max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
tests/test_year_2013.py
l0pht511/jpholiday
179
11158381
# coding: utf-8 import datetime import unittest import jpholiday class TestYear2013(unittest.TestCase): def test_holiday(self): """ 2013年祝日 """ self.assertEqual(jpholiday.is_holiday_name(datetime.date(2013, 1, 1)), '元日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2013, 1, 14)), '成人の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2013, 2, 11)), '建国記念の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2013, 3, 20)), '春分の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2013, 4, 29)), '昭和の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2013, 5, 3)), '憲法記念日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2013, 5, 4)), 'みどりの日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2013, 5, 5)), 'こどもの日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2013, 5, 6)), 'こどもの日 振替休日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2013, 7, 15)), '海の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2013, 9, 16)), '敬老の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2013, 9, 23)), '秋分の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2013, 10, 14)), '体育の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2013, 11, 3)), '文化の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2013, 11, 4)), '文化の日 振替休日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2013, 11, 23)), '勤労感謝の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2013, 12, 23)), '天皇誕生日') def test_count_month(self): """ 2013年月祝日数 """ self.assertEqual(len(jpholiday.month_holidays(2013, 1)), 2) self.assertEqual(len(jpholiday.month_holidays(2013, 2)), 1) self.assertEqual(len(jpholiday.month_holidays(2013, 3)), 1) self.assertEqual(len(jpholiday.month_holidays(2013, 4)), 1) self.assertEqual(len(jpholiday.month_holidays(2013, 5)), 4) self.assertEqual(len(jpholiday.month_holidays(2013, 6)), 0) self.assertEqual(len(jpholiday.month_holidays(2013, 7)), 1) self.assertEqual(len(jpholiday.month_holidays(2013, 8)), 0) self.assertEqual(len(jpholiday.month_holidays(2013, 9)), 2) self.assertEqual(len(jpholiday.month_holidays(2013, 10)), 1) self.assertEqual(len(jpholiday.month_holidays(2013, 11)), 3) self.assertEqual(len(jpholiday.month_holidays(2013, 12)), 1) def test_count_year(self): """ 2013年祝日数 """ self.assertEqual(len(jpholiday.year_holidays(2013)), 17)
cacreader/swig-4.0.2/Examples/test-suite/python/nested_in_template_runme.py
kyletanyag/LL-Smartcard
1,031
11158384
<gh_stars>1000+ from nested_in_template import * cd = ConcreteDerived(88) if cd.m_value != 88: raise RuntimeError("ConcreteDerived not created correctly")
aliyun-python-sdk-hbr/aliyunsdkhbr/request/v20170908/CreateBackupPlanRequest.py
yndu13/aliyun-openapi-python-sdk
1,001
11158410
<filename>aliyun-python-sdk-hbr/aliyunsdkhbr/request/v20170908/CreateBackupPlanRequest.py # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkhbr.endpoint import endpoint_data class CreateBackupPlanRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'hbr', '2017-09-08', 'CreateBackupPlan','hbr') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_ClientId(self): return self.get_body_params().get('ClientId') def set_ClientId(self,ClientId): self.add_body_params('ClientId', ClientId) def get_VaultId(self): return self.get_query_params().get('VaultId') def set_VaultId(self,VaultId): self.add_query_param('VaultId',VaultId) def get_Prefix(self): return self.get_query_params().get('Prefix') def set_Prefix(self,Prefix): self.add_query_param('Prefix',Prefix) def get_Paths(self): return self.get_body_params().get('Path') def set_Paths(self, Paths): for depth1 in range(len(Paths)): if Paths[depth1] is not None: self.add_body_params('Path.' + str(depth1 + 1) , Paths[depth1]) def get_PlanName(self): return self.get_query_params().get('PlanName') def set_PlanName(self,PlanName): self.add_query_param('PlanName',PlanName) def get_Options(self): return self.get_body_params().get('Options') def set_Options(self,Options): self.add_body_params('Options', Options) def get_SourceType(self): return self.get_query_params().get('SourceType') def set_SourceType(self,SourceType): self.add_query_param('SourceType',SourceType) def get_Exclude(self): return self.get_body_params().get('Exclude') def set_Exclude(self,Exclude): self.add_body_params('Exclude', Exclude) def get_BackupType(self): return self.get_query_params().get('BackupType') def set_BackupType(self,BackupType): self.add_query_param('BackupType',BackupType) def get_Retention(self): return self.get_query_params().get('Retention') def set_Retention(self,Retention): self.add_query_param('Retention',Retention) def get_FileSystemId(self): return self.get_query_params().get('FileSystemId') def set_FileSystemId(self,FileSystemId): self.add_query_param('FileSystemId',FileSystemId) def get_Include(self): return self.get_body_params().get('Include') def set_Include(self,Include): self.add_body_params('Include', Include) def get_CreateTime(self): return self.get_query_params().get('CreateTime') def set_CreateTime(self,CreateTime): self.add_query_param('CreateTime',CreateTime) def get_ClusterId(self): return self.get_query_params().get('ClusterId') def set_ClusterId(self,ClusterId): self.add_query_param('ClusterId',ClusterId) def get_Bucket(self): return self.get_query_params().get('Bucket') def set_Bucket(self,Bucket): self.add_query_param('Bucket',Bucket) def get_Schedule(self): return self.get_query_params().get('Schedule') def set_Schedule(self,Schedule): self.add_query_param('Schedule',Schedule) def get_InstanceId(self): return self.get_body_params().get('InstanceId') def set_InstanceId(self,InstanceId): self.add_body_params('InstanceId', InstanceId) def get_SpeedLimit(self): return self.get_body_params().get('SpeedLimit') def set_SpeedLimit(self,SpeedLimit): self.add_body_params('SpeedLimit', SpeedLimit) def get_Detail(self): return self.get_query_params().get('Detail') def set_Detail(self,Detail): self.add_query_param('Detail',Detail) def get_BackupSourceGroupId(self): return self.get_query_params().get('BackupSourceGroupId') def set_BackupSourceGroupId(self,BackupSourceGroupId): self.add_query_param('BackupSourceGroupId',BackupSourceGroupId) def get_UdmRegionId(self): return self.get_query_params().get('UdmRegionId') def set_UdmRegionId(self,UdmRegionId): self.add_query_param('UdmRegionId',UdmRegionId)
algorithms/permutation-equation.py
gajubadge11/HackerRank-1
340
11158419
#!/usr/bin/env python3 import sys def permutationEquation(p): output = [] for num in range(1, max(p)+1): output.append(p.index(p.index(num)+1)+1) return output if __name__ == "__main__": n = int(input().strip()) p = list(map(int, input().strip().split(' '))) result = permutationEquation(p) print ("\n".join(map(str, result)))
tests/benchmarking/benchmarking_example.py
YevheniiSemendiak/pytorch-tools
155
11158431
<gh_stars>100-1000 """Example of measuring memory consumption and speed in PyTorch""" import torch import time from torch.autograd import Variable # #### MEMORY #### def consume_gpu_ram(n): return torch.ones((n, n)).cuda(0) def consume_gpu_ram_256mb(): return consume_gpu_ram(2 ** 13) # should be 1024 peak, 0 used z = [consume_gpu_ram_256mb() for i in range(4)] # 1GB del z print("Peak memory: {}Mb".format(torch.cuda.max_memory_allocated(0) / 2 ** 10 / 2 ** 10)) print("Current memory: {}Mb".format(torch.cuda.memory_allocated(0) / 2 ** 10 / 2 ** 10)) torch.cuda.reset_max_memory_allocated() # should be: 512 peaked, 256 used c1 = consume_gpu_ram_256mb() c2 = consume_gpu_ram_256mb() del c1 print("Peak memory: {}Mb".format(torch.cuda.max_memory_allocated(0) / 2 ** 10 / 2 ** 10)) print("Current memory: {}Mb".format(torch.cuda.memory_allocated(0) / 2 ** 10 / 2 ** 10)) torch.backends.cudnn.benchmark = False #### SPEED #### x = torch.ones((8, 3, 32, 32), requires_grad=True).cuda(0) conv = torch.nn.Conv2d(3, 64, 5).cuda(0) start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) start.record() start_cpu = time.time() y = torch.mean(conv(x)) y.backward() end_cpu = time.time() end.record() torch.cuda.synchronize() gpu_time = start.elapsed_time(end) cpu_time = end_cpu - start_cpu print(f"Gpu msecs: {gpu_time:.3f}. Cpu msecs: {cpu_time * 1e3:.3f}")
aruco_detect/scripts/create_markers.py
teosnare/fiducials
232
11158443
#!/usr/bin/python3 """ Generate a PDF file containaing one or more fiducial markers for printing """ import os, sys, argparse import subprocess from marker_generation import genMarker def checkCmd(cmd, package): rc = os.system("which %s > /dev/null" % cmd) if rc != 0: print("""This utility requires %s. It can be installed by typing: sudo apt install %s""" % (cmd, package)) sys.exit(1) if __name__ == "__main__": checkCmd("pdfunite", "poppler-utils") checkCmd("cairosvg", "cairosvg python3-cairosvg") parser = argparse.ArgumentParser(description='Generate Aruco Markers.') parser.add_argument('startId', type=int, help='start of marker range to generate') parser.add_argument('endId', type=int, help='end of marker range to generate') parser.add_argument('pdfFile', type=str, help='file to store markers in') parser.add_argument('dictionary', type=int, default='7', nargs='?', help='dictionary to generate from') parser.add_argument('--paper-size', dest='paper_size', action='store', default='letter', help='paper size to use (letter or a4)') args = parser.parse_args() outfile = args.pdfFile dicno = args.dictionary markers = range(args.startId, args.endId + 1) pdfs = map(lambda i: "/tmp/marker%d.pdf" % i, markers) if args.paper_size == 'letter': paper_size = (215.9, 279.4) elif args.paper_size == 'a4': paper_size = (210, 297) try: # For a parallel version from joblib import Parallel, delayed Parallel(n_jobs=-1)(delayed(genMarker)(i, dicno, paper_size) for i in markers) except ImportError: # Fallback to serial version for i in markers: genMarker(i, dicno, paper_size) print("Combining into %s" % outfile) os.system("pdfunite %s %s" % (" ".join(pdfs), outfile)) for f in pdfs: os.remove(f) print('\033[91m' + """After printing, please make sure that the long lines around the marker are EXACTLY 14.0cm long. This is required for accurate position estimation.""" + '\033[0m')
theonionbox/tob/system/__init__.py
ralphwetzel/theonionbox
120
11158453
from typing import Optional import os import platform from collections import deque import itertools from psutil import virtual_memory, cpu_percent # to readout the cpu load from threading import RLock from ..deviation import getTimer class BaseSystem(object): def __init__(self): self.__user = None self.lock = RLock() self.data = deque(maxlen=1000) # @staticmethod # def is_temperature_available() -> bool: # return False @property def uptime(self) -> Optional[str]: return None @property def temperature(self) -> Optional[float]: return None @property def system(self) -> str: return 'Generic' @property def ntp(self) -> Optional[str]: return None @property def name(self) -> str: return platform.node() @property def release(self) -> str: return platform.release() @property def version(self) -> str: return platform.version() @property def machine(self) -> str: return platform.machine() @property def processor(self) -> str: return platform.processor() @property def venv(self) -> Optional[str]: return os.getenv('VIRTUAL_ENV', None) @property def user(self) -> Optional[str]: if self.__user is None: # Try to load pwd, fallback to getpass if unsuccessful try: import pwd self.__user = pwd.getpwuid(os.geteuid()).pw_name except ImportError: try: import getpass self.__user = getpass.getuser() except: pass return self.__user @property def memory(self) -> Optional[int]: try: from psutil import virtual_memory return virtual_memory().total except: return None @property def memoryMB(self) -> Optional[int]: mem = self.memory if mem is None: return mem return int(mem / (1024 ** 2)) def record_performance_data(self): timestamp = getTimer()() * 1000 # has to be converted to ms as JS expects ms! # we always catch the current cpu load cpu = {} count = 0 # first: overall cpu load: cpu['c'] = cpu_percent(None, False) # notice: psutil.cpu_percent() will return a meaningless 0.0 when called for the first time # this is not nice yet doesn't hurt! for cx in cpu_percent(None, True): cpu['c%s' % count] = cx count += 1 cpu['s'] = timestamp # ... and the percentage of memory usage cpu['mp'] = virtual_memory().percent t = self.temperature if t is not None: cpu['t'] = t # append the data to the list with self.lock: self.data.append(cpu) def get_performance_data(self, after: int = None): with self.lock: if after is None or after == 0: ret = list(self.data) else: ret = list(itertools.dropwhile(lambda x: x['s'] < after, self.data)) return ret def run(self, launch, stop): return launch() def get_system_manager(system: str = platform.system()) -> BaseSystem: if system == 'Darwin': from .darwin import Darwin return Darwin() elif system == 'FreeBSD': from .freebsd import FreeBSD return FreeBSD() elif system == 'Linux': from .linux import Linux return Linux() elif system == 'Windows': from .windows import Windows return Windows() else: return BaseSystem()
sort/insertion_sort/python/akshitgrover_Insertion_Sort.py
CarbonDDR/al-go-rithms
1,253
11158458
<gh_stars>1000+ n=int(input()) a=[] for i in range(0,n): c=0 for j in range(0,3): c=c+int(input()) a=a+[c] for i in range(0,len(a)): j=i-1 h=i while j>=0 and a[j]<a[h]: c=a[h] del a[h] a.insert(j,c) j-=1 h-=1 print(a)
unit_testing_course/lesson1/task2/tests.py
behzod/pycharm-courses
213
11158485
import unittest.mock as mock from custom_test_helpers import check_tests_pass, check_tests_fail, \ reload_module, abort_tests from test_helper import run_common_tests, test_answer_placeholders_text_deleted, \ passed, failed, import_task_file if __name__ == '__main__': from hello_someone import hello_someone run_common_tests() test_answer_placeholders_text_deleted() task_tests_module = import_task_file() # check that all tests pass check_tests_pass(task_tests_module) # check that the function hello_someone() is called at least once by the tests counting_hello_someone = mock.Mock(wraps=hello_someone) with mock.patch('{}.{}'.format('hello_someone', 'hello_someone'), counting_hello_someone): module = import_task_file() check_tests_pass(module) if counting_hello_someone.call_count > 0: passed("Test called the 'hello_someone' function") else: failed("Test never called the 'hello_someone' function") # check that the tests fail on a broken implementation def broken_hello_someone(someone): # omit the comma return "Hello {}!".format(someone) with mock.patch('{}.{}'.format('hello_someone', 'hello_someone'), broken_hello_someone): module = import_task_file() check_tests_fail(module)
djangox/lib/python3.8/site-packages/allauth/socialaccount/providers/openid/urls.py
DemarcusL/django_wiki_lab
6,342
11158519
from django.urls import path from . import views urlpatterns = [ path("openid/login/", views.login, name="openid_login"), path("openid/callback/", views.callback, name="openid_callback"), ]
Python3/522.py
rakhi2001/ecom7
854
11158565
<filename>Python3/522.py __________________________________________________________________________________________________ sample 28 ms submission class Solution: def findLUSlength(self, strs): def subseq(src, sub): i = 0 n = len(sub) for ch in src: if i < n and sub[i] == ch: i += 1 return i == len(sub) strs.sort(key=len, reverse=True) for i, sub in enumerate(strs): for j, src in enumerate(strs): if i == j or len(src) < len(sub): continue if True == subseq(src, sub): # possible not continuous break else: # mean this stubstr is longest and no sub return len(sub) return -1 __________________________________________________________________________________________________ sample 32 ms submission class Solution(object): def findLUSlength(self, strs): """ :type strs: List[str] :rtype: int """ def substring_of(s1, s2): # s2 is longer. i1 = i2 = 0 while i1 < len(s1) and i2 < len(s2): if s2[i2] != s1[i1]: i2 += 1 else: i1 += 1 i2 += 1 return i1==len(s1) unique_set = set() removed_set = set() for s in strs: if s in unique_set: unique_set.remove(s) removed_set.add(s) elif s not in removed_set: unique_set.add(s) for s in sorted(unique_set, key=len, reverse=True): for s2 in removed_set: if len(s2)>len(s) and substring_of(s, s2): break else: return len(s) return -1 __________________________________________________________________________________________________
conan/tools/env/virtualbuildenv.py
gmeeker/conan
6,205
11158569
<gh_stars>1000+ from conan.tools.env import Environment from conan.tools.env.virtualrunenv import runenv_from_cpp_info class VirtualBuildEnv: """ captures the conanfile environment that is defined from its dependencies, and also from profiles """ def __init__(self, conanfile): self._conanfile = conanfile self._conanfile.virtualbuildenv = False self.basename = "conanbuildenv" # TODO: Make this use the settings_build self.configuration = conanfile.settings.get_safe("build_type") if self.configuration: self.configuration = self.configuration.lower() self.arch = conanfile.settings.get_safe("arch") if self.arch: self.arch = self.arch.lower() @property def _filename(self): f = self.basename if self.configuration: f += "-" + self.configuration if self.arch: f += "-" + self.arch return f def environment(self): """ collects the buildtime information from dependencies. This is the typical use case of build_requires defining information for consumers """ # FIXME: Cache value? build_env = Environment(self._conanfile) # Top priority: profile profile_env = self._conanfile.buildenv build_env.compose_env(profile_env) build_requires = self._conanfile.dependencies.build.topological_sort for require, build_require in reversed(build_requires.items()): if require.direct: # Only buildenv_info from direct deps is propagated # higher priority, explicit buildenv_info if build_require.buildenv_info: build_env.compose_env(build_require.buildenv_info) # Lower priority, the runenv of all transitive "requires" of the build requires if build_require.runenv_info: build_env.compose_env(build_require.runenv_info) # Then the implicit if hasattr(self._conanfile, "settings_build"): os_name = self._conanfile.settings_build.get_safe("os") else: os_name = self._conanfile.settings.get_safe("os") build_env.compose_env(runenv_from_cpp_info(self._conanfile, build_require, os_name)) # Requires in host context can also bring some direct buildenv_info host_requires = self._conanfile.dependencies.host.topological_sort for require in reversed(host_requires.values()): if require.buildenv_info: build_env.compose_env(require.buildenv_info) return build_env def generate(self, group="build"): build_env = self.environment() if build_env: # Only if there is something defined build_env.save_script(self._filename, group=group)
selim_sef-solution/lucid/scratch/pretty_graphs/graph.py
Hulihrach/RoadDetector
4,537
11158605
<reponame>Hulihrach/RoadDetector<filename>selim_sef-solution/lucid/scratch/pretty_graphs/graph.py<gh_stars>1000+ import numpy as np import tensorflow as tf import lucid.modelzoo.vision_models as models import lucid.optvis.objectives as objectives import lucid.optvis.param as param import lucid.optvis.render as render from lucid.misc.io import show, load from lucid.misc.io.showing import _image_url, _display_html from collections import defaultdict class Node(object): def __init__(self, name, op, graph, pretty_name=None): self.name = name self.op = op self.graph = graph self.pretty_name = pretty_name def __repr__(self): return "<%s: %s>" % (self.name, self.op) @property def inputs(self): return self.graph.node_to_inputs[self.name] @property def consumers(self): return self.graph.node_to_consumers[self.name] def copy(self): return Node(self.name, self.op, self.graph) class Graph(object): def __init__(self): self.nodes = [] self.name_map = {} self.node_to_consumers = defaultdict(lambda: []) self.node_to_inputs = defaultdict(lambda: []) def add_node(self, node): self.nodes.append(node) self.name_map[node.name] = node def add_edge(self, node1, node2): node1, node2 = self[node1], self[node2] self.node_to_consumers[node1.name].append(node2) self.node_to_inputs[node2.name].append(node1) def __getitem__(self, index): if isinstance(index, str): return self.name_map[index] elif isinstance(index, Node): return self.name_map[index.name] else: raise Exception("Unsupported index for Graph", type(index) ) def graphviz(self, groups=None): print("digraph G {") if groups is not None: for root, group in groups.items(): print("") print((" subgraph", "cluster_%s" % root.name.replace("/", "_"), "{")) print((" label = \"%s\"") % (root.pretty_name or root.name)) for node in group: print((" \"%s\"") % (node.pretty_name or node.name)) print(" }") for node in self.nodes: for inp in node.inputs: print((" ", '"' + (inp.pretty_name or inp.name) + '"', " -> ", '"' + (node.pretty_name or node.name) + '"')) print("}") @staticmethod def from_graphdef(graphdef): graph = Graph() for raw_node in graphdef.node: graph.add_node(Node(raw_node.name, raw_node.op, graph)) for raw_node in graphdef.node: for raw_inp in raw_node.input: if raw_inp.startswith('^'): # skip control inputs continue raw_inp_name = raw_inp.split(":")[0] graph.add_edge(raw_inp_name, raw_node.name) return graph def filter_graph(graph, keep_nodes, pass_through=True): new_graph = Graph() for node in graph.nodes: if node.name in keep_nodes: new_node = node.copy() new_node.graph = new_graph new_node.subsumed = [] new_graph.add_node(new_node) def kept_inputs(node): ret = [] visited = [] def walk(inp): if inp in visited: return visited.append(inp) if inp.name in keep_nodes: ret.append(inp) else: if pass_through: new_graph[node].subsumed.append(inp.name) for inp2 in inp.inputs: walk(inp2) for inp in node.inputs: walk(inp) return ret for node in graph.nodes: if node.name in keep_nodes: for inp in kept_inputs(node): new_graph.add_edge(inp, node) return new_graph standard_include_ops = ["Placeholder", "Relu", "Relu6", "Add", "Split", "Softmax", "Concat", "ConcatV2", "Conv2D", "MaxPool", "AvgPool", "MatMul"] # Conv2D def filter_graph_ops(graph, include_ops=standard_include_ops): keep_nodes = [node.name for node in graph.nodes if node.op in include_ops] return filter_graph(graph, keep_nodes) def filter_graph_cut_shapes(graph): keep_nodes = [node.name for node in graph.nodes if node.op != "Shape"] return filter_graph(graph, keep_nodes, pass_through=False) def filter_graph_dynamic(graph): dynamic_nodes = [] def recursive_walk_forward(node): if node.name in dynamic_nodes: return dynamic_nodes.append(node.name) for next in node.consumers: recursive_walk_forward(next) recursive_walk_forward(graph.nodes[0]) return filter_graph(graph, dynamic_nodes) def filter_graph_collapse_sequence(graph, sequence): exclude_nodes = [] for node in graph.nodes: remainder = sequence[:] matches = [] while remainder: if len(node.consumers) > 1 and len(remainder) > 1: break if node.op == remainder[0]: matches.append(node.name) node = node.consumers[0] remainder = remainder[1:] else: break if len(remainder) == 0: exclude_nodes += matches[:-1] include_nodes = [node.name for node in graph.nodes if node.name not in exclude_nodes] return filter_graph(graph, include_nodes) def clip_node_names(graph, prefix): new_graph = Graph() for node in graph.nodes: new_node = node.copy() new_node.graph = new_graph new_node.subsumed = [] new_graph.add_node(new_node) for inp in node.inputs: new_graph.add_edge(inp, new_node) for node in new_graph.nodes: if node.name.startswith(prefix): node.pretty_name = node.name[len(prefix):] return new_graph def find_groups(graph): node_successors = {} for node in graph.nodes: node_successors[node.name] = set(node.inputs) for inp in node.inputs: node_successors[node.name] |= node_successors[inp.name] concat_nodes = [node for node in graph.nodes if node.op in ["Concat", "ConcatV2", "Add"] and len(node.inputs) > 1] groups = {} group_children = set() for root_node in concat_nodes: branch_heads = root_node.inputs branch_nodes = [set([node]) | node_successors[node.name] for node in branch_heads] branch_shared = set.intersection(*branch_nodes) branch_uniq = set.union(*branch_nodes) - branch_shared groups[root_node] = set([root_node]) | branch_uniq group_children |= branch_uniq for root in list(groups.keys()): if root in group_children: del groups[root] return groups
minetorch/plugins/noise_detector.py
louis-she/torchpack
127
11158631
<reponame>louis-she/torchpack import torch from minetorch.plugin import Plugin from minetorch.statable import Statable class NoiseSampleDetector(Plugin, Statable): """This plugin helps to find out the suspicious noise samples. provid a metric which compute a scalar for every sample, in most cases the metric should be the loss function without reduce. """ def __init__(self, metric, topn=50): super().__init__() self.metric = metric self.topn = topn self.train_metrics = [] self.val_metrics = [] def before_init(self): self.miner.statable[self.__class__.__name__] = self self.train_dataloader = torch.utils.data.DataLoader( self.miner.train_dataloader.dataset, batch_size=self.miner.train_dataloader.batch_size, num_workers=self.miner.train_dataloader.num_workers, shuffle=False, ) self.val_dataloader = torch.utils.data.DataLoader( self.miner.val_dataloader.dataset, batch_size=self.miner.train_dataloader.batch_size, num_workers=self.miner.train_dataloader.num_workers, shuffle=False, ) def load_state_dict(self, data): self.train_metrics = data[0] self.val_metrics = data[1] def state_dict(self): return (self.train_metrics, self.val_metrics) def after_epoch_end(self, **kwargs): with torch.no_grad(): self.train_metrics.append(self._predict_dataset(self.train_dataloader)) self.val_metrics.append(self._predict_dataset(self.val_dataloader)) _, train_indices = torch.sort( torch.std(torch.stack(self.train_metrics), dim=0), descending=True ) _, val_indices = torch.sort( torch.std(torch.stack(self.val_metrics), dim=0), descending=True ) self.print_txt( f"Train dataset most {self.topn} suspicious indices: {train_indices.tolist()[:self.topn]} \n" f"Validation dataset most {self.topn} suspicious indices: {val_indices.tolist()[:self.topn]}", "suspicious_noise_samples", ) def _predict_dataset(self, dataloader): results = torch.zeros([len(dataloader.dataset)]) for index, data in enumerate(dataloader): predict = self.model(data[0].to(self.devices)) offset = index * dataloader.batch_size results[offset : offset + dataloader.batch_size] = ( self.metric(predict, data[1].to(self.devices)).detach().cpu() ) return results
test/win/large-pdb/large-pdb.gyp
chlorm-forks/gyp
2,151
11158695
<reponame>chlorm-forks/gyp # Copyright (c) 2013 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'targets': [ { 'target_name': 'large_pdb_exe', 'type': 'executable', 'msvs_large_pdb': 1, 'sources': [ 'main.cc', ], 'msvs_settings': { 'VCLinkerTool': { 'GenerateDebugInformation': 'true', 'ProgramDatabaseFile': '<(PRODUCT_DIR)/large_pdb_exe.exe.pdb', }, }, }, { 'target_name': 'small_pdb_exe', 'type': 'executable', 'msvs_large_pdb': 0, 'sources': [ 'main.cc', ], 'msvs_settings': { 'VCLinkerTool': { 'GenerateDebugInformation': 'true', 'ProgramDatabaseFile': '<(PRODUCT_DIR)/small_pdb_exe.exe.pdb', }, }, }, { 'target_name': 'large_pdb_dll', 'type': 'shared_library', 'msvs_large_pdb': 1, 'sources': [ 'dllmain.cc', ], 'msvs_settings': { 'VCLinkerTool': { 'GenerateDebugInformation': 'true', 'ProgramDatabaseFile': '<(PRODUCT_DIR)/large_pdb_dll.dll.pdb', }, }, }, { 'target_name': 'small_pdb_dll', 'type': 'shared_library', 'msvs_large_pdb': 0, 'sources': [ 'dllmain.cc', ], 'msvs_settings': { 'VCLinkerTool': { 'GenerateDebugInformation': 'true', 'ProgramDatabaseFile': '<(PRODUCT_DIR)/small_pdb_dll.dll.pdb', }, }, }, { 'target_name': 'large_pdb_implicit_exe', 'type': 'executable', 'msvs_large_pdb': 1, 'sources': [ 'main.cc', ], # No PDB file is specified. However, the msvs_large_pdb mechanism should # default to the appropriate <(PRODUCT_DIR)/<(TARGET_NAME).exe.pdb. }, { 'target_name': 'large_pdb_variable_exe', 'type': 'executable', 'msvs_large_pdb': 1, 'sources': [ 'main.cc', ], # No PDB file is specified. However, the msvs_large_pdb_path variable # explicitly sets one. 'variables': { 'msvs_large_pdb_path': '<(PRODUCT_DIR)/foo.pdb', }, }, { 'target_name': 'large_pdb_product_exe', 'product_name': 'bar', 'type': 'executable', 'msvs_large_pdb': 1, 'sources': [ 'main.cc', ], # No PDB file is specified. However, we've specified a product name so # it should use <(PRODUCT_DIR)/bar.exe.pdb. }, ] }
python-toolbox/marvin_python_toolbox/common/data_source_provider.py
mechamoedson/incubator-marvin
149
11158708
<filename>python-toolbox/marvin_python_toolbox/common/data_source_provider.py #!/usr/bin/env python # coding=utf-8 # Copyright [2017] [B2W Digital] # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Marvin Data Source module. This module is responsible to create and provide diferents types of data source objects. """ def get_spark_session(enable_hive=False, app_name='marvin-engine', configs=[]): """Return a Spark Session object""" # Prepare spark context to be used import findspark findspark.init() from pyspark.sql import SparkSession # prepare spark sesseion to be returned spark = SparkSession.builder spark = spark.appName(app_name) spark = spark.enableHiveSupport() if enable_hive else spark # if has configs for config in configs: spark = spark.config(config) return spark.getOrCreate()
image_segmentation/utils/deeplab_model.py
wisespa/fritz-models
277
11158714
<filename>image_segmentation/utils/deeplab_model.py import os import tarfile import numpy as np from PIL import Image from six.moves import urllib import tempfile import tensorflow as tf MODEL_NAME = 'mobilenetv2_coco_voctrainaug' _DOWNLOAD_URL_PREFIX = 'http://download.tensorflow.org/models/' _MODEL_URLS = { 'mobilenetv2_coco_voctrainaug': 'deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz', 'mobilenetv2_coco_voctrainval': 'deeplabv3_mnv2_pascal_trainval_2018_01_29.tar.gz', 'xception_coco_voctrainaug': 'deeplabv3_pascal_train_aug_2018_01_04.tar.gz', 'xception_coco_voctrainval': 'deeplabv3_pascal_trainval_2018_01_04.tar.gz', } _TARBALL_NAME = 'deeplab_model.tar.gz' class DeepLabModel(object): """Class to load deeplab model and run inference.""" INPUT_TENSOR_NAME = 'ImageTensor:0' OUTPUT_TENSOR_NAME = 'SemanticPredictions:0' INPUT_SIZE = 513 FROZEN_GRAPH_NAME = 'frozen_inference_graph' def __init__(self, tarball_path): """Creates and loads pretrained deeplab model.""" self.graph = tf.Graph() graph_def = None # Extract frozen graph from tar archive. tar_file = tarfile.open(tarball_path) for tar_info in tar_file.getmembers(): if self.FROZEN_GRAPH_NAME in os.path.basename(tar_info.name): file_handle = tar_file.extractfile(tar_info) graph_def = tf.GraphDef.FromString(file_handle.read()) break tar_file.close() if graph_def is None: raise RuntimeError('Cannot find inference graph in tar archive.') with self.graph.as_default(): tf.import_graph_def(graph_def, name='') self.sess = tf.Session(graph=self.graph) def run(self, image): """Runs inference on a single image. Args: image: A PIL.Image object, raw input image. Returns: resized_image: RGB image resized from original input image. seg_map: Segmentation map of `resized_image`. """ width, height = image.size resize_ratio = 1.0 * self.INPUT_SIZE / max(width, height) target_size = (int(resize_ratio * width), int(resize_ratio * height)) resized_image = image.convert('RGB').resize(target_size, Image.ANTIALIAS) batch_seg_map = self.sess.run( self.OUTPUT_TENSOR_NAME, feed_dict={self.INPUT_TENSOR_NAME: [np.asarray(resized_image)]}) seg_map = batch_seg_map[0] return resized_image, seg_map def download_deeplab_model(model_name): model_dir = tempfile.mkdtemp() tf.gfile.MakeDirs(model_dir) download_path = os.path.join(model_dir, _TARBALL_NAME) print(download_path) print('downloading model, this might take a while...') urllib.request.urlretrieve( _DOWNLOAD_URL_PREFIX + _MODEL_URLS[MODEL_NAME], download_path ) print('download completed! loading DeepLab model...') model = DeepLabModel(download_path) print('model loaded successfully!') return model
tests/torchfunc_test.py
itsjoshthedeveloper/torchfunc
210
11158730
import sys import time import torch import torchfunc def test_timer_context_manager(): with torchfunc.Timer() as timer: time.sleep(1) last_in_block = timer.checkpoint() # register checkpoint last_time = timer.checkpoint() time.sleep(1) assert last_time == timer.checkpoint() == timer.time() assert last_in_block != last_time def test_timer_decorator(): @torchfunc.Timer() def wrapped(): time.sleep(1) result = 0 for value in range(11): result += value return int(result / 55) value, passed_time = wrapped() assert value == 1 assert passed_time > 1 def test_seed(): torchfunc.seed(0) assert 0 == torch.initial_seed() def test_seed_str(): assert str(torchfunc.seed(0)) == "torchfunc.seed" def test_seed_representation(): assert repr(torchfunc.seed(0)) == "torchfunc.seed(value=0, cuda=False)" def test_seed_context_manager(): first_seed = torch.initial_seed() with torchfunc.seed(0): assert 0 == torch.initial_seed() assert torch.initial_seed() == first_seed def test_seed_decorator(): first_seed = torch.initial_seed() @torchfunc.seed(0) def wrapped(): assert 0 == torch.initial_seed() wrapped() assert torch.initial_seed() == first_seed def test_info(): assert isinstance(torchfunc.info(), str) def test_sizeof_tensor(): assert torchfunc.sizeof(torch.FloatTensor(12, 12)) == 12 * 12 * 4 def test_sizeof_model(): model = torch.nn.Linear(20, 20) bias = 20 * 4 weights = 20 * 20 * 4 assert torchfunc.sizeof(model) == bias + weights
thumb_daemon.py
twnming/arxiv-sanity-lite
501
11158767
""" Iterates over the current database and makes best effort to download the papers, convert them to thumbnail images and save them to disk, for display in the UI. Atm only runs the most recent 5K papers. Intended to be run as a cron job daily or something like that. """ import os import time import random import requests from subprocess import Popen from aslite.db import get_papers_db, get_metas_db # create the tmp directory if it does not exist, where we will do temporary work TMP_DIR = 'tmp' if not os.path.exists(TMP_DIR): os.makedirs(TMP_DIR) # create the thumb directory, where we will store the paper thumbnails THUMB_DIR = os.path.join('static', 'thumb') if not os.path.exists(THUMB_DIR): os.makedirs(THUMB_DIR) # open the database, determine which papers we'll try to get thumbs for pdb = get_papers_db() n = len(pdb) mdb = get_metas_db() metas = list(mdb.items()) metas.sort(key=lambda kv: kv[1]['_time'], reverse=True) # most recent papers first keys = [k for k,v in metas[:5000]] # only the most recent papers for i, key in enumerate(keys): time.sleep(0.01) # for safety # the path where we would store the thumbnail for this key thumb_path = os.path.join(THUMB_DIR, key + '.jpg') if os.path.exists(thumb_path): continue # fetch the paper p = pdb[key] print("%d/%d: paper to process: %s" % (i, n, key)) # get the link to the pdf url = p['link'].replace('abs', 'pdf') # attempt to download the pdf print("attempting to download pdf from: ", url) try: x = requests.get(url, timeout=10, allow_redirects=True) with open(os.path.join(TMP_DIR, 'paper.pdf'), 'wb') as f: f.write(x.content) print("OK") except Exception as e: print("error downloading the pdf at url", url) print(e) continue time.sleep(5 + random.uniform(0, 5)) # take a breather # mv away the previous temporary files if they exist if os.path.isfile(os.path.join(TMP_DIR, 'thumb-0.png')): for i in range(8): f1 = os.path.join(TMP_DIR, 'thumb-%d.png' % (i,)) f2 = os.path.join(TMP_DIR, 'thumbbuf-%d.png' % (i,)) if os.path.isfile(f1): cmd = 'mv %s %s' % (f1, f2) os.system(cmd) # convert pdf to png images per page. spawn async because convert can unfortunately enter an infinite loop, have to handle this. # this command will generate 8 independent images thumb-0.png ... thumb-7.png of the thumbnails print("converting the pdf to png images") pp = Popen(['convert', '%s[0-7]' % ('tmp/paper.pdf', ), '-thumbnail', 'x156', os.path.join(TMP_DIR, 'thumb.png')]) t0 = time.time() while time.time() - t0 < 20: # give it 20 seconds deadline ret = pp.poll() if not (ret is None): # process terminated break time.sleep(0.1) ret = pp.poll() if ret is None: print("convert command did not terminate in 20 seconds, terminating.") pp.terminate() # give up continue if not os.path.isfile(os.path.join(TMP_DIR, 'thumb-0.png')): # failed to render pdf, replace with missing image #missing_thumb_path = os.path.join('static', 'missing.jpg') #os.system('cp %s %s' % (missing_thumb_path, thumb_path)) #print("could not render pdf, creating a missing image placeholder") print("could not render pdf, skipping") continue else: # otherwise concatenate the 8 images into one cmd = "montage -mode concatenate -quality 80 -tile x1 %s %s" \ % (os.path.join(TMP_DIR, 'thumb-*.png'), thumb_path) print(cmd) os.system(cmd) # remove the temporary paper.pdf file tmp_pdf = os.path.join(TMP_DIR, 'paper.pdf') if os.path.isfile(tmp_pdf): os.remove(tmp_pdf)
boto3_type_annotations/boto3_type_annotations/lex_models/paginator.py
cowboygneox/boto3_type_annotations
119
11158788
from typing import Dict from botocore.paginate import Paginator class GetBotAliases(Paginator): def paginate(self, botName: str, nameContains: str = None, PaginationConfig: Dict = None) -> Dict: pass class GetBotChannelAssociations(Paginator): def paginate(self, botName: str, botAlias: str, nameContains: str = None, PaginationConfig: Dict = None) -> Dict: pass class GetBotVersions(Paginator): def paginate(self, name: str, PaginationConfig: Dict = None) -> Dict: pass class GetBots(Paginator): def paginate(self, nameContains: str = None, PaginationConfig: Dict = None) -> Dict: pass class GetBuiltinIntents(Paginator): def paginate(self, locale: str = None, signatureContains: str = None, PaginationConfig: Dict = None) -> Dict: pass class GetBuiltinSlotTypes(Paginator): def paginate(self, locale: str = None, signatureContains: str = None, PaginationConfig: Dict = None) -> Dict: pass class GetIntentVersions(Paginator): def paginate(self, name: str, PaginationConfig: Dict = None) -> Dict: pass class GetIntents(Paginator): def paginate(self, nameContains: str = None, PaginationConfig: Dict = None) -> Dict: pass class GetSlotTypeVersions(Paginator): def paginate(self, name: str, PaginationConfig: Dict = None) -> Dict: pass class GetSlotTypes(Paginator): def paginate(self, nameContains: str = None, PaginationConfig: Dict = None) -> Dict: pass
iamport/__init__.py
hrxorxm/iamport-rest-client-python
126
11158796
from .client import Iamport __all__ = ['Iamport']
qf_lib_tests/unit_tests/portfolio_construction/test_max_diversification_portfolio.py
webclinic017/qf-lib
198
11158823
# Copyright 2016-present CERN – European Organization for Nuclear Research # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from unittest import TestCase import numpy as np from qf_lib_tests.unit_tests.portfolio_construction.utils import assets_df from qf_lib.portfolio_construction.portfolio_models.max_diversification_portfolio import \ MaxDiversificationPortfolio class TestMaxDiversificationPortfolio(TestCase): @classmethod def setUpClass(cls): cls.assets_df = assets_df def test_get_weights(self): portfolio = MaxDiversificationPortfolio(self.assets_df.cov(), self.assets_df.std()) actual_weights = portfolio.get_weights() expected_weights_vals = np.zeros(20) expected_weights_vals[1] = 0.0393 expected_weights_vals[2] = 0.0569 expected_weights_vals[3] = 0.0249 expected_weights_vals[5] = 0.1076 expected_weights_vals[6] = 0.0864 expected_weights_vals[7] = 0.0830 expected_weights_vals[9] = 0.0528 expected_weights_vals[10] = 0.1137 expected_weights_vals[11] = 0.0664 expected_weights_vals[12] = 0.0730 expected_weights_vals[14] = 0.0672 expected_weights_vals[16] = 0.0584 expected_weights_vals[17] = 0.0575 expected_weights_vals[18] = 0.0567 expected_weights_vals[19] = 0.0562 self.assertTrue(np.allclose(expected_weights_vals, actual_weights.values, rtol=0, atol=1e-04)) def test_get_weights_with_upper_limits(self): portfolio = MaxDiversificationPortfolio(self.assets_df.cov(), self.assets_df.std(), upper_constraint=0.1) actual_weights = portfolio.get_weights() expected_weights_vals = np.zeros(20) expected_weights_vals[1] = 0.0404 expected_weights_vals[2] = 0.0583 expected_weights_vals[3] = 0.0264 expected_weights_vals[5] = 0.0999 expected_weights_vals[6] = 0.0876 expected_weights_vals[7] = 0.0845 expected_weights_vals[9] = 0.0533 expected_weights_vals[10] = 0.0999 expected_weights_vals[11] = 0.0682 expected_weights_vals[12] = 0.0755 expected_weights_vals[14] = 0.0682 expected_weights_vals[16] = 0.0581 expected_weights_vals[17] = 0.0600 expected_weights_vals[18] = 0.0604 expected_weights_vals[19] = 0.0592 self.assertTrue(np.allclose(expected_weights_vals, actual_weights.values, rtol=0, atol=1e-04)) if __name__ == '__main__': unittest.main()
modules/pairwise.py
roysubhankar/L2C
311
11158842
<gh_stars>100-1000 import torch def PairEnum(x,mask=None): # Enumerate all pairs of feature in x assert x.ndimension() == 2, 'Input dimension must be 2' x1 = x.repeat(x.size(0),1) x2 = x.repeat(1,x.size(0)).view(-1,x.size(1)) if mask is not None: xmask = mask.view(-1,1).repeat(1,x.size(1)) #dim 0: #sample, dim 1:#feature x1 = x1[xmask].view(-1,x.size(1)) x2 = x2[xmask].view(-1,x.size(1)) return x1,x2 def Class2Simi(x,mode='cls',mask=None): # Convert class label to pairwise similarity n=x.nelement() assert (n-x.ndimension()+1)==n,'Dimension of Label is not right' expand1 = x.view(-1,1).expand(n,n) expand2 = x.view(1,-1).expand(n,n) out = expand1 - expand2 out[out!=0] = -1 #dissimilar pair: label=-1 out[out==0] = 1 #Similar pair: label=1 if mode=='cls': out[out==-1] = 0 #dissimilar pair: label=0 if mode=='hinge': out = out.float() #hingeloss require float type if mask is None: out = out.view(-1) else: mask = mask.detach() out = out[mask] return out
testsuite/utils/http.py
okutane/yandex-taxi-testsuite
128
11158862
<filename>testsuite/utils/http.py import json import typing import urllib.parse import aiohttp.web class BaseError(Exception): pass class MockedError(BaseError): """Base class for mockserver mocked errors.""" error_code = 'unknown' class TimeoutError(MockedError): # pylint: disable=redefined-builtin """Exception used to mock HTTP client timeout errors. Requires service side support. Available as ``mockserver.TimeoutError`` alias or by full name ``testsuite.utils.http.TimeoutError``. """ error_code = 'timeout' class NetworkError(MockedError): """Exception used to mock HTTP client netowork errors. Requires service side support. Available as ``mockserver.NetworkError`` alias or by full name ``testsuite.utils.http.NetworkError``. """ error_code = 'network' class HttpResponseError(BaseError): def __init__(self, *, url: str, status: int): self.url = url self.status = status super().__init__(f'status={self.status}, url=\'{self.url}\'') class Request: """ Adapts aiohttp.web.Request to mimic a frequently used subset of werkzeug.Request interface. ``data`` property is not supported, use get_data() instead. """ def __init__(self, request: aiohttp.web.Request, data: bytes): self._request = request self._data: bytes = data self._json: object = None self._form: typing.Optional[typing.Dict[str, str]] = None @property def method(self) -> str: return self._request.method @property def url(self) -> str: return str(self._request.url) @property def path(self) -> str: return self._request.path # For backward compatibility with code using aiohttp.web.Request @property def path_qs(self) -> str: return self._request.raw_path @property def query_string(self) -> bytes: path_and_query = self._request.raw_path.split('?') if len(path_and_query) < 2: return b'' return path_and_query[1].encode() @property def headers(self): return self._request.headers @property def content_type(self): return self._request.content_type def get_data(self) -> bytes: return self._data @property def form(self): if self._form is None: if self._request.content_type in ( '', 'application/x-www-form-urlencoded', ): charset = self._request.charset or 'utf-8' items = urllib.parse.parse_qsl( self._data.rstrip().decode(charset), keep_blank_values=True, encoding=charset, ) self._form = {key: value for key, value in items} else: self._form = {} return self._form @property def json(self) -> typing.Any: if self._json is None: bytes_body = self.get_data() encoding = self._request.charset or 'utf-8' self._json = json.loads(bytes_body, encoding=encoding) return self._json @property def cookies(self) -> typing.Mapping[str, str]: return self._request.cookies @property def args(self): return self._request.query # For backward compatibility with code using aiohttp.web.Request @property def query(self): return self._request.query class _NoValue: pass async def wrap_request(request: aiohttp.web.Request): if request.headers.get('expect') == '100-continue': await request.writer.write(b'HTTP/1.1 100 Continue\r\n\r\n') await request.writer.drain() data = await request.content.read() return Request(request, data) class ClientResponse: def __init__(self, response: aiohttp.ClientResponse, content: bytes): self._response = response self._content: bytes = content self._text: typing.Optional[str] = None @property def status_code(self) -> int: return self._response.status # For backward compatibility with code using async ClientResponse @property def status(self) -> int: return self._response.status @property def reason(self) -> typing.Optional[str]: return self._response.reason @property def content(self) -> bytes: return self._content @property def text(self) -> str: if self._text is None: encoding = self._response.get_encoding() self._text = str(self._content, encoding) return self._text def json(self) -> typing.Any: encoding = self._response.get_encoding() return json.loads(self._content, encoding=encoding) @property def headers(self): return self._response.headers @property def content_type(self): return self._response.content_type @property def encoding(self): return self._response.get_encoding() @property def cookies(self): return self._response.cookies def raise_for_status(self) -> None: if self._response.status < 400: return self._response.release() raise HttpResponseError( url=self._response.request_info.url, status=self._response.status, ) async def wrap_client_response(response: aiohttp.ClientResponse): content = await response.read() wrapped = ClientResponse(response, content) return wrapped def make_response( response: typing.Union[str, bytes, bytearray] = None, status: int = 200, headers: typing.Mapping[str, str] = None, content_type: typing.Optional[str] = None, charset: typing.Optional[str] = None, *, json=_NoValue, ) -> aiohttp.web.Response: """ Create HTTP response object. Returns ``aiohttp.web.Response`` instance. :param response: response content :param status: HTTP status code :param headers: HTTP headers dictionary :param content_type: HTTP Content-Type header :param charset: Response character set :param json: JSON response shortcut """ if json is not _NoValue: response = _json_response(json) if content_type is None: content_type = 'application/json' if isinstance(response, (bytes, bytearray)): return aiohttp.web.Response( body=response, status=status, headers=headers, content_type=content_type, charset=charset, ) if isinstance(response, str): return aiohttp.web.Response( text=response, status=status, headers=headers, content_type=content_type, charset=charset, ) if response is None: return aiohttp.web.Response( headers=headers, status=status, content_type=content_type, charset=charset, ) raise RuntimeError(f'Unsupported response {response!r} given') def _json_response(data: typing.Any) -> bytes: text = json.dumps(data, ensure_ascii=False) return text.encode('utf-8')
2021/quals/pwn-memsafety/attachments/chal.py
BearerPipelineTest/google-ctf
2,757
11158866
<filename>2021/quals/pwn-memsafety/attachments/chal.py # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import subprocess import sys import json def socket_print(string): print("=====", string, flush=True) def get_user_input(): socket_print("Enter partial source for edge compute app (EOF to finish):") user_input = [] while True: try: line = input() except EOFError: break if line == "EOF": break user_input.append(line) socket_print("Input accepted!") return user_input def write_to_rs(contents): socket_print("Writing source to disk...") rs_prelude = """#![no_std] use proc_sandbox::sandbox; #[sandbox] pub mod user { // BEGIN PLAYER REPLACEABLE SECTION """.splitlines() with open('/home/user/sources/user-0/src/lib.rs', 'w') as fd: fd.write('\n'.join(rs_prelude)) fd.write('\n'.join(contents)) fd.write("\n}\n") def check_user_input(): socket_print("Validating user input before compiling...") result = subprocess.run("/home/user/rustup/toolchains/nightly-2020-10-08-x86_64-unknown-linux-gnu/bin/rustc user-0/src/lib.rs -Zast-json=yes", cwd="/home/user/sources", shell=True, timeout=150, capture_output=True) try: ast = json.loads(result.stdout) if len(ast["module"]["items"]) != 5: socket_print("Module escaping detected, aborting.") sys.exit(1) except json.JSONDecodeError: socket_print("Something went wrong during validation -- is your input malformed?") sys.exit(1) def build_challenge(): socket_print("Building edge compute app...") shutil.copytree("/home/user/build-cache", "/tmp/chal-build") # `rustc --version` == "rustc 1.47.0" result = subprocess.run("PATH=/usr/bin:$PATH LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu/ CARGO_TARGET_DIR=/tmp/chal-build /usr/bin/cargo build --frozen --offline", cwd="/home/user/sources", shell=True, timeout=150) if result.returncode: socket_print("non-zero return code on compilation: " + str(result.returncode)) sys.exit(1) socket_print("Build complete!") def run_challenge(): socket_print("Testing edge compute app...") result = subprocess.run("/tmp/chal-build/debug/server", shell=True, timeout=10) socket_print("Test complete!") def main(): user_input = get_user_input() write_to_rs(user_input) build_challenge() # Check user input after building since the compilation in check_user_input() will # generate errors after generating the ast since the compilation command is # incomplete. Let the proper build run first so users can be presented with any # compilation issues, then validate it before we actually run. check_user_input() run_challenge() if __name__ == "__main__": main()
Dashboards/migrate_screenboard.py
nadaj/Miscellany
155
11158917
<filename>Dashboards/migrate_screenboard.py from datadog import initialize, api old_api = "*****" old_app = "*****" screenboard_id = **** options = { 'api_key': old_api, 'app_key': old_app } initialize(**options) screenboard = api.Screenboard.get(screenboard_id) print(screenboard) new_api = '*****' new_app = '*****' options = { 'api_key': new_api, 'app_key': new_app } initialize(**options) new = api.Screenboard.create( board_title=screenboard['board_title'], widgets=screenboard['widgets'], template_variables=screenboard['template_variables'], height=screenboard['height'], width=screenboard['width'] ) print(new)
archai/datasets/limit_dataset.py
shatadru99/archai
344
11158921
<reponame>shatadru99/archai # Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from typing import List, Tuple, Union, Optional import torch from torch.utils.data import \ SubsetRandomSampler, Sampler, Subset, ConcatDataset, Dataset, random_split class LimitDataset(Dataset): def __init__(self, dataset, n): self.dataset = dataset self.n = n if hasattr(dataset, 'targets'): self.targets = dataset.targets[:n] def __len__(self): return self.n def __getitem__(self, i): return self.dataset[i] DatasetLike = Optional[Union[Dataset, Subset, ConcatDataset, LimitDataset]]
app/models/menu.py
Allen7D/mini-shop-server
533
11158923
# _*_ coding: utf-8 _*_ """ Created by Mohan on 2020/4. """ from sqlalchemy import Column, Integer, ForeignKey from app.core.db import BaseModel as Model __author__ = 'Mohan' class Menu(Model): __tablename__ = 'menu' group_id = Column(Integer, ForeignKey('group.id'), primary_key=True, comment='外键 权限组ID') route_id = Column(Integer, ForeignKey('route.id'), primary_key=True, comment='外键 路由节点ID')
setup.py
ai-med/squeeze_and_excitation
227
11158938
<filename>setup.py<gh_stars>100-1000 import setuptools setuptools.setup(name="squeeze-and-excitation", version="1.0", url="https://github.com/abhi4ssj/squeeze_and_excitation", author="<NAME> and <NAME>", author_email="<EMAIL>", description="Squeeze and Excitation pytorch implementation", packages=setuptools.find_packages(), install_requires=['numpy>=1.14.0', 'torch>=1.0.0'], python_requires='>=3.5')
tests/test-scripts/fil-interpreter.py
pythonspeed/filprofiler
521
11158955
"""Tests that need to be run under `fil-profile python`. To run: $ fil-profile python -m pytest tests/test-scripts/fil-interpreter.py """ import sys import os from ctypes import c_void_p import re from pathlib import Path from subprocess import check_output, check_call import multiprocessing import pytest import numpy as np import numpy.core.numeric from pampy import _ as ANY, match from IPython.core.displaypub import CapturingDisplayPublisher from IPython.core.interactiveshell import InteractiveShell import threadpoolctl from filprofiler._tracer import ( preload, start_tracing, stop_tracing, disable_thread_pools, ) from filprofiler._testing import get_allocations, big, as_mb from filprofiler._ipython import run_with_profile from filprofiler.api import profile from pymalloc import pymalloc import fil_api def test_no_profiling(): """Neither memory tracking nor Python profiling happen by default.""" address = pymalloc(365) # No information about size available, since it's not tracked: assert preload.pymemprofile_get_allocation_size(c_void_p(address)) == 0 assert sys.getprofile() is None def test_temporary_profiling(tmpdir): """Profiling can be run temporarily.""" # get_allocations() expects actual output in a subdirectory. def f(): arr = np.ones((1024, 1024, 4), dtype=np.uint64) # 32MB del arr return 1234 result = profile(f, tmpdir / "output") assert result == 1234 # Allocations were tracked: path = ((__file__, "f", 49), (numpy.core.numeric.__file__, "ones", ANY)) allocations = get_allocations(tmpdir) assert match(allocations, {path: big}, as_mb) == pytest.approx(32, 0.1) # Profiling stopped: test_no_profiling() def run_in_ipython_shell(code_cells): """Run a list of strings in IPython. Returns parsed allocations. """ InteractiveShell.clear_instance() shell = InteractiveShell.instance(display_pub_class=CapturingDisplayPublisher) for code in code_cells: shell.run_cell(code) InteractiveShell.clear_instance() html = shell.display_pub.outputs[-1]["data"]["text/html"] assert "<iframe" in html [svg_path] = re.findall('src="([^"]*)"', html) assert svg_path.endswith("peak-memory.svg") resultdir = Path(svg_path).parent.parent return get_allocations(resultdir) def test_ipython_profiling(tmpdir): """Profiling can be run via IPython magic.""" cwd = os.getcwd() os.chdir(tmpdir) allocations = run_in_ipython_shell( [ "%load_ext filprofiler", """\ %%filprofile import numpy as np arr = np.ones((1024, 1024, 4), dtype=np.uint64) # 32MB """, ] ) # Allocations were tracked: path = ( (re.compile("<ipython-input-1-.*"), "__magic_run_with_fil", 3), (numpy.core.numeric.__file__, "ones", ANY), ) assert match(allocations, {path: big}, as_mb) == pytest.approx(32, 0.1) # Profiling stopped: test_no_profiling() def test_ipython_exception_while_profiling(tmpdir): """ Profiling can be run via IPython magic, still profiles and shuts down correctly on an exception. This will log a RuntimeError. That is expected. """ cwd = os.getcwd() os.chdir(tmpdir) allocations = run_in_ipython_shell( [ "%load_ext filprofiler", """\ %%filprofile import numpy as np arr = np.ones((1024, 1024, 2), dtype=np.uint64) # 16MB raise RuntimeError("The test will log this, it's OK.") arr = np.ones((1024, 1024, 8), dtype=np.uint64) # 64MB """, ] ) # Allocations were tracked: path = ( (re.compile("<ipython-input-1-.*"), "__magic_run_with_fil", 3), (numpy.core.numeric.__file__, "ones", ANY), ) assert match(allocations, {path: big}, as_mb) == pytest.approx(16, 0.1) # Profiling stopped: test_no_profiling() def test_ipython_non_standard_indent(tmpdir): """ Profiling can be run via IPython magic, still profiles and shuts down correctly on an exception. This will log a RuntimeError. That is expected. """ cwd = os.getcwd() os.chdir(tmpdir) allocations = run_in_ipython_shell( [ "%load_ext filprofiler", """\ %%filprofile import numpy as np def f(): # indented with 5 spaces what arr = np.ones((1024, 1024, 2), dtype=np.uint64) # 16MB f() """, ] ) # Allocations were tracked: path = ( (re.compile("<ipython-input-1-.*"), "__magic_run_with_fil", 5), (re.compile("<ipython-input-1-.*"), "f", 4), (numpy.core.numeric.__file__, "ones", ANY), ) assert match(allocations, {path: big}, as_mb) == pytest.approx(16, 0.1) # Profiling stopped: test_no_profiling() @pytest.mark.parametrize( "profile_func", [ lambda f, tempdir: run_with_profile(f), profile, ], ) def test_profiling_disables_threadpools(tmpdir, profile_func): """ Memory profiling disables thread pools, then restores them when done. """ cwd = os.getcwd() os.chdir(tmpdir) import numexpr import blosc numexpr.set_num_threads(3) blosc.set_nthreads(3) with threadpoolctl.threadpool_limits(3, "blas"): def check(): assert numexpr.set_num_threads(2) == 1 assert blosc.set_nthreads(2) == 1 for d in threadpoolctl.threadpool_info(): assert d["num_threads"] == 1, d profile_func(check, tmpdir) # Resets when done: assert numexpr.set_num_threads(2) == 3 assert blosc.set_nthreads(2) == 3 for d in threadpoolctl.threadpool_info(): if d["user_api"] == "blas": assert d["num_threads"] == 3, d def test_profiling_without_blosc_and_numexpr(tmpdir): """ The support for numexpr and blosc is optional; disabling them should work even when they're not present. """ import sys sys.modules["blosc"] = None sys.modules["numexpr"] = None try: with disable_thread_pools(): pass finally: del sys.modules["blosc"] del sys.modules["numexpr"] def test_subprocess(tmpdir): """ Running a subprocess doesn't blow up. """ start_tracing(tmpdir) try: output = check_output(["printf", "hello"]) finally: stop_tracing(tmpdir) assert output == b"hello" def test_subprocess_2(tmpdir): """ Test a process that, on macOS, would fail (see https://github.com/pythonspeed/filprofiler/issues/230). Brew processes are compiled or linked differently somehow. """ start_tracing(tmpdir) try: check_call(["gfortran", "--version"]) finally: stop_tracing(tmpdir) @pytest.mark.parametrize("mode", ["spawn", "forkserver", "fork"]) def test_multiprocessing(tmpdir, mode): """ Running a subprocess via multiprocessing in the various different modes doesn't blow up. """ # Non-tracing: with multiprocessing.get_context(mode).Pool(processes=1) as pool: assert pool.apply((3).__add__, (4,)) == 7 # Tracing: start_tracing(tmpdir) try: with multiprocessing.get_context(mode).Pool(processes=1) as pool: assert pool.apply((3).__add__, (4,)) == 7 finally: stop_tracing(tmpdir) @pytest.mark.parametrize("mode", ["spawn", "forkserver", "fork"]) def test_multiprocessing_good_error_message_fil_api(tmpdir, mode): """ Using Fil API from a subprocess gives a reasonable error message. """ start_tracing(tmpdir) try: with multiprocessing.get_context(mode).Pool(processes=1) as pool: with pytest.raises(RuntimeError) as e: pool.apply(fil_api.run_with_fil) finally: stop_tracing(tmpdir)
saas/pagination.py
kaiserho/djaodjin-saas
383
11158980
<filename>saas/pagination.py # Copyright (c) 2021, DjaoDjin inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from collections import OrderedDict from rest_framework.pagination import PageNumberPagination from rest_framework.response import Response from . import settings from .models import (sum_dest_amount, sum_orig_amount, sum_balance_amount, Transaction) class BalancePagination(PageNumberPagination): """ Decorate the results of an API call with balance on an account containing *selector*. """ def paginate_queryset(self, queryset, request, view=None): self.start_at = view.start_at self.ends_at = view.ends_at if view.selector is not None: dest_totals = sum_dest_amount(queryset.filter( dest_account__icontains=view.selector)) orig_totals = sum_orig_amount(queryset.filter( orig_account__icontains=view.selector)) else: dest_totals = sum_dest_amount(queryset) orig_totals = sum_orig_amount(queryset) balance = sum_balance_amount(dest_totals, orig_totals) self.balance_amount = balance['amount'] self.balance_unit = balance['unit'] return super(BalancePagination, self).paginate_queryset( queryset, request, view=view) def get_paginated_response(self, data): return Response(OrderedDict([ ('start_at', self.start_at), ('ends_at', self.ends_at), ('balance_amount', self.balance_amount), ('balance_unit', self.balance_unit), ('count', self.page.paginator.count), ('next', self.get_next_link()), ('previous', self.get_previous_link()), ('results', data) ])) def get_paginated_response_schema(self, schema): return { 'type': 'object', 'properties': { 'start_at': { 'type': 'string', 'format': 'date', 'description': "Start of the date range for which"\ " the balance was computed" }, 'ends_at': { 'type': 'string', 'format': 'date', 'description': "End of the date range for which"\ " the balance was computed" }, 'balance_amount': { 'type': 'integer', 'description': "balance of all transactions in cents"\ " (i.e. 100ths) of unit" }, 'balance_unit': { 'type': 'integer', 'description': "three-letter ISO 4217 code"\ " for currency unit (ex: usd)" }, 'count': { 'type': 'integer', 'description': "The number of records" }, 'next': { 'type': 'string', 'description': "API end point to get the next page"\ "of records matching the query", 'nullable': True, 'format': 'uri', }, 'previous': { 'type': 'string', 'description': "API end point to get the previous page"\ "of records matching the query", 'nullable': True, 'format': 'uri', }, 'results': schema, }, } class RoleListPagination(PageNumberPagination): def get_paginated_response(self, data): return Response(OrderedDict([ ('invited_count', self.request.invited_count), ('requested_count', self.request.requested_count), ('count', self.page.paginator.count), ('next', self.get_next_link()), ('previous', self.get_previous_link()), ('results', data) ])) def get_paginated_response_schema(self, schema): return { 'type': 'object', 'properties': { 'invited_count': { 'type': 'integer', 'description': "Number of user invited to have a role" }, 'requested_count': { 'type': 'integer', 'description': "Number of user requesting a role" }, 'count': { 'type': 'integer', 'description': "The number of records" }, 'next': { 'type': 'string', 'description': "API end point to get the next page"\ "of records matching the query", 'nullable': True, 'format': 'uri', }, 'previous': { 'type': 'string', 'description': "API end point to get the previous page"\ "of records matching the query", 'nullable': True, 'format': 'uri', }, 'results': schema, }, } class StatementBalancePagination(PageNumberPagination): """ Decorate the results of an API call with the balance as shown in an organization statement. """ def paginate_queryset(self, queryset, request, view=None): self.start_at = view.start_at self.ends_at = view.ends_at self.balance_amount, self.balance_unit \ = Transaction.objects.get_statement_balance(view.organization) return super(StatementBalancePagination, self).paginate_queryset( queryset, request, view=view) def get_paginated_response(self, data): return Response(OrderedDict([ ('start_at', self.start_at), ('ends_at', self.ends_at), ('balance_amount', self.balance_amount), ('balance_unit', self.balance_unit), ('count', self.page.paginator.count), ('next', self.get_next_link()), ('previous', self.get_previous_link()), ('results', data) ])) def get_paginated_response_schema(self, schema): return { 'type': 'object', 'properties': { 'start_at': { 'type': 'string', 'format': 'date', 'description': "Start of the date range for which"\ " the balance was computed" }, 'ends_at': { 'type': 'string', 'format': 'date', 'description': "End of the date range for which"\ " the balance was computed" }, 'balance_amount': { 'type': 'integer', 'description': "balance of all transactions in cents"\ " (i.e. 100ths) of unit" }, 'balance_unit': { 'type': 'integer', 'description': "three-letter ISO 4217 code"\ " for currency unit (ex: usd)" }, 'count': { 'type': 'integer', 'description': "The number of records" }, 'next': { 'type': 'string', 'description': "API end point to get the next page"\ "of records matching the query", 'nullable': True, 'format': 'uri', }, 'previous': { 'type': 'string', 'description': "API end point to get the previous page"\ "of records matching the query", 'nullable': True, 'format': 'uri', }, 'results': schema, }, } class TotalPagination(PageNumberPagination): def paginate_queryset(self, queryset, request, view=None): self.start_at = view.start_at self.ends_at = view.ends_at self.totals = view.totals return super(TotalPagination, self).paginate_queryset( queryset, request, view=view) def get_paginated_response(self, data): return Response(OrderedDict([ ('start_at', self.start_at), ('ends_at', self.ends_at), ('balance_amount', self.totals['amount']), ('balance_unit', self.totals['unit']), ('count', self.page.paginator.count), ('next', self.get_next_link()), ('previous', self.get_previous_link()), ('results', data) ])) def get_paginated_response_schema(self, schema): return { 'type': 'object', 'properties': { 'balance_amount': { 'type': 'integer', 'description': "The sum of all record amounts (in unit)" }, 'balance_unit': { 'type': 'integer', 'description': "three-letter ISO 4217 code"\ " for currency unit (ex: usd)" }, 'count': { 'type': 'integer', 'description': "The number of records" }, 'next': { 'type': 'string', 'description': "API end point to get the next page"\ "of records matching the query", 'nullable': True, 'format': 'uri', }, 'previous': { 'type': 'string', 'description': "API end point to get the previous page"\ "of records matching the query", 'nullable': True, 'format': 'uri', }, 'results': schema, }, } class TypeaheadPagination(PageNumberPagination): page_size = settings.MAX_TYPEAHEAD_CANDIDATES def paginate_queryset(self, queryset, request, view=None): self.count = queryset.count() if self.count > self.page_size: # returning an empty set if the number of results is greater than # MAX_TYPEAHEAD_CANDIDATES queryset = queryset.none() self.count = 0 return list(queryset) def get_paginated_response(self, data): return Response(OrderedDict([ ('count', self.count), ('results', data) ])) def get_schema_operation_parameters(self, view): return [] def get_paginated_response_schema(self, schema): return { 'type': 'object', 'properties': { 'count': { 'type': 'integer', 'description': "The number of records" }, 'results': schema, }, }
logging_course/lesson7/task3/db_handler.py
behzod/pycharm-courses
213
11159012
from __future__ import print_function import logging import logging.config import datetime import sqlite3 as sqlite class DatabaseHandler(logging.Handler): """ Store log records in a sqlite database. """ def __init__(self, filename): super(DatabaseHandler, self).__init__() self.db = sqlite.connect(filename) try: self.db.execute( "CREATE TABLE logger(record_id INTEGER PRIMARY KEY, name TEXT," \ "asctime TEXT, level TEXT, funcName TEXT, lineno INTEGER," \ "module TEXT, message TEXT);") self.db.commit() except sqlite.OperationalError as e: logging.info('database filename=%s already exists', filename) def emit(self, record): if self.db: timestring = datetime.datetime.utcfromtimestamp(record.created).isoformat() + 'Z' message = record.msg % record.args self.acquire() try: self.db.execute("INSERT INTO logger(name, asctime, level, funcName, lineno, module, message) " \ "VALUES(?, ?, ?, ?, ?, ?, ?);", (record.name, timestring, record.levelname, record.funcName, record.lineno, record.module, message)) self.db.commit() finally: self.release() def close(self): self.db.close() self.db = None super(DatabaseHandler, self).close() if __name__ == '__main__': db_filename = '../../Sandbox/log.db' log_config = { 'version': 1, 'handlers': { 'db': { 'class': 'db_handler.DatabaseHandler', 'filename': db_filename } }, 'root': { 'handlers': ['db'], 'level': 'DEBUG' } } logging.config.dictConfig(log_config) logging.debug('Configured logging to database filename=%s', db_filename) logging.warn('root logger warning message') logging.debug('Connecting to database to read warning counts') db = sqlite.connect(db_filename) result = db.execute('select count(*) from logger where level="WARNING"') print('Number of WARNING log messages in database is %s' % result.fetchone()[0]) result = db.execute('select count(*) from logger where level="DEBUG"') print('Number of DEBUG log messages in database is %s' % result.fetchone()[0])
theseus/geometry/tests/test_se2.py
jeffin07/theseus
236
11159049
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import pytest # noqa: F401 import torch import theseus as th from theseus.constants import EPS from theseus.core.tests.common import check_copy_var from theseus.utils import numeric_jacobian from .common import ( check_adjoint, check_compose, check_exp_map, check_inverse, check_log_map, check_projection_for_compose, check_projection_for_exp_map, check_projection_for_inverse, check_projection_for_rotate_and_transform, ) def create_random_se2(batch_size, rng): theta = torch.rand(batch_size, 1, generator=rng) * 2 * np.pi - np.pi u = torch.randn(batch_size, 2) tangent_vector = torch.cat([u, theta], dim=1) return th.SE2.exp_map(tangent_vector.double()) def test_exp_map(): for batch_size in [1, 20, 100]: theta = torch.from_numpy(np.linspace(-np.pi, np.pi, batch_size)) u = torch.randn(batch_size, 2) tangent_vector = torch.cat([u, theta.unsqueeze(1)], dim=1) check_exp_map(tangent_vector.double(), th.SE2) def test_log_map(): for batch_size in [1, 20, 100]: theta = torch.from_numpy(np.linspace(-np.pi, np.pi, batch_size)) u = torch.randn(batch_size, 2) tangent_vector = torch.cat([u, theta.unsqueeze(1)], dim=1) check_log_map(tangent_vector, th.SE2) check_projection_for_exp_map(tangent_vector, th.SE2) def test_compose(): rng = torch.Generator() rng.manual_seed(0) for batch_size in [1, 20, 100]: se2_1 = th.SE2.rand(batch_size, generator=rng, dtype=torch.float64) se2_2 = th.SE2.rand(batch_size, generator=rng, dtype=torch.float64) check_compose(se2_1, se2_2) def test_inverse(): rng = torch.Generator() rng.manual_seed(0) for batch_size in [1, 20, 100]: se2 = th.SE2.rand(batch_size, generator=rng, dtype=torch.float64) check_inverse(se2) def test_adjoint(): rng = torch.Generator() rng.manual_seed(0) for batch_size in [1, 20, 100]: se2 = th.SE2.rand(batch_size, generator=rng, dtype=torch.float64) tangent = torch.randn(batch_size, 3).double() check_adjoint(se2, tangent) def test_copy(): rng = torch.Generator() se2 = th.SE2.rand(1, generator=rng, dtype=torch.float64) check_copy_var(se2) def test_transform_from_and_to(): rng = torch.Generator() rng.manual_seed(0) for _ in range(10): # repeat a few times for batch_size_se2 in [1, 20, 100]: for batch_size_pnt in [1, 20, 100]: if ( batch_size_se2 != 1 and batch_size_pnt != 1 and batch_size_pnt != batch_size_se2 ): continue se2 = th.SE2.rand(batch_size_se2, generator=rng, dtype=torch.float64) point_tensor = torch.randn(batch_size_pnt, 2).double() point_tensor_ext = torch.cat( (point_tensor, torch.ones(batch_size_pnt, 1).double()), dim=1 ) jacobians_to = [] point_to = se2.transform_to(point_tensor, jacobians=jacobians_to) expected_to = ( se2.inverse().to_matrix() @ point_tensor_ext.unsqueeze(2) )[:, :2] jacobians_from = [] point_from = se2.transform_from(point_to, jacobians_from) # Check the operation result assert torch.allclose(expected_to.squeeze(2), point_to.data, atol=EPS) assert torch.allclose(point_tensor, point_from.data, atol=EPS) # Check the jacobians expected_jac = numeric_jacobian( lambda groups: groups[0].transform_to(groups[1]), [se2, th.Point2(point_tensor)], function_dim=2, ) assert jacobians_to[0].shape == expected_jac[0].shape assert jacobians_to[1].shape == expected_jac[1].shape assert torch.allclose(jacobians_to[0], expected_jac[0]) assert torch.allclose(jacobians_to[1], expected_jac[1]) expected_jac = numeric_jacobian( lambda groups: groups[0].transform_from(groups[1]), [se2, point_to], function_dim=2, ) assert jacobians_from[0].shape == expected_jac[0].shape assert jacobians_from[1].shape == expected_jac[1].shape assert torch.allclose(jacobians_from[0], expected_jac[0]) assert torch.allclose(jacobians_from[1], expected_jac[1]) def test_xy_jacobian(): rng = torch.Generator() rng.manual_seed(0) for batch_size in [1, 20, 100]: se2 = th.SE2.rand(batch_size, generator=rng, dtype=torch.float64) jacobian = [] se2.xy(jacobians=jacobian) expected_jac = numeric_jacobian( lambda groups: th.Point2(groups[0].xy()), [se2], function_dim=2 ) torch.allclose(jacobian[0], expected_jac[0]) def test_theta_jacobian(): rng = torch.Generator() rng.manual_seed(0) for batch_size in [1, 20, 100]: se2 = th.SE2.rand(batch_size, generator=rng, dtype=torch.float64) jacobian = [] se2.theta(jacobians=jacobian) expected_jac = numeric_jacobian( lambda groups: th.Vector(data=groups[0].theta()), [se2], function_dim=1 ) torch.allclose(jacobian[0], expected_jac[0]) def test_projection(): rng = torch.Generator() rng.manual_seed(0) for _ in range(10): # repeat a few times for batch_size in [1, 20, 100]: # Test SE2.transform_to check_projection_for_rotate_and_transform( th.SE2, th.Point2, th.SE2.transform_to, batch_size, rng ) # Test SE2.transform_from check_projection_for_rotate_and_transform( th.SE2, th.Point2, th.SE2.transform_from, batch_size, rng ) # Test SE2.compose check_projection_for_compose(th.SE2, batch_size, rng) # Test SE2.inverse check_projection_for_inverse(th.SE2, batch_size, rng)
recipyCmd/recipycmd.py
robintw/recipy
451
11159112
#!/usr/bin/env python """recipy - a frictionless provenance tool for Python Usage: recipy search [options] <outputfile> recipy latest [options] recipy gui [options] recipy annotate [<idvalue>] recipy pm [--format=<rst|plain>] recipy (-h | --help) recipy --version Options: -h --help Show this screen --version Show version -p --filepath Search based on filepath rather than hash -f --fuzzy Use fuzzy searching on filename -r --regex Use regex searching on filename -i --id Search based on (a fragment of) the run ID -a --all Show all results (otherwise just latest result given) -v --verbose Be verbose -d --diff Show diff -j --json Show output as JSON --no-browser Do not open browser window --debug Turn on debugging mode """ import os import re import sys import tempfile from docopt import docopt from jinja2 import Template from tinydb import where, Query from json import dumps import six from . import __version__ from recipyCommon import config, utils from recipyCommon.config import get_editor from recipyCommon.version_control import hash_file from colorama import init init() db = utils.open_or_create_db() template_str = """\aRun ID:\b {{ unique_id }} \aCreated by\b {{ author }} on {{ date }} UTC \aRan\b {{ script }} using {{ command }} {% if command_args|length > 0 %} Using command-line arguments: {{ command_args }} {% endif %} {% if gitcommit is defined %} \aGit:\b commit {{ gitcommit }}, in repo {{ gitrepo }}, with origin {{ gitorigin }} {% endif %} {% if svnrepo is defined %} \aSvn:\b commit {{ svncommit }}, in repo {{ svnrepo }}. {% endif %} \aEnvironment:\b {{ environment|join(", ") }} {% if libraries is defined %} \aLibraries:\b {{ libraries|join(", ") }} {% endif %} {% if exception is defined %} \aException:\b ({{ exception.type }}) {{ exception.message }} {% endif %} {% if inputs|length == 0 %} \aInputs:\b none {% else %} \aInputs:\b {% for input in inputs %} {% if input is string %} {{ input }} {% else %} {{ input[0] }} ({{ input[1] }}) {% endif %} {% endfor %} {% endif %} {% if outputs | length == 0 %} \aOutputs:\b none {% else %} \aOutputs:\b {% for output in outputs %} {% if output is string %} {{ output }} {% else %} {{ output[0] }} ({{ output[1] }}) {% endif %} {% endfor %} {% endif %} {% if notes is defined %} \aNotes:\b {{ notes }} {% endif %} """ BOLD = '\033[1m' RESET = '\033[0m' template_str_withcolor = template_str.replace('\a', BOLD).replace('\b', RESET) template_str_nocolor = template_str.replace('\a', '').replace('\b', '') def template_result(r, nocolor=False): # Print a single result from the search if nocolor: template_str = template_str_nocolor else: template_str = template_str_withcolor template = Template(template_str, trim_blocks=True) return template.render(**r) def main(): """ Main function for recipy command-line script """ args = docopt(__doc__, version='recipy v%s' % __version__) if args['--debug']: print('Command-line arguments: ') print(args) print('DB path: ', config.get_db_path()) print('') print('Full config file (as interpreted):') print('----------------------------------') conf = config.read_config_file() s = six.StringIO() conf.write(s) print(s.getvalue()) print('----------------------------------') if args['search']: search(args) elif args['latest']: latest(args) elif args['gui']: gui(args) elif args['annotate']: annotate(args) elif args['pm']: patched_modules(args) def annotate(args): # get the text editor editor = get_editor() if args['<idvalue>']: try: run = db.search(where('unique_id') == args['<idvalue>'])[0] except IndexError: print('Could not find id %s' % args['<idvalue>']) return else: run = get_latest_run() # Get temp filename f = tempfile.NamedTemporaryFile(delete=False, mode='w') if run.get('notes'): f.write(run['notes']) # Write something to the bottom of it f.write('\n' + '-' * 80 + '\n') f.write('\n') f.write('Enter your notes on this run above this line') f.write('\n' * 3) f.write(template_result(run, nocolor=True)) f.close() # Open your editor os.system('%s %s' % (editor, f.name)) # Grab the text annotation = "" with open(f.name, 'r') as f: for line in f: if line == '-' * 80 + '\n': break annotation += line notes = annotation.strip() if notes == "": print('No annotation entered, exiting.') return # Store in the DB db.update({'notes': notes}, where('unique_id') == run['unique_id']) db.close() def gui(args): """ Loads recipy GUI from the command-line """ from recipyGui import recipyGui import threading import webbrowser import socket def get_free_port(): port = None base_port = config.get_gui_port() for trial_port in range(base_port, base_port + 5): try: s = socket.socket() s.bind(('', trial_port)) s.close() port = trial_port break except Exception: # port already bound # Please note that this also happens when the gui is run in # debug mode! pass if not port: # no free ports above, fall back to random s = socket.socket() s.bind(('', 0)) port = s.getsockname()[1] s.close() return port port = get_free_port() url = "http://127.0.0.1:{0}".format(port) if not args['--no-browser']: # Give the application some time before it starts threading.Timer(1.25, lambda: webbrowser.open(url)).start() # Turn off reloading by setting debug = False (this also fixes starting the # application twice) recipyGui.run(debug=args['--debug'], port=port) def get_latest_run(): results = db.all() # If no runs in the database if len(results) == 0: return None results = [_change_date(result) for result in results] # Sort the results results = sorted(results, key=lambda x: x['date']) return results[-1] def latest(args): run = get_latest_run() if not run: if args['--json']: print('[]') return else: print("Database is empty") return if args['--json']: output = dumps(run, indent=2, sort_keys=True, default=utils.json_serializer) print(output) else: print(template_result(run)) if args['--diff']: if 'diff' in run: print("\n\n") print(run['diff']) def find_by_hash(x, val): for output in x: if isinstance(output, six.string_types): # If it's just a string it doesn't have a hash # so skip it return False else: test_val = output[1] if test_val == val: return True def find_by_filepath(x, val): for output in x: if isinstance(output, six.string_types): test_val = output else: test_val = output[0] if test_val == val: return True def find_by_regex(x, val): for output in x: if isinstance(output, six.string_types): test_val = output else: test_val = output[0] if re.match(val, test_val): return True def search_hash(args): try: hash_value = hash_file(args['<outputfile>']) except Exception: # Probably an invalid filename/path so assume it is a raw hash value instead hash_value = args['<outputfile>'] Run = Query() # Search both outputs AND inputs # TODO: Add a command-line argument to force searching of just one # of inputs or outputs results = db.search(Run.outputs.test(find_by_hash, hash_value)) results += db.search(Run.inputs.test(find_by_hash, hash_value)) results = sorted(results, key=lambda x: x['date']) if args['--json']: if len(results) == 0: print('[]') return if args['--all']: res_to_output = results else: res_to_output = results[-1] output = dumps(res_to_output, indent=2, sort_keys=True, default=utils.json_serializer) print(output) else: if len(results) == 0: print('No results found') else: if args['--all']: for r in results[:-1]: print(template_result(r)) print("-" * 40) print(template_result(results[-1])) else: print(template_result(results[-1])) if len(results) > 1: print("** Previous runs have been " "found. Run with --all to show. **") if args['--diff']: if 'diff' in results[-1]: print("\n\n") print(results[-1]['diff']) db.close() def search(args): if args['--fuzzy'] or args['--id'] or args['--regex'] or args['--filepath']: search_text(args) else: search_hash(args) def search_text(args): filename = args['<outputfile>'] Run = Query() if args['--fuzzy']: results = db.search(Run.outputs.test(find_by_regex, ".+%s.+" % filename)) results += db.search(Run.inputs.test(find_by_regex, ".+%s.+" % filename)) elif args['--regex']: results = db.search(Run.outputs.test(find_by_regex, filename)) results += db.search(Run.inputs.test(find_by_regex, filename)) elif args['--id']: results = db.search(where('unique_id').matches('%s.*' % filename)) # Automatically turn on display of all results so we don't misleadingly # suggest that their shortened ID is unique when it isn't args['--all'] = True elif args['--filepath']: results = db.search(Run.outputs.test(find_by_filepath, os.path.abspath(filename))) results += db.search(Run.inputs.test(find_by_filepath, os.path.abspath(filename))) else: print('Unknown arguments') print(__doc__) return # Sort the results results = sorted(results, key=lambda x: x['date']) if args['--json']: if len(results) == 0: print('[]') return if args['--all']: res_to_output = results else: res_to_output = results[-1] output = dumps(res_to_output, indent=2, sort_keys=True, default=utils.json_serializer) print(output) else: if len(results) == 0: print("No results found") else: if args['--all']: for r in results[:-1]: print(template_result(r)) print("-" * 40) print(template_result(results[-1])) else: print(template_result(results[-1])) if len(results) > 1: print("** Previous runs have been " "found. Run with --all to show. **") if args['--diff']: if 'diff' in results[-1]: print("\n\n") print(results[-1]['diff']) db.close() def _change_date(result): result['date'] = str(result['date']).replace('{TinyDate}:', '') return result def patched_modules(args): modules = db.table('patches').all() db.close() fmt = args.get('--format', 'plain') print(fmt) try: from tabulate import tabulate except ImportError: print('Please install tabulate for printing the patched modules.') return table = [] for m in modules: t = {} for k, v in m.items(): if isinstance(v, list): if len(v) > 0: if fmt == 'rst': t[k] = '``{}``'.format('``,\n``'.join(v)) else: t[k] = '{}'.format('\n'.join(v)) else: t[k] = '' else: if fmt == 'rst': t[k] = '``{}``'.format(v) else: t[k] = v table.append(t) print(tabulate(table, headers='keys', tablefmt='rst')) if __name__ == '__main__': main()
PhysicsTools/PatUtils/python/bJetOperatingPointsParameters_cfi.py
ckamtsikis/cmssw
852
11159129
<filename>PhysicsTools/PatUtils/python/bJetOperatingPointsParameters_cfi.py<gh_stars>100-1000 # preliminary b-tagging Operating Points # obtained with cmssw_2_1_0_pre6 # qcd validation /store/relval/2008/6/22/RelVal-RelValQCD_Pt_80_120-1213987236-IDEAL_V2-2nd/0003/ # corrected pt 30 |eta| <2.4 taggability >2 # import FWCore.ParameterSet.Config as cms BJetOperatingPointsParameters = cms.PSet( BJetOperatingPoints = cms.PSet( DefaultBdisc = cms.string('trackCountingHighEffBJetTags'), DefaultOp = cms.string('Loose'), discCutTight = cms.vdouble( 13.76, 3.943, #TCHE, TCHP, 0.7322, 3.335, #JTP, JBTP, 3.524, 0.9467, #SSV, CSV, 0.9635, 0.9462, #MSV, IPM, 0.5581, 0.2757, 0.349 #SET, SMT, SMNoIPT ), discCutMedium = cms.vdouble( 4.433, 2.53, 0.5114, 2.295, 2.13, 0.8339, 0.8131, 0.8141, 0.1974, 0.1208, 0.1846 ), discCutLoose = cms.vdouble( 1.993, 1.678, 0.2395, 1.149, 1.2, 0.415, 0.4291, 0.3401, 0.0, 0.0, 0.0 ), bdiscriminators = cms.vstring( 'trackCountingHighEffBJetTags','trackCountingHighPurBJetTags', 'jetProbabilityBJetTags','jetBProbabilityBJetTags', 'simpleSecondaryVertexBJetTags','combinedSecondaryVertexBJetTags', 'combinedSecondaryVertexMVABJetTags','impactParameterMVABJetTags', 'softElectronBJetTags','softMuonBJetTags','softMuonNoIPBJetTags' ) ) )
google_play_scraper/utils/__init__.py
shikher-chhawchharia/google-play-scraper
325
11159132
<reponame>shikher-chhawchharia/google-play-scraper def nested_lookup(source, indexes): if len(indexes) == 1: return source[indexes[0]] return nested_lookup(source[indexes[0]], indexes[1::])
apc/model.py
voidism/Mockingjay-Speech-Representation
105
11159133
<gh_stars>100-1000 # -*- coding: utf-8 -*- # """*********************************************************************************************""" # FileName [ apc/model.py ] # Synopsis [ implementation of the apc model ] # Author [ <NAME> ] # Copyright [ https://github.com/iamyuanchung/Autoregressive-Predictive-Coding ] # Reference [ https://arxiv.org/abs/1904.03240 ] """*********************************************************************************************""" ############### # IMPORTATION # ############### import torch from torch import nn from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence class Prenet(nn.Module): """Prenet is a multi-layer fully-connected network with ReLU activations. During training and testing (feature extraction), each input frame is passed into the Prenet, and the Prenet output is fed to the RNN. If no Prenet configuration is given, the input frames will be directly fed to the RNN without any transformation. """ def __init__(self, input_size, num_layers, hidden_size, dropout): super(Prenet, self).__init__() input_sizes = [input_size] + [hidden_size] * (num_layers - 1) output_sizes = [hidden_size] * num_layers # Don't get confused by the conv operation here -- since kernel_size and stride # are both 1, the operation here is equivalent to a fully-connected network. self.layers = nn.ModuleList( [nn.Conv1d(in_channels=in_size, out_channels=out_size, kernel_size=1, stride=1) for (in_size, out_size) in zip(input_sizes, output_sizes)]) self.relu = nn.ReLU() self.dropout = nn.Dropout(dropout) def forward(self, inputs): # inputs: (batch_size, seq_len, mel_dim) inputs = torch.transpose(inputs, 1, 2) # inputs: (batch_size, mel_dim, seq_len) -- for conv1d operation for layer in self.layers: inputs = self.dropout(self.relu(layer(inputs))) # inputs: (batch_size, last_dim, seq_len) return torch.transpose(inputs, 1, 2) # inputs: (batch_size, seq_len, last_dim) -- back to the original shape class Postnet(nn.Module): """Postnet is a simple linear layer for predicting the target frames given the RNN context during training. We don't need the Postnet for feature extraction. """ def __init__(self, input_size, output_size=80): super(Postnet, self).__init__() self.layer = nn.Conv1d( in_channels=input_size, out_channels=output_size, kernel_size=1, stride=1) def forward(self, inputs): # inputs: (batch_size, seq_len, hidden_size) inputs = torch.transpose(inputs, 1, 2) # inputs: (batch_size, hidden_size, seq_len) -- for conv1d operation return torch.transpose(self.layer(inputs), 1, 2) # (batch_size, seq_len, output_size) -- back to the original shape class APCModel(nn.Module): """This class defines Autoregressive Predictive Coding (APC), a model that learns to extract general speech features from unlabeled speech data. These features are shown to contain rich speaker and phone information, and are useful for a wide range of downstream tasks such as speaker verification and phone classification. An APC model consists of a Prenet (optional), a multi-layer GRU network, and a Postnet. For each time step during training, the Prenet transforms the input frame into a latent representation, which is then consumed by the GRU network for generating internal representations across the layers. Finally, the Postnet takes the output of the last GRU layer and attempts to predict the target frame. After training, to extract features from the data of your interest, which do not have to be i.i.d. with the training data, simply feed-forward the the data through the APC model, and take the the internal representations (i.e., the GRU hidden states) as the extracted features and use them in your tasks. """ def __init__(self, mel_dim, prenet_config, rnn_config): super(APCModel, self).__init__() self.mel_dim = mel_dim if prenet_config is not None: # Make sure the dimensionalities are correct assert prenet_config.input_size == mel_dim assert prenet_config.hidden_size == rnn_config.input_size assert rnn_config.input_size == rnn_config.hidden_size self.prenet = Prenet( input_size=prenet_config.input_size, num_layers=prenet_config.num_layers, hidden_size=prenet_config.hidden_size, dropout=prenet_config.dropout) else: assert rnn_config.input_size == mel_dim self.prenet = None in_sizes = [rnn_config.input_size] + [rnn_config.hidden_size] * (rnn_config.num_layers - 1) out_sizes = [rnn_config.hidden_size] * rnn_config.num_layers self.rnns = nn.ModuleList( [nn.GRU(input_size=in_size, hidden_size=out_size, batch_first=True) for (in_size, out_size) in zip(in_sizes, out_sizes)]) self.rnn_dropout = nn.Dropout(rnn_config.dropout) self.rnn_residual = rnn_config.residual self.postnet = Postnet( input_size=rnn_config.hidden_size, output_size=self.mel_dim) def forward(self, inputs, lengths): """Forward function for both training and testing (feature extraction). input: inputs: (batch_size, seq_len, mel_dim) lengths: (batch_size,) return: predicted_mel: (batch_size, seq_len, mel_dim) internal_reps: (num_layers + x, batch_size, seq_len, rnn_hidden_size), where x is 1 if there's a prenet, otherwise 0 """ seq_len = inputs.size(1) if self.prenet is not None: rnn_inputs = self.prenet(inputs) # rnn_inputs: (batch_size, seq_len, rnn_input_size) internal_reps = [rnn_inputs] # also include prenet_outputs in internal_reps else: rnn_inputs = inputs internal_reps = [] packed_rnn_inputs = pack_padded_sequence(rnn_inputs, lengths, True) for i, layer in enumerate(self.rnns): packed_rnn_outputs, _ = layer(packed_rnn_inputs) rnn_outputs, _ = pad_packed_sequence( packed_rnn_outputs, True, total_length=seq_len) # outputs: (batch_size, seq_len, rnn_hidden_size) if i + 1 < len(self.rnns): # apply dropout except the last rnn layer rnn_outputs = self.rnn_dropout(rnn_outputs) rnn_inputs, _ = pad_packed_sequence( packed_rnn_inputs, True, total_length=seq_len) # rnn_inputs: (batch_size, seq_len, rnn_hidden_size) if self.rnn_residual and rnn_inputs.size(-1) == rnn_outputs.size(-1): # Residual connections rnn_outputs = rnn_outputs + rnn_inputs internal_reps.append(rnn_outputs) packed_rnn_inputs = pack_padded_sequence(rnn_outputs, lengths, True) predicted_mel = self.postnet(rnn_outputs) # predicted_mel: (batch_size, seq_len, mel_dim) internal_reps = torch.stack(internal_reps) return predicted_mel, internal_reps # predicted_mel is only for training; internal_reps is the extracted features
src/blockchain/azext_blockchain/vendored_sdks/blockchain/models/_models_py3.py
Mannan2812/azure-cli-extensions
207
11159166
<gh_stars>100-1000 # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import datetime from typing import Dict, List, Optional, Union import msrest.serialization class ApiKey(msrest.serialization.Model): """API key payload which is exposed in the request/response of the resource provider. :param key_name: Gets or sets the API key name. :type key_name: str :param value: Gets or sets the API key value. :type value: str """ _attribute_map = { 'key_name': {'key': 'keyName', 'type': 'str'}, 'value': {'key': 'value', 'type': 'str'}, } def __init__( self, *, key_name: Optional[str] = None, value: Optional[str] = None, **kwargs ): super(ApiKey, self).__init__(**kwargs) self.key_name = key_name self.value = value class ApiKeyCollection(msrest.serialization.Model): """Collection of the API key payload which is exposed in the response of the resource provider. :param keys: Gets or sets the collection of API key. :type keys: list[~azure.mgmt.blockchain.models.ApiKey] """ _attribute_map = { 'keys': {'key': 'keys', 'type': '[ApiKey]'}, } def __init__( self, *, keys: Optional[List["ApiKey"]] = None, **kwargs ): super(ApiKeyCollection, self).__init__(**kwargs) self.keys = keys class Resource(msrest.serialization.Model): """The core properties of the resources. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id of the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the service - e.g. "Microsoft.Blockchain". :vartype type: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__( self, **kwargs ): super(Resource, self).__init__(**kwargs) self.id = None self.name = None self.type = None class TrackedResource(Resource): """The resource model definition for a top level resource. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id of the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the service - e.g. "Microsoft.Blockchain". :vartype type: str :param location: The GEO location of the blockchain service. :type location: str :param tags: A set of tags. Tags of the service which is a list of key value pairs that describes the resource. :type tags: dict[str, str] """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, } def __init__( self, *, location: Optional[str] = None, tags: Optional[Dict[str, str]] = None, **kwargs ): super(TrackedResource, self).__init__(**kwargs) self.location = location self.tags = tags class BlockchainMember(TrackedResource): """Payload of the blockchain member which is exposed in the request/response of the resource provider. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id of the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the service - e.g. "Microsoft.Blockchain". :vartype type: str :param location: The GEO location of the blockchain service. :type location: str :param tags: A set of tags. Tags of the service which is a list of key value pairs that describes the resource. :type tags: dict[str, str] :param sku: Gets or sets the blockchain member Sku. :type sku: ~azure.mgmt.blockchain.models.Sku :param protocol: Gets or sets the blockchain protocol. Possible values include: "NotSpecified", "Parity", "Quorum", "Corda". :type protocol: str or ~azure.mgmt.blockchain.models.BlockchainProtocol :param validator_nodes_sku: Gets or sets the blockchain validator nodes Sku. :type validator_nodes_sku: ~azure.mgmt.blockchain.models.BlockchainMemberNodesSku :ivar provisioning_state: Gets or sets the blockchain member provision state. Possible values include: "NotSpecified", "Updating", "Deleting", "Succeeded", "Failed", "Stale". :vartype provisioning_state: str or ~azure.mgmt.blockchain.models.BlockchainMemberProvisioningState :ivar dns: Gets the dns endpoint of the blockchain member. :vartype dns: str :ivar user_name: Gets the auth user name of the blockchain member. :vartype user_name: str :param password: Sets the basic auth password of the blockchain member. :type password: str :param consortium: Gets or sets the consortium for the blockchain member. :type consortium: str :ivar consortium_management_account_address: Gets the managed consortium management account address. :vartype consortium_management_account_address: str :param consortium_management_account_password: Sets the managed consortium management account password. :type consortium_management_account_password: str :param consortium_role: Gets the role of the member in the consortium. :type consortium_role: str :param consortium_member_display_name: Gets the display name of the member in the consortium. :type consortium_member_display_name: str :ivar root_contract_address: Gets the Ethereum root contract address of the blockchain. :vartype root_contract_address: str :ivar public_key: Gets the public key of the blockchain member (default transaction node). :vartype public_key: str :param firewall_rules: Gets or sets firewall rules. :type firewall_rules: list[~azure.mgmt.blockchain.models.FirewallRule] """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'provisioning_state': {'readonly': True}, 'dns': {'readonly': True}, 'user_name': {'readonly': True}, 'consortium_management_account_address': {'readonly': True}, 'root_contract_address': {'readonly': True}, 'public_key': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'sku': {'key': 'sku', 'type': 'Sku'}, 'protocol': {'key': 'properties.protocol', 'type': 'str'}, 'validator_nodes_sku': {'key': 'properties.validatorNodesSku', 'type': 'BlockchainMemberNodesSku'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'dns': {'key': 'properties.dns', 'type': 'str'}, 'user_name': {'key': 'properties.userName', 'type': 'str'}, 'password': {'key': 'properties.password', 'type': 'str'}, 'consortium': {'key': 'properties.consortium', 'type': 'str'}, 'consortium_management_account_address': {'key': 'properties.consortiumManagementAccountAddress', 'type': 'str'}, 'consortium_management_account_password': {'key': 'properties.consortiumManagementAccountPassword', 'type': 'str'}, 'consortium_role': {'key': 'properties.consortiumRole', 'type': 'str'}, 'consortium_member_display_name': {'key': 'properties.consortiumMemberDisplayName', 'type': 'str'}, 'root_contract_address': {'key': 'properties.rootContractAddress', 'type': 'str'}, 'public_key': {'key': 'properties.publicKey', 'type': 'str'}, 'firewall_rules': {'key': 'properties.firewallRules', 'type': '[FirewallRule]'}, } def __init__( self, *, location: Optional[str] = None, tags: Optional[Dict[str, str]] = None, sku: Optional["Sku"] = None, protocol: Optional[Union[str, "BlockchainProtocol"]] = None, validator_nodes_sku: Optional["BlockchainMemberNodesSku"] = None, password: Optional[str] = None, consortium: Optional[str] = None, consortium_management_account_password: Optional[str] = None, consortium_role: Optional[str] = None, consortium_member_display_name: Optional[str] = None, firewall_rules: Optional[List["FirewallRule"]] = None, **kwargs ): super(BlockchainMember, self).__init__(location=location, tags=tags, **kwargs) self.sku = sku self.protocol = protocol self.validator_nodes_sku = validator_nodes_sku self.provisioning_state = None self.dns = None self.user_name = None self.password = password self.consortium = consortium self.consortium_management_account_address = None self.consortium_management_account_password = <PASSWORD>account_password self.consortium_role = consortium_role self.consortium_member_display_name = consortium_member_display_name self.root_contract_address = None self.public_key = None self.firewall_rules = firewall_rules class BlockchainMemberCollection(msrest.serialization.Model): """Collection of the blockchain member payload which is exposed in the request/response of the resource provider. :param value: Gets or sets the collection of blockchain members. :type value: list[~azure.mgmt.blockchain.models.BlockchainMember] :param next_link: Gets or sets the URL, that the client should use to fetch the next page (per server side paging). It's null for now, added for future use. :type next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[BlockchainMember]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["BlockchainMember"]] = None, next_link: Optional[str] = None, **kwargs ): super(BlockchainMemberCollection, self).__init__(**kwargs) self.value = value self.next_link = next_link class BlockchainMemberNodesSku(msrest.serialization.Model): """Payload of the blockchain member nodes Sku for a blockchain member. :param capacity: Gets or sets the nodes capacity. :type capacity: int """ _attribute_map = { 'capacity': {'key': 'capacity', 'type': 'int'}, } def __init__( self, *, capacity: Optional[int] = None, **kwargs ): super(BlockchainMemberNodesSku, self).__init__(**kwargs) self.capacity = capacity class TransactionNodePropertiesUpdate(msrest.serialization.Model): """Update the payload of the transaction node properties in the transaction node payload. :param password: Sets the transaction node dns endpoint basic auth password. :type password: str :param firewall_rules: Gets or sets the firewall rules. :type firewall_rules: list[~azure.mgmt.blockchain.models.FirewallRule] """ _attribute_map = { 'password': {'key': 'password', 'type': 'str'}, 'firewall_rules': {'key': 'firewallRules', 'type': '[FirewallRule]'}, } def __init__( self, *, password: Optional[str] = None, firewall_rules: Optional[List["FirewallRule"]] = None, **kwargs ): super(TransactionNodePropertiesUpdate, self).__init__(**kwargs) self.password = password self.firewall_rules = firewall_rules class BlockchainMemberPropertiesUpdate(TransactionNodePropertiesUpdate): """Update the payload of the blockchain member properties for a blockchain member. :param password: Sets the transaction node dns endpoint basic auth password. :type password: str :param firewall_rules: Gets or sets the firewall rules. :type firewall_rules: list[~azure.mgmt.blockchain.models.FirewallRule] :param consortium_management_account_password: Sets the managed consortium management account password. :type consortium_management_account_password: str """ _attribute_map = { 'password': {'key': 'password', 'type': 'str'}, 'firewall_rules': {'key': 'firewallRules', 'type': '[FirewallRule]'}, 'consortium_management_account_password': {'key': 'consortiumManagementAccountPassword', 'type': 'str'}, } def __init__( self, *, password: Optional[str] = None, firewall_rules: Optional[List["FirewallRule"]] = None, consortium_management_account_password: Optional[str] = None, **kwargs ): super(BlockchainMemberPropertiesUpdate, self).__init__(password=password, firewall_rules=firewall_rules, **kwargs) self.consortium_management_account_password = consortium_management_account_password class BlockchainMemberUpdate(msrest.serialization.Model): """Update the payload of the blockchain member which is exposed in the request/response of the resource provider. :param tags: A set of tags. Tags of the service which is a list of key value pairs that describes the resource. :type tags: dict[str, str] :param password: Sets the transaction node dns endpoint basic auth password. :type password: str :param firewall_rules: Gets or sets the firewall rules. :type firewall_rules: list[~azure.mgmt.blockchain.models.FirewallRule] :param consortium_management_account_password: Sets the managed consortium management account password. :type consortium_management_account_password: str """ _attribute_map = { 'tags': {'key': 'tags', 'type': '{str}'}, 'password': {'key': 'properties.password', 'type': 'str'}, 'firewall_rules': {'key': 'properties.firewallRules', 'type': '[FirewallRule]'}, 'consortium_management_account_password': {'key': 'properties.consortiumManagementAccountPassword', 'type': 'str'}, } def __init__( self, *, tags: Optional[Dict[str, str]] = None, password: Optional[str] = None, firewall_rules: Optional[List["FirewallRule"]] = None, consortium_management_account_password: Optional[str] = None, **kwargs ): super(BlockchainMemberUpdate, self).__init__(**kwargs) self.tags = tags self.password = password self.firewall_rules = firewall_rules self.consortium_management_account_password = <PASSWORD> class Consortium(msrest.serialization.Model): """Consortium payload. :param name: Gets or sets the blockchain member name. :type name: str :param protocol: Gets or sets the protocol for the consortium. Possible values include: "NotSpecified", "Parity", "Quorum", "Corda". :type protocol: str or ~azure.mgmt.blockchain.models.BlockchainProtocol """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'protocol': {'key': 'protocol', 'type': 'str'}, } def __init__( self, *, name: Optional[str] = None, protocol: Optional[Union[str, "BlockchainProtocol"]] = None, **kwargs ): super(Consortium, self).__init__(**kwargs) self.name = name self.protocol = protocol class ConsortiumCollection(msrest.serialization.Model): """Collection of the consortium payload. :param value: Gets or sets the collection of consortiums. :type value: list[~azure.mgmt.blockchain.models.Consortium] """ _attribute_map = { 'value': {'key': 'value', 'type': '[Consortium]'}, } def __init__( self, *, value: Optional[List["Consortium"]] = None, **kwargs ): super(ConsortiumCollection, self).__init__(**kwargs) self.value = value class ConsortiumMember(msrest.serialization.Model): """Consortium approval. :param name: Gets the consortium member name. :type name: str :param display_name: Gets the consortium member display name. :type display_name: str :param subscription_id: Gets the consortium member subscription id. :type subscription_id: str :param role: Gets the consortium member role. :type role: str :param status: Gets the consortium member status. :type status: str :param join_date: Gets the consortium member join date. :type join_date: ~datetime.datetime :param date_modified: Gets the consortium member modified date. :type date_modified: ~datetime.datetime """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'subscription_id': {'key': 'subscriptionId', 'type': 'str'}, 'role': {'key': 'role', 'type': 'str'}, 'status': {'key': 'status', 'type': 'str'}, 'join_date': {'key': 'joinDate', 'type': 'iso-8601'}, 'date_modified': {'key': 'dateModified', 'type': 'iso-8601'}, } def __init__( self, *, name: Optional[str] = None, display_name: Optional[str] = None, subscription_id: Optional[str] = None, role: Optional[str] = None, status: Optional[str] = None, join_date: Optional[datetime.datetime] = None, date_modified: Optional[datetime.datetime] = None, **kwargs ): super(ConsortiumMember, self).__init__(**kwargs) self.name = name self.display_name = display_name self.subscription_id = subscription_id self.role = role self.status = status self.join_date = join_date self.date_modified = date_modified class ConsortiumMemberCollection(msrest.serialization.Model): """Collection of consortium payload. :param value: Gets or sets the collection of consortiums. :type value: list[~azure.mgmt.blockchain.models.ConsortiumMember] :param next_link: Gets or sets the URL, that the client should use to fetch the next page (per server side paging). It's null for now, added for future use. :type next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[ConsortiumMember]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["ConsortiumMember"]] = None, next_link: Optional[str] = None, **kwargs ): super(ConsortiumMemberCollection, self).__init__(**kwargs) self.value = value self.next_link = next_link class FirewallRule(msrest.serialization.Model): """Ip range for firewall rules. :param rule_name: Gets or sets the name of the firewall rules. :type rule_name: str :param start_ip_address: Gets or sets the start IP address of the firewall rule range. :type start_ip_address: str :param end_ip_address: Gets or sets the end IP address of the firewall rule range. :type end_ip_address: str """ _attribute_map = { 'rule_name': {'key': 'ruleName', 'type': 'str'}, 'start_ip_address': {'key': 'startIpAddress', 'type': 'str'}, 'end_ip_address': {'key': 'endIpAddress', 'type': 'str'}, } def __init__( self, *, rule_name: Optional[str] = None, start_ip_address: Optional[str] = None, end_ip_address: Optional[str] = None, **kwargs ): super(FirewallRule, self).__init__(**kwargs) self.rule_name = rule_name self.start_ip_address = start_ip_address self.end_ip_address = end_ip_address class NameAvailability(msrest.serialization.Model): """Name availability payload which is exposed in the response of the resource provider. :param name_available: Gets or sets the value indicating whether the name is available. :type name_available: bool :param message: Gets or sets the message. :type message: str :param reason: Gets or sets the name availability reason. Possible values include: "NotSpecified", "AlreadyExists", "Invalid". :type reason: str or ~azure.mgmt.blockchain.models.NameAvailabilityReason """ _attribute_map = { 'name_available': {'key': 'nameAvailable', 'type': 'bool'}, 'message': {'key': 'message', 'type': 'str'}, 'reason': {'key': 'reason', 'type': 'str'}, } def __init__( self, *, name_available: Optional[bool] = None, message: Optional[str] = None, reason: Optional[Union[str, "NameAvailabilityReason"]] = None, **kwargs ): super(NameAvailability, self).__init__(**kwargs) self.name_available = name_available self.message = message self.reason = reason class NameAvailabilityRequest(msrest.serialization.Model): """Name availability request payload which is exposed in the request of the resource provider. :param name: Gets or sets the name to check. :type name: str :param type: Gets or sets the type of the resource to check. :type type: str """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__( self, *, name: Optional[str] = None, type: Optional[str] = None, **kwargs ): super(NameAvailabilityRequest, self).__init__(**kwargs) self.name = name self.type = type class OperationResult(msrest.serialization.Model): """Operation result payload which is exposed in the response of the resource provider. :param name: Gets or sets the operation name. :type name: str :param start_time: Gets or sets the operation start time. :type start_time: ~datetime.datetime :param end_time: Gets or sets the operation end time. :type end_time: ~datetime.datetime """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'start_time': {'key': 'startTime', 'type': 'iso-8601'}, 'end_time': {'key': 'endTime', 'type': 'iso-8601'}, } def __init__( self, *, name: Optional[str] = None, start_time: Optional[datetime.datetime] = None, end_time: Optional[datetime.datetime] = None, **kwargs ): super(OperationResult, self).__init__(**kwargs) self.name = name self.start_time = start_time self.end_time = end_time class ResourceProviderOperation(msrest.serialization.Model): """Operation payload which is exposed in the response of the resource provider. :param origin: Gets or sets the origin. :type origin: str :param name: Gets or sets the operation name. :type name: str :param is_data_action: Gets or sets a value indicating whether the operation is a data action or not. :type is_data_action: bool :param display: Gets or sets operation display. :type display: ~azure.mgmt.blockchain.models.ResourceProviderOperationDisplay """ _attribute_map = { 'origin': {'key': 'origin', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'is_data_action': {'key': 'isDataAction', 'type': 'bool'}, 'display': {'key': 'display', 'type': 'ResourceProviderOperationDisplay'}, } def __init__( self, *, origin: Optional[str] = None, name: Optional[str] = None, is_data_action: Optional[bool] = None, display: Optional["ResourceProviderOperationDisplay"] = None, **kwargs ): super(ResourceProviderOperation, self).__init__(**kwargs) self.origin = origin self.name = name self.is_data_action = is_data_action self.display = display class ResourceProviderOperationCollection(msrest.serialization.Model): """Collection of operation payload which is exposed in the response of the resource provider. :param value: Gets or sets the collection of operations. :type value: list[~azure.mgmt.blockchain.models.ResourceProviderOperation] :param next_link: Gets or sets the URL, that the client should use to fetch the next page (per server side paging). It's null for now, added for future use. :type next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[ResourceProviderOperation]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["ResourceProviderOperation"]] = None, next_link: Optional[str] = None, **kwargs ): super(ResourceProviderOperationCollection, self).__init__(**kwargs) self.value = value self.next_link = next_link class ResourceProviderOperationDisplay(msrest.serialization.Model): """Operation display payload which is exposed in the response of the resource provider. :param provider: Gets or sets the name of the provider for display purposes. :type provider: str :param resource: Gets or sets the name of the resource type for display purposes. :type resource: str :param operation: Gets or sets the name of the operation for display purposes. :type operation: str :param description: Gets or sets the description of the provider for display purposes. :type description: str """ _attribute_map = { 'provider': {'key': 'provider', 'type': 'str'}, 'resource': {'key': 'resource', 'type': 'str'}, 'operation': {'key': 'operation', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, } def __init__( self, *, provider: Optional[str] = None, resource: Optional[str] = None, operation: Optional[str] = None, description: Optional[str] = None, **kwargs ): super(ResourceProviderOperationDisplay, self).__init__(**kwargs) self.provider = provider self.resource = resource self.operation = operation self.description = description class ResourceTypeSku(msrest.serialization.Model): """Resource type Sku. :param resource_type: Gets or sets the resource type. :type resource_type: str :param skus: Gets or sets the Skus. :type skus: list[~azure.mgmt.blockchain.models.SkuSetting] """ _attribute_map = { 'resource_type': {'key': 'resourceType', 'type': 'str'}, 'skus': {'key': 'skus', 'type': '[SkuSetting]'}, } def __init__( self, *, resource_type: Optional[str] = None, skus: Optional[List["SkuSetting"]] = None, **kwargs ): super(ResourceTypeSku, self).__init__(**kwargs) self.resource_type = resource_type self.skus = skus class ResourceTypeSkuCollection(msrest.serialization.Model): """Collection of the resource type Sku. :param value: Gets or sets the collection of resource type Sku. :type value: list[~azure.mgmt.blockchain.models.ResourceTypeSku] """ _attribute_map = { 'value': {'key': 'value', 'type': '[ResourceTypeSku]'}, } def __init__( self, *, value: Optional[List["ResourceTypeSku"]] = None, **kwargs ): super(ResourceTypeSkuCollection, self).__init__(**kwargs) self.value = value class Sku(msrest.serialization.Model): """Blockchain member Sku in payload. :param name: Gets or sets Sku name. :type name: str :param tier: Gets or sets Sku tier. :type tier: str """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'tier': {'key': 'tier', 'type': 'str'}, } def __init__( self, *, name: Optional[str] = None, tier: Optional[str] = None, **kwargs ): super(Sku, self).__init__(**kwargs) self.name = name self.tier = tier class SkuSetting(msrest.serialization.Model): """Sku Setting. :param name: Gets or sets the Sku name. :type name: str :param tier: Gets or sets the Sku tier. :type tier: str :param locations: Gets or sets the locations. :type locations: list[str] :param required_features: Gets or sets the required features. :type required_features: list[str] """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'tier': {'key': 'tier', 'type': 'str'}, 'locations': {'key': 'locations', 'type': '[str]'}, 'required_features': {'key': 'requiredFeatures', 'type': '[str]'}, } def __init__( self, *, name: Optional[str] = None, tier: Optional[str] = None, locations: Optional[List[str]] = None, required_features: Optional[List[str]] = None, **kwargs ): super(SkuSetting, self).__init__(**kwargs) self.name = name self.tier = tier self.locations = locations self.required_features = required_features class TransactionNode(Resource): """Payload of the transaction node which is the request/response of the resource provider. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id of the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the service - e.g. "Microsoft.Blockchain". :vartype type: str :param location: Gets or sets the transaction node location. :type location: str :ivar provisioning_state: Gets or sets the blockchain member provision state. Possible values include: "NotSpecified", "Updating", "Deleting", "Succeeded", "Failed". :vartype provisioning_state: str or ~azure.mgmt.blockchain.models.NodeProvisioningState :ivar dns: Gets or sets the transaction node dns endpoint. :vartype dns: str :ivar public_key: Gets or sets the transaction node public key. :vartype public_key: str :ivar user_name: Gets or sets the transaction node dns endpoint basic auth user name. :vartype user_name: str :param password: Sets the transaction node dns endpoint basic auth password. :type password: str :param firewall_rules: Gets or sets the firewall rules. :type firewall_rules: list[~azure.mgmt.blockchain.models.FirewallRule] """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'provisioning_state': {'readonly': True}, 'dns': {'readonly': True}, 'public_key': {'readonly': True}, 'user_name': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'dns': {'key': 'properties.dns', 'type': 'str'}, 'public_key': {'key': 'properties.publicKey', 'type': 'str'}, 'user_name': {'key': 'properties.userName', 'type': 'str'}, 'password': {'key': 'properties.password', 'type': 'str'}, 'firewall_rules': {'key': 'properties.firewallRules', 'type': '[FirewallRule]'}, } def __init__( self, *, location: Optional[str] = None, password: Optional[str] = None, firewall_rules: Optional[List["FirewallRule"]] = None, **kwargs ): super(TransactionNode, self).__init__(**kwargs) self.location = location self.provisioning_state = None self.dns = None self.public_key = None self.user_name = None self.password = password self.firewall_rules = firewall_rules class TransactionNodeCollection(msrest.serialization.Model): """Collection of transaction node payload which is exposed in the request/response of the resource provider. :param value: Gets or sets the collection of transaction nodes. :type value: list[~azure.mgmt.blockchain.models.TransactionNode] :param next_link: Gets or sets the URL, that the client should use to fetch the next page (per server side paging). It's null for now, added for future use. :type next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[TransactionNode]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["TransactionNode"]] = None, next_link: Optional[str] = None, **kwargs ): super(TransactionNodeCollection, self).__init__(**kwargs) self.value = value self.next_link = next_link class TransactionNodeUpdate(msrest.serialization.Model): """Update the transaction node payload which is exposed in the request/response of the resource provider. :param password: Sets the transaction node dns endpoint basic auth password. :type password: str :param firewall_rules: Gets or sets the firewall rules. :type firewall_rules: list[~azure.mgmt.blockchain.models.FirewallRule] """ _attribute_map = { 'password': {'key': 'properties.password', 'type': 'str'}, 'firewall_rules': {'key': 'properties.firewallRules', 'type': '[FirewallRule]'}, } def __init__( self, *, password: Optional[str] = None, firewall_rules: Optional[List["FirewallRule"]] = None, **kwargs ): super(TransactionNodeUpdate, self).__init__(**kwargs) self.password = password self.firewall_rules = firewall_rules
pclpy/__init__.py
sweptlaser/pclpy
293
11159204
<filename>pclpy/__init__.py import platform import pclpy.pcl as pcl from pclpy.io.functions import read from pclpy.io.las import read as read_las from pclpy.io.las import write as write_las from pclpy.api import ( extract_clusters, compute_normals, region_growing, moving_least_squares, mls, radius_outlier_removal, ror, octree_voxel_downsample, fit, )
td4a/controllers/schema.py
mihai-satmarean/td4a
171
11159231
""" /retrieve """ import json from flask import current_app as app from flask import request, jsonify, Blueprint from td4a.models.exception_handler import ExceptionHandler, HandledException from td4a.models.sort_commented_map import sort_commented_map from td4a.models.td4ayaml import Td4aYaml import genson api_schema = Blueprint('api_schema', __name__) # pylint: disable=invalid-name @ExceptionHandler def schema(data, typ): """ Build schema from data """ _ = typ yaml = Td4aYaml() obj_data = yaml.load(data['p1']) json_schema = genson.Schema() json_schema.add_object(obj_data) schema_dict = json_schema.to_dict() schema_yaml = yaml.load(yaml.dump(schema_dict)) sorted_schema_yaml = sort_commented_map(commented_map=schema_yaml) sorted_schema_string = yaml.dump(sorted_schema_yaml) return sorted_schema_string @api_schema.route('/schema', methods=['POST']) def rest_schema(): """ Build a schema for data """ try: payload = request.json response = schema(data=payload, typ="data") return jsonify({"p2": response}) except HandledException as error: return jsonify(error.json())
hybrik/version.py
Jeff-sjtu/HybrIK
287
11159269
<filename>hybrik/version.py<gh_stars>100-1000 # GENERATED VERSION FILE # TIME: Mon Apr 5 16:07:46 2021 __version__ = '0.1.0+c9f82ae' short_version = '0.1.0'
solutions/problem_046.py
ksvr444/daily-coding-problem
1,921
11159272
def is_palindrome(s1): return s1 == s1[::-1] def get_longest_palindrome_substring(s): if not s or is_palindrome(s): return s s1 = get_longest_palindrome_substring(s[1:]) s2 = get_longest_palindrome_substring(s[:-1]) return s1 if len(s1) >= len(s2) else s2 assert get_longest_palindrome_substring("aabcdcb") == "bcdcb" assert get_longest_palindrome_substring("bananas") == "anana"
flowtorch/nn/made.py
sankethvedula/flowtorch
207
11159276
<reponame>sankethvedula/flowtorch # Copyright (c) Meta Platforms, Inc from typing import Sequence, Tuple import torch import torch.nn as nn from torch.nn import functional as F def sample_mask_indices( input_dim: int, hidden_dim: int, simple: bool = True ) -> torch.Tensor: """ Samples the indices assigned to hidden units during the construction of MADE masks :param input_dim: the dimensionality of the input variable :param hidden_dim: the dimensionality of the hidden layer :param simple: True to space fractional indices by rounding to nearest int, false round randomly """ indices = torch.linspace(1, input_dim, steps=hidden_dim, device="cpu").to( torch.Tensor().device ) if simple: # Simple procedure tries to space fractional indices evenly by rounding # to nearest int return torch.round(indices) else: # "Non-simple" procedure creates fractional indices evenly then rounds # at random ints = indices.floor() ints += torch.bernoulli(indices - ints) return ints def create_mask( input_dim: int, context_dim: int, hidden_dims: Sequence[int], permutation: torch.LongTensor, output_multiplier: int, ) -> Tuple[Sequence[torch.Tensor], torch.Tensor]: """ Creates MADE masks for a conditional distribution :param input_dim: the dimensionality of the input variable :param context_dim: the dimensionality of the variable that is conditioned on (for conditional densities) :param hidden_dims: the dimensionality of the hidden layers(s) :param permutation: the order of the input variables :param output_multipliers: tiles the output (e.g. for when a separate mean and scale parameter are desired) """ # Create mask indices for input, hidden layers, and final layer # We use 0 to refer to the elements of the variable being conditioned on, # and range(1:(D_latent+1)) for the input variable var_index = torch.empty(permutation.shape, dtype=torch.get_default_dtype()) var_index[permutation] = torch.arange(input_dim, dtype=torch.get_default_dtype()) # Create the indices that are assigned to the neurons input_indices = torch.cat((torch.zeros(context_dim), 1 + var_index)) # For conditional MADE, introduce a 0 index that all the conditioned # variables are connected to as per Paige and Wood (2016) (see below) if context_dim > 0: hidden_indices = [sample_mask_indices(input_dim, h) - 1 for h in hidden_dims] else: hidden_indices = [sample_mask_indices(input_dim - 1, h) for h in hidden_dims] # *** TODO: Fix this line *** output_indices = ( (var_index + 1).unsqueeze(-1).repeat(1, output_multiplier).reshape(-1) ) # Create mask from input to output for the skips connections mask_skip = (output_indices.unsqueeze(-1) > input_indices.unsqueeze(0)).type_as( var_index ) # Create mask from input to first hidden layer, and between subsequent # hidden layers masks = [ (hidden_indices[0].unsqueeze(-1) >= input_indices.unsqueeze(0)).type_as( var_index ) ] for i in range(1, len(hidden_dims)): masks.append( ( hidden_indices[i].unsqueeze(-1) >= hidden_indices[i - 1].unsqueeze(0) ).type_as(var_index) ) # Create mask from last hidden layer to output layer masks.append( (output_indices.unsqueeze(-1) > hidden_indices[-1].unsqueeze(0)).type_as( var_index ) ) return masks, mask_skip class MaskedLinear(nn.Linear): """ A linear mapping with a given mask on the weights (arbitrary bias) :param in_features: the number of input features :param out_features: the number of output features :param mask: the mask to apply to the in_features x out_features weight matrix :param bias: whether or not `MaskedLinear` should include a bias term. defaults to `True` """ def __init__( self, in_features: int, out_features: int, mask: torch.Tensor, bias: bool = True ) -> None: super().__init__(in_features, out_features, bias) self.register_buffer("mask", mask.data) def forward(self, _input: torch.Tensor) -> torch.Tensor: masked_weight = self.weight * self.mask return F.linear(_input, masked_weight, self.bias)
viewer_states/qLib_camera_zoom_vertigo_ql_dop.py
JosephSilvermanArt/qLib
572
11159316
import hou import qLibCameraZoomVertigo def createViewerStateTemplate(): state_name = "qLib::camera_zoom_vertigo_ql_dop" state_label = "Camera Zoom/Vertigo (dop) [qL]" template = hou.ViewerStateTemplate( state_name, state_label, hou.dopNodeTypeCategory(), #contexts = [ hou.sopNodeTypeCategory(), hou.dopNodeTypeCategory(), hou.lopNodeTypeCategory(), ], ) template.bindFactory(qLibCameraZoomVertigo.State) return template
venv/lib/python3.8/site-packages/kivy/tests/test_uix_bubble.py
felipesch92/projeto_kivy
13,889
11159317
<filename>venv/lib/python3.8/site-packages/kivy/tests/test_uix_bubble.py import pytest @pytest.mark.parametrize('prop_name', ( '_fills_row_first', '_fills_from_left_to_right', '_fills_from_top_to_bottom', )) def test_a_certain_properties_from_the_super_class_are_overwritten(prop_name): from kivy.uix.bubble import Bubble from kivy.uix.gridlayout import GridLayout assert issubclass(Bubble, GridLayout) assert getattr(Bubble, prop_name) is not getattr(GridLayout, prop_name) @pytest.mark.parametrize('orientation', ('vertical', 'horizontal')) def test_always_lr_tb(orientation): from kivy.uix.bubble import Bubble b = Bubble(orientation=orientation) assert b._fills_row_first assert b._fills_from_left_to_right assert b._fills_from_top_to_bottom
keyring/credentials.py
davegaeddert/keyring
834
11159362
import os import abc class Credential(metaclass=abc.ABCMeta): """Abstract class to manage credentials""" @abc.abstractproperty def username(self): return None @abc.abstractproperty def password(self): return None class SimpleCredential(Credential): """Simple credentials implementation""" def __init__(self, username, password): self._username = username self._password = password @property def username(self): return self._username @property def password(self): return self._password class EnvironCredential(Credential): """ Source credentials from environment variables. Actual sourcing is deferred until requested. Supports comparison by equality. >>> e1 = EnvironCredential('a', 'b') >>> e2 = EnvironCredential('a', 'b') >>> e3 = EnvironCredential('a', 'c') >>> e1 == e2 True >>> e2 == e3 False """ def __init__(self, user_env_var, pwd_env_var): self.user_env_var = user_env_var self.pwd_env_var = pwd_env_var def __eq__(self, other: object) -> bool: return vars(self) == vars(other) def _get_env(self, env_var): """Helper to read an environment variable""" value = os.environ.get(env_var) if not value: raise ValueError('Missing environment variable:%s' % env_var) return value @property def username(self): return self._get_env(self.user_env_var) @property def password(self): return self._get_env(self.pwd_env_var)
evosax/experimental/subpops/meta.py
RobertTLange/evosax
102
11159363
<reponame>RobertTLange/evosax import jax import jax.numpy as jnp from typing import Optional, Tuple, List import chex from functools import partial from .batch import BatchStrategy from ... import Strategies class MetaStrategy(BatchStrategy): def __init__( self, meta_strategy_name: str, inner_strategy_name: str, meta_params: List[str], num_dims: int, popsize: int, num_subpops: int, meta_strategy_kwargs: dict = {}, inner_strategy_kwargs: dict = {}, communication: str = "independent", n_devices: Optional[int] = None, ): # Initialize the batch strategy - subpops of inner strategies super().__init__( inner_strategy_name, num_dims, popsize, num_subpops, inner_strategy_kwargs, communication, n_devices, ) self.meta_strategy_name = meta_strategy_name self.meta_params = meta_params self.num_meta_dims = len(self.meta_params) self.meta_strategy = Strategies[self.meta_strategy_name]( popsize=self.num_subpops, num_dims=self.num_meta_dims, **meta_strategy_kwargs ) @property def default_params_meta(self) -> chex.ArrayTree: """Return default parameters of meta-evolution strategy.""" base_params = self.meta_strategy.default_params # Copy over default parameters for init min/init max init_val = [] for k in self.meta_params: init_val.append(self.strategy.default_params[k]) base_params["init_min"] = jnp.array(init_val) base_params["init_max"] = jnp.array(init_val) return base_params @partial(jax.jit, static_argnums=(0,)) def ask_meta( self, rng: chex.PRNGKey, meta_state: chex.ArrayTree, meta_params: chex.ArrayTree, inner_params: chex.ArrayTree, ) -> Tuple[chex.Array, chex.ArrayTree]: """`ask` for meta-parameters of different subpopulations.""" meta_x, meta_state = self.meta_strategy.ask( rng, meta_state, meta_params ) meta_x = meta_x.reshape(-1, self.num_meta_dims) for i, k in enumerate(self.meta_params): inner_params[k] = meta_x[:, i] return inner_params, meta_state @partial(jax.jit, static_argnums=(0,)) def initialize_meta( self, rng: chex.PRNGKey, meta_params: chex.ArrayTree ) -> chex.ArrayTree: """`initialize` the meta-evolution strategy.""" return self.meta_strategy.initialize(rng, meta_params) @partial(jax.jit, static_argnums=(0,)) def tell_meta( self, inner_params: chex.ArrayTree, fitness: chex.Array, meta_state: chex.ArrayTree, meta_params: chex.ArrayTree, ) -> chex.ArrayTree: """`tell` performance data for meta-strategy state update.""" # TODO: Default - mean subpop fitness -> more flexible (min/max/median) batch_fitness = fitness.reshape(self.num_subpops, self.sub_popsize) meta_fitness = batch_fitness.mean(axis=1) # Reconstruct meta_x for dict of inner params meta_x = [] for i, k in enumerate(self.meta_params): meta_x.append(inner_params[k].reshape(-1, 1)) meta_x = jnp.concatenate(meta_x, axis=1) # Update the meta strategy meta_state = self.meta_strategy.tell( meta_x, meta_fitness, meta_state, meta_params ) return meta_state
opendatasets/utils/archive.py
LippDas/opendatasets
167
11159381
import os import tarfile import zipfile import gzip def _is_tarxz(filename): return filename.endswith(".tar.xz") def _is_tar(filename): return filename.endswith(".tar") def _is_targz(filename): return filename.endswith(".tar.gz") def _is_tgz(filename): return filename.endswith(".tgz") def _is_gzip(filename): return filename.endswith(".gz") and not filename.endswith(".tar.gz") def _is_zip(filename): return filename.endswith(".zip") def extract_archive(from_path, to_path=None, remove_finished=False, dry_run=False): print("Extracting archive " + from_path + " to " + to_path) if dry_run: print("This is a dry run, skipping...") return if to_path is None: to_path = os.path.dirname(from_path) if _is_tar(from_path): with tarfile.open(from_path, 'r') as tar: tar.extractall(path=to_path) elif _is_targz(from_path) or _is_tgz(from_path): with tarfile.open(from_path, 'r:gz') as tar: tar.extractall(path=to_path) elif _is_tarxz(from_path): with tarfile.open(from_path, 'r:xz') as tar: tar.extractall(path=to_path) elif _is_gzip(from_path): to_path = os.path.join(to_path, os.path.splitext( os.path.basename(from_path))[0]) with open(to_path, "wb") as out_f, gzip.GzipFile(from_path) as zip_f: out_f.write(zip_f.read()) elif _is_zip(from_path): with zipfile.ZipFile(from_path, 'r') as z: z.extractall(to_path) else: raise ValueError("Extraction of {} not supported".format(from_path)) if remove_finished: os.remove(from_path)
examples/vm_scheduling/rule_based_algorithm/rule_based_algorithm.py
yangboz/maro
598
11159407
<filename>examples/vm_scheduling/rule_based_algorithm/rule_based_algorithm.py<gh_stars>100-1000 import abc from maro.simulator import Env from maro.simulator.scenarios.vm_scheduling import AllocateAction, DecisionPayload class RuleBasedAlgorithm(object): __metaclass__ = abc.ABCMeta @abc.abstractmethod def allocate_vm(self, decision_event: DecisionPayload, env: Env) -> AllocateAction: """This method will determine allocate which PM to the current VM. """ pass
tests/test_utilities/test_csvjoin.py
Bonifacio2/csvkit
3,239
11159424
#!/usr/bin/env python import sys try: from mock import patch except ImportError: from unittest.mock import patch from csvkit.utilities.csvjoin import CSVJoin, launch_new_instance from tests.utils import CSVKitTestCase, EmptyFileTests class TestCSVJoin(CSVKitTestCase, EmptyFileTests): Utility = CSVJoin default_args = ['examples/dummy.csv', '-'] def test_launch_new_instance(self): with patch.object(sys, 'argv', [self.Utility.__name__.lower(), 'examples/join_a.csv', 'examples/join_b.csv']): launch_new_instance() def test_sequential(self): output = self.get_output_as_io(['examples/join_a.csv', 'examples/join_b.csv']) self.assertEqual(len(output.readlines()), 4) def test_inner(self): output = self.get_output_as_io(['-c', 'a', 'examples/join_a.csv', 'examples/join_b.csv']) self.assertEqual(len(output.readlines()), 3) def test_left(self): output = self.get_output_as_io(['-c', 'a', '--left', 'examples/join_a.csv', 'examples/join_b.csv']) self.assertEqual(len(output.readlines()), 5) def test_right(self): output = self.get_output_as_io(['-c', 'a', '--right', 'examples/join_a.csv', 'examples/join_b.csv']) self.assertEqual(len(output.readlines()), 4) def test_outer(self): output = self.get_output_as_io(['-c', 'a', '--outer', 'examples/join_a.csv', 'examples/join_b.csv']) self.assertEqual(len(output.readlines()), 6) def test_left_short_columns(self): output = self.get_output_as_io(['-c', 'a', 'examples/join_a_short.csv', 'examples/join_b.csv']) with open('examples/join_short.csv') as f: self.assertEqual(output.readlines(), f.readlines()) def test_single(self): self.assertRows(['examples/dummy.csv', '--no-inference'], [ ['a', 'b', 'c'], ['1', '2', '3'], ]) def test_no_blanks(self): self.assertRows(['examples/blanks.csv', 'examples/blanks.csv'], [ ['a', 'b', 'c', 'd', 'e', 'f', 'a2', 'b2', 'c2', 'd2', 'e2', 'f2'], ['', '', '', '', '', '', '', '', '', '', '', ''], ]) def test_blanks(self): self.assertRows(['--blanks', 'examples/blanks.csv', 'examples/blanks.csv'], [ ['a', 'b', 'c', 'd', 'e', 'f', 'a2', 'b2', 'c2', 'd2', 'e2', 'f2'], ['', 'NA', 'N/A', 'NONE', 'NULL', '.', '', 'NA', 'N/A', 'NONE', 'NULL', '.'], ]) def test_no_header_row(self): output = self.get_output_as_io( ['-c', '1', '--no-header-row', 'examples/join_a.csv', 'examples/join_no_header_row.csv']) self.assertEqual(len(output.readlines()), 3) def test_no_inference(self): self.assertRows(['--no-inference', 'examples/join_a.csv', 'examples/join_short.csv'], [ ['a', 'b', 'c', 'a2', 'b2', 'c2', 'b2_2', 'c2_2'], ['1', 'b', 'c', '1', 'b', '', 'b', 'c'], ['2', 'b', 'c', '1', 'b', '', 'b', 'c'], ['3', 'b', 'c', '', '', '', '', ''], ]) def test_sniff_limit_no_limit(self): self.assertRows(['examples/join_a.csv', 'examples/sniff_limit.csv'], [ ['a', 'b', 'c', 'a2', 'b2', 'c2'], ['1', 'b', 'c', 'True', '2', '3'], ['2', 'b', 'c', '', '', ''], ['3', 'b', 'c', '', '', ''], ]) def test_sniff_limit_zero_limit(self): self.assertRows(['--snifflimit', '0', 'examples/join_a.csv', 'examples/sniff_limit.csv'], [ ['a', 'b', 'c', 'a;b;c'], ['1', 'b', 'c', '1;2;3'], ['2', 'b', 'c', ''], ['3', 'b', 'c', ''], ])
Python/Syntax/Concatenation.py
piovezan/SOpt
148
11159439
<gh_stars>100-1000 variavel = input('informe um valor') print('{' + variavel + '}') #https://pt.stackoverflow.com/q/444281/101
examples/pytorch/compGCN/data_loader.py
ketyi/dgl
9,516
11159464
import torch from torch.utils.data import Dataset, DataLoader import numpy as np import dgl from collections import defaultdict as ddict from ordered_set import OrderedSet class TrainDataset(Dataset): """ Training Dataset class. Parameters ---------- triples: The triples used for training the model num_ent: Number of entities in the knowledge graph lbl_smooth: Label smoothing Returns ------- A training Dataset class instance used by DataLoader """ def __init__(self, triples, num_ent, lbl_smooth): self.triples = triples self.num_ent = num_ent self.lbl_smooth = lbl_smooth self.entities = np.arange(self.num_ent, dtype=np.int32) def __len__(self): return len(self.triples) def __getitem__(self, idx): ele = self.triples[idx] triple, label = torch.LongTensor(ele['triple']), np.int32(ele['label']) trp_label = self.get_label(label) #label smoothing if self.lbl_smooth != 0.0: trp_label = (1.0 - self.lbl_smooth) * trp_label + (1.0 / self.num_ent) return triple, trp_label @staticmethod def collate_fn(data): triples = [] labels = [] for triple, label in data: triples.append(triple) labels.append(label) triple = torch.stack(triples, dim=0) trp_label = torch.stack(labels, dim=0) return triple, trp_label #for edges that exist in the graph, the entry is 1.0, otherwise the entry is 0.0 def get_label(self, label): y = np.zeros([self.num_ent], dtype=np.float32) for e2 in label: y[e2] = 1.0 return torch.FloatTensor(y) class TestDataset(Dataset): """ Evaluation Dataset class. Parameters ---------- triples: The triples used for evaluating the model num_ent: Number of entities in the knowledge graph Returns ------- An evaluation Dataset class instance used by DataLoader for model evaluation """ def __init__(self, triples, num_ent): self.triples = triples self.num_ent = num_ent def __len__(self): return len(self.triples) def __getitem__(self, idx): ele = self.triples[idx] triple, label = torch.LongTensor(ele['triple']), np.int32(ele['label']) label = self.get_label(label) return triple, label @staticmethod def collate_fn(data): triples = [] labels = [] for triple, label in data: triples.append(triple) labels.append(label) triple = torch.stack(triples, dim=0) label = torch.stack(labels, dim=0) return triple, label #for edges that exist in the graph, the entry is 1.0, otherwise the entry is 0.0 def get_label(self, label): y = np.zeros([self.num_ent], dtype=np.float32) for e2 in label: y[e2] = 1.0 return torch.FloatTensor(y) class Data(object): def __init__(self, dataset, lbl_smooth, num_workers, batch_size): """ Reading in raw triples and converts it into a standard format. Parameters ---------- dataset: The name of the dataset lbl_smooth: Label smoothing num_workers: Number of workers of dataloaders batch_size: Batch size of dataloaders Returns ------- self.ent2id: Entity to unique identifier mapping self.rel2id: Relation to unique identifier mapping self.id2ent: Inverse mapping of self.ent2id self.id2rel: Inverse mapping of self.rel2id self.num_ent: Number of entities in the knowledge graph self.num_rel: Number of relations in the knowledge graph self.g: The dgl graph constucted from the edges in the traing set and all the entities in the knowledge graph self.data['train']: Stores the triples corresponding to training dataset self.data['valid']: Stores the triples corresponding to validation dataset self.data['test']: Stores the triples corresponding to test dataset self.data_iter: The dataloader for different data splits """ self.dataset = dataset self.lbl_smooth = lbl_smooth self.num_workers = num_workers self.batch_size = batch_size #read in raw data and get mappings ent_set, rel_set = OrderedSet(), OrderedSet() for split in ['train', 'test', 'valid']: for line in open('./{}/{}.txt'.format(self.dataset, split)): sub, rel, obj = map(str.lower, line.strip().split('\t')) ent_set.add(sub) rel_set.add(rel) ent_set.add(obj) self.ent2id = {ent: idx for idx, ent in enumerate(ent_set)} self.rel2id = {rel: idx for idx, rel in enumerate(rel_set)} self.rel2id.update({rel+'_reverse': idx+len(self.rel2id) for idx, rel in enumerate(rel_set)}) self.id2ent = {idx: ent for ent, idx in self.ent2id.items()} self.id2rel = {idx: rel for rel, idx in self.rel2id.items()} self.num_ent = len(self.ent2id) self.num_rel = len(self.rel2id) // 2 #read in ids of subjects, relations, and objects for train/test/valid self.data = ddict(list) #stores the triples sr2o = ddict(set) #The key of sr20 is (subject, relation), and the items are all the successors following (subject, relation) src=[] dst=[] rels = [] inver_src = [] inver_dst = [] inver_rels = [] for split in ['train', 'test', 'valid']: for line in open('./{}/{}.txt'.format(self.dataset, split)): sub, rel, obj = map(str.lower, line.strip().split('\t')) sub_id, rel_id, obj_id = self.ent2id[sub], self.rel2id[rel], self.ent2id[obj] self.data[split].append((sub_id, rel_id, obj_id)) if split == 'train': sr2o[(sub_id, rel_id)].add(obj_id) sr2o[(obj_id, rel_id+self.num_rel)].add(sub_id) #append the reversed edges src.append(sub_id) dst.append(obj_id) rels.append(rel_id) inver_src.append(obj_id) inver_dst.append(sub_id) inver_rels.append(rel_id+self.num_rel) #construct dgl graph src = src + inver_src dst = dst + inver_dst rels = rels + inver_rels self.g = dgl.graph((src, dst), num_nodes=self.num_ent) self.g.edata['etype'] = torch.Tensor(rels).long() #identify in and out edges in_edges_mask = [True] * (self.g.num_edges()//2) + [False] * (self.g.num_edges()//2) out_edges_mask = [False] * (self.g.num_edges()//2) + [True] * (self.g.num_edges()//2) self.g.edata['in_edges_mask'] = torch.Tensor(in_edges_mask) self.g.edata['out_edges_mask'] = torch.Tensor(out_edges_mask) #Prepare train/valid/test data self.data = dict(self.data) self.sr2o = {k: list(v) for k, v in sr2o.items()} #store only the train data for split in ['test', 'valid']: for sub, rel, obj in self.data[split]: sr2o[(sub, rel)].add(obj) sr2o[(obj, rel+self.num_rel)].add(sub) self.sr2o_all = {k: list(v) for k, v in sr2o.items()} #store all the data self.triples = ddict(list) for (sub, rel), obj in self.sr2o.items(): self.triples['train'].append({'triple':(sub, rel, -1), 'label': self.sr2o[(sub, rel)]}) for split in ['test', 'valid']: for sub, rel, obj in self.data[split]: rel_inv = rel + self.num_rel self.triples['{}_{}'.format(split, 'tail')].append({'triple': (sub, rel, obj), 'label': self.sr2o_all[(sub, rel)]}) self.triples['{}_{}'.format(split, 'head')].append({'triple': (obj, rel_inv, sub), 'label': self.sr2o_all[(obj, rel_inv)]}) self.triples = dict(self.triples) def get_train_data_loader(split, batch_size, shuffle=True): return DataLoader( TrainDataset(self.triples[split], self.num_ent, self.lbl_smooth), batch_size = batch_size, shuffle = shuffle, num_workers = max(0, self.num_workers), collate_fn = TrainDataset.collate_fn ) def get_test_data_loader(split, batch_size, shuffle=True): return DataLoader( TestDataset(self.triples[split], self.num_ent), batch_size = batch_size, shuffle = shuffle, num_workers = max(0, self.num_workers), collate_fn = TestDataset.collate_fn ) #train/valid/test dataloaders self.data_iter = { 'train': get_train_data_loader('train', self.batch_size), 'valid_head': get_test_data_loader('valid_head', self.batch_size), 'valid_tail': get_test_data_loader('valid_tail', self.batch_size), 'test_head': get_test_data_loader('test_head', self.batch_size), 'test_tail': get_test_data_loader('test_tail', self.batch_size), }
onmt/translate/__init__.py
qurrata111/OpenNMT-py
5,864
11159469
""" Modules for translation """ from onmt.translate.translator import Translator, GeneratorLM from onmt.translate.translation import Translation, TranslationBuilder from onmt.translate.beam_search import BeamSearch, GNMTGlobalScorer from onmt.translate.beam_search import BeamSearchLM from onmt.translate.decode_strategy import DecodeStrategy from onmt.translate.greedy_search import GreedySearch, GreedySearchLM from onmt.translate.penalties import PenaltyBuilder from onmt.translate.translation_server import TranslationServer, \ ServerModelError __all__ = ['Translator', 'Translation', 'BeamSearch', 'GNMTGlobalScorer', 'TranslationBuilder', 'PenaltyBuilder', 'TranslationServer', 'ServerModelError', "DecodeStrategy", "GreedySearch", "GreedySearchLM", "BeamSearchLM", "GeneratorLM"]
Filters/General/Testing/Python/TestFEDiscreteClipper2D.py
satya-arjunan/vtk8
1,755
11159471
#!/usr/bin/env python import vtk from vtk.util.misc import vtkGetDataRoot VTK_DATA_ROOT = vtkGetDataRoot() # Create the RenderWindow, Renderer and both Actors # ren1 = vtk.vtkRenderer() ren1.SetBackground(1,1,1) renWin = vtk.vtkRenderWindow() renWin.AddRenderer(ren1) iren = vtk.vtkRenderWindowInteractor() iren.SetRenderWindow(renWin) # Create synthetic image data VTK_SHORT = 4 img = vtk.vtkImageData() img.SetDimensions(6,5,1) img.AllocateScalars(VTK_SHORT,1) scalars = img.GetPointData().GetScalars() scalars.SetTuple1(0,0) scalars.SetTuple1(1,0) scalars.SetTuple1(2,0) scalars.SetTuple1(3,0) scalars.SetTuple1(4,0) scalars.SetTuple1(5,0) scalars.SetTuple1(6,0) scalars.SetTuple1(7,0) scalars.SetTuple1(8,0) scalars.SetTuple1(9,0) scalars.SetTuple1(10,0) scalars.SetTuple1(11,0) scalars.SetTuple1(12,0) scalars.SetTuple1(13,0) scalars.SetTuple1(14,0) scalars.SetTuple1(15,2) scalars.SetTuple1(16,4) scalars.SetTuple1(17,0) scalars.SetTuple1(18,0) scalars.SetTuple1(19,0) scalars.SetTuple1(20,1) scalars.SetTuple1(21,1) scalars.SetTuple1(22,3) scalars.SetTuple1(23,3) scalars.SetTuple1(24,0) scalars.SetTuple1(25,0) scalars.SetTuple1(26,3) scalars.SetTuple1(27,0) scalars.SetTuple1(28,0) scalars.SetTuple1(29,3) # Create the pipeline, extract some regions discrete = vtk.vtkDiscreteFlyingEdgesClipper2D() discrete.SetInputData(img) discrete.SetValue(0,1) discrete.SetValue(1,2) discrete.SetValue(2,3) discrete.SetValue(3,4) discrete.Update() # Clipped polygons are generated mapper = vtk.vtkPolyDataMapper() mapper.SetInputConnection(discrete.GetOutputPort()) mapper.SetScalarModeToUseCellData() mapper.SetScalarRange(1,4); actor = vtk.vtkActor() actor.SetMapper(mapper) # The image gridlines gridMapper = vtk.vtkDataSetMapper() gridMapper.SetInputData(img) gridMapper.ScalarVisibilityOff() gridActor = vtk.vtkActor() gridActor.SetMapper(gridMapper) gridActor.GetProperty().SetRepresentationToWireframe() gridActor.GetProperty().SetColor(0,0,1) ren1.AddActor(actor) ren1.AddActor(gridActor) renWin.Render() iren.Start()
examples/service/handlers/secondService.py
BSlience/fastweb
123
11159511
# coding:utf8 """generate by fasthrift""" from fastweb.service import ABLogic class secondServiceHandler(ABLogic): def sayHello(self): pass def getData(self): pass # coding:utf8 """generate by fasthrift""" from fastweb.service import ABLogic class secondServiceHandler(ABLogic): def sayHello(self): pass def getData(self): pass # coding:utf8 """generate by fasthrift""" from fastweb.service import ABLogic class secondServiceHandler(ABLogic): def sayHello(self): pass def getData(self): pass # coding:utf8 """generate by fasthrift""" from fastweb.service import ABLogic class secondServiceHandler(ABLogic): def sayHello(self): pass def getData(self): pass
tests/h/views/groups_test.py
pombredanne/h
2,103
11159515
<reponame>pombredanne/h from unittest import mock import pytest from h_matchers import Any from pyramid.httpexceptions import HTTPMovedPermanently from h.traversal.group import GroupContext from h.views import groups as views @pytest.mark.usefixtures("group_create_service", "handle_form_submission", "routes") class TestGroupCreateController: def test_get_renders_form(self, controller): controller.form = form_validating_to({}) result = controller.get() assert result == {"form": "valid form"} def test_post_calls_handle_form_submission( self, controller, handle_form_submission ): controller.post() handle_form_submission.assert_called_once_with( controller.request, controller.form, Any.function(), Any.function() ) def test_post_returns_handle_form_submission( self, controller, handle_form_submission ): assert controller.post() == handle_form_submission.return_value def test_post_creates_new_group_if_form_valid( self, controller, group_create_service, handle_form_submission, pyramid_config ): pyramid_config.testing_securitypolicy("ariadna") # If the form submission is valid then handle_form_submission() should # call on_success() with the appstruct. def call_on_success( # pylint: disable=unused-argument request, form, on_success, on_failure ): on_success({"name": "my_new_group", "description": "foobar"}) handle_form_submission.side_effect = call_on_success controller.post() assert group_create_service.create_private_group.call_args_list == [ mock.call(name="my_new_group", userid="ariadna", description="foobar") ] def test_post_redirects_if_form_valid( self, controller, handle_form_submission, matchers, group_create_service, factories, ): group = factories.Group() group_create_service.create_private_group.return_value = group # If the form submission is valid then handle_form_submission() should # return the redirect that on_success() returns. def return_on_success( # pylint: disable=unused-argument request, form, on_success, on_failure ): return on_success({"name": "my_new_group"}) handle_form_submission.side_effect = return_on_success response = controller.post() assert response == matchers.Redirect303To(f"/g/{group.pubid}/{group.slug}") def test_post_does_not_create_group_if_form_invalid( self, controller, group_create_service, handle_form_submission ): # If the form submission is invalid then handle_form_submission() should # call on_failure(). def call_on_failure( # pylint: disable=unused-argument request, form, on_success, on_failure ): on_failure() handle_form_submission.side_effect = call_on_failure controller.post() assert not group_create_service.create_private_group.called def test_post_returns_template_data_if_form_invalid( self, controller, handle_form_submission ): # If the form submission is invalid then handle_form_submission() should # return the template data that on_failure() returns. def return_on_failure( # pylint: disable=unused-argument request, form, on_success, on_failure ): return on_failure() handle_form_submission.side_effect = return_on_failure assert controller.post() == {"form": controller.form.render.return_value} @pytest.fixture def controller(self, pyramid_request): return views.GroupCreateController(pyramid_request) @pytest.fixture def handle_form_submission(self, patch): return patch("h.views.groups.form.handle_form_submission") @pytest.mark.usefixtures("routes") class TestGroupEditController: def test_get_reads_group_properties(self, pyramid_request, group): pyramid_request.create_form.return_value = FakeForm() result = views.GroupEditController(GroupContext(group), pyramid_request).get() assert result == { "form": { "name": group.name, "description": group.description, }, "group_path": f"/g/{group.pubid}/{group.slug}", } def test_post_sets_group_properties( self, form_validating_to, pyramid_request, group ): controller = views.GroupEditController(GroupContext(group), pyramid_request) controller.form = form_validating_to( {"name": "New name", "description": "New description"} ) controller.post() assert group.name == "New name" assert group.description == "New description" @pytest.fixture def group(self, factories): return factories.Group(description="DESCRIPTION") @pytest.mark.usefixtures("routes") def test_read_noslug_redirects(pyramid_request, factories): group = factories.Group() with pytest.raises(HTTPMovedPermanently) as exc: views.read_noslug(GroupContext(group), pyramid_request) assert exc.value.location == f"/g/{group.pubid}/{group.slug}" class FakeForm: def set_appstruct(self, appstruct): self.appstruct = appstruct # pylint:disable=attribute-defined-outside-init def render(self): return self.appstruct def form_validating_to(appstruct): form = mock.Mock() form.validate.return_value = appstruct form.render.return_value = "valid form" return form @pytest.fixture def routes(pyramid_config): pyramid_config.add_route("group_read", "/g/{pubid}/{slug}")
1100-1200q/1184.py
rampup01/Leetcode
990
11159563
''' A bus has n stops numbered from 0 to n - 1 that form a circle. We know the distance between all pairs of neighboring stops where distance[i] is the distance between the stops number i and (i + 1) % n. The bus goes along both directions i.e. clockwise and counterclockwise. Return the shortest distance between the given start and destination stops. Example 1: Input: distance = [1,2,3,4], start = 0, destination = 1 Output: 1 Explanation: Distance between 0 and 1 is 1 or 9, minimum is 1. Example 2: Input: distance = [1,2,3,4], start = 0, destination = 2 Output: 3 Explanation: Distance between 0 and 2 is 3 or 7, minimum is 3. Example 3: Input: distance = [1,2,3,4], start = 0, destination = 3 Output: 4 Explanation: Distance between 0 and 3 is 6 or 4, minimum is 4. Constraints: 1 <= n <= 10^4 distance.length == n 0 <= start, destination < n 0 <= distance[i] <= 10^4 ''' class Solution(object): def distanceBetweenBusStops(self, distance, start, destination): """ :type distance: List[int] :type start: int :type destination: int :rtype: int """ start, destination = min(start, destination), max(start, destination) clock_dist = sum(distance[start:destination]) anti_clock_dist = sum(distance[:start]) + sum(distance[destination:]) return min(clock_dist, anti_clock_dist)
utils/util.py
shlomi-amitai/monorec
388
11159589
import json from functools import partial from pathlib import Path from datetime import datetime from itertools import repeat from collections import OrderedDict import torch from PIL import Image import numpy as np import torch.nn.functional as F def map_fn(batch, fn): if isinstance(batch, dict): for k in batch.keys(): batch[k] = map_fn(batch[k], fn) return batch elif isinstance(batch, list): return [map_fn(e, fn) for e in batch] else: return fn(batch) def to(data, device): if isinstance(data, dict): return {k: to(data[k], device) for k in data.keys()} elif isinstance(data, list): return [to(v, device) for v in data] else: return data.to(device) eps = 1e-6 def preprocess_roi(depth_prediction, depth_gt: torch.Tensor, roi): if roi is not None: if isinstance(depth_prediction, list): depth_prediction = [dpr[:, :, roi[0]:roi[1], roi[2]:roi[3]] for dpr in depth_prediction] else: depth_prediction = depth_prediction[:, :, roi[0]:roi[1], roi[2]:roi[3]] depth_gt = depth_gt[:, :, roi[0]:roi[1], roi[2]:roi[3]] return depth_prediction, depth_gt def get_absolute_depth(depth_prediction, depth_gt: torch.Tensor, max_distance=None): if max_distance is not None: if isinstance(depth_prediction, list): depth_prediction = [torch.clamp_min(dpr, 1 / max_distance) for dpr in depth_prediction] else: depth_prediction = torch.clamp_min(depth_prediction, 1 / max_distance) depth_gt = torch.clamp_min(depth_gt, 1 / max_distance) if isinstance(depth_prediction, list): return [1 / dpr for dpr in depth_prediction], 1 / depth_gt else: return 1 / depth_prediction, 1 / depth_gt def get_positive_depth(depth_prediction: torch.Tensor, depth_gt: torch.Tensor): if isinstance(depth_prediction, list): depth_prediction = [torch.nn.functional.relu(dpr) for dpr in depth_prediction] else: depth_prediction = torch.nn.functional.relu(depth_prediction) depth_gt = torch.nn.functional.relu(depth_gt) return depth_prediction, depth_gt def depthmap_to_points(depth: torch.Tensor, intrinsics: torch.Tensor, flatten=False): n, c, h, w = depth.shape grid = DepthWarper._create_meshgrid(h, w).expand(n, -1, -1, -1).to(depth.device) points = pixel2cam(depth, torch.inverse(intrinsics), grid) if not flatten: return points else: return points.view(n, h * w, 3) def save_frame_for_tsdf(dir: Path, index, keyframe, depth, pose, crop=None, min_distance=None, max_distance=None): if crop is not None: keyframe = keyframe[:, crop[0]:crop[1], crop[2]:crop[3]] depth = depth[crop[0]:crop[1], crop[2]:crop[3]] keyframe = ((keyframe + .5) * 255).to(torch.uint8).permute(1, 2, 0) depth = (1 / depth * 100).to(torch.int16) depth[depth < 0] = 0 if min_distance is not None: depth[depth < min_distance * 100] = 0 if max_distance is not None: depth[depth > max_distance * 100] = 0 Image.fromarray(keyframe.numpy()).save(dir / f"frame-{index:06d}.color.jpg") Image.fromarray(depth.numpy()).save(dir / f"frame-{index:06d}.depth.png") np.savetxt(dir / f"frame-{index:06d}.pose.txt", torch.inverse(pose).numpy()) def save_intrinsics_for_tsdf(dir: Path, intrinsics, crop=None): if crop is not None: intrinsics[0, 2] -= crop[2] intrinsics[1, 2] -= crop[0] np.savetxt(dir / f"camera-intrinsics.txt", intrinsics[:3, :3].numpy()) def get_mask(pred: torch.Tensor, gt: torch.Tensor, max_distance=None, pred_all_valid=True): mask = gt == 0 if max_distance: mask |= (gt < 1 / max_distance) if not pred_all_valid: mask |= pred == 0 return mask def mask_mean(t: torch.Tensor, m: torch.Tensor, dim=None): t = t.clone() t[m] = 0 els = 1 if dim is None: dim = list(range(len(t.shape))) for d in dim: els *= t.shape[d] return torch.sum(t, dim=dim) / (els - torch.sum(m.to(torch.float), dim=dim)) def conditional_flip(x, condition, inplace=True): if inplace: x[condition, :, :, :] = x[condition, :, :, :].flip(3) else: flipped_x = x.clone() flipped_x[condition, :, :, :] = x[condition, :, :, :].flip(3) return flipped_x def create_mask(c: int, height: int, width: int, border_radius: int, device): mask = torch.ones(c, 1, height - 2 * border_radius, width - 2 * border_radius, device=device) return torch.nn.functional.pad(mask, [border_radius, border_radius, border_radius, border_radius]) def median_scaling(data_dict): target = data_dict["target"] prediction = data_dict["result"] mask = target > 0 ratios = mask.new_tensor([torch.median(target[i, mask[i]]) / torch.median(prediction[i, mask[i]]) for i in range(target.shape[0])], dtype=torch.float32) data_dict = dict(data_dict) data_dict["result"] = prediction * ratios.view(-1, 1, 1, 1) return data_dict unsqueezer = partial(torch.unsqueeze, dim=0) class DS_Wrapper(torch.utils.data.Dataset): def __init__(self, dataset, start=0, end=-1, every_nth=1): super().__init__() self.dataset = dataset self.start = start if end == -1: self.end = len(self.dataset) else: self.end = end self.every_nth = every_nth def __getitem__(self, index: int): return self.dataset.__getitem__(index * self.every_nth + self.start) def __len__(self): return (self.end - self.start) // self.every_nth + (1 if (self.end - self.start) % self.every_nth != 0 else 0) class DS_Merger(torch.utils.data.Dataset): def __init__(self, datasets): super().__init__() self.datasets = datasets def __getitem__(self, index: int): return (ds.__getitem__(index + self.start) for ds in self.datasets) def __len__(self): return len(self.datasets[0]) class LossWrapper(torch.nn.Module): def __init__(self, loss_function, **kwargs): super().__init__() self.kwargs = kwargs self.loss_function = loss_function self.num_devices = 1.0 def forward(self, data): loss_dict = self.loss_function(data, **self.kwargs) loss_dict = map_fn(loss_dict, lambda x: (x / self.num_devices)) if loss_dict["loss"].requires_grad: loss_dict["loss"].backward() loss_dict["loss"].detach_() return data, loss_dict class ValueFader: def __init__(self, steps, values): self.steps = steps self.values = values self.epoch = 0 def set_epoch(self, epoch): self.epoch = epoch def get_value(self, epoch=None): if epoch is None: epoch = self.epoch if epoch >= self.steps[-1]: return self.values[-1] step_index = 0 while step_index < len(self.steps)-1 and epoch >= self.steps[step_index+1]: step_index += 1 p = float(epoch - self.steps[step_index]) / float(self.steps[step_index+1] - self.steps[step_index]) return (1-p) * self.values[step_index] + p * self.values[step_index+1] def pose_distance_thresh(data_dict, spatial_thresh=.6, rotational_thresh=.05): poses = torch.stack([data_dict["keyframe_pose"]] + data_dict["poses"], dim=1) forward = poses.new_tensor([0, 0, 1], dtype=torch.float32) spatial_expanse = torch.norm(torch.max(poses[..., :3, 3], dim=1)[0] - torch.min(poses[..., :3, 3], dim=1)[0], dim=1) rotational_expanse = torch.norm(torch.max(poses[..., :3, :3] @ forward, dim=1)[0] - torch.min(poses[..., :3, :3] @ forward, dim=1)[0], dim=1) return (spatial_expanse > spatial_thresh) | (rotational_expanse > rotational_thresh) def dilate_mask(m: torch.Tensor, size: int = 15): k = m.new_ones((1, 1, size, size), dtype=torch.float32) dilated_mask = F.conv2d((m >= 0.5).to(dtype=torch.float32), k, padding=(size//2, size//2)) return dilated_mask > 0 def operator_on_dict(dict_0: dict, dict_1: dict, operator, default=0): keys = set(dict_0.keys()).union(set(dict_1.keys())) results = {} for k in keys: v_0 = dict_0[k] if k in dict_0 else default v_1 = dict_1[k] if k in dict_1 else default results[k] = operator(v_0, v_1) return results numbers = [f"{i:d}" for i in range(1, 10, 1)] def filter_state_dict(state_dict, data_parallel=False): if data_parallel: state_dict = {k[7:]: state_dict[k] for k in state_dict} state_dict = {(k[2:] if k.startswith("0") else k): state_dict[k] for k in state_dict if not k[0] in numbers} return state_dict def seed_rng(seed): torch.manual_seed(seed) import random random.seed(seed) np.random.seed(0) def ensure_dir(dirname): dirname = Path(dirname) if not dirname.is_dir(): dirname.mkdir(parents=True, exist_ok=False) def read_json(fname): with fname.open('rt') as handle: return json.load(handle, object_hook=OrderedDict) def write_json(content, fname): with fname.open('wt') as handle: json.dump(content, handle, indent=4, sort_keys=False) def inf_loop(data_loader): ''' wrapper function for endless data loader. ''' for loader in repeat(data_loader): yield from loader class Timer: def __init__(self): self.cache = datetime.now() def check(self): now = datetime.now() duration = now - self.cache self.cache = now return duration.total_seconds() def reset(self): self.cache = datetime.now()
Config.py
securitylist/GitLeak
132
11159629
# Relative path of pattern file to GitPrey FILE_DB = "pattern/file.db" INFO_DB = "pattern/info.db" # GitHub account config for searching USER_NAME = "" PASSWORD = "" # Blacklist EXT_BLACKLIST = [".ico", ".flv", ".css", ".jpg", ".png", ".jpeg", ".gif", ".pdf", ".ss3", ".rar", ".zip", ".avi", ".mp4", ".swf", ".wmi", ".exe", ".mpeg", ".dll", ".pcap", ".log", ".class", ".html"] LANG_BLACKLIST = ["html", "jsp", "smali"] LINE_MUSTHAVE = ['=', ':', 'define'] REPO_NAME_BLACKLIST = ['spider', 'crawl'] # other MAX_INFONUM = 3 MAX_LINELEN = 512 MAX_COUNT_SINGLE_FILE = 20 MAX_SEARCH_REPO = 20 MAX_REPO_SINGLE_SEARCH = 5
furniture/env/xml_adjusting/xml_edit.py
KejiaChen/assembly
364
11159633
<filename>furniture/env/xml_adjusting/xml_edit.py<gh_stars>100-1000 import numpy as np import seaborn as sns import matplotlib.pyplot as plt import xml.etree.ElementTree as ET import sys import argparse import colorsys import re # def _get_colors(num_colors): # colors=[] # for i in np.arange(0., 360., 360. / num_colors): # hue = i/360. # lightness = (50 + np.random.rand() * 10)/100. # saturation = (90 + np.random.rand() * 10)/100. # rgb = colorsys.hls_to_rgb(hue, lightness, saturation) # rgba = str(tuple([round(x,4) for x in rgb])).strip('()') + ', 0.3' # colors.append(rgba) # return colors, rgb def _get_colors(num_colors): colors = ( "0.9019 0.0980 0.2941 0.3", "0.2352 0.7058 0.2941 0.3", "1.0 0.8823 0.0980 0.3", "0.2627 0.3882 0.8470 0.3", "0.9607 0.5098 0.1921 0.3", "0.5686 0.1176 0.7058 0.3", "0.2745 0.9411 0.9411 0.3", "0.9411 0.1960 0.9019 0.3", "0.7372 0.9647 0.0470 0.3", "0.9803 0.7450 0.7450 0.3", "0.0 0.5019 0.5019 0.3", "0.9019 0.7450 1.0 0.3", "0.6039 0.3882 0.1411 0.3", "1.0 0.9803 0.7843 0.3", "0.5019 0.0 0.0 0.3", "0.6666 1.0 0.7647 0.3", "0.5019 0.5019 0.0 0.3", "1.0 0.8470 0.6941 0.3", "0.0 0.0 0.4588 0.3", "0.5019 0.5019 0.5019 0.3", "1.0 1.0 1.0 0.3", "0.0 0.0 0.0 0.3", ) return colors[0:num_colors] def str2bool(v): return v.lower() == "true" def main(): parser = argparse.ArgumentParser() parser.add_argument( "--path", type=str, default="../models/assets/objects/in_progress/complete/bench_bjoderna_0208/bench_bjoderna_0208.xml", ) parser.add_argument("--add_welds", type=str2bool, default=True) parser.add_argument("--add_colors", type=str2bool, default=True) config, unparsed = parser.parse_known_args() tree = ET.parse(config.path) # Path to input file root = tree.getroot() equality = root.find("equality") print(config.path) # get count of conn_sites, and get map of groups->bodies bodymap = dict() connections = set() # find group pairs num_colors = 0 for body in root.find("worldbody"): for child in body.getiterator(): if child.tag == "site" and re.search("conn_site", child.attrib["name"]): num_colors += 1 groupPair = child.attrib["name"].split(",")[0] groupNames = groupPair.split("-") group1 = groupNames[0] group2 = groupNames[1] groupPair2 = group2 + "-" + group1 if group1 not in bodymap.keys(): bodies = set() bodies.add(body) bodymap[group1] = bodies else: bodymap[group1].add(body) if groupPair not in connections and groupPair2 not in connections: connections.add(groupPair) if config.add_welds == True: for groupPair in connections: groupNames = groupPair.split("-") group1 = groupNames[0] group2 = groupNames[1] # n*m welds needed for n bodies in group1 and m bodies in group2 for body1 in bodymap[group1]: for body2 in bodymap[group2]: weld = ET.SubElement(equality, "weld") weld.set("active", "false") weld.set("body1", body1.attrib["name"]) weld.set("body2", body2.attrib["name"]) weld.set("solimp", "1 1 0.5") weld.set("solref", "0.01 0.3") if config.add_colors == True: num_colors = int(num_colors / 2) colors = _get_colors(num_colors) # for color in colors: # print(color) i = 0 colormap = dict() for body in root.find("worldbody"): for child in body.getiterator(): if child.tag == "site" and re.search("conn_site", child.attrib["name"]): groupPair = child.attrib["name"].split(",")[0] if groupPair not in colormap: groupNames = groupPair.split("-") group1 = groupNames[0] group2 = groupNames[1] colormap[groupPair] = colors[i] groupPair2 = group2 + "-" + group1 colormap[groupPair2] = colors[i] i += 1 # change color of conn_site child.set("rgba", colormap[groupPair]) tree.write(config.path, encoding="UTF-8") if __name__ == "__main__": main()
samples/features/high availability/Linux/Ansible Playbook/library/mssql_ag.py
manikanth/sql-server-samples
4,474
11159637
<reponame>manikanth/sql-server-samples<gh_stars>1000+ #!/usr/bin/python # Copyright (c) 2017 Microsoft Corporation ANSIBLE_METADATA = { 'metadata_version': '1.1', 'supported_by': 'community', 'status': ['preview'] } DOCUMENTATION = ''' --- module: mssql_ag short_description: Add or join availability groups on a SQL Server instance description: - Add or join availability groups on a SQL Server instance. version_added: "2.2" author: <NAME> (@arsing) options: name: description: - The name of the availability group to add required: true state: description: - The state to set the local replica to choices: ["all_secondaries_or_unjoined", "all_joined_to_one_primary"] required: true all_replicas: description: - A list of all the replicas of the AG required: false primary: description: - The replica that should become the primary required: false local_replica: description: - The name of the local replica required: false dbm_endpoint_port: description: - The port of the DBM endpoint required: false login_port: description: - The TDS port of the instance required: false default: 1433 login_name: description: - The name of the user to log in to the instance required: true login_password: description: - The password of the user to log in to the instance required: true notes: - Requires the mssql-tools package on the remote host. requirements: - python >= 2.7 - mssql-tools '''.replace('\t', ' ') EXAMPLES = ''' # Set all replicas of AG foo to secondary - mssql_ag: name: foo state: all_secondaries_or_unjoined login_name: sa login_password: password # Join all replicas of AG foo to primary on the first server in the group named servers - mssql_ag: name: foo state: all_joined_to_one_primary all_replicas: "{{ groups['servers'] }}" primary: "{{ groups['servers'][0] }}" local_replica: "{{ inventory_hostname }}" login_name: sa login_password: password '''.replace('\t', ' ') RETURN = ''' name: description: The name of the AG that was created or joined returned: success type: string sample: foo '''.replace('\t', ' ') from ansible.module_utils.basic import AnsibleModule import subprocess def main(): module = AnsibleModule( argument_spec = dict( name = dict(required = True), state = dict(choices = ['all_secondaries_or_unjoined', 'all_joined_to_one_primary'], required = True), all_replicas = dict(type = 'list', required = False), primary = dict(required = False), local_replica = dict(required = False), dbm_endpoint_port = dict(required = False), login_port = dict(required = False, default = 1433), login_name = dict(required = True), login_password = dict(required = True, no_log = True) ), required_if = [ ['state', 'all_joined_to_one_primary', ['all_replicas', 'primary', 'local_replica', 'dbm_endpoint_port']] ] ) name = module.params['name'] state = module.params['state'] all_replicas = module.params['all_replicas'] primary = module.params['primary'] local_replica = module.params['local_replica'] dbm_endpoint_port = module.params['dbm_endpoint_port'] login_port = module.params['login_port'] login_name = module.params['login_name'] login_password = module.params['login_password'] if state == "all_secondaries_or_unjoined": sqlcmd(login_port, login_name, login_password, """ IF EXISTS ( SELECT * FROM sys.availability_groups WHERE name = {0} ) ALTER AVAILABILITY GROUP {1} SET (ROLE = SECONDARY) ; """.format( quoteName(name, "'"), quoteName(name, '[') )) elif primary == local_replica: def replica_spec(name, endpoint_port): return """ {0} WITH ( ENDPOINT_URL = {1}, AVAILABILITY_MODE = SYNCHRONOUS_COMMIT, FAILOVER_MODE = EXTERNAL, SEEDING_MODE = AUTOMATIC ) """.format( quoteName(name.split('.')[0], "'"), quoteName('tcp://{0}:{1}'.format(name, endpoint_port), "'") ) sqlcmd(login_port, login_name, login_password, """ IF NOT EXISTS ( SELECT * FROM sys.availability_groups WHERE name = {0} ) CREATE AVAILABILITY GROUP {1} WITH (CLUSTER_TYPE = EXTERNAL, DB_FAILOVER = ON) FOR REPLICA ON {2} ELSE IF NOT EXISTS ( SELECT * FROM sys.dm_hadr_availability_replica_states ars JOIN sys.availability_groups ag ON ars.group_id = ag.group_id WHERE ag.name = {0} AND ars.is_local = 1 AND ars.role = 1 ) BEGIN EXEC sp_set_session_context @key = N'external_cluster', @value = N'yes', @read_only = 1 ALTER AVAILABILITY GROUP {1} FAILOVER END ; ALTER AVAILABILITY GROUP {1} GRANT CREATE ANY DATABASE ; """.format( quoteName(name, "'"), quoteName(name, '['), replica_spec(primary, dbm_endpoint_port) )) for replica in all_replicas: if replica != primary: sqlcmd(login_port, login_name, login_password, """ IF NOT EXISTS ( SELECT * FROM sys.availability_replicas ar JOIN sys.availability_groups ag ON ar.group_id = ag.group_id WHERE ag.name = {0} AND ar.replica_server_name = {2} ) ALTER AVAILABILITY GROUP {1} ADD REPLICA ON {3} ; """.format( quoteName(name, "'"), quoteName(name, '['), quoteName(replica.split('.')[0], "'"), replica_spec(replica, dbm_endpoint_port) )) else: sqlcmd(login_port, login_name, login_password, """ IF NOT EXISTS ( SELECT * FROM sys.availability_groups WHERE name = {0} ) ALTER AVAILABILITY GROUP {1} JOIN WITH (CLUSTER_TYPE = EXTERNAL) ; ALTER AVAILABILITY GROUP {1} GRANT CREATE ANY DATABASE ; """.format( quoteName(name, "'"), quoteName(name, '[') )) module.exit_json(changed = True, name = name) def sqlcmd(login_port, login_name, login_password, command): subprocess.check_call([ '/opt/mssql-tools/bin/sqlcmd', '-S', "localhost,{0}".format(login_port), '-U', login_name, '-P', login_password, '-b', '-Q', command ]) def quoteName(name, quote_char): if quote_char == '[' or quote_char == ']': (quote_start_char, quote_end_char) = ('[', ']') elif quote_char == "'": (quote_start_char, quote_end_char) = ("N'", "'") else: raise Exception("Unsupported quote_char {0}, must be [ or ] or '".format(quote_char)) return "{0}{1}{2}".format(quote_start_char, name.replace(quote_end_char, quote_end_char + quote_end_char), quote_end_char) if __name__ == '__main__': main()
tests/test_model_definition/test_model_construct.py
ivangirko/ormar
905
11159640
<reponame>ivangirko/ormar<filename>tests/test_model_definition/test_model_construct.py<gh_stars>100-1000 from typing import List import databases import pytest import sqlalchemy import ormar from tests.settings import DATABASE_URL database = databases.Database(DATABASE_URL, force_rollback=True) metadata = sqlalchemy.MetaData() class NickNames(ormar.Model): class Meta: tablename = "nicks" metadata = metadata database = database id: int = ormar.Integer(primary_key=True) name: str = ormar.String(max_length=100, nullable=False, name="hq_name") class NicksHq(ormar.Model): class Meta: tablename = "nicks_x_hq" metadata = metadata database = database class HQ(ormar.Model): class Meta: tablename = "hqs" metadata = metadata database = database id: int = ormar.Integer(primary_key=True) name: str = ormar.String(max_length=100, nullable=False, name="hq_name") nicks: List[NickNames] = ormar.ManyToMany(NickNames, through=NicksHq) class Company(ormar.Model): class Meta: tablename = "companies" metadata = metadata database = database id: int = ormar.Integer(primary_key=True) name: str = ormar.String(max_length=100, nullable=False, name="company_name") founded: int = ormar.Integer(nullable=True) hq: HQ = ormar.ForeignKey(HQ) @pytest.fixture(autouse=True, scope="module") def create_test_database(): engine = sqlalchemy.create_engine(DATABASE_URL) metadata.drop_all(engine) metadata.create_all(engine) yield metadata.drop_all(engine) @pytest.mark.asyncio async def test_init_and_construct_has_same_effect(): async with database: async with database.transaction(force_rollback=True): hq = await HQ.objects.create(name="Main") comp = Company(name="Banzai", hq=hq, founded=1988) comp2 = Company.construct(**dict(name="Banzai", hq=hq, founded=1988)) assert comp.dict() == comp2.dict() comp3 = Company.construct(**dict(name="Banzai", hq=hq.dict(), founded=1988)) assert comp.dict() == comp3.dict() @pytest.mark.asyncio async def test_init_and_construct_has_same_effect_with_m2m(): async with database: async with database.transaction(force_rollback=True): n1 = await NickNames(name="test").save() n2 = await NickNames(name="test2").save() hq = HQ(name="Main", nicks=[n1, n2]) hq2 = HQ.construct(**dict(name="Main", nicks=[n1, n2])) assert hq.dict() == hq2.dict() hq3 = HQ.construct(**dict(name="Main", nicks=[n1.dict(), n2.dict()])) assert hq.dict() == hq3.dict()
modules/drizzle.py
beornf/salt-contrib
111
11159644
# -*- coding: utf-8 -*- ''' Drizzle is a MySQL fork optimized for Net and Cloud performance. This module provides Drizzle compatibility to Salt execution :Depends: MySQLdb python module :Configuration: The following changes are to be made in /etc/salt/minion on respective minions Example:: drizzle.host: '127.0.0.1' drizzle.port: 4427 drizzle.user: 'root' drizzle.passwd: '' drizzle.db: 'drizzle' Configuration file can also be included such as:: drizzle.default_file: '/etc/drizzle/config.cnf' ''' # Importing the required libraries from __future__ import absolute_import import re import salt.utils from salt.ext import six from salt.ext.six.moves import range from salt.ext.six.moves import zip try: import MySQLdb import MySQLdb.cursors has_mysqldb = True except ImportError: has_mysqldb = False # Salt Dictionaries __outputter__ = { 'ping': 'txt', 'status': 'yaml', 'version': 'yaml', 'schemas': 'yaml', 'schema_exists': 'txt', 'schema_create': 'txt', 'schema_drop': 'txt', 'tables': 'yaml', 'table_find': 'yaml', 'query': 'txt' } __opts__ = __salt__['test.get_opts']() # Check for loading the module def __virtual__(): ''' This module is loaded only if the database and the libraries are present ''' # Finding the path of the binary has_drizzle = False if salt.utils.which('drizzle'): has_drizzle = True # Determining load status of module if has_mysqldb and has_drizzle: return 'drizzle' return False # Helper functions def _connect(**dsn): ''' This method is used to establish a connection and returns the connection ''' # Initializing the required variables dsn_url = {} parameter = ['host', 'user', 'passwd', 'db', 'port'] # Gathering the dsn information for param in parameter: if param in dsn: dsn_url[param] = dsn[param] else: dsn_url[param] = __opts__['drizzle.{0}'.format(param)] # Connecting to Drizzle! drizzle_db = MySQLdb.connect(**dsn_url) drizzle_db.autocommit(True) return drizzle_db # Server functions def status(): ''' Show the status of the Drizzle server as Variable_name and Value CLI Example:: salt '*' drizzle.status ''' # Initializing the required variables ret_val = {} drizzle_db = _connect() cursor = drizzle_db.cursor() # Fetching status cursor.execute('SHOW STATUS') for iter in range(cursor.rowcount): status = cursor.fetchone() ret_val[status[0]] = status[1] cursor.close() drizzle_db.close() return ret_val def version(): ''' Returns the version of Drizzle server that is running on the minion CLI Example:: salt '*' drizzle.version ''' drizzle_db = _connect() cursor = drizzle_db.cursor(MySQLdb.cursors.DictCursor) # Fetching version cursor.execute('SELECT VERSION()') version = cursor.fetchone() cursor.close() drizzle_db.close() return version # Database functions def schemas(): ''' Displays the schemas which are already present in the Drizzle server CLI Example:: salt '*' drizzle.schemas ''' # Initializing the required variables ret_val = {} drizzle_db = _connect() cursor = drizzle_db.cursor() # Retriving the list of schemas cursor.execute('SHOW SCHEMAS') for iter, count in zip(list(range(cursor.rowcount)), list(range(1, cursor.rowcount+1))): schema = cursor.fetchone() ret_val[count] = schema[0] cursor.close() drizzle_db.close() return ret_val def schema_exists(schema): ''' This method is used to find out whether the given schema already exists or not CLI Example:: salt '*' drizzle.schema_exists ''' drizzle_db = _connect() cursor = drizzle_db.cursor() # Checking for existance cursor.execute('SHOW SCHEMAS LIKE "{0}"'.format(schema)) cursor.fetchall() if cursor.rowcount == 1: return True return False def schema_create(schema): ''' This method is used to create a schema. It takes the name of the schema as argument CLI Example:: salt '*' drizzle.schema_create schema_name ''' drizzle_db = _connect() cursor = drizzle_db.cursor() # Creating schema try: cursor.execute('CREATE SCHEMA {0}'.format(schema)) except MySQLdb.ProgrammingError: return 'Schema already exists' cursor.close() drizzle_db.close() return True def schema_drop(schema): ''' This method is used to drop a schema. It takes the name of the schema as argument. CLI Example:: salt '*' drizzle.schema_drop schema_name ''' drizzle_db = _connect() cursor = drizzle_db.cursor() # Dropping schema try: cursor.execute('DROP SCHEMA {0}'.format(schema)) except MySQLdb.OperationalError: return 'Schema does not exist' cursor.close() drizzle_db.close() return True def tables(schema): ''' Displays all the tables that are present in the given schema CLI Example:: salt '*' drizzle.tables schema_name ''' # Initializing the required variables ret_val = {} drizzle_db = _connect() cursor = drizzle_db.cursor() # Fetching tables try: cursor.execute('SHOW TABLES IN {0}'.format(schema)) except MySQLdb.OperationalError: return 'Unknown Schema' for iter, count in zip(list(range(cursor.rowcount)), list(range(1, cursor.rowcount+1))): table = cursor.fetchone() ret_val[count] = table[0] cursor.close() drizzle_db.close() return ret_val def table_find(table_to_find): ''' Finds the schema in which the given table is present CLI Example:: salt '*' drizzle.table_find table_name ''' # Initializing the required variables ret_val = {} count = 1 drizzle_db = _connect() cursor = drizzle_db.cursor() # Finding the schema schema = schemas() for schema_iter in six.iterkeys(schema): table = tables(schema[schema_iter]) for table_iter in six.iterkeys(table): if table[table_iter] == table_to_find: ret_val[count] = schema[schema_iter] count = count+1 cursor.close() drizzle_db.close() return ret_val # Plugin functions def plugins(): ''' Fetches the plugins added to the database server CLI Example:: salt '*' drizzle.plugins ''' # Initializing the required variables ret_val = {} count = 1 drizzle_db = _connect() cursor = drizzle_db.cursor() # Fetching the plugins query = 'SELECT PLUGIN_NAME FROM DATA_DICTIONARY.PLUGINS WHERE IS_ACTIVE LIKE "YES"' cursor.execute(query) for iter, count in zip(list(range(cursor.rowcount)), list(range(1, cursor.rowcount+1))): table = cursor.fetchone() ret_val[count] = table[0] cursor.close() drizzle_db.close() return ret_val # TODO: Needs to add plugin_add() and plugin_remove() methods. # However, only some of the plugins are dynamic at the moment. # Remaining plugins need the server to be restarted. # Hence, these methods can be hacked in the future! # Query functions def query(schema, query): ''' Query method is used to issue any query to the database. This method also supports multiple queries. CLI Example:: salt '*' drizzle.query test_db 'select * from test_table' salt '*' drizzle.query test_db 'insert into test_table values (1,"test1")' ''' # Initializing the required variables ret_val = {} result = {} drizzle_db = _connect() cursor = drizzle_db.cursor() columns = () rows = () tuples = {} queries = [] _entry = True # Support for mutilple queries queries = query.split(";") # Using the schema try: cursor.execute('USE {0}'.format(schema)) except MySQLdb.Error: return 'check your schema' # Issuing the queries for issue in queries: try: rows_affected = cursor.execute(issue) except MySQLdb.Error: return 'Error in your SQL statement' # Checking whether the query is a SELECT if re.search(r'\s*select', issue) is None: result['Rows affected:'] = rows_affected ret_val[issue.lower()] = result result = {} continue # Fetching the column names if _entry: attributes = cursor.description for column_names in attributes: columns += (column_names[0],) _entry = False result['columns'] = columns # Fetching the tuples count = 1 for iter in range(cursor.rowcount): row = cursor.fetchone() result['row{0}'.format(count)] = row count += 1 result['Rows selected:'] = count-1 ret_val[issue.lower()] = result result = {} return ret_val def ping(): ''' Checks whether Drizzle module is loaded or not ''' return True
codigo/Live115/observer_concreto.py
cassiasamp/live-de-python
572
11159688
from observer_abc import Observador, Observavel class BolaDeCristal: def atualizar(self, mensagem): print(f"Fausto está na escola, mas recebeu a mensagem: {mensagem}") class Centauro: def __init__(self): self._observers = [] def adicionar_observer(self, observador): self._observers.append(observador) def notificar_observers(self, mensagem): for observador in self._observers: observador.atualizar(mensagem) class Unicornio: def __init__(self): self._observers = [] def adicionar_observer(self, observador): self._observers.append(observador) def notificar_observers(self, mensagem): for observador in self._observers: observador.atualizar(mensagem) unicornio = Unicornio() unicornio.adicionar_observer(BolaDeCristal()) unicornio.notificar_observers('Os mortos chegaram #medo') centauro = Centauro() centauro.adicionar_observer(BolaDeCristal()) centauro.notificar_observers('Os mortos chegaram #medo')
aries_cloudagent/protocols/present_proof/v1_0/handlers/presentation_problem_report_handler.py
kuraakhilesh8230/aries-cloudagent-python
247
11159722
<filename>aries_cloudagent/protocols/present_proof/v1_0/handlers/presentation_problem_report_handler.py """Presentation problem report message handler.""" from .....messaging.base_handler import BaseHandler from .....messaging.request_context import RequestContext from .....messaging.responder import BaseResponder from .....storage.error import StorageError, StorageNotFoundError from ..manager import PresentationManager from ..messages.presentation_problem_report import PresentationProblemReport class PresentationProblemReportHandler(BaseHandler): """Message handler class for problem reports.""" async def handle(self, context: RequestContext, responder: BaseResponder): """ Message handler logic for problem reports. Args: context: request context responder: responder callback """ self._logger.debug( "Present-proof v1.0 problem report handler called with context %s", context, ) assert isinstance(context.message, PresentationProblemReport) presentation_manager = PresentationManager(context.profile) try: await presentation_manager.receive_problem_report( context.message, context.connection_record.connection_id, ) except (StorageError, StorageNotFoundError): self._logger.exception( "Error processing present-proof v1.0 problem report message" )
src/python/tests/test_estimator_checks.py
montehoover/NimbusML
134
11159729
<gh_stars>100-1000 # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # -------------------------------------------------------------------------------------------- """ run check_estimator tests """ import json import os import distro import unittest from nimbusml.cluster import KMeansPlusPlus from nimbusml.decomposition import FactorizationMachineBinaryClassifier from nimbusml.ensemble import EnsembleClassifier from nimbusml.ensemble import EnsembleRegressor from nimbusml.ensemble import LightGbmBinaryClassifier from nimbusml.ensemble import LightGbmClassifier from nimbusml.ensemble import LightGbmRanker from nimbusml.ensemble import LightGbmRegressor from nimbusml.feature_extraction.text import NGramFeaturizer from nimbusml.internal.entrypoints._ngramextractor_ngram import n_gram from nimbusml.preprocessing import TensorFlowScorer, DateTimeSplitter from nimbusml.linear_model import SgdBinaryClassifier from nimbusml.preprocessing.filter import SkipFilter, TakeFilter from nimbusml.preprocessing.normalization import RobustScaler from nimbusml.timeseries import (IidSpikeDetector, IidChangePointDetector, SsaSpikeDetector, SsaChangePointDetector, SsaForecaster) from sklearn.utils.estimator_checks import _yield_all_checks, MULTI_OUTPUT this = os.path.abspath(os.path.dirname(__file__)) OMITTED_CHECKS = { # by design consistent input with model # don't accept randomly created inputs 'TensorFlowScorer': 'check_dict_unchanged, ' 'check_dont_overwrite_parameters, ' 'check_dtype_object, ' 'check_estimator_sparse_data, ' 'check_estimators_dtypes, ' 'check_estimators_fit_returns_self, ' 'check_estimators_overwrite_params, ' 'check_estimators_pickle, ' 'check_fit1d_1feature, ' 'check_fit2d_1feature, ' 'check_fit2d_1sample, ' 'check_fit2d_predict1d, ' 'check_fit_score_takes_y, ' 'check_pipeline_consistency, ' 'check_transformer_data_not_an_array, ' 'check_transformer_general', # by design non-determenistic output 'BootstrapSampler': 'check_transformer_general, ' 'check_transformer_data_not_an_array', # by design non-determenistic output 'ColumnDropper': 'check_transformer_general, ' 'check_transformer_data_not_an_array', # I8 should not have NA values 'CountSelector': 'check_estimators_dtypes', # DateTimeSplitter does not work with floating point types. 'DateTimeSplitter': 'check_transformer_general, check_pipeline_consistency' 'check_estimators_pickle, check_estimators_dtypes' 'check_dict_unchanged, check_dtype_object, check_fit_score_takes_y' 'check_transformer_data_not_an_array, check_fit1d_1feature,' 'check_fit2d_1feature, check_fit2d_predict1d, check_estimators_overwrite_params,' 'check_estimator_sparse_data, check_fit2d_1sample, check_dont_overwrite_parameters,' 'check_estimators_fit_returns_self', # by design returns smaller number of rows 'SkipFilter': 'check_transformer_general, ' 'check_transformer_data_not_an_array', # fix pending in PR, bug cant handle csr matrix 'RangeFilter': 'check_estimators_dtypes, ' 'check_estimator_sparse_data', # time series do not currently support sparse matrices 'IidSpikeDetector': 'check_estimator_sparse_data', 'IidChangePointDetector': 'check_estimator_sparse_data', 'SsaSpikeDetector': 'check_estimator_sparse_data' 'check_fit2d_1sample', # SSA requires more than one sample 'SsaChangePointDetector': 'check_estimator_sparse_data' 'check_fit2d_1sample', # SSA requires more than one sample 'SsaForecaster': 'check_estimator_sparse_data' 'check_fit2d_1sample', # SSA requires more than one sample # bug, low tolerance 'FastLinearRegressor': 'check_supervised_y_2d, ' 'check_regressor_data_not_an_array, ' 'check_regressors_int, ' # todo: investigate 'check_regressors_train', # bug decision function shape should be 1 # dimensional arrays, tolerance 'FastLinearClassifier': 'check_classifiers_train', 'FastForestRegressor': 'check_fit_score_takes_y', # bug 'EnsembleClassifier': 'check_supervised_y_2d, ' 'check_classifiers_train', 'EnsembleRegressor': 'check_supervised_y_2d, ' 'check_regressors_train', # bug in decision_function 'FastTreesBinaryClassifier': 'check_decision_proba_consistency', # I8 should not have NA values 'Filter': 'check_estimators_dtypes', # I8 should not have NA values 'Handler': 'check_estimators_dtypes', # I8 should not have NA values 'Indicator': 'check_estimators_dtypes', # tolerance 'LogisticRegressionClassifier': 'check_classifiers_train', # todo: investigate 'OnlineGradientDescentRegressor': 'check_regressors_train', # bug decision function shape, prediction bug 'NaiveBayesClassifier': 'check_classifiers_train, check_classifiers_classes', # bugs cant handle negative label 'PoissonRegressionRegressor': 'check_regressors_train, ' 'check_regressors_no_decision_function', 'MutualInformationSelector': 'check_dtype_object, check_estimators_dtypes, \ check_estimators_pickle, ' 'check_transformer_data_not_an_array, ' 'check_transformer_general, \ check_fit1d_1feature, check_fit_score_takes_y, ' 'check_fit2d_predict1d, ' 'check_dont_overwrite_parameters, \ check_fit2d_1sample, check_dict_unchanged, ' 'check_estimators_overwrite_params, ' 'check_estimators_fit_returns_self, \ check_fit2d_1feature, check_pipeline_consistency, ' 'check_estimator_sparse_data', # bug in decision_function 'SymSgdBinaryClassifier': 'check_decision_proba_consistency', # bug in decision_function 'LightGbmClassifier': 'check_classifiers_train', # bug cant handle the data 'LightGbmRegressor': 'check_fit2d_1sample', # bug, no attribute clusterer.labels_ 'KMeansPlusPlus': 'check_clustering', 'LightGbmRanker': 'check_classifiers_regression_target, ' 'check_pipeline_consistency, check_supervised_y_2d, ' 'check_classifiers_one_label, \ check_classifiers_classes, check_fit2d_1feature, ' 'check_classifiers_train, check_fit2d_1sample, ' 'check_dont_overwrite_parameters,\ check_classifier_data_not_an_array, check_dtype_object, ' 'check_fit_score_takes_y, check_estimators_dtypes,\ check_estimators_nan_inf, check_dict_unchanged, ' 'check_fit1d_1feature, check_fit2d_predict1d, \ check_estimators_overwrite_params, ' 'check_estimator_sparse_data, check_estimators_pickle, ' 'check_estimators_fit_returns_self', 'PcaAnomalyDetector': 'check_pipeline_consistency, check_supervised_y_2d, ' 'check_classifiers_classes, check_fit2d_1feature, \ check_estimators_fit_returns_self, ' 'check_classifiers_train, ' 'check_dont_overwrite_parameters, \ check_classifier_data_not_an_array, check_dtype_object,' ' check_fit_score_takes_y, check_estimators_dtypes,\ check_dict_unchanged, check_fit1d_1feature, ' 'check_fit2d_predict1d, ' 'check_estimators_overwrite_params, \ check_estimator_sparse_data, check_estimators_pickle, ' 'check_estimators_nan_inf', # RobustScaler does not support vectorized types 'RobustScaler': 'check_estimator_sparse_data', 'ToKeyImputer': 'check_estimator_sparse_data, check_estimators_dtypes', # Most of these skipped tests are failing because the checks # require numerical types. ToString returns object types. # TypeError: ufunc 'isfinite' not supported for the input types 'ToString': 'check_estimator_sparse_data, check_pipeline_consistency' 'check_transformer_data_not_an_array, check_estimators_pickle' 'check_transformer_general', 'OrdinaryLeastSquaresRegressor': 'check_fit2d_1sample' } OMITTED_CHECKS_TUPLE = ( 'OneHotHashVectorizer, FromKey, DnnFeaturizer, ' 'PixelExtractor, Loader, Resizer, \ GlobalContrastRowScaler, PcaTransformer, ' 'ColumnConcatenator, Sentiment, CharTokenizer, LightLda, ' 'NGramFeaturizer, WordEmbedding, LpScaler, WordTokenizer' 'NGramExtractor', 'check_transformer_data_not_an_array, check_pipeline_consistency, ' 'check_fit2d_1feature, check_estimators_fit_returns_self,\ check_fit2d_1sample, ' 'check_dont_overwrite_parameters, ' 'check_dtype_object, check_fit_score_takes_y, ' 'check_estimators_dtypes, \ check_transformer_general, check_dict_unchanged, ' 'check_fit1d_1feature, check_fit2d_predict1d, ' 'check_estimators_overwrite_params, \ check_estimator_sparse_data, ' 'check_estimators_pickle') OMITTED_CHECKS_ALWAYS = 'check_estimators_nan_inf' NOBINARY_CHECKS = [ 'check_estimator_sparse_data', 'check_dtype_object', 'check_fit_score_takes_y', 'check_fit2d_predict1d', 'check_fit1d_1feature', 'check_dont_overwrite_parameters', 'check_supervised_y_2d', 'check_estimators_fit_returns_self', 'check_estimators_overwrite_params', 'check_estimators_dtypes', 'check_classifiers_classes', 'check_classifiers_train'] INSTANCES = { 'DateTimeSplitter': DateTimeSplitter(prefix='dt', columns=['F0']), 'EnsembleClassifier': EnsembleClassifier(num_models=3), 'EnsembleRegressor': EnsembleRegressor(num_models=3), 'FactorizationMachineBinaryClassifier': FactorizationMachineBinaryClassifier(shuffle=False), 'KMeansPlusPlus': KMeansPlusPlus(n_clusters=2), 'LightGbmBinaryClassifier': LightGbmBinaryClassifier( minimum_example_count_per_group=1, minimum_example_count_per_leaf=1), 'LightGbmClassifier': LightGbmClassifier( minimum_example_count_per_group=1, minimum_example_count_per_leaf=1), 'LightGbmRegressor': LightGbmRegressor( minimum_example_count_per_group=1, minimum_example_count_per_leaf=1), 'LightGbmRanker': LightGbmRanker( minimum_example_count_per_group=1, minimum_example_count_per_leaf=1), 'NGramFeaturizer': NGramFeaturizer(word_feature_extractor=n_gram()), 'RobustScaler': RobustScaler(scale=False), 'SgdBinaryClassifier': SgdBinaryClassifier(number_of_threads=1, shuffle=False), 'SkipFilter': SkipFilter(count=5), 'TakeFilter': TakeFilter(count=100000), 'IidSpikeDetector': IidSpikeDetector(columns=['F0']), 'IidChangePointDetector': IidChangePointDetector(columns=['F0']), 'SsaSpikeDetector': SsaSpikeDetector(columns=['F0'], seasonal_window_size=2), 'SsaChangePointDetector': SsaChangePointDetector(columns=['F0'], seasonal_window_size=2), 'SsaForecaster': SsaForecaster(columns=['F0'], window_size=2, series_length=5, train_size=5, horizon=1), 'TensorFlowScorer': TensorFlowScorer( model_location=os.path.join( this, '..', 'nimbusml', 'examples', 'frozen_saved_model.pb'), columns={'c': ['a', 'b']}), } MULTI_OUTPUT_EX = [ 'FastLinearClassifier', 'FastLinearRegressor', 'LogisticRegressionClassifier', 'FastTreesRegressor', 'FastForestRegressor', 'FastTreesTweedieRegressor', 'OneClassSvmAnomalyDetector', 'NaiveBayesClassifier', 'GamBinaryClassifier', 'GamRegressor', 'OnlineGradientDescentRegressor', 'OrdinaryLeastSquaresRegressor', 'PoissonRegressionRegressor', 'SymSgdBinaryClassifier', 'LightGbmClassifier', 'LightGbmRegressor'] MULTI_OUTPUT.extend(MULTI_OUTPUT_EX) skip_epoints = set([ 'OneVsRestClassifier', 'TreeFeaturizer', # skip SymSgdBinaryClassifier for now, because of crashes. 'SymSgdBinaryClassifier', 'DatasetTransformer', 'OnnxRunner', 'TimeSeriesImputer' ]) if 'centos' in distro.linux_distribution(full_distribution_name=False)[0].lower(): skip_epoints |= set([ 'DateTimeSplitter', 'RobustScaler', 'ToKeyImputer', 'ToString']) def load_json(file_path): with open(file_path) as f: lines = f.readlines() lines = [l for l in lines if not l.strip().startswith('#')] content_without_comments = '\n'.join(lines) return json.loads(content_without_comments) def get_epoints(): epoints = [] my_path = os.path.realpath(__file__) my_dir = os.path.dirname(my_path) manifest_diff_json = os.path.join(my_dir, '..', 'tools', 'manifest_diff.json') manifest_diff = load_json(manifest_diff_json) for e in manifest_diff['EntryPoints']: if (e['NewName'] not in skip_epoints) and ('LightGbm' not in e['NewName']): epoints.append((e['Module'], e['NewName'])) return epoints class TestEstimatorChecks(unittest.TestCase): # This method is a static method of the class # because there were pytest fixture related # issues when the method was in the global scope. @staticmethod def generate_test_method(epoint): def method(self): failed_checks = set() passed_checks = set() class_name = epoint[1] print("\n======== now Estimator is %s =========== " % class_name) mod = __import__('nimbusml.' + epoint[0], fromlist=[str(class_name)]) the_class = getattr(mod, class_name) if class_name in INSTANCES: estimator = INSTANCES[class_name] else: estimator = the_class() if estimator._use_single_input_as_string(): estimator = estimator << 'F0' for check in _yield_all_checks(class_name, estimator): # Skip check_dict_unchanged for estimators which # update the classes_ attribute. For more details # see https://github.com/microsoft/NimbusML/pull/200 if (check.__name__ == 'check_dict_unchanged') and \ (hasattr(estimator, 'predict_proba') or hasattr(estimator, 'decision_function')): continue if check.__name__ in OMITTED_CHECKS_ALWAYS: continue if 'Binary' in class_name and check.__name__ in NOBINARY_CHECKS: continue if class_name in OMITTED_CHECKS and check.__name__ in \ OMITTED_CHECKS[class_name]: continue if class_name in OMITTED_CHECKS_TUPLE[0] and check.__name__ in \ OMITTED_CHECKS_TUPLE[1]: continue try: check(class_name, estimator.clone()) passed_checks.add(check.__name__) except Exception as e: failed_checks.add(check.__name__) if len(failed_checks) > 0: self.fail(msg=str(failed_checks)) return method for epoint in get_epoints(): test_name = 'test_%s' % epoint[1].lower() method = TestEstimatorChecks.generate_test_method(epoint) setattr(TestEstimatorChecks, test_name, method) if __name__ == '__main__': unittest.main()
tests/framework/PostProcessors/FastFourierTransform/Basic/dataGenerator.py
rinelson456/raven
159
11159738
<filename>tests/framework/PostProcessors/FastFourierTransform/Basic/dataGenerator.py<gh_stars>100-1000 import numpy as np N = 100 t = np.linspace(0,N,N) periods = [[4,8,20], [3.333,13,50]] amplitudes = [[5,3,10], [6,1,100]] def makeSignal(periods,amplitudes,N): signal = np.zeros(N) for i in range(len(periods)): signal += np.sin(2.*np.pi/periods[i] * t) + np.cos(2.*np.pi/periods[i] * t) return signal for i in range(2): signal = makeSignal(periods[i],amplitudes[i],N) with open('signal_{}.csv'.format(i),'w') as f: f.writelines('t,signal\n') for i in range(len(t)): f.writelines('{},{}\n'.format(t[i],signal[i])) print signal
scripts/CreateAssemblyGraphVertices.py
tijyojwad/shasta
267
11159779
#!/usr/bin/python3 import shasta a = shasta.Assembler() a.accessMarkerGraphVertices() a.accessMarkerGraphEdges() a.accessMarkerGraphReverseComplementVertex() a.accessAssemblyGraphEdgeLists() a.createAssemblyGraphVertices()
validators/i18n/fi.py
shouhei/validators
674
11159783
<reponame>shouhei/validators<gh_stars>100-1000 import re from validators.utils import validator business_id_pattern = re.compile(r'^[0-9]{7}-[0-9]$') ssn_checkmarks = '0123456789ABCDEFHJKLMNPRSTUVWXY' ssn_pattern = re.compile( r"""^ (?P<date>([0-2]\d|3[01]) (0\d|1[012]) (\d{{2}})) [A+-] (?P<serial>(\d{{3}})) (?P<checksum>[{checkmarks}])$""".format(checkmarks=ssn_checkmarks), re.VERBOSE | re.IGNORECASE ) @validator def fi_business_id(business_id): """ Validate a Finnish Business ID. Each company in Finland has a distinct business id. For more information see `Finnish Trade Register`_ .. _Finnish Trade Register: http://en.wikipedia.org/wiki/Finnish_Trade_Register Examples:: >>> fi_business_id('0112038-9') # Fast Monkeys Ltd True >>> fi_business_id('1234567-8') # Bogus ID ValidationFailure(func=fi_business_id, ...) .. versionadded:: 0.4 .. versionchanged:: 0.5 Method renamed from ``finnish_business_id`` to ``fi_business_id`` :param business_id: business_id to validate """ if not business_id or not re.match(business_id_pattern, business_id): return False factors = [7, 9, 10, 5, 8, 4, 2] numbers = map(int, business_id[:7]) checksum = int(business_id[8]) sum_ = sum(f * n for f, n in zip(factors, numbers)) modulo = sum_ % 11 return (11 - modulo == checksum) or (modulo == 0 and checksum == 0) @validator def fi_ssn(ssn): """ Validate a Finnish Social Security Number. This validator is based on `django-localflavor-fi`_. .. _django-localflavor-fi: https://github.com/django/django-localflavor-fi/ Examples:: >>> fi_ssn('010101-0101') True >>> fi_ssn('101010-0102') ValidationFailure(func=fi_ssn, args={'ssn': '101010-0102'}) .. versionadded:: 0.5 :param ssn: Social Security Number to validate """ if not ssn: return False result = re.match(ssn_pattern, ssn) if not result: return False gd = result.groupdict() checksum = int(gd['date'] + gd['serial']) return ( ssn_checkmarks[checksum % len(ssn_checkmarks)] == gd['checksum'].upper() )
2018-google-quals/sftp/find_password.py
integeruser/on-pwning
104
11159803
#!/usr/bin/env python2 # -*- coding: utf-8 -*- import z3 for PASSWORD_LENGTH in range(1, 16): solver = z3.Solver() password = [z3.BitVec('c{}'.format(i), 64) for i in range(PASSWORD_LENGTH)] for i in range(PASSWORD_LENGTH): # costraints not really needed, just for finding a password composed of letters solver.add( z3.Or( z3.And(password[i] >= ord('a'), password[i] <= ord('z')), z3.And(password[i] >= ord('A'), password[i] <= ord('Z')))) checksum = z3.BitVecVal(0x5417, 64) rax = 0x0 for i in range(PASSWORD_LENGTH): rax = rax & 0xffffffffffff0000 | password[i] rax = rax ^ checksum checksum = 2 * rax solver.add(checksum & 0xffff == 0x8DFA) if solver.check() == z3.sat: print 'A valid password is:', ''.join(chr(solver.model()[c].as_long()) for c in password) break # A valid password is: <PASSWORD>
train.py
jack-willturner/DeepCompression-PyTorch
149
11159835
<filename>train.py """Train base models to later be pruned""" from __future__ import print_function import torch import torch.nn as nn import torch.optim as optim import torch.optim.lr_scheduler as lr_scheduler import argparse import random import numpy as np from models import get_model from utils import * from tqdm import tqdm ################################################################## ARGUMENT PARSING parser = argparse.ArgumentParser(description="PyTorch CIFAR10 Training") parser.add_argument( "--model", default="resnet18", help="resnet9/18/34/50, wrn_40_2/_16_2/_40_1" ) parser.add_argument("--data_loc", default="/disk/scratch/datasets/cifar", type=str) parser.add_argument("--checkpoint", default=None, type=str) parser.add_argument("--n_gpus", default=0, type=int, help="Number of GPUs to use") ### training specific args parser.add_argument("--epochs", default=200, type=int) parser.add_argument("--lr", default=0.1) parser.add_argument( "--lr_decay_ratio", default=0.2, type=float, help="learning rate decay" ) parser.add_argument("--weight_decay", default=0.0005, type=float) ### reproducibility parser.add_argument("--seed", default=1, type=int) args = parser.parse_args() print(args.data_loc) ################################################################## REPRODUCIBILITY torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) ################################################################## MODEL LOADING device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if torch.cuda.is_available(): select_devices(num_gpus_to_use=args.n_gpus) model = get_model(args.model) if torch.cuda.is_available(): model = model.cuda() if torch.cuda.device_count() > 1: model = nn.DataParallel(model) model.to(device) if args.checkpoint is None: args.checkpoint = args.model ################################################################## TRAINING HYPERPARAMETERS trainloader, testloader = get_cifar_loaders(args.data_loc) optimizer = optim.SGD( [w for name, w in model.named_parameters() if not "mask" in name], lr=args.lr, momentum=0.9, weight_decay=args.weight_decay, ) scheduler = lr_scheduler.CosineAnnealingLR(optimizer, args.epochs, eta_min=1e-10) criterion = nn.CrossEntropyLoss() ################################################################## ACTUAL TRAINING error_history = [] for epoch in tqdm(range(args.epochs)): train(model, trainloader, criterion, optimizer) validate( model, epoch, testloader, criterion, checkpoint=args.checkpoint if epoch != 2 else args.checkpoint + "_init", seed=args.seed, ) scheduler.step()
mne/io/snirf/__init__.py
stevemats/mne-python
1,953
11159941
"""SNIRF module for conversion to FIF.""" # Author: <NAME> <<EMAIL>> # # License: BSD-3-Clause from ._snirf import read_raw_snirf
datasets/DET/seed/impl/OpenImages.py
zhangzhengde0225/SwinTrack
143
11159972
from datasets.DET.constructor.base_interface import DetectionDatasetConstructor from datasets.types.data_split import DataSplit import os import csv from collections import namedtuple from data.types.bounding_box_format import BoundingBoxFormat def construct_OpenImages(constructor: DetectionDatasetConstructor, seed): root_path = seed.root_path data_split = seed.data_split splits = [] if data_split & DataSplit.Training: splits.append('train') if data_split & DataSplit.Validation: splits.append('validation') if data_split & DataSplit.Testing: splits.append('test') class_mids = [] class_names = [] for line in open(os.path.join(root_path, 'class-descriptions-boxable.csv'), 'r', encoding='utf-8'): line = line.strip() if len(line) == 0: continue words = line.split(',') assert len(words) == 2 class_mids.append(words[0]) class_names.append(words[1]) mid_index_mapper = {mid: index for index, mid in enumerate(class_mids)} def _construct_sub_dataset(images_path: str, annotation_file_path: str): constructor.set_category_id_name_map({index: name for index, name in enumerate(class_names)}) images = {} with open(annotation_file_path, 'r', encoding='utf-8') as fid: csv_reader = csv.reader(fid) headings = next(csv_reader) Row = namedtuple('Row', headings) last_row_image = None image_annos = [] for r in csv_reader: row = Row(*r) image_name = row.ImageID if last_row_image != image_name: if last_row_image is not None: images[last_row_image] = image_annos image_annos = [] last_row_image = image_name image_annos.append(row) if last_row_image is not None: images[last_row_image] = image_annos constructor.set_total_number_of_images(len(images)) constructor.set_bounding_box_format(BoundingBoxFormat.XYXY) for image_name, image_annos in images.items(): with constructor.new_image() as image_constructor: image_constructor.set_path(os.path.join(images_path, image_name + '.jpg')) image_size = image_constructor.get_image_size() for image_anno in image_annos: object_category = mid_index_mapper[image_anno.LabelName] bounding_box = [float(image_anno.XMin) * image_size[0], float(image_anno.XMax) * image_size[0], float(image_anno.YMin) * image_size[1], float(image_anno.YMax) * image_size[1]] with image_constructor.new_object() as object_constructor: object_constructor.set_category_id(object_category) object_constructor.set_bounding_box(bounding_box) object_constructor.merge_attributes({'IsOccluded': image_anno.IsOccluded, 'IsTruncated': image_anno.IsTruncated, 'IsGroupOf': image_anno.IsGroupOf, 'IsDepiction': image_anno.IsDepiction, 'IsInside': image_anno.IsInside}) if data_split & DataSplit.Training: _construct_sub_dataset(os.path.join(root_path, 'train'), os.path.join(root_path, 'oidv6-train-annotations-bbox.csv')) if data_split & DataSplit.Validation: _construct_sub_dataset(os.path.join(root_path, 'validation'), os.path.join(root_path, 'validation-annotations-bbox.csv')) if data_split & DataSplit.Testing: _construct_sub_dataset(os.path.join(root_path, 'test'), os.path.join(root_path, 'test-annotations-bbox.csv'))
gobbli/test/experiment/test_base_experiment.py
awesome-archive/gobbli
276
11159993
<reponame>awesome-archive/gobbli<filename>gobbli/test/experiment/test_base_experiment.py from pathlib import Path import pytest import ray from gobbli.test.util import MockDataset, MockExperiment, MockModel, skip_if_no_gpu def test_base_experiment_init(tmpdir): tmpdir_path = Path(tmpdir) ds = MockDataset.load() # Create experiment exp = MockExperiment(MockModel, ds, data_dir=tmpdir_path / "test") assert exp.metadata_path.exists() # Shouldn't be able to create another experiment without ignoring the ray initialization error with pytest.raises(RuntimeError): MockExperiment(MockModel, ds, data_dir=tmpdir_path / "test2") MockExperiment( MockModel, ds, data_dir=tmpdir_path / "test3", ignore_ray_initialized_error=True ) # Shouldn't be able to create another experiment in the same path with pytest.raises(ValueError): MockExperiment( MockModel, ds, data_dir=tmpdir_path / "test", ignore_ray_initialized_error=True, ) # ...unless we pass overwrite_existing = True MockExperiment( MockModel, ds, data_dir=tmpdir_path / "test", ignore_ray_initialized_error=True, overwrite_existing=True, ) # Limit should be obeyed assert len(exp.X) == len(MockDataset.X_TRAIN_VALID) + len(MockDataset.X_TEST) assert len(exp.y) == len(MockDataset.Y_TRAIN_VALID) + len(MockDataset.Y_TEST) exp_limit = MockExperiment( MockModel, ds, limit=1, data_dir=tmpdir_path / "test_limit", ignore_ray_initialized_error=True, ) assert len(exp_limit.X) == 1 assert len(exp_limit.y) == 1 def test_base_experiment_gpu(tmpdir, request): skip_if_no_gpu(request.config) tmpdir_path = Path(tmpdir) ds = MockDataset.load() MockExperiment( MockModel, ds, data_dir=tmpdir_path / "test", ray_kwargs={"num_gpus": 1}, ignore_ray_initialized_error=True, ) # Make sure GPUs are available # in a mock remote function # They won't necessarily be available on the master process @ray.remote(num_gpus=1) def find_gpus(): return ray.get_gpu_ids() assert len(ray.get(find_gpus.remote())) > 0
bookwyrm/migrations/0095_merge_20210911_2143.py
mouse-reeve/fedireads
270
11159998
<reponame>mouse-reeve/fedireads # Generated by Django 3.2.4 on 2021-09-11 21:43 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("bookwyrm", "0094_auto_20210911_1550"), ("bookwyrm", "0094_importitem_book_guess"), ] operations = []
zentral/core/queues/backends/google_pubsub.py
arubdesu/zentral
634
11160000
<filename>zentral/core/queues/backends/google_pubsub.py from importlib import import_module import logging import time from django.utils.text import slugify from kombu.utils import json from google.api_core.exceptions import AlreadyExists from google.cloud import pubsub_v1 from google.oauth2 import service_account from zentral.conf import settings logger = logging.getLogger('zentral.core.queues.backends.google_pubsub') class BaseWorker: name = "UNDEFINED" counters = [] def setup_metrics_exporter(self, *args, **kwargs): self.metrics_exporter = kwargs.pop("metrics_exporter", None) if self.metrics_exporter: for name, label in self.counters: self.metrics_exporter.add_counter(name, [label]) self.metrics_exporter.start() def inc_counter(self, name, label): if self.metrics_exporter: self.metrics_exporter.inc(name, label) def log(self, msg, level, *args): logger.log(level, "{} - {}".format(self.name, msg), *args) def log_debug(self, msg, *args): self.log(msg, logging.DEBUG, *args) def log_info(self, msg, *args): self.log(msg, logging.INFO, *args) def log_error(self, msg, *args): self.log(msg, logging.ERROR, *args) class PreprocessWorker(BaseWorker): name = "preprocess worker" counters = ( ("preprocessed_events", "routing_key"), ("produced_events", "event_type"), ) def __init__(self, raw_events_topic, events_topic, credentials): self.raw_events_topic = raw_events_topic self.events_topic = events_topic self.credentials = credentials # preprocessors self.preprocessors = { preprocessor.routing_key: preprocessor for preprocessor in self._get_preprocessors() } def _get_preprocessors(self): for app in settings['apps']: try: preprocessors_module = import_module("{}.preprocessors".format(app)) except ImportError: pass else: yield from getattr(preprocessors_module, "get_preprocessors")() def run(self, *args, **kwargs): self.log_info("run") super().setup_metrics_exporter(*args, **kwargs) # subscriber client self.log_info("initialize subscriber") subscriber_client = pubsub_v1.SubscriberClient(credentials=self.credentials) project_id = self.raw_events_topic.split("/")[1] sub_path = subscriber_client.subscription_path(project_id, "raw-events-subscription") # create subscription try: subscriber_client.create_subscription(sub_path, self.raw_events_topic) except AlreadyExists: self.log_info("preprocess worker subscription %s already exists", sub_path) else: self.log_info("preprocess worker subscription %s created", sub_path) # publisher client self.log_info("initialize publisher") self.publisher_client = pubsub_v1.PublisherClient(credentials=self.credentials) # async pull self.log_info("start async pull") pull_future = subscriber_client.subscribe(sub_path, self.callback) with subscriber_client: try: pull_future.result() except Exception: pull_future.cancel() def callback(self, message): routing_key = message.attributes.get("routing_key") if not routing_key: self.log_error("Message w/o routing key") else: preprocessor = self.preprocessors.get(routing_key) if not preprocessor: self.log_error("No preprocessor for routing key %s", routing_key) else: for event in preprocessor.process_raw_event(json.loads(message.data)): new_message = json.dumps(event.serialize(machine_metadata=False)).encode("utf-8") self.publisher_client.publish(self.events_topic, new_message) self.inc_counter("produced_events", event.event_type) message.ack() self.inc_counter("preprocessed_events", routing_key or "UNKNOWN") class EnrichWorker(BaseWorker): name = "enrich worker" counters = ( ("enriched_events", "event_type"), ("produced_events", "event_type"), ) def __init__(self, events_topic, enriched_events_topic, credentials, enrich_event): self.events_topic = events_topic self.enriched_events_topic = enriched_events_topic self.credentials = credentials self.enrich_event = enrich_event def run(self, *args, **kwargs): self.log_info("run") super().setup_metrics_exporter(*args, **kwargs) # subscriber client self.log_info("initialize subscriber") subscriber_client = pubsub_v1.SubscriberClient(credentials=self.credentials) project_id = self.events_topic.split("/")[1] sub_path = subscriber_client.subscription_path(project_id, "events-subscription") # create subscription try: subscriber_client.create_subscription(sub_path, self.events_topic) except AlreadyExists: self.log_info("enrich worker subscription %s already exists", sub_path) else: self.log_info("enrich worker subscription %s created", sub_path) # publisher client self.log_info("initialize publisher") self.publisher_client = pubsub_v1.PublisherClient(credentials=self.credentials) # async pull self.log_info("start async pull") pull_future = subscriber_client.subscribe(sub_path, self.callback) with subscriber_client: try: pull_future.result() except Exception: pull_future.cancel() def callback(self, message): event_dict = json.loads(message.data) event_type = event_dict['_zentral']['type'] try: for event in self.enrich_event(event_dict): new_message = json.dumps(event.serialize(machine_metadata=True)).encode("utf-8") self.publisher_client.publish(self.enriched_events_topic, new_message) self.inc_counter("produced_events", event.event_type) except Exception as exception: logger.exception("Requeuing message with 1s delay: %s", exception) time.sleep(1) message.nack() else: message.ack() self.inc_counter("enriched_events", event_type) class ProcessWorker(BaseWorker): name = "process worker" counters = ( ("processed_events", "event_type"), ) def __init__(self, enriched_events_topic, credentials, process_event): self.enriched_events_topic = enriched_events_topic self.credentials = credentials self.process_event = process_event def run(self, *args, **kwargs): self.log_info("run") super().setup_metrics_exporter(*args, **kwargs) # subscriber client self.log_info("initialize subscriber") subscriber_client = pubsub_v1.SubscriberClient(credentials=self.credentials) project_id = self.enriched_events_topic.split("/")[1] sub_path = subscriber_client.subscription_path(project_id, "process-enriched-events-subscription") # create subscription try: subscriber_client.create_subscription(sub_path, self.enriched_events_topic) except AlreadyExists: self.log_info("process worker subscription %s already exists", sub_path) else: self.log_info("process worker subscription %s created", sub_path) # async pull self.log_info("start async pull") pull_future = subscriber_client.subscribe(sub_path, self.callback) with subscriber_client: try: pull_future.result() except Exception: pull_future.cancel() def callback(self, message): event_dict = json.loads(message.data) event_type = event_dict['_zentral']['type'] self.process_event(event_dict) message.ack() self.inc_counter("processed_events", event_type) class StoreWorker(BaseWorker): counters = ( ("stored_events", "event_type"), ) def __init__(self, enriched_events_topic, credentials, event_store): self.enriched_events_topic = enriched_events_topic self.credentials = credentials self.event_store = event_store self.name = "store worker {}".format(self.event_store.name) def run(self, *args, **kwargs): self.log_info("run") super().setup_metrics_exporter(*args, **kwargs) # subscriber client self.log_info("initialize subscriber") subscriber_client = pubsub_v1.SubscriberClient(credentials=self.credentials) project_id = self.enriched_events_topic.split("/")[1] sub_path = subscriber_client.subscription_path( project_id, "{}-store-enriched-events-subscription".format(slugify(self.event_store.name)) ) # create subscription try: subscriber_client.create_subscription(sub_path, self.enriched_events_topic) except AlreadyExists: self.log_info("store worker subscription %s already exists", sub_path) else: self.log_info("store worker subscription %s created", sub_path) # prometheus prometheus_port = kwargs.pop("prometheus_port", None) if prometheus_port: self.log_info("start prometheus server on port %s", prometheus_port) self.start_prometheus_server(prometheus_port) # async pull self.log_info("start async pull") pull_future = subscriber_client.subscribe(sub_path, self.callback) with subscriber_client: try: pull_future.result() except Exception: pull_future.cancel() def callback(self, message): self.log_debug("store event") event_dict = json.loads(message.data) event_type = event_dict['_zentral']['type'] if not self.event_store.is_event_type_included(event_type): self.log_debug("skip %s event", event_type) message.ack() return try: self.event_store.store(event_dict) except Exception: logger.exception("Could add event to store %s", self.event_store.name) message.nack() else: message.ack() self.inc_counter("stored_events", event_type) class EventQueues(object): def __init__(self, config_d): # topics topics = config_d["topics"] self.raw_events_topic = topics["raw_events"] self.events_topic = topics["events"] self.enriched_events_topic = topics["enriched_events"] # credentials self.credentials = None credentials_file = config_d.get("credentials") if credentials_file: credentials = service_account.Credentials.from_service_account_file(credentials_file) self.credentials = credentials.with_scopes(["https://www.googleapis.com/auth/cloud-platform"]) # publisher client self.publisher_client = None def _publish(self, topic, event_dict, **kwargs): message = json.dumps(event_dict).encode("utf-8") if self.publisher_client is None: self.publisher_client = pubsub_v1.PublisherClient(credentials=self.credentials) self.publisher_client.publish(topic, message, **kwargs) def get_preprocess_worker(self): return PreprocessWorker(self.raw_events_topic, self.events_topic, self.credentials) def get_enrich_worker(self, enrich_event): return EnrichWorker(self.events_topic, self.enriched_events_topic, self.credentials, enrich_event) def get_process_worker(self, process_event): return ProcessWorker(self.enriched_events_topic, self.credentials, process_event) def get_store_worker(self, event_store): return StoreWorker(self.enriched_events_topic, self.credentials, event_store) def post_raw_event(self, routing_key, raw_event): self._publish(self.raw_events_topic, raw_event, routing_key=routing_key) def post_event(self, event): self._publish(self.events_topic, event.serialize(machine_metadata=False))
test/lib/test_util.py
Jinnrry/reversi-alpha-zero
699
11160040
<gh_stars>100-1000 from nose.tools.trivial import eq_ from reversi_zero.lib import util from reversi_zero.lib.bitboard import board_to_string def test_parse_to_bitboards_init(): ex = ''' ########## # # # # # # # OX # # XO # # # # # # # ########## ''' black, white = util.parse_to_bitboards(ex) eq_(black, 0b00001000 << 24 | 0b00010000 << 32, f"{ex}\n-------\n{board_to_string(black, white)}") eq_(white, 0b00010000 << 24 | 0b00001000 << 32, f"{ex}\n-------\n{board_to_string(black, white)}") def test_parse_to_bitboards(): ex = ''' ########## #OO # #XOO # #OXOOO # # XOX # # XXX # # X # # X # # X# ##########''' black, white = util.parse_to_bitboards(ex) eq_(ex.strip(), board_to_string(black, white).strip(), f"{ex}\n-------\n{board_to_string(black, white)}")
finplot/examples/line.py
shujaatak/finplot
501
11160077
#!/usr/bin/env python3 import finplot as fplt import numpy as np import pandas as pd dates = pd.date_range('01:00', '01:00:01.200', freq='1ms') prices = pd.Series(np.random.random(len(dates))).rolling(30).mean() + 4 fplt.plot(dates, prices, width=3) line = fplt.add_line((dates[100], 4.4), (dates[1100], 4.6), color='#9900ff', interactive=True) ## fplt.remove_primitive(line) text = fplt.add_text((dates[500], 4.6), "I'm here alright!", color='#bb7700') ## fplt.remove_primitive(text) rect = fplt.add_rect((dates[700], 4.5), (dates[850], 4.4), color='#8c8', interactive=True) ## fplt.remove_primitive(rect) def save(): fplt.screenshot(open('screenshot.png', 'wb')) fplt.timer_callback(save, 0.5, single_shot=True) # wait some until we're rendered fplt.show()
veles/tests/test_mutable.py
AkshayJainG/veles
1,007
11160081
<filename>veles/tests/test_mutable.py # -*- coding: utf-8 -*- """ .. invisible: _ _ _____ _ _____ _____ | | | | ___| | | ___/ ___| | | | | |__ | | | |__ \ `--. | | | | __|| | | __| `--. \ \ \_/ / |___| |___| |___/\__/ / \___/\____/\_____|____/\____/ Created on Apr 23, 2014 ███████████████████████████████████████████████████████████████████████████████ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ███████████████████████████████████████████████████████████████████████████████ """ import unittest from veles.mutable import Bool, LinkableAttribute from veles.pickle2 import pickle class A(object): pass class B(object): pass class C(object): def __init__(self): self.number = 255 class Test(unittest.TestCase): def set_flag(self, b): b.flag = True def testBool(self): a = Bool() self.assertFalse(a) b = Bool(True) self.assertTrue(b) c = a | b self.assertTrue(c) b <<= False self.assertFalse(a) self.assertFalse(b) self.assertFalse(c) c = a & b self.assertFalse(c) c.flag = False c.on_false = self.set_flag a <<= True self.assertTrue(a) self.assertFalse(b) self.assertFalse(c) self.assertTrue(c.flag) c.on_false = None c.on_true = self.set_flag b <<= True self.assertTrue(a) self.assertTrue(b) self.assertTrue(c) self.assertTrue(c.flag) a.unref(c) b.unref(c) c.flag = False c.on_false = self.set_flag c.on_true = None b <<= False self.assertFalse(c.flag) b <<= True c = a ^ b self.assertTrue(a) self.assertTrue(b) self.assertFalse(c) a <<= False self.assertFalse(a) self.assertTrue(c) b <<= False self.assertFalse(a) self.assertFalse(b) self.assertFalse(c) c = ~a self.assertFalse(a) self.assertTrue(c) a <<= True self.assertTrue(a) self.assertFalse(c) c = a & ~b self.assertTrue(c) def testBoolPickling(self): a = Bool() self.assertFalse(a) b = Bool(True) self.assertTrue(b) c = a | b c.on_true = self.set_flag c2 = pickle.loads(pickle.dumps(c)) self.assertEqual(None, c2.on_true) def testLinkableAttribute(self): a = A() a.number = 77 b = B() LinkableAttribute(b, "number", (a, "number"), assignment_guard=False) # link(b, "number", a, "number") self.assertEqual(77, a.number) self.assertEqual(77, b.number) a.number = 100 self.assertEqual(100, a.number) self.assertEqual(100, b.number) b.number = 40 self.assertEqual(100, a.number) self.assertEqual(40, b.number) LinkableAttribute(b, "number", (a, "number"), True) b.number = 77 self.assertEqual(77, a.number) self.assertEqual(77, b.number) self.assertRaises(ValueError, LinkableAttribute(b, "number", (b, "number"))) def testLinkableAttribute100(self): a = A() a.number = 77 b = [] bb = [] bbb = [] for i in range(100): b.append(B()) LinkableAttribute(b[i], "number", (a, "number")) bb.append(B()) LinkableAttribute(bb[i], "number", (b[i], "number")) bbb.append(B()) LinkableAttribute(bbb[i], "number", (bbb[i - 1] if i else bb[i], "number")) a.number = 123 for i in range(100): self.assertEqual(b[i].number, 123) self.assertEqual(bb[i].number, 123) self.assertEqual(bbb[i].number, 123) def testLinkableAttributeConstructorAssignment(self): a = A() a.number = 77 c = C() LinkableAttribute(c, "number", (a, "number")) c2 = C() # exception should not be here LinkableAttribute(c2, "number", (a, "number")) def testLinkableAttributeConstructorAssignment100(self): a = A() a.number = 77 c = [] cc = [] ccc = [] for i in range(100): c.append(C()) LinkableAttribute(c[i], "number", (a, "number")) cc.append(C()) LinkableAttribute(cc[i], "number", (c[i], "number")) ccc.append(B()) LinkableAttribute(ccc[i], "number", (ccc[i - 1] if i else cc[i], "number")) a.number = 123 for i in range(100): self.assertEqual(c[i].number, 123) self.assertEqual(cc[i].number, 123) self.assertEqual(ccc[i].number, 123) def testLinkableAttributeOneWay(self): class AC(object): pass class BC(object): pass a = AC() a.number = 77 b = BC() b.number = 88 LinkableAttribute(b, "number", (a, "number")) self.assertEqual(b.number, 77) try: b.number = 99 err = True except RuntimeError: err = False self.assertFalse(err, "Two way assignment disabled") def testLinkablePickling(self): a = A() a.number = 77 b = B() LinkableAttribute(b, "number", (a, "number")) new_a, new_b = pickle.loads(pickle.dumps((a, b))) self.assertEqual(new_b.number, 77) self.assertEqual(new_a.number, 77) new_a.number = 100 self.assertEqual(new_b.number, 100) if __name__ == "__main__": unittest.main()
ext.py
semirook/flask-kit
133
11160110
<reponame>semirook/flask-kit # coding: utf-8 """ ext ~~~ Good place for pluggable extensions. :copyright: (c) 2015 by <NAME>. :license: BSD, see LICENSE for more details. """ from flask_debugtoolbar import DebugToolbarExtension from flask_gravatar import Gravatar from flask_login import LoginManager from flask_sqlalchemy import SQLAlchemy from flask_assets import Environment db = SQLAlchemy() assets = Environment() login_manager = LoginManager() gravatar = Gravatar(size=50) toolbar = DebugToolbarExtension() # Almost any modern Flask extension has special init_app() # method for deferred app binding. But there are a couple of # popular extensions that no nothing about such use case. # Or, maybe, you have to use some app.config settings # gravatar = lambda app: Gravatar(app, size=50)
tests/exceptions/source/ownership/_init.py
ponponon/loguru
11,391
11160152
<filename>tests/exceptions/source/ownership/_init.py import os import sys import sysconfig usersite = os.path.abspath(os.path.join(os.path.dirname(__file__), "usersite")) sys.path.append(usersite) sysconfig._INSTALL_SCHEMES["posix_user"]["purelib"] = usersite
tests/misc/test_flop_count.py
wenliangzhao2018/d2go
687
11160158
<reponame>wenliangzhao2018/d2go<filename>tests/misc/test_flop_count.py<gh_stars>100-1000 import os import tempfile from d2go.utils.flop_calculator import dump_flops_info from d2go.utils.testing.data_loader_helper import create_fake_detection_data_loader from d2go.utils.testing.rcnn_helper import RCNNBaseTestCases class TestFlopCount(RCNNBaseTestCases.TemplateTestCase): def setup_custom_test(self): super().setup_custom_test() self.cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml") def test_flop_count(self): size_divisibility = max(self.test_model.backbone.size_divisibility, 10) h, w = size_divisibility, size_divisibility * 2 with create_fake_detection_data_loader(h, w, is_train=False) as data_loader: inputs = (next(iter(data_loader)),) with tempfile.TemporaryDirectory(prefix="d2go_test") as output_dir: dump_flops_info(self.test_model, inputs, output_dir) for fname in [ "flops_str_mobilecv", "flops_str_fvcore", "flops_table_fvcore", ]: outf = os.path.join(output_dir, fname + ".txt") self.assertTrue(os.path.isfile(outf))
nuplan/common/maps/nuplan_map/test/test_generic_polygon_map.py
motional/nuplan-devkit
128
11160162
<filename>nuplan/common/maps/nuplan_map/test/test_generic_polygon_map.py from typing import Any, Dict import pytest from nuplan.common.actor_state.state_representation import Point2D from nuplan.common.maps.abstract_map import SemanticMapLayer from nuplan.common.maps.abstract_map_objects import PolygonMapObject from nuplan.common.maps.nuplan_map.map_factory import NuPlanMapFactory from nuplan.common.maps.test_utils import add_map_objects_to_scene from nuplan.common.utils.testing.nuplan_test import NUPLAN_TEST_PLUGIN, nuplan_test from nuplan.database.tests.nuplan_db_test_utils import get_test_maps_db maps_db = get_test_maps_db() map_factory = NuPlanMapFactory(maps_db) @nuplan_test(path='json/crosswalks/nearby.json') def test_get_nearby_crosswalks(scene: Dict[str, Any]) -> None: """ Test getting nearby crosswalks. """ nuplan_map = map_factory.build_map_from_name(scene["map"]["area"]) for marker, expected_distance, expected_id in zip( scene["markers"], scene["xtr"]["expected_nearest_distance"], scene["xtr"]["expected_nearest_id"] ): pose = marker["pose"] crosswalk_id, distance = nuplan_map.get_distance_to_nearest_map_object( Point2D(pose[0], pose[1]), SemanticMapLayer.CROSSWALK ) assert crosswalk_id is not None assert expected_distance == distance assert expected_id == crosswalk_id crosswalk: PolygonMapObject = nuplan_map.get_map_object(crosswalk_id, SemanticMapLayer.CROSSWALK) add_map_objects_to_scene(scene, [crosswalk]) @nuplan_test(path='json/crosswalks/on_crosswalk.json') def test_get_crosswalk(scene: Dict[str, Any]) -> None: """ Test getting crosswalk at a point. """ nuplan_map = map_factory.build_map_from_name(scene["map"]["area"]) for marker, expected_id in zip(scene["markers"], scene["xtr"]["expected_nearest_id"]): pose = marker["pose"] crosswalk: PolygonMapObject = nuplan_map.get_one_map_object( Point2D(pose[0], pose[1]), SemanticMapLayer.CROSSWALK ) assert crosswalk is not None assert expected_id == crosswalk.id assert crosswalk.contains_point(Point2D(pose[0], pose[1])) add_map_objects_to_scene(scene, [crosswalk]) if __name__ == "__main__": raise SystemExit(pytest.main([__file__], plugins=[NUPLAN_TEST_PLUGIN]))
etl/parsers/etw/Microsoft_Windows_Sensors.py
IMULMUL/etl-parser
104
11160167
<gh_stars>100-1000 # -*- coding: utf-8 -*- """ Microsoft-Windows-Sensors GUID : d8900e18-36cb-4548-966f-13f068d1f78e """ from construct import Int8sl, Int8ul, Int16ul, Int16sl, Int32sl, Int32ul, Int64sl, Int64ul, Bytes, Double, Float32l, Struct from etl.utils import WString, CString, SystemTime, Guid from etl.dtyp import Sid from etl.parsers.etw.core import Etw, declare, guid @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1001, version=0) class Microsoft_Windows_Sensors_1001_0(Etw): pattern = Struct( "DeviceID" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1002, version=0) class Microsoft_Windows_Sensors_1002_0(Etw): pattern = Struct( "DeviceID" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1003, version=0) class Microsoft_Windows_Sensors_1003_0(Etw): pattern = Struct( "SensorType" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1004, version=0) class Microsoft_Windows_Sensors_1004_0(Etw): pattern = Struct( "SensorType" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1005, version=0) class Microsoft_Windows_Sensors_1005_0(Etw): pattern = Struct( "SensorObjectId" / WString ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1006, version=0) class Microsoft_Windows_Sensors_1006_0(Etw): pattern = Struct( "SensorObjectId" / WString ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1007, version=0) class Microsoft_Windows_Sensors_1007_0(Etw): pattern = Struct( "SensorObjectId" / WString ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1008, version=0) class Microsoft_Windows_Sensors_1008_0(Etw): pattern = Struct( "SensorObjectId" / WString ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1009, version=0) class Microsoft_Windows_Sensors_1009_0(Etw): pattern = Struct( "SensorObjectId" / WString ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1010, version=0) class Microsoft_Windows_Sensors_1010_0(Etw): pattern = Struct( "SensorObjectId" / WString ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1011, version=0) class Microsoft_Windows_Sensors_1011_0(Etw): pattern = Struct( "SensorObjectId" / WString ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1012, version=0) class Microsoft_Windows_Sensors_1012_0(Etw): pattern = Struct( "SensorObjectId" / WString ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1013, version=0) class Microsoft_Windows_Sensors_1013_0(Etw): pattern = Struct( "SensorObjectId" / WString ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1014, version=0) class Microsoft_Windows_Sensors_1014_0(Etw): pattern = Struct( "SensorObjectId" / WString ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1015, version=0) class Microsoft_Windows_Sensors_1015_0(Etw): pattern = Struct( "SensorObjectId" / WString, "Timestamp" / SystemTime, "NumSubscribers" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1016, version=0) class Microsoft_Windows_Sensors_1016_0(Etw): pattern = Struct( "SensorObjectId" / WString, "SensorState" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1017, version=0) class Microsoft_Windows_Sensors_1017_0(Etw): pattern = Struct( "SensorObjectId" / WString, "SensorState" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1100, version=0) class Microsoft_Windows_Sensors_1100_0(Etw): pattern = Struct( "SENSOR_ID" / Guid, "Timestamp" / SystemTime ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1101, version=0) class Microsoft_Windows_Sensors_1101_0(Etw): pattern = Struct( "SENSOR_ID" / Guid, "Timestamp" / SystemTime ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1102, version=0) class Microsoft_Windows_Sensors_1102_0(Etw): pattern = Struct( "WorkingSet" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1103, version=0) class Microsoft_Windows_Sensors_1103_0(Etw): pattern = Struct( "CPUUsage" / Float32l ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1104, version=0) class Microsoft_Windows_Sensors_1104_0(Etw): pattern = Struct( "SENSOR_ID" / Guid, "Timestamp" / SystemTime, "HRESULT" / Int32ul, "ReportPointer" / Int64ul, "SensorStateThisSensor" / Int32ul, "SensorStateAccumulated" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1105, version=0) class Microsoft_Windows_Sensors_1105_0(Etw): pattern = Struct( "QuadrantAngle" / Float32l ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1106, version=0) class Microsoft_Windows_Sensors_1106_0(Etw): pattern = Struct( "SensorState" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1107, version=0) class Microsoft_Windows_Sensors_1107_0(Etw): pattern = Struct( "AccelerationX" / Float32l, "AccelerationY" / Float32l, "AccelerationZ" / Float32l, "PitchCalibration" / Float32l ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1108, version=0) class Microsoft_Windows_Sensors_1108_0(Etw): pattern = Struct( "IsPitchGreaterThanThreshold" / Int32ul, "PitchAngle" / Float32l, "PitchThreshold" / Float32l, "PitchCalibration" / Float32l ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1109, version=0) class Microsoft_Windows_Sensors_1109_0(Etw): pattern = Struct( "Theta" / Float32l, "AngularCalibration" / Float32l ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1110, version=0) class Microsoft_Windows_Sensors_1110_0(Etw): pattern = Struct( "Theta" / Float32l ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1111, version=0) class Microsoft_Windows_Sensors_1111_0(Etw): pattern = Struct( "GoodAngle" / Int32ul, "Quadrant" / Int32ul, "LastQuadrant" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1112, version=0) class Microsoft_Windows_Sensors_1112_0(Etw): pattern = Struct( "TimerQueueStatus" / Int32ul, "TimerQueueAction" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1113, version=0) class Microsoft_Windows_Sensors_1113_0(Etw): pattern = Struct( "GoodAngle" / Int32ul, "Quadrant" / Int32ul, "LastQuadrant" / Int32ul, "Theta" / Float32l ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1114, version=0) class Microsoft_Windows_Sensors_1114_0(Etw): pattern = Struct( "GoodAngle" / Int32ul, "Quadrant" / Int32ul, "AngularThreshold" / Float32l, "Theta" / Float32l ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1119, version=0) class Microsoft_Windows_Sensors_1119_0(Etw): pattern = Struct( "QuadrantAngle" / Float32l ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1120, version=0) class Microsoft_Windows_Sensors_1120_0(Etw): pattern = Struct( "QuadrantAngle" / Float32l ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1121, version=0) class Microsoft_Windows_Sensors_1121_0(Etw): pattern = Struct( "SENSOR_ID" / Guid, "SensorState" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1122, version=0) class Microsoft_Windows_Sensors_1122_0(Etw): pattern = Struct( "SENSOR_ID" / Guid, "SensorState" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1123, version=0) class Microsoft_Windows_Sensors_1123_0(Etw): pattern = Struct( "SensorState" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1124, version=0) class Microsoft_Windows_Sensors_1124_0(Etw): pattern = Struct( "SensorState" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1207, version=0) class Microsoft_Windows_Sensors_1207_0(Etw): pattern = Struct( "SensorObjectId" / WString ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1208, version=0) class Microsoft_Windows_Sensors_1208_0(Etw): pattern = Struct( "SensorObjectId" / WString ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1209, version=0) class Microsoft_Windows_Sensors_1209_0(Etw): pattern = Struct( "EventNumber" / Int32ul, "EventCount" / Int32ul, "SENSOR_ID" / Guid, "ConnectedClients" / Int32ul, "SubscribedClients" / Int32ul, "SilentClients" / Int32ul, "PID" / Int32ul, "ClientBitfield" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1301, version=0) class Microsoft_Windows_Sensors_1301_0(Etw): pattern = Struct( "SensorObjectId" / WString, "SENSOR_ID" / Guid, "Timestamp" / SystemTime ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1302, version=0) class Microsoft_Windows_Sensors_1302_0(Etw): pattern = Struct( "SensorObjectId" / WString, "SENSOR_ID" / Guid, "Timestamp" / SystemTime ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1303, version=0) class Microsoft_Windows_Sensors_1303_0(Etw): pattern = Struct( "SENSOR_ID" / Guid ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1304, version=0) class Microsoft_Windows_Sensors_1304_0(Etw): pattern = Struct( "SENSOR_ID" / Guid ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1305, version=0) class Microsoft_Windows_Sensors_1305_0(Etw): pattern = Struct( "SENSOR_ID" / Guid ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1306, version=0) class Microsoft_Windows_Sensors_1306_0(Etw): pattern = Struct( "SENSOR_ID" / Guid ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1307, version=0) class Microsoft_Windows_Sensors_1307_0(Etw): pattern = Struct( "SENSOR_ID" / Guid ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1308, version=0) class Microsoft_Windows_Sensors_1308_0(Etw): pattern = Struct( "SENSOR_ID" / Guid ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1309, version=0) class Microsoft_Windows_Sensors_1309_0(Etw): pattern = Struct( "SENSOR_ID" / Guid ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1310, version=0) class Microsoft_Windows_Sensors_1310_0(Etw): pattern = Struct( "SENSOR_ID" / Guid ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1311, version=0) class Microsoft_Windows_Sensors_1311_0(Etw): pattern = Struct( "SensorObjectId" / WString, "SENSOR_ID" / Guid, "SensorState" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1312, version=0) class Microsoft_Windows_Sensors_1312_0(Etw): pattern = Struct( "SensorObjectId" / WString, "SENSOR_ID" / Guid, "SensorState" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1501, version=0) class Microsoft_Windows_Sensors_1501_0(Etw): pattern = Struct( "SensorObjectId" / WString, "SENSOR_ID" / Guid ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1502, version=0) class Microsoft_Windows_Sensors_1502_0(Etw): pattern = Struct( "SensorObjectId" / WString, "SENSOR_ID" / Guid ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1503, version=0) class Microsoft_Windows_Sensors_1503_0(Etw): pattern = Struct( "SensorObjectId" / WString, "SENSOR_ID" / Guid ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1504, version=0) class Microsoft_Windows_Sensors_1504_0(Etw): pattern = Struct( "SensorObjectId" / WString, "SENSOR_ID" / Guid ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1505, version=0) class Microsoft_Windows_Sensors_1505_0(Etw): pattern = Struct( "SensorObjectId" / WString, "SENSOR_ID" / Guid ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1506, version=0) class Microsoft_Windows_Sensors_1506_0(Etw): pattern = Struct( "SensorObjectId" / WString, "SENSOR_ID" / Guid ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1507, version=0) class Microsoft_Windows_Sensors_1507_0(Etw): pattern = Struct( "SensorObjectId" / WString, "SENSOR_ID" / Guid ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1508, version=0) class Microsoft_Windows_Sensors_1508_0(Etw): pattern = Struct( "SensorObjectId" / WString, "SENSOR_ID" / Guid ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1509, version=0) class Microsoft_Windows_Sensors_1509_0(Etw): pattern = Struct( "SensorObjectId" / WString, "SENSOR_ID" / Guid, "HRESULT" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1510, version=0) class Microsoft_Windows_Sensors_1510_0(Etw): pattern = Struct( "SensorObjectId" / WString, "SENSOR_ID" / Guid, "HRESULT" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1511, version=0) class Microsoft_Windows_Sensors_1511_0(Etw): pattern = Struct( "SensorObjectId" / WString, "SENSOR_ID" / Guid, "HRESULT" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=1512, version=0) class Microsoft_Windows_Sensors_1512_0(Etw): pattern = Struct( "SensorObjectId" / WString, "SENSOR_ID" / Guid, "HRESULT" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=3001, version=0) class Microsoft_Windows_Sensors_3001_0(Etw): pattern = Struct( "GenericMessage" / WString ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=3002, version=0) class Microsoft_Windows_Sensors_3002_0(Etw): pattern = Struct( "SENSOR_ID" / Guid, "MethodId" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=10001, version=0) class Microsoft_Windows_Sensors_10001_0(Etw): pattern = Struct( "EventId" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=10002, version=0) class Microsoft_Windows_Sensors_10002_0(Etw): pattern = Struct( "EventId" / Int32ul ) @declare(guid=guid("d8900e18-36cb-4548-966f-13f068d1f78e"), event_id=10003, version=0) class Microsoft_Windows_Sensors_10003_0(Etw): pattern = Struct( "EventId" / Int32ul, "QuadrantChangeInterval" / Int32ul, "Angle" / Int32ul )
psutil_example/print_process_memory/print_process_by_memory.py
DazEB2/SimplePyScripts
117
11160176
<reponame>DazEB2/SimplePyScripts<filename>psutil_example/print_process_memory/print_process_by_memory.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' import sys from pathlib import Path from collections import defaultdict # pip install psutil import psutil sys.path.append(str(Path(__file__).resolve().parent.parent)) from human_byte_size import sizeof_fmt column_width = defaultdict(int) process_list = [] for p in psutil.process_iter(): memory = p.memory_info().rss cols = p.name(), str(memory) + ' bytes', sizeof_fmt(memory) process_list.append(cols) for i, x in enumerate(cols): column_width[i] = max(column_width[i], len(x)) # Sort by memory size process_list.sort(key=lambda x: int(x[1].split(' ')[0]), reverse=True) for p in process_list: row = [x.rjust(column_width[i]) for i, x in enumerate(p)] print(' | '.join(row))
whynot/simulators/civil_violence/simulator.py
yoshavit/whynot
376
11160189
<filename>whynot/simulators/civil_violence/simulator.py """Simulate and analyze runs from the civil violence model.""" import dataclasses from mesa.datacollection import DataCollector import numpy as np from whynot.simulators.civil_violence.model import CivilViolenceModel @dataclasses.dataclass class Agent: # pylint: disable-msg=too-few-public-methods """Covariates for a single agent in the simulation. Examples -------- >>> # An agent with low risk aversion and high hardship >>> civil_violence.Agent(hardship=0.99, risk_aversion=0.01) """ #: How aggrieved is the agent by external circumstances. hardship: float = 0.5 #: How legitimate does the agent perceive the current regime. legitimacy: float = 0.5 #: Threshold above which agent starts to openly rebell active_threshold: float = 0.1 #: How likely the agent is to rebel for a fixed greviance level. risk_aversion: float = 0.5 #: How many adjacent squares an agent sees and uses to determine probability of arrest. vision: int = 3 @dataclasses.dataclass class Config: # pylint: disable-msg=too-few-public-methods """Metaparameters for a single run of the civil violence simulator.""" #: Vertical grid size grid_height: int = 50 #: Horizontal grid size grid_width: int = 50 #: What fraction of the agents are police cop_fraction: float = 0.05 #: How many adjacent squares a cop can see when determining who to arrest. cop_vision: int = 5 # What's the longest time a citizen can stay in jail? max_jail_term: int = 5 #: How strongly other agent grievances affect each agent in prison. prison_interaction: float = 0.1 #: A fixed parameter to calibrate arrest likelihood. arrest_prob_constant: float = 2.3 def count_type_citizens(model, condition, exclude_jailed=True): """Count agents as either Quiescent/Active.""" count = 0 for agent in model.schedule.agents: if agent.breed == "cop": continue if exclude_jailed and agent.jail_sentence: continue if agent.condition == condition: count += 1 return count def count_jailed(model): """Count number of jailed agents.""" count = 0 for agent in model.schedule.agents: if agent.breed == "citizen" and agent.jail_sentence: count += 1 return count def simulate(agents, config, seed=None, max_steps=1000): """Simulate a run of the civil violence model. Parameters ---------- agents: list List of whynot.simulators.civil_violence.Agent to populate the model config: whynot.simulators.civil_violence.Config Simulation parameters seed: int (Optional) Seed for all randomness in model setup and execution. max_steps: int Maximum number of steps to run the civil_violence model. Returns ------- observations: pd.DataFrame Pandas dataframe containing the "observations" recorded for each agent. Observations are defined in the `agent_reporter` and include agent attributes along with: "pos" # position on the grid "jail_sentence" # agent's jail sentence at model end "condition" # agent's condition (rebelling or acquiesent) at model end "arrest_probability" # agent's probability of arrest "arrests" # number of time agent has been arrested "days_active" # how long as the agent spent in rebellion """ # Ensure everything will fit on the grid num_cells = config.grid_height * config.grid_width num_cops = int(np.floor(len(agents) * config.cop_fraction)) assert len(agents) + num_cops < num_cells model = CivilViolenceModel( height=config.grid_height, width=config.grid_width, cop_vision=config.cop_vision, max_jail_term=config.max_jail_term, prison_interaction=config.prison_interaction, arrest_prob_constant=config.arrest_prob_constant, max_steps=max_steps, seed=seed, ) # Place agents on grid for i, agent in enumerate(agents): model.add_agent( i, model.find_empty(), agent.hardship, agent.legitimacy, agent.risk_aversion, agent.active_threshold, agent.vision, ) for i in range(num_cops): model.add_cop(i + len(agents), model.find_empty()) # Which attributes to report agent_reporters = { "pos": "pos", "breed": "breed", "jail_sentence": "jail_sentence", "condition": "condition", "arrest_probability": "arrest_probability", "arrests": "arrests", "hardship": "hardship", "regime_legitimacy": "regime_legitimacy", "days_active": "days_active", "risk_aversion": "risk_aversion", "threshold": "threshold", "arrest_parameter": "arrest_parameter", "vision": "vision", } datacollector = DataCollector(agent_reporters=agent_reporters) while model.running: model.step() datacollector.collect(model) dataframe = datacollector.get_agent_vars_dataframe() observations = dataframe[dataframe.breed == "citizen"].drop(columns="breed") return observations
vaas-app/src/vaas/router/tests/test_views.py
allegro/vaas
251
11160226
<filename>vaas-app/src/vaas/router/tests/test_views.py<gh_stars>100-1000 from django.test import TestCase from vaas.router.models import Route from vaas.router.forms import RouteModelForm from vaas.manager.models import Director, Probe, TimeProfile from vaas.cluster.models import LogicalCluster from django.urls import reverse class TestPrioritiesView(TestCase): def setUp(self): self.probe = Probe.objects.create(name='default_probe', url='/ts.1') self.cluster1 = LogicalCluster.objects.create(name="first cluster") self.cluster2 = LogicalCluster.objects.create(name="second cluster") self.director1 = Director.objects.create( name='first_gamma', route_expression='/first', mode='random', probe=self.probe, time_profile=TimeProfile.objects.create(name='beta') ) self.director2 = Director.objects.create( name='second_gamma', route_expression='/second', mode='random', probe=self.probe, time_profile=TimeProfile.objects.create(name='alfa') ) def test_should_check_if_taken_priority_is_excluded_from_available_values(self): self.director1.cluster.add(self.cluster1) route = Route.objects.create( condition='some condition', priority=51, director=self.director1, action='pass', ) route.clusters.add(self.cluster1) response = self.client.get( reverse('router:priorities', args=(self.director1.id, 0, 0)), {'clusters': self.cluster1.id} ) self.assertEqual(response.status_code, 200) available_values = response.json()['values'] self.assertTrue(route.priority not in available_values) def test_should_check_if_taken_priority_is_excluded_from_available_values_when_clusters_in_sync(self): self.director1.cluster.add(self.cluster1) route = Route.objects.create( condition='some condition', priority=51, director=self.director1, action='pass', clusters_in_sync=True ) route.clusters.add(self.cluster2) response = self.client.get( reverse('router:priorities', args=(self.director1.id, 0, 0)), {'clusters': self.cluster1.id} ) self.assertEqual(response.status_code, 200) available_values = response.json()['values'] self.assertTrue(route.priority not in available_values) def test_should_check_if_taken_priority_excluded_for_director_cluster_when_clusters_in_sync(self): self.director1.cluster.add(self.cluster1) route = Route.objects.create( condition='some condition', priority=51, director=self.director1, action='pass', clusters_in_sync=True ) route.clusters.add(self.cluster2) response = self.client.get( reverse('router:priorities', args=(self.director1.id, 0, 0)), {'clusters': self.cluster2.id} ) self.assertEqual(response.status_code, 200) available_values = response.json()['values'] self.assertTrue(route.priority in available_values) def test_should_check_if_priority_calculated_properly_when_disabling_clusters_in_sync(self): self.director1.cluster.add(self.cluster1) route_1 = Route.objects.create( condition='some condition', priority=51, director=self.director1, action='pass', ) route_1.clusters.add(self.cluster2) route_2 = Route.objects.create( condition='some condition', priority=51, director=self.director1, action='pass', clusters_in_sync=True ) route_2.clusters.add(self.cluster2) response = self.client.get( reverse('router:priorities', args=(self.director1.id, route_2.id, route_2.priority)), {'clusters': self.cluster2.id} ) self.assertEqual(response.status_code, 200) available_values = response.json()['values'] self.assertTrue(route_2.priority not in available_values)
leetcode/132.palindrome-partitioning-ii.py
geemaple/algorithm
177
11160258
# f(i) = min(f[j] + 1 where 0 <= j <= i - 1 and s[j: i - 1] is palindrome) class Solution(object): def minCut(self, s): """ :type s: str :rtype: int """ if s is None or len(s) == 0: return 0 m = len(s) store = [[False for _ in range(m)] for _ in range(m)] i = 0 j = 0 for t in range(m): i = j = t # odd palindrome while(i >= 0 and j < m and s[i] == s[j]): store[i][j] = True i -= 1 j += 1 i = t j = t + 1 # even palindrome while(i >= 0 and j < m and s[i] == s[j]): store[i][j] = True i -= 1 j += 1 table = [0 for _ in range(m + 1)] for i in range(1, m + 1): value = float('inf') for j in range(i): if store[j][i - 1]: value = min(value, table[j] + 1) table[i] = value return table[-1] - 1
pwncat/commands/__init__.py
Mitul16/pwncat
1,454
11160309
<filename>pwncat/commands/__init__.py """ This module implements the command parser, lexer, highlighter, etc for pwncat. Each command is defined as an individual module under ``pwncat/commands`` which defines a ``Command`` class that inherits from :class:`pwncat.commands.CommandDefinition`. Each command is capable of specifying the expected arguments similar to the way they specified with argparse. Internally, we use the :class:`Parameter` definitions to build an ``argparse`` parser. We also use them to build a lexer capable of automatic syntax highlighting at the prompt. To define a new command, simple create a new module under ``pwncat/commands`` and define a class named ``Command``. Example Custom Command ---------------------- .. code-block:: python :caption: A Custom Command Placed in ``pwncat/commands`` class Command(CommandDefinition): \""" Command documentation placed in the docstring \""" PROG = "custom" ARGS = { "--option,-o": Parameter(Complete.NONE, help="help info", action="store_true"), "positional": Parameter( Complete.CHOICES, metavar="POSITIONAL", choices=["hello", "world"], help="help information", ), } def run(self, manager: "pwncat.manager.Manager", args: "argparse.Namespace"): manager.log("we ran a custom command!") """ import os import re import sys import tty import fcntl import shlex import pkgutil import termios import argparse from io import TextIOWrapper from enum import Enum, auto from typing import Dict, List, Type, Callable, Iterable from functools import partial import rich.text from pygments import token from prompt_toolkit import ANSI, PromptSession from pygments.lexer import RegexLexer from pygments.styles import get_style_by_name from prompt_toolkit.lexers import PygmentsLexer from prompt_toolkit.styles import Style, merge_styles from prompt_toolkit.history import History from prompt_toolkit.document import Document from prompt_toolkit.completion import ( Completer, Completion, CompleteEvent, WordCompleter, merge_completers, ) from prompt_toolkit.key_binding import KeyBindings from prompt_toolkit.auto_suggest import AutoSuggestFromHistory from prompt_toolkit.patch_stdout import patch_stdout from prompt_toolkit.styles.pygments import style_from_pygments_cls from prompt_toolkit.application.current import get_app import pwncat import pwncat.db from pwncat.util import console from pwncat.channel import ChannelClosed class Complete(Enum): """ Command argument completion options. This defines how tab completion works for an individual command parameter/argument. If you choose to use the ``CHOICES`` type, you must specify the argparse ``choices`` argument to the :class:`Parameter` constructor. This argument can either be an iterable or a callable which returns a generator. The callable takes as an argument the manager. This allows you to have contextual tab completions if needed. """ CHOICES = auto() """ Complete argument from the list of choices specified in ``choices`` parameter """ LOCAL_FILE = auto() """ Complete argument as a local file path """ REMOTE_FILE = auto() """ Complete argument as a remote file path """ NONE = auto() """ Do not provide argument completions """ class StoreConstOnce(argparse.Action): """Only allow the user to store a value in the destination once. This prevents users from selection multiple actions in the privesc parser.""" def __call__(self, parser, namespace, values, option_string=None): if hasattr(self, "__" + self.dest + "_seen"): raise argparse.ArgumentError(self, "only one action may be specified") setattr(namespace, "__" + self.dest + "_seen", True) setattr(namespace, self.dest, self.const) def StoreForAction(action: List[str]) -> Callable: """Generates a custom argparse Action subclass which verifies that the current selected "action" option is one of the provided actions in this function. If not, an error is raised.""" class StoreFor(argparse.Action): """Store the value if the currently selected action matches the list of actions passed to this function.""" def __call__(self, parser, namespace, values, option_string=None): if getattr(namespace, "action", None) not in action: raise argparse.ArgumentError( self, f"{option_string}: only valid for {action}", ) setattr(namespace, self.dest, values) return StoreFor def StoreConstForAction(action: List[str]) -> Callable: """Generates a custom argparse Action subclass which verifies that the current selected "action" option is one of the provided actions in this function. If not, an error is raised. This stores the constant `const` to the `dest` argument. This is comparable to `store_const`, but checks that you have selected one of the specified actions.""" class StoreFor(argparse.Action): """Store the value if the currently selected action matches the list of actions passed to this function.""" def __call__(self, parser, namespace, values, option_string=None): if getattr(namespace, "action", None) not in action: raise argparse.ArgumentError( self, f"{option_string}: only valid for {action}", ) setattr(namespace, self.dest, self.const) return StoreFor def get_module_choices(command): """Yields a list of module choices to be used with command argument choices to select a valid module for the current target. For example you could use ``Parameter(Complete.CHOICES, choices=get_module_choices)``""" if command.manager.target is None: return yield from [ module.name.removeprefix("agnostic.").removeprefix( command.manager.target.platform.name + "." ) for module in command.manager.target.find_module("*") ] class Parameter: """Generic parameter definition for commands. This class allows you to specify the syntax highlighting, tab completion and argparse settings for a command parameter in on go. The ``complete`` argument tells pwncat how to tab complete your argument. The ``token`` argument is normally omitted but can be used to change the pygments syntax highlighting for your argument. All other arguments are passed directly to ``argparse`` when constructing the parser. :param complete: the completion type :type complete: Complete :param token: the Pygments token to highlight this argument with :type token: Pygments Token :param group: true for a group definition, a string naming the group to be a part of, or none :param mutex: for group definitions, indicates whether this is a mutually exclusive group :param args: positional arguments for ``add_argument`` or ``add_argument_group`` :param kwargs: keyword arguments for ``add_argument`` or ``add_argument_group`` """ def __init__( self, complete: Complete, token=token.Name.Label, group: str = None, *args, **kwargs, ): self.complete = complete self.token = token self.group = group self.args = args self.kwargs = kwargs class Group: """ This just wraps the parameters to the add_argument_group and add_mutually_exclusive_group """ def __init__(self, mutex: bool = False, **kwargs): self.mutex = mutex self.kwargs = kwargs class CommandDefinition: """ Generic structure for a local command. The docstring for your command class becomes the long-form help for your command. See the above example for a complete custom command definition. :param manager: the controlling manager for this command :type manager: pwncat.manager.Manager """ PROG = "unimplemented" """ The name of your new command """ ARGS: Dict[str, Parameter] = {} """ A dictionary of parameter definitions created with the ``Parameter`` class. If this is None, your command will receive the raw argument string and no processing will be done except removing the leading command name. """ GROUPS: Dict[str, Group] = {} """ A dictionary mapping group definitions to group names. The parameters to Group are passed directly to either add_argument_group or add_mutually_exclusive_group with the exception of the mutex arg, which determines the group type. """ DEFAULTS = {} """ A dictionary of default values (passed directly to ``ArgumentParser.set_defaults``) """ LOCAL = False """ Whether this command is purely local or requires an connected remote host """ # An example definition of arguments # PROG = "command" # ARGS = { # "--all,-a": parameter( # Complete.NONE, action="store_true", help="A switch/option" # ), # "--file,-f": parameter(Complete.LOCAL_FILE, help="A local file"), # "--rfile": parameter(Complete.REMOTE_FILE, help="A remote file"), # "positional": parameter( # Complete.CHOICES, choices=["a", "b", "c"], help="Choose one!" # ), # } def __init__(self, manager: "pwncat.manager.Manager"): """Initialize a new command instance. Parse the local arguments array into an argparse object.""" self.manager = manager # Create the parser object if self.ARGS is not None: self.parser = argparse.ArgumentParser( prog=self.PROG, description=self.__doc__, formatter_class=argparse.RawDescriptionHelpFormatter, ) self.build_parser(self.parser, self.ARGS, self.GROUPS) else: self.parser = None def run(self, manager: "pwncat.manager.Manager", args): """ This is the "main" for your new command. This should perform the action represented by your command. :param manager: the manager to operate on :type manager: pwncat.manager.Manager :param args: the argparse Namespace containing your parsed arguments """ raise NotImplementedError def build_parser( self, parser: argparse.ArgumentParser, args: Dict[str, Parameter], group_defs: Dict[str, Group], ): """ Parse the ARGS and DEFAULTS dictionaries to build an argparse ArgumentParser for this command. You should not need to overload this. :param parser: the parser object to add arguments to :param args: the ARGS dictionary """ groups = {} for name, definition in group_defs.items(): if definition.mutex: groups[name] = parser.add_mutually_exclusive_group(**definition.kwargs) else: groups[name] = parser.add_argument_group(**definition.kwargs) for arg, param in args.items(): names = arg.split(",") if param.group is not None and param.group not in groups: raise ValueError(f"{param.group}: no such group") if param.group is not None: group = groups[param.group] else: group = parser # Patch choice to work with a callable if "choices" in param.kwargs and callable(param.kwargs["choices"]): method = param.kwargs["choices"] class wrapper: def __init__(wself, method): wself.method = method def __iter__(wself): yield from wself.method(self) param.kwargs["choices"] = wrapper(method) # Patch "type" so we can see "self" if ( "type" in param.kwargs and isinstance(param.kwargs["type"], tuple) and param.kwargs["type"][0] == "method" ): param.kwargs["type"] = partial(param.kwargs["type"][1], self) group.add_argument(*names, *param.args, **param.kwargs) parser.set_defaults(**self.DEFAULTS) def resolve_blocks(source: str): """This is a dumb lexer that turns strings of text with code blocks (squigly braces) into a single long string separated by semicolons. All code blocks are converted to strings recursively with correct escaping levels. The resulting string can be sent to break_commands to iterate over the commands.""" result = [] in_brace = False inside_quotes = False i = 0 lineno = 1 while i < len(source): if not inside_quotes: if source[i] == '"': inside_quotes = True result.append("\\" * int(in_brace) + '"') elif source[i] == "{" and not in_brace: result.append('"') in_brace = True elif source[i] == "}": if not in_brace: raise ValueError(f"line {lineno}: mismatched closing brace") in_brace = False result.append('"') elif source[i] == "\\": result.append("\\" * (int(in_brace))) elif source[i] == "\n" and in_brace: result.append("\\n") elif source[i] == "#": # Comment while i < len(source) and source[i] != "\n": i += 1 else: result.append(source[i]) else: if source[i] == '"': inside_quotes = False result.append("\\" * int(in_brace) + '"') elif source[i] == "\\": result.append("\\" * (in_brace + 1)) elif source[i] == "\n": raise ValueError(f"line {lineno}: newlines cannot appear in strings") else: result.append(source[i]) if source[i] == "\n": lineno += 1 i += 1 if in_brace: raise ValueError("mismatched braces") if inside_quotes: raise ValueError("missing ending quote") return "".join(result).split("\n") class DatabaseHistory(History): """Yield history from the host entry in the database""" def __init__(self, manager): super().__init__() self.manager = manager def load_history_strings(self) -> Iterable[str]: """Load the history from the database""" with self.manager.db.transaction() as conn: yield from reversed(conn.root.history) def store_string(self, string: str) -> None: """Store a command in the database""" with self.manager.db.transaction() as conn: conn.root.history.append(string) class CommandParser: """Handles dynamically loading command classes, parsing input, and dispatching commands. This class effectively has complete control over the terminal whenever in an interactive pwncat session. It will change termios modes for the control tty at will in order to support raw vs command mode.""" def __init__(self, manager: "pwncat.manager.Manager"): """We need to dynamically load commands from pwncat.commands""" self.manager = manager self.commands: List["CommandDefinition"] = [] for loader, module_name, is_pkg in pkgutil.walk_packages(__path__): if module_name == "base": continue self.commands.append( loader.find_module(module_name) .load_module(module_name) .Command(manager) ) self.prompt: PromptSession = None self.toolbar: PromptSession = None self.loading_complete = False self.aliases: Dict[str, CommandDefinition] = {} self.shortcuts: Dict[str, CommandDefinition] = {} self.found_prefix: bool = False # Saved terminal state to support switching between raw and normal # mode. self.saved_term_state = None def setup_prompt(self): """This needs to happen after __init__ when the database is fully initialized.""" history = DatabaseHistory(self.manager) completer = CommandCompleter(self.manager, self.commands) lexer = PygmentsLexer(CommandLexer.build(self.commands)) style = style_from_pygments_cls(get_style_by_name("monokai")) auto_suggest = AutoSuggestFromHistory() bindings = KeyBindings() @bindings.add("c-q") def _(event): """Exit interactive mode""" get_app().exit(exception=pwncat.manager.InteractiveExit()) self.prompt = PromptSession( [ ("fg:ansiyellow bold", "(local) "), ("fg:ansimagenta bold", "pwncat"), ("", "$ "), ], completer=completer, lexer=lexer, style=merge_styles( [style, Style.from_dict({"bottom-toolbar": "#333333 bg:#ffffff"})] ), auto_suggest=auto_suggest, complete_while_typing=False, history=history, bottom_toolbar=self._render_toolbar, key_bindings=bindings, ) def _render_toolbar(self): """Render the formatted text for the bottom toolbar""" if self.manager.target is None: markup_result = "Active Session: [red]None[/red]" else: markup_result = f"Active Session: {self.manager.target.platform}" # Convert rich-style markup to prompt_toolkit formatted text text = rich.text.Text.from_markup(markup_result) segments = list(text.render(console)) rendered = [] # Here we take each segment's stile, invert the color and render the # segment text. This is because the bottom toolbar has it's colors # inverted. for i in range(len(segments)): style = segments[i].style.copy() temp = style.color style._color = segments[i].style.bgcolor style._bgcolor = temp rendered.append(style.render(segments[i].text)) # Join the rendered segments to ANSI escape sequences. # This format can be parsed by prompt_toolkit formatted text. ansi_result = "".join(rendered) # Produce prompt_toolkit formatted text from the ANSI escaped string return ANSI(ansi_result) def eval(self, source: str, name: str = "<script>"): """Evaluate the given source file. This will execute the given string as a script of commands. Syntax is the same except that commands may be separated by semicolons, comments are accepted as following a "#" and multiline strings are supported with '"{' and '}"' as delimeters.""" for command in resolve_blocks(source): try: self.dispatch_line(command) except ChannelClosed as exc: # A channel was unexpectedly closed self.manager.log( f"[yellow]warning[/yellow]: {exc.channel}: channel closed" ) # Ensure any existing sessions are cleaned from the manager exc.cleanup(self.manager) except pwncat.manager.InteractiveExit: # Within a script, `exit` means to exit the script, not the # interpreter break except Exception as exc: console.log( f"[red]error[/red]: [cyan]{name}[/cyan]: [yellow]{command}[/yellow]: {str(exc)}" ) break def run_single(self): """Execute one Read-Execute iteration. This will prompt the user for input.""" if self.prompt is None: self.setup_prompt() try: line = self.prompt.prompt().strip() self.dispatch_line(line) except (EOFError, OSError, KeyboardInterrupt, pwncat.manager.InteractiveExit): return def run(self): """Execute the pwncat REPL. This will continue running until an :class:`InteractiveExit` exception or a :class:`EOFError` exception are raised.""" if self.prompt is None: self.setup_prompt() running = True default_text = "" while running: try: if self.manager.config.module: self.prompt.message = [ ( "fg:ansiyellow bold", f"({self.manager.config.module.name}) ", ), ("fg:ansimagenta bold", "pwncat"), ("", "$ "), ] else: self.prompt.message = [ ("fg:ansiyellow bold", "(local) "), ("fg:ansimagenta bold", "pwncat"), ("", "$ "), ] with patch_stdout(raw=True): line = self.prompt.prompt(default=default_text).strip() default_text = "" if line == "": continue self.dispatch_line(line) # We used to catch only KeyboardException, but this prevents a # badly written command from completely killing our remote # connection. except EOFError: # C-d was pressed. Assume we want to exit the prompt. running = False except KeyboardInterrupt: # Normal C-c from a shell just clears the current prompt continue except ChannelClosed as exc: # A channel was unexpectedly closed self.manager.log( f"[yellow]warning[/yellow]: {exc.channel}: channel closed" ) # Ensure any existing sessions are cleaned from the manager exc.cleanup(self.manager) except pwncat.manager.InteractiveExit: # We don't want this caught below, so we catch it here # then re-raise it to be caught by the interactive method raise except (Exception, KeyboardInterrupt): console.print_exception(width=None) continue def dispatch_line(self, line: str, prog_name: str = None): """Parse the given line of command input and dispatch a command""" # Account for blank or whitespace only lines line = line.strip() if line == "": return try: # Spit the line with shell rules argv = shlex.split(line) except ValueError as e: self.manager.log(f"[red]error[/red]: {e.args[0]}") return if argv[0][0] in self.shortcuts: command = self.shortcuts[argv[0][0]] argv[0] = argv[0][1:] args = argv line = line[1:] else: line = f"{argv[0]} ".join(line.split(f"{argv[0]} ")[1:]) # Search for a matching command for command in self.commands: if command.PROG == argv[0]: break else: if argv[0] in self.aliases: command = self.aliases[argv[0]] else: self.manager.log(f"[red]error[/red]: {argv[0]}: unknown command") return if self.manager.target is None and not command.LOCAL: self.manager.log( f"[red]error[/red]: {argv[0]}: active session required" ) return args = argv[1:] args = [a.encode("utf-8").decode("unicode_escape") for a in args] try: if prog_name: temp_name = command.parser.prog command.parser.prog = prog_name prog_name = temp_name # Parse the arguments if command.parser: args = command.parser.parse_args(args) else: args = line # Run the command command.run(self.manager, args) if prog_name: command.parser.prog = prog_name except SystemExit: # The arguments were incorrect return def parse_prefix(self, channel, data: bytes): """Parse data received from the user when in pwncat's raw mode. This will intercept key presses from the user and interpret the prefix and any bound keyboard shortcuts. It also sends any data without a prefix to the remote channel. :param data: input data from user :type data: bytes """ buffer = b"" for c in data: if not self.found_prefix and c != pwncat.config["prefix"].value: buffer += c continue elif not self.found_prefix and c == pwncat.config["prefix"].value: self.found_prefix = True channel.send(buffer) buffer = b"" continue elif self.found_prefix: try: binding = pwncat.config.binding(c) if binding.strip() == "pass": buffer += c else: # Restore the normal terminal self.restore_term() # Run the binding script self.eval(binding, "<binding>") # Drain any channel output channel.drain() channel.send(b"\n") # Go back to a raw terminal self.raw_mode() except KeyError: pass self.found_prefix = False # Flush any remaining raw data bound for the victim channel.send(buffer) def raw_mode(self): """Save the current terminal state and enter raw mode. If the terminal is already in raw mode, this function does nothing.""" if self.saved_term_state is not None: return # Ensure we don't have any weird buffering issues sys.stdout.flush() # Python doesn't provide a way to use setvbuf, so we reopen stdout # and specify no buffering. Duplicating stdin allows the user to press C-d # at the local prompt, and still be able to return to the remote prompt. try: os.dup2(sys.stdin.fileno(), sys.stdout.fileno()) except OSError: pass sys.stdout = TextIOWrapper( os.fdopen(os.dup(sys.stdin.fileno()), "bw", buffering=0), write_through=True, line_buffering=False, ) # Grab and duplicate current attributes fild = sys.stdin.fileno() old = termios.tcgetattr(fild) new = termios.tcgetattr(fild) # Remove ECHO from lflag and ensure we won't block new[3] &= ~(termios.ECHO | termios.ICANON) new[6][termios.VMIN] = 0 new[6][termios.VTIME] = 0 termios.tcsetattr(fild, termios.TCSADRAIN, new) # Set raw mode tty.setraw(sys.stdin) orig_fl = fcntl.fcntl(sys.stdin, fcntl.F_GETFL) fcntl.fcntl(sys.stdin, fcntl.F_SETFL, orig_fl) self.saved_term_state = old, orig_fl def restore_term(self, new_line=True): """Restores the normal terminal settings. This does nothing if the terminal is not currently in raw mode.""" if self.saved_term_state is None: return termios.tcsetattr( sys.stdin.fileno(), termios.TCSADRAIN, self.saved_term_state[0] ) # tty.setcbreak(sys.stdin) fcntl.fcntl(sys.stdin, fcntl.F_SETFL, self.saved_term_state[1]) if new_line: sys.stdout.write("\n") self.saved_term_state = None class CommandLexer(RegexLexer): """Implements a Regular Expression based pygments lexer for dynamically highlighting the pwncat prompt during typing. The tokens are generated from command definitions.""" tokens = {} @classmethod def build(cls, commands: List["CommandDefinition"]) -> Type["CommandLexer"]: """Build the RegexLexer token list from the command definitions""" root = [] sorted_commands = sorted(commands, key=lambda cmd: len(cmd.PROG), reverse=True) for command in sorted_commands: root.append( ( "^" + re.escape(command.PROG) + "( |$)", token.Name.Function, command.PROG, ) ) mode = [] if command.ARGS is not None: for args, param in command.ARGS.items(): for arg in args.split(","): if not arg.startswith("-"): continue if param.complete != Complete.NONE: # Enter param state mode.append((r"\s+" + re.escape(arg), param.token, "param")) else: # Don't enter param state mode.append((r"\s+" + re.escape(arg), param.token)) mode.append((r"\s+(\-\-help|\-h)", token.Name.Label)) mode.append((r"\"", token.String, "string")) mode.append((r".", token.Text)) cls.tokens[command.PROG] = mode root.append((r".", token.Text)) cls.tokens["root"] = root cls.tokens["param"] = [ (r"\"", token.String, "string"), (r"\s", token.Text, "#pop"), (r"[^\s]", token.Text), ] cls.tokens["string"] = [ (r"[^\"\\]+", token.String), (r"\\.", token.String.Escape), ('"', token.String, "#pop"), ] return cls class RemotePathCompleter(Completer): """Complete remote file names/paths""" def __init__(self, manager: "pwncat.manager.Manager", *args, **kwargs): super().__init__(*args, **kwargs) self.manager = manager def get_completions(self, document: Document, complete_event: CompleteEvent): if self.manager.target is None: return before = document.text_before_cursor.split()[-1] path, partial_name = os.path.split(before) if path == "": path = "." for name in self.manager.target.platform.listdir(path): if name.startswith(partial_name): yield Completion( name, start_position=-len(partial_name), display=[("#ff0000", "(remote)"), ("", f" {name}")], ) class LocalPathCompleter(Completer): """Complete local file names/paths.""" def get_completions(self, document: Document, complete_event: CompleteEvent): before = document.text_before_cursor.split()[-1] path, partial_name = os.path.split(before) if path == "": path = "." # Ensure the directory exists if not os.path.isdir(path): return for name in os.listdir(path): if name.startswith(partial_name): yield Completion( name, start_position=-len(partial_name), display=[("fg:ansiyellow", "(local)"), ("", f" {name}")], ) class CommandCompleter(Completer): """Tab-complete commands and all of their arguments dynamically using the command definitions and their associated argument definitions.""" def __init__( self, manager: "pwncat.manager.Manager", commands: List["CommandDefinition"] ): """Construct a new command completer""" self.layers = {} local_file_completer = LocalPathCompleter() remote_file_completer = RemotePathCompleter(manager) for command in commands: self.layers[command.PROG] = [None, [], {}] option_names = [] if command.ARGS is not None: for name_list, param in command.ARGS.items(): name_list = name_list.split(",") if param.complete == Complete.CHOICES: completer = ("choices", param.kwargs["choices"]) elif param.complete == Complete.LOCAL_FILE: completer = local_file_completer elif param.complete == Complete.REMOTE_FILE: completer = remote_file_completer elif param.complete == Complete.NONE: completer = None if len(name_list) == 1 and not name_list[0].startswith("-"): self.layers[command.PROG][1].append(completer) else: for name in name_list: self.layers[command.PROG][2][name] = completer option_names.append(name) self.layers[command.PROG][0] = WordCompleter( option_names + ["--help", "-h"] ) self.completer = WordCompleter(list(self.layers)) def get_completions( self, document: Document, complete_event: CompleteEvent ) -> Iterable[Completion]: """Get a list of completions for the given document""" text = document.text_before_cursor.lstrip() try: args = shlex.split(text) except ValueError: try: args = shlex.split(text + '"') except ValueError: args = shlex.split(text + "'") # We haven't finished typing the command. Use our word completer for # commands if text == "" or (len(args) == 1 and not text.endswith(" ")): yield from self.completer.get_completions(document, complete_event) return # Not in a known command, can't autocomplete if args[0] not in self.layers: return command = self.layers[args[0]] args = args[1:] next_completer = command[0] this_completer = command[0] positional = 0 # state = "options", completing options next # state = "arguments", completing arguments to options next state = "options" for arg in args: if state == "options": # Flag options if arg.startswith("-"): # Exact match, with a sub-completer if arg in command[2] and command[2][arg] is not None: # Completer for next argument next_completer = command[2][arg] state = "arguments" # Exact match, with no arguments elif arg in command[2]: # Command has no argument, next completer is options # completer next_completer = command[0] state = "options" this_completer = command[0] # Non-exact match else: next_completer = command[0] this_completer = command[0] state = "options" # Appears to be a positional argument, grab next positional # completer and increment positional count else: if positional < len(command[1]): this_completer = command[1][positional] next_completer = command[0] state = "options" positional += 1 else: this_completer = command[0] next_completer = command[0] state = "options" else: # Completing an argument to a option/switch. We can't verify # it's legitimacy, so we assume it's right, and reset to a # default state. state = "options" this_completer = next_completer next_completer = command[0] # We are completing the first argument. This could be # any option argument or the first positional argument. # We need to merge them. if not args and text.endswith(" ") and command[1]: completer = command[1][0] if isinstance(completer, tuple) and completer[0] == "choices": completer = WordCompleter(completer[1], WORD=True) next_completer = merge_completers([next_completer, completer]) if isinstance(this_completer, tuple) and this_completer[0] == "choices": this_completer = WordCompleter(this_completer[1], WORD=True) if isinstance(next_completer, tuple) and next_completer[0] == "choices": next_completer = WordCompleter(next_completer[1], WORD=True) if text.endswith(" ") and next_completer is not None: yield from next_completer.get_completions(document, complete_event) elif this_completer is not None: yield from this_completer.get_completions(document, complete_event)
exercises/practice/rna-transcription/rna_transcription_test.py
gsilvapt/python
1,177
11160318
<reponame>gsilvapt/python<filename>exercises/practice/rna-transcription/rna_transcription_test.py import unittest from rna_transcription import ( to_rna, ) # Tests adapted from `problem-specifications//canonical-data.json` class RnaTranscriptionTest(unittest.TestCase): def test_empty_rna_sequence(self): self.assertEqual(to_rna(""), "") def test_rna_complement_of_cytosine_is_guanine(self): self.assertEqual(to_rna("C"), "G") def test_rna_complement_of_guanine_is_cytosine(self): self.assertEqual(to_rna("G"), "C") def test_rna_complement_of_thymine_is_adenine(self): self.assertEqual(to_rna("T"), "A") def test_rna_complement_of_adenine_is_uracil(self): self.assertEqual(to_rna("A"), "U") def test_rna_complement(self): self.assertEqual(to_rna("ACGTGGTCTTAA"), "UGCACCAGAAUU") if __name__ == "__main__": unittest.main()
plynx/constants/web.py
khaxis/plynx
137
11160333
"""Web constants""" class ResponseStatus: """Returned response status""" SUCCESS: str = 'SUCCESS' FAILED: str = 'FAILED'
examples/python/geometry/voxel_grid_carving.py
amoran-symbio/Open3D
1,455
11160362
# ---------------------------------------------------------------------------- # - Open3D: www.open3d.org - # ---------------------------------------------------------------------------- # The MIT License (MIT) # # Copyright (c) 2018-2021 www.open3d.org # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # ---------------------------------------------------------------------------- import open3d as o3d import numpy as np import sys import os pyexample_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) test_data_path = os.path.join(os.path.dirname(pyexample_path), 'test_data') sys.path.append(pyexample_path) import open3d_example as o3dex def xyz_spherical(xyz): x = xyz[0] y = xyz[1] z = xyz[2] r = np.sqrt(x * x + y * y + z * z) r_x = np.arccos(y / r) r_y = np.arctan2(z, x) return [r, r_x, r_y] def get_rotation_matrix(r_x, r_y): rot_x = np.asarray([[1, 0, 0], [0, np.cos(r_x), -np.sin(r_x)], [0, np.sin(r_x), np.cos(r_x)]]) rot_y = np.asarray([[np.cos(r_y), 0, np.sin(r_y)], [0, 1, 0], [-np.sin(r_y), 0, np.cos(r_y)]]) return rot_y.dot(rot_x) def get_extrinsic(xyz): rvec = xyz_spherical(xyz) r = get_rotation_matrix(rvec[1], rvec[2]) t = np.asarray([0, 0, 2]).transpose() trans = np.eye(4) trans[:3, :3] = r trans[:3, 3] = t return trans def preprocess(model): min_bound = model.get_min_bound() max_bound = model.get_max_bound() center = min_bound + (max_bound - min_bound) / 2.0 scale = np.linalg.norm(max_bound - min_bound) / 2.0 vertices = np.asarray(model.vertices) vertices -= center model.vertices = o3d.utility.Vector3dVector(vertices / scale) return model def voxel_carving(mesh, output_filename, camera_path, cubic_size, voxel_resolution, w=300, h=300): mesh.compute_vertex_normals() camera_sphere = o3d.io.read_triangle_mesh(camera_path) # Setup dense voxel grid. voxel_carving = o3d.geometry.VoxelGrid.create_dense( width=cubic_size, height=cubic_size, depth=cubic_size, voxel_size=cubic_size / voxel_resolution, origin=[-cubic_size / 2.0, -cubic_size / 2.0, -cubic_size / 2.0], color=[1.0, 0.7, 0.0]) # Rescale geometry. camera_sphere = preprocess(camera_sphere) mesh = preprocess(mesh) # Setup visualizer to render depthmaps. vis = o3d.visualization.Visualizer() vis.create_window(width=w, height=h, visible=False) vis.add_geometry(mesh) vis.get_render_option().mesh_show_back_face = True ctr = vis.get_view_control() param = ctr.convert_to_pinhole_camera_parameters() # Carve voxel grid. centers_pts = np.zeros((len(camera_sphere.vertices), 3)) for cid, xyz in enumerate(camera_sphere.vertices): # Get new camera pose. trans = get_extrinsic(xyz) param.extrinsic = trans c = np.linalg.inv(trans).dot(np.asarray([0, 0, 0, 1]).transpose()) centers_pts[cid, :] = c[:3] ctr.convert_from_pinhole_camera_parameters(param) # Capture depth image and make a point cloud. vis.poll_events() vis.update_renderer() depth = vis.capture_depth_float_buffer(False) # Depth map carving method. voxel_carving.carve_depth_map(o3d.geometry.Image(depth), param) print("Carve view %03d/%03d" % (cid + 1, len(camera_sphere.vertices))) vis.destroy_window() return voxel_carving if __name__ == "__main__": mesh = o3dex.get_armadillo_mesh() output_filename = os.path.join(test_data_path, 'voxelized.ply') camera_path = os.path.join(test_data_path, 'sphere.ply') cubic_size = 2.0 voxel_resolution = 128.0 carved_voxels = voxel_carving(mesh, output_filename, camera_path, cubic_size, voxel_resolution) print("Carved voxels ...") print(carved_voxels) o3d.visualization.draw([carved_voxels])
tests/basics/int_divzero.py
learnforpractice/micropython-cpp
13,648
11160363
try: 1 // 0 except ZeroDivisionError: print("ZeroDivisionError") try: 1 % 0 except ZeroDivisionError: print("ZeroDivisionError")
tests/pytests/unit/states/apache/test_conf.py
babs/salt
9,425
11160368
<filename>tests/pytests/unit/states/apache/test_conf.py import pytest import salt.states.apache_conf as apache_conf from tests.support.mock import MagicMock, patch @pytest.fixture def configure_loader_modules(): return {apache_conf: {}} def test_enabled(): """ Test to ensure an Apache conf is enabled. """ name = "saltstack.com" ret = {"name": name, "result": True, "changes": {}, "comment": ""} mock = MagicMock(side_effect=[True, False, False]) mock_str = MagicMock(return_value={"Status": ["enabled"]}) with patch.dict( apache_conf.__salt__, {"apache.check_conf_enabled": mock, "apache.a2enconf": mock_str}, ): comt = "{} already enabled.".format(name) ret.update({"comment": comt}) assert apache_conf.enabled(name) == ret comt = "Apache conf {} is set to be enabled.".format(name) ret.update( {"comment": comt, "result": None, "changes": {"new": name, "old": None}} ) with patch.dict(apache_conf.__opts__, {"test": True}): assert apache_conf.enabled(name) == ret comt = "Failed to enable {} Apache conf".format(name) ret.update({"comment": comt, "result": False, "changes": {}}) with patch.dict(apache_conf.__opts__, {"test": False}): assert apache_conf.enabled(name) == ret def test_disabled(): """ Test to ensure an Apache conf is disabled. """ name = "saltstack.com" ret = {"name": name, "result": None, "changes": {}, "comment": ""} mock = MagicMock(side_effect=[True, True, False]) mock_str = MagicMock(return_value={"Status": ["disabled"]}) with patch.dict( apache_conf.__salt__, {"apache.check_conf_enabled": mock, "apache.a2disconf": mock_str}, ): comt = "Apache conf {} is set to be disabled.".format(name) ret.update({"comment": comt, "changes": {"new": None, "old": name}}) with patch.dict(apache_conf.__opts__, {"test": True}): assert apache_conf.disabled(name) == ret comt = "Failed to disable {} Apache conf".format(name) ret.update({"comment": comt, "result": False, "changes": {}}) with patch.dict(apache_conf.__opts__, {"test": False}): assert apache_conf.disabled(name) == ret comt = "{} already disabled.".format(name) ret.update({"comment": comt, "result": True}) assert apache_conf.disabled(name) == ret
examples/asr_librispeech/local/prepare_librispeech.py
slikos/espresso
920
11160390
<reponame>slikos/espresso #!/usr/bin/env python3 # Copyright (c) <NAME> # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging from pathlib import Path import os import sys from tqdm import tqdm try: from torchaudio.datasets import LIBRISPEECH except ImportError: raise ImportError("Please install torchaudio with: pip install torchaudio") logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, stream=sys.stdout, ) logger = logging.getLogger(__file__) SPLITS = [ "train-clean-100", "train-clean-360", "train-other-500", "dev-clean", "dev-other", "test-clean", "test-other", ] def get_parser(): parser = argparse.ArgumentParser( description="Prepare LibriSpeech corpus" ) # fmt: off parser.add_argument("corpus_root", type=str, help="path to the LibriSpeech root directory") parser.add_argument("output_root", type=str, help="path to the root directory of generated data") parser.add_argument("--folder-in-archive", type=str, default="LibriSpeech", help="the top-level directory of the dataset") parser.add_argument("--download", action="store_true", help="download the dataset if it is not found at corpus root path") # fmt: on return parser def main(args): corpus_root = Path(args.corpus_root).absolute() output_root = Path(args.output_root).absolute() corpus_root.mkdir(exist_ok=True) output_root.mkdir(exist_ok=True) for split in SPLITS: logger.info(f"Preparing data for split {split}...") output_dir = output_root / split.replace("-", "_") output_dir.mkdir(exist_ok=True) wave_file = output_dir / "wav.txt" text_file = output_dir / "text.txt" if os.path.exists(wave_file) and os.path.exists(text_file): logger.info(f"Both {wave_file} and {text_file} exist, skip regenerating") continue dataset = LIBRISPEECH( corpus_root.as_posix(), url=split, folder_in_archive=args.folder_in_archive, download=args.download ) with open(wave_file, "w", encoding="utf-8") as wave_f, open(text_file, "w", encoding="utf-8") as text_f: for data_tuple in tqdm(dataset): if len(data_tuple) == 6: # torchaudio=0.7.0 # (waveform, sample_rate, text, speaker_id, chapter_id, utterance_idx) text, speaker_id, chapter_id, utterance_idx = data_tuple[2], data_tuple[3], data_tuple[4], data_tuple[5] else: # torchaudio>=0.8.0 # (waveform, sample_rate, orignal_text, normalized_text, speaker_id, chapter_id, utterance_idx) assert len(data_tuple) == 7 text, speaker_id, chapter_id, utterance_idx = data_tuple[3], data_tuple[4], data_tuple[5], data_tuple[6] utterance_idx = str(utterance_idx).zfill(4) utterance_id = f"{speaker_id}-{chapter_id}-{utterance_idx}" utterance_path = os.path.join( corpus_root.as_posix(), args.folder_in_archive, split, str(speaker_id), str(chapter_id), utterance_id ) print(f"{utterance_id} {utterance_path}.flac", file=wave_f) print(f"{utterance_id} {text}", file=text_f) if __name__ == "__main__": parser = get_parser() args = parser.parse_args() main(args)
tests/search_test.py
mtcolman/django-DefectDojo
249
11160451
<gh_stars>100-1000 import unittest import sys from base_test_class import BaseTestCase from selenium.webdriver.common.by import By class SearchTests(BaseTestCase): def test_login(self): driver = self.driver def test_search(self): # very basic search test to see if it doesn't 500 driver = self.goto_some_page() driver.find_element(By.ID, "simple_search").clear() driver.find_element(By.ID, "simple_search").send_keys('finding') driver.find_element(By.ID, "simple_search_submit").click() def test_search_cve(self): # very basic search test to see if it doesn't 500 driver = self.goto_some_page() driver.find_element(By.ID, "simple_search").clear() driver.find_element(By.ID, "simple_search").send_keys('cve:CVE-2020-12345') driver.find_element(By.ID, "simple_search_submit").click() driver.find_element(By.ID, "simple_search").clear() driver.find_element(By.ID, "simple_search").send_keys('CVE-2020-12345') driver.find_element(By.ID, "simple_search_submit").click() def test_search_tag(self): # very basic search test to see if it doesn't 500 driver = self.goto_some_page() driver.find_element(By.ID, "simple_search").clear() driver.find_element(By.ID, "simple_search").send_keys('tag:magento') driver.find_element(By.ID, "simple_search_submit").click() def test_search_product_tag(self): # very basic search test to see if it doesn't 500 driver = self.goto_some_page() driver.find_element(By.ID, "simple_search").clear() driver.find_element(By.ID, "simple_search").send_keys('product-tag:java') driver.find_element(By.ID, "simple_search_submit").click() def test_search_engagement_tag(self): # very basic search test to see if it doesn't 500 driver = self.goto_some_page() driver.find_element(By.ID, "simple_search").clear() driver.find_element(By.ID, "simple_search").send_keys('engagement-tag:php') driver.find_element(By.ID, "simple_search_submit").click() def test_search_test_tag(self): # very basic search test to see if it doesn't 500 driver = self.goto_some_page() driver.find_element(By.ID, "simple_search").clear() driver.find_element(By.ID, "simple_search").send_keys('test-tag:go') driver.find_element(By.ID, "simple_search_submit").click() def test_search_tags(self): # very basic search test to see if it doesn't 500 driver = self.goto_some_page() driver.find_element(By.ID, "simple_search").clear() driver.find_element(By.ID, "simple_search").send_keys('tags:php') driver.find_element(By.ID, "simple_search_submit").click() def test_search_product_tags(self): # very basic search test to see if it doesn't 500 driver = self.goto_some_page() driver.find_element(By.ID, "simple_search").clear() driver.find_element(By.ID, "simple_search").send_keys('product-tags:java') driver.find_element(By.ID, "simple_search_submit").click() def test_search_engagement_tags(self): # very basic search test to see if it doesn't 500 driver = self.goto_some_page() driver.find_element(By.ID, "simple_search").clear() driver.find_element(By.ID, "simple_search").send_keys('engagement-tags:php') driver.find_element(By.ID, "simple_search_submit").click() def test_search_test_tags(self): # very basic search test to see if it doesn't 500 driver = self.goto_some_page() driver.find_element(By.ID, "simple_search").clear() driver.find_element(By.ID, "simple_search").send_keys('test-tags:go') driver.find_element(By.ID, "simple_search_submit").click() def test_search_id(self): # very basic search test to see if it doesn't 500 driver = self.goto_some_page() driver.find_element(By.ID, "simple_search").clear() driver.find_element(By.ID, "simple_search").send_keys('id:1') driver.find_element(By.ID, "simple_search_submit").click() def suite(): suite = unittest.TestSuite() suite.addTest(BaseTestCase('test_login')) suite.addTest(BaseTestCase('disable_block_execution')) suite.addTest(SearchTests('test_search')) suite.addTest(SearchTests('test_search_cve')) suite.addTest(SearchTests('test_search_tag')) suite.addTest(SearchTests('test_search_product_tag')) suite.addTest(SearchTests('test_search_engagement_tag')) suite.addTest(SearchTests('test_search_test_tag')) suite.addTest(SearchTests('test_search_tags')) suite.addTest(SearchTests('test_search_product_tags')) suite.addTest(SearchTests('test_search_engagement_tags')) suite.addTest(SearchTests('test_search_test_tags')) suite.addTest(SearchTests('test_search_id')) return suite if __name__ == "__main__": runner = unittest.TextTestRunner(descriptions=True, failfast=True, verbosity=2) ret = not runner.run(suite()).wasSuccessful() BaseTestCase.tearDownDriver() sys.exit(ret)
python/tvm/relay/backend/contrib/ethosu/op/unary_elementwise.py
XiaoSong9905/tvm
4,640
11160469
<gh_stars>1000+ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-argument """Relay operator for unary elementwise operations for Arm(R) Ethos(TM)-U NPU""" from typing import Optional import tvm from tvm.relay.op import _make from tvm.topi.generic import schedule_injective from tvm.relay.op.op import OpStrategy from tvm.relay.op import strategy as _strategy from ..te import unary_elementwise_compute def _extract_ethosu_unary_elementwise_params(attrs, args): """Get the parameters necessary to construct a ethosu_unary_elementwise compute TE from a ethosu_unary_elementwise Relay call.""" ifm = args[0] lut = args[1] operator_type = attrs.operator_type ifm_scale = attrs.ifm_scale ifm_zero_point = attrs.ifm_zero_point ofm_scale = attrs.ofm_scale ofm_zero_point = attrs.ofm_zero_point ofm_channels = attrs.ofm_channels activation = attrs.activation clip_min = attrs.clip_min clip_max = attrs.clip_max rounding_mode = attrs.rounding_mode ifm_layout = attrs.ifm_layout ofm_layout = attrs.ofm_layout return ( ifm, lut, operator_type, ifm_scale, ifm_zero_point, ofm_scale, ofm_zero_point, ofm_channels, activation, clip_min, clip_max, rounding_mode, ifm_layout, ofm_layout, ) @tvm.ir.register_op_attr("contrib.ethosu.unary_elementwise", "FTVMCompute") def create_ethosu_unary_elementwise_compute(attrs, args, out_type): """Create an ethosu_unary_elementwise compute op.""" params = _extract_ethosu_unary_elementwise_params(attrs, args) op = unary_elementwise_compute(*params) return [op] @tvm.ir.register_op_attr("contrib.ethosu.unary_elementwise", "FTVMStrategy") def unary_elementwise_strategy_ethosu(attrs, inputs, out_type, target): strategy = OpStrategy() strategy.add_implementation( create_ethosu_unary_elementwise_compute, _strategy.wrap_topi_schedule(schedule_injective), name="ethosu_unary_elementwise", ) return strategy def ethosu_unary_elementwise( ifm: tvm.relay.Expr, lut: tvm.relay.Expr, operator_type: str, ifm_scale: float, ifm_zero_point: int, ofm_scale: float, ofm_zero_point: int, ofm_channels: int, activation: Optional[str] = "NONE", clip_min: Optional[int] = 0, clip_max: Optional[int] = 0, rounding_mode: Optional[str] = "TFL", ifm_layout: Optional[str] = "NHWC", ofm_layout: Optional[str] = "NHWC", ) -> tvm.relay.Call: """This is a quantized unary elementwise operation as supported by the NPU. It accepts either NHWC or NHCWB16 format for the input data. Parameters ---------- ifm : tvm.relay.Expr The Input Feature Map tensor (IFM). lut : tvm.relay.Expr The look-up table values to use if activation = "LUT". operator_type: str The type of the unary elementwise operator. "ABS" "CLZ" ifm_scale : float The quantization scale for the Input Feature Map tensor. ifm_zero_point : int The quantization zero point for the Input Feature Map tensor. ofm_scale : float The quantization scale for the Output Feature Map tensor. ofm_zero_point : int The quantization zero point for the Output Feature Map tensor. ofm_channels : int The number of OFM channels. activation : str, optional The activation function to use. "NONE" - no activation function. "CLIP" - clip the output between clip_min and clip_max. "TANH" - tanh activation function. "SIGMOID" - sigmoid activation function. "LUT" - use a look-up table to perform the activation function. clip_min : int, optional The minimum clipping value if activation = "CLIP". clip_max : int, optional The maximum clipping value if activation = "CLIP". rounding_mode : str, optional The rounding mode to apply to the Output Feature Map tensor. "TFL" - Tensorflow Lite rounding scheme. "TRUNCATE" - Truncate towards zero. "NATURAL" - Round to nearest value, with x.5 rounded up towards +infinity. ifm_layout : str, optional The layout of the Input Feature Map tensor. Can be "NHWC" or "NHCWB16". ofm_layout : str, optional The layout of the Output Feature Map tensor. Can be "NHWC" or "NHCWB16". Returns ------- out : tvm.relay.Call A call to the ethosu_unary_elementwise op. """ return _make.ethosu_unary_elementwise( ifm, lut, operator_type, ifm_scale, ifm_zero_point, ofm_scale, ofm_zero_point, ofm_channels, activation, clip_min, clip_max, rounding_mode, ifm_layout, ofm_layout, )
release/stubs.min/RevitServices/Transactions.py
htlcnn/ironpython-stubs
182
11160480
# encoding: utf-8 # module RevitServices.Transactions calls itself Transactions # from RevitServices,Version=1.2.1.3083,Culture=neutral,PublicKeyToken=null # by generator 1.145 # no doc # no imports # no functions # classes class AutomaticTransactionStrategy(object,ITransactionStrategy): """ AutomaticTransactionStrategy() """ def EnsureInTransaction(self,wrapper,document): """ EnsureInTransaction(self: AutomaticTransactionStrategy,wrapper: TransactionWrapper,document: Document) -> TransactionHandle """ pass def ForceCloseTransaction(self,handle): """ ForceCloseTransaction(self: AutomaticTransactionStrategy,handle: TransactionHandle) """ pass def TransactionTaskDone(self,handle): """ TransactionTaskDone(self: AutomaticTransactionStrategy,handle: TransactionHandle) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass class DebugTransactionStrategy(object,ITransactionStrategy): """ DebugTransactionStrategy() """ def EnsureInTransaction(self,wrapper,document): """ EnsureInTransaction(self: DebugTransactionStrategy,wrapper: TransactionWrapper,document: Document) -> TransactionHandle """ pass def ForceCloseTransaction(self,handle): """ ForceCloseTransaction(self: DebugTransactionStrategy,handle: TransactionHandle) """ pass def TransactionTaskDone(self,handle): """ TransactionTaskDone(self: DebugTransactionStrategy,handle: TransactionHandle) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass class FailureDelegate(MulticastDelegate,ICloneable,ISerializable): """ FailureDelegate(object: object,method: IntPtr) """ def BeginInvoke(self,failures,callback,object): """ BeginInvoke(self: FailureDelegate,failures: FailuresAccessor,callback: AsyncCallback,object: object) -> IAsyncResult """ pass def CombineImpl(self,*args): """ CombineImpl(self: MulticastDelegate,follow: Delegate) -> Delegate Combines this System.Delegate with the specified System.Delegate to form a new delegate. follow: The delegate to combine with this delegate. Returns: A delegate that is the new root of the System.MulticastDelegate invocation list. """ pass def DynamicInvokeImpl(self,*args): """ DynamicInvokeImpl(self: Delegate,args: Array[object]) -> object Dynamically invokes (late-bound) the method represented by the current delegate. args: An array of objects that are the arguments to pass to the method represented by the current delegate.-or- null,if the method represented by the current delegate does not require arguments. Returns: The object returned by the method represented by the delegate. """ pass def EndInvoke(self,result): """ EndInvoke(self: FailureDelegate,result: IAsyncResult) """ pass def GetMethodImpl(self,*args): """ GetMethodImpl(self: MulticastDelegate) -> MethodInfo Returns a static method represented by the current System.MulticastDelegate. Returns: A static method represented by the current System.MulticastDelegate. """ pass def Invoke(self,failures): """ Invoke(self: FailureDelegate,failures: FailuresAccessor) """ pass def RemoveImpl(self,*args): """ RemoveImpl(self: MulticastDelegate,value: Delegate) -> Delegate Removes an element from the invocation list of this System.MulticastDelegate that is equal to the specified delegate. value: The delegate to search for in the invocation list. Returns: If value is found in the invocation list for this instance,then a new System.Delegate without value in its invocation list; otherwise,this instance with its original invocation list. """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,object,method): """ __new__(cls: type,object: object,method: IntPtr) """ pass def __reduce_ex__(self,*args): pass class ITransactionStrategy: # no doc def EnsureInTransaction(self,wrapper,document): """ EnsureInTransaction(self: ITransactionStrategy,wrapper: TransactionWrapper,document: Document) -> TransactionHandle """ pass def ForceCloseTransaction(self,handle): """ ForceCloseTransaction(self: ITransactionStrategy,handle: TransactionHandle) """ pass def TransactionTaskDone(self,handle): """ TransactionTaskDone(self: ITransactionStrategy,handle: TransactionHandle) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass class TransactionHandle(object): # no doc def CancelTransaction(self): """ CancelTransaction(self: TransactionHandle) -> TransactionStatus """ pass def CommitTransaction(self): """ CommitTransaction(self: TransactionHandle) -> TransactionStatus """ pass Status=property(lambda self: object(),lambda self,v: None,lambda self: None) """Get: Status(self: TransactionHandle) -> TransactionStatus """ class TransactionManager(object): # no doc def EnsureInTransaction(self,document): """ EnsureInTransaction(self: TransactionManager,document: Document) """ pass def ForceCloseTransaction(self): """ ForceCloseTransaction(self: TransactionManager) """ pass @staticmethod def SetupManager(strategy=None): """ SetupManager(strategy: ITransactionStrategy)SetupManager() """ pass def TransactionTaskDone(self): """ TransactionTaskDone(self: TransactionManager) """ pass DoAssertInIdleThread=property(lambda self: object(),lambda self,v: None,lambda self: None) """Get: DoAssertInIdleThread(self: TransactionManager) -> bool Set: DoAssertInIdleThread(self: TransactionManager)=value """ Strategy=property(lambda self: object(),lambda self,v: None,lambda self: None) """Get: Strategy(self: TransactionManager) -> ITransactionStrategy Set: Strategy(self: TransactionManager)=value """ TransactionWrapper=property(lambda self: object(),lambda self,v: None,lambda self: None) """Get: TransactionWrapper(self: TransactionManager) -> TransactionWrapper """ OnLog=None class TransactionWrapper(object): # no doc def StartTransaction(self,document): """ StartTransaction(self: TransactionWrapper,document: Document) -> TransactionHandle """ pass TransactionActive=property(lambda self: object(),lambda self,v: None,lambda self: None) """Get: TransactionActive(self: TransactionWrapper) -> bool """ FailuresRaised=None TransactionCancelled=None TransactionCommitted=None TransactionName='Dynamo-51297CB5 Script' TransactionStarted=None
metrics/frugalscore/frugalscore.py
MitchellTesla/datasets
3,395
11160484
<reponame>MitchellTesla/datasets # Copyright 2022 The HuggingFace Datasets Authors and the current metric script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """FrugalScore metric.""" import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments import datasets _CITATION = """\ @article{eddine2021frugalscore, title={FrugalScore: Learning Cheaper, Lighter and Faster Evaluation Metrics for Automatic Text Generation}, author={<NAME> and <NAME> and <NAME>}, journal={arXiv preprint arXiv:2110.08559}, year={2021} } """ _DESCRIPTION = """\ FrugalScore is a reference-based metric for NLG models evaluation. It is based on a distillation approach that allows to learn a fixed, low cost version of any expensive NLG metric, while retaining most of its original performance. """ _KWARGS_DESCRIPTION = """ Calculates how good are predictions given some references, using certain scores. Args: predictions (list of str): list of predictions to score. Each predictions should be a string. references (list of str): list of reference for each prediction. Each reference should be a string. batch_size (int): the batch size for predictions. max_length (int): maximum sequence length. device (str): either gpu or cpu Returns: scores (list of int): list of scores. Examples: >>> frugalscore = datasets.load_metric("frugalscore") >>> results = frugalscore.compute(predictions=['hello there', 'huggingface'], references=['hello world', 'hugging face']) >>> print([round(s, 3) for s in results["scores"]]) [0.631, 0.645] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class FRUGALSCORE(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string"), "references": datasets.Value("string"), } ), homepage="https://github.com/moussaKam/FrugalScore", ) def _download_and_prepare(self, dl_manager): if self.config_name == "default": checkpoint = "moussaKam/frugalscore_tiny_bert-base_bert-score" else: checkpoint = self.config_name self.model = AutoModelForSequenceClassification.from_pretrained(checkpoint) self.tokenizer = AutoTokenizer.from_pretrained(checkpoint) def _compute( self, predictions, references, batch_size=32, max_length=128, device=None, ): """Returns the scores""" assert len(predictions) == len( references ), "predictions and references should have the same number of sentences." if device is not None: assert device in ["gpu", "cpu"], "device should be either gpu or cpu." else: device = "gpu" if torch.cuda.is_available() else "cpu" training_args = TrainingArguments( "trainer", fp16=(device == "gpu"), per_device_eval_batch_size=batch_size, report_to="all", no_cuda=(device == "cpu"), log_level="warning", ) dataset = {"sentence1": predictions, "sentence2": references} raw_datasets = datasets.Dataset.from_dict(dataset) def tokenize_function(data): return self.tokenizer( data["sentence1"], data["sentence2"], max_length=max_length, truncation=True, padding=True ) tokenized_datasets = raw_datasets.map(tokenize_function, batched=True) tokenized_datasets.remove_columns(["sentence1", "sentence2"]) trainer = Trainer(self.model, training_args, tokenizer=self.tokenizer) predictions = trainer.predict(tokenized_datasets) return {"scores": list(predictions.predictions.squeeze(-1))}
base/site-packages/jpush/device/__init__.py
edisonlz/fastor
285
11160511
from .core import Device from .entity import ( add, remove, device_tag, device_alias, device_regid, device_mobile, ) __all__ = [ Device, add, remove, device_tag, device_alias, device_regid, device_mobile, ]