialColor,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,*__args): """ __new__(cls: type,other: CustomInitialColor) __new__(cls: type,temperature: float) """ pass Temperature=property(lambda self: object(),lambda self,v: None,lambda self: None) """The custom color temperature value. Get: Temperature(self: CustomInitialColor) -> float Set: Temperature(self: CustomInitialColor)=value """ class LightDistribution(object,IDisposable): """ This class is the base class for specifying light distribution. """ def Clone(self): """ Clone(self: LightDistribution) -> LightDistribution Creates a copy of the LightDistribution derived object. """ pass def Dispose(self): """ Dispose(self: LightDistribution) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: LightDistribution,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass IsValidObject=property(lambda self: object(),lambda self,v: None,lambda self: None) """Specifies whether the .NET object represents a valid Revit entity. Get: IsValidObject(self: LightDistribution) -> bool """ class HemisphericalLightDistribution(LightDistribution,IDisposable): """ This class encapsulates a hemispherical light distribution. HemisphericalLightDistribution(other: HemisphericalLightDistribution) HemisphericalLightDistribution() """ def Dispose(self): """ Dispose(self: LightDistribution,A_0: bool) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: LightDistribution,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,other=None): """ __new__(cls: type,other: HemisphericalLightDistribution) __new__(cls: type) """ pass class InitialIntensity(object,IDisposable): """ This class is the base class for calculating lighting initial intensity. """ def Clone(self): """ Clone(self: InitialIntensity) -> InitialIntensity Creates a copy of the InitialIntensity derived object. """ pass def Dispose(self): """ Dispose(self: InitialIntensity) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: InitialIntensity,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass InitialIntensityValue=property(lambda self: object(),lambda self,v: None,lambda self: None) """The calculated initial intensity value. Get: InitialIntensityValue(self: InitialIntensity) -> float """ IsValidObject=property(lambda self: object(),lambda self,v: None,lambda self: None) """Specifies whether the .NET object represents a valid Revit entity. Get: IsValidObject(self: InitialIntensity) -> bool """ class InitialFluxIntensity(InitialIntensity,IDisposable): """ This class encapsulates initial flux intensity calculation. InitialFluxIntensity(other: InitialFluxIntensity) InitialFluxIntensity(flux: float) """ def Dispose(self): """ Dispose(self: InitialIntensity,A_0: bool) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: InitialIntensity,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,*__args): """ __new__(cls: type,other: InitialFluxIntensity) __new__(cls: type,flux: float) """ pass Flux=property(lambda self: object(),lambda self,v: None,lambda self: None) """The flux intensity value. Get: Flux(self: InitialFluxIntensity) -> float Set: Flux(self: InitialFluxIntensity)=value """ class InitialIlluminanceIntensity(InitialIntensity,IDisposable): """ This class encapsulates initial illuminance intensity calculation. InitialIlluminanceIntensity(other: InitialIlluminanceIntensity) InitialIlluminanceIntensity(distance: float,illuminance: float) """ def Dispose(self): """ Dispose(self: InitialIntensity,A_0: bool) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: InitialIntensity,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,*__args): """ __new__(cls: type,other: InitialIlluminanceIntensity) __new__(cls: type,distance: float,illuminance: float) """ pass Distance=property(lambda self: object(),lambda self,v: None,lambda self: None) """The illuminance intensity distance value. Get: Distance(self: InitialIlluminanceIntensity) -> float Set: Distance(self: InitialIlluminanceIntensity)=value """ Illuminance=property(lambda self: object(),lambda self,v: None,lambda self: None) """The illuminance intensity value. Get: Illuminance(self: InitialIlluminanceIntensity) -> float Set: Illuminance(self: InitialIlluminanceIntensity)=value """ class InitialLuminousIntensity(InitialIntensity,IDisposable): """ This class encapsulates initial luminous intensity calculation. InitialLuminousIntensity(other: InitialLuminousIntensity) InitialLuminousIntensity(luminosity: float) """ def Dispose(self): """ Dispose(self: InitialIntensity,A_0: bool) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: InitialIntensity,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,*__args): """ __new__(cls: type,other: InitialLuminousIntensity) __new__(cls: type,luminosity: float) """ pass Luminosity=property(lambda self: object(),lambda self,v: None,lambda self: None) """The luminosity value. Get: Luminosity(self: InitialLuminousIntensity) -> float Set: Luminosity(self: InitialLuminousIntensity)=value """ class InitialWattageIntensity(InitialIntensity,IDisposable): """ This class encapsulates initial wattage intensity calculation. InitialWattageIntensity(other: InitialWattageIntensity) InitialWattageIntensity(efficacy: float,wattage: float) """ def Dispose(self): """ Dispose(self: InitialIntensity,A_0: bool) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: InitialIntensity,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,*__args): """ __new__(cls: type,other: InitialWattageIntensity) __new__(cls: type,efficacy: float,wattage: float) """ pass Efficacy=property(lambda self: object(),lambda self,v: None,lambda self: None) """The efficacy value. Get: Efficacy(self: InitialWattageIntensity) -> float Set: Efficacy(self: InitialWattageIntensity)=value """ Wattage=property(lambda self: object(),lambda self,v: None,lambda self: None) """The wattage value. Get: Wattage(self: InitialWattageIntensity) -> float Set: Wattage(self: InitialWattageIntensity)=value """ class LightDimmingColor(Enum,IComparable,IFormattable,IConvertible): """ Tags for specific light dimming colors enum LightDimmingColor,values: Incandescent (1),None (0) """ def __eq__(self,*args): """ x.__eq__(y) <==> x==yx.__eq__(y) <==> x==yx.__eq__(y) <==> x==y """ pass def __format__(self,*args): """ __format__(formattable: IFormattable,format: str) -> str """ pass def __ge__(self,*args): pass def __gt__(self,*args): pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __le__(self,*args): pass def __lt__(self,*args): pass def __ne__(self,*args): pass def __reduce_ex__(self,*args): pass def __str__(self,*args): pass Incandescent=None None=None value__=None class LightDistributionStyle(Enum,IComparable,IFormattable,IConvertible): """ Tags for specific light distribution styles enum LightDistributionStyle,values: Hemispherical (1),PhotometricWeb (3),Spherical (0),Spot (2) """ def __eq__(self,*args): """ x.__eq__(y) <==> x==yx.__eq__(y) <==> x==yx.__eq__(y) <==> x==y """ pass def __format__(self,*args): """ __format__(formattable: IFormattable,format: str) -> str """ pass def __ge__(self,*args): pass def __gt__(self,*args): pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __le__(self,*args): pass def __lt__(self,*args): pass def __ne__(self,*args): pass def __reduce_ex__(self,*args): pass def __str__(self,*args): pass Hemispherical=None PhotometricWeb=None Spherical=None Spot=None value__=None class LightFamily(object,IDisposable): """ This class encapsulates light family information. """ def Dispose(self): """ Dispose(self: LightFamily) """ pass def GetLightDistributionStyle(self): """ GetLightDistributionStyle(self: LightFamily) -> LightDistributionStyle Returns a LightDistributionStyle value for the light distribution """ pass @staticmethod def GetLightFamily(document): """ GetLightFamily(document: Document) -> LightFamily Creates a light family object from the given family document document: The family document Returns: The newly created LightFamily object """ pass def GetLightShapeStyle(self): """ GetLightShapeStyle(self: LightFamily) -> LightShapeStyle Returns a LightShapeStyle value for the light shape """ pass def GetLightSourceTransform(self): """ GetLightSourceTransform(self: LightFamily) -> Transform Returns a Transform value for the transform of light source. Returns: The light source transform. """ pass def GetLightType(self,index): """ GetLightType(self: LightFamily,index: int) -> LightType Return a LightType object for the light type at the given index index: The index of the light type Returns: A LightType object for the light type at the given index """ pass def GetLightTypeName(self,index): """ GetLightTypeName(self: LightFamily,index: int) -> str Return the name for the light type at the given index index: The index of the light type Returns: The name of the light type at the given index """ pass def GetNumberOfLightTypes(self): """ GetNumberOfLightTypes(self: LightFamily) -> int Return the number of light types contained in this light family Returns: The number of light types contained in this light family """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: LightFamily,disposing: bool) """ pass def SetLightDistributionStyle(self,lightDistributionStyle): """ SetLightDistributionStyle(self: LightFamily,lightDistributionStyle: LightDistributionStyle) Set the light distribution style to the given shape distribution lightDistributionStyle: The light distribution style to set the light distribution type to """ pass def SetLightShapeStyle(self,lightShapeStyle): """ SetLightShapeStyle(self: LightFamily,lightShapeStyle: LightShapeStyle) Set the light shape style to the given shape style lightShapeStyle: The light shape style value to set the light shape style to """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass IsValidObject=property(lambda self: object(),lambda self,v: None,lambda self: None) """Specifies whether the .NET object represents a valid Revit entity. Get: IsValidObject(self: LightFamily) -> bool """ class LightGroup(object,IDisposable): """ This class represents a set of lights grouped together for easier management of various lighting scenarios """ def AddLight(self,lightId): """ AddLight(self: LightGroup,lightId: ElementId) Add a new light instance to the group lightId: The ID of the light instance to add to the group """ pass def Dispose(self): """ Dispose(self: LightGroup) """ pass def GetLights(self): """ GetLights(self: LightGroup) -> ICollection[ElementId] Get the set of contained light instances The set of light instances """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: LightGroup,disposing: bool) """ pass def RemoveLight(self,lightId): """ RemoveLight(self: LightGroup,lightId: ElementId) Remove the given light instance from the set of light instances in this group lightId: The light instance to remove """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass Id=property(lambda self: object(),lambda self,v: None,lambda self: None) """The ElementId of the LightGroup Get: Id(self: LightGroup) -> ElementId """ IsValidObject=property(lambda self: object(),lambda self,v: None,lambda self: None) """Specifies whether the .NET object represents a valid Revit entity. Get: IsValidObject(self: LightGroup) -> bool """ Name=property(lambda self: object(),lambda self,v: None,lambda self: None) """The name of the LightGroup Get: Name(self: LightGroup) -> str Set: Name(self: LightGroup)=value """ class LightGroupManager(object,IDisposable): """ This class represents a set of light groups that are used for easier management of various lighting scenarios """ def CreateGroup(self,name): """ CreateGroup(self: LightGroupManager,name: str) -> LightGroup Create a new LightGroup object with the given name name: The name to use for the new LightGroup object Returns: The new LightGroup object that was created """ pass def DeleteGroup(self,groupId): """ DeleteGroup(self: LightGroupManager,groupId: ElementId) Remove the given LightGroup object from the set of LightGroup objects groupId: The Id of the LightGroup object to remove """ pass def Dispose(self): """ Dispose(self: LightGroupManager) """ pass def GetGroups(self): """ GetGroups(self: LightGroupManager) -> IList[LightGroup] Get the set of contained LightGroup objects The set of LightGroup objects """ pass def GetLightDimmer(self,viewId,lightId): """ GetLightDimmer(self: LightGroupManager,viewId: ElementId,lightId: ElementId) -> float Gets the dimmer value for the given light for rendering the given view viewId: The Id of the view lightId: The Id of the light to turn on or off """ pass @staticmethod def GetLightGroupManager(document): """ GetLightGroupManager(document: Document) -> LightGroupManager Creates a light group manager object from the given document document: The document the manager is from Returns: The newly created Light group manager object """ pass def IsLightGroupOn(self,viewId,groupId): """ IsLightGroupOn(self: LightGroupManager,viewId: ElementId,groupId: ElementId) -> bool Returns true if the given light group is on viewId: The Id of the view groupId: The Id of the light group """ pass def IsLightOn(self,viewId,lightId): """ IsLightOn(self: LightGroupManager,viewId: ElementId,lightId: ElementId) -> bool Returns true if the given light is on for rendering the given view viewId: The Id of the view lightId: The Id of the light """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: LightGroupManager,disposing: bool) """ pass def SetLightDimmer(self,viewId,lightId,dimmingValue): """ SetLightDimmer(self: LightGroupManager,viewId: ElementId,lightId: ElementId,dimmingValue: float) Sets the dimmer value for the given light for rendering the given view viewId: The Id of the view lightId: The Id of the light to turn on or off dimmingValue: The dimmer value to set int the range of [0.0,1.0] """ pass def SetLightGroupOn(self,viewId,groupId,turnOn): """ SetLightGroupOn(self: LightGroupManager,viewId: ElementId,groupId: ElementId,turnOn: bool) Turns the given light group on or off for rendering the given view depending on the bool argument viewId: The Id of the view groupId: The Id of the light group turnOn: Turns the light group on if true,off if false """ pass def SetLightOn(self,viewId,lightId,turnOn): """ SetLightOn(self: LightGroupManager,viewId: ElementId,lightId: ElementId,turnOn: bool) Turns the given light on or off for rendering the given view depending on the bool argument viewId: The Id of the view lightId: The Id of the light to turn on or off turnOn: Turns the light on if true,off if false """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass IsValidObject=property(lambda self: object(),lambda self,v: None,lambda self: None) """Specifies whether the .NET object represents a valid Revit entity. Get: IsValidObject(self: LightGroupManager) -> bool """ class LightShapeStyle(Enum,IComparable,IFormattable,IConvertible): """ Tags for specific light shape styles enum LightShapeStyle,values: Circle (3),Line (1),Point (0),Rectangle (2) """ def __eq__(self,*args): """ x.__eq__(y) <==> x==yx.__eq__(y) <==> x==yx.__eq__(y) <==> x==y """ pass def __format__(self,*args): """ __format__(formattable: IFormattable,format: str) -> str """ pass def __ge__(self,*args): pass def __gt__(self,*args): pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __le__(self,*args): pass def __lt__(self,*args): pass def __ne__(self,*args): pass def __reduce_ex__(self,*args): pass def __str__(self,*args): pass Circle=None Line=None Point=None Rectangle=None value__=None class LightType(object,IDisposable): """ This class encapsulates light information. """ def Dispose(self): """ Dispose(self: LightType) """ pass def GetInitialColor(self): """ GetInitialColor(self: LightType) -> InitialColor Return a copy of an object derived from InitialColor """ pass def GetInitialIntensity(self): """ GetInitialIntensity(self: LightType) -> InitialIntensity Return a copy of an object derived from InitialIntensity """ pass def GetLightDistribution(self): """ GetLightDistribution(self: LightType) -> LightDistribution Return a copy of an object derived from LightDistribution """ pass def GetLightShape(self): """ GetLightShape(self: LightType) -> LightShape Return a copy of an object derived from LightShape """ pass @staticmethod def GetLightType(document,typeId): """ GetLightType(document: Document,typeId: ElementId) -> LightType Creates a light type object from the given document and family type ID document: The document the typeId is from typeId: The ID of the light family type Returns: The newly created LightType object """ pass @staticmethod def GetLightTypeFromInstance(document,instanceId): """ GetLightTypeFromInstance(document: Document,instanceId: ElementId) -> LightType Creates a light type object from the given document and element ID document: The document the instanceId is from instanceId: The ID of the light fixture instance Returns: The newly created LightType object """ pass def GetLossFactor(self): """ GetLossFactor(self: LightType) -> LossFactor Return a copy of an object derived from LossFactor """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: LightType,disposing: bool) """ pass def SetInitialColor(self,initialColor): """ SetInitialColor(self: LightType,initialColor: InitialColor) Replace the current initial color object with the given object initialColor: An object derived from an InitialColor object The object pointed to is cloned internally """ pass def SetInitialIntensity(self,initialIntensity): """ SetInitialIntensity(self: LightType,initialIntensity: InitialIntensity) Replace the current initial intensity object with the given object initialIntensity: An object derived from an InitialIntensity object """ pass def SetLightDistribution(self,lightDistribution): """ SetLightDistribution(self: LightType,lightDistribution: LightDistribution) Replace the current LightDistribution object with the given object lightDistribution: An instance of an object derived from LightDistribution """ pass def SetLightShape(self,lightShape): """ SetLightShape(self: LightType,lightShape: LightShape) Replace the current LightShape object with the given object lightShape: An instance of an object derived from LightShape """ pass def SetLossFactor(self,lossFactor): """ SetLossFactor(self: LightType,lossFactor: LossFactor) Replace the current loss factor object with the given object lossFactor: An object derived from a LossFactor object """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass ColorFilter=property(lambda self: object(),lambda self,v: None,lambda self: None) """The light filter color. Get: ColorFilter(self: LightType) -> Color Set: ColorFilter(self: LightType)=value """ DimmingColor=property(lambda self: object(),lambda self,v: None,lambda self: None) """The dimming temperature value in Kelvins. Get: DimmingColor(self: LightType) -> LightDimmingColor Set: DimmingColor(self: LightType)=value """ IsValidObject=property(lambda self: object(),lambda self,v: None,lambda self: None) """Specifies whether the .NET object represents a valid Revit entity. Get: IsValidObject(self: LightType) -> bool """ class LineLightShape(LightShape,IDisposable): """ This class encapsulates a line light shape. LineLightShape(other: LineLightShape) LineLightShape(emitLength: float) LineLightShape() """ def Dispose(self): """ Dispose(self: LightShape,A_0: bool) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: LightShape,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,*__args): """ __new__(cls: type,other: LineLightShape) __new__(cls: type,emitLength: float) __new__(cls: type) """ pass EmitLength=property(lambda self: object(),lambda self,v: None,lambda self: None) """The emit length. Get: EmitLength(self: LineLightShape) -> float Set: EmitLength(self: LineLightShape)=value """ class PhotometricWebLightDistribution(LightDistribution,IDisposable): """ This class encapsulates a photometric web light distribution. PhotometricWebLightDistribution(other: PhotometricWebLightDistribution) PhotometricWebLightDistribution(photometricWebFile: str,tiltAngle: float) """ def Dispose(self): """ Dispose(self: LightDistribution,A_0: bool) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: LightDistribution,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,*__args): """ __new__(cls: type,other: PhotometricWebLightDistribution) __new__(cls: type,photometricWebFile: str,tiltAngle: float) """ pass PhotometricWebFile=property(lambda self: object(),lambda self,v: None,lambda self: None) """The filename of an IES photometric web file. Get: PhotometricWebFile(self: PhotometricWebLightDistribution) -> str Set: PhotometricWebFile(self: PhotometricWebLightDistribution)=value """ TiltAngle=property(lambda self: object(),lambda self,v: None,lambda self: None) """The tilt angle. Get: TiltAngle(self: PhotometricWebLightDistribution) -> float Set: TiltAngle(self: PhotometricWebLightDistribution)=value """ class PointLightShape(LightShape,IDisposable): """ This class encapsulates a point light shape. PointLightShape(other: PointLightShape) PointLightShape() """ def Dispose(self): """ Dispose(self: LightShape,A_0: bool) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: LightShape,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,other=None): """ __new__(cls: type,other: PointLightShape) __new__(cls: type) """ pass class PresetInitialColor(InitialColor,IDisposable): """ This class encapsulates a preset initial lighting color. PresetInitialColor(other: PresetInitialColor) PresetInitialColor(presetIn: ColorPreset) """ def Dispose(self): """ Dispose(self: InitialColor,A_0: bool) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: InitialColor,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,*__args): """ __new__(cls: type,other: PresetInitialColor) __new__(cls: type,presetIn: ColorPreset) """ pass Preset=property(lambda self: object(),lambda self,v: None,lambda self: None) """The preset value Get: Preset(self: PresetInitialColor) -> ColorPreset Set: Preset(self: PresetInitialColor)=value """ class RectangleLightShape(LightShape,IDisposable): """ This class encapsulates a rectangle light shape. RectangleLightShape(other: RectangleLightShape) RectangleLightShape(emitLength: float,emitWidth: float) RectangleLightShape() """ def Dispose(self): """ Dispose(self: LightShape,A_0: bool) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: LightShape,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,*__args): """ __new__(cls: type,other: RectangleLightShape) __new__(cls: type,emitLength: float,emitWidth: float) __new__(cls: type) """ pass EmitLength=property(lambda self: object(),lambda self,v: None,lambda self: None) """The emit length. Get: EmitLength(self: RectangleLightShape) -> float Set: EmitLength(self: RectangleLightShape)=value """ EmitWidth=property(lambda self: object(),lambda self,v: None,lambda self: None) """The emit width. Get: EmitWidth(self: RectangleLightShape) -> float Set: EmitWidth(self: RectangleLightShape)=value """ class SphericalLightDistribution(LightDistribution,IDisposable): """ This class encapsulates a spherical light distribution. SphericalLightDistribution(other: SphericalLightDistribution) SphericalLightDistribution() """ def Dispose(self): """ Dispose(self: LightDistribution,A_0: bool) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: LightDistribution,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,other=None): """ __new__(cls: type,other: SphericalLightDistribution) __new__(cls: type) """ pass class SpotLightDistribution(LightDistribution,IDisposable): """ This class encapsulates a spot light distribution. SpotLightDistribution(other: SpotLightDistribution) SpotLightDistribution(spotBeamAngle: float,spotFieldAngle: float,tiltAngle: float) SpotLightDistribution() """ def Dispose(self): """ Dispose(self: LightDistribution,A_0: bool) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: LightDistribution,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,*__args): """ __new__(cls: type,other: SpotLightDistribution) __new__(cls: type,spotBeamAngle: float,spotFieldAngle: float,tiltAngle: float) __new__(cls: type) """ pass SpotBeamAngle=property(lambda self: object(),lambda self,v: None,lambda self: None) """The spot beam angle. Get: SpotBeamAngle(self: SpotLightDistribution) -> float Set: SpotBeamAngle(self: SpotLightDistribution)=value """ SpotFieldAngle=property(lambda self: object(),lambda self,v: None,lambda self: None) """The spot field angle. Get: SpotFieldAngle(self: SpotLightDistribution) -> float Set: SpotFieldAngle(self: SpotLightDistribution)=value """ TiltAngle=property(lambda self: object(),lambda self,v: None,lambda self: None) """The tilt angle. Get: TiltAngle(self: SpotLightDistribution) -> float Set: TiltAngle(self: SpotLightDistribution)=value """
tests/test_helm.py
onecommons/giterop
109
11152467
<gh_stars>100-1000 import os import os.path import sys import threading import unittest from functools import partial import shutil import urllib.request from click.testing import CliRunner from unfurl.job import JobOptions, Runner from unfurl.yamlmanifest import YamlManifest from unfurl.localenv import LocalEnv from .utils import init_project # http://localhost:8000/fixtures/helmrepo @unittest.skipIf("helm" in os.getenv("UNFURL_TEST_SKIP", ""), "UNFURL_TEST_SKIP set") class HelmTest(unittest.TestCase): def setUp(self): self.maxDiff = None path = os.path.join( os.path.dirname(__file__), "examples", "helm-simple-ensemble.yaml" ) with open(path) as f: self.manifest = f.read() server_address = ("", 8010) directory = os.path.dirname(__file__) try: if sys.version_info[0] >= 3: from http.server import HTTPServer, SimpleHTTPRequestHandler handler = partial(SimpleHTTPRequestHandler, directory=directory) self.httpd = HTTPServer(server_address, handler) else: # for python 2.7 import urllib import SocketServer from SimpleHTTPServer import SimpleHTTPRequestHandler class RootedHTTPRequestHandler(SimpleHTTPRequestHandler): def translate_path(self, path): path = os.path.normpath(urllib.unquote(path)) words = path.split("/") words = filter(None, words) path = directory for word in words: drive, word = os.path.splitdrive(word) head, word = os.path.split(word) if word in (os.curdir, os.pardir): continue path = os.path.join(path, word) return path self.httpd = SocketServer.TCPServer( server_address, RootedHTTPRequestHandler ) except: # address might still be in use self.httpd = None return t = threading.Thread(name="http_thread", target=self.httpd.serve_forever) t.daemon = True t.start() def tearDown(self): if self.httpd: self.httpd.socket.close() def test_deploy(self): # make sure this works f = urllib.request.urlopen("http://localhost:8010/fixtures/helmrepo/index.yaml") f.close() runner = Runner(YamlManifest(self.manifest)) run1 = runner.run(JobOptions(verbose=3, startTime=1)) assert not run1.unexpectedAbort, run1.unexpectedAbort.get_stack_trace() mysql_release = runner.manifest.rootResource.find_resource("mysql_release") query = ".::.requirements::[.name=host]::.target::name" res = mysql_release.query(query) assert res == "unfurl-helm-unittest" summary = run1.json_summary() # print(runner.manifest.statusSummary()) # print(run1.jsonSummary(True)) # print(run1._jsonPlanSummary(True)) if sys.version_info[0] < 3: return # task order not guaranteed in python 2.7 self.assertEqual( summary, { "job": { "id": "A01110000000", "status": "ok", "total": 4, "ok": 4, "error": 0, "unknown": 0, "skipped": 0, "changed": 4, }, "outputs": {}, "tasks": [ { "status": "ok", "target": "stable_repo", "operation": "create", "template": "stable_repo", "type": "unfurl.nodes.HelmRepository", "targetStatus": "ok", "targetState": "created", "changed": True, "configurator": "unfurl.configurators.shell.ShellConfigurator", "priority": "required", "reason": "add", }, { "status": "ok", "target": "k8sNamespace", "operation": "configure", "template": "k8sNamespace", "type": "unfurl.nodes.K8sNamespace", "targetStatus": "ok", "targetState": "configured", "changed": True, "configurator": "unfurl.configurators.k8s.ResourceConfigurator", "priority": "required", "reason": "add", }, { "status": "ok", "target": "mysql_release", "operation": "configure", "template": "mysql_release", "type": "unfurl.nodes.HelmRelease", "targetStatus": "ok", "targetState": "configured", "changed": True, "configurator": "unfurl.configurators.DelegateConfigurator", "priority": "required", "reason": "add", }, { "status": "ok", "target": "mysql_release", "operation": "execute", "template": "mysql_release", "type": "unfurl.nodes.HelmRelease", "targetStatus": "ok", "targetState": "configuring", "changed": True, "configurator": "unfurl.configurators.shell.ShellConfigurator", "priority": "required", "reason": "subtask: for add: Standard.configure", }, ], }, ) assert all(task["targetStatus"] == "ok" for task in summary["tasks"]), summary[ "tasks" ] # runner.manifest.dump() def test_undeploy(self): ########################################### #### WARNING test_undeploy() will not succeed if called individually because test_deploy #### installs the chart repo in a tox's tmp directly and will be deleted after the test run #### so test_undeploy will not find it ########################################### # note! if tests fail may need to run: # helm uninstall mysql-test -n unfurl-helm-unittest # and kubectl delete namespace unfurl-helm-unittest cli_runner = CliRunner() with cli_runner.isolated_filesystem(): src_path = os.path.join( os.path.dirname(__file__), "examples", "helm-simple-ensemble.yaml" ) path = init_project(cli_runner, src_path) # init_project creates home at "./unfurl_home" runner = Runner( YamlManifest(localEnv=LocalEnv(path, homePath="./unfurl_home")) ) run = runner.run(JobOptions(workflow="check", startTime=2)) summary = run.json_summary() assert not run.unexpectedAbort, run.unexpectedAbort.get_stack_trace() # print("check") # print(runner.manifest.statusSummary()) # print(run.jsonSummary(True)) summary = run.json_summary() self.assertEqual( { "external_jobs": [ { "ensemble": summary["external_jobs"][0]["ensemble"], "job": { "id": "A01120000000", "status": "ok", "total": 2, "ok": 2, "error": 0, "unknown": 0, "skipped": 0, "changed": 2, }, "outputs": {}, "tasks": [ { "changed": True, "configurator": "unfurl.configurators.DelegateConfigurator", "operation": "configure", "priority": "required", "reason": "add", "status": "ok", "target": "__artifact__helm-artifacts--helm", "targetState": "configured", "targetStatus": "ok", "template": "__artifact__helm-artifacts--helm", "type": "unfurl.nodes.ArtifactInstaller", }, { "changed": True, "configurator": "unfurl.configurators.shell.ShellConfigurator", "operation": "configure", "priority": "required", "reason": "subtask: for add: Standard.configure", "status": "ok", "target": "install", "targetState": None, "targetStatus": "unknown", "template": "install", "type": "artifact.AsdfTool", }, ], } ], "job": { "id": "A01120000000", "status": "ok", "total": 4, "ok": 4, "error": 0, "unknown": 0, "skipped": 0, "changed": 4, }, "outputs": {}, "tasks": [ { "status": "ok", "target": "stable_repo", "operation": "check", "template": "stable_repo", "type": "unfurl.nodes.HelmRepository", "targetStatus": "ok", "targetState": "started", "changed": True, "configurator": "unfurl.configurators.shell.ShellConfigurator", "priority": "required", "reason": "check", }, { "status": "ok", "target": "k8sNamespace", "operation": "check", "template": "k8sNamespace", "type": "unfurl.nodes.K8sNamespace", "targetStatus": "ok", "targetState": "started", "changed": True, "configurator": "unfurl.configurators.k8s.ResourceConfigurator", "priority": "required", "reason": "check", }, { "status": "ok", "target": "mysql_release", "operation": "check", "template": "mysql_release", "type": "unfurl.nodes.HelmRelease", "targetStatus": "ok", "targetState": "started", "changed": True, "configurator": "unfurl.configurators.DelegateConfigurator", "priority": "required", "reason": "check", }, { "status": "ok", "target": "mysql_release", "operation": "execute", "template": "mysql_release", "type": "unfurl.nodes.HelmRelease", "targetStatus": "ok", "targetState": None, "changed": True, "configurator": "unfurl.configurators.shell.ShellConfigurator", "priority": "required", "reason": "subtask: for check: Install.check", }, ], }, summary, ) # reuse the same runner because the manifest's status has been updated run2 = runner.run( JobOptions(workflow="undeploy", startTime=3, destroyunmanaged=True) ) assert not run2.unexpectedAbort, run2.unexpectedAbort.get_stack_trace() # print("undeploy") # print(runner.manifest.status_summary()) # print(run2.json_summary(True)) summary2 = run2.json_summary() # note: this test relies on stable_repo being place in the helm cache by test_deploy() # comment out the repository requirement to run this test standalone # assert all( # task["targetStatus"] == "absent" for task in summary2["tasks"] # ), list(summary2["tasks"]) self.assertEqual( { "job": { "id": "A01130000000", "status": "ok", "total": 3, "ok": 3, "error": 0, "unknown": 0, "skipped": 0, "changed": 3, }, "outputs": {}, "tasks": [ { "status": "ok", "target": "mysql_release", "operation": "delete", "template": "mysql_release", "type": "unfurl.nodes.HelmRelease", "targetStatus": "absent", "targetState": "deleted", "changed": True, "configurator": "unfurl.configurators.shell.ShellConfigurator", "priority": "required", "reason": "undeploy", }, { "status": "ok", "target": "stable_repo", "operation": "delete", "template": "stable_repo", "type": "unfurl.nodes.HelmRepository", "targetStatus": "absent", "targetState": "deleted", "changed": True, "configurator": "unfurl.configurators.shell.ShellConfigurator", "priority": "required", "reason": "undeploy", }, { "status": "ok", "target": "k8sNamespace", "operation": "delete", "template": "k8sNamespace", "type": "unfurl.nodes.K8sNamespace", "targetStatus": "absent", "targetState": "deleted", "changed": True, "configurator": "unfurl.configurators.k8s.ResourceConfigurator", "priority": "required", "reason": "undeploy", }, ], }, summary2, )
HLTrigger/special/test/test_AsymFilters_cfg.py
ckamtsikis/cmssw
852
11152495
<filename>HLTrigger/special/test/test_AsymFilters_cfg.py # # This python script is the basis for MIB HLT path testing # # Only the developed path are runned on the RAW data sample # # We are using GRun_data version of the HLT menu # # SV (<EMAIL>): 18/01/2011 # import FWCore.ParameterSet.Config as cms process = cms.Process('HLT2') # import of standard configurations process.load('Configuration.StandardSequences.Services_cff') process.load('FWCore.MessageService.MessageLogger_cfi') process.load('Configuration.StandardSequences.GeometryIdeal_cff') process.load('Configuration.StandardSequences.MagneticField_38T_cff') process.load('HLTrigger.Configuration.HLT_GRun_data_cff') process.load('Configuration.StandardSequences.EndOfProcess_cff') process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') process.load('Configuration.EventContent.EventContent_cff') # To be adapted to the release useGlobalTag = 'GR_R_310_V3::All' process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1000) ) process.options = cms.untracked.PSet( SkipEvent = cms.untracked.vstring('ProductNotFound') ) # Input source (a raw data file from the Commissioning dataset) process.source = cms.Source("PoolSource", noEventSort = cms.untracked.bool(True), duplicateCheckMode = cms.untracked.string('noDuplicateCheck'), fileNames = cms.untracked.vstring('rfio:/castor/cern.ch/cms/store/data/Run2010B/Commissioning/RAW/v1/000/147/043/0C1114D5-E5CD-DF11-8FF5-001D09F2546F.root') ) # Output module (keep only the stuff necessary to the timing module) process.output = cms.OutputModule("PoolOutputModule", splitLevel = cms.untracked.int32(0), outputCommands = cms.untracked.vstring( 'drop *', 'keep HLTPerformanceInfo_*_*_*'), fileName = cms.untracked.string('HLT.root'), dataset = cms.untracked.PSet( dataTier = cms.untracked.string('RECO'), filterName = cms.untracked.string('') ) ) # Timer process.PathTimerService = cms.Service( "PathTimerService" ) process.hltTimer = cms.EDProducer( "PathTimerInserter" ) # Then we define the info necessary to the paths process.HLTBeginSequence = cms.Sequence( process.hltTriggerType + process.HLTL1UnpackerSequence ) process.HLTDoLocalPixel = cms.Sequence( process.hltSiPixelDigis + process.hltSiPixelClusters) process.HLTDoLocalHF = cms.Sequence( process.hltHcalDigis + process.hltHfreco ) process.hltPixelAsymmetryFilter = cms.EDFilter( "HLTPixelAsymmetryFilter", inputTag = cms.InputTag( "hltSiPixelClusters" ), MinAsym = cms.double( 0. ), # minimum asymmetry MaxAsym = cms.double( 1. ), # maximum asymmetry MinCharge = cms.double( 4000. ), # minimum charge for a cluster to be selected (in e-) MinBarrel = cms.double( 10000. ), # minimum average charge in the barrel (bpix, in e-) ) process.hltHFAsymmetryFilter = cms.EDFilter( "HLTHFAsymmetryFilter", ECut_HF = cms.double( 3.0 ), # minimum energy for a cluster to be selected OS_Asym_max = cms.double( 0.2 ), # Opposite side asymmetry maximum value SS_Asym_min = cms.double( 0.8 ), # Same side asymmetry minimum value HFHitCollection = cms.InputTag( "hltHfreco" ) ) # The test paths process.HLT_L1_BSC_BeamGas = cms.Path( process.HLTBeginSequence + process.hltL1sL1BptxXORBscMinBiasOR + process.HLTDoLocalPixel + process.hltPixelAsymmetryFilter + process.HLTEndSequence ) process.HLT_L1_HF_BeamGas = cms.Path( process.HLTBeginSequence + process.hltL1sL1BptxXORBscMinBiasOR + process.HLTDoLocalHF + process.hltHFAsymmetryFilter + process.HLTEndSequence ) process.m_HLTSchedule = cms.Schedule( *(process.HLTriggerFirstPath, process.HLT_L1_BSC_BeamGas, process.HLT_L1_HF_BeamGas, process.HLTriggerFinalPath, process.HLTAnalyzerEndpath )) #Deal with the global tag process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') process.GlobalTag.connect = 'frontier://FrontierProd/CMS_COND_31X_GLOBALTAG' process.GlobalTag.pfnPrefix = cms.untracked.string('frontier://FrontierProd/') process.GlobalTag.globaltag = useGlobalTag # Path and EndPath definitions process.endjob_step = cms.Path(process.endOfProcess) process.out_step = cms.EndPath( process.hltTimer + process.output) # Schedule definition process.schedule = cms.Schedule(process.m_HLTSchedule) process.schedule.extend([process.endjob_step,process.out_step])
tests/signal_handler.py
riddopic/opta
595
11152525
# type: ignore import os import signal import sys import time def signal_handler(sig, frame): print("You pressed Ctrl+C!") time.sleep(1) with open( os.path.join( os.path.dirname(os.path.dirname(__file__)), "tests", "signal_gracefully_terminated", ), "w", ) as f: f.write("blah") sys.exit(0) signal.signal(signal.SIGINT, signal_handler) print("Press Ctrl+C") signal.pause()
ipytest/_impl.py
chmp/ipytest
218
11152530
<gh_stars>100-1000 from __future__ import print_function, division, absolute_import import ast import contextlib import fnmatch import importlib import os import pathlib import shlex import sys import tempfile import threading import packaging.version import pytest from IPython import get_ipython from ._config import current_config, default_clean def run(*args, module=None, plugins=()): """Execute all tests in the passed module (defaults to __main__) with pytest. :param args: additional commandline options passed to pytest :param module: the module containing the tests. If not given, `__main__` will be used. :param filename: the filename of the file containing the tests. It has to be a real file, e.g., a notebook name, since itts existence will be checked by pytest. If not given, the `__file__` attribute of the passed module will be used. :param plugins: additional plugins passed to pytest. """ import ipytest run = run_in_thread if current_config["run_in_thread"] else run_direct ipytest.exit_code = run( _run_impl, *args, module=module, plugins=plugins, ) def pytest_magic(line, cell): """IPython magic function running pytest""" if current_config["clean"] is not False: clean_tests(current_config["clean"]) try: get_ipython().run_cell(cell) except TypeError as e: if "raw_cell" in str(e): raise RuntimeError( "The ipytest magic cannot evaluate the cell. Most likely you " "are running a modified ipython version. Consider using " "`ipytest.run` and `ipytest.clean_tests` directly." ) from e else: raise e run(*shlex.split(line)) def clean_tests(pattern=default_clean, items=None): """Delete tests with names matching the given pattern. In IPython the results of all evaluations are kept in global variables unless explicitly deleted. This behavior implies that when tests are renamed the previous definitions will still be found if not deleted. This method aims to simply this process. An effecitve pattern is to start with the cell containing tests with a call to `clean_tests`, then defined all test cases, and finally call `run_tests`. This way renaming tests works as expected. **Arguments:** - `pattern`: a glob pattern used to match the tests to delete. - `items`: the globals object containing the tests. If `None` is given, the globals object is determined from the call stack. """ if items is None: import __main__ items = vars(__main__) to_delete = [key for key in items.keys() if fnmatch.fnmatchcase(key, pattern)] for key in to_delete: del items[key] def reload(*mods): """Reload all modules passed as strings. This function may be useful, when mixing code in external modules and notebooks. Usage:: reload("ipytest._util", "ipytest") """ for mod in mods: importlib.reload(importlib.import_module(mod)) def _run_impl(*args, module, plugins): with _prepared_env(module) as filename: full_args = _build_full_args(args, filename) return pytest.main(full_args, plugins=[*plugins, FixProgramNamePlugin()]) def _build_full_args(args, filename): def _fmt(arg): return arg.format(MODULE=filename) return [ *(_fmt(arg) for arg in current_config["addopts"]), *(_fmt(arg) for arg in args), *([filename] if current_config["defopts"] else []), ] @contextlib.contextmanager def _prepared_env(module): if module is None: # pragma: no cover import __main__ as module with tempfile.NamedTemporaryFile(dir=".", suffix=".py") as f: path = pathlib.Path(f.name) module_name = path.stem if not is_valid_module_name(module_name): raise RuntimeError( f"Invalid module name {module_name!r} generated by tempfile. " "This should not happen, please open an issue at " "'https://github.com/chmp/ipytest/issues' to report a bug." ) if module_name in sys.modules: raise RuntimeError( f"Cannot register module with name {module_name!r}. It would " "override an existing module. This should not happen. Please " "report a bug at 'https://github.com/chmp/ipytest/issues'." ) with patch(module, "__file__", str(path)): with register_module(module, module_name): with patched_columns(): yield str(path) class RewriteAssertTransformer(ast.NodeTransformer): def register_with_shell(self, shell): shell.ast_transformers.append(self) def unregister_with_shell(self, shell): shell.ast_transformers[:] = [ transformer for transformer in shell.ast_transformers if transformer is not self ] def visit(self, node): from _pytest.assertion.rewrite import rewrite_asserts pytest_version = get_pytest_version() if pytest_version.release[0] >= 5: # TODO: re-create a pseudo code to include the asserts? rewrite_asserts(node, b"") else: rewrite_asserts(node) return node class FixProgramNamePlugin: def pytest_addoption(self, parser): # Explanation: # # - the prog instance variable is defined, but never overwritten [1] # - this variable is passed to the the underlying argparse Parser [2] # via [3] # - with a `None` value argparse uses sys.argv array to determine the # program name # # [1]: https://github.com/pytest-dev/pytest/blob/6d6bc97231f2d9a68002f1d191828fd3476ca8b8/src/_pytest/config/argparsing.py#L41 # [2]: https://github.com/pytest-dev/pytest/blob/6d6bc97231f2d9a68002f1d191828fd3476ca8b8/src/_pytest/config/argparsing.py#L397 # [3]: https://github.com/pytest-dev/pytest/blob/6d6bc97231f2d9a68002f1d191828fd3476ca8b8/src/_pytest/config/argparsing.py#L119 # parser.prog = "%%ipytest" def get_pytest_version(): return packaging.version.parse(pytest.__version__) @contextlib.contextmanager def patch(obj, attr, val): had_attr = hasattr(obj, attr) prev_val = getattr(obj, attr, None) setattr(obj, attr, val) try: yield finally: if not had_attr: delattr(obj, attr) else: setattr(obj, attr, prev_val) @contextlib.contextmanager def register_module(obj, name): if name in sys.modules: raise RuntimeError(f"Cannot overwrite existing module {name}") sys.modules[name] = obj try: yield finally: del sys.modules[name] @contextlib.contextmanager def patched_columns(): display_columns = current_config["display_columns"] if not display_columns: yield return # NOTE: since values have to be strings, None identifies unset values prev_columns = os.environ.get("COLUMNS") os.environ["COLUMNS"] = str(display_columns) yield if prev_columns is not None: os.environ["COLUMNS"] = prev_columns else: del os.environ["COLUMNS"] def run_direct(func, *args, **kwargs): return func(*args, **kwargs) def run_in_thread(func, *args, **kwargs): res = None def _thread(): nonlocal res res = func(*args, **kwargs) t = threading.Thread(target=_thread) t.start() t.join() return res def is_valid_module_name(name): return all(c not in name for c in ".- ")
armi/materials/b4c.py
keckler/armi
162
11152564
<reponame>keckler/armi<filename>armi/materials/b4c.py # Copyright 2019 TerraPower, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Boron carbide; a very typical reactor control material.""" from armi.materials import material from armi.nucDirectory import nuclideBases from armi import runLog from armi.utils.units import getTc DEFAULT_THEORETICAL_DENSITY_FRAC = 0.90 DEFAULT_MASS_DENSITY = 2.52 class B4C(material.Material): name = "B4C" enrichedNuclide = "B10" def applyInputParams( self, B10_wt_frac=None, theoretical_density=None, TD_frac=None, *args, **kwargs ): if B10_wt_frac is not None: # we can't just use the generic enrichment adjustment here because the # carbon has to change with enrich. self.adjustMassEnrichment(B10_wt_frac) if theoretical_density is not None: runLog.warning( "The 'threoretical_density' material modification for B4C will be " "deprecated. Update your inputs to use 'TD_frac' instead.", single=True, ) if TD_frac is not None: runLog.warning( "Both 'theoretical_density' and 'TD_frac' are specified " f"for {self}. 'TD_frac' will be used." ) else: self.updateTD(theoretical_density) if TD_frac is not None: self.updateTD(TD_frac) def updateTD(self, TD): self.p.theoreticalDensityFrac = TD self.clearCache() def setNewMassFracsFromMassEnrich(self, massEnrichment): r""" Calculate the mass fractions for a given mass enrichment and set it on any parent. Parameters ---------- massEnrichment : float The mass enrichment as a fraction. Returns ------- boron10MassGrams, boron11MassGrams, carbonMassGrams : float The resulting mass of each nuclide/element Notes ----- B-10: 10.012 g/mol B-11: 11.009 g/mol Carbon: 12.0107 g/mol 4 moles of boron/1 mole of carbon grams of boron-10 = 10.012 g/mol* 4 mol * 0.199 = 7.969552 g grams of boron-11 = 11.009 g/mol* 4 mol * 0.801 = 35.272836 g grams of carbon= 12.0107 g/mol * 1 mol = 12.0107 g from number enrichment mi: mB10 = nB10*AB10 /(nB10*AB10 + nB11*AB11) """ if massEnrichment < 0 or massEnrichment > 1: raise ValueError( "massEnrichment {} is unphysical for B4C".format(massEnrichment) ) b10AtomicMass = nuclideBases.byName["B10"].weight b11AtomicMass = nuclideBases.byName["B11"].weight b10NumEnrich = (massEnrichment / b10AtomicMass) / ( massEnrichment / b10AtomicMass + (1 - massEnrichment) / b11AtomicMass ) b11NumEnrich = 1.0 - b10NumEnrich cAtomicMass = nuclideBases.byName["C"].weight boron10MassGrams = b10AtomicMass * b10NumEnrich * 4.0 boron11MassGrams = b11AtomicMass * b11NumEnrich * 4.0 carbonMassGrams = cAtomicMass gTotal = boron10MassGrams + boron11MassGrams + carbonMassGrams boron10MassGrams /= gTotal boron11MassGrams /= gTotal carbonMassGrams /= gTotal if self.parent: self.parent.setMassFracs( {"B10": boron10MassGrams, "B11": boron11MassGrams, "C": carbonMassGrams} ) return boron10MassGrams, boron11MassGrams, carbonMassGrams def setDefaultMassFracs(self): r"""B4C mass fractions. Using Natural B4C. 19.9% B-10/ 80.1% B-11 Boron: 10.811 g/mol Carbon: 12.0107 g/mol 4 moles of boron/1 mole of carbon grams of boron-10 = 10.01 g/mol* 4 mol * 0.199 = 7.96796 g grams of boron-11 = 11.01 g/mol* 4 mol * 0.801 = 35.27604 g grams of carbon= 12.0107 g/mol * 1 mol = 12.0107 g total=55.2547 g. Mass fractions are computed from this. """ massEnrich = self.getMassEnrichmentFromNumEnrich(naturalB10NumberFraction=0.199) gBoron10, gBoron11, gCarbon = self.setNewMassFracsFromMassEnrich( massEnrichment=massEnrich ) self.setMassFrac("B10", gBoron10) self.setMassFrac("B11", gBoron11) self.setMassFrac("C", gCarbon) self.p.refDens = DEFAULT_MASS_DENSITY # TD reference : <NAME>, "Absorber Materials for control rod systems of fast breeder reactors" # Journal of nuclear materials, 124, 185-194, (1984)." self.p.theoreticalDensityFrac = ( DEFAULT_THEORETICAL_DENSITY_FRAC # normally is around 0.88-93. ) @staticmethod def getMassEnrichmentFromNumEnrich(naturalB10NumberFraction): b10AtomicMass = nuclideBases.byName["B10"].weight b11AtomicMass = nuclideBases.byName["B11"].weight return ( naturalB10NumberFraction * b10AtomicMass / ( naturalB10NumberFraction * b10AtomicMass + (1.0 - naturalB10NumberFraction) * b11AtomicMass ) ) def density(self, Tk=None, Tc=None): """ mass density """ density = material.Material.density(self, Tk, Tc) theoreticalDensityFrac = self.p.theoreticalDensityFrac if theoreticalDensityFrac is None: theoreticalDensityFrac = 1.0 runLog.warning( "Assumption: 100% theoretical density", label="Assumption: B4C is at 100% theoretical density", single=True, ) return density * theoreticalDensityFrac # g/cc def linearExpansionPercent(self, Tk=None, Tc=None): """Boron carbide expansion. Very preliminary""" Tc = getTc(Tc, Tk) self.checkTempRange(25, 500, Tc, "linear expansion percent") deltaT = Tc - 25 dLL = deltaT * 4.5e-6 * 100 # percent return dLL
setup.py
wyddmw/ViT-pytorch-1
311
11152567
<gh_stars>100-1000 # Copyright 2021 The ML Collections Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python 3 """Setup for pip package.""" from setuptools import find_namespace_packages from setuptools import setup def _parse_requirements(requirements_txt_path): with open(requirements_txt_path) as fp: return fp.read().splitlines() _VERSION = '0.1.0' setup( name='ml_collections', version=_VERSION, author='ML Collections Authors', author_email='<EMAIL>', description='ML Collections is a library of Python collections designed for ML usecases.', long_description=open('README.md').read(), long_description_content_type='text/markdown', url='https://github.com/google/ml_collections', license='Apache 2.0', # Contained modules and scripts. packages=find_namespace_packages(exclude=['*_test.py']), install_requires=_parse_requirements('requirements.txt'), tests_require=_parse_requirements('requirements-test.txt'), python_requires='>=2.6', include_package_data=True, zip_safe=False, # PyPI package information. classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], )
tests/test_parse.py
tgragnato/geneva
1,182
11152603
<reponame>tgragnato/geneva import pytest import sys # Include the root of the project sys.path.append("..") import actions.strategy import actions.utils import library EDGE_CASES = [ "[TCP:flags:A]-| \/", "\/ [TCP:flags:A]-|", "[TCP:flags:A]-duplicate(duplicate(duplicate(duplicate,),),)-| \/", "[IP:version:4]-| \/", "[TCP:flags:A]-duplicate(tamper{TCP:flags:corrupt}(duplicate(duplicate,),),)-| \/", "[TCP:flags:A]-tamper{TCP:flags:replace:S}(duplicate,)-| \/", # --- Tamper value tests --- # Tamper value should an empty string "[IP:frag:0]-fragment{tcp:-1:False}(drop,tamper{TCP:options-altchksum:replace:})-| \/", # Tamper value should be "074" and be a string "[IP:ihl:0]-fragment{tcp:-1:True}(duplicate,tamper{IP:load:replace:074})-| \/" ] def get_tests(): """ Returns a list of tuples of tests of combinations of solutions and censors. """ tests = [] for solution in library.LAB_STRATEGIES: tests.append(solution["strategy"]) for strategy in EDGE_CASES: tests.append(strategy) return tests @pytest.mark.parametrize("solution", get_tests()) def test_library(solution, logger): """ Pulls each solution from the solution library and tests it against it's corresponding censor to confirm the solution works. """ # Parse the string representation of the solution strat = actions.utils.parse(solution, logger) logger.info("Parsed strategy %s" % (str(strat))) # Confirm the parsing was correct assert str(strat).strip() == solution, "Failed to correctly parse given strategy" def test_quotes(logger): """ Tests that it properly handles strategies with leading/ending quotes. """ assert "\/" == str(actions.utils.parse("\"\/\"", logger)).strip() assert "\/ [TCP:flags:A]-drop-|" == str(actions.utils.parse("\"\/ [TCP:flags:A]-drop-|\"", logger)).strip() def test_failures(logger): """ Tests that properly fails to parse strategies """ with pytest.raises(actions.tree.ActionTreeParseError): actions.utils.parse("asdfasdf", logger) with pytest.raises(actions.tree.ActionTreeParseError): actions.utils.parse("[]-asdfasdf", logger) # Field doesn't exist with pytest.raises(AssertionError): actions.utils.parse("[TCP:thing:1]-nooooooope", logger) assert actions.utils.parse("", logger) is not None assert " \/ " == str(actions.utils.parse("", logger))
python/lambda-triggered-by-existing-kinesis-stream/lambda-handler.py
marclyo/aws-cdk-examples
2,941
11152615
<reponame>marclyo/aws-cdk-examples def main(event, context): print("I'm running!")
examples/webapps/_local_path.py
timgates42/txmongo
122
11152663
# coding: utf-8 # Copyright 2009-2014 The txmongo authors. All rights reserved. # Use of this source code is governed by the Apache License that can be # found in the LICENSE file. ''' Adds the local txmongo path to PYTHON_PATH ''' import os.path import sys root = os.path.dirname( os.path.dirname( os.path.dirname( os.path.abspath(__file__) ) ) ) sys.path.insert(0, root)
rootpy/extern/byteplay3/wbyteplay.py
masonproffitt/rootpy
146
11152672
# byteplay: CPython assembler/disassembler # Copyright (C) 2006 <NAME> | Version: http://code.google.com/p/byteplay # Rewritten 2009 <NAME> | Version: http://github.com/serprex/byteplay # Screwed the style over, modified stack logic to be more flexible, updated to Python 3 # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA __version__ = '1.0' __all__ = [ 'opmap', 'opname', 'opcodes', 'hasflow', 'stack_effect', 'cmp_op', 'hasarg', 'hasname', 'hasjrel', 'hasjabs', 'hasjump', 'haslocal', 'hascompare', 'hasfree', 'hasconst', 'hascode', 'Opcode', 'SetLineno', 'Label', 'isopcode', 'Code'] from sys import version_info if version_info < (3, 6): raise NotImplementedError("Currently only Python versions >3.5 are supported!") import opcode from dis import findlabels from types import CodeType from enum import Enum class Opcode(int): __str__ = __repr__ = lambda s: opname[s] opmap = {name.replace('+', '_'): Opcode(code) for name, code in opcode.opmap.items()} opname = {code: name for name, code in opmap.items()} opcodes = set(opname) for cmp_op, hasname in opmap.items(): globals()[cmp_op] = hasname __all__.append(cmp_op) cmp_op = opcode.cmp_op hasarg = {x for x in opcodes if x >= opcode.HAVE_ARGUMENT} hasconst = {Opcode(x) for x in opcode.hasconst} hasname = {Opcode(x) for x in opcode.hasname} hasjrel = {Opcode(x) for x in opcode.hasjrel} hasjabs = {Opcode(x) for x in opcode.hasjabs} hasjump = hasjabs | hasjrel haslocal = {Opcode(x) for x in opcode.haslocal} hascompare = {Opcode(x) for x in opcode.hascompare} hasfree = {Opcode(x) for x in opcode.hasfree} hascode = {MAKE_FUNCTION} STOP_CODE = -1 import dis # Fix bug in Python 3.6.0 (fixed in 3.6.1) if (3, 6, 0) <= version_info < (3, 6, 1): def stack_effect(o, arg): return (dis.stack_effect(o, arg) if o != CALL_FUNCTION_EX else -2 if arg else -1) else: stack_effect = dis.stack_effect hasflow = hasjump | { POP_BLOCK, END_FINALLY, BREAK_LOOP, RETURN_VALUE, RAISE_VARARGS, STOP_CODE, POP_EXCEPT, WITH_CLEANUP_START, WITH_CLEANUP_FINISH, SETUP_ASYNC_WITH} coroutine_opcodes = {GET_AWAITABLE, GET_AITER, GET_ANEXT, BEFORE_ASYNC_WITH, SETUP_ASYNC_WITH} class Label: pass class SetLinenoType: def __repr__(self): return 'SetLineno' SetLineno = SetLinenoType() def isopcode(x): return x is not SetLineno and not isinstance(x, Label) # Flags for codeobject.co_flags, taken from Include/code.h, other flags are no longer used CO_OPTIMIZED = 0x0001 CO_NEWLOCALS = 0x0002 CO_VARARGS = 0x0004 CO_VARKEYWORDS = 0x0008 CO_NESTED = 0x0010 CO_GENERATOR = 0x0020 CO_NOFREE = 0x0040 CO_COROUTINE = 0x0080 CO_ITERABLE_COROUTINE = 0x0100 CO_ASYNC_GENERATOR = 0x0200 CO_FUTURE_BARRY_AS_BDFL = 0x40000 CO_FUTURE_GENERATOR_STOP = 0x80000 class Code(object): """An object which holds all the information which a Python code object holds, but in an easy-to-play-with representation The attributes are: Affecting action code - list of 2-tuples: the code freevars - list of strings: the free vars of the code (those are names of variables created in outer functions and used in the function) args - list of strings: the arguments of the code kwonly - number of keyword only arguments varargs - boolean: Does args end with a '*args' argument varkwargs - boolean: Does args end with a '**kwargs' argument newlocals - boolean: Should a new local namespace be created (True in functions, False for module and exec code) force_generator - set CO_GENERATOR in co_flags for generator Code objects without generator-specific code Python 3.5: force_coroutine - set CO_COROUTINE in co_flags for coroutine Code objects (native coroutines) without coroutine-specific code force_iterable_coroutine - set CO_ITERABLE_COROUTINE in co_flags for generator-based coroutine Code objects future_generator_stop - set CO_FUTURE_GENERATOR_STOP flag (see PEP-479) Python 3.6: force_async_generator - set CO_ASYNC_GENERATOR in co_flags Not affecting action name - string: the name of the code (co_name) filename - string: the file name of the code (co_filename) firstlineno - int: the first line number (co_firstlineno) docstring - string or None: the docstring (the first item of co_consts, if it's str) code is a list of 2-tuples. The first item is an opcode, or SetLineno, or a Label instance. The second item is the argument, if applicable, or None""" def __init__(self, code, freevars, args, kwonly, varargs, varkwargs, newlocals, name, filename, firstlineno, docstring, force_generator=False, *, force_coroutine=False, force_iterable_coroutine=False, force_async_generator=False, future_generator_stop=False): self.code = code self.freevars = freevars self.args = args self.kwonly = kwonly self.varargs = varargs self.varkwargs = varkwargs self.newlocals = newlocals self.name = name self.filename = filename self.firstlineno = firstlineno self.docstring = docstring self.force_generator = force_generator self.force_coroutine = force_coroutine self.force_iterable_coroutine = force_iterable_coroutine self.force_async_generator = force_async_generator self.future_generator_stop = future_generator_stop @staticmethod def _findlinestarts(code): """Find the offsets in a byte code which are start of lines in the source Generate pairs offset,lineno as described in Python/compile.c This is a modified version of dis.findlinestarts, which allows multiplelinestarts with the same line number""" lineno = code.co_firstlineno addr = 0 for byte_incr, line_incr in zip(code.co_lnotab[0::2], code.co_lnotab[1::2]): if byte_incr: yield addr, lineno addr += byte_incr lineno += line_incr yield addr, lineno @classmethod def from_code(cls, co): """Disassemble a Python code object into a Code object""" free_cell_isection = set(co.co_cellvars) & set(co.co_freevars) if free_cell_isection: print(co.co_name + ': has non-empty co.co_cellvars & co.co_freevars', free_cell_isection) return None co_code = co.co_code labels = {addr: Label() for addr in findlabels(co_code)} linestarts = dict(cls._findlinestarts(co)) cellfree = co.co_cellvars + co.co_freevars code = [] extended_arg = 0 is_generator = False is_coroutine = False for i in range(0, len(co_code), 2): if i in labels: code.append((labels[i], None)) if i in linestarts: code.append((SetLineno, linestarts[i])) op = Opcode(co_code[i]) arg = co_code[i+1] | extended_arg if op in hascode: lastop, lastarg = code[-2] if lastop != LOAD_CONST: raise ValueError("%s should be preceded by LOAD_CONST" % op) sub_code = Code.from_code(lastarg) if sub_code is None: print(co.co_name + ': has unexpected subcode block') return None code[-2] = (LOAD_CONST, sub_code) if op == opcode.EXTENDED_ARG: extended_arg = arg << 8 else: if op not in hasarg: code.append((op, None)) continue extended_arg = 0 byteplay_arg = co.co_consts[arg] if op in hasconst else \ co.co_names[arg] if op in hasname else \ labels[arg] if op in hasjabs else \ labels[i + 2 + arg] if op in hasjrel else \ co.co_varnames[arg] if op in haslocal else \ cmp_op[arg] if op in hascompare else \ cellfree[arg] if op in hasfree else \ arg code.append((op, byteplay_arg)) if op == YIELD_VALUE or op == YIELD_FROM: is_generator = True if op in coroutine_opcodes: is_coroutine = True varargs = not not co.co_flags & CO_VARARGS varkwargs = not not co.co_flags & CO_VARKEYWORDS force_coroutine = not is_coroutine and (co.co_flags & CO_COROUTINE) force_iterable_coroutine = co.co_flags & CO_ITERABLE_COROUTINE force_async_generator = co.co_flags & CO_ASYNC_GENERATOR is_generator = False if force_async_generator else is_generator force_generator = not is_generator and (co.co_flags & CO_GENERATOR) assert not (force_coroutine and force_iterable_coroutine) assert not (force_coroutine and force_async_generator) assert not (force_iterable_coroutine and force_async_generator) future_generator_stop = co.co_flags & CO_FUTURE_GENERATOR_STOP return cls(code=code, freevars=co.co_freevars, args=co.co_varnames[:co.co_argcount + varargs + varkwargs + co.co_kwonlyargcount], kwonly=co.co_kwonlyargcount, varargs=varargs, varkwargs=varkwargs, newlocals=not not co.co_flags & CO_NEWLOCALS, name=co.co_name, filename=co.co_filename, firstlineno=co.co_firstlineno, docstring=co.co_consts[0] if co.co_consts and isinstance(co.co_consts[0], str) else None, force_generator=force_generator, force_coroutine=force_coroutine, force_iterable_coroutine=force_iterable_coroutine, force_async_generator=force_async_generator, future_generator_stop=future_generator_stop) def __eq__(self, other): try: if (self.freevars != other.freevars or self.args != other.args or self.kwonly != other.kwonly or self.varargs != other.varargs or self.varkwargs != other.varkwargs or self.newlocals != other.newlocals or self.name != other.name or self.filename != other.filename or self.firstlineno != other.firstlineno or self.docstring != other.docstring or self.force_generator != other.force_generator or len(self.code) != len(other.code)): return False else: if (self.force_coroutine != other.force_coroutine or self.force_iterable_coroutine != other.force_iterable_coroutine or self.future_generator_stop != other.future_generator_stop or self.force_async_generator != other.force_async_generator): return False # This isn't trivial due to labels lmap = {} for (op1, arg1), (op2, arg2) in zip(self.code, other.code): if isinstance(op1, Label): if lmap.setdefault(arg1, arg2) is not arg2: return False else: if op1 != op2: return False if op1 in hasjump: if lmap.setdefault(arg1, arg2) is not arg2: return False elif arg1 != arg2: return False return True except: return False def _compute_stacksize(self, logging=False): code = self.code label_pos = {op[0]: pos for pos, op in enumerate(code) if isinstance(op[0], Label)} # sf_targets are the targets of SETUP_FINALLY opcodes. They are recorded # because they have special stack behaviour. If an exception was raised # in the block pushed by a SETUP_FINALLY opcode, the block is popped # and 3 objects are pushed. On return or continue, the block is popped # and 2 objects are pushed. If nothing happened, the block is popped by # a POP_BLOCK opcode and 1 object is pushed by a (LOAD_CONST, None) # operation # Our solution is to record the stack state of SETUP_FINALLY targets # as having 3 objects pushed, which is the maximum. However, to make # stack recording consistent, the get_next_stacks function will always # yield the stack state of the target as if 1 object was pushed, but # this will be corrected in the actual stack recording sf_targets = {label_pos[arg] for op, arg in code if (op == SETUP_FINALLY or op == SETUP_WITH or op == SETUP_ASYNC_WITH)} states = [None] * len(code) maxsize = 0 class BlockType(Enum): DEFAULT = 0, TRY_FINALLY = 1, TRY_EXCEPT = 2, LOOP_BODY = 3, WITH_BLOCK = 4, EXCEPTION = 5, SILENCED_EXCEPTION_BLOCK = 6, class State: def __init__(self, pos=0, stack=(0,), block_stack=(BlockType.DEFAULT,), log=[]): self._pos = pos self._stack = stack self._block_stack = block_stack self._log = log @property def pos(self): return self._pos @property def stack(self): return self._stack @stack.setter def stack(self, val): self._stack = val def newstack(self, n): if self._stack[-1] < -n: raise ValueError("Popped a non-existing element at %s %s" % (self._pos, code[self._pos - 4: self._pos + 3])) return self._stack[:-1] + (self._stack[-1] + n,) @property def block_stack(self): return self._block_stack @property def log(self): return self._log def newlog(self, msg): if not logging: return None log_msg = str(self._pos) + ": " + msg if self._stack: log_msg += " (on stack: " log_depth = 2 log_depth = min(log_depth, len(self._stack)) for pos in range(-1, -log_depth, -1): log_msg += str(self._stack[pos]) + ", " log_msg += str(self._stack[-log_depth]) log_msg += ")" else: log_msg += " (empty stack)" return [log_msg] + self._log op = [State()] while op: cur_state = op.pop() o = sum(cur_state.stack) if o > maxsize: maxsize = o o, arg = code[cur_state.pos] if isinstance(o, Label): if cur_state.pos in sf_targets: cur_state.stack = cur_state.newstack(5) if states[cur_state.pos] is None: states[cur_state.pos] = cur_state elif states[cur_state.pos].stack != cur_state.stack: check_pos = cur_state.pos + 1 while code[check_pos][0] not in hasflow: check_pos += 1 if code[check_pos][0] not in (RETURN_VALUE, RAISE_VARARGS, STOP_CODE): if cur_state.pos not in sf_targets: raise ValueError("Inconsistent code at %s %s %s\n%s" % (cur_state.pos, cur_state.stack, states[cur_state.pos].stack, code[cur_state.pos - 5:cur_state.pos + 4])) else: # SETUP_FINALLY target inconsistent code! # # Since Python 3.2 assigned exception is cleared at the end of # the except clause (named exception handler). # To perform this CPython (checked in version 3.4.3) adds special # bytecode in exception handler which currently breaks 'regularity' of bytecode. # Exception handler is wrapped in try/finally block and POP_EXCEPT opcode # is inserted before END_FINALLY, as a result cleanup-finally block is executed outside # except handler. It's not a bug, as it doesn't cause any problems during execution, but # it breaks 'regularity' and we can't check inconsistency here. Maybe issue should be # posted to Python bug tracker. pass continue else: continue if o not in (BREAK_LOOP, RETURN_VALUE, RAISE_VARARGS, STOP_CODE): next_pos = cur_state.pos + 1 if not isopcode(o): op += State(next_pos, cur_state.stack, cur_state.block_stack, cur_state.log), elif o not in hasflow: if o in hasarg and not isinstance(arg, int): se = stack_effect(o, 0) else: se = stack_effect(o, arg) log = cur_state.newlog("non-flow command (" + str(o) + ", se = " + str(se) + ")") op += State(next_pos, cur_state.newstack(se), cur_state.block_stack, log), elif o == FOR_ITER: inside_for_log = cur_state.newlog("FOR_ITER (+1)") op += State(label_pos[arg], cur_state.newstack(-1), cur_state.block_stack, cur_state.log),\ State(next_pos, cur_state.newstack(1), cur_state.block_stack, inside_for_log) elif o in (JUMP_FORWARD, JUMP_ABSOLUTE): after_jump_log = cur_state.newlog(str(o)) op += State(label_pos[arg], cur_state.stack, cur_state.block_stack, after_jump_log), elif o in (JUMP_IF_FALSE_OR_POP, JUMP_IF_TRUE_OR_POP): after_jump_log = cur_state.newlog(str(o) + ", jumped") log = cur_state.newlog(str(o) + ", not jumped (-1)") op += State(label_pos[arg], cur_state.stack, cur_state.block_stack, after_jump_log),\ State(next_pos, cur_state.newstack(-1), cur_state.block_stack, log) elif o in {POP_JUMP_IF_TRUE, POP_JUMP_IF_FALSE}: after_jump_log = cur_state.newlog(str(o) + ", jumped (-1)") log = cur_state.newlog(str(o) + ", not jumped (-1)") op += State(label_pos[arg], cur_state.newstack(-1), cur_state.block_stack, after_jump_log),\ State(next_pos, cur_state.newstack(-1), cur_state.block_stack, log) elif o == CONTINUE_LOOP: next_stack, next_block_stack = cur_state.stack, cur_state.block_stack last_popped_block = None while next_block_stack[-1] != BlockType.LOOP_BODY: last_popped_block = next_block_stack[-1] next_stack, next_block_stack = next_stack[:-1], next_block_stack[:-1] if next_stack != cur_state.stack: log = cur_state.newlog("CONTINUE_LOOP, from non-loop block") else: log = cur_state.newlog("CONTINUE_LOOP") jump_to_pos = label_pos[arg] if last_popped_block == BlockType.WITH_BLOCK: next_stack = next_stack[:-1] + (next_stack[-1] - 1,) op += State(jump_to_pos, next_stack, next_block_stack, log), elif o == SETUP_LOOP: inside_loop_log = cur_state.newlog("SETUP_LOOP (+block)") op += State(label_pos[arg], cur_state.stack, cur_state.block_stack, cur_state.log),\ State(next_pos, cur_state.stack + (0,), cur_state.block_stack + (BlockType.LOOP_BODY,), inside_loop_log) elif o == SETUP_EXCEPT: inside_except_log = cur_state.newlog("SETUP_EXCEPT, exception (+6, +block)") inside_try_log = cur_state.newlog("SETUP_EXCEPT, try-block (+block)") op += State(label_pos[arg], cur_state.stack + (6,), cur_state.block_stack + (BlockType.EXCEPTION,), inside_except_log),\ State(next_pos, cur_state.stack + (0,), cur_state.block_stack + (BlockType.TRY_EXCEPT,), inside_try_log) elif o == SETUP_FINALLY: inside_finally_block = cur_state.newlog("SETUP_FINALLY (+1)") inside_try_log = cur_state.newlog("SETUP_FINALLY try-block (+block)") op += State(label_pos[arg], cur_state.newstack(1), cur_state.block_stack, inside_finally_block),\ State(next_pos, cur_state.stack + (0,), cur_state.block_stack + (BlockType.TRY_FINALLY,), inside_try_log) elif o == POP_BLOCK: log = cur_state.newlog("POP_BLOCK (-block)") op += State(next_pos, cur_state.stack[:-1], cur_state.block_stack[:-1], log), elif o == POP_EXCEPT: log = cur_state.newlog("POP_EXCEPT (-block)") op += State(next_pos, cur_state.stack[:-1], cur_state.block_stack[:-1], log), elif o == END_FINALLY: if cur_state.block_stack[-1] == BlockType.SILENCED_EXCEPTION_BLOCK: log = cur_state.newlog("END_FINALLY pop silenced exception block (-block)") op += State(next_pos, cur_state.stack[:-1], cur_state.block_stack[:-1], log), elif cur_state.block_stack[-1] == BlockType.EXCEPTION: # Reraise exception pass else: log = cur_state.newlog("END_FINALLY (-6)") op += State(next_pos, cur_state.newstack(-6), cur_state.block_stack, log), elif o == SETUP_WITH or o == SETUP_ASYNC_WITH: inside_with_block = cur_state.newlog("SETUP_WITH, with-block (+1, +block)") inside_finally_block = cur_state.newlog("SETUP_WITH, finally (+1)") op += State(label_pos[arg], cur_state.newstack(1), cur_state.block_stack, inside_finally_block),\ State(next_pos, cur_state.stack + (1,), cur_state.block_stack + (BlockType.WITH_BLOCK,), inside_with_block) elif o == WITH_CLEANUP_START: # There is special case when 'with' __exit__ function returns True, # that's the signal to silence exception, in this case additional element is pushed # and next END_FINALLY command won't reraise exception. # Emulate this situation on WITH_CLEANUP_START with creating special block which will be # handled differently by WITH_CLEANUP_FINISH and will cause END_FINALLY not to reraise exception. log = cur_state.newlog("WITH_CLEANUP_START (+1)") silenced_exception_log = cur_state.newlog("WITH_CLEANUP_START silenced_exception (+block)") op += State(next_pos, cur_state.newstack(1), cur_state.block_stack, log),\ State(next_pos, cur_state.newstack(-7) + (9,), cur_state.block_stack + (BlockType.SILENCED_EXCEPTION_BLOCK,), silenced_exception_log) elif o == WITH_CLEANUP_FINISH: if cur_state.block_stack[-1] == BlockType.SILENCED_EXCEPTION_BLOCK: # See comment in WITH_CLEANUP_START handler log = cur_state.newlog("WITH_CLEANUP_FINISH silenced_exception (-1)") op += State(next_pos, cur_state.newstack(-1), cur_state.block_stack, log), else: log = cur_state.newlog("WITH_CLEANUP_FINISH (-2)") op += State(next_pos, cur_state.newstack(-2), cur_state.block_stack, log), else: raise ValueError("Unhandled opcode %s" % o) return maxsize + 6 # for exception raise in deepest place def to_code(self, from_function=False): """Assemble a Python code object from a Code object""" num_fastnames = sum(1 for op, arg in self.code if isopcode(op) and op in haslocal) is_function = self.newlocals or num_fastnames > 0 or len(self.args) > 0 nested = is_function and from_function co_flags = {op[0] for op in self.code} if not self.force_async_generator: is_generator = (self.force_generator or (YIELD_VALUE in co_flags or YIELD_FROM in co_flags) ) else: is_generator = False no_free = (not self.freevars) and (not co_flags & hasfree) is_native_coroutine = bool(self.force_coroutine or (co_flags & coroutine_opcodes)) assert not (is_native_coroutine and self.force_iterable_coroutine) assert not (is_native_coroutine and self.force_async_generator) co_flags =\ (not(STORE_NAME in co_flags or LOAD_NAME in co_flags or DELETE_NAME in co_flags)) |\ (self.newlocals and CO_NEWLOCALS) |\ (self.varargs and CO_VARARGS) |\ (self.varkwargs and CO_VARKEYWORDS) |\ (is_generator and CO_GENERATOR) |\ (no_free and CO_NOFREE) |\ (nested and CO_NESTED) co_flags |= (is_native_coroutine and CO_COROUTINE) |\ (self.force_iterable_coroutine and CO_ITERABLE_COROUTINE) |\ (self.future_generator_stop and CO_FUTURE_GENERATOR_STOP) |\ (self.force_async_generator and CO_ASYNC_GENERATOR) co_consts = [self.docstring] co_names = [] co_varnames = list(self.args) co_freevars = tuple(self.freevars) # Find all cellvars beforehand for two reasons # Need the number of them to construct the numeric arg for ops in hasfree # Need to put args which are cells in the beginning of co_cellvars cellvars = {arg for op, arg in self.code if isopcode(op) and op in hasfree and arg not in co_freevars} co_cellvars = [jumps for jumps in self.args if jumps in cellvars] def index(seq, item, eq=True, can_append=True): for i, x in enumerate(seq): if x == item if eq else x is item: return i if can_append: seq.append(item) return len(seq) - 1 else: raise IndexError("Item not found") jumps = [] label_pos = {} lastlineno = self.firstlineno lastlinepos = 0 co_code = bytearray() co_lnotab = bytearray() for i, (op, arg) in enumerate(self.code): if isinstance(op, Label): label_pos[op] = len(co_code) elif op is SetLineno: incr_lineno = arg - lastlineno incr_pos = len(co_code) - lastlinepos lastlineno = arg lastlinepos += incr_pos if incr_lineno != 0 or incr_pos != 0: while incr_pos > 255: co_lnotab += b"\xFF\0" incr_pos -= 255 while incr_lineno > 255: co_lnotab += bytes((incr_pos, 255)) incr_pos = 0 incr_lineno -= 255 if incr_pos or incr_lineno: co_lnotab += bytes((incr_pos, incr_lineno)) elif op == opcode.EXTENDED_ARG: self.code[i + 1][1] |= 1 << 32 else: if op in hasconst: if (isinstance(arg, Code) and i + 2 < len(self.code) and self.code[i + 2][0] in hascode): arg = arg.to_code(from_function=is_function) assert arg is not None arg = index(co_consts, arg, 0) elif op in hasname: arg = index(co_names, arg) elif op in hasjump: jumps.append((len(co_code), arg)) co_code += bytes((0x90, 0, op, 0)) continue elif op in haslocal: arg = index(co_varnames, arg) elif op in hascompare: arg = index(cmp_op, arg, can_append=False) elif op in hasfree: try: arg = index(co_freevars, arg, can_append=False) + len(cellvars) except IndexError: arg = index(co_cellvars, arg) if arg is None: arg = 0 if arg > 0xFFFFFF: co_code += (opcode.EXTENDED_ARG | (arg >> 16 & 0xFF00)).to_bytes(2, "little") if arg > 0xFFFF: co_code += (opcode.EXTENDED_ARG | (arg >> 8 & 0xFF00)).to_bytes(2, "little") if arg > 0xFF: co_code += (opcode.EXTENDED_ARG | (arg & 0xFF00)).to_bytes(2, "little") co_code += (op | (arg & 0xFF) << 8).to_bytes(2, "little") for pos, label in jumps: jump = label_pos[label] if co_code[pos+2] in hasjrel: jump -= pos + 4 if jump > 0xFFFF: raise NotImplementedError("Multiple EXTENDED_ARG jumps not implemented") co_code[pos + 3] = jump & 0xFF co_code[pos + 1] = jump >> 8 & 0xFF co_argcount = len(self.args) - self.varargs - self.varkwargs - self.kwonly co_stacksize = self._compute_stacksize() return CodeType(co_argcount, self.kwonly, len(co_varnames), co_stacksize, co_flags, bytes(co_code), tuple(co_consts), tuple(co_names), tuple(co_varnames), self.filename, self.name, self.firstlineno, bytes(co_lnotab), co_freevars, tuple(co_cellvars))
test/shared/test_utils.py
roock/cloudsplaining
1,411
11152673
<reponame>roock/cloudsplaining import unittest from cloudsplaining.shared.utils import remove_wildcard_only_actions, remove_read_level_actions class TestUtils(unittest.TestCase): def test_remove_wildcard_only_actions(self): actions = [ # 3 wildcard only actions "secretsmanager:getrandompassword", "secretsmanager:listsecrets", # This one is wildcard OR "secret" "secretsmanager:putsecretvalue", ] results = remove_wildcard_only_actions(actions) # print(results) self.assertListEqual(results, ["secretsmanager:PutSecretValue"]) def test_remove_read_level_actions(self): actions = [ "ssm:GetParameters", "ecr:PutImage" ] result = remove_read_level_actions(actions) expected_result = ['ecr:PutImage'] self.assertListEqual(result, expected_result)
electrumsv/gui/qt/table_widgets.py
electrumsv/electrumsv
136
11152674
from typing import Callable, Optional from PyQt5.QtCore import pyqtSignal, Qt from PyQt5.QtGui import QCursor from PyQt5.QtWidgets import QHBoxLayout, QToolButton, QWidget from electrumsv.i18n import _ from .util import KeyEventLineEdit, read_QIcon class ButtonLayout(QHBoxLayout): def __init__(self, parent: Optional[QWidget]=None) -> None: # NOTE(typing) The checker does not have signatures for the parent being an explicit None. super().__init__(parent) # type: ignore # The offset to insert the next button at. self._button_index = 0 self.setSpacing(2) self.setContentsMargins(0, 2, 0, 2) def _create_button(self, icon_name: str, on_click: Callable[[], None], tooltip: str) \ -> QToolButton: button = QToolButton() button.setIcon(read_QIcon(icon_name)) button.setToolTip(tooltip) button.setCursor(QCursor(Qt.CursorShape.PointingHandCursor)) button.clicked.connect(on_click) return button def add_button(self, icon_name: str, on_click: Callable[[], None], tooltip: str, position: Optional[int]=None) -> QToolButton: button = self._create_button(icon_name, on_click, tooltip) if position is None: position = self._button_index self._button_index += 1 self.insertWidget(position, button) return button class TableTopButtonLayout(ButtonLayout): add_signal = pyqtSignal() refresh_signal = pyqtSignal() filter_signal = pyqtSignal(str) def __init__(self, parent: Optional[QWidget]=None, filter_placeholder_text: str="", enable_filter: bool=True) -> None: super().__init__(parent) # The offset to insert the next button at. self._button_index = 0 self._filter_button: Optional[QToolButton] = None self._filter_box = KeyEventLineEdit(override_events={Qt.Key.Key_Escape}) # When the focus is in the search box, if the user presses Escape the filtering exits. self._filter_box.key_event_signal.connect(self._on_search_override_key_press_event) # As text in the search box changes, the filter updates in real time. self._filter_box.textChanged.connect(self._on_search_text_changed) if not filter_placeholder_text: filter_placeholder_text = _("Your filter text..") self._filter_box.setPlaceholderText(filter_placeholder_text) self._filter_box.hide() self.setSpacing(2) self.setContentsMargins(0, 2, 0, 2) self.add_refresh_button() if enable_filter: self._filter_button = self.add_filter_button() self.addWidget(self._filter_box, 1) self.addStretch(1) # Find the stretch QSpacerItem and hold a reference so we can add and remove it. # The reason we do this is that otherwise the stretch item prevents the search box from # expanding. self._stretch_item = self.takeAt(self.count()-1) self.addItem(self._stretch_item) def add_create_button(self, tooltip: Optional[str]=None) -> QToolButton: if tooltip is None: tooltip = _("Add a new entry.") return self.add_button("icons8-add-new-96-windows.png", self.add_signal.emit, tooltip) def add_refresh_button(self, tooltip: Optional[str]=None) -> QToolButton: if tooltip is None: tooltip = _("Refresh the list.") return self.add_button("refresh_win10_16.png", self.refresh_signal.emit, tooltip) def add_filter_button(self, tooltip: Optional[str]=None) -> QToolButton: if tooltip is None: tooltip = _("Toggle list searching/filtering (Control+F).") return self.add_button("icons8-filter-edit-32-windows.png", self.on_toggle_filter, tooltip) def _on_search_text_changed(self, text: str) -> None: if self._filter_box.isHidden(): return self.filter_signal.emit(text) def _on_search_override_key_press_event(self, event_key: int) -> None: if event_key == Qt.Key.Key_Escape: self.on_toggle_filter() # Call externally to toggle the filter. def on_toggle_filter(self) -> None: assert self._filter_button is not None if self._filter_box.isHidden(): # Activate filtering and show the text field. self._filter_button.setIcon(read_QIcon("icons8-clear-filters-32-windows.png")) self._filter_box.show() self.removeItem(self._stretch_item) self._filter_box.setFocus() else: self.addItem(self._stretch_item) # Deactivate filtering and hide the text field. self._filter_button.setIcon(read_QIcon("icons8-filter-edit-32-windows.png")) self._filter_box.setText('') self._filter_box.hide() self.filter_signal.emit('')
exampleapp/dinosaurs/views.py
jupiterFierce31/A-simple-example-of-a-Django-REST-app-Angular2
163
11152677
from rest_framework import viewsets from dinosaurs.serializers import DinosaurSerializer from dinosaurs.models import Dinosaur class DinosaurViewSet(viewsets.ModelViewSet): """ API endpoint that allows users to be viewed or edited. """ queryset = Dinosaur.objects.all() serializer_class = DinosaurSerializer
tests/test_prefix.py
cclauss/personfinder
561
11152698
# Copyright 2010 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unittest for prefix.py module.""" from google.appengine.ext import db import prefix import unittest class PersonForTest(db.Model): name = db.StringProperty() class PrefixTests(unittest.TestCase): def test_normalize(self): assert prefix.normalize(u'hi there') == u'HI THERE' assert prefix.normalize(u'salut l\xe0') == u'SALUT LA' assert prefix.normalize( u'L\xf2ng Str\xefng w\xedth l\xf4ts \xf6f \xc3cc\xebnts') == \ u'LONG STRING WITH LOTS OF ACCENTS' def test_add_prefix_properties(self): prefix_properties = ['name'] prefix_types = ['_n_', '_n1_', '_n2_'] all_properties = ['name', 'name_n1_', 'name_n2_', 'name_n_'] prefix.add_prefix_properties(PersonForTest, 'name') # Test the list of prefix properties was recorded assert PersonForTest._prefix_properties == prefix_properties # Test all prefix properties have been added for prefix_type in prefix_types: assert hasattr(PersonForTest, 'name' + prefix_type) # Test that the model class was updated assert sorted(PersonForTest.properties()) == all_properties def test_update_prefix_properties(self): prefix.add_prefix_properties(PersonForTest, 'name') test_person = PersonForTest(name='John') prefix.update_prefix_properties(test_person) assert test_person.name_n_ == 'JOHN' assert test_person.name_n1_ == 'J' assert test_person.name_n2_ == 'JO' def test_filter_prefix(self): # Test 1-char prefix filter test_query = PersonForTest.all() test_criteria = {'name': 'b'} prefix.filter_prefix(test_query, **test_criteria) assert test_query._get_query() == {'name_n1_ =': u'B'} # Test 2-char prefix filter test_query = PersonForTest.all() test_criteria = {'name': 'bryan'} prefix.filter_prefix(test_query, **test_criteria) assert test_query._get_query() == {'name_n2_ =': u'BR'} def test_get_prefix_matches(self): db.put(PersonForTest(name='Bryan')) db.put(PersonForTest(name='Bruce')) db.put(PersonForTest(name='Benny')) db.put(PersonForTest(name='Lenny')) test_query = PersonForTest.all().order('name') # Test full string match test_criteria = {'name': 'bryan'} test_people = list(person.name for person in prefix.get_prefix_matches( test_query, 100, **test_criteria)) assert test_people == ['Bryan'] # Test 2-char prefix match test_criteria = {'name': 'br'} test_people = set(person.name for person in prefix.get_prefix_matches( test_query, 100, **test_criteria)) assert test_people == set(['Bruce', 'Bryan']) # Test 1-char prefix match test_criteria = {'name': 'b'} test_people = set(person.name for person in prefix.get_prefix_matches( test_query, 100, **test_criteria)) assert test_people == set(['Benny', 'Bruce', 'Bryan']) # Test limit test_criteria = {'name': 'b'} test_people = set(person.name for person in prefix.get_prefix_matches( test_query, 1, **test_criteria)) assert test_people == set(['Benny']) if __name__ == '__main__': unittest.main()
setup.py
amcgavin/react-render
138
11152706
from setuptools import setup, find_packages VERSION = '1.3.2' setup( name='react-render-client', version=VERSION, packages=find_packages(exclude=['example', 'tests']), install_requires=[ 'django>=1.6', 'requests>=2,<3', ], description='Render and bundle React components from a Django application', long_description='Documentation at https://github.com/mic159/react-render', author='<NAME>', author_email='<EMAIL>', url='https://github.com/mic159/react-render', download_url='https://github.com/mic159/react-render/tarball/{}'.format(VERSION), keywords=['react', 'reactjs', 'django', 'isomorphic', 'templates'], license='MIT', classifiers=[ 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Topic :: Software Development', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ] )
pvlib/spa_c_files/setup.py
sjanzou/pvlib-python
695
11152713
# setup.py import os from distutils.core import setup from distutils.extension import Extension from Cython.Build import cythonize DIRNAME = os.path.dirname(__file__) # patch spa.c with open(os.path.join(DIRNAME, 'spa.c'), 'rb') as f: SPA_C = f.read() # replace timezone with time_zone to avoid nameclash with the function # __timezone which is defined by a MACRO in pyconfig.h as timezone # see https://bugs.python.org/issue24643 SPA_C = SPA_C.replace(b'timezone', b'time_zone') with open(os.path.join(DIRNAME, 'spa.c'), 'wb') as f: f.write(SPA_C) # patch spa.h with open(os.path.join(DIRNAME, 'spa.h'), 'rb') as f: SPA_H = f.read() # replace timezone with time_zone to avoid nameclash with the function # __timezone which is defined by a MACRO in pyconfig.h as timezone # see https://bugs.python.org/issue24643 SPA_H = SPA_H.replace(b'timezone', b'time_zone') with open(os.path.join(DIRNAME, 'spa.h'), 'wb') as f: f.write(SPA_H) SPA_SOURCES = [os.path.join(DIRNAME, src) for src in ['spa_py.pyx', 'spa.c']] setup( ext_modules=cythonize([Extension('spa_py', SPA_SOURCES)]) )
pandas_ta/trend/decay.py
ryanrussell/pandas-ta
2,298
11152726
<gh_stars>1000+ # -*- coding: utf-8 -*- from numpy import exp as npExp from pandas import DataFrame from pandas_ta.utils import get_offset, verify_series def decay(close, kind=None, length=None, mode=None, offset=None, **kwargs): """Indicator: Decay""" # Validate Arguments length = int(length) if length and length > 0 else 5 mode = mode.lower() if isinstance(mode, str) else "linear" close = verify_series(close, length) offset = get_offset(offset) if close is None: return # Calculate Result _mode = "L" if mode == "exp" or kind == "exponential": _mode = "EXP" diff = close.shift(1) - npExp(-length) else: # "linear" diff = close.shift(1) - (1 / length) diff[0] = close[0] tdf = DataFrame({"close": close, "diff": diff, "0": 0}) ld = tdf.max(axis=1) # Offset if offset != 0: ld = ld.shift(offset) # Handle fills if "fillna" in kwargs: ld.fillna(kwargs["fillna"], inplace=True) if "fill_method" in kwargs: ld.fillna(method=kwargs["fill_method"], inplace=True) # Name and Categorize it ld.name = f"{_mode}DECAY_{length}" ld.category = "trend" return ld decay.__doc__ = \ """Decay Creates a decay moving forward from prior signals like crosses. The default is "linear". Exponential is optional as "exponential" or "exp". Sources: https://tulipindicators.org/decay Calculation: Default Inputs: length=5, mode=None if mode == "exponential" or mode == "exp": max(close, close[-1] - exp(-length), 0) else: max(close, close[-1] - (1 / length), 0) Args: close (pd.Series): Series of 'close's length (int): It's period. Default: 1 mode (str): If 'exp' then "exponential" decay. Default: 'linear' offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """
test/test_orm_ext/apps/Test/models.py
timgates42/uliweb
202
11152731
from uliweb.orm import * class User(Model): username = Field(str) def print_name(self): return 'print_name'
test/programytest/dialog/test_conversation.py
cdoebler1/AIML2
345
11152785
<reponame>cdoebler1/AIML2 import unittest from programy.bot import Bot from programy.config.bot.bot import BotConfiguration from programy.context import ClientContext from programy.dialog.conversation import Conversation from programy.dialog.question import Question from programy.dialog.sentence import Sentence from programy.parser.pattern.match import Match from programy.parser.pattern.matchcontext import MatchContext from programy.parser.pattern.nodes.word import PatternWordNode from programytest.client import TestClient class ConversationTests(unittest.TestCase): def test_pop_methods(self): client = TestClient() client_context = ClientContext(client, "testid") client_context.bot = Bot(BotConfiguration(), client) client_context.bot.configuration.conversations._max_histories = 3 client_context.brain = client_context.bot.brain conversation = Conversation(client_context) question1 = Question.create_from_text(client_context, "Hello There") conversation.record_dialog(question1) self.assertEquals(1, len(conversation.questions)) question2 = Question.create_from_text(client_context, "How are you") conversation.record_dialog(question2) self.assertEquals(2, len(conversation.questions)) conversation.pop_dialog() self.assertEquals(1, len(conversation.questions)) conversation.pop_dialog() self.assertEquals(0, len(conversation.questions)) conversation.pop_dialog() self.assertEquals(0, len(conversation.questions)) def test_properties(self): client = TestClient() client_context = ClientContext(client, "testid") client_context.bot = Bot(BotConfiguration(), client) client_context.bot.configuration.conversations._max_histories = 3 client_context.brain = client_context.bot.brain conversation = Conversation(client_context) conversation.set_property("name1", "value1") self.assertEquals("value1", conversation.property("name1")) conversation.set_property("name2", "value2") self.assertEquals("value2", conversation.property("name2")) conversation.set_property("name2", "value3") self.assertEquals("value3", conversation.property("name2")) self.assertEquals(None, conversation.property("name3")) def test_topic_pattern(self): client = TestClient() client_context = ClientContext(client, "testid") client_context.bot = Bot(BotConfiguration(), client) client_context.bot.configuration.conversations._max_histories = 3 client_context.brain = client_context.bot.brain conversation = Conversation(client_context) self.assertEquals("*", conversation.get_topic_pattern(client_context)) conversation.set_property("topic", "TOPIC1") self.assertEquals("TOPIC1", conversation.get_topic_pattern(client_context)) def test_topic_pattern_topic_none(self): client = TestClient() client_context = ClientContext(client, "testid") client_context.bot = Bot(BotConfiguration(), client) client_context.bot.configuration.conversations._max_histories = 3 client_context.brain = client_context.bot.brain conversation = Conversation(client_context) conversation.set_property("topic", None) self.assertEquals("*", conversation.get_topic_pattern(client_context)) conversation.set_property("topic", "TOPIC1") self.assertEquals("TOPIC1", conversation.get_topic_pattern(client_context)) def test_parse_last_sentences_from_response(self): client = TestClient() client_context = ClientContext(client, "testid") client_context.bot = Bot(BotConfiguration(), client) client_context.bot.configuration.conversations._max_histories = 3 client_context.brain = client_context.bot.brain conversation = Conversation(client_context) self.assertEquals("*", conversation.parse_last_sentences_from_response("")) self.assertEquals("*", conversation.parse_last_sentences_from_response(".")) self.assertEquals("HELLO", conversation.parse_last_sentences_from_response("HELLO")) self.assertEquals("HELLO THERE", conversation.parse_last_sentences_from_response("HELLO THERE")) self.assertEquals("THERE", conversation.parse_last_sentences_from_response("HELLO. THERE")) self.assertEquals("THERE", conversation.parse_last_sentences_from_response("HELLO. THERE!")) def test_that_pattern(self): client = TestClient() client_context = ClientContext(client, "testid") client_context.bot = Bot(BotConfiguration(), client) client_context.bot.configuration.conversations._max_histories = 3 client_context.brain = client_context.bot.brain conversation = Conversation(client_context) self.assertEquals("*", conversation.parse_last_sentences_from_response("")) self.assertEquals("HELLO", conversation.parse_last_sentences_from_response("HELLO")) self.assertEquals("HELLO", conversation.parse_last_sentences_from_response(".HELLO")) self.assertEquals("HELLO", conversation.parse_last_sentences_from_response("HELLO.")) self.assertEquals("HELLO", conversation.parse_last_sentences_from_response(".HELLO.")) self.assertEquals("HELLO THERE", conversation.parse_last_sentences_from_response("HELLO THERE")) self.assertEquals("THERE", conversation.parse_last_sentences_from_response("HELLO. THERE")) self.assertEquals("THERE", conversation.parse_last_sentences_from_response("HELLO. THERE!")) def test_conversation(self): client = TestClient() client_context = ClientContext(client, "testid") client_context.bot = Bot(BotConfiguration(), client) client_context.bot.configuration.conversations._max_histories = 3 client_context.brain = client_context.bot.brain conversation = Conversation(client_context) self.assertIsNotNone(conversation) self.assertEqual(0, len(conversation._questions)) self.assertEqual(3, conversation._max_histories) self.assertEqual(1, len(conversation._properties)) with self.assertRaises(Exception): conversation.current_question() with self.assertRaises(Exception): conversation.previous_nth_question(0) question1 = Question.create_from_text(client_context, "Hello There") conversation.record_dialog(question1) self.assertEqual(question1, conversation.current_question()) with self.assertRaises(Exception): conversation.previous_nth_question(1) question2 = Question.create_from_text(client_context, "Hello There Again") conversation.record_dialog(question2) self.assertEqual(question2, conversation.current_question()) self.assertEqual(question1, conversation.previous_nth_question(1)) with self.assertRaises(Exception): conversation.previous_nth_question(3) question3 = Question.create_from_text(client_context, "Hello There Again Again") conversation.record_dialog(question3) self.assertEqual(question3, conversation.current_question()) self.assertEqual(question2, conversation.previous_nth_question(1)) with self.assertRaises(Exception): conversation.previous_nth_question(4) # Max Histories for this test is 3 # Therefore we should see the first question, pop of the stack question4 = Question.create_from_text(client_context, "Hello There Again Again Again") conversation.record_dialog(question4) self.assertEqual(question4, conversation.current_question()) self.assertEqual(question3, conversation.previous_nth_question(1)) with self.assertRaises(Exception): conversation.previous_nth_question(5) def test_parse_last_sentences_from_response(self): client = TestClient() client_context = ClientContext(client, "testid") client_context.bot = Bot(BotConfiguration(), client) client_context.bot.configuration.conversations._max_histories = 3 client_context.brain = client_context.bot.brain conversation = Conversation(client_context) self.assertIsNotNone(conversation) response = "Hello World" that = conversation.parse_last_sentences_from_response(response) self.assertEqual("Hello World", that) response = "Hello World. Second sentence" that = conversation.parse_last_sentences_from_response(response) self.assertEqual("Second sentence", that) response = "Hello World. Second sentence. Third Sentence" that = conversation.parse_last_sentences_from_response(response) self.assertEqual("Third Sentence", that) def test_to_json(self): client = TestClient() client_context = ClientContext(client, "testid") client_context.bot = Bot(BotConfiguration(), client) client_context.bot.configuration.conversations._max_histories = 3 client_context.brain = client_context.bot.brain conversation1 = Conversation(client_context) conversation1.properties["convo1"] = "value1" matched_context = MatchContext(100, 100) matched_context.matched_nodes.append(Match(Match.WORD, PatternWordNode("Hello"), "Hello")) sentence = Sentence(client_context, text="Hi", response="Hello there", matched_context=matched_context) question1 = Question.create_from_sentence(sentence) question1.properties['quest1'] = "value2" conversation1.record_dialog(question1) json_data = conversation1.to_json() self.assertIsNotNone(json_data) self.assertEqual("testclient", json_data['client_context']['clientid']) self.assertEqual("testid", json_data['client_context']['userid']) self.assertEqual("bot", json_data['client_context']['botid']) self.assertEqual("brain", json_data['client_context']['brainid']) self.assertEqual(0, json_data['client_context']['depth']) conversation2 = Conversation.from_json(client_context, json_data) self.assertEqual(conversation1._client_context.client.id, conversation2._client_context.client.id) self.assertEqual(conversation1._client_context.userid, conversation2._client_context.userid) self.assertEqual(conversation1._client_context.bot.id, conversation2._client_context.bot.id) self.assertEqual(conversation1._client_context.brain.id, conversation2._client_context.brain.id) self.assertEqual(conversation1._client_context._question_start_time, conversation2._client_context._question_start_time) self.assertEqual(conversation1._client_context._question_depth, conversation2._client_context._question_depth) self.assertEqual(conversation1._client_context._id, conversation2._client_context._id) self.assertEqual(conversation1.properties, conversation2.properties) self.assertEqual(conversation1.max_histories, conversation2.max_histories) self.assertNotEquals(0, len(conversation1.questions)) self.assertNotEquals(0, len(conversation2.questions)) self.assertEqual(len(conversation1.questions), len(conversation2.questions)) for i in range(len(conversation2.questions)): q1 = conversation1.questions[i] q2 = conversation2.questions[i] self.assertEqual(q1.srai, q2.srai) self.assertEqual(q1._current_sentence_no, q2._current_sentence_no) self.assertEqual(q1.properties, q2.properties) self.assertNotEquals(0, len(q1.sentences)) self.assertNotEquals(0, len(q2.sentences)) self.assertEqual(len(q1.sentences), len(q2.sentences)) for j in range(len(q2.sentences)): s1 = q1.sentences[j] s2 = q2.sentences[j] self.assertEqual(s1.words, s2.words) self.assertEqual(s1.response, s2.response) self.assertEqual(s1.positivity, s2.positivity) self.assertEqual(s1.subjectivity, s2.subjectivity) mc1 = s1.matched_context mc2 = s2.matched_context self.assertEquals(mc1.template_node, mc2.template_node) self.assertEquals(mc1.max_search_depth, mc2.max_search_depth) self.assertEquals(mc1.max_search_timeout, mc2.max_search_timeout) time1 = mc1._total_search_start.strftime("%d/%m/%Y, %H:%M:%S") time2 = mc2._total_search_start.strftime("%d/%m/%Y, %H:%M:%S") self.assertEquals(time1, time2) self.assertNotEquals(0, len(mc1.matched_nodes)) self.assertNotEquals(0, len(mc2.matched_nodes)) self.assertEquals(len(mc1.matched_nodes), len(mc2.matched_nodes)) for k in range(len(mc1.matched_nodes)): mn1 = mc1.matched_nodes[k] mn2 = mc2.matched_nodes[k] self.assertEquals(mn1._matched_node_str, mn2._matched_node_str) self.assertEquals(mn1._matched_node_type, mn2._matched_node_type) self.assertEquals(mn1._matched_node_multi_word, mn2._matched_node_multi_word) self.assertEquals(mn1._matched_node_wildcard, mn2._matched_node_wildcard) self.assertEquals(mn1._matched_node_words, mn2._matched_node_words)
tests/st/func/datavisual/constants.py
fapbatista/mindinsight
216
11152803
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Constants for st.""" import tempfile SUMMARY_BASE_DIR = tempfile.NamedTemporaryFile().name SUMMARY_DIR_PREFIX = "summary" SUMMARY_DIR_NUM_FIRST = 5 SUMMARY_DIR_NUM_SECOND = 11 RESERVOIR_DIR_NAME = "reservoir_dir" RESERVOIR_TRAIN_ID = "./%s" % RESERVOIR_DIR_NAME RESERVOIR_STEP_NUM = 15 RESERVOIR_DIR_NUM = 1 MULTIPLE_DIR_NAME = "multiple_dir" MULTIPLE_TRAIN_ID = "./%s" % MULTIPLE_DIR_NAME MULTIPLE_LOG_NUM = 3 MULTIPLE_DIR_NUM = 1 # Please make sure SUMMARY_DIR_NUM is greater than `MAX_DATA_LOADER_SIZE`. # Mainly used to test caching. SUMMARY_DIR_NUM = SUMMARY_DIR_NUM_FIRST\ + SUMMARY_DIR_NUM_SECOND\ + RESERVOIR_DIR_NUM\ + MULTIPLE_DIR_NUM
mul_034/script_util.py
cibu/language-resources
177
11152804
<gh_stars>100-1000 # Copyright 2017 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import unicode_literals import os.path import sys # Non-hermetic dependency on PyICU. Install this in one of several ways: # * pip install PyICU # * apt-get install python-pyicu python3-icu import icu from utils import utf8 STOPWORDS = frozenset([ 'ACCENT', 'CHARACTER', 'COMBINING', 'CONSONANT', 'CURRENCY', 'DIGIT', 'FRACTION', 'INDEPENDENT', 'INHERENT', 'LETTER', 'LOGOGRAM', 'LOGOTYPE', 'MARK', 'MEDIAL', 'MODIFIER', 'NUMBER', 'PUNCTUATION', 'SARA', 'SEMIVOWEL', 'SIGN', 'STRESS', 'SUBJOINED', 'SYLLABLE', 'SYMBOL', 'TONE', 'VOWEL', ]) DEPENDENT = ( 'COMBINING', 'CONSONANT SIGN', 'MARK', 'MEDIAL', 'SARA', 'SUBJOINED', 'VOWEL SIGN', ) DIGITS = { 'DIGIT ZERO': '0', 'DIGIT ONE': '1', 'DIGIT TWO': '2', 'DIGIT THREE': '3', 'DIGIT FOUR': '4', 'DIGIT FIVE': '5', 'DIGIT SIX': '6', 'DIGIT SEVEN': '7', 'DIGIT EIGHT': '8', 'DIGIT NINE': '9', } EXCEPTIONS = { 0x09F2: 'taka', 0x09F3: 'bangladeshi_taka', 0x0BFA: 'number', 0x0D4E: 'reph', 0x109E: 'symbol_shan_one', 0xA8EB: '-letter_u', 0x1107F: 'number_joiner', 0x110BD: 'number', 0x11131: '-o_mark', 0x11132: '-au_mark', 0x111CB: 'vowel_modifier', } ALIASES = { # % NORMATIVE ALIASES / corrections from NameAliases 0x0CDE: 'KANNADA LETTER LLLA', 0x0E9D: 'LAO LETTER FO FON', 0x0E9F: 'LAO LETTER FO FAY', 0x0EA3: 'LAO LETTER RO', 0x0EA5: 'LAO LETTER LO', 0x0FD0: 'TIBETAN MARK BKA- SHOG GI MGO RGYAN', # = informative aliases / Sanskritic names for Sinhala characters 0x0D82: 'sinhala sign anusvara', 0x0D83: 'sinhala sign visarga', 0x0D85: 'sinhala letter a', 0x0D86: 'sinhala letter aa', 0x0D87: 'sinhala letter ae', 0x0D88: 'sinhala letter aae', 0x0D89: 'sinhala letter i', 0x0D8a: 'sinhala letter ii', 0x0D8b: 'sinhala letter u', 0x0D8c: 'sinhala letter uu', 0x0D8d: 'sinhala letter vocalic r', 0x0D8e: 'sinhala letter vocalic rr', 0x0D8f: 'sinhala letter vocalic l', 0x0D90: 'sinhala letter vocalic ll', 0x0D91: 'sinhala letter e', 0x0D92: 'sinhala letter ee', 0x0D93: 'sinhala letter ai', 0x0D94: 'sinhala letter o', 0x0D95: 'sinhala letter oo', 0x0D96: 'sinhala letter au', 0x0D9a: 'sinhala letter ka', 0x0D9b: 'sinhala letter kha', 0x0D9c: 'sinhala letter ga', 0x0D9d: 'sinhala letter gha', 0x0D9e: 'sinhala letter nga', 0x0D9F: 'sinhala letter nnga', 0x0DA0: 'sinhala letter ca', 0x0DA1: 'sinhala letter cha', 0x0DA2: 'sinhala letter ja', 0x0DA3: 'sinhala letter jha', 0x0DA4: 'sinhala letter nya', 0x0DA5: 'sinhala letter jnya', 0x0DA6: 'sinhala letter nyja', 0x0DA7: 'sinhala letter tta', 0x0DA8: 'sinhala letter ttha', 0x0DA9: 'sinhala letter dda', 0x0DAA: 'sinhala letter ddha', 0x0DAB: 'sinhala letter nna', 0x0DAC: 'sinhala letter nndda', 0x0DAD: 'sinhala letter ta', 0x0DAE: 'sinhala letter tha', 0x0DAF: 'sinhala letter da', 0x0DB0: 'sinhala letter dha', 0x0DB1: 'sinhala letter na', 0x0DB3: 'sinhala letter nda', 0x0DB4: 'sinhala letter pa', 0x0DB5: 'sinhala letter pha', 0x0DB6: 'sinhala letter ba', 0x0DB7: 'sinhala letter bha', 0x0DB8: 'sinhala letter ma', 0x0DB9: 'sinhala letter mba', 0x0DBA: 'sinhala letter ya', 0x0DBB: 'sinhala letter ra', 0x0DBD: 'sinhala letter la', 0x0DC0: 'sinhala letter va', 0x0DC1: 'sinhala letter sha', 0x0DC2: 'sinhala letter ssa', 0x0DC3: 'sinhala letter sa', 0x0DC4: 'sinhala letter ha', 0x0DC5: 'sinhala letter lla', 0x0DC6: 'sinhala letter fa', 0x0DCA: 'sinhala sign virama', 0x0DCF: 'sinhala vowel sign aa', 0x0DD0: 'sinhala vowel sign ae', 0x0DD1: 'sinhala vowel sign aae', 0x0DD2: 'sinhala vowel sign i', 0x0DD3: 'sinhala vowel sign ii', 0x0DD4: 'sinhala vowel sign u', 0x0DD6: 'sinhala vowel sign uu', 0x0DD8: 'sinhala vowel sign vocalic r', 0x0DD9: 'sinhala vowel sign e', 0x0DDA: 'sinhala vowel sign ee', 0x0DDB: 'sinhala vowel sign ai', 0x0DDC: 'sinhala vowel sign o', 0x0DDD: 'sinhala vowel sign oo', 0x0DDE: 'sinhala vowel sign au', 0x0DDF: 'sinhala vowel sign vocalic l', 0x0DF2: 'sinhala vowel sign vocalic rr', 0x0DF3: 'sinhala vowel sign vocalic ll', } BRAHMIC_OFFICIAL_INDIA = [ # South and Central Asia-I: Official Scripts of India 'Deva', 'Beng', 'Guru', 'Gujr', 'Orya', 'Taml', 'Telu', 'Knda', 'Mlym', ] BRAHMIC_OTHER = [ # South and Central Asia-II: Other Modern Scripts 'Sinh', 'Newa', 'Tibt', 'Limb', 'Mtei', 'Cakm', 'Lepc', 'Saur', # South and Central Asia-III: Ancient Scripts 'Brah', 'Bhks', 'Phag', 'Marc', # South and Central Asia-IV: Other Historic Scripts 'Sylo', 'Kthi', 'Shrd', 'Takr', 'Sidd', 'Mahj', 'Khoj', 'Sind', 'Mult', 'Tirh', 'Modi', 'Gran', 'Ahom', # Southeast Asia 'Thai', 'Laoo', 'Mymr', 'Khmr', 'Tale', 'Talu', 'Lana', 'Tavt', 'Cham', # Indonesia and Oceania 'Tglg', 'Hano', 'Buhd', 'Tagb', 'Bugi', 'Bali', 'Java', 'Rjng', 'Batk', 'Sund', ] EPSILON = '<epsilon>' def CharToCodepoint(char): if len(char) == 1: return ord(char) elif len(char) == 2: hi = ord(char[0]) lo = ord(char[1]) if hi & 0xFC00 == 0xD800 and lo & 0xFC00 == 0xDC00: hi &= 0x3FF lo &= 0x3FF return 0x10000 + (hi << 10) + lo raise TypeError('CharToCodepoint() expected a character or surrogate pair') def CharName(c): cp = CharToCodepoint(c) if cp in ALIASES: return ALIASES[cp].upper() return icu.Char.charName(c) def RemovePrefix(s, prefix): if s.startswith(prefix): return s[len(prefix):] else: return s def ScriptSymbols(script, include_script_code=False): """Yields short symbol names for all characters in the given script.""" script_chars = icu.UnicodeSet(r'[\p{%s}\u200C\u200D]' % script.getName()) script_name = script.getName().replace('_', ' ') utf8.stderr.write('Found %d characters specific to %s (%s)\n' % (len(script_chars), script_name, script.getShortName())) prefix = script_name.upper() for c in script_chars: label = CharToCodepoint(c) if label in EXCEPTIONS: symbol_name = EXCEPTIONS[label] else: name = CharName(c) if not name: utf8.stderr.write('Warning: No Unicode name for %04X\n' % label) continue name = RemovePrefix(name, prefix) name = RemovePrefix(name, 'ZERO WIDTH') assert name for old, new in DIGITS.items(): name = name.replace(old, new) components = [t for t in name.split() if t not in STOPWORDS] symbol_name = '_'.join(components).lower() assert symbol_name, ('Empty symbol name for %04X (%s)' % (label, name)) if symbol_name.startswith('-'): symbol_name = "'%s" % symbol_name[1:] if any(substr in name for substr in DEPENDENT): symbol_name = '-%s' % symbol_name if include_script_code: symbol_name = '%s:%s' % (script.getShortName(), symbol_name) yield symbol_name, label return def GetScript(raw_script_name): """Returns an icu Script object for a given script name.""" script_codes = icu.Script.getCode(raw_script_name) if len(script_codes) != 1: utf8.stderr.write('Error: Unknown or ambiguous script: %s\n' % raw_script_name) return None return icu.Script(script_codes[0]) def IsBijectiveMapping(symbols_and_labels): """Checks if the given symbol-label mapping is bijective.""" ok = True symbol2label = {EPSILON: 0} label2symbol = {0: EPSILON} for symbol, label in symbols_and_labels: if symbol in symbol2label: utf8.stderr.write('Symbol "%s" is associated with labels %d and %d\n' % (symbol, symbol2label[symbol], label)) ok = False else: symbol2label[symbol] = label if label in label2symbol: utf8.stderr.write('Label %d is associated with symbols "%s" and "%s"\n' % (label, label2symbol[label], symbol)) ok = False else: label2symbol[label] = symbol return ok def WriteOpenFstSymbolTable(writer, symbols_and_labels): """Writes an OpenFst SymbolTable in text format to the given writer.""" writer.write('%s\t0\n' % EPSILON) for symbol_label in symbols_and_labels: writer.write('%s\t%d\n' % symbol_label) writer.flush() return def SymbolsToFile(filename, symbols_and_labels, print_info=False): with utf8.open(filename, mode='w') as writer: WriteOpenFstSymbolTable(writer, symbols_and_labels) if print_info: utf8.stderr.write('Wrote %s with %d symbols\n' % (filename, len(symbols_and_labels))) return def ReadGraphemeDataFromFile(path): with utf8.open(path, mode='r') as reader: label = 0xF000 for line in reader: line = line.strip('\n') if not line or line.startswith('#'): continue fields = line.split('\t') assert len(fields) >= 2 if len(fields) > 2: codepoints = fields[2] else: codepoints = '' yield fields[0], fields[1], codepoints, label label += 1 return def ReadGraphemeDataDefault(sibling=sys.argv[0]): path = os.path.join(os.path.dirname(sibling), 'indic_graphemes.tsv') for row in ReadGraphemeDataFromFile(path): yield row return
tests/conftest.py
ivoupton/sheet2dict
208
11152806
import pytest import sys from pathlib import Path sys.path.append(str(Path(".").absolute().parent)) from sheet2dict import Worksheet @pytest.fixture(scope="module") def worksheet(): return Worksheet()
trakt/objects/person.py
ruinernin/trakt.py
147
11152821
<gh_stars>100-1000 from __future__ import absolute_import, division, print_function from trakt.core.helpers import from_iso8601_datetime from trakt.objects.core.helpers import update_attributes class Person(object): def __init__(self, client, keys=None, index=None): self._client = client self.keys = keys """ :type: :class:`~python:list` of :class:`~python:tuple` Keys (for imdb, tvdb, etc..), defined as: ..code-block:: [ (<service>, <id>) ] """ self.index = index """ :type: :class:`~python:int` Playlist item index """ self.name = None """ :type: :class:`~python:str` Name """ # Timestamps self.listed_at = None """ :type: :class:`~python:datetime.datetime` Timestamp of when this item was added to the list (or `None`) """ @property def pk(self): """Retrieve the primary key (unique identifier for the item). Provides the following identifiers (by media type): - **movie:** imdb - **show:** tvdb - **season:** tvdb - **episode:** tvdb - **custom_list:** trakt - **person:** tmdb :return: :code:`(<service>, <value>)` or :code:`None` if no primary key is available :rtype: :class:`~python:tuple` """ if not self.keys: return None return self.keys[0] def _update(self, info=None, **kwargs): if not info: return update_attributes(self, info, [ 'name' ]) # Set timestamps if 'listed_at' in info: self.listed_at = from_iso8601_datetime(info.get('listed_at')) @classmethod def _construct(cls, client, keys, info=None, index=None, **kwargs): person = cls(client, keys, index=index) person._update(info, **kwargs) return person def __getstate__(self): state = self.__dict__ if hasattr(self, '_client'): del state['_client'] return state def __repr__(self): if self.name: return '<Person %r>' % self.name return '<Person>' def __str__(self): return self.__repr__()
tests/test_password_change.py
meals-app/django-graphql-auth
290
11152822
from django.contrib.auth import get_user_model from graphql_jwt.refresh_token.models import RefreshToken from .testCases import RelayTestCase, DefaultTestCase from graphql_auth.utils import revoke_user_refresh_token from graphql_auth.constants import Messages from graphql_auth.utils import get_token, get_token_payload class PasswordChangeTestCaseMixin: def setUp(self): self.user = self.register_user( email="<EMAIL>", username="gaa", verified=True ) self.old_pass = self.user.password def test_password_change(self): """ change password """ variables = {"user": self.user} executed = self.make_request(self.get_query(), variables) self.assertEqual(executed["success"], True) self.assertEqual(executed["errors"], None) self.assertTrue(executed["token"]) self.assertTrue(executed["refreshToken"]) self.user.refresh_from_db() self.assertFalse(self.old_pass == self.user.password) def test_mismatch_passwords(self): """ wrong inputs """ variables = {"user": self.user} executed = self.make_request(self.get_query("wrong"), variables) self.assertEqual(executed["success"], False) self.assertTrue(executed["errors"]["newPassword2"]) self.assertFalse(executed["token"]) self.assertFalse(executed["refreshToken"]) self.user.refresh_from_db() self.assertTrue(self.old_pass == self.user.password) def test_passwords_validation(self): """ easy password """ variables = {"user": self.user} executed = self.make_request(self.get_query("123", "123"), variables) self.assertEqual(executed["success"], False) self.assertTrue(executed["errors"]["newPassword2"]) self.assertFalse(executed["token"]) self.assertFalse(executed["refreshToken"]) def test_revoke_refresh_tokens_on_password_change(self): executed = self.make_request(self.get_login_query()) self.user.refresh_from_db() refresh_tokens = self.user.refresh_tokens.all() for token in refresh_tokens: self.assertFalse(token.revoked) variables = {"user": self.user} executed = self.make_request(self.get_query(), variables) self.assertEqual(executed["success"], True) self.assertEqual(executed["errors"], None) self.assertTrue(executed["token"]) self.assertTrue(executed["refreshToken"]) self.user.refresh_from_db() self.assertFalse(self.old_pass == self.user.password) refresh_tokens = self.user.refresh_tokens.all() revoke_user_refresh_token(self.user) self.user.refresh_from_db() refresh_tokens = self.user.refresh_tokens.all() for token in refresh_tokens: self.assertTrue(token.revoked) class PasswordChangeTestCase(PasswordChangeTestCaseMixin, DefaultTestCase): def get_login_query(self): return """ mutation { tokenAuth( username: "username", password: <PASSWORD>", ) { success, errors, refreshToken } } """ % ( self.default_password, ) def get_query(self, new_password1="<PASSWORD>", new_password2="<PASSWORD>"): return """ mutation { passwordChange( oldPassword: <PASSWORD>", newPassword1: <PASSWORD>", newPassword2: <PASSWORD>" ) { success, errors, token, refreshToken } } """ % ( self.default_password, new_password1, new_password2, ) class PasswordChangeRelayTestCase(PasswordChangeTestCaseMixin, RelayTestCase): def get_login_query(self): return """ mutation { tokenAuth( input: { username: "username", password: <PASSWORD>", } ) { success, errors, refreshToken } } """ % ( self.default_password, ) def get_query(self, new_password1="<PASSWORD>", new_password2="<PASSWORD>"): return """ mutation { passwordChange( input: { oldPassword: <PASSWORD>", newPassword1: <PASSWORD>", newPassword2: "%s" }) { success, errors, token, refreshToken } } """ % ( self.default_password, <PASSWORD>, <PASSWORD>, )
tests/test_nse_option_chain.py
sentashani/stolgo
125
11152832
<reponame>sentashani/stolgo from stolgo.nse_data import NseData def main(): nse_data = NseData() nse_data.get_option_chain_excel('BANKNIFTY','30APR2020') if __name__ == "__main__": main()
tests/cmdline/repl_inspect.py
sebastien-riou/micropython
4,538
11152862
# cmdline: -c print("test") -i # -c option combined with -i option results in REPL
utils/__init__.py
aditiapratama/blender-tools
311
11152872
<gh_stars>100-1000 """Useful utilities and constants for the addon.""" from importlib import reload from inspect import isclass from os.path import basename, dirname, normpath import sys import bpy # This is the addon's directory name, by default "embark_blender_tools", but anyone can change the folder name... # We use dirname() twice to go up two levels in the file system and then basename to get the folder name. # Thanks to https://github.com/LuxCoreRender/BlendLuxCore/ for the example of solving the same issue! ADDON_NAME = basename(dirname(dirname(__file__))) def get_current_version(): """Returns the current version of the loaded addon.""" mod = sys.modules[ADDON_NAME] current_version = mod.bl_info.get("version", (0, 0, 1)) return '.'.join([str(num) for num in current_version]) def get_preferences(): """Returns the addon's Preferences object.""" return bpy.context.preferences.addons[ADDON_NAME].preferences def get_source_path(): """Returns the Embark Addon's Project source path.""" return normpath(get_preferences().source_path) def reload_addon(): """Reloads the Embark Addon and all of its modules.""" _addon_name = ADDON_NAME pref_items = get_preferences().items() bpy.ops.preferences.addon_disable(module=_addon_name) # reloadable = [mod for mod in sys.modules.values() if getattr(mod, '__name__', "").startswith(_addon_name)] # for module in reloadable: # try: # print(f"\tReloading {module.__name__}...") # reload(module) # except Exception as ex: # pylint: disable=broad-except # print(f"Error: Failed to reload module '{module.__name__}', reason: {ex}") bpy.ops.preferences.addon_enable(module=_addon_name) # Reset the previous preference items onto the reloaded preferences get_preferences().set_items(pref_items) def register_recursive(objects): """Registers classes with Blender recursively from modules.""" for obj in objects: if isclass(obj): bpy.utils.register_class(obj) elif hasattr(obj, "register"): obj.register() elif hasattr(obj, "REGISTER_CLASSES"): register_recursive(obj.REGISTER_CLASSES) else: print(f"Warning: Failed to find anything to register for '{obj}'") def unregister_recursive(objects): """Unregisters classes from Blender recursively from modules.""" for obj in reversed(objects): if isclass(obj): bpy.utils.unregister_class(obj) elif hasattr(obj, "unregister"): obj.unregister() elif hasattr(obj, "REGISTER_CLASSES"): unregister_recursive(obj.REGISTER_CLASSES) else: print(f"Warning: Failed to find anything to unregister for '{obj}'")
docs_src/options/name/tutorial003.py
madkinsz/typer
7,615
11152873
import typer def main(user_name: str = typer.Option(..., "-n")): typer.echo(f"Hello {user_name}") if __name__ == "__main__": typer.run(main)
migrations/versions/2dfac13a4c78_add_logsource_unique.py
vault-the/changes
443
11152886
<gh_stars>100-1000 """Add LogSource unique constraint on name Revision ID: 2dfac13a4c78 Revises: <PASSWORD> Create Date: 2013-12-06 10:56:15.727933 """ from __future__ import absolute_import, print_function # revision identifiers, used by Alembic. revision = '2dfac13a4c78' down_revision = '5896e31725d' from alembic import op from sqlalchemy.sql import table, select import sqlalchemy as sa def upgrade(): connection = op.get_bind() logsources_table = table( 'logsource', sa.Column('id', sa.GUID(), nullable=False), sa.Column('build_id', sa.GUID(), nullable=False), sa.Column('name', sa.String(64), nullable=True), ) logchunks_table = table( 'logchunk', sa.Column('source_id', sa.GUID(), nullable=False), ) done = set() for logsource in connection.execute(logsources_table.select()): # migrate group to suite key = (logsource.build_id, logsource.name) if key in done: continue print("Checking LogSource %s - %s" % ( logsource.build_id, logsource.name)) query = logchunks_table.delete().where( logchunks_table.c.source_id.in_(select([logchunks_table]).where( sa.and_( logsources_table.c.build_id == logsource.build_id, logsources_table.c.name == logsource.name, logsources_table.c.id != logsource.id, ), )) ) connection.execute(query) query = logsources_table.delete().where( sa.and_( logsources_table.c.build_id == logsource.build_id, logsources_table.c.name == logsource.name, logsources_table.c.id != logsource.id, ) ) connection.execute(query) done.add(key) op.create_unique_constraint( 'unq_logsource_key', 'logsource', ['build_id', 'name']) op.drop_index('idx_logsource_build_id', 'logsource') def downgrade(): op.drop_constraint('unq_logsource_key', 'logsource') op.create_index('idx_logsource_build_id', 'logsource', ['build_id'])
qdtrack/models/roi_heads/track_heads/__init__.py
mageofboy/qdtrack
271
11152902
<filename>qdtrack/models/roi_heads/track_heads/__init__.py from .quasi_dense_embed_head import QuasiDenseEmbedHead __all__ = ['QuasiDenseEmbedHead']
wooey/migrations/0011_script_versioning_cleanup.py
fridmundklaus/wooey
1,572
11152908
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('wooey', '0010_script_versioning_data_migration'), ] operations = [ migrations.RemoveField( model_name='scriptparameter', name='script', ), migrations.RemoveField( model_name='scriptparametergroup', name='script', ), migrations.RemoveField( model_name='wooeyjob', name='script', ), migrations.RemoveField( model_name='script', name='script_path', ), migrations.RemoveField( model_name='script', name='script_version', ), migrations.AlterField( model_name='scriptversion', name='script', field=models.ForeignKey(related_name='script_version', to='wooey.Script', on_delete=models.PROTECT), ), migrations.AlterField( model_name='scriptparameter', name='script_version', field=models.ForeignKey(to='wooey.ScriptVersion', on_delete=models.PROTECT), ), migrations.AlterField( model_name='scriptparametergroup', name='script_version', field=models.ForeignKey(to='wooey.ScriptVersion', on_delete=models.PROTECT), ), migrations.AlterField( model_name='wooeyjob', name='script_version', field=models.ForeignKey(to='wooey.ScriptVersion', on_delete=models.PROTECT), ), ]
utils/adamw.py
dingmyu/HR-NAS
122
11152912
import math import torch import logging from torch.optim.optimizer import Optimizer from utils.common import index_tensor_in from utils.common import check_tensor_in class AdamW(Optimizer): r"""Implements AdamW algorithm. The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_. The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay coefficient (default: 1e-2) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0.0 <= weight_decay: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad) super(AdamW, self).__init__(params, defaults) def __setstate__(self, state): super(AdamW, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue # Perform stepweight decay p.mul_(1 - group['lr'] * group['weight_decay']) # Perform optimization step grad = p.grad if grad.is_sparse: raise RuntimeError('AdamW does not support sparse gradients') amsgrad = group['amsgrad'] state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] if amsgrad: max_exp_avg_sq = state['max_exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = (max_exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) else: denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) step_size = group['lr'] / bias_correction1 p.addcdiv_(exp_avg, denom, value=-step_size) return loss def compress_mask(self, info, verbose=False): """Adjust parameters values by masks for dynamic network shrinkage.""" var_old = info['var_old'] var_new = info['var_new'] mask_hook = info['mask_hook'] mask = info['mask'] if verbose: logging.info('RMSProp compress: {} -> {}'.format( info['var_old_name'], info['var_new_name'])) found = False for group in self.param_groups: index = index_tensor_in(var_old, group['params'], raise_error=False) found = index is not None if found: if check_tensor_in(var_old, self.state): state = self.state.pop(var_old) if len(state) != 0: # generate new state new_state = {'step': state['step']} for key in ['exp_avg', 'exp_avg_sq', 'max_exp_avg_sq']: if key in state: new_state[key] = torch.zeros_like( var_new.data, device=var_old.device) mask_hook(new_state[key], state[key], mask) new_state[key].to(state[key].device) self.state[var_new] = new_state # update group del group['params'][index] group['params'].append(var_new) break assert found, 'Var: {} not in RMSProp'.format(info['var_old_name']) def compress_drop(self, info, verbose=False): """Remove unused parameters for dynamic network shrinkage.""" var_old = info['var_old'] if verbose: logging.info('RMSProp drop: {}'.format(info['var_old_name'])) assert info['type'] == 'variable' found = False for group in self.param_groups: index = index_tensor_in(var_old, group['params'], raise_error=False) found = index is not None if found: if check_tensor_in(var_old, self.state): self.state.pop(var_old) del group['params'][index] assert found, 'Var: {} not in RMSProp'.format(info['var_old_name'])
etl/parsers/etw/Microsoft_Windows_WMI.py
IMULMUL/etl-parser
104
11152915
# -*- coding: utf-8 -*- """ Microsoft-Windows-WMI GUID : 1edeee53-0afe-4609-b846-d8c0b2075b1f """ from construct import Int8sl, Int8ul, Int16ul, Int16sl, Int32sl, Int32ul, Int64sl, Int64ul, Bytes, Double, Float32l, Struct from etl.utils import WString, CString, SystemTime, Guid from etl.dtyp import Sid from etl.parsers.etw.core import Etw, declare, guid @declare(guid=guid("1edeee53-0afe-4609-b846-d8c0b2075b1f"), event_id=67, version=0) class Microsoft_Windows_WMI_67_0(Etw): pattern = Struct( "BackupFile" / WString ) @declare(guid=guid("1edeee53-0afe-4609-b846-d8c0b2075b1f"), event_id=68, version=0) class Microsoft_Windows_WMI_68_0(Etw): pattern = Struct( "BackupFile" / WString, "Error" / WString )
basisnet/personalization/centralized_emnist/trainer.py
xxdreck/google-research
23,901
11152932
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Runs centralied training and personalization on EMNIST.""" import collections from absl import app from absl import flags from absl import logging import numpy as np import tensorflow as tf import tensorflow_federated as tff from basisnet.personalization.centralized_emnist import data_processing from basisnet.personalization.centralized_emnist import emnist_models from basisnet.personalization.centralized_emnist import training_specs # Training hyperparameters flags.DEFINE_integer('client_datasets_random_seed', 1, 'Random seed for client sampling.') flags.DEFINE_float('client_learning_rate', 1e-3, 'learning rate for client training.') # Training loop configuration flags.DEFINE_string( 'experiment_name', 'test', 'The name of this experiment. Will be append to ' '--root_output_dir to separate experiment results.') flags.mark_flag_as_required('experiment_name') flags.DEFINE_string('root_output_dir', '/tmp/basisnet/centralized_emnist', 'Root directory for writing experiment output.') flags.DEFINE_integer('total_rounds', 200, 'Number of total training rounds.') flags.DEFINE_integer( 'rounds_per_eval', 100, 'How often to evaluate the global model on the validation dataset.') flags.DEFINE_integer('rounds_per_checkpoint', 100, 'How often to checkpoint the global model.') flags.DEFINE_string('modeldir', '', 'The dir for saving checkpoints and logs.') flags.DEFINE_bool('debug', False, 'If true, reduce batch size and do not use' 'tf_function.') # For personalization flags.DEFINE_integer( 'fine_tune_epoch', 20, 'number of epochs for fine-tuning' 'to use from test set for per-round validation.') flags.DEFINE_integer('num_basis', 4, 'number of basis to learn, 1 = original model.') flags.DEFINE_float( 'num_filters_expand', 1, 'number of expanding Conv channel size.') flags.DEFINE_float( 'temp', 1.0, 'temperature for softmax of generating the client embedding.') _SUPPORTED_EMBEDDING_TYPE = ['lookup'] flags.DEFINE_enum('embedding_type', 'lookup', _SUPPORTED_EMBEDDING_TYPE, 'The type of the client embedding.') flags.DEFINE_boolean('run_sweep', False, 'Whether to' ' run hyper parameter tunning with sweep.') flags.DEFINE_boolean('digit_only', False, 'digit_only for emnist') flags.DEFINE_boolean('global_embedding', False, 'train with global_embedding only') flags.DEFINE_boolean('with_dist', False, 'use label distribution as the inputs') FLAGS = flags.FLAGS def main(argv): tf.compat.v2.enable_v2_behavior() # necessary to enable hyperparameter explorations. # xm.setup_work_unit() emnist_train, emnist_test = tff.simulation.datasets.emnist.load_data( only_digits=FLAGS.digit_only) if 'test' in FLAGS.experiment_name: logging.info('Test run ...') num_client = 20 num_test_client = 20 epochs = 1 else: num_client = 2500 num_test_client = 900 epochs = 40 train_batch_size = 256 cliend_encodings = {} for i, idx in enumerate(emnist_train.client_ids): cliend_encodings[idx] = i all_client_ids = np.array(emnist_train.client_ids) np.random.shuffle(all_client_ids) train_client_ids = all_client_ids[:num_client] test_client_ids = all_client_ids[num_client:num_client + num_test_client] train_tuple, _, test_tuple = data_processing.parse_data( emnist_train, emnist_test, train_client_ids, cliend_encodings, with_dist=FLAGS.with_dist) ft_train_tuple, ft_sp_train_tuple, ft_test_tuple = data_processing.parse_data( emnist_train, emnist_test, test_client_ids, cliend_encodings, with_dist=FLAGS.with_dist) dataset = data_processing.pack_dataset( train_tuple, mode='train', with_dist=FLAGS.with_dist) val_dataset = data_processing.pack_dataset( test_tuple, mode='test', with_dist=FLAGS.with_dist) if len(argv) > 1: raise app.UsageError('Expected no command-line arguments, ' 'got: {}'.format(argv)) task_spec = training_specs.TaskSpec( fine_tune_epoch=FLAGS.fine_tune_epoch, num_basis=FLAGS.num_basis, num_filters_expand=FLAGS.num_filters_expand, temp=FLAGS.temp, embedding_type=FLAGS.embedding_type) model_builder = emnist_models.get_model_builder( task_spec, only_digits=FLAGS.digit_only, batch_size=train_batch_size, with_dist=FLAGS.with_dist, global_embedding_only=FLAGS.global_embedding) basisnet = model_builder() basisnet.summary() learning_rate = FLAGS.client_learning_rate logging.info(learning_rate) optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) basisnet.compile( optimizer=optimizer, loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), metrics=['accuracy']) basisnet.fit( dataset, epochs=epochs, validation_data=val_dataset, verbose=2) results = basisnet.evaluate(val_dataset) acc = results[1] logging.info(acc) checkpoint_path = FLAGS.modeldir + 'emnist_basis_%d_lr%f_%s.ckpt' % ( FLAGS.num_basis, FLAGS.client_learning_rate, FLAGS.experiment_name) basisnet.save_weights(checkpoint_path) # Personalization per_batch_size = 20 def eval_per_acc(preds, dataset): pred_cls = np.argmax(preds, -1) dataset = dataset.unbatch() per_acc_dict = collections.OrderedDict() for y_hat, (x, y)in zip(pred_cls, dataset): clnt_id = str(x['input_id']) if clnt_id not in per_acc_dict: per_acc_dict[clnt_id] = {'cnt': 0, 'correct': 0} per_acc_dict[clnt_id]['cnt'] += 1 per_acc_dict[clnt_id]['correct'] += int(y_hat == y.numpy()) per_acc_list = [d['correct'] / d['cnt'] for d in per_acc_dict.values()] return per_acc_list def finetuning(mode, ft_dataset, ft_dataset_test, train_size=1, fix_basis=True, global_exp=False): logging.info('==============') logging.info(mode) logging.info(train_size) logging.info('Bases fixed' if fix_basis else 'Bases not fixed') logging.info( 'Global experiment' if global_exp else 'Personalized experiment') logging.info('==============') per_model_builder = emnist_models.get_model_builder( task_spec, only_digits=FLAGS.digit_only, batch_size=per_batch_size, with_dist=FLAGS.with_dist, global_embedding_only=global_exp) local_basisnet = per_model_builder() local_basisnet.summary() optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4) local_basisnet.compile( optimizer=optimizer, loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), metrics=['accuracy']) local_basisnet.set_weights(basisnet.get_weights()) if fix_basis: if FLAGS.global_embedding or FLAGS.num_basis == 1: # local fine-tune the whole network pass else: # only fine-tune the embedding logging.info('Fix basis') for layer in local_basisnet.layers: if layer.name != 'embedding': layer.trainable = False preds = local_basisnet.predict(ft_dataset_test) per_acc_list = eval_per_acc(preds, ft_dataset_test) logging.info('Before fine-tuning') logging.info(np.nanmean(per_acc_list)) logging.info(per_acc_list) for ep in range(FLAGS.fine_tune_epoch): local_basisnet.fit( ft_dataset, epochs=1, verbose=0, validation_data=ft_dataset_test) preds = local_basisnet.predict(ft_dataset_test) post_acc_list = eval_per_acc(preds, ft_dataset_test) logging.info('Fine-tune epoch%d', ep) logging.info(np.nanmean(post_acc_list)) logging.info(post_acc_list) return local_basisnet ft_dataset = data_processing.pack_dataset( ft_train_tuple, mode='train', batch_size=per_batch_size, with_dist=FLAGS.with_dist) sp_ft_dataset = data_processing.pack_dataset( ft_sp_train_tuple, mode='train', batch_size=per_batch_size, with_dist=FLAGS.with_dist) ft_val_dataset = data_processing.pack_dataset( ft_test_tuple, mode='test', batch_size=per_batch_size, with_dist=FLAGS.with_dist) # Not fix bases finetuning( mode='test', ft_dataset=ft_dataset, ft_dataset_test=ft_val_dataset, fix_basis=False) finetuning( mode='test', ft_dataset=sp_ft_dataset, ft_dataset_test=ft_val_dataset, fix_basis=False, train_size=0.1) if FLAGS.num_basis == 1: return # Fix bases finetuning(mode='test', ft_dataset=ft_dataset, ft_dataset_test=ft_val_dataset) finetuning( mode='test', ft_dataset=sp_ft_dataset, ft_dataset_test=ft_val_dataset, train_size=0.1) # Global Acc local_basisnet = finetuning( mode='test', ft_dataset=ft_dataset, ft_dataset_test=ft_val_dataset, global_exp=True) finetuning( mode='test', ft_dataset=sp_ft_dataset, ft_dataset_test=ft_val_dataset, train_size=0.1, global_exp=True) global_embedding = local_basisnet.get_layer('embedding').get_weights()[0][0] new_embedding = np.tile(global_embedding, (3402, 1)) basisnet.get_layer('embedding').set_weights([new_embedding]) finetuning(mode='test', ft_dataset=ft_dataset, ft_dataset_test=ft_val_dataset) finetuning( mode='test', ft_dataset=sp_ft_dataset, ft_dataset_test=ft_val_dataset, train_size=0.1) if __name__ == '__main__': app.run(main)
ecosystem_tools/mindconverter/mindconverter/graph_based_converter/mapper/onnx/nn/lstm_mapper.py
mindspore-ai/mindinsight
216
11152935
<reponame>mindspore-ai/mindinsight # Copyright 2021 Huawei Technologies Co., Ltd.All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Mapper module.""" import numpy as np from mindconverter.graph_based_converter.mapper.base import ONNXToMindSporeMapper from mindconverter.graph_based_converter.constant import ExchangeMessageKeywords, TemplateKeywords, \ WeightType class LSTMMapper(ONNXToMindSporeMapper): """LSTM mapper.""" @staticmethod def _operation_name_in_ms(*args, **kwargs): return "nn.LSTM" @staticmethod def _convert_params(**kwargs): """convert params""" weights = kwargs["weights"] input_weights = LSTMMapper._find_val_by_index(0, weights) embed_dim = input_weights.shape[2] params = kwargs['params'] output_shape_list = kwargs.get("params").get("output_shape") output_shape = output_shape_list[0].node_output_shape # Here the first element determine if the lstm is bidirectional # `1` means unidirectional. `2` means bidirectional if output_shape[1] == 2: return { "input_size": embed_dim, "hidden_size": params["hidden_size"], "bidirectional": True } return { "input_size": embed_dim, "hidden_size": params["hidden_size"] } @staticmethod def _convert_trained_weights(**kwargs): weights = kwargs["weights"] weight_ih = LSTMMapper._find_val_by_index(0, weights) weight_hh = LSTMMapper._find_val_by_index(1, weights) bias = LSTMMapper._find_val_by_index(2, weights) init_h = LSTMMapper._find_val_by_index(3, weights) init_c = LSTMMapper._find_val_by_index(4, weights) ih_shape = weight_ih.shape gpu_weight_ih, ascend_weight_ih = LSTMMapper._get_gpu_ascend_weight(weight_ih) gpu_weight_hh, ascend_weight_hh = LSTMMapper._get_gpu_ascend_weight(weight_hh) bidirectional = bool(ih_shape[0] > 1) gpu_weights = list() converted_gpu_weights = dict() converted_ascend_weights = dict() converted_weights = dict() gpu_weights.append(gpu_weight_ih[0].reshape(-1, 1, 1)) gpu_weights.append(gpu_weight_hh[0].reshape(-1, 1, 1)) weight_fw0 = np.concatenate([ascend_weight_ih[0], ascend_weight_hh[0]], axis=1) converted_ascend_weights['weight_fw0'] = { 'data': weight_fw0.transpose(1, 0).astype(np.float16) } if bidirectional: gpu_weights.append(gpu_weight_ih[1].reshape(-1, 1, 1)) gpu_weights.append(gpu_weight_hh[1].reshape(-1, 1, 1)) weight_bw0 = np.concatenate([ascend_weight_ih[1], ascend_weight_hh[1]], axis=1) converted_ascend_weights['weight_bw0'] = { 'data': weight_bw0.transpose(1, 0).astype(np.float16) } if bias is not None: bias_shape = bias.shape bias = bias.reshape(bias_shape[0], 2, 4, -1) gpu_bias = bias[:, :, [0, 2, 3, 1], :] gpu_bias = gpu_bias.reshape(bias_shape) gpu_weights.append(gpu_bias.reshape(-1, 1, 1)) ascend_bias = bias[:, :, [0, 3, 2, 1], :] ascend_bias = (ascend_bias[:, 0, :, :] + ascend_bias[:, 1, :, :]).reshape(bias_shape[0], -1) converted_ascend_weights['bias_fw0'] = {'data': ascend_bias[0].astype(np.float16)} if bidirectional: converted_ascend_weights['bias_bw0'] = {'data': ascend_bias[1].astype(np.float16)} gpu_weights = np.concatenate(gpu_weights, axis=0) converted_gpu_weights['weight'] = {'data': gpu_weights} converted_weights.update(converted_gpu_weights) converted_weights.update(converted_ascend_weights) if init_h is not None: converted_weights['init_h'] = {'data': init_h, 'type': WeightType.PARAMETER.value} converted_weights['init_c'] = {'data': init_c, 'type': WeightType.PARAMETER.value} return converted_weights @staticmethod def _get_gpu_ascend_weight(weight): """Get GPU and Ascend weight.""" weight_shape = weight.shape weight = weight.reshape(weight_shape[0], 4, -1, weight_shape[-1]) gpu_weight = weight[:, [0, 2, 3, 1], :, :] gpu_weight = gpu_weight.reshape(weight_shape) ascend_weight = weight[:, [0, 3, 2, 1], :, :].reshape(weight_shape) return gpu_weight, ascend_weight @staticmethod def _generate_snippet_template(**kwargs): """generate snippet template""" op = kwargs.get("operation") args = kwargs.get("converted_params", dict()) weights = kwargs.get("weights") init_h = LSTMMapper._find_val_by_index(3, weights) output_shape_list = kwargs.get("raw_params").get("output_shape") output_shape = output_shape_list[0].node_output_shape output_reshape = (output_shape[0], output_shape[2], output_shape[1], output_shape[3]) trainable_params = kwargs.get("trainable_params", dict()) if not op: raise ValueError("Can not get MindSpore operation name.") variable_slot = "var_0" init_template = f"self.{{{variable_slot}}} = {op}({', '.join(['%s={%s}' % (p, p) for p in args])})" init_params, construct_params = LSTMMapper._get_init_construct_params(variable_slot, output_reshape) if init_h is not None: h_shape = init_h.shape h_dtype = init_h.dtype args['h_shape'] = h_shape args['h_dtype'] = h_dtype template = LSTMMapper._get_template_with_init_h(variable_slot, init_template, init_params, construct_params) else: construct_template = f"opt_{{{variable_slot}}}, (opt_{{{variable_slot}}}_h, " \ f"opt_{{{variable_slot}}}_c) = self.{{{variable_slot}}}" \ f"({{{ExchangeMessageKeywords.VariableScope.value.INPUTS.value}}})" template = { variable_slot: { TemplateKeywords.INIT.value: [init_template, init_params["cast"], init_params["reshape"], init_params["transpose"]], TemplateKeywords.CONSTRUCT.value: [construct_template, construct_params["cast"], construct_params["reshape"], construct_params["transpose"]] } } exchange_msg = LSTMMapper._get_exchange_msg(variable_slot, op, args, weights, trainable_params) outputs_list = [f"opt_{{{variable_slot}}}", f"opt_{{{variable_slot}}}_h", f"opt_{{{variable_slot}}}_c"] outputs_mapping = ((0, 0), (1, 1), (2, 2),) return template, exchange_msg, outputs_list, outputs_mapping @staticmethod def _get_init_construct_params(variable_slot, output_reshape): """Get init and construct codes for parameters.""" init_reshape = f"self.{{{variable_slot}}}_reshape = P.Reshape()" init_transpose = f"self.{{{variable_slot}}}_transpose = P.Transpose()" init_cast = f"self.{{{variable_slot}}}_cast = P.Cast()" construct_cast = f"opt_{{{variable_slot}}} = " \ f"self.{{{variable_slot}}}_cast(opt_{{{variable_slot}}}, mindspore.float32)" construct_reshape = f"opt_{{{variable_slot}}} = " \ f"self.{{{variable_slot}}}_reshape(opt_{{{variable_slot}}}, {output_reshape})" construct_transpose = f"opt_{{{variable_slot}}} = " \ f"self.{{{variable_slot}}}_transpose(opt_{{{variable_slot}}}, (0, 2, 1, 3))" init_codes = {"cast": init_cast, "reshape": init_reshape, "transpose": init_transpose} construct_codes = {"cast": construct_cast, "reshape": construct_reshape, "transpose": construct_transpose} return init_codes, construct_codes @staticmethod def _get_template_with_init_h(variable_slot, init_template, init_params, construct_params): """Get template with init_h.""" init_h_param = f"self.{{{variable_slot}}}_init_h = " \ f"Parameter(Tensor(np.zeros({{h_shape}}).astype(np.{{h_dtype}})), " \ f"name=None, requires_grad=False)" init_c_param = f"self.{{{variable_slot}}}_init_c = " \ f"Parameter(Tensor(np.zeros({{h_shape}}).astype(np.{{h_dtype}})), " \ f"name=None, requires_grad=False)" construct_template = f"opt_{{{variable_slot}}}, (opt_{{{variable_slot}}}_h, " \ f"opt_{{{variable_slot}}}_c) = self.{{{variable_slot}}}" \ f"({{{ExchangeMessageKeywords.VariableScope.value.INPUTS.value}}}," \ f"(self.{{{variable_slot}}}_init_h, self.{{{variable_slot}}}_init_c))" template = { variable_slot: { TemplateKeywords.INIT.value: [init_h_param, init_c_param, init_template, init_params["cast"], init_params["reshape"], init_params["transpose"]], TemplateKeywords.CONSTRUCT.value: [construct_template, construct_params["cast"], construct_params["reshape"], construct_params["transpose"]] } } return template @staticmethod def _get_exchange_msg(variable_slot, op, args, weights, trainable_params): """Get exchange msg for mapper.""" exchange_msg = { variable_slot: { ExchangeMessageKeywords.VariableScope.value.OPERATION.value: op, ExchangeMessageKeywords.VariableScope.value.VARIABLE_NAME.value: None, ExchangeMessageKeywords.VariableScope.value.OUTPUT_TYPE.value: ExchangeMessageKeywords.VariableScope.value.TSR_TYPE.value, ExchangeMessageKeywords.VariableScope.value.INPUTS.value: [], ExchangeMessageKeywords.VariableScope.value.GROUP_INPUTS.value: [(1, 2)], ExchangeMessageKeywords.VariableScope.value.ARGS.value: args, ExchangeMessageKeywords.VariableScope.value.WEIGHTS.value: weights, ExchangeMessageKeywords.VariableScope.value.TRAINABLE_PARAMS.value: trainable_params } } return exchange_msg
circuit_training/environment/coordinate_descent_placer_main.py
taylormcnally/circuit_training
280
11152941
<reponame>taylormcnally/circuit_training # coding=utf-8 # Copyright 2021 The Circuit Training Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""A placer that implements coordinate descent algorithm. The placer can start from a scratch (i.e., empty grid), or from an existing node locations specified by --init_placement. The algorithm runs for a given number of epochs (iterations). For each iteartion, for each node by a given --cd_node_order, place the node greedily on the best grid location. If --cd_use_stdcell_placer is True, place hard macros greedily first, then followed by stdcell placer to place all stdcells. When --cd_epochs=1, this algorithm is equivalent to greedy algorithm. Example usage: python circuit_training/environment/coordinate_descent_placer_main.py --netlist_file "/path/to/netlist.pb.txt" --init_placement "/path/to/initial_placement.plc" """ import functools from absl import app from absl import flags from circuit_training.environment import coordinate_descent_placer from circuit_training.environment import environment from circuit_training.environment import placement_util import numpy as np flags.DEFINE_string('netlist_file', None, 'Path to netlist file.') flags.DEFINE_string('init_placement', None, 'Path to initial placement file.') flags.DEFINE_string('cd_output_dir', '/tmp/cd', 'CD output dir.') flags.DEFINE_string('cd_placement_filename', 'cd', 'CD placement filename.') FLAGS = flags.FLAGS def main(_): np.random.seed(FLAGS.seed) plc = placement_util.create_placement_cost(FLAGS.netlist_file, FLAGS.init_placement) if not FLAGS.cd_use_init_location: plc.unplace_all_nodes() def cost_fn(plc): return environment.cost_info_function(plc=plc, done=True) cost_fn = functools.partial( cost_fn, wirelength_weight=1.0, density_weight=0.1, congestion_weight=0.1) placer = coordinate_descent_placer.CoordinateDescentPlacer(plc, cost_fn) placer.place() placer.save_placement(FLAGS.cd_output_dir, f'{FLAGS.cd_placement_filename}.plc') print(f'Final CD placement can be found at {FLAGS.cd_output_dir}') if __name__ == '__main__': app.run(main)
tests/cli/test_command_copy.py
EasyPost/biggraphite
125
11152944
<filename>tests/cli/test_command_copy.py<gh_stars>100-1000 #!/usr/bin/env python # Copyright 2018 Criteo # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest from biggraphite import metric as bg_metric from biggraphite.cli import command_copy from biggraphite.cli.command_list import list_metrics from tests import test_utils as bg_test_utils class TestCommandCopy(bg_test_utils.TestCaseWithFakeAccessor): _POINTS_START = 3600 * 24 * 10 _POINTS_END = _POINTS_START + 3 * 3600 _RETENTION = bg_metric.Retention.from_string("20*15s:1440*60s:48*3600s") _RETENTION_BIS = bg_metric.Retention.from_string("20*10s:14400*60s:500*3600s") _POINTS = bg_test_utils._make_easily_queryable_points( start=_POINTS_START, end=_POINTS_END, period=_RETENTION[1].precision ) _METRIC_1_NAME = "test.origin.metric_1.toto" _METRIC_1 = bg_test_utils.make_metric_with_defaults(_METRIC_1_NAME, retention=_RETENTION) _METRIC_2_NAME = "test.origin.metric_2.tata" _METRIC_2 = bg_test_utils.make_metric_with_defaults(_METRIC_2_NAME, retention=_RETENTION) _METRIC_3_NAME = "test.origin.metric_3.tata" _METRIC_3 = bg_test_utils.make_metric_with_defaults(_METRIC_3_NAME, retention=_RETENTION_BIS) def setUp(self): """Set up a subdirectory of metrics to copy.""" super(TestCommandCopy, self).setUp() self.accessor.connect() self.accessor.create_metric(self._METRIC_1) self.accessor.create_metric(self._METRIC_2) self.accessor.insert_points(self._METRIC_1, self._POINTS) self.accessor.flush() def test_copy_metric(self): """Test copy of a single metric with aggregated points.""" cmd_copy = command_copy.CommandCopy() # Chack that _METRIC_2 is empty for i in range(3): pts = self.accessor.fetch_points( self._METRIC_2, self._POINTS_START, self._POINTS_END, stage=self._METRIC_2.retention[i], ) self.assertEqual(list(pts), []) # Copy points from _METRIC_1 to _METRIC_2 cmd_copy._copy_metric( self.accessor, self._METRIC_1, self._METRIC_2, self._POINTS_START, self._POINTS_END, ) self.accessor.flush() # Check that both metrics have same points for i in range(3): pts = self.accessor.fetch_points( self._METRIC_1, self._POINTS_START, self._POINTS_END, stage=self._METRIC_1.retention[i], aggregated=False, ) pts_copy = self.accessor.fetch_points( self._METRIC_2, self._POINTS_START, self._POINTS_END, stage=self._METRIC_2.retention[i], aggregated=False, ) self.assertEqual(list(pts), list(pts_copy)) def test_copy_metric_with_retention(self): """Test copy of a metric with aggregated points and retention override. A given dst_stage should have the same points of the src_stage that have the same precision, or no point at all. """ cmd_copy = command_copy.CommandCopy() cmd_copy._copy_metric( self.accessor, self._METRIC_1, self._METRIC_3, self._POINTS_START, self._POINTS_END, ) self.accessor.flush() for i in range(3): pts = self.accessor.fetch_points( self._METRIC_1, self._POINTS_START, self._POINTS_END, stage=self._METRIC_1.retention[i], aggregated=False, ) pts_copy = self.accessor.fetch_points( self._METRIC_3, self._POINTS_START, self._POINTS_END, stage=self._METRIC_3.retention[i], aggregated=False, ) if i == 0: self.assertNotEqual(list(pts), list(pts_copy)) else: self.assertEqual(list(pts), list(pts_copy)) def test_get_metric_tuples_with_metric(self): """Test retrieve of a single couple of metrics.""" cmd_copy = command_copy.CommandCopy() # Test with metric names arguments expected_metric_tuples = [(self._METRIC_1, self._METRIC_2)] metric_tuples = cmd_copy._get_metric_tuples( accessor=self.accessor, src=self._METRIC_1_NAME, dst=self._METRIC_2_NAME, src_retention="", dst_retention="", recursive=False, dry_run=False, ) self.assertEqual(list(metric_tuples), expected_metric_tuples) def test_get_metric_tuples_with_directory(self): """Test retrieve of a single couple of metrics.""" cmd_copy = command_copy.CommandCopy() # Test with subdirectory names arguments self.assertEqual(len(list(list_metrics(self.accessor, "*.**"))), 2) metric_tuples = cmd_copy._get_metric_tuples( accessor=self.accessor, src="test", dst="copy", src_retention="", dst_retention="", recursive=True, dry_run=False, ) self.assertEqual(len(list(metric_tuples)), 2) self.assertEqual(len(list(list_metrics(self.accessor, "*.**"))), 4) def test_get_metric_tuples_with_retention(self): """Test retrieve of a single couples of metrics overrinding retentions.""" cmd_copy = command_copy.CommandCopy() metric_tuples = cmd_copy._get_metric_tuples( accessor=self.accessor, src=self._METRIC_1_NAME, dst=self._METRIC_2_NAME, src_retention="18*42s", dst_retention="50*300s", recursive=False, dry_run=False, ) retention_str = [m.metadata.retention.as_string for m in list(metric_tuples)[0]] self.assertEqual(len(retention_str), 2) self.assertIn("18*42s", retention_str) self.assertIn("50*300s", retention_str) if __name__ == "__main__": unittest.main()
sklearn/preprocessing/_function_transformer.py
matiasrvazquez/scikit-learn
50,961
11152984
<reponame>matiasrvazquez/scikit-learn import warnings import numpy as np from ..base import BaseEstimator, TransformerMixin from ..utils.metaestimators import available_if from ..utils.validation import ( _allclose_dense_sparse, _check_feature_names_in, check_array, ) def _identity(X): """The identity function.""" return X class FunctionTransformer(TransformerMixin, BaseEstimator): """Constructs a transformer from an arbitrary callable. A FunctionTransformer forwards its X (and optionally y) arguments to a user-defined function or function object and returns the result of this function. This is useful for stateless transformations such as taking the log of frequencies, doing custom scaling, etc. Note: If a lambda is used as the function, then the resulting transformer will not be pickleable. .. versionadded:: 0.17 Read more in the :ref:`User Guide <function_transformer>`. Parameters ---------- func : callable, default=None The callable to use for the transformation. This will be passed the same arguments as transform, with args and kwargs forwarded. If func is None, then func will be the identity function. inverse_func : callable, default=None The callable to use for the inverse transformation. This will be passed the same arguments as inverse transform, with args and kwargs forwarded. If inverse_func is None, then inverse_func will be the identity function. validate : bool, default=False Indicate that the input X array should be checked before calling ``func``. The possibilities are: - If False, there is no input validation. - If True, then X will be converted to a 2-dimensional NumPy array or sparse matrix. If the conversion is not possible an exception is raised. .. versionchanged:: 0.22 The default of ``validate`` changed from True to False. accept_sparse : bool, default=False Indicate that func accepts a sparse matrix as input. If validate is False, this has no effect. Otherwise, if accept_sparse is false, sparse matrix inputs will cause an exception to be raised. check_inverse : bool, default=True Whether to check that or ``func`` followed by ``inverse_func`` leads to the original inputs. It can be used for a sanity check, raising a warning when the condition is not fulfilled. .. versionadded:: 0.20 feature_names_out : callable, 'one-to-one' or None, default=None Determines the list of feature names that will be returned by the `get_feature_names_out` method. If it is 'one-to-one', then the output feature names will be equal to the input feature names. If it is a callable, then it must take two positional arguments: this `FunctionTransformer` (`self`) and an array-like of input feature names (`input_features`). It must return an array-like of output feature names. The `get_feature_names_out` method is only defined if `feature_names_out` is not None. See ``get_feature_names_out`` for more details. .. versionadded:: 1.1 kw_args : dict, default=None Dictionary of additional keyword arguments to pass to func. .. versionadded:: 0.18 inv_kw_args : dict, default=None Dictionary of additional keyword arguments to pass to inverse_func. .. versionadded:: 0.18 Attributes ---------- n_features_in_ : int Number of features seen during :term:`fit`. Defined only when `validate=True`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `validate=True` and `X` has feature names that are all strings. .. versionadded:: 1.0 See Also -------- MaxAbsScaler : Scale each feature by its maximum absolute value. StandardScaler : Standardize features by removing the mean and scaling to unit variance. LabelBinarizer : Binarize labels in a one-vs-all fashion. MultiLabelBinarizer : Transform between iterable of iterables and a multilabel format. Examples -------- >>> import numpy as np >>> from sklearn.preprocessing import FunctionTransformer >>> transformer = FunctionTransformer(np.log1p) >>> X = np.array([[0, 1], [2, 3]]) >>> transformer.transform(X) array([[0. , 0.6931...], [1.0986..., 1.3862...]]) """ def __init__( self, func=None, inverse_func=None, *, validate=False, accept_sparse=False, check_inverse=True, feature_names_out=None, kw_args=None, inv_kw_args=None, ): self.func = func self.inverse_func = inverse_func self.validate = validate self.accept_sparse = accept_sparse self.check_inverse = check_inverse self.feature_names_out = feature_names_out self.kw_args = kw_args self.inv_kw_args = inv_kw_args def _check_input(self, X, *, reset): if self.validate: return self._validate_data(X, accept_sparse=self.accept_sparse, reset=reset) return X def _check_inverse_transform(self, X): """Check that func and inverse_func are the inverse.""" idx_selected = slice(None, None, max(1, X.shape[0] // 100)) X_round_trip = self.inverse_transform(self.transform(X[idx_selected])) if not _allclose_dense_sparse(X[idx_selected], X_round_trip): warnings.warn( "The provided functions are not strictly" " inverse of each other. If you are sure you" " want to proceed regardless, set" " 'check_inverse=False'.", UserWarning, ) def fit(self, X, y=None): """Fit transformer by checking X. If ``validate`` is ``True``, ``X`` will be checked. Parameters ---------- X : array-like, shape (n_samples, n_features) Input array. y : Ignored Not used, present here for API consistency by convention. Returns ------- self : object FunctionTransformer class instance. """ X = self._check_input(X, reset=True) if self.check_inverse and not (self.func is None or self.inverse_func is None): self._check_inverse_transform(X) return self def transform(self, X): """Transform X using the forward function. Parameters ---------- X : array-like, shape (n_samples, n_features) Input array. Returns ------- X_out : array-like, shape (n_samples, n_features) Transformed input. """ X = self._check_input(X, reset=False) return self._transform(X, func=self.func, kw_args=self.kw_args) def inverse_transform(self, X): """Transform X using the inverse function. Parameters ---------- X : array-like, shape (n_samples, n_features) Input array. Returns ------- X_out : array-like, shape (n_samples, n_features) Transformed input. """ if self.validate: X = check_array(X, accept_sparse=self.accept_sparse) return self._transform(X, func=self.inverse_func, kw_args=self.inv_kw_args) @available_if(lambda self: self.feature_names_out is not None) def get_feature_names_out(self, input_features=None): """Get output feature names for transformation. This method is only defined if `feature_names_out` is not None. Parameters ---------- input_features : array-like of str or None, default=None Input feature names. - If `input_features` is None, then `feature_names_in_` is used as the input feature names. If `feature_names_in_` is not defined, then names are generated: `[x0, x1, ..., x(n_features_in_)]`. - If `input_features` is array-like, then `input_features` must match `feature_names_in_` if `feature_names_in_` is defined. Returns ------- feature_names_out : ndarray of str objects Transformed feature names. - If `feature_names_out` is 'one-to-one', the input feature names are returned (see `input_features` above). This requires `feature_names_in_` and/or `n_features_in_` to be defined, which is done automatically if `validate=True`. Alternatively, you can set them in `func`. - If `feature_names_out` is a callable, then it is called with two arguments, `self` and `input_features`, and its return value is returned by this method. """ if hasattr(self, "n_features_in_") or input_features is not None: input_features = _check_feature_names_in(self, input_features) if self.feature_names_out == "one-to-one": if input_features is None: raise ValueError( "When 'feature_names_out' is 'one-to-one', either " "'input_features' must be passed, or 'feature_names_in_' " "and/or 'n_features_in_' must be defined. If you set " "'validate' to 'True', then they will be defined " "automatically when 'fit' is called. Alternatively, you " "can set them in 'func'." ) names_out = input_features elif callable(self.feature_names_out): names_out = self.feature_names_out(self, input_features) else: raise ValueError( f"feature_names_out={self.feature_names_out!r} is invalid. " 'It must either be "one-to-one" or a callable with two ' "arguments: the function transformer and an array-like of " "input feature names. The callable must return an array-like " "of output feature names." ) return np.asarray(names_out, dtype=object) def _transform(self, X, func=None, kw_args=None): if func is None: func = _identity return func(X, **(kw_args if kw_args else {})) def __sklearn_is_fitted__(self): """Return True since FunctionTransfomer is stateless.""" return True def _more_tags(self): return {"no_validation": not self.validate, "stateless": True}
FireModules/Shenanigans/osx_chicken_loop_youtube_video.py
FullMidnight/ThirdDumpsterFire
862
11152994
<reponame>FullMidnight/ThirdDumpsterFire #!/usr/bin/python # # Filename: osx_chicken_loop_youtube_video.py # # Version: 1.0.0 # # Author: <NAME> (TryCatchHCF) # # Summary: # # Part of the DumpsterFire Toolset. See documentation at https://github.com/TryCatchHCF/DumpsterFire # # # Description: # # Opens a 10-hour chicken sounds loop on Youtube in the default browser # import os, sys from FireModules.fire_module_base_class import * class osx_chicken_loop_youtube_video( FireModule ): def __init__(self): self.commentsStr = "Shenanigans/osx_chicken_loop_youtube_video" self.textToSayStr = "" def __init__(self, moofStr): self.moofStr = moofStr self.commentsStr = "Shenanigans/osx_chicken_loop_youtube_video" self.textToSayStr = "" return; def Description( self ): self.Description = "Opens default browser and starts YouTube 10-hour loop of chicken sounds. After turning system volume up to maximum." return self.Description def Configure( self ): self.configStr = "(None)" return def GetParameters( self ): return( self.configStr ) def SetParameters( self, parametersStr ): # Nothing to set, does not take parameters, so just return return def ActivateLogging( self, logFlag ): print self.commentsStr + ": Setting Logging flag!" print logFlag return def Ignite( self ): print self.commentsStr + ": Setting system audio to max volume" os.system( "osascript -e 'set volume output volume 100'") print self.commentsStr + ": Opening 10-hour loop of chicken sounds on Youtube" self.commandStr = "open https://www.youtube.com/watch?v=E9BQAAT10Mwi" os.system( self.commandStr ) return
pycoin/block.py
gruve-p/pycoin
1,210
11153033
<reponame>gruve-p/pycoin import io from .encoding.hash import double_sha256 from .encoding.hexbytes import b2h, b2h_rev from .merkle import merkle from .satoshi.satoshi_struct import parse_struct, stream_struct class BadMerkleRootError(Exception): pass def difficulty_max_mask_for_bits(bits): prefix = bits >> 24 mask = (bits & 0x7ffff) << (8 * (prefix - 3)) return mask class Block(object): """A Block is an element of the Bitcoin chain.""" @classmethod def make_subclass(class_, symbol, tx): return type( "%s_%s" % (symbol, class_.__name__), (class_,), dict(Tx=tx), ) @classmethod def parse(class_, f, include_transactions=True, include_offsets=None, check_merkle_hash=True): """ Parse the Block from the file-like object """ block = class_.parse_as_header(f) if include_transactions: count = parse_struct("I", f)[0] txs = block._parse_transactions(f, count, include_offsets=include_offsets) block.set_txs(txs, check_merkle_hash=check_merkle_hash) return block @classmethod def parse_as_header(class_, f): """ Parse the Block header from the file-like object """ (version, previous_block_hash, merkle_root, timestamp, difficulty, nonce) = parse_struct("L##LLL", f) return class_(version, previous_block_hash, merkle_root, timestamp, difficulty, nonce) @classmethod def from_bin(class_, bytes): f = io.BytesIO(bytes) return class_.parse(f) def __init__(self, version, previous_block_hash, merkle_root, timestamp, difficulty, nonce): self.version = version self.previous_block_hash = previous_block_hash self.merkle_root = merkle_root self.timestamp = timestamp self.difficulty = difficulty self.nonce = nonce self.txs = [] def set_nonce(self, nonce): self.nonce = nonce if hasattr(self, "__hash"): del self.__hash def _calculate_hash(self): s = io.BytesIO() self.stream_header(s) return double_sha256(s.getvalue()) def hash(self): """Calculate the hash for the block header. Note that this has the bytes in the opposite order from how the header is usually displayed (so the long string of 00 bytes is at the end, not the beginning).""" if not hasattr(self, "__hash"): self.__hash = self._calculate_hash() return self.__hash @classmethod def _parse_transactions(class_, f, count, include_offsets=None): txs = [] for i in range(count): if include_offsets: offset_in_block = f.tell() tx = class_.Tx.parse(f) txs.append(tx) if include_offsets: tx.offset_in_block = offset_in_block return txs def set_txs(self, txs, check_merkle_hash=True): self.txs = txs if not txs: return for tx in txs: tx.block = self if check_merkle_hash: self.check_merkle_hash() def as_blockheader(self): return Block(self.version, self.previous_block_hash, self.merkle_root, self.timestamp, self.difficulty, self.nonce) def stream_header(self, f): """Stream the block header in the standard way to the file-like object f.""" stream_struct("L##LLL", f, self.version, self.previous_block_hash, self.merkle_root, self.timestamp, self.difficulty, self.nonce) def _stream_transactions(self, f): if self.txs: stream_struct("I", f, len(self.txs)) for tx in self.txs: tx.stream(f) def stream(self, f): """Stream the block header in the standard way to the file-like object f. The Block subclass also includes the transactions.""" self.stream_header(f) self._stream_transactions(f) def as_bin(self): """Return the block (or header) as binary.""" f = io.BytesIO() self.stream(f) return f.getvalue() def as_hex(self): """Return the block (or header) as hex.""" return b2h(self.as_bin()) def id(self): """Returns the hash of the block displayed with the bytes in the order they are usually displayed in.""" return b2h_rev(self.hash()) def previous_block_id(self): """Returns the hash of the previous block, with the bytes in the order they are usually displayed in.""" return b2h_rev(self.previous_block_hash) def check_merkle_hash(self): """Raise a BadMerkleRootError if the Merkle hash of the transactions does not match the Merkle hash included in the block.""" calculated_hash = merkle([tx.hash() for tx in self.txs], double_sha256) if calculated_hash != self.merkle_root: raise BadMerkleRootError( "calculated %s but block contains %s" % (b2h(calculated_hash), b2h(self.merkle_root))) def __str__(self): c = '%s%s' % (self.__class__.__name__, '' if self.txs else 'Header') return "%s [%s] (previous %s)" % (c, self.id(), self.previous_block_id()) def __repr__(self): return self.__str__()
recipes/Python/502289_Persistent_Dictionary_Text/recipe-502289.py
tdiprima/code
2,023
11153035
<filename>recipes/Python/502289_Persistent_Dictionary_Text/recipe-502289.py """ A persistent dict object that uses a text file for storage. Saved values will update arguments passed to constructor with: PersistentTextDict(<path>, dict={'a':10}, foo='baz', bla=10) This behavior allows setting defaults that can be overridden in a text file on disk. NOTE: str, int, float, list, dict et. el. support only. """ import UserDict class PersistentTextDict(UserDict.UserDict): """ >>> d = PersistentTextDict('test.dict') >>> d['username'] = 'jsmith' >>> del d >>> d1 = PersistentTextDict('test.dict') >>> d1['username'] 'jsmith' >>> d1['a'] = 10000 >>> d1['a'] 10000 >>> d2 = PersistentTextDict('test.dict') >>> d2['a'] 10000 >>> del d2['a'] >>> del d2 >>> d3 = PersistentTextDict('test.dict') >>> d3.has_key('a') False >>> d3.update({'a':9999}) >>> d3['a'] 9999 """ def __init__(self, path, dict=None, **kwargs): UserDict.UserDict.__init__(self) self.path = path try: self.isLoad = True if dict is not None: self.update(dict) if len(kwargs): self.update(kwargs) self.update(eval(open(path, 'r').read())) self.isLoad = False except IOError: self.isLoad = False def sync(self): import pprint open(self.path, 'w').write(pprint.pformat(self.data) + '\n') def __setitem__(self, key, item): self.data[key] = item self.sync() def __delitem__(self, key): del self.data[key] self.sync() def update(self, dict=None, **kwargs): UserDict.UserDict.update(self, dict=dict, **kwargs) if not self.isLoad: self.sync() if __name__ == "__main__": import doctest doctest.testmod()
2019/07/25/Deploy a Flask App to Heroku With a Postgres Database [2019]/flask_qa/wsgi.py
kenjitagawa/youtube_video_code
492
11153039
from flask_qa import create_app app = create_app()
src/variables.py
parthbhope/NC_Concolic_Testing
102
11153105
<reponame>parthbhope/NC_Concolic_Testing SIG_NORMAL = 0 # normal exit signal SIG_COV = 2 # coverage guided exit signal SIG_ADV = 3 # adversarial exit signal
jupyterlab_code_formatter/tests/test_handlers.py
suevii/jupyterlab_code_formatter
528
11153112
import json import typing as t import pkg_resources import pytest import requests from jsonschema import validate from jupyterlab_code_formatter.formatters import SERVER_FORMATTERS from jupyterlab_code_formatter.handlers import setup_handlers from notebook.tests.launchnotebook import NotebookTestBase def _generate_list_formaters_entry_json_schema( formatter_name: str, ) -> t.Dict[str, t.Any]: return { "type": "object", "properties": { formatter_name: { "type": "object", "properties": { "enabled": {"type": "boolean"}, "label": {"type": "string"}, }, } }, } EXPECTED_VERSION_SCHEMA = { "type": "object", "properties": { "version": { "type": "string", } }, } EXPECTED_LIST_FORMATTERS_SCHEMA = { "type": "object", "properties": { "formatters": { formatter_name: _generate_list_formaters_entry_json_schema(formatter_name) for formatter_name in SERVER_FORMATTERS } }, } EXPECTED_FROMAT_SCHEMA = { "type": "object", "properties": { "code": { "type": "array", "items": { "type": "object", "properties": {"code": {"type": "string"}, "error": {"type": "string"}}, }, } }, } SIMPLE_VALID_PYTHON_CODE = "x= 22; e =1" class TestHandlers(NotebookTestBase): def setUp(self) -> None: setup_handlers(self.notebook.web_app) def _create_headers( self, plugin_version: t.Optional[str] = None ) -> t.Dict[str, str]: return { "Plugin-Version": plugin_version if plugin_version is not None else pkg_resources.get_distribution("jupyterlab_code_formatter").version } def _format_code_request( self, formatter: str, code: t.List[str], options: t.Dict[str, t.Any], plugin_version: t.Optional[str] = None, ) -> requests.Response: return self.request( verb="POST", path="/jupyterlab_code_formatter/format", data=json.dumps( { "code": code, "options": options, "notebook": True, "formatter": formatter, } ), headers=self._create_headers(plugin_version), ) @staticmethod def _check_http_200_and_schema(response): assert response.status_code == 200 json_result = response.json() validate(instance=json_result, schema=EXPECTED_FROMAT_SCHEMA) return json_result def test_list_formatters(self): """Check if the formatters list route works.""" response = self.request( verb="GET", path="/jupyterlab_code_formatter/formatters", headers=self._create_headers(), ) validate(instance=response.json(), schema=EXPECTED_LIST_FORMATTERS_SCHEMA) def test_404_on_unknown(self): """Check that it 404 correctly if formatter name is bad.""" response = self._format_code_request( formatter="UNKNOWN", code=[SIMPLE_VALID_PYTHON_CODE], options={} ) assert response.status_code == 404 def test_can_apply_python_formatter(self): """Check that it can apply black with simple config.""" response = self._format_code_request( formatter="black", code=[SIMPLE_VALID_PYTHON_CODE], options={"line_length": 88}, ) json_result = self._check_http_200_and_schema(response) assert json_result["code"][0]["code"] == "x = 22\ne = 1" def test_can_use_black_config(self): """Check that it can apply black with advanced config.""" given = "some_string='abc'" expected = "some_string = 'abc'" response = self._format_code_request( formatter="black", options={"line_length": 123, "string_normalization": False}, code=[given], ) json_result = self._check_http_200_and_schema(response) assert json_result["code"][0]["code"] == expected def test_return_error_if_any(self): """Check that it returns the error if any.""" bad_python = "this_is_bad = 'hihi" response = self._format_code_request( formatter="black", options={"line_length": 123, "string_normalization": False}, code=[bad_python], ) json_result = self._check_http_200_and_schema(response) assert ( json_result["code"][0]["error"] == "Cannot parse: 1:13: this_is_bad = 'hihi" ) def test_can_handle_magic(self): """Check that it's fine to run formatters for code with magic.""" given = '%%timeit\nsome_string = "abc"' expected = '%%timeit\nsome_string = "abc"' for formatter in ["black", "yapf", "isort"]: response = self._format_code_request( formatter=formatter, code=[given], options={}, ) json_result = self._check_http_200_and_schema(response) assert json_result["code"][0]["code"] == expected def test_can_handle_shell_cmd(self): """Check that it's fine to run formatters for code with shell cmd.""" given = '%%timeit\nsome_string = "abc"\n!pwd' expected = '%%timeit\nsome_string = "abc"\n!pwd' for formatter in ["black", "yapf", "isort"]: response = self._format_code_request( formatter=formatter, code=[given], options={}, ) json_result = self._check_http_200_and_schema(response) assert json_result["code"][0]["code"] == expected def test_can_handle_incompatible_magic_language(self): """Check that it will ignore incompatible magic language cellblock.""" given = "%%html\n<h1>Hi</h1>" expected = "%%html\n<h1>Hi</h1>" for formatter in ["black", "yapf", "isort"]: response = self._format_code_request( formatter=formatter, code=[given], options={}, ) json_result = self._check_http_200_and_schema(response) assert json_result["code"][0]["code"] == expected def test_can_handle_incompatible_magic_language_single(self): """Check that it will ignore incompatible magic language cellblock with single %.""" given = "%html <h1>Hi</h1>" expected = "%html <h1>Hi</h1>" for formatter in ["black", "yapf", "isort"]: response = self._format_code_request( formatter=formatter, code=[given], options={}, ) json_result = self._check_http_200_and_schema(response) assert json_result["code"][0]["code"] == expected def test_can_ipython_help_signle(self) -> None: """Check that it will ignore single question mark interactive help lines on the fly.""" given = " bruh?\nprint('test')\n#test?" expected = ' bruh?\nprint("test")\n# test?' response = self._format_code_request( formatter="black", code=[given], options={}, ) json_result = self._check_http_200_and_schema(response) assert json_result["code"][0]["code"] == expected def test_can_ipython_help_double(self) -> None: """Check that it will ignore double question mark interactive help lines on the fly.""" given = " bruh??\nprint('test')\n#test?" expected = ' bruh??\nprint("test")\n# test?' response = self._format_code_request( formatter="black", code=[given], options={}, ) json_result = self._check_http_200_and_schema(response) assert json_result["code"][0]["code"] == expected def test_will_ignore_question_mark(self) -> None: """Check that it will ignore single question mark in comments.""" given = """def f(): # bruh what? # again bruh? really # a ? b print('hi') x = '?'""" expected = """def f(): # bruh what? # again bruh? really # a ? b print("hi") x = "?\"""" response = self._format_code_request( formatter="black", code=[given], options={}, ) json_result = self._check_http_200_and_schema(response) assert json_result["code"][0]["code"] == expected def test_will_ignore_question_mark2(self) -> None: """Check that it will ignore single question mark in comments.""" given = """def f(): # bruh what?? # again bruh?? really # a ? b ? c print('hi')""" expected = """def f(): # bruh what?? # again bruh?? really # a ? b ? c print("hi")""" response = self._format_code_request( formatter="black", code=[given], options={}, ) json_result = self._check_http_200_and_schema(response) assert json_result["code"][0]["code"] == expected def test_will_ignore_question_weird(self) -> None: given = """wat wat??""" expected = """wat wat??""" response = self._format_code_request( formatter="black", code=[given], options={}, ) json_result = self._check_http_200_and_schema(response) assert json_result["code"][0]["code"] == expected def test_can_use_styler(self): given = "a = 3; 2" expected = "a <- 3\n2" response = self._format_code_request( formatter="styler", code=[given], options={"scope": "tokens"}, ) json_result = self._check_http_200_and_schema(response) assert json_result["code"][0]["code"] == expected def test_can_use_styler_2(self): given = """data_frame( small = 2 , medium = 4,#comment without space large =6 )""" expected = """data_frame( small = 2, medium = 4, # comment without space large = 6 )""" response = self._format_code_request( code=[given], options={"strict": False}, formatter="styler", ) json_result = self._check_http_200_and_schema(response) assert json_result["code"][0]["code"] == expected def test_can_use_styler_3(self): given = "1++1/2*2^2" expected = "1 + +1/2*2^2" response = self._format_code_request( formatter="styler", options={ "math_token_spacing": { "one": ["'+'", "'-'"], "zero": ["'/'", "'*'", "'^'"], } }, code=[given], ) json_result = self._check_http_200_and_schema(response) assert json_result["code"][0]["code"] == expected def test_can_use_styler_4(self): given = """a <- function() { ### not to be indented # indent normally 33 }""" expected = """a <- function() { ### not to be indented # indent normally 33 }""" response = self._format_code_request( code=[given], formatter="styler", options=dict( reindention=dict(regex_pattern="^###", indention=0, comments_only=True) ), ) json_result = self._check_http_200_and_schema(response) assert json_result["code"][0]["code"] == expected def test_can_use_styler_5(self): given = """call( # SHOULD BE ONE SPACE BEFORE 1,2) """ expected = """call( # SHOULD BE ONE SPACE BEFORE 1, 2 )""" response = self._format_code_request( code=[given], formatter="styler", options=dict(indent_by=4, start_comments_with_one_space=True), ) json_result = self._check_http_200_and_schema(response) assert json_result["code"][0]["code"] == expected def test_can_use_styler_6(self): given = "1+1-3" expected = "1 + 1 - 3" response = self._format_code_request( code=[given], formatter="styler", options={ "math_token_spacing": "tidyverse_math_token_spacing", "reindention": "tidyverse_reindention", }, ) json_result = self._check_http_200_and_schema(response) assert json_result["code"][0]["code"] == expected def test_422_on_mismatch_version_1(self): response = self.request( verb="GET", path="/jupyterlab_code_formatter/formatters", headers=self._create_headers("0.0.0"), ) assert response.status_code == 422 def test_200_on_version_without_header(self): response = self.request( verb="GET", path="/jupyterlab_code_formatter/version", ) assert response.status_code == 200 validate(instance=response.json(), schema=EXPECTED_VERSION_SCHEMA) def test_200_on_version_with_wrong_header(self): response = self.request( verb="GET", path="/jupyterlab_code_formatter/version", headers=self._create_headers("0.0.0"), ) assert response.status_code == 200 validate(instance=response.json(), schema=EXPECTED_VERSION_SCHEMA) def test_200_on_version_with_correct_header(self): response = self.request( verb="GET", path="/jupyterlab_code_formatter/version", headers=self._create_headers(), ) assert response.status_code == 200 validate(instance=response.json(), schema=EXPECTED_VERSION_SCHEMA)
fiducial_slam/scripts/move_origin.py
teosnare/fiducials
232
11153119
<reponame>teosnare/fiducials #!/usr/bin/python """ Move origin of fiducial co-ordinate system """ import numpy, sys, os from fiducial_slam.map import Map if __name__ == "__main__": argc = len(sys.argv) if argc != 4 and argc != 5: print "Usage: %s x y z [file]" % sys.argv[0] sys.exit(1) offset = numpy.array([float(sys.argv[1]), float(sys.argv[2]), float(sys.argv[3])]) if argc == 5: filename = sys.argv[4] else: filename = "~/.ros/slam/map.txt" filename = os.path.expanduser(filename) map = Map(filename) fids = map.keys() for fid in fids: f = map[fid] f.position += offset map.save()
jarviscli/plugins/upside-down.py
snehkhajanchi/Jarvis
2,605
11153122
<filename>jarviscli/plugins/upside-down.py<gh_stars>1000+ from plugin import plugin from colorama import Fore @plugin('upside down') def generate_random_list(jarvis, str): user_input = jarvis.input("Enter string to be converted to upside-down (only english letters will be converted): ") result = convert_input(jarvis, user_input) jarvis.say(result, Fore.GREEN) def convert_input(jarvis, u_input): upside_str = 'zʎxʍʌnʇsɹbdouɯןʞſıɥbɟǝpɔqɐ' normal_str = 'abcdefghijklmnopqrstuvwxyz' upside_str = upside_str[::-1] converter_dict = {a: b for a, b in zip(normal_str, upside_str)} result = '' for letter in u_input: if letter in converter_dict: result += converter_dict[letter] return result[::-1]
RL-Quadcopter/quad_controller_rl/src/quad_controller_rl/util.py
edwardpan/cn-deep-learning
474
11153125
<filename>RL-Quadcopter/quad_controller_rl/src/quad_controller_rl/util.py """Utility functions.""" import pandas as pd import rospy from datetime import datetime def get_param(name): """Return parameter value specified in ROS launch file or via command line, e.g. agent:=DDPG.""" return rospy.get_param(name) def get_timestamp(t=None, format='%Y-%m-%d_%H-%M-%S'): """Return timestamp as a string; default: current time, format: YYYY-DD-MM_hh-mm-ss.""" if t is None: t = datetime.now() return t.strftime(format) def plot_stats(csv_filename, columns=['total_reward'], **kwargs): """Plot specified columns from CSV file.""" df_stats = pd.read_csv(csv_filename) df_stats[columns].plot(**kwargs)
EventFilter/SiStripRawToDigi/python/test/SiStripDigiValidator_cfi.py
ckamtsikis/cmssw
852
11153154
import FWCore.ParameterSet.Config as cms DigiValidator = cms.EDAnalyzer( "SiStripDigiValidator", TagCollection1 = cms.untracked.InputTag("DigiSource"), TagCollection2 = cms.untracked.InputTag("siStripDigis","ZeroSuppressed"), RawCollection1 = cms.untracked.bool(False), RawCollection2 = cms.untracked.bool(False), )
graphgym/models/layer_pyg.py
SCAuFish/GraphGym
940
11153160
import torch import torch.nn as nn import torch.nn.functional as F import torch_geometric as pyg from graphgym.config import cfg from graphgym.models.act import act_dict from graphgym.contrib.layer.generalconv import (GeneralConvLayer, GeneralEdgeConvLayer) from graphgym.contrib.layer import * import graphgym.register as register ## General classes class GeneralLayer(nn.Module): '''General wrapper for layers''' def __init__(self, name, dim_in, dim_out, has_act=True, has_bn=True, has_l2norm=False, **kwargs): super(GeneralLayer, self).__init__() self.has_l2norm = has_l2norm has_bn = has_bn and cfg.gnn.batchnorm self.layer = layer_dict[name](dim_in, dim_out, bias=not has_bn, **kwargs) layer_wrapper = [] if has_bn: layer_wrapper.append(nn.BatchNorm1d( dim_out, eps=cfg.bn.eps, momentum=cfg.bn.mom)) if cfg.gnn.dropout > 0: layer_wrapper.append(nn.Dropout( p=cfg.gnn.dropout, inplace=cfg.mem.inplace)) if has_act: layer_wrapper.append(act_dict[cfg.gnn.act]) self.post_layer = nn.Sequential(*layer_wrapper) def forward(self, batch): batch = self.layer(batch) if isinstance(batch, torch.Tensor): batch = self.post_layer(batch) if self.has_l2norm: batch = F.normalize(batch, p=2, dim=1) else: batch.x = self.post_layer(batch.x) if self.has_l2norm: batch.x = F.normalize(batch.x, p=2, dim=1) return batch class GeneralMultiLayer(nn.Module): '''General wrapper for stack of layers''' def __init__(self, name, num_layers, dim_in, dim_out, dim_inner=None, final_act=True, **kwargs): super(GeneralMultiLayer, self).__init__() dim_inner = dim_in if dim_inner is None else dim_inner for i in range(num_layers): d_in = dim_in if i == 0 else dim_inner d_out = dim_out if i == num_layers - 1 else dim_inner has_act = final_act if i == num_layers - 1 else True layer = GeneralLayer(name, d_in, d_out, has_act, **kwargs) self.add_module('Layer_{}'.format(i), layer) def forward(self, batch): for layer in self.children(): batch = layer(batch) return batch ## Core basic layers # Input: batch; Output: batch class Linear(nn.Module): def __init__(self, dim_in, dim_out, bias=False, **kwargs): super(Linear, self).__init__() self.model = nn.Linear(dim_in, dim_out, bias=bias) def forward(self, batch): if isinstance(batch, torch.Tensor): batch = self.model(batch) else: batch.x = self.model(batch.x) return batch class BatchNorm1dNode(nn.Module): '''General wrapper for layers''' def __init__(self, dim_in): super(BatchNorm1dNode, self).__init__() self.bn = nn.BatchNorm1d(dim_in, eps=cfg.bn.eps, momentum=cfg.bn.mom) def forward(self, batch): batch.x = self.bn(batch.x) return batch class BatchNorm1dEdge(nn.Module): '''General wrapper for layers''' def __init__(self, dim_in): super(BatchNorm1dEdge, self).__init__() self.bn = nn.BatchNorm1d(dim_in, eps=cfg.bn.eps, momentum=cfg.bn.mom) def forward(self, batch): batch.edge_attr = self.bn(batch.edge_attr) return batch class MLP(nn.Module): def __init__(self, dim_in, dim_out, bias=True, dim_inner=None, num_layers=2, **kwargs): ''' Note: MLP works for 0 layers ''' super(MLP, self).__init__() dim_inner = dim_in if dim_inner is None else dim_inner layers = [] if num_layers > 1: layers.append( GeneralMultiLayer('linear', num_layers - 1, dim_in, dim_inner, dim_inner, final_act=True)) layers.append(Linear(dim_inner, dim_out, bias)) else: layers.append(Linear(dim_in, dim_out, bias)) self.model = nn.Sequential(*layers) def forward(self, batch): if isinstance(batch, torch.Tensor): batch = self.model(batch) else: batch.x = self.model(batch.x) return batch class GCNConv(nn.Module): def __init__(self, dim_in, dim_out, bias=False, **kwargs): super(GCNConv, self).__init__() self.model = pyg.nn.GCNConv(dim_in, dim_out, bias=bias) def forward(self, batch): batch.x = self.model(batch.x, batch.edge_index) return batch class SAGEConv(nn.Module): def __init__(self, dim_in, dim_out, bias=False, **kwargs): super(SAGEConv, self).__init__() self.model = pyg.nn.SAGEConv(dim_in, dim_out, bias=bias) def forward(self, batch): batch.x = self.model(batch.x, batch.edge_index) return batch class GATConv(nn.Module): def __init__(self, dim_in, dim_out, bias=False, **kwargs): super(GATConv, self).__init__() self.model = pyg.nn.GATConv(dim_in, dim_out, bias=bias) def forward(self, batch): batch.x = self.model(batch.x, batch.edge_index) return batch class GINConv(nn.Module): def __init__(self, dim_in, dim_out, bias=False, **kwargs): super(GINConv, self).__init__() gin_nn = nn.Sequential(nn.Linear(dim_in, dim_out), nn.ReLU(), nn.Linear(dim_out, dim_out)) self.model = pyg.nn.GINConv(gin_nn) def forward(self, batch): batch.x = self.model(batch.x, batch.edge_index) return batch class SplineConv(nn.Module): def __init__(self, dim_in, dim_out, bias=False, **kwargs): super(SplineConv, self).__init__() self.model = pyg.nn.SplineConv(dim_in, dim_out, dim=1, kernel_size=2, bias=bias) def forward(self, batch): batch.x = self.model(batch.x, batch.edge_index, batch.edge_attr) return batch class GeneralConv(nn.Module): def __init__(self, dim_in, dim_out, bias=False, **kwargs): super(GeneralConv, self).__init__() self.model = GeneralConvLayer(dim_in, dim_out, bias=bias) def forward(self, batch): batch.x = self.model(batch.x, batch.edge_index) return batch class GeneralEdgeConv(nn.Module): def __init__(self, dim_in, dim_out, bias=False, **kwargs): super(GeneralEdgeConv, self).__init__() self.model = GeneralEdgeConvLayer(dim_in, dim_out, bias=bias) def forward(self, batch): batch.x = self.model(batch.x, batch.edge_index, edge_feature=batch.edge_attr) return batch class GeneralSampleEdgeConv(nn.Module): def __init__(self, dim_in, dim_out, bias=False, **kwargs): super(GeneralSampleEdgeConv, self).__init__() self.model = GeneralEdgeConvLayer(dim_in, dim_out, bias=bias) def forward(self, batch): edge_mask = torch.rand(batch.edge_index.shape[1]) < cfg.gnn.keep_edge edge_index = batch.edge_index[:, edge_mask] edge_feature = batch.edge_attr[edge_mask, :] batch.x = self.model(batch.x, edge_index, edge_feature=edge_feature) return batch layer_dict = { 'linear': Linear, 'mlp': MLP, 'gcnconv': GCNConv, 'sageconv': SAGEConv, 'gatconv': GATConv, 'splineconv': SplineConv, 'ginconv': GINConv, 'generalconv': GeneralConv, 'generaledgeconv': GeneralEdgeConv, 'generalsampleedgeconv': GeneralSampleEdgeConv, } # register additional convs layer_dict = {**register.layer_dict, **layer_dict}
nova/tests/functional/regressions/test_bug_1938326.py
zjzh/nova
1,874
11153167
# Copyright 2021, Red Hat, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from nova.tests.functional.api import client from nova.tests.functional import integrated_helpers class TestMigrateFromDownHost(integrated_helpers._IntegratedTestBase): """Regression test for bug #1938326 Assert the behaviour of n-api when requests are made to migrate an instance from a disabled, forced down, down and disabled and down compute host. Bug #1938326 specifically covering the case where a request is made and accepted to migrate an instance from a disabled and down compute host. """ microversion = 'latest' ADMIN_API = True def _setup_compute_service(self): # We want the service to be marked down in a reasonable time while # ensuring we don't accidentally mark services as down prematurely self.flags(report_interval=1) self.flags(service_down_time=6) # Use two compute services to make it easier to assert the call from # the dest to the src, we could also test this for same host resize. self._start_compute('src') self._start_compute('dest') def test_migrate_from_disabled_host(self): """Assert that migration requests for disabled hosts are allowed """ # Launch an instance on src server = self._create_server(host='src', networks='none') # Mark the compute service as disabled source_compute_id = self.api.get_services( host='src', binary='nova-compute')[0]['id'] self.api.put_service(source_compute_id, {"status": "disabled"}) self._wait_for_service_parameter( 'src', 'nova-compute', { 'status': 'disabled', 'state': 'up' } ) # Assert that we can migrate and confirm from a disabled but up compute self._migrate_server(server) self._confirm_resize(server) def test_migrate_from_forced_down_host(self): """Assert that migration requests for forced down hosts are rejected """ # Launch an instance on src server = self._create_server(host='src', networks='none') # Force down the compute source_compute_id = self.api.get_services( host='src', binary='nova-compute')[0]['id'] self.api.put_service(source_compute_id, {'forced_down': 'true'}) # NOTE(gibi): extra retries are needed as the default 10 retries with # 0.5 second sleep is close to the 6 seconds down timeout self._wait_for_service_parameter( 'src', 'nova-compute', { 'forced_down': True, 'state': 'down', 'status': 'enabled' }, max_retries=20, ) # Assert that we cannot migrate from a forced down compute ex = self.assertRaises( client.OpenStackApiException, self._migrate_server, server) self.assertEqual(409, ex.response.status_code) def test_migrate_from_down_host(self): """Assert that migration requests from down hosts are rejected """ # Launch an instance on src server = self._create_server(host='src', networks='none') # Stop the compute service and wait until it's down self.computes['src'].stop() # NOTE(gibi): extra retries are needed as the default 10 retries with # 0.5 second sleep is close to the 6 seconds down timeout self._wait_for_service_parameter( 'src', 'nova-compute', { 'state': 'down', 'status': 'enabled' }, max_retries=20, ) # Assert that requests to migrate from down computes are rejected ex = self.assertRaises( client.OpenStackApiException, self.api.post_server_action, server['id'], {'migrate': None}) self.assertEqual(409, ex.response.status_code) def test_migrate_from_disabled_down_host(self): """Assert that migration requests for disabled down hosts are rejected """ # Launch an instance on src server = self._create_server(host='src', networks='none') # Mark the compute service as disabled source_compute_id = self.api.get_services( host='src', binary='nova-compute')[0]['id'] self.api.put_service(source_compute_id, {"status": "disabled"}) self._wait_for_service_parameter( 'src', 'nova-compute', {'status': 'disabled'}) # Stop the compute service and wait until it's down self.computes['src'].stop() # NOTE(gibi): extra retries are needed as the default 10 retries with # 0.5 second sleep is close to the 6 seconds down timeout self._wait_for_service_parameter( 'src', 'nova-compute', {'state': 'down'}, max_retries=20) ex = self.assertRaises( client.OpenStackApiException, self.api.post_server_action, server['id'], {'migrate': None}) self.assertEqual(409, ex.response.status_code)
Devices/GatewayConnectedDevices/BtUSB_2_BtUART_Example/TestServer.py
HydAu/AzureConnectTheDots
235
11153200
''' Copyright (c) Microsoft Open Technologies, Inc. All rights reserved. The MIT License (MIT) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= This is tiny tcp server for testing python scripts that translate sensor data to gateway. Instead of setting up all gateway one can use this tiny sensor just to check if device works and transmits data to the network. ''' import sys import socket HOST = '127.0.0.1' PORT = 5000 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.bind((HOST, PORT)) except socket.error as msg: print("Bind failed. Error Code : " + str(msg[0]) + " Message " + msg[1]) sys.exit() print ("Socket bind complete") s.listen(10) conn, addr = s.accept() while True: data = conn.recv(256) if len(data) > 0: strData = data.decode('utf-8') print strData else: break s.close()
backpack/extensions/secondorder/diag_hessian/conv3d.py
jabader97/backpack
395
11153216
<reponame>jabader97/backpack<filename>backpack/extensions/secondorder/diag_hessian/conv3d.py """Module extensions for diagonal Hessian properties of ``torch.nn.Conv3d``.""" from backpack.core.derivatives.conv3d import Conv3DDerivatives from backpack.extensions.secondorder.diag_hessian.convnd import ( BatchDiagHConvND, DiagHConvND, ) class DiagHConv3d(DiagHConvND): """Module extension for the Hessian diagonal of ``torch.nn.Conv3d``.""" def __init__(self): """Store parameter names and derivatives object.""" super().__init__(derivatives=Conv3DDerivatives(), params=["bias", "weight"]) class BatchDiagHConv3d(BatchDiagHConvND): """Module extension for the per-sample Hessian diagonal of ``torch.nn.Conv3d``.""" def __init__(self): """Store parameter names and derivatives object.""" super().__init__(derivatives=Conv3DDerivatives(), params=["bias", "weight"])
tests/__init__.py
adamserafini/pyxl4
366
11153230
import pyxl.codec.register
third_party/chromite/cli/cros/cros_buildresult_unittest.py
zipated/src
2,151
11153248
# -*- coding: utf-8 -*- # Copyright 2018 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Tests the `cros buildresult` command.""" from __future__ import print_function import json from chromite.cli import command_unittest from chromite.cli.cros import cros_buildresult from chromite.lib import cros_test_lib FAKE_BUILD_STATUS = { 'id': 1234, 'buildbucket_id': 'buildbucket_value', 'status': 'pass', 'artifacts_url': 'fake_artifacts_url', 'toolchain_url': 'fake_toolchain_url', 'stages': [ {'name': 'stage_a', 'status': 'pass'}, {'name': 'stage_b', 'status': 'pass'}, {'name': 'stage_c', 'status': 'pass'}, ], } class MockBuildresultCommand(command_unittest.MockCommand): """Mock out the `cros buildresult` command.""" TARGET = 'chromite.cli.cros.cros_buildresult.BuildResultCommand' TARGET_CLASS = cros_buildresult.BuildResultCommand COMMAND = 'buildresult' class BuildresultTest(cros_test_lib.MockTestCase): """Base class for buildresult command tests.""" def setUp(self): self.cmd_mock = None def SetupCommandMock(self, cmd_args): """Sets up the `cros buildresult` command mock.""" self.cmd_mock = MockBuildresultCommand(cmd_args) self.StartPatcher(self.cmd_mock) return self.cmd_mock.inst.options class BuildresultReportTest(BuildresultTest): """Test the report generation functions.""" def setUp(self): self.maxDiff = None def testReport(self): result = cros_buildresult.Report([FAKE_BUILD_STATUS]) expected = '''cidb_id: 1234 buildbucket_id: buildbucket_value status: pass artifacts_url: fake_artifacts_url toolchain_url: fake_toolchain_url stages: stage_a: pass stage_b: pass stage_c: pass ''' self.assertEqual(expected, result) def testReportJson(self): result = cros_buildresult.ReportJson([FAKE_BUILD_STATUS]) expected = { 'buildbucket_value': { 'cidb_id': 1234, 'buildbucket_id': 'buildbucket_value', 'status': 'pass', 'artifacts_url': 'fake_artifacts_url', 'toolchain_url': 'fake_toolchain_url', 'stages': { 'stage_a': 'pass', 'stage_b': 'pass', 'stage_c': 'pass', }, }, } self.assertEqual(expected, json.loads(result))
torch_backend.py
lengstrom/cifar10-fast
493
11153269
import numpy as np import torch from torch import nn from core import * from collections import namedtuple from itertools import count torch.backends.cudnn.benchmark = True device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") cpu = torch.device("cpu") @cat.register(torch.Tensor) def _(*xs): return torch.cat(xs) @to_numpy.register(torch.Tensor) def _(x): return x.detach().cpu().numpy() @pad.register(torch.Tensor) def _(x, border): return nn.ReflectionPad2d(border)(x) @transpose.register(torch.Tensor) def _(x, source, target): return x.permute([source.index(d) for d in target]) def to(*args, **kwargs): return lambda x: x.to(*args, **kwargs) @flip_lr.register(torch.Tensor) def _(x): return torch.flip(x, [-1]) ##################### ## dataset ##################### from functools import lru_cache as cache @cache(None) def cifar10(root='./data'): try: import torchvision download = lambda train: torchvision.datasets.CIFAR10(root=root, train=train, download=True) return {k: {'data': v.data, 'targets': v.targets} for k,v in [('train', download(train=True)), ('valid', download(train=False))]} except ImportError: from tensorflow.keras import datasets (train_images, train_labels), (valid_images, valid_labels) = datasets.cifar10.load_data() return { 'train': {'data': train_images, 'targets': train_labels.squeeze()}, 'valid': {'data': valid_images, 'targets': valid_labels.squeeze()} } cifar10_mean, cifar10_std = [ (125.31, 122.95, 113.87), # equals np.mean(cifar10()['train']['data'], axis=(0,1,2)) (62.99, 62.09, 66.70), # equals np.std(cifar10()['train']['data'], axis=(0,1,2)) ] cifar10_classes= 'airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck'.split(', ') ##################### ## data loading ##################### class DataLoader(): def __init__(self, dataset, batch_size, shuffle, set_random_choices=False, num_workers=0, drop_last=False): self.dataset = dataset self.batch_size = batch_size self.set_random_choices = set_random_choices self.dataloader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=True, shuffle=shuffle, drop_last=drop_last ) def __iter__(self): if self.set_random_choices: self.dataset.set_random_choices() return ({'input': x.to(device).half(), 'target': y.to(device).long()} for (x,y) in self.dataloader) def __len__(self): return len(self.dataloader) #GPU dataloading chunks = lambda data, splits: (data[start:end] for (start, end) in zip(splits, splits[1:])) even_splits = lambda N, num_chunks: np.cumsum([0] + [(N//num_chunks)+1]*(N % num_chunks) + [N//num_chunks]*(num_chunks - (N % num_chunks))) def shuffled(xs, inplace=False): xs = xs if inplace else copy.copy(xs) np.random.shuffle(xs) return xs def transformed(data, targets, transform, max_options=None, unshuffle=False): i = torch.randperm(len(data), device=device) data = data[i] options = shuffled(transform.options(data.shape), inplace=True)[:max_options] data = torch.cat([transform(x, **choice) for choice, x in zip(options, chunks(data, even_splits(len(data), len(options))))]) return (data[torch.argsort(i)], targets) if unshuffle else (data, targets[i]) class GPUBatches(): def __init__(self, batch_size, transforms=(), dataset=None, shuffle=True, drop_last=False, max_options=None): self.dataset, self.transforms, self.shuffle, self.max_options = dataset, transforms, shuffle, max_options N = len(dataset['data']) self.splits = list(range(0, N+1, batch_size)) if not drop_last and self.splits[-1] != N: self.splits.append(N) def __iter__(self): data, targets = self.dataset['data'], self.dataset['targets'] for transform in self.transforms: data, targets = transformed(data, targets, transform, max_options=self.max_options, unshuffle=not self.shuffle) if self.shuffle: i = torch.randperm(len(data), device=device) data, targets = data[i], targets[i] return ({'input': x.clone(), 'target': y} for (x, y) in zip(chunks(data, self.splits), chunks(targets, self.splits))) def __len__(self): return len(self.splits) - 1 ##################### ## Layers ##################### #Network class Network(nn.Module): def __init__(self, net): super().__init__() self.graph = build_graph(net) for path, (val, _) in self.graph.items(): setattr(self, path.replace('/', '_'), val) def nodes(self): return (node for node, _ in self.graph.values()) def forward(self, inputs): outputs = dict(inputs) for k, (node, ins) in self.graph.items(): #only compute nodes that are not supplied as inputs. if k not in outputs: outputs[k] = node(*[outputs[x] for x in ins]) return outputs def half(self): for node in self.nodes(): if isinstance(node, nn.Module) and not isinstance(node, nn.BatchNorm2d): node.half() return self class Identity(namedtuple('Identity', [])): def __call__(self, x): return x class Add(namedtuple('Add', [])): def __call__(self, x, y): return x + y class AddWeighted(namedtuple('AddWeighted', ['wx', 'wy'])): def __call__(self, x, y): return self.wx*x + self.wy*y class Mul(nn.Module): def __init__(self, weight): super().__init__() self.weight = weight def __call__(self, x): return x*self.weight class Flatten(nn.Module): def forward(self, x): return x.view(x.size(0), x.size(1)) class Concat(nn.Module): def forward(self, *xs): return torch.cat(xs, 1) class BatchNorm(nn.BatchNorm2d): def __init__(self, num_features, eps=1e-05, momentum=0.1, weight_freeze=False, bias_freeze=False, weight_init=1.0, bias_init=0.0): super().__init__(num_features, eps=eps, momentum=momentum) if weight_init is not None: self.weight.data.fill_(weight_init) if bias_init is not None: self.bias.data.fill_(bias_init) self.weight.requires_grad = not weight_freeze self.bias.requires_grad = not bias_freeze class GhostBatchNorm(BatchNorm): def __init__(self, num_features, num_splits, **kw): super().__init__(num_features, **kw) self.num_splits = num_splits self.register_buffer('running_mean', torch.zeros(num_features*self.num_splits)) self.register_buffer('running_var', torch.ones(num_features*self.num_splits)) def train(self, mode=True): if (self.training is True) and (mode is False): #lazily collate stats when we are going to use them self.running_mean = torch.mean(self.running_mean.view(self.num_splits, self.num_features), dim=0).repeat(self.num_splits) self.running_var = torch.mean(self.running_var.view(self.num_splits, self.num_features), dim=0).repeat(self.num_splits) return super().train(mode) def forward(self, input): N, C, H, W = input.shape if self.training or not self.track_running_stats: return nn.functional.batch_norm( input.view(-1, C*self.num_splits, H, W), self.running_mean, self.running_var, self.weight.repeat(self.num_splits), self.bias.repeat(self.num_splits), True, self.momentum, self.eps).view(N, C, H, W) else: return nn.functional.batch_norm( input, self.running_mean[:self.num_features], self.running_var[:self.num_features], self.weight, self.bias, False, self.momentum, self.eps) # Losses class CrossEntropyLoss(namedtuple('CrossEntropyLoss', [])): def __call__(self, log_probs, target): return torch.nn.functional.nll_loss(log_probs, target, reduction='none') class KLLoss(namedtuple('KLLoss', [])): def __call__(self, log_probs): return -log_probs.mean(dim=1) class Correct(namedtuple('Correct', [])): def __call__(self, classifier, target): return classifier.max(dim = 1)[1] == target class LogSoftmax(namedtuple('LogSoftmax', ['dim'])): def __call__(self, x): return torch.nn.functional.log_softmax(x, self.dim, _stacklevel=5) x_ent_loss = Network({ 'loss': (nn.CrossEntropyLoss(reduction='none'), ['logits', 'target']), 'acc': (Correct(), ['logits', 'target']) }) label_smoothing_loss = lambda alpha: Network({ 'logprobs': (LogSoftmax(dim=1), ['logits']), 'KL': (KLLoss(), ['logprobs']), 'xent': (CrossEntropyLoss(), ['logprobs', 'target']), 'loss': (AddWeighted(wx=1-alpha, wy=alpha), ['xent', 'KL']), 'acc': (Correct(), ['logits', 'target']), }) trainable_params = lambda model: {k:p for k,p in model.named_parameters() if p.requires_grad} ##################### ## Optimisers ##################### from functools import partial def nesterov_update(w, dw, v, lr, weight_decay, momentum): dw.add_(weight_decay, w).mul_(-lr) v.mul_(momentum).add_(dw) w.add_(dw.add_(momentum, v)) norm = lambda x: torch.norm(x.reshape(x.size(0),-1).float(), dim=1)[:,None,None,None] def LARS_update(w, dw, v, lr, weight_decay, momentum): nesterov_update(w, dw, v, lr*(norm(w)/(norm(dw)+1e-2)).to(w.dtype), weight_decay, momentum) def zeros_like(weights): return [torch.zeros_like(w) for w in weights] def optimiser(weights, param_schedule, update, state_init): weights = list(weights) return {'update': update, 'param_schedule': param_schedule, 'step_number': 0, 'weights': weights, 'opt_state': state_init(weights)} def opt_step(update, param_schedule, step_number, weights, opt_state): step_number += 1 param_values = {k: f(step_number) for k, f in param_schedule.items()} for w, v in zip(weights, opt_state): if w.requires_grad: update(w.data, w.grad.data, v, **param_values) return {'update': update, 'param_schedule': param_schedule, 'step_number': step_number, 'weights': weights, 'opt_state': opt_state} LARS = partial(optimiser, update=LARS_update, state_init=zeros_like) SGD = partial(optimiser, update=nesterov_update, state_init=zeros_like) ##################### ## training ##################### from itertools import chain def reduce(batches, state, steps): #state: is a dictionary #steps: are functions that take (batch, state) #and return a dictionary of updates to the state (or None) for batch in chain(batches, [None]): #we send an extra batch=None at the end for steps that #need to do some tidying-up (e.g. log_activations) for step in steps: updates = step(batch, state) if updates: for k,v in updates.items(): state[k] = v return state #define keys in the state dict as constants MODEL = 'model' LOSS = 'loss' VALID_MODEL = 'valid_model' OUTPUT = 'output' OPTS = 'optimisers' ACT_LOG = 'activation_log' WEIGHT_LOG = 'weight_log' #step definitions def forward(training_mode): def step(batch, state): if not batch: return model = state[MODEL] if training_mode or (VALID_MODEL not in state) else state[VALID_MODEL] if model.training != training_mode: #without the guard it's slow! model.train(training_mode) return {OUTPUT: state[LOSS](model(batch))} return step def forward_tta(tta_transforms): def step(batch, state): if not batch: return model = state[MODEL] if (VALID_MODEL not in state) else state[VALID_MODEL] if model.training: model.train(False) logits = torch.mean(torch.stack([model({'input': transform(batch['input'].clone())})['logits'].detach() for transform in tta_transforms], dim=0), dim=0) return {OUTPUT: state[LOSS](dict(batch, logits=logits))} return step def backward(dtype=None): def step(batch, state): state[MODEL].zero_grad() if not batch: return loss = state[OUTPUT][LOSS] if dtype is not None: loss = loss.to(dtype) loss.sum().backward() return step def opt_steps(batch, state): if not batch: return return {OPTS: [opt_step(**opt) for opt in state[OPTS]]} def log_activations(node_names=('loss', 'acc')): def step(batch, state): if '_tmp_logs_' not in state: state['_tmp_logs_'] = [] if batch: state['_tmp_logs_'].extend((k, state[OUTPUT][k].detach()) for k in node_names) else: res = {k: to_numpy(torch.cat(xs)).astype(np.float) for k, xs in group_by_key(state['_tmp_logs_']).items()} del state['_tmp_logs_'] return {ACT_LOG: res} return step epoch_stats = lambda state: {k: np.mean(v) for k, v in state[ACT_LOG].items()} def update_ema(momentum, update_freq=1): n = iter(count()) rho = momentum**update_freq def step(batch, state): if not batch: return if (next(n) % update_freq) != 0: return for v, ema_v in zip(state[MODEL].state_dict().values(), state[VALID_MODEL].state_dict().values()): if not v.dtype.is_floating_point: continue #skip things like num_batches_tracked. ema_v *= rho ema_v += (1-rho)*v return step default_train_steps = (forward(training_mode=True), log_activations(('loss', 'acc')), backward(), opt_steps) default_valid_steps = (forward(training_mode=False), log_activations(('loss', 'acc'))) def train_epoch(state, timer, train_batches, valid_batches, train_steps=default_train_steps, valid_steps=default_valid_steps, on_epoch_end=(lambda state: state)): train_summary, train_time = epoch_stats(on_epoch_end(reduce(train_batches, state, train_steps))), timer() valid_summary, valid_time = epoch_stats(reduce(valid_batches, state, valid_steps)), timer(include_in_total=False) #DAWNBench rules return { 'train': union({'time': train_time}, train_summary), 'valid': union({'time': valid_time}, valid_summary), 'total time': timer.total_time } #on_epoch_end def log_weights(state, weights): state[WEIGHT_LOG] = state.get(WEIGHT_LOG, []) state[WEIGHT_LOG].append({k: to_numpy(v.data) for k,v in weights.items()}) return state def fine_tune_bn_stats(state, batches, model_key=VALID_MODEL): reduce(batches, {MODEL: state[model_key]}, [forward(True)]) return state #misc def warmup_cudnn(model, loss, batch): #run forward and backward pass of the model #to allow benchmarking of cudnn kernels reduce([batch], {MODEL: model, LOSS: loss}, [forward(True), backward()]) torch.cuda.synchronize() ##################### ## input whitening ##################### def cov(X): X = X/np.sqrt(X.size(0) - 1) return X.t() @ X def patches(data, patch_size=(3, 3), dtype=torch.float32): h, w = patch_size c = data.size(1) return data.unfold(2,h,1).unfold(3,w,1).transpose(1,3).reshape(-1, c, h, w).to(dtype) def eigens(patches): n,c,h,w = patches.shape Σ = cov(patches.reshape(n, c*h*w)) Λ, V = torch.symeig(Σ, eigenvectors=True) return Λ.flip(0), V.t().reshape(c*h*w, c, h, w).flip(0) def whitening_filter(Λ, V, eps=1e-2): filt = nn.Conv2d(3, 27, kernel_size=(3,3), padding=(1,1), bias=False) filt.weight.data = (V/torch.sqrt(Λ+eps)[:,None,None,None]) filt.weight.requires_grad = False return filt
plugins/tasks/ansible/src/main/resources/com/walmartlabs/concord/plugins/ansible/callback/concord_out_vars.py
700software/concord
158
11153289
<filename>plugins/tasks/ansible/src/main/resources/com/walmartlabs/concord/plugins/ansible/callback/concord_out_vars.py<gh_stars>100-1000 import os import json from ansible.plugins.callback import CallbackBase from concord_ansible_stats import ConcordAnsibleStats try: from __main__ import cli except ImportError: cli = None class CallbackModule(CallbackBase): CALLBACK_VERSION = 2.0 CALLBACK_NAME = 'concord_out_vars' CALLBACK_NEEDS_WHITELIST = False def __init__(self): super(CallbackModule, self).__init__() self.out_vars = None if "CONCORD_OUT_VARS" in os.environ: self.out_vars = [v.strip() for v in os.environ["CONCORD_OUT_VARS"].split(",")] self.out_vars_file_name = None if "CONCORD_OUT_VARS_FILE" in os.environ: self.out_vars_file_name = os.environ["CONCORD_OUT_VARS_FILE"] print("Saving out variables:", self.out_vars) def playbook_on_stats(self, stats): if not self.out_vars: return result = dict() all_vars = self.var_manager._nonpersistent_fact_cache for fact in self.out_vars: fact_by_host = dict() for host, vars in all_vars.items(): if fact in vars: fact_by_host[host] = vars[fact] result[fact] = fact_by_host if '_stats' in self.out_vars: result['_stats'] = ConcordAnsibleStats.build_stats_data(stats) target_file = open(self.out_vars_file_name, "w") target_file.write(json.dumps(result, indent=2)) print("Variables saved to:", self.out_vars_file_name) def v2_playbook_on_play_start(self, play): self.var_manager = play.get_variable_manager()
glslc/test/working_directory.py
hbirchtree/shaderc
2,151
11153305
# Copyright 2015 The Shaderc Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path import expect from environment import File, Directory from glslc_test_framework import inside_glslc_testsuite from placeholder import FileShader MINIMAL_SHADER = '#version 140\nvoid main() {}' # @inside_glslc_testsuite('WorkDir') class TestWorkDirNoArg(expect.ErrorMessage): """Tests -working-directory. Behavior cribbed from Clang.""" glslc_args = ['-working-directory'] expected_error = [ "glslc: error: argument to '-working-directory' is missing " '(expected 1 value)\n', 'glslc: error: no input files\n'] # @inside_glslc_testsuite('WorkDir') class TestWorkDirEqNoArg(expect.ErrorMessage): """Tests -working-directory=<empty>. Behavior cribbed from Clang.""" glslc_args = ['-working-directory='] expected_error = ['glslc: error: no input files\n'] EMPTY_SHADER_IN_SUBDIR = Directory( 'subdir', [File('shader.vert', MINIMAL_SHADER)]) # @inside_glslc_testsuite('WorkDir') class TestWorkDirEqNoArgCompileFile(expect.ValidNamedObjectFile): """Tests -working-directory=<empty> when compiling input file.""" environment = Directory('.', [EMPTY_SHADER_IN_SUBDIR]) glslc_args = ['-c', '-working-directory=', 'subdir/shader.vert'] # Output file should be generated into subdir/. expected_object_filenames = ('subdir/shader.vert.spv',) # @inside_glslc_testsuite('WorkDir') class TestMultipleWorkDir(expect.ValidNamedObjectFile): """Tests that if there are multiple -working-directory=<dir> specified, only the last one takes effect.""" environment = Directory('.', [EMPTY_SHADER_IN_SUBDIR]) glslc_args = ['-c', '-working-directory=i-dont-exist', '-working-directory', 'i-think/me-neither', '-working-directory=subdir', 'shader.vert'] # Output file should be generated into subdir/. expected_object_filenames = ('subdir/shader.vert.spv',) # @inside_glslc_testsuite('WorkDir') class TestWorkDirPosition(expect.ValidNamedObjectFile): """Tests that -working-directory=<dir> affects all files before and after it on the command line.""" environment = Directory('subdir', [ File('shader.vert', MINIMAL_SHADER), File('cool.frag', MINIMAL_SHADER), File('bla.vert', MINIMAL_SHADER) ]) glslc_args = ['-c', 'shader.vert', 'bla.vert', '-working-directory=subdir', 'cool.frag'] # Output file should be generated into subdir/. expected_object_filenames = ( 'subdir/shader.vert.spv', 'subdir/cool.frag.spv', 'subdir/bla.vert.spv') # @inside_glslc_testsuite('WorkDir') class TestWorkDirDeepDir(expect.ValidNamedObjectFile): """Tests that -working-directory=<dir> works with directory hierarchies.""" environment = Directory('subdir', [ Directory('subsubdir', [ File('one.vert', MINIMAL_SHADER), File('two.frag', MINIMAL_SHADER) ]), File('zero.vert', MINIMAL_SHADER) ]) glslc_args = ['-c', 'zero.vert', 'subsubdir/one.vert', 'subsubdir/two.frag', '-working-directory=subdir'] # Output file should be generated into subdir/. expected_object_filenames = ( 'subdir/zero.vert.spv', 'subdir/subsubdir/one.vert.spv', 'subdir/subsubdir/two.frag.spv') # @inside_glslc_testsuite('WorkDir') class TestWorkDirCompileFile(expect.ValidNamedObjectFile): """Tests -working-directory=<dir> when compiling input file.""" environment = Directory('.', [EMPTY_SHADER_IN_SUBDIR]) glslc_args = ['-c', '-working-directory=subdir', 'shader.vert'] # Output file should be generated into subdir/. expected_object_filenames = ('subdir/shader.vert.spv',) # @inside_glslc_testsuite('WorkDir') class TestWorkDirCompileFileOutput(expect.ValidNamedObjectFile): """Tests -working-directory=<dir> when compiling input file and specifying output filename.""" environment = Directory('.', [ Directory('subdir', [ Directory('bin', []), File('shader.vert', MINIMAL_SHADER) ]) ]) glslc_args = ['-c', '-o', 'bin/spv', '-working-directory=subdir', 'shader.vert'] # Output file should be generated into subdir/bin/. expected_object_filenames = ('subdir/bin/spv',) # @inside_glslc_testsuite('WorkDir') class TestWorkDirArgNoEq(expect.ValidNamedObjectFile): """Tests -working-directory <dir>.""" environment = Directory('.', [EMPTY_SHADER_IN_SUBDIR]) glslc_args = ['-working-directory', 'subdir', 'shader.vert'] expected_object_filenames = ('a.spv',) # @inside_glslc_testsuite('WorkDir') class TestWorkDirEqInArg(expect.ValidNamedObjectFile): """Tests -working-directory=<dir-with-equal-sign-inside>.""" environment = Directory('.', [ Directory('=subdir', [File('shader.vert', MINIMAL_SHADER)]), ]) glslc_args = ['-working-directory==subdir', 'shader.vert'] expected_object_filenames = ('a.spv',) # @inside_glslc_testsuite('WorkDir') class TestWorkDirCompileFileAbsolutePath(expect.ValidObjectFile): """Tests -working-directory=<dir> when compiling input file with absolute path.""" shader = FileShader(MINIMAL_SHADER, '.vert') glslc_args = ['-c', '-working-directory=subdir', shader] # The -working-directory flag should not affect the placement of the link file. # The following tests ensure that. class WorkDirDoesntAffectLinkedFile(expect.ValidNamedObjectFile): """A base class for tests asserting that -working-directory has no impact on the location of the output link file. """ environment = Directory('.', [ Directory('subdir', [ File('shader.vert', MINIMAL_SHADER), # Try to fake glslc into putting the linked file here, though it # shouldn't (because -working-directory doesn't impact -o). Directory('bin', [])]), File('shader.vert', "fake file, doesn't compile."), Directory('bin', [])]) # @inside_glslc_testsuite('WorkDir') class TestWorkDirLinkFileDefaultLocation(WorkDirDoesntAffectLinkedFile): """Tests that -working-directory doesn't impact the default link-file location. """ glslc_args = ['-working-directory=subdir', 'shader.vert'] expected_object_filenames = ('a.spv',) # @inside_glslc_testsuite('WorkDir') class TestWorkDirLinkFileExplicit(WorkDirDoesntAffectLinkedFile): """Tests that -working-directory doesn't impact the named link-file location. """ glslc_args = ['-o', 'b.spv', '-working-directory=subdir', 'shader.vert'] expected_object_filenames = ('b.spv',) # @inside_glslc_testsuite('WorkDir') class TestWorkDirLinkFileInSubdir(WorkDirDoesntAffectLinkedFile): """Tests that -working-directory doesn't impact the link-file sent into an existing subdirectory. """ glslc_args = ['-o', 'bin/spv', '-working-directory=subdir', 'shader.vert'] expected_object_filenames = ('bin/spv',) # @inside_glslc_testsuite('WorkDir') class TestWorkDirLinkFileInvalidPath(expect.ErrorMessage): """Tests that -working-directory doesn't impact the error generated for an invalid -o path. """ environment = Directory('.', [ Directory('subdir', [ File('shader.vert', MINIMAL_SHADER), Directory('missing', [])]), # Present here, but missing in parent. File('shader.vert', "fake file, doesn't compile.")]) glslc_args = [ '-o', 'missing/spv', '-working-directory=subdir', 'shader.vert'] expected_error = ['glslc: error: cannot open output file: ', "'missing/spv': No such file or directory\n"]
utime/callbacks/__init__.py
learning310/U-Time
138
11153318
from .callbacks import Validation, MaxTrainingTime, MemoryConsumption, CarbonUsageTracking
examples/basic/lights.py
hadivafaii/vedo
836
11153345
"""Set custom lights to a 3D scene""" from vedo import * man = Mesh(dataurl+'man.vtk').c('white').lighting('glossy') p1 = Point([1,0,1], c='y') p2 = Point([0,0,2], c='r') p3 = Point([-1,-0.5,-1], c='b') p4 = Point([0,1,0], c='k') # Add light sources at the given positions l1 = Light(p1, c='y') # p1 can simply be [1,0,1] l2 = Light(p2, c='r') l3 = Light(p3, c='b') l4 = Light(p4, c='w', intensity=0.5) show(man, l1, l2, l3, l4, p1, p2, p3, p4, __doc__, axes=1, viewup='z').close() ##################################################### ##### Equivalent code using a Plotter instance: ##### ##################################################### # plt = Plotter(axes=1) # plt += [man, p1, p2, p3, p4, l1, l2, l3, l4] # plt.show(viewup='z') #####################################################
config/scripts/topprocess/top.py
hardyoyo/Mutate
1,488
11153346
<reponame>hardyoyo/Mutate #!/usr/bin/python2 #!encoding = utf-8 import json from pprint import pprint import sys import os import time def printcmd(c): output({ 'name': c[0], 'command':'kill -9 '+c[1], 'subtext':'PID: '+c[1]+', CPU: '+c[2]+'%, RAM: '+c[3]+'%, USER:'+c[4] }) def nofoundprint(): output({'name': 'Nothing found', 'subtext': ''}) def errorprint(): output({'name': 'Something went wrong', 'subtext': 'config error'}) def shortprint(): output({'name': 'Usage', 'subtext': '[c] ordered by %CPU, [m] ordered by %MEM'}) output({'name': 'top c', 'subtext': 'sort by %CPU'}) output({'name': 'top m', 'subtext': 'sort by %MEM'}) defaultoutput = { 'name' : '', 'command' : '', 'icon' : '', 'subtext' : '' } def output(o): temp = defaultoutput.copy() temp.update(o) print "["+temp['name']+"]" print "command="+temp['command'] print "icon="+temp['icon'] print "subtext="+temp['subtext'] if len(sys.argv) == 0: errorprint() sys.exit(-1) if len(sys.argv) == 1: shortprint() sys.exit(-1) if len(sys.argv) != 2: shortprint() sys.exit(-1) lines = [] cmds = [] if sys.argv[1] == 'c': f = os.popen('ps axo comm,pid,pcpu,pmem,user k -pcpu |head') elif sys.argv[1] == 'm': f = os.popen('ps axo comm,pid,pcpu,pmem,user k -pmem |head') else: shortprint() sys.exit(0) res = f.read() res = res.split('\n') if len(res)==0: errorprint() sys.exit(-1) for i in range(1, len(res)): cmds.append(res[i].split()) del cmds[-1] for i in range(0, len(cmds)): printcmd(cmds[i])
pinax_theme_bootstrap/models.py
Harshalszz/pinax-theme-bootstrap
113
11153355
<filename>pinax_theme_bootstrap/models.py<gh_stars>100-1000 # This file is intentionally left blank to allow Django to load the app.
security/resteasy-crypto/src/test/resources/smime_encrypted_signed.py
gytis/Resteasy
841
11153372
from M2Crypto import BIO, SMIME, X509 s = SMIME.SMIME() # Load private key and cert. s.load_key('mycert-private.pem', 'mycert.pem') # Load the signed/encrypted data. p7, data = SMIME.smime_load_pkcs7('target/python_encrypted_signed.txt') # After the above step, 'data' == None. # Decrypt p7. 'out' now contains a PKCS #7 signed blob. out = s.decrypt(p7) # Load the signer's cert. x509 = X509.load_cert('mycert.pem') sk = X509.X509_Stack() sk.push(x509) s.set_x509_stack(sk) # Load the signer's CA cert. In this case, because the signer's # cert is self-signed, it is the signer's cert itself. st = X509.X509_Store() st.load_info('mycert.pem') s.set_x509_store(st) # Recall 'out' contains a PKCS #7 blob. # Transform 'out'; verify the resulting PKCS #7 blob. p7_bio = BIO.MemoryBuffer(out) p7, data = SMIME.smime_load_pkcs7_bio(p7_bio) v = s.verify(p7, data) print v
backbone/activation.py
PINTO0309/micronet
221
11153380
import torch import torch.nn as nn import torch.nn.functional as F def _make_divisible(v, divisor, min_value=None): """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py :param v: :param divisor: :param min_value: :return: """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v ######################################################################## # sigmoid and tanh ######################################################################## # h_sigmoid (x: [-3 3], y: [0, h_max]] class h_sigmoid(nn.Module): def __init__(self, inplace=True, h_max=1): super(h_sigmoid, self).__init__() self.relu = nn.ReLU6(inplace=inplace) self.h_max = h_max / 6 def forward(self, x): return self.relu(x + 3) * self.h_max # h_tanh x: [-3, 3], y: [-h_max, h_max] class h_tanh(nn.Module): def __init__(self, inplace=True, h_max=1): super(h_tanh, self).__init__() self.relu = nn.ReLU6(inplace=inplace) self.h_max = h_max def forward(self, x): return self.relu(x + 3)*self.h_max / 3 - self.h_max ######################################################################## # wrap functions ######################################################################## def get_act_layer(inp, oup, mode='SE1', act_relu=True, act_max=2, act_bias=True, init_a=[1.0, 0.0], reduction=4, init_b=[0.0, 0.0], g=None, act='relu', expansion=True): layer = None if mode == 'SE1': layer = nn.Sequential( SELayer(inp, oup, reduction=reduction), nn.ReLU6(inplace=True) if act_relu else nn.Sequential() ) elif mode == 'SE0': layer = nn.Sequential( SELayer(inp, oup, reduction=reduction), ) elif mode == 'NA': layer = nn.ReLU6(inplace=True) if act_relu else nn.Sequential() elif mode == 'LeakyReLU': layer = nn.LeakyReLU(inplace=True) if act_relu else nn.Sequential() elif mode == 'RReLU': layer = nn.RReLU(inplace=True) if act_relu else nn.Sequential() elif mode == 'PReLU': layer = nn.PReLU() if act_relu else nn.Sequential() elif mode == 'DYShiftMax': layer = DYShiftMax(inp, oup, act_max=act_max, act_relu=act_relu, init_a=init_a, reduction=reduction, init_b=init_b, g=g, expansion=expansion) return layer ######################################################################## # dynamic activation layers (SE, DYShiftMax, etc) ######################################################################## class SELayer(nn.Module): def __init__(self, inp, oup, reduction=4): super(SELayer, self).__init__() self.oup = oup self.avg_pool = nn.AdaptiveAvgPool2d(1) # determine squeeze squeeze = get_squeeze_channels(inp, reduction) print('reduction: {}, squeeze: {}/{}'.format(reduction, inp, squeeze)) self.fc = nn.Sequential( nn.Linear(inp, squeeze), nn.ReLU(inplace=True), nn.Linear(squeeze, oup), h_sigmoid() ) def forward(self, x): if isinstance(x, list): x_in = x[0] x_out = x[1] else: x_in = x x_out = x b, c, _, _ = x_in.size() y = self.avg_pool(x_in).view(b, c) y = self.fc(y).view(b, self.oup, 1, 1) return x_out * y class DYShiftMax(nn.Module): def __init__(self, inp, oup, reduction=4, act_max=1.0, act_relu=True, init_a=[0.0, 0.0], init_b=[0.0, 0.0], relu_before_pool=False, g=None, expansion=False): super(DYShiftMax, self).__init__() self.oup = oup self.act_max = act_max * 2 self.act_relu = act_relu self.avg_pool = nn.Sequential( nn.ReLU(inplace=True) if relu_before_pool == True else nn.Sequential(), nn.AdaptiveAvgPool2d(1) ) self.exp = 4 if act_relu else 2 self.init_a = init_a self.init_b = init_b # determine squeeze squeeze = _make_divisible(inp // reduction, 4) if squeeze < 4: squeeze = 4 print('reduction: {}, squeeze: {}/{}'.format(reduction, inp, squeeze)) print('init-a: {}, init-b: {}'.format(init_a, init_b)) self.fc = nn.Sequential( nn.Linear(inp, squeeze), nn.ReLU(inplace=True), nn.Linear(squeeze, oup*self.exp), h_sigmoid() ) if g is None: g = 1 self.g = g[1] if self.g !=1 and expansion: self.g = inp // self.g print('group shuffle: {}, divide group: {}'.format(self.g, expansion)) self.gc = inp//self.g index=torch.Tensor(range(inp)).view(1,inp,1,1) index=index.view(1,self.g,self.gc,1,1) indexgs = torch.split(index, [1, self.g-1], dim=1) indexgs = torch.cat((indexgs[1], indexgs[0]), dim=1) indexs = torch.split(indexgs, [1, self.gc-1], dim=2) indexs = torch.cat((indexs[1], indexs[0]), dim=2) self.index = indexs.view(inp).type(torch.LongTensor) self.expansion = expansion def forward(self, x): x_in = x x_out = x b, c, _, _ = x_in.size() y = self.avg_pool(x_in).view(b, c) y = self.fc(y).view(b, self.oup*self.exp, 1, 1) y = (y-0.5) * self.act_max n2, c2, h2, w2 = x_out.size() x2 = x_out[:,self.index,:,:] if self.exp == 4: a1, b1, a2, b2 = torch.split(y, self.oup, dim=1) a1 = a1 + self.init_a[0] a2 = a2 + self.init_a[1] b1 = b1 + self.init_b[0] b2 = b2 + self.init_b[1] z1 = x_out * a1 + x2 * b1 z2 = x_out * a2 + x2 * b2 out = torch.max(z1, z2) elif self.exp == 2: a1, b1 = torch.split(y, self.oup, dim=1) a1 = a1 + self.init_a[0] b1 = b1 + self.init_b[0] out = x_out * a1 + x2 * b1 return out def get_squeeze_channels(inp, reduction): if reduction == 4: squeeze = inp // reduction else: squeeze = _make_divisible(inp // reduction, 4) return squeeze
python/clx/tests/test_asset_classification.py
shaneding/clx
143
11153394
<reponame>shaneding/clx<gh_stars>100-1000 # Copyright (c) 2020, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import cudf import clx from clx.analytics.asset_classification import AssetClassification import torch from os import path import random import pandas as pd column1 = [random.randint(1, 24) for _ in range(9000)] column2 = [random.randint(1, 4) for _ in range(9000)] column3 = [random.randint(1, 9) for _ in range(9000)] column4 = [random.randint(1, 26) for _ in range(9000)] column5 = [random.randint(1, 3) for _ in range(9000)] column6 = [random.randint(1, 9) for _ in range(9000)] column7 = [random.randint(1, 37) for _ in range(9000)] column8 = [random.randint(1, 8) for _ in range(9000)] column9 = [random.randint(1, 4) for _ in range(9000)] column10 = [random.randint(1, 11) for _ in range(9000)] label = [random.randint(0, 6) for _ in range(9000)] train_pd = pd.DataFrame(list(zip(column1, column2, column3, column4, column5, column6, column7, column8, column9, column10, label)), columns=["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "label"]) train_gdf = cudf.from_pandas(train_pd) batch_size = 6 epochs = 15 @pytest.mark.parametrize("train_gdf", [train_gdf]) def test_train_model_mixed_cat_cont(tmpdir, train_gdf): train_gdf = train_gdf.copy() cat_cols = ["1", "2", "3", "4", "5", "6", "7", "8"] cont_cols = ["9", "10"] train_gdf[cont_cols] = normalize_conts(train_gdf[cont_cols]) ac = AssetClassification() ac.train_model(train_gdf, cat_cols, cont_cols, "label", batch_size, epochs) if torch.cuda.is_available(): assert isinstance(ac._model, clx.analytics.model.tabular_model.TabularModel) @pytest.mark.parametrize("train_gdf", [train_gdf]) def test_train_model_all_cat(tmpdir, train_gdf): train_gdf = train_gdf.copy() cat_cols = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"] cont_cols = [] ac = AssetClassification() ac.train_model(train_gdf, cat_cols, cont_cols, "label", batch_size, epochs) if torch.cuda.is_available(): assert isinstance(ac._model, clx.analytics.model.tabular_model.TabularModel) @pytest.mark.parametrize("train_gdf", [train_gdf]) def test_train_model_all_cont(tmpdir, train_gdf): train_gdf = train_gdf.copy() cont_cols = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"] cat_cols = [] train_gdf[cont_cols] = normalize_conts(train_gdf[cont_cols]) ac = AssetClassification() ac.train_model(train_gdf, cat_cols, cont_cols, "label", batch_size, epochs) if torch.cuda.is_available(): assert isinstance(ac._model, clx.analytics.model.tabular_model.TabularModel) @pytest.mark.parametrize("train_gdf", [train_gdf]) def test_predict(tmpdir, train_gdf): if torch.cuda.is_available(): cat_cols = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"] cont_cols = [] ac = AssetClassification() ac.train_model(train_gdf, cat_cols, cont_cols, "label", batch_size, epochs) # predict test_gdf = train_gdf.head() test_gdf.drop("label", axis=1) preds = ac.predict(test_gdf, cat_cols, cont_cols) assert isinstance(preds, cudf.core.series.Series) assert len(preds) == len(test_gdf) assert preds.dtype == int def test_save_model(tmpdir): if torch.cuda.is_available(): cat_cols = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"] cont_cols = [] ac = AssetClassification() ac.train_model(train_gdf, cat_cols, cont_cols, "label", batch_size, epochs) # save model ac.save_model(str(tmpdir.join("clx_ac.mdl"))) assert path.exists(str(tmpdir.join("clx_ac.mdl"))) def test_load_model(tmpdir): if torch.cuda.is_available(): cat_cols = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"] cont_cols = [] ac = AssetClassification() ac.train_model(train_gdf, cat_cols, cont_cols, "label", batch_size, epochs) # save model ac.save_model(str(tmpdir.join("clx_ac.mdl"))) assert path.exists(str(tmpdir.join("clx_ac.mdl"))) # load model ac2 = AssetClassification() ac2.load_model(str(tmpdir.join("clx_ac.mdl"))) assert isinstance(ac2._model, clx.analytics.model.tabular_model.TabularModel) def normalize_conts(gdf): means, stds = (gdf.mean(0), gdf.std(ddof=0)) gdf = (gdf - means) / stds return gdf
test/specs/openapi/test_negative.py
vyachin/schemathesis
659
11153399
from copy import deepcopy from test.utils import assert_requests_call import pytest from hypothesis import HealthCheck, given, settings from hypothesis import strategies as st from hypothesis_jsonschema import from_schema from hypothesis_jsonschema._canonicalise import FALSEY, canonicalish from jsonschema import Draft4Validator import schemathesis from schemathesis import DataGenerationMethod from schemathesis.specs.openapi._hypothesis import STRING_FORMATS, is_valid_header from schemathesis.specs.openapi.constants import LOCATION_TO_CONTAINER from schemathesis.specs.openapi.negative import mutated, negative_schema from schemathesis.specs.openapi.negative.mutations import ( MutationContext, MutationResult, change_items, change_properties, change_type, negate_constraints, prevent_unsatisfiable_schema, remove_required_property, ) from schemathesis.specs.openapi.utils import is_header_location OBJECT_SCHEMA = { "type": "object", "properties": { "foo": {"type": "string"}, "bar": {"type": "integer"}, "baf": {"type": ["integer"]}, "baz": {"type": ["array", "object"]}, "bad": {}, }, "required": [ "foo", "bar", "baf", "baz", ], } ARRAY_SCHEMA = {"type": "array", "items": OBJECT_SCHEMA} EMPTY_OBJECT_SCHEMA = { "type": "object", } INTEGER_SCHEMA = { "type": "integer", } def validate_schema(schema): Draft4Validator.check_schema(schema) @pytest.mark.parametrize( "location, schema", [(location, OBJECT_SCHEMA) for location in sorted(LOCATION_TO_CONTAINER)] + [ # These schemas are only possible for "body" ("body", EMPTY_OBJECT_SCHEMA), ("body", ARRAY_SCHEMA), ("body", INTEGER_SCHEMA), ], ) @given(data=st.data()) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow, HealthCheck.filter_too_much]) def test_top_level_strategy(data, location, schema): if location != "body" and schema.get("type") == "object": # It always comes this way from Schemathesis schema["additionalProperties"] = False validate_schema(schema) validator = Draft4Validator(schema) schema = deepcopy(schema) instance = data.draw( negative_schema( schema, operation_name="GET /users/", location=location, media_type="application/json", custom_formats=STRING_FORMATS, ) ) assert not validator.is_valid(instance) if is_header_location(location): assert is_valid_header(instance) @pytest.mark.parametrize( "mutation, schema, validate", ( # No constraints besides `type` (negate_constraints, {"type": "integer"}, True), # Missing type (i.e all types are possible) (change_type, {}, True), # All types explicitly (change_type, {"type": ["string", "integer", "number", "object", "array", "boolean", "null"]}, True), # No properties to remove (remove_required_property, {}, True), # Non-"object" type (remove_required_property, {"type": "array"}, True), # No properties at all (change_properties, {}, True), # No properties that can be mutated (change_properties, {"properties": {"foo": {}}}, True), # No items (change_items, {"type": "array"}, True), # `items` accept everything (change_items, {"type": "array", "items": {}}, True), (change_items, {"type": "array", "items": True}, False), # `items` is equivalent to accept-everything schema (change_items, {"type": "array", "items": {"uniqueItems": False}}, True), # The first element could be anything (change_items, {"type": "array", "items": [{}]}, True), ), ) @given(data=st.data()) @settings(deadline=None) def test_failing_mutations(data, mutation, schema, validate): if validate: validate_schema(schema) original_schema = deepcopy(schema) # When mutation can't be applied # Then it returns "failure" assert mutation(MutationContext(schema, "body", "application/json"), data.draw, schema) == MutationResult.FAILURE # And doesn't mutate the input schema assert schema == original_schema @given(data=st.data()) @settings(deadline=None) def test_change_type_urlencoded(data): # When `application/x-www-form-urlencoded` media type is passed to `change_type` schema = {"type": "object"} original_schema = deepcopy(schema) context = MutationContext(schema, "body", "application/x-www-form-urlencoded") # Then it should not be mutated assert change_type(context, data.draw, schema) == MutationResult.FAILURE # And doesn't mutate the input schema assert schema == original_schema @pytest.mark.parametrize( "mutation, schema", ( (negate_constraints, {"type": "integer", "minimum": 42}), (negate_constraints, {"minimum": 42}), (change_type, {"type": "object"}), (change_type, {"type": ["object", "array"]}), (change_type, {"type": ["string", "integer", "number", "object", "array", "boolean"]}), (remove_required_property, {"properties": {"foo": {}}, "required": ["foo"]}), (remove_required_property, {"properties": {"foo": {}, "bar": {}}, "required": ["foo"]}), (remove_required_property, {"required": ["foo"]}), (change_items, {"type": "array", "items": {"type": "string"}}), (change_items, {"type": "array", "items": {"type": "string"}, "minItems": 1}), (change_items, {"type": "array", "items": {"type": "string"}, "minItems": 1, "maxItems": 1}), (change_items, {"type": "array", "items": [{"type": "string"}]}), (change_items, {"type": "array", "items": [{"type": "string"}], "minItems": 1}), (change_items, {"type": "array", "items": [{"type": "string"}], "minItems": 1, "maxItems": 1}), (change_properties, {"properties": {"foo": {"type": "integer"}}, "type": "object", "required": ["foo"]}), (change_properties, {"properties": {"foo": {"type": "integer"}}, "type": ["object"]}), (change_properties, {"properties": {"foo": {"type": "integer"}}, "type": "object"}), (change_properties, {"properties": {"foo": {"type": "integer"}}}), ( change_properties, { "properties": {"foo": {"type": "string", "minLength": 5}, "bar": {"type": "string", "minLength": 5}}, "type": "object", "required": ["foo", "bar"], "additionalProperties": False, }, ), ), ) @given(data=st.data()) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow, HealthCheck.filter_too_much]) def test_successful_mutations(data, mutation, schema): validate_schema(schema) validator = Draft4Validator(schema) schema = deepcopy(schema) # When mutation can be applied # Then it returns "success" assert mutation(MutationContext(schema, "body", "application/json"), data.draw, schema) == MutationResult.SUCCESS # And the mutated schema is a valid JSON Schema validate_schema(schema) # And instances valid for this schema are not valid for the original one new_instance = data.draw(from_schema(schema)) assert not validator.is_valid(new_instance) @pytest.mark.parametrize( "schema", ( { "type": "object", "properties": { "foo": {"type": "string"}, }, "required": [ "foo", ], "additionalProperties": False, }, { "type": "object", "properties": { "foo": {"type": "string", "minLength": 5}, }, "required": [ "foo", ], "additionalProperties": False, }, ), ) @given(data=st.data()) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow, HealthCheck.filter_too_much]) def test_path_parameters_are_string(data, schema): validator = Draft4Validator(schema) new_schema = deepcopy(schema) # When path parameters are mutated new_schema = data.draw(mutated(new_schema, "path", None)) assert new_schema["type"] == "object" # Then mutated schema is a valid JSON Schema validate_schema(new_schema) # And parameters remain primitive types new_instance = data.draw(from_schema(new_schema)) assert not isinstance(new_instance["foo"], (list, dict)) # And there should be no additional parameters assert len(new_instance) == 1 # And instances valid for this schema are not valid for the original one assert not validator.is_valid(new_instance) @pytest.mark.parametrize("key", ("components", "description")) @given(data=st.data()) @settings(deadline=None) def test_custom_fields_are_intact(data, key): # When the schema contains some non-JSON Schema keywords (e.g. components from Open API) schema = { "type": "object", "properties": {"X-Foo": {"type": "string", "maxLength": 5}}, "additionalProperties": False, key: {}, } # Then they should not be negated new_schema = data.draw(mutated(schema, "body", "application/json")) assert key in new_schema @pytest.mark.parametrize( "left, right, expected", ( (MutationResult.SUCCESS, MutationResult.SUCCESS, MutationResult.SUCCESS), (MutationResult.FAILURE, MutationResult.SUCCESS, MutationResult.SUCCESS), (MutationResult.SUCCESS, MutationResult.FAILURE, MutationResult.SUCCESS), (MutationResult.FAILURE, MutationResult.FAILURE, MutationResult.FAILURE), ), ) def test_mutation_result_success(left, right, expected): assert left | right == expected left |= right assert left == expected @pytest.mark.parametrize( "schema", ( {"minimum": 5, "exclusiveMinimum": True}, {"maximum": 5, "exclusiveMaximum": True}, {"maximum": 5, "exclusiveMaximum": True, "minimum": 1, "exclusiveMinimum": True}, ), ) @given(data=st.data()) @settings(deadline=None) def test_negate_constraints_keep_dependencies(data, schema): # When `negate_constraints` is used schema = deepcopy(schema) negate_constraints(MutationContext(schema, "body", "application/json"), data.draw, schema) # Then it should always produce valid schemas validate_schema(schema) # E.g. `exclusiveMaximum` / `exclusiveMinimum` only work when `maximum` / `minimum` are present in the same schema @given(data=st.data()) @settings(deadline=None) def test_no_unsatisfiable_schemas(data): schema = {"type": "object", "required": ["foo"]} mutated_schema = data.draw(mutated(schema, location="body", media_type="application/json")) assert canonicalish(mutated_schema) != FALSEY @pytest.mark.parametrize( "schema, new_type", ( ({"type": "object", "required": ["a"]}, "string"), ({"required": ["a"], "not": {"maxLength": 5}}, "string"), ), ) def test_prevent_unsatisfiable_schema(schema, new_type): prevent_unsatisfiable_schema(schema, new_type) assert canonicalish(schema) != FALSEY ARRAY_PARAMETER = {"type": "array", "minItems": 1, "items": {"type": "string", "format": "ipv4"}} OBJECT_PARAMETER = { "type": "object", "minProperties": 1, "properties": {"foo": {"type": "string", "format": "ipv4"}, "bar": {"type": "string", "format": "ipv4"}}, "additionalProperties": False, } @pytest.mark.parametrize("explode", (True, False)) @pytest.mark.parametrize( "location, schema, style", [("query", ARRAY_PARAMETER, style) for style in ("pipeDelimited", "spaceDelimited")] + [("query", OBJECT_PARAMETER, "deepObject")] + [ ("path", parameter, style) for parameter in [OBJECT_PARAMETER, ARRAY_PARAMETER] for style in ("simple", "label", "matrix") ], ) @pytest.mark.hypothesis_nested def test_non_default_styles(empty_open_api_3_schema, location, schema, style, explode): # See GH-1208 # When the schema contains a parameter with a not-default "style" empty_open_api_3_schema["paths"]["/bug"] = { "get": { "parameters": [ {"name": "key", "in": location, "required": True, "style": style, "explode": explode, "schema": schema}, ], "responses": {"200": {"description": "OK"}}, } } schema = schemathesis.from_dict(empty_open_api_3_schema) @given(case=schema["/bug"]["get"].as_strategy(data_generation_method=DataGenerationMethod.negative)) @settings(deadline=None, max_examples=10, suppress_health_check=[HealthCheck.too_slow, HealthCheck.filter_too_much]) def test(case): assert_requests_call(case) test()