max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
django_mail_admin/transports/babyl.py
jayvdb/django_mail_admin
179
11166196
<gh_stars>100-1000 from mailbox import Babyl from django_mail_admin.transports.generic import GenericFileMailbox class BabylTransport(GenericFileMailbox): _variant = Babyl
aat/core/handler/handler.py
mthomascarcamo/aat
305
11166217
from abc import ABCMeta, abstractmethod from inspect import isabstract from typing import TYPE_CHECKING, Callable, Optional, Tuple from ..data import Event from ...config import EventType if TYPE_CHECKING: # Circular import from aat.engine import StrategyManager class EventHandler(metaclass=ABCMeta): _manager: "StrategyManager" def _setManager(self, mgr: "StrategyManager") -> None: self._manager = mgr def _valid_callback(self, callback: str) -> Optional[Callable]: if ( hasattr(self, callback) and not isabstract(callback) and not hasattr(getattr(self, callback), "_original") ): return getattr(self, callback) return None def callback(self, event_type: EventType) -> Tuple[Optional[Callable], ...]: return { # Market data EventType.TRADE: (self._valid_callback("onTrade"),), EventType.OPEN: ( self._valid_callback("onOpen"), self._valid_callback("onOrder"), ), EventType.CANCEL: ( self._valid_callback("onCancel"), self._valid_callback("onOrder"), ), EventType.CHANGE: ( self._valid_callback("onChange"), self._valid_callback("onOrder"), ), EventType.FILL: ( self._valid_callback("onFill"), self._valid_callback("onOrderEvent"), ), EventType.DATA: (self._valid_callback("onData"),), EventType.HALT: (self._valid_callback("onHalt"),), EventType.CONTINUE: (self._valid_callback("onContinue"),), EventType.ERROR: (self._valid_callback("onError"),), EventType.START: (self._valid_callback("onStart"),), EventType.EXIT: (self._valid_callback("onExit"),), # Order Entry EventType.BOUGHT: ( self._valid_callback("onBought"), self._valid_callback("onTraded"), ), EventType.SOLD: ( self._valid_callback("onSold"), self._valid_callback("onTraded"), ), EventType.RECEIVED: (self._valid_callback("onReceived"),), EventType.REJECTED: (self._valid_callback("onRejected"),), EventType.CANCELED: (self._valid_callback("onCanceled"),), }.get(event_type, tuple()) ################################################ # Event Handler Methods # # # # NOTE: these should all be of the form onNoun # ################################################ @abstractmethod async def onTrade(self, event: Event) -> None: """Called whenever a `Trade` event is received""" async def onOrder(self, event: Event) -> None: """Called whenever an Order `Open`, `Cancel`, `Change`, or `Fill` event is received""" pass async def onOpen(self, event: Event) -> None: """Called whenever an Order `Open` event is received""" pass async def onCancel(self, event: Event) -> None: """Called whenever an Order `Cancel` event is received""" pass async def onChange(self, event: Event) -> None: """Called whenever an Order `Change` event is received""" pass async def onFill(self, event: Event) -> None: """Called whenever an Order `Fill` event is received""" pass async def onData(self, event: Event) -> None: """Called whenever other data is received""" async def onHalt(self, event: Event) -> None: """Called whenever an exchange `Halt` event is received, i.e. an event to stop trading""" pass async def onContinue(self, event: Event) -> None: """Called whenever an exchange `Continue` event is received, i.e. an event to continue trading""" pass async def onError(self, event: Event) -> None: """Called whenever an internal error occurs""" pass async def onStart(self, event: Event) -> None: """Called once at engine initialization time""" pass async def onExit(self, event: Event) -> None: """Called once at engine exit time""" pass ################################################ # Order Entry Callbacks # # # # NOTE: these should all be of the form onVerb # ################################################ async def onBought(self, event: Event) -> None: """Called on my order bought""" pass async def onSold(self, event: Event) -> None: """Called on my order sold""" pass async def onTraded(self, event: Event) -> None: """Called on my order bought or sold""" pass async def onReceived(self, event: Event) -> None: """Called on my order received by exchange""" pass async def onRejected(self, event: Event) -> None: """Called on my order rejected""" pass async def onCanceled(self, event: Event) -> None: """Called on my order canceled""" pass ################# # Other Methods # ################# setattr(EventHandler.onTrade, "_original", 1) setattr(EventHandler.onOrder, "_original", 1) setattr(EventHandler.onOpen, "_original", 1) setattr(EventHandler.onCancel, "_original", 1) setattr(EventHandler.onChange, "_original", 1) setattr(EventHandler.onFill, "_original", 1) setattr(EventHandler.onData, "_original", 1) setattr(EventHandler.onHalt, "_original", 1) setattr(EventHandler.onContinue, "_original", 1) setattr(EventHandler.onError, "_original", 1) setattr(EventHandler.onStart, "_original", 1) setattr(EventHandler.onExit, "_original", 1) setattr(EventHandler.onBought, "_original", 1) setattr(EventHandler.onSold, "_original", 1) setattr(EventHandler.onReceived, "_original", 1) setattr(EventHandler.onRejected, "_original", 1) setattr(EventHandler.onTraded, "_original", 1)
src/warp/yul/SwitchToIfVisitor.py
sambarnes/warp
414
11166249
from __future__ import annotations from typing import Optional import warp.yul.ast as ast from warp.yul.AstMapper import AstMapper class SwitchToIfVisitor(AstMapper): def visit_switch(self, node: ast.Switch) -> ast.Block: return self.visit( ast.Block( ( ast.VariableDeclaration( variables=[ast.TypedName("match_var")], value=node.expression ), switch_to_if(ast.Identifier("match_var"), node.cases), ) ) ) def switch_to_if(switch_var: ast.Identifier, cases: list[ast.Case]) -> ast.Block: res = switch_to_if_helper(switch_var, cases, case_no=0) assert res is not None return res def switch_to_if_helper( switch_var: ast.Identifier, cases: list[ast.Case], case_no: int = 0 ) -> Optional[ast.Block]: assert case_no <= len(cases) if case_no == len(cases): return None if cases[case_no].value is None: assert case_no == len(cases) - 1, "Default case should be the last one" return cases[case_no].body return ast.Block( ( ast.If( condition=ast.FunctionCall( function_name=ast.Identifier("eq"), arguments=[switch_var, cases[case_no].value], ), body=cases[case_no].body, else_body=switch_to_if_helper(switch_var, cases, case_no + 1), ), ) )
alipay/aop/api/domain/AlipayFundTaxbillSignUnsignModel.py
antopen/alipay-sdk-python-all
213
11166275
<reponame>antopen/alipay-sdk-python-all #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AlipayFundTaxbillSignUnsignModel(object): def __init__(self): self._biz_scene = None self._contractor_code = None self._employer_code = None self._identification_in_belonging_employer = None self._product_code = None self._tax_optimization_mode = None @property def biz_scene(self): return self._biz_scene @biz_scene.setter def biz_scene(self, value): self._biz_scene = value @property def contractor_code(self): return self._contractor_code @contractor_code.setter def contractor_code(self, value): self._contractor_code = value @property def employer_code(self): return self._employer_code @employer_code.setter def employer_code(self, value): self._employer_code = value @property def identification_in_belonging_employer(self): return self._identification_in_belonging_employer @identification_in_belonging_employer.setter def identification_in_belonging_employer(self, value): self._identification_in_belonging_employer = value @property def product_code(self): return self._product_code @product_code.setter def product_code(self, value): self._product_code = value @property def tax_optimization_mode(self): return self._tax_optimization_mode @tax_optimization_mode.setter def tax_optimization_mode(self, value): self._tax_optimization_mode = value def to_alipay_dict(self): params = dict() if self.biz_scene: if hasattr(self.biz_scene, 'to_alipay_dict'): params['biz_scene'] = self.biz_scene.to_alipay_dict() else: params['biz_scene'] = self.biz_scene if self.contractor_code: if hasattr(self.contractor_code, 'to_alipay_dict'): params['contractor_code'] = self.contractor_code.to_alipay_dict() else: params['contractor_code'] = self.contractor_code if self.employer_code: if hasattr(self.employer_code, 'to_alipay_dict'): params['employer_code'] = self.employer_code.to_alipay_dict() else: params['employer_code'] = self.employer_code if self.identification_in_belonging_employer: if hasattr(self.identification_in_belonging_employer, 'to_alipay_dict'): params['identification_in_belonging_employer'] = self.identification_in_belonging_employer.to_alipay_dict() else: params['identification_in_belonging_employer'] = self.identification_in_belonging_employer if self.product_code: if hasattr(self.product_code, 'to_alipay_dict'): params['product_code'] = self.product_code.to_alipay_dict() else: params['product_code'] = self.product_code if self.tax_optimization_mode: if hasattr(self.tax_optimization_mode, 'to_alipay_dict'): params['tax_optimization_mode'] = self.tax_optimization_mode.to_alipay_dict() else: params['tax_optimization_mode'] = self.tax_optimization_mode return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayFundTaxbillSignUnsignModel() if 'biz_scene' in d: o.biz_scene = d['biz_scene'] if 'contractor_code' in d: o.contractor_code = d['contractor_code'] if 'employer_code' in d: o.employer_code = d['employer_code'] if 'identification_in_belonging_employer' in d: o.identification_in_belonging_employer = d['identification_in_belonging_employer'] if 'product_code' in d: o.product_code = d['product_code'] if 'tax_optimization_mode' in d: o.tax_optimization_mode = d['tax_optimization_mode'] return o
data/masif_site/nn_models/hbond_only/custom_params.py
NBDsoftware/masif
309
11166292
custom_params = {} custom_params['model_dir'] = 'nn_models/hbond_only/model_data/' custom_params['out_dir'] = 'output/hbond_only/' custom_params['feat_mask'] = [0.0, 0.0, 1.0, 0.0, 0.0]
scripts/scoring/score.py
Diffblue-benchmarks/Microsoft-malmo
3,570
11166310
<filename>scripts/scoring/score.py # ------------------------------------------------------------------------------------------------ # Copyright (c) 2016 Microsoft Corporation # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and # associated documentation files (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, publish, distribute, # sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or # substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT # NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # ------------------------------------------------------------------------------------------------ from lxml import etree import argparse import shutil class ScoreLog: """Extract missions (digest, agent name) and their totals from score log files to given csv file.""" def __init__(self, score_csv_file): self.score_file = score_csv_file self.separator = "," self.mission = "" self.agent = "" self.total = "" def new_mission(self, mission_init): self.mission = mission_init.find('MissionDigest').text self.agent = mission_init.find('AgentName').text def record_total(self, mission_total): self.total = mission_total.text self.output() def parse(self, message): # print(message) msg = etree.fromstring(message) if msg.tag == 'MissionInit': self.new_mission(msg) elif msg.tag == 'MissionTotal': self.record_total(msg) def score(self, file): try: log = etree.parse(file) root = log.getroot() for child in root: # print(child.tag) if child.tag == 'record': self.parse(child.find('message').text) except etree.XMLSyntaxError as err: # Incomplete log files don't have a closing </log>. # Try to copy file, append and re-parse. print('XMLSyntaxError ' + str(err)) if 'Premature end of data' in str(err): print('Re-try after appending </log>') file2 = file + '2' shutil.copyfile(file, file2) with open(file2, 'a') as log: log.write('</log>') self.score(file2) else: raise def output(self): self.score_file.write(self.mission + self.separator + self.agent + self.separator + self.total + '\n') if __name__ == '__main__': parser = argparse.ArgumentParser(description='score missions') parser.add_argument('--log_files', nargs='+', default=[], help='the log files to score') args = parser.parse_args() with open('score.csv', 'w') as score_file: [ScoreLog(score_file).score(log_file) for log_file in args.log_files]
src/genie/libs/parser/iosxr/tests/ShowBgpInstanceNeighborsDetail/cli/equal/golden_output1_expected.py
balmasea/genieparser
204
11166331
expected_output = { "instance": { "all": { "vrf": { "default": { "neighbor": { "10.4.1.1": { "remote_as": 65000, "link_state": "internal link", "local_as_as_no": 65000, "local_as_no_prepend": True, "local_as_replace_as": True, "local_as_dual_as": True, "router_id": "10.4.1.1", "session_state": "established", "up_time": "1w1d", "nsr_state": "None", "holdtime": 180, "keepalive_interval": 60, "min_acceptable_hold_time": 3, "last_write": "00:00:03", "attempted": 19, "written": 19, "second_last_write": "00:01:03", "second_attempted": 19, "second_written": 19, "last_write_pulse_rcvd": "Nov 1 21:31:48.334 ", "last_full_not_set_pulse_count": 85322, "last_ka_error_before_reset": "00:00:00", "last_ka_error_ka_not_sent": "00:00:00", "precedence": "internet", "non_stop_routing": True, "multiprotocol_capability": "received", "minimum_time_between_adv_runs": 0, "inbound_message": "3", "outbound_message": "3", "address_family": { "ipv4 unicast": { "neighbor_version": 7, "update_group": "0.2", "filter_group": "0.1", "refresh_request_status": "No Refresh request being processed", "route_refresh_request_received": 0, "route_refresh_request_sent": 0, "accepted_prefixes": 1, "best_paths": 1, "exact_no_prefixes_denied": 0, "cummulative_no_prefixes_denied": 0, "prefix_advertised": 1, "prefix_suppressed": 0, "prefix_withdrawn": 0, "maximum_prefix_max_prefix_no": 1048576, "maximum_prefix_warning_only": True, "maximum_prefix_threshold": "75%", "maximum_prefix_restart": 0, "eor_status": "was received during read-only mode", "last_synced_ack_version": 0, "last_ack_version": 7, "additional_paths_operation": "None", "send_multicast_attributes": True, "additional_routes_local_label": "Unicast SAFI", } }, "bgp_session_transport": { "connection": { "state": "established", "connections_established": 2, "connections_dropped": 1, }, "transport": { "local_host": "10.16.2.2", "local_port": "179", "if_handle": "0x00000000", "foreign_host": "10.4.1.1", "foreign_port": "27104", }, }, } } } } } } }
PhysicsTools/PatAlgos/python/recoLayer0/muonPFIsolationValuesPAT_cff.py
ckamtsikis/cmssw
852
11166345
<gh_stars>100-1000 import FWCore.ParameterSet.Config as cms import CommonTools.ParticleFlow.Isolation.muonPFIsolationValuesPFBRECO_cff as _m muPFIsoValueCharged03PAT = _m.muPFIsoValueCharged03PFBRECO.clone() muPFIsoValueCharged03PAT.deposits[0].src = 'muPFIsoDepositChargedPAT' muPFMeanDRIsoValueCharged03PAT = _m.muPFMeanDRIsoValueCharged03PFBRECO.clone() muPFMeanDRIsoValueCharged03PAT.deposits[0].src = 'muPFIsoDepositChargedPAT' muPFSumDRIsoValueCharged03PAT = _m.muPFSumDRIsoValueCharged03PFBRECO.clone() muPFSumDRIsoValueCharged03PAT.deposits[0].src = 'muPFIsoDepositChargedPAT' muPFIsoValueChargedAll03PAT = _m.muPFIsoValueChargedAll03PFBRECO.clone() muPFIsoValueChargedAll03PAT.deposits[0].src = 'muPFIsoDepositChargedAllPAT' muPFMeanDRIsoValueChargedAll03PAT = _m.muPFMeanDRIsoValueChargedAll03PFBRECO.clone() muPFMeanDRIsoValueChargedAll03PAT.deposits[0].src = 'muPFIsoDepositChargedAllPAT' muPFSumDRIsoValueChargedAll03PAT = _m.muPFSumDRIsoValueChargedAll03PFBRECO.clone() muPFSumDRIsoValueChargedAll03PAT.deposits[0].src = 'muPFIsoDepositChargedAllPAT' muPFIsoValueGamma03PAT = _m.muPFIsoValueGamma03PFBRECO.clone() muPFIsoValueGamma03PAT.deposits[0].src = 'muPFIsoDepositGammaPAT' muPFMeanDRIsoValueGamma03PAT = _m.muPFMeanDRIsoValueGamma03PFBRECO.clone() muPFMeanDRIsoValueGamma03PAT.deposits[0].src = 'muPFIsoDepositGammaPAT' muPFSumDRIsoValueGamma03PAT = _m.muPFSumDRIsoValueGamma03PFBRECO.clone() muPFSumDRIsoValueGamma03PAT.deposits[0].src = 'muPFIsoDepositGammaPAT' muPFIsoValueNeutral03PAT = _m.muPFIsoValueNeutral03PFBRECO.clone() muPFIsoValueNeutral03PAT.deposits[0].src = 'muPFIsoDepositNeutralPAT' muPFMeanDRIsoValueNeutral03PAT = _m.muPFMeanDRIsoValueNeutral03PFBRECO.clone() muPFMeanDRIsoValueNeutral03PAT.deposits[0].src = 'muPFIsoDepositNeutralPAT' muPFSumDRIsoValueNeutral03PAT = _m.muPFSumDRIsoValueNeutral03PFBRECO.clone() muPFSumDRIsoValueNeutral03PAT.deposits[0].src = 'muPFIsoDepositNeutralPAT' muPFIsoValueGammaHighThreshold03PAT = _m.muPFIsoValueGammaHighThreshold03PFBRECO.clone() muPFIsoValueGammaHighThreshold03PAT.deposits[0].src = 'muPFIsoDepositGammaPAT' muPFMeanDRIsoValueGammaHighThreshold03PAT = _m.muPFMeanDRIsoValueGammaHighThreshold03PFBRECO.clone() muPFMeanDRIsoValueGammaHighThreshold03PAT.deposits[0].src = 'muPFIsoDepositGammaPAT' muPFSumDRIsoValueGammaHighThreshold03PAT = _m.muPFSumDRIsoValueGammaHighThreshold03PFBRECO.clone() muPFSumDRIsoValueGammaHighThreshold03PAT.deposits[0].src = 'muPFIsoDepositGammaPAT' muPFIsoValueNeutralHighThreshold03PAT = _m.muPFIsoValueNeutralHighThreshold03PFBRECO.clone() muPFIsoValueNeutralHighThreshold03PAT.deposits[0].src = 'muPFIsoDepositNeutralPAT' muPFMeanDRIsoValueNeutralHighThreshold03PAT = _m.muPFMeanDRIsoValueNeutralHighThreshold03PFBRECO.clone() muPFMeanDRIsoValueNeutralHighThreshold03PAT.deposits[0].src = 'muPFIsoDepositNeutralPAT' muPFSumDRIsoValueNeutralHighThreshold03PAT = _m.muPFSumDRIsoValueNeutralHighThreshold03PFBRECO.clone() muPFSumDRIsoValueNeutralHighThreshold03PAT.deposits[0].src = 'muPFIsoDepositNeutralPAT' muPFIsoValuePU03PAT = _m.muPFIsoValuePU03PFBRECO.clone() muPFIsoValuePU03PAT.deposits[0].src = 'muPFIsoDepositPUPAT' muPFMeanDRIsoValuePU03PAT = _m.muPFMeanDRIsoValuePU03PFBRECO.clone() muPFMeanDRIsoValuePU03PAT.deposits[0].src = 'muPFIsoDepositPUPAT' muPFSumDRIsoValuePU03PAT = _m.muPFSumDRIsoValuePU03PFBRECO.clone() muPFSumDRIsoValuePU03PAT.deposits[0].src = 'muPFIsoDepositPUPAT' ############################## muPFIsoValueCharged04PAT = _m.muPFIsoValueCharged04PFBRECO.clone() muPFIsoValueCharged04PAT.deposits[0].src = 'muPFIsoDepositChargedPAT' muPFMeanDRIsoValueCharged04PAT = _m.muPFMeanDRIsoValueCharged04PFBRECO.clone() muPFMeanDRIsoValueCharged04PAT.deposits[0].src = 'muPFIsoDepositChargedPAT' muPFSumDRIsoValueCharged04PAT = _m.muPFSumDRIsoValueCharged04PFBRECO.clone() muPFSumDRIsoValueCharged04PAT.deposits[0].src = 'muPFIsoDepositChargedPAT' muPFIsoValueChargedAll04PAT = _m.muPFIsoValueChargedAll04PFBRECO.clone() muPFIsoValueChargedAll04PAT.deposits[0].src = 'muPFIsoDepositChargedAllPAT' muPFMeanDRIsoValueChargedAll04PAT = _m.muPFMeanDRIsoValueChargedAll04PFBRECO.clone() muPFMeanDRIsoValueChargedAll04PAT.deposits[0].src = 'muPFIsoDepositChargedAllPAT' muPFSumDRIsoValueChargedAll04PAT = _m.muPFSumDRIsoValueChargedAll04PFBRECO.clone() muPFSumDRIsoValueChargedAll04PAT.deposits[0].src = 'muPFIsoDepositChargedAllPAT' muPFIsoValueGamma04PAT = _m.muPFIsoValueGamma04PFBRECO.clone() muPFIsoValueGamma04PAT.deposits[0].src = 'muPFIsoDepositGammaPAT' muPFMeanDRIsoValueGamma04PAT = _m.muPFMeanDRIsoValueGamma04PFBRECO.clone() muPFMeanDRIsoValueGamma04PAT.deposits[0].src = 'muPFIsoDepositGammaPAT' muPFSumDRIsoValueGamma04PAT = _m.muPFSumDRIsoValueGamma04PFBRECO.clone() muPFSumDRIsoValueGamma04PAT.deposits[0].src = 'muPFIsoDepositGammaPAT' muPFIsoValueNeutral04PAT = _m.muPFIsoValueNeutral04PFBRECO.clone() muPFIsoValueNeutral04PAT.deposits[0].src = 'muPFIsoDepositNeutralPAT' muPFMeanDRIsoValueNeutral04PAT = _m.muPFMeanDRIsoValueNeutral04PFBRECO.clone() muPFMeanDRIsoValueNeutral04PAT.deposits[0].src = 'muPFIsoDepositNeutralPAT' muPFSumDRIsoValueNeutral04PAT = _m.muPFSumDRIsoValueNeutral04PFBRECO.clone() muPFSumDRIsoValueNeutral04PAT.deposits[0].src = 'muPFIsoDepositNeutralPAT' muPFIsoValueGammaHighThreshold04PAT = _m.muPFIsoValueGammaHighThreshold04PFBRECO.clone() muPFIsoValueGammaHighThreshold04PAT.deposits[0].src = 'muPFIsoDepositGammaPAT' muPFMeanDRIsoValueGammaHighThreshold04PAT = _m.muPFMeanDRIsoValueGammaHighThreshold04PFBRECO.clone() muPFMeanDRIsoValueGammaHighThreshold04PAT.deposits[0].src = 'muPFIsoDepositGammaPAT' muPFSumDRIsoValueGammaHighThreshold04PAT = _m.muPFSumDRIsoValueGammaHighThreshold04PFBRECO.clone() muPFSumDRIsoValueGammaHighThreshold04PAT.deposits[0].src = 'muPFIsoDepositGammaPAT' muPFIsoValueNeutralHighThreshold04PAT = _m.muPFIsoValueNeutralHighThreshold04PFBRECO.clone() muPFIsoValueNeutralHighThreshold04PAT.deposits[0].src = 'muPFIsoDepositNeutralPAT' muPFMeanDRIsoValueNeutralHighThreshold04PAT = _m.muPFMeanDRIsoValueNeutralHighThreshold04PFBRECO.clone() muPFMeanDRIsoValueNeutralHighThreshold04PAT.deposits[0].src = 'muPFIsoDepositNeutralPAT' muPFSumDRIsoValueNeutralHighThreshold04PAT = _m.muPFSumDRIsoValueNeutralHighThreshold04PFBRECO.clone() muPFSumDRIsoValueNeutralHighThreshold04PAT.deposits[0].src = 'muPFIsoDepositNeutralPAT' muPFIsoValuePU04PAT = _m.muPFIsoValuePU04PFBRECO.clone() muPFIsoValuePU04PAT.deposits[0].src = 'muPFIsoDepositPUPAT' muPFMeanDRIsoValuePU04PAT = _m.muPFMeanDRIsoValuePU04PFBRECO.clone() muPFMeanDRIsoValuePU04PAT.deposits[0].src = 'muPFIsoDepositPUPAT' muPFSumDRIsoValuePU04PAT = _m.muPFSumDRIsoValuePU04PFBRECO.clone() muPFSumDRIsoValuePU04PAT.deposits[0].src = 'muPFIsoDepositPUPAT' muonPFIsolationValuesPATTask = cms.Task( muPFIsoValueCharged03PAT, muPFMeanDRIsoValueCharged03PAT, muPFSumDRIsoValueCharged03PAT, muPFIsoValueChargedAll03PAT, muPFMeanDRIsoValueChargedAll03PAT, muPFSumDRIsoValueChargedAll03PAT, muPFIsoValueGamma03PAT, muPFMeanDRIsoValueGamma03PAT, muPFSumDRIsoValueGamma03PAT, muPFIsoValueNeutral03PAT, muPFMeanDRIsoValueNeutral03PAT, muPFSumDRIsoValueNeutral03PAT, muPFIsoValueGammaHighThreshold03PAT, muPFMeanDRIsoValueGammaHighThreshold03PAT, muPFSumDRIsoValueGammaHighThreshold03PAT, muPFIsoValueNeutralHighThreshold03PAT, muPFMeanDRIsoValueNeutralHighThreshold03PAT, muPFSumDRIsoValueNeutralHighThreshold03PAT, muPFIsoValuePU03PAT, muPFMeanDRIsoValuePU03PAT, muPFSumDRIsoValuePU03PAT, ############################## muPFIsoValueCharged04PAT, muPFMeanDRIsoValueCharged04PAT, muPFSumDRIsoValueCharged04PAT, muPFIsoValueChargedAll04PAT, muPFMeanDRIsoValueChargedAll04PAT, muPFSumDRIsoValueChargedAll04PAT, muPFIsoValueGamma04PAT, muPFMeanDRIsoValueGamma04PAT, muPFSumDRIsoValueGamma04PAT, muPFIsoValueNeutral04PAT, muPFMeanDRIsoValueNeutral04PAT, muPFSumDRIsoValueNeutral04PAT, muPFIsoValueGammaHighThreshold04PAT, muPFMeanDRIsoValueGammaHighThreshold04PAT, muPFSumDRIsoValueGammaHighThreshold04PAT, muPFIsoValueNeutralHighThreshold04PAT, muPFMeanDRIsoValueNeutralHighThreshold04PAT, muPFSumDRIsoValueNeutralHighThreshold04PAT, muPFIsoValuePU04PAT, muPFMeanDRIsoValuePU04PAT, muPFSumDRIsoValuePU04PAT ) muonPFIsolationValuesPATSequence = cms.Sequence(muonPFIsolationValuesPATTask)
tests/test_reason/test_relativedifference.py
dumpmemory/doubtlab
300
11166353
import pytest import numpy as np from doubtlab.reason import RelativeDifferenceReason @pytest.mark.parametrize("t, s", [(0.05, 4), (0.2, 3), (0.4, 2), (0.6, 1)]) def test_from_predict(t, s): """Test `from_predict` on an obvious examples""" y = np.array([1.0, 1.0, 1.0, 1.0, 1.0]) preds = np.array([1.0, 1.1, 1.3, 1.5, 1.7]) predicate = RelativeDifferenceReason.from_predict(pred=preds, y=y, threshold=t) assert np.sum(predicate) == s def test_zero_error(): """Ensure error is throw when `y=0`""" y = np.array([0.0]) preds = np.array([1.0]) with pytest.raises(ValueError): RelativeDifferenceReason.from_predict(pred=preds, y=y, threshold=0.1)
cli/scripts/addr.py
niclashedam/liblightnvm
126
11166368
#!/usr/bin/env python from subprocess import Popen, PIPE NSECTORS = 4 NPLANES = 4 def main(): ppas = [] for i in xrange(0, 16): ch = 0 lun = 0 blk = 3 pg = 0 sec = i % NSECTORS pl = (i / NSECTORS) % NPLANES cmd = [str(x) for x in [ "nvm_addr", "fmt_g", "/dev/nvme0n1", ch, lun, pl, blk, pg, sec ]] process = Popen(cmd, stdout=PIPE, stderr=PIPE) out, err = process.communicate() print(out.strip()) ppas.append(out[1:17]) print("ppas{ %s }" % " ".join(ppas)) if __name__ == "__main__": main()
adb/systrace/catapult/common/py_utils/py_utils/tempfile_ext.py
mohanedmoh/TBS
2,151
11166408
<reponame>mohanedmoh/TBS<gh_stars>1000+ # Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import contextlib import shutil import tempfile @contextlib.contextmanager def NamedTemporaryDirectory(suffix='', prefix='tmp', dir=None): """A context manager that manages a temporary directory. This is a context manager version of tempfile.mkdtemp. The arguments to this function are the same as the arguments for that one. This can be used to automatically manage the lifetime of a temporary file without maintaining an open file handle on it. Doing so can be useful in scenarios where a parent process calls a child process to create a temporary file and then does something with the resulting file. """ # This uses |dir| as a parameter name for consistency with mkdtemp. # pylint: disable=redefined-builtin d = tempfile.mkdtemp(suffix=suffix, prefix=prefix, dir=dir) try: yield d finally: shutil.rmtree(d)
tests/primitives/test_strategybase.py
fakegit/DEXBot
249
11166420
<reponame>fakegit/DEXBot import logging import pytest log = logging.getLogger("dexbot") log.setLevel(logging.DEBUG) @pytest.fixture() def worker(strategybase): return strategybase @pytest.mark.mandatory def test_init(worker): pass @pytest.mark.parametrize('asset', ['base', 'quote']) def test_get_operational_balance(asset, worker, monkeypatch): share = 0.1 def get_share(*args): return share symbol = worker.market[asset]['symbol'] balance = worker.balance(symbol) op_balance = worker.get_operational_balance() assert op_balance[asset] == balance['amount'] monkeypatch.setattr(worker, 'get_worker_share_for_asset', get_share) op_balance = worker.get_operational_balance() assert op_balance[asset] == balance['amount'] * share
tests/test_config.py
tyrylu/todoman
318
11166421
from unittest.mock import patch import pytest from click.testing import CliRunner from todoman.cli import cli from todoman.configuration import ConfigurationException from todoman.configuration import load_config def test_explicit_nonexistant(runner): result = CliRunner().invoke( cli, env={"TODOMAN_CONFIG": "/nonexistant"}, catch_exceptions=True, ) assert result.exception assert "Configuration file /nonexistant does not exist" in result.output def test_xdg_nonexistant(runner): with patch("xdg.BaseDirectory.xdg_config_dirs", ["/does-not-exist"]): result = CliRunner().invoke( cli, catch_exceptions=True, ) assert result.exception assert "No configuration file found" in result.output def test_xdg_existant(runner, tmpdir, config): with tmpdir.mkdir("todoman").join("config.py").open("w") as f: with config.open() as c: f.write(c.read()) with patch("xdg.BaseDirectory.xdg_config_dirs", [str(tmpdir)]): result = CliRunner().invoke( cli, catch_exceptions=True, ) assert not result.exception assert not result.output.strip() def test_sane_config(config, runner, tmpdir): config.write( 'color = "auto"\n' 'date_format = "%Y-%m-%d"\n' f'path = "{tmpdir}"\n' f'cache_path = "{tmpdir.join("cache.sqlite")}"\n' ) result = runner.invoke(cli) # This is handy for debugging breakage: if result.exception: print(result.output) raise result.exception assert not result.exception def test_invalid_color(config, runner): config.write('color = 12\npath = "/"\n') result = runner.invoke(cli, ["list"]) assert result.exception assert ( "Error: Bad color setting. Invalid type (expected str, got int)." in result.output ) def test_invalid_color_arg(config, runner): config.write('path = "/"\n') result = runner.invoke(cli, ["--color", "12", "list"]) assert result.exception assert "Usage:" in result.output def test_missing_path(config, runner): config.write('color = "auto"\n') result = runner.invoke(cli, ["list"]) assert result.exception assert "Error: Missing 'path' setting." in result.output @pytest.mark.xfail(reason="Not implemented") def test_extra_entry(config, runner): config.write("color = auto\ndate_format = %Y-%m-%d\npath = /\nblah = false\n") result = runner.invoke(cli, ["list"]) assert result.exception assert "Error: Invalid configuration entry" in result.output @pytest.mark.xfail(reason="Not implemented") def test_extra_section(config, runner): config.write("date_format = %Y-%m-%d\npath = /\n[extra]\ncolor = auto\n") result = runner.invoke(cli, ["list"]) assert result.exception assert "Invalid configuration section" in result.output def test_missing_cache_dir(config, runner, tmpdir): cache_dir = tmpdir.join("does").join("not").join("exist") cache_file = cache_dir.join("cache.sqlite") config.write(f'path = "{tmpdir}/*"\ncache_path = "{cache_file}"\n') result = runner.invoke(cli) assert not result.exception assert cache_dir.isdir() assert cache_file.isfile() def test_date_field_in_time_format(config, runner, tmpdir): config.write('path = "/"\ntime_format = "%Y-%m-%d"\n') result = runner.invoke(cli) assert result.exception assert ( "Found date component in `time_format`, please use `date_format` for that." in result.output ) def test_date_field_in_time(config, runner, tmpdir): config.write('path = "/"\ndate_format = "%Y-%d-:%M"\n') result = runner.invoke(cli) assert result.exception assert ( "Found time component in `date_format`, please use `time_format` for that." in result.output ) def test_colour_validation_auto(config): with patch( "todoman.configuration.find_config", return_value=(str(config)), ): cfg = load_config() assert cfg["color"] == "auto" def test_colour_validation_always(config): config.write("color = 'always'\n", "a") with patch( "todoman.configuration.find_config", return_value=(str(config)), ): cfg = load_config() assert cfg["color"] == "always" def test_colour_validation_invalid(config): config.write("color = 'on_weekends_only'\n", "a") with patch( "todoman.configuration.find_config", return_value=(str(config)), ), pytest.raises(ConfigurationException): load_config()
test/pytest/test_search_sms.py
bitigchi/MuditaOS
369
11166426
# Copyright (c) 2017-2021, Mudita Sp. z.o.o. All rights reserved. # For licensing, see https://github.com/mudita/MuditaOS/LICENSE.md import time import pytest from harness.interface.defs import key_codes @pytest.mark.rt1051 @pytest.mark.usefixtures("phone_unlocked") def test_search_sms(harness, sms_text, phone_number): body = {"category": "message", "messageBody": sms_text, "phoneNumber": str(phone_number)} messages = harness.endpoint_request("messages", "get", body)["body"] assert len(messages) != 0
tests/storage/test_dict_storage.py
FrostByte266/neupy
801
11166476
<gh_stars>100-1000 import copy import numpy as np from neupy.utils import asfloat from neupy import layers, storage from neupy.storage import ( validate_data_structure, InvalidFormat, ParameterLoaderError, load_layer_parameter, ) from base import BaseTestCase class DictStorageTestCase(BaseTestCase): maxDiff = 10000 def test_storage_invalid_input_type(self): network = [ layers.Input(10), layers.Relu(5), layers.Relu(2), ] message = ( "Invalid input type. Input should be " "network or optimizer with network" ) with self.assertRaisesRegexp(TypeError, message): storage.save_dict(network) def test_storage_save_dict(self): network = layers.join( layers.parallel([ layers.Input(2, name='input-1'), layers.PRelu(1, name='prelu') ], [ layers.Input(1, name='input-2'), layers.Sigmoid(4, name='sigmoid'), layers.BatchNorm(name='batch-norm'), ]), layers.Concatenate(name='concatenate'), layers.Softmax(3, name='softmax'), ) dict_network = storage.save_dict(network) expected_keys = ('metadata', 'layers', 'graph') self.assertItemsEqual(expected_keys, dict_network.keys()) expected_metadata_keys = ('created', 'language', 'library', 'version') actual_metadata_keys = dict_network['metadata'].keys() self.assertItemsEqual(expected_metadata_keys, actual_metadata_keys) self.assertEqual(len(dict_network['layers']), 7) expected_layers = [{ 'class_name': 'Input', 'configs': {'name': 'input-1', 'shape': (2,)}, 'name': 'input-1', }, { 'class_name': 'PRelu', 'configs': {'alpha_axes': (-1,), 'name': 'prelu', 'n_units': 1}, 'name': 'prelu', }, { 'class_name': 'Input', 'configs': {'name': 'input-2', 'shape': (1,)}, 'name': 'input-2', }, { 'class_name': 'Sigmoid', 'configs': {'name': 'sigmoid', 'n_units': 4}, 'name': 'sigmoid', }, { 'class_name': 'BatchNorm', 'configs': { 'alpha': 0.1, 'axes': (0,), 'epsilon': 1e-05, 'name': 'batch-norm' }, 'name': 'batch-norm', }, { 'class_name': 'Concatenate', 'configs': {'axis': -1, 'name': 'concatenate'}, 'name': 'concatenate', }, { 'class_name': 'Softmax', 'configs': {'name': 'softmax', 'n_units': 3}, 'name': 'softmax', }] actual_layers = [] for i, layer in enumerate(dict_network['layers']): self.assertIn('parameters', layer, msg="Layer #" + str(i)) layer = copy.deepcopy(layer) del layer['parameters'] actual_layers.append(layer) self.assertEqual(actual_layers, expected_layers) def test_storage_load_dict_using_names(self): relu = layers.Relu(2, name='relu') network = layers.join(layers.Input(10), relu) weight = np.ones((10, 2)) bias = np.ones((2,)) storage.load_dict(network, { 'metadata': {}, # avoided for simplicity 'graph': {}, # avoided for simplicity # Input layer was avoided on purpose 'layers': [{ 'name': 'relu', 'class_name': 'Relu', 'configs': {}, 'parameters': { 'weight': {'trainable': True, 'value': weight}, 'bias': {'trainable': True, 'value': bias}, } }] }) np.testing.assert_array_almost_equal(weight, self.eval(relu.weight)) np.testing.assert_array_almost_equal(bias, self.eval(relu.bias)) def test_storage_load_dict_using_wrong_names(self): network = layers.join( layers.Input(3), layers.Relu(4, name='relu'), layers.Linear(5, name='linear') >> layers.Relu(), layers.Softmax(6, name='softmax'), ) storage.load_dict(network, { 'metadata': {}, # avoided for simplicity 'graph': {}, # avoided for simplicity # Input layer was avoided on purpose 'layers': [{ 'name': 'name-1', 'class_name': 'Relu', 'configs': {}, 'parameters': { 'weight': {'trainable': True, 'value': np.ones((3, 4))}, 'bias': {'trainable': True, 'value': np.ones((4,))}, } }, { 'name': 'name-2', 'class_name': 'Relu', 'configs': {}, 'parameters': { 'weight': {'trainable': True, 'value': np.ones((4, 5))}, 'bias': {'trainable': True, 'value': np.ones((5,))}, } }, { 'name': 'name-3', 'class_name': 'Softmax', 'configs': {}, 'parameters': { 'weight': {'trainable': True, 'value': np.ones((5, 6))}, 'bias': {'trainable': True, 'value': np.ones((6,))}, } }] }, load_by='order', skip_validation=False) relu = network.layer('relu') self.assertEqual(12, np.sum(self.eval(relu.weight))) self.assertEqual(4, np.sum(self.eval(relu.bias))) linear = network.layer('linear') self.assertEqual(20, np.sum(self.eval(linear.weight))) self.assertEqual(5, np.sum(self.eval(linear.bias))) softmax = network.layer('softmax') self.assertEqual(30, np.sum(self.eval(softmax.weight))) self.assertEqual(6, np.sum(self.eval(softmax.bias))) def test_storage_load_dict_invalid_number_of_paramters(self): network = layers.join( layers.Input(3), layers.Relu(4, name='relu'), layers.Linear(5, name='linear') > layers.Relu(), layers.Softmax(6, name='softmax'), ) data = { 'metadata': {}, # avoided for simplicity 'graph': {}, # avoided for simplicity # Input layer was avoided on purpose 'layers': [{ 'name': 'name-1', 'class_name': 'Relu', 'configs': {}, 'parameters': { 'weight': { 'trainable': True, 'value': np.ones((3, 4)) }, 'bias': {'trainable': True, 'value': np.ones((4,))}, } }] } with self.assertRaises(ParameterLoaderError): storage.load_dict(network, data, ignore_missing=False) def test_failed_loading_mode_for_storage(self): network = layers.Input(2) >> layers.Sigmoid(1) with self.assertRaisesRegexp(ValueError, "Invalid value"): storage.load_dict(network, {}, load_by='unknown') def test_failed_load_parameter_invalid_type(self): sigmoid = layers.Sigmoid(1, bias=None) network = layers.join(layers.Input(2), sigmoid) network.create_variables() with self.assertRaisesRegexp(ParameterLoaderError, "equal to None"): load_layer_parameter(sigmoid, { 'parameters': { 'bias': { 'value': np.array([[0]]), 'trainable': True, }, }, }) class StoredDataValidationTestCase(BaseTestCase): def test_stored_data_dict_format_basics(self): with self.assertRaises(InvalidFormat): validate_data_structure([]) with self.assertRaises(InvalidFormat): validate_data_structure({}) with self.assertRaises(InvalidFormat): validate_data_structure({'layers': {}}) with self.assertRaises(InvalidFormat): validate_data_structure({'layers': []}) def test_stored_data_layers_format(self): with self.assertRaises(InvalidFormat): validate_data_structure({'layers': [[]]}) with self.assertRaises(InvalidFormat): validate_data_structure({'layers': [{ 'parameters': {}, }]}) with self.assertRaises(InvalidFormat): validate_data_structure({'layers': [{ 'parameters': {}, }]}) with self.assertRaises(InvalidFormat): validate_data_structure({'layers': [{ 'parameters': {}, }]}) with self.assertRaises(InvalidFormat): validate_data_structure({ 'layers': [{ 'parameters': [], # wrong type 'name': 'name', }] }) result = validate_data_structure({ 'layers': [{ 'parameters': {}, 'name': 'name', }] }) self.assertIsNone(result) def test_stored_data_parameters_format(self): with self.assertRaises(InvalidFormat): validate_data_structure({'layers': [{ 'name': 'name', 'parameters': { 'weight': np.ones((2, 3)), } }]}) with self.assertRaises(InvalidFormat): validate_data_structure({'layers': [{ 'name': 'name', 'parameters': { 'weight': { 'data': np.ones((2, 3)), }, } }]}) result = validate_data_structure({'layers': [{ 'name': 'name', 'parameters': { 'weight': { 'value': np.ones((2, 3)), 'trainable': True, }, } }]}) self.assertIsNone(result) def test_basic_skip_validation(self): network = layers.Input(10) >> layers.Relu(1) with self.assertRaises(InvalidFormat): storage.load_dict(network, {}, skip_validation=False) class TransferLearningTestCase(BaseTestCase): def test_transfer_learning_using_position(self): network_pretrained = layers.join( layers.Input(10), layers.Elu(5), layers.Elu(2, name='elu'), layers.Sigmoid(1), ) network_new = layers.join( layers.Input(10), layers.Elu(5), layers.Elu(2), ) pretrained_layers_stored = storage.save_dict(network_pretrained) with self.assertRaises(ParameterLoaderError): storage.load_dict( network_new, pretrained_layers_stored, load_by='names_or_order', ignore_missing=False) storage.load_dict( network_new, pretrained_layers_stored, load_by='names_or_order', ignore_missing=True) random_input = asfloat(np.random.random((12, 10))) new_network_output = self.eval(network_new.output(random_input)) pretrained_output = self.eval( network_pretrained.end('elu').output(random_input)) np.testing.assert_array_almost_equal( pretrained_output, new_network_output) def test_transfer_learning_using_names(self): network_pretrained = layers.join( layers.Input(10), layers.Elu(5, name='elu-a'), layers.Elu(2, name='elu-b'), layers.Sigmoid(1), ) network_new = layers.join( layers.Input(10), layers.Elu(5, name='elu-a'), layers.Elu(2, name='elu-b'), layers.Elu(8, name='elu-c'), # new layer ) pretrained_layers_stored = storage.save_dict(network_pretrained) storage.load_dict( network_new, pretrained_layers_stored, load_by='names', skip_validation=False, ignore_missing=True) random_input = asfloat(np.random.random((12, 10))) pretrained_output = self.eval( network_pretrained.end('elu-b').output(random_input)) new_network_output = self.eval( network_new.end('elu-b').output(random_input)) np.testing.assert_array_almost_equal( pretrained_output, new_network_output) pred = self.eval(network_new.output(random_input)) self.assertEqual(pred.shape, (12, 8))
tests/roots/test-ext-autodoc/target/pep570.py
samdoran/sphinx
4,973
11166478
def foo(*, a, b): pass def bar(a, b, /, c, d): pass def baz(a, /, *, b): pass def qux(a, b, /): pass
arbitrage/public_markets/huobicny.py
abaoj/bitcoin-arbitrage
126
11166547
<gh_stars>100-1000 # Copyright (C) 2017, JackYao <<EMAIL>> from ._huobi import Huobi class HuobiCNY(Huobi): def __init__(self): super().__init__("CNY", "btc")
clize/__init__.py
scholer/clize
390
11166591
# clize -- A command-line argument parser for Python # Copyright (C) 2011-2016 by <NAME> and contributors. See AUTHORS and # COPYING for details. """procedurally generate command-line interfaces from callables""" from clize.parser import Parameter from clize.runner import Clize, SubcommandDispatcher, run from clize.legacy import clize, make_flag from clize.errors import UserError, ArgumentError __all__ = [ 'run', 'Parameter', 'UserError', 'Clize', 'ArgumentError', 'SubcommandDispatcher', 'clize', 'make_flag' ]
backend/classifier/classifier/commands/build.py
pdehaan/facebook-political-ads
228
11166596
""" Builds our classifiers """ import click import dill from classifier.utilities import (get_classifier, confs, get_vectorizer, classifier_path, train_classifier) @click.option("--lang", help="Limit to language") @click.command("build") @click.pass_context def build(ctx, lang): """ Build classifiers for each of our languages. """ for (directory, conf) in confs(ctx.obj["base"]): if lang and conf["language"] != lang: continue model = train_classifier(get_classifier(), get_vectorizer(conf), directory, conf["language"]) model_path = classifier_path(directory) with open(model_path, 'wb') as classy: dill.dump(model, classy) print("Saved model {}".format(model_path))
examples/avro-cli.py
woodlee/confluent-kafka-python
2,838
11166598
#!/usr/bin/env python # # Copyright 2018 Confluent Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse from uuid import uuid4 from six.moves import input from confluent_kafka import avro # Parse Schema used for serializing User class record_schema = avro.loads(""" { "namespace": "confluent.io.examples.serialization.avro", "name": "User", "type": "record", "fields": [ {"name": "name", "type": "string"}, {"name": "favorite_number", "type": "int"}, {"name": "favorite_color", "type": "string"} ] } """) class User(object): """ User stores the deserialized user Avro record. """ # Use __slots__ to explicitly declare all data members. __slots__ = ["name", "favorite_number", "favorite_color", "id"] def __init__(self, name=None, favorite_number=None, favorite_color=None): self.name = name self.favorite_number = favorite_number self.favorite_color = favorite_color # Unique id used to track produce request success/failures. # Do *not* include in the serialized object. self.id = uuid4() def to_dict(self): """ The Avro Python library does not support code generation. For this reason we must provide a dict representation of our class for serialization. """ return { "name": self.name, "favorite_number": self.favorite_number, "favorite_color": self.favorite_color } def on_delivery(err, msg, obj): """ Handle delivery reports served from producer.poll. This callback takes an extra argument, obj. This allows the original contents to be included for debugging purposes. """ if err is not None: print('Message {} delivery failed for user {} with error {}'.format( obj.id, obj.name, err)) else: print('Message {} successfully produced to {} [{}] at offset {}'.format( obj.id, msg.topic(), msg.partition(), msg.offset())) def produce(topic, conf): """ Produce User records """ from confluent_kafka.avro import AvroProducer producer = AvroProducer(conf, default_value_schema=record_schema) print("Producing user records to topic {}. ^c to exit.".format(topic)) while True: # Instantiate new User, populate fields, produce record, execute callbacks. record = User() try: record.name = input("Enter name: ") record.favorite_number = int(input("Enter favorite number: ")) record.favorite_color = input("Enter favorite color: ") # The message passed to the delivery callback will already be serialized. # To aid in debugging we provide the original object to the delivery callback. producer.produce(topic=topic, value=record.to_dict(), callback=lambda err, msg, obj=record: on_delivery(err, msg, obj)) # Serve on_delivery callbacks from previous asynchronous produce() producer.poll(0) except KeyboardInterrupt: break except ValueError: print("Invalid input, discarding record...") continue print("\nFlushing records...") producer.flush() def consume(topic, conf): """ Consume User records """ from confluent_kafka.avro import AvroConsumer from confluent_kafka.avro.serializer import SerializerError print("Consuming user records from topic {} with group {}. ^c to exit.".format(topic, conf["group.id"])) c = AvroConsumer(conf, reader_value_schema=record_schema) c.subscribe([topic]) while True: try: msg = c.poll(1) # There were no messages on the queue, continue polling if msg is None: continue if msg.error(): print("Consumer error: {}".format(msg.error())) continue record = User(msg.value()) print("name: {}\n\tfavorite_number: {}\n\tfavorite_color: {}\n".format( record.name, record.favorite_number, record.favorite_color)) except SerializerError as e: # Report malformed record, discard results, continue polling print("Message deserialization failed {}".format(e)) continue except KeyboardInterrupt: break print("Shutting down consumer..") c.close() def main(args): # handle common configs conf = {'bootstrap.servers': args.bootstrap_servers, 'schema.registry.url': args.schema_registry} if args.userinfo: conf['schema.registry.basic.auth.credentials.source'] = 'USER_INFO' conf['schema.registry.basic.auth.user.info'] = args.userinfo if args.mode == "produce": produce(args.topic, conf) else: # Fallback to earliest to ensure all messages are consumed conf['group.id'] = args.group conf['auto.offset.reset'] = "earliest" consume(args.topic, conf) if __name__ == '__main__': # To use the provided cluster execute <source root>/tests/docker/bin/cluster_up.sh. # Defaults assume the use of the provided test cluster. parser = argparse.ArgumentParser(description="Example client for handling Avro data") parser.add_argument('-b', dest="bootstrap_servers", default="localhost:29092", help="Bootstrap broker(s) (host[:port])") parser.add_argument('-s', dest="schema_registry", default="http://localhost:8083", help="Schema Registry (http(s)://host[:port]") parser.add_argument('-t', dest="topic", default="example_avro", help="Topic name") parser.add_argument('-u', dest="userinfo", default="ckp_tester:test_secret", help="Userinfo (username:password); requires Schema Registry with HTTP basic auth enabled") parser.add_argument('mode', choices=['produce', 'consume'], help="Execution mode (produce | consume)") parser.add_argument('-g', dest="group", default="example_avro", help="Consumer group; required if running 'consumer' mode") main(parser.parse_args())
utils/model_compression.py
cwwang15/neural_network_cracking
196
11166601
#!/usr/bin/env python import h5py import numpy as np import struct import sys import argparse import json import itertools class CompressActor(object): RECORD_FMT = '>f' def __init__(self, fname, ofile, weight_file): self.fname = fname self.ofile = ofile self.weight_file = weight_file def act(self): raise NotImplementedError() class Compressor(CompressActor): def act(self): self.out_floats = [] out_struct = { 'groups' : [] } with h5py.File(self.fname, 'r') as dataset: for key in dataset.keys(): subgroup = dataset[key] outgroup = { 'datasets' : [] } assert type(subgroup) == h5py.Group for gkey in subgroup.keys(): datablock = subgroup[gkey] assert type(datablock) == h5py.Dataset outgroup['datasets'].append( [gkey, self.output_datablock(datablock)]) outgroup['attr'] = list(map(lambda t: (t[0], int(t[1])), subgroup.attrs.items())) out_struct['groups'].append([key, outgroup]) out_struct['attr'] = list(map(lambda t: (t[0], int(t[1])), dataset.attrs.items())) self.output_head(out_struct) def output_datablock(self, datablock): self.out_floats += datablock[:].flatten().tolist() return list(datablock.shape) def write_weight(self, weight, ofile): ofile.write(struct.pack(self.RECORD_FMT, weight)) def output_head(self, out_struct): with open(self.ofile, 'w') as ofile: json.dump(out_struct, ofile) with open(self.weight_file, 'wb') as ofile: for item in self.out_floats: self.write_weight(item, ofile) class Decompressor(CompressActor): def act(self): with open(self.fname, 'r') as ifile: item = json.load(ifile) with open(self.weight_file, 'rb') as weightfile: chunksize = struct.calcsize(self.RECORD_FMT) self.weights = [] chunk = weightfile.read(chunksize) while chunk != b'': self.weights.append(self.read_weight(chunk)) chunk = weightfile.read(chunksize) self.output(item) def read_weight(self, chunk): return struct.unpack(self.RECORD_FMT, chunk)[0] def calc_num_elems(self, dimensions): num_elems = 1 for dimension in dimensions: num_elems *= dimension return num_elems def output(self, item): with h5py.File(self.ofile, 'w') as ofile: ctr = 0 for agroup in item['groups']: key, groups = agroup grp = ofile.create_group(key) for attr in groups['attr']: grp.attrs[attr[0]] = attr[1] for adataset in groups['datasets']: name, shape = adataset num_elems = self.calc_num_elems(shape) data = np.reshape(self.weights[ctr:num_elems + ctr], shape) grp.create_dataset(name, data=data, dtype=np.float32) ctr += num_elems for attr in item['attr']: ofile.attrs[attr[0]] = attr[1] def main(args): assert args.compress or args.decompress, ( 'Must provide compress or decompress argument') (Compressor if args.compress else Decompressor)( args.ifile, args.ofile, args.weight_file).act() if __name__=='__main__': parser = argparse.ArgumentParser( description='Compress and decompress model. ') parser.add_argument('ifile', help='Input file. ') parser.add_argument('ofile', help='Output file. ') parser.add_argument('weight_file', help='File for weights. ') parser.add_argument('-c', '--compress', action='store_true') parser.add_argument('-d', '--decompress', action='store_true') main(parser.parse_args())
experiment_impact_tracker/operating_system/common.py
ANarayan/experiment-impact-tracker
202
11166605
<reponame>ANarayan/experiment-impact-tracker from sys import platform def is_linux(*args, **kwargs): return platform == "linux" or platform == "linux2"
python/general-python/create-drive-times/create-drive-times.py
NagarjunaManupati/ESRI
272
11166626
<filename>python/general-python/create-drive-times/create-drive-times.py """ Importing concepts found at: GitHub Developer Support https://github.com/Esri/developer-support/tree/master/python/general-python/update-webmap-json https://developers.arcgis.com/rest/analysis/api-reference/programmatically-accessing-analysis-services.htm https://developers.arcgis.com/rest/analysis/api-reference/create-drivetime.htm """ import urllib import urllib2 import json import httplib import time import contextlib import string import smtplib class ArcGISOnline(object): def __init__(self, Username, Password): self.username = Username self.password = Password self.__token = self.generateToken(self.username, self.password)['token'] self.__protocol = self.__useProtocol() self.__orgInfo = self.__GetInfo() self.__short = self.__orgInfo['urlKey'] self.__analysis_url = self.__orgInfo['helperServices']['analysis']['url'] def submit_request(self, request): """ Returns the response from an HTTP request in json format.""" with contextlib.closing(urllib2.urlopen(request)) as response: job_info = json.load(response) return job_info @staticmethod def generateToken(username, password): '''Generate a token using urllib modules for the input username and password''' url = "https://arcgis.com/sharing/generateToken" data = {'username': username, 'password': password, 'referer' : 'https://arcgis.com', 'expires' : 1209600, 'f': 'json'} data = urllib.urlencode(data) request = urllib2.Request(url, data) response = urllib2.urlopen(request) return json.loads(response.read()) @property def token(self): '''Makes the non-public token read-only as a public token property''' return self.__token @property def AnalysisURL(self): '''Makes the non-public token read-only as a public token property''' return self.__analysis_url def __useProtocol(self): tokenResponse = self.generateToken(self.username, self.password) if tokenResponse['ssl']: ssl = 'https' else: ssl = 'http' return ssl def __GetInfo(self): '''Get information about the specified organization this information includes the Short name of the organization (['urlKey']) as well as the organization ID ['id']''' URL= '{}://arcgis.com/sharing/rest/portals/self?f=json&token={}'.format(self.__protocol,self.__token) request = urllib2.Request(URL) response = urllib2.urlopen(request) return json.loads(response.read()) def analysis_job(self, analysis_url, task, params): """ Submits an Analysis job and returns the job URL for monitoring the job status in addition to the json response data for the submitted job.""" # Unpack the Analysis job parameters as a dictionary and add token and # formatting parameters to the dictionary. The dictionary is used in the # HTTP POST request. Headers are also added as a dictionary to be included # with the POST. # print("Submitting analysis job...") params["f"] = "json" params["token"] = self.__token headers = {"Referer":"http://www.arcgis.com"} task_url = "{}/{}".format(analysis_url, task) submit_url = "{}/submitJob?".format(task_url) request = urllib2.Request(submit_url, urllib.urlencode(params), headers) analysis_response = self.submit_request(request) if analysis_response: # Print the response from submitting the Analysis job. # print(analysis_response) return task_url, analysis_response else: raise Exception("Unable to submit analysis job.") def analysis_job_status(self, task_url, job_info): """ Tracks the status of the submitted Analysis job.""" if "jobId" in job_info: # Get the id of the Analysis job to track the status. # job_id = job_info.get("jobId") job_url = "{}/jobs/{}?f=json&token={}".format(task_url, job_id, self.__token) request = urllib2.Request(job_url) job_response = self.submit_request(request) # Query and report the Analysis job status. # if "jobStatus" in job_response: while not job_response.get("jobStatus") == "esriJobSucceeded": time.sleep(5) request = urllib2.Request(job_url) job_response = self.submit_request(request) print(job_response) if job_response.get("jobStatus") == "esriJobFailed": raise Exception("Job failed.") elif job_response.get("jobStatus") == "esriJobCancelled": raise Exception("Job cancelled.") elif job_response.get("jobStatus") == "esriJobTimedOut": raise Exception("Job timed out.") if "results" in job_response: return job_response else: raise Exception("No job results.") else: raise Exception("No job url.") def analysis_job_results(self, task_url, job_info): """ Use the job result json to get information about the feature service created from the Analysis job.""" # Get the paramUrl to get information about the Analysis job results. # if "jobId" in job_info: job_id = job_info.get("jobId") if "results" in job_info: results = job_info.get("results") result_values = {} for key in results.keys(): param_value = results[key] if "paramUrl" in param_value: param_url = param_value.get("paramUrl") result_url = "{}/jobs/{}/{}?token={}&f=json".format(task_url, job_id, param_url, self.__token) request = urllib2.Request(result_url) param_result = self.submit_request(request) job_value = param_result.get("value") result_values[key] = job_value return result_values else: raise Exception("Unable to get analysis job results.") else: raise Exception("Unable to get analysis job results.") def GetTravelModes(self, FORMOFTRAVEL): url = "http://logistics.arcgis.com/arcgis/rest/services/World/Utilities/GPServer/GetTravelModes/execute?token={0}&f=p<PASSWORD>".format(self.__token) request = urllib2.Request(url) response = urllib2.urlopen(request) responseJ = json.loads(response.read()) for mode in responseJ['results'][0]['value']['features']: if mode['attributes']['Name'] == FORMOFTRAVEL: return mode['attributes']['TravelMode'] def CreateDriveTimes(self, featureLayerURL, WHERE_CLAUSE, breakValues, breakUnits, overlapPolicy, OUTPUTNAME): data = {} data['inputLayer'] = {'url' : featureLayerURL, 'filter' : WHERE_CLAUSE } data['travelMode'] = self.GetTravelModes("Driving Time") data['breakValues'] = breakValues data['breakUnits'] = breakUnits data['overlapPolicy'] = overlapPolicy data['outputName'] = {"serviceProperties": {"name": OUTPUTNAME}} task_url, job_info = self.analysis_job(self.__analysis_url, "CreateDriveTimeAreas", data) job_info = self.analysis_job_status(task_url, job_info) job_values = self.analysis_job_results(task_url, job_info) return job_values if __name__ == '__main__': username = "thisIsAUserName" password = "<PASSWORD>!" onlineAccount = ArcGISOnline(username, password) jobResults = onlineAccount.CreateDriveTimes("URLTOFEATURESERVICE", "OBJECTID = 4", [5.0, 10.0, 15.0], "Minutes", "Split", "ThisIsAnOutput") print "DONE"
openfda/covid19serology/tests/pipeline_test.py
FDA/openfda
388
11166661
#!/usr/bin/env python # coding=utf-8 import shutil import tempfile import unittest from pickle import * import leveldb import openfda.ndc.pipeline from openfda.ndc.pipeline import * from openfda.covid19serology.pipeline import SerologyCSV2JSON from openfda.tests.api_test_helpers import * class SerologyPipelineTests(unittest.TestCase): def setUp(self): self.test_dir = tempfile.mkdtemp() openfda.covid19serology.pipeline.SEROLOGY_TEST_SYNC_DIR = join(self.test_dir, 'covid19serology/s3_sync') openfda.covid19serology.pipeline.SEROLOGY_TEST_JSON_DB_DIR = join(self.test_dir, 'covid19serology/json.db') os.makedirs(openfda.covid19serology.pipeline.SEROLOGY_TEST_SYNC_DIR) shutil.copyfile( os.path.join(dirname(os.path.abspath(__file__)), "20200421_Euroimmun_SARS-COV-2_ELISA_(IgG)_results.csv"), os.path.join(openfda.covid19serology.pipeline.SEROLOGY_TEST_SYNC_DIR, "input.csv")) def tearDown(self): shutil.rmtree(self.test_dir) def test_csv_to_json(self): csv2json = SerologyCSV2JSON() csv2json.run() ldb = leveldb.LevelDB(os.path.join(csv2json.output().path, 'shard-00000-of-00001.db')) data = list(ldb.RangeIter()) eq_(110, len(data)) # Verify base logic. row = loads(data[0][1]) eq_('Euroimmun', row.get('manufacturer')) eq_('SARS-COV-2 ELISA (IgG)', row.get('device')) eq_('4/21/2020', row.get('date_performed')) eq_('E200330DT', row.get('lot_number')) eq_('Panel 1', row.get('panel')) eq_('1', row.get('sample_no')) eq_('C0001', row.get('sample_id')) eq_('Serum', row.get('type')) eq_('Negatives', row.get('group')) eq_('NA', row.get('days_from_symptom')) eq_('NA', row.get('igm_result')) eq_('Negative', row.get('igg_result')) eq_('NA', row.get('iga_result')) eq_('NA', row.get('pan_result')) eq_('NA', row.get('igm_igg_result')) eq_('Pass', row.get('control')) eq_('0', row.get('igm_titer')) eq_('0', row.get('igg_titer')) eq_('Negative', row.get('igm_truth')) eq_('Negative', row.get('igg_truth')) eq_('Negative', row.get('antibody_truth')) eq_('NA', row.get('igm_agree')) eq_('TN', row.get('igg_agree')) eq_('NA', row.get('iga_agree')) eq_('NA', row.get('pan_agree')) eq_('NA', row.get('igm_igg_agree')) eq_('TN', row.get('antibody_agree')) # Verify some variations. row = loads(data[55][1]) eq_('29', row.get('days_from_symptom')) eq_('400', row.get('igm_titer')) eq_('1600', row.get('igg_titer')) def main(argv): unittest.main(argv=argv) if __name__ == '__main__': unittest.main()
app/oauth_office365/helper.py
larrycameron80/PwnAuth
304
11166663
<filename>app/oauth_office365/helper.py from .models import Victim, Application from datetime import datetime from requests_oauthlib import OAuth2Session from django.utils.timezone import make_aware from django.db.utils import IntegrityError import copy from collections import OrderedDict import logging logger = logging.getLogger('oauth.office365') def get_authorization_url(app): """ Helper function to build an authorization URL to be used. :return: A string representing the authorization URL """ microsoft = get_oauth_session() authorization_url, state = microsoft.authorization_url( app.authorization_url, response_mode="form_post", ) return authorization_url def store_token(app, token): """ Takes a token dictionary returned by the Microsoft OAuth provider and stores it in the database. Using the required 'user.read' scope it fetches some identifying information to store with the token :param app: The Application object :param token: The token dictionary returned by the provider :return: """ microsoft = get_oauth_session(token=token) data = microsoft.get('https://graph.microsoft.com/v1.0/me').json() victim = Victim( name='Not given' if data['displayName'] is None else data['displayName'], email=data['userPrincipalName'], access_token=token['access_token'], refresh_token=token['refresh_token'], expires_at=make_aware(datetime.fromtimestamp(token['expires_at'])) ) try: victim.save() logger.info('Received token for user %s', victim.email, extra={'user': 'APP'}) except IntegrityError: logger.info('Updated token for user %s', victim.email, extra={'user': 'APP'}) victim = Victim.objects.get(email=data['userPrincipalName']) victim.refresh_token = token['refresh_token'] victim.access_token = token['access_token'] victim.expires_at = make_aware(datetime.fromtimestamp(token['expires_at'])) victim.save() def make_token_updater(victim): """ Helper function to generate a victim aware token_updater function. :param victim: the Victim object to save the updated token to :return: token_updater(token) A Victim aware token updater that saves refreshed token to the given Victim """ def token_updater(token): victim.access_token = token['access_token'] victim.refresh_token = token['refresh_token'] victim.expires_at = datetime.fromtimestamp(float(token['expires_at'])) victim.save() return token_updater def get_oauth_session(victim=None, token=None): """ Helper function to instantiate a OAuth2Session object configured to handle interaction with the Azure v2 endpoint. Defines: * Scope for the session from the Application scope * Redirect URI * Token URI * Authorization URI * Refresh URI * Token if one exists * Token updater * Extra kwargs for token update :return: An instance of OAuth2Session ready for use """ app = Application.objects.first() if token: token = token token_updater = None elif victim: token = { 'access_token': victim.access_token, 'refresh_token': victim.refresh_token, 'expires_at': victim.expires_at.timestamp(), 'token_type': 'bearer' } token_updater = make_token_updater(victim) else: token = None token_updater = None extra = { 'redirect_uri': app.redirect_url, 'client_id': app.client_id, 'client_secret': app.client_secret } microsoft = OAuth2Session( app.client_id, token=token, scope=app.scopes.split(','), auto_refresh_kwargs=extra, auto_refresh_url=app.token_url, token_updater=token_updater, redirect_uri=app.redirect_url, ) return microsoft def prune(obj, key): # empty = True if type(obj[key]) is dict or type(obj[key]) is OrderedDict: empty = True for k, v in copy.copy(obj[key]).items(): if type(v) is not list and type(v) is not dict and type(v) is not OrderedDict and v is not None: empty = False elif type(v) is list: for i in range(0, len(v)): empty = prune(v, i) if len(v) == 0: del obj[key][k] else: empty = prune(obj[key], k) elif type(obj[key]) is list: for i in range(0, len(obj[key])): empty = prune(obj[key], i) if len(obj[key]) == 0: del obj[key] else: empty = False else: if obj[key] is not None: empty = False if empty: del obj[key] return empty def refresh_token(app, victim): """ Takes a victim and refreshes their access token. Saves the resulting new token parameters to the Victim object and returns the updated fields as well :param app: The Application object representing the OAuth provider :param victim: The Victim to be refreshed :return: A Dictionary containing the updated token parameters """ microsoft = get_oauth_session(victim) extra = { 'redirect_uri': app.redirect_url, 'client_id': app.client_id, 'client_secret': app.client_secret } refreshed_token = microsoft.refresh_token( app.token_url, **extra ) victim.access_token = refreshed_token['access_token'] victim.refresh_token = refreshed_token['refresh_token'] victim.expires_at = datetime.fromtimestamp(float(refreshed_token['expires_at'])) victim.save() logger.info('Refreshed token for user %s', victim.email, extra={'user': 'APP'}) return { 'access_token': refreshed_token['access_token'], 'refresh_token': refreshed_token['refresh_token'], 'expires_at': refreshed_token['expires_at'] }
tests/test_data/test_languages.py
ishine/wikipron
111
11166673
<gh_stars>100-1000 import json import os _REPO_DIR = os.path.dirname( os.path.dirname(os.path.dirname(os.path.realpath(__file__))) ) _LANGUAGES = os.path.join(_REPO_DIR, "data/scrape/lib/languages.json") def test_casefold_value(): """Check if each language in data/scrape/lib/languages.json has a value for 'casefold' key. """ missing_languages = set() with open(_LANGUAGES, "r") as source: languages = json.load(source) for language in languages: if languages[language]["casefold"] is None: missing_languages.add(languages[language]["wiktionary_name"]) assert not missing_languages, ( "The following languages do not have a 'casefold' value " "in data/scrape/lib/languages.json:" f"{missing_languages}" )
Scripts/dump-classes.py
kolinkrewinkel/Multiplex
314
11166683
#!/usr/bin/python from subprocess import call import glob import os import sys import fileinput import re destination_path = 'Multiplex/Modules/IDEHeaders/IDEHeaders/' def dump_all_frameworks(): # 3 different directories contain all of the frameworks a plugin may interface with. # They're located at {APP_DIR}/Contents/ shared_frameworks = ['DVTFoundation', 'DVTKit'] frameworks = ['IDEFoundation', 'IDEKit'] other_frameworks = [''] for framework in shared_frameworks: dump_framework(frameworkPath('SharedFrameworks', framework), frameworkDumpDestination(framework)) for framework in frameworks: dump_framework(frameworkPath('Frameworks', framework), frameworkDumpDestination(framework)) cleanup_dumped_files() def frameworkPath(frameworkDir, frameworkName): framework_root_directory = '/Applications/Xcode-beta.app/Contents/' return framework_root_directory + frameworkDir + '/' + frameworkName + '.framework/' + frameworkName def frameworkDumpDestination(frameworkName): return destination_path + frameworkName def dump_framework(path, destinationDir): call(['class-dump', path, '-H', '-s', '-o', destinationDir]) def cleanup_dumped_files(): relative_paths = glob.glob(destination_path + '/*/*.h') for relativePath in relative_paths: absolute_path = os.path.abspath(relativePath) cleanFile(absolute_path) def cleanFile(filePath): tempName = filePath + '.tmp' inputFile = open(filePath) outputFile = open(tempName, 'w') fileContent = unicode(inputFile.read(), "utf-8") # Remove Foundation imports outText = re.sub('#import "NS(.*?).h"\n', '', fileContent) # Remove .cxx_destructs outText = re.sub('- \(void\).cxx_destruct;\n', '', outText) # Fix delegate imports outText = re.sub('.h"', '-Protocol.h"', outText) # Add import for structs outText = re.sub('//\n\n', '//\n\n#import "CDStructures.h"\n', outText) # Change the unknown block type to a generic block that doesn't need an import outText = re.sub('CDUnknownBlockType', 'dispatch_block_t', outText) # Remove protocols from ivars as they're not supported outText = re.sub('<(.*?)> (\*|)', ' ' + r"\2", outText) outputFile.write((outText.encode("utf-8"))) outputFile.close() inputFile.close() os.rename(tempName, filePath) dump_all_frameworks()
chainer_chemistry/dataset/preprocessors/gwm_preprocessor.py
pfnet/chainerchem
184
11166694
from chainer_chemistry.dataset.preprocessors.common import construct_supernode_feature # NOQA from chainer_chemistry.dataset.preprocessors.ggnn_preprocessor import GGNNPreprocessor # NOQA from chainer_chemistry.dataset.preprocessors.gin_preprocessor import GINPreprocessor # NOQA from chainer_chemistry.dataset.preprocessors.nfp_preprocessor import NFPPreprocessor # NOQA from chainer_chemistry.dataset.preprocessors.rsgcn_preprocessor import RSGCNPreprocessor # NOQA class NFPGWMPreprocessor(NFPPreprocessor): def get_input_features(self, mol): atom_array, adj_array = super( NFPGWMPreprocessor, self).get_input_features(mol) super_node_x = construct_supernode_feature( mol, atom_array, adj_array) return atom_array, adj_array, super_node_x class GGNNGWMPreprocessor(GGNNPreprocessor): def get_input_features(self, mol): atom_array, adj_array = super( GGNNGWMPreprocessor, self).get_input_features(mol) super_node_x = construct_supernode_feature( mol, atom_array, adj_array) return atom_array, adj_array, super_node_x class GINGWMPreprocessor(GINPreprocessor): def get_input_features(self, mol): atom_array, adj_array = super( GINGWMPreprocessor, self).get_input_features(mol) super_node_x = construct_supernode_feature( mol, atom_array, adj_array) return atom_array, adj_array, super_node_x class RSGCNGWMPreprocessor(RSGCNPreprocessor): def get_input_features(self, mol): atom_array, adj_array = super( RSGCNGWMPreprocessor, self).get_input_features(mol) super_node_x = construct_supernode_feature( mol, atom_array, adj_array) return atom_array, adj_array, super_node_x
control_and_ai/function_approximation_rl/train_function_approximation_rl.py
julianxu/Rockets
275
11166700
""" Author: <NAME> Date: 10/05/2017 Description: Scripts that train the Function Approximation RL networks. """ import _pickle import logging from control_and_ai.helpers import * from control_and_ai.function_approximation_q_learning import * from main_simulation import * verbose = True logger = logging.getLogger(__name__) if verbose: logging.basicConfig(format='%(asctime)s - %(message)s\t', datefmt='%d/%m/%Y %I:%M:%S %p', level=logging.INFO) logging.basicConfig(format='%(asctime)s - %(message)s\t', datefmt='%d/%m/%Y %I:%M:%S %p', level=logging.ERROR) logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) simulation_settings = {'Side Engines': True, 'Clouds': True, 'Vectorized Nozzle': True, 'Graph': False, 'Render': False, 'Starting Y-Pos Constant': 1, 'Initial Force': 'random', 'Rows': 1, 'Columns': 2, #'Initial Coordinates': (0.8,0.5,0), 'Test': False, 'Episodes': 5000} evo_strategy_parameters = { 'population_size': 100, 'action_size': 3, 'noise_standard_deviation': 0.1, 'number_of_generations': 1000, 'learning_rate': 0.00025, 'state_size': 8, 'max_num_actions': 250 } env = [] for i in range(evo_strategy_parameters['population_size']+1): env.append(RocketLander(simulation_settings)) def rocket_rl_function_approximation(env, settings : dict, logger, load_path=None, save_path=None, low_discretization=True): if settings['Test']: print("Testing rocket_rl_function_approximation with load_path = {0}, save_path = {1}".format(load_path, save_path)) else: print("Training rocket_rl_function_approximation with load_path = {0}, save_path = {1}".format(load_path, save_path)) env.reset() s = env.get_state_with_barge_and_landing_coordinates(untransformed_state=False) # remove this line if normal state reinforcedControl = FunctionApproximation(s, load=load_path, low_discretization=low_discretization, epsilon=0.001, alpha=0.001) max_steps = 1000 steps = 0 def train(): episode = 1 done = False for episode in range(settings['Episodes']): s = env.reset() steps = 0 while steps < max_steps: a = reinforcedControl.act() s, r, done, info = env.step(a) s = env.get_state_with_barge_and_landing_coordinates(untransformed_state=False) reinforcedControl.learn(s, r) if episode % 50 == 0 or settings['Render']: env.refresh(render=True) if done: logger.info('Episode:\t{0}\tReward:\t{1}'.format(episode, reinforcedControl.total_reward)) reinforcedControl.reset() break steps += 1 if episode % 50 == 0: if save_path is not None: logger.info('Saving Model at Episode:\t{0}'.format(episode)) _pickle.dump(reinforcedControl.log, open(save_path, "wb")) def test(): episode = 0 while episode < settings['Episodes']: a = reinforcedControl.act() s, r, done, info = env.step(a) if settings['Render']: env.refresh(render=True) logger.info('Episode:\t{0}\tReward:\t{1}'.format(episode, reinforcedControl.total_reward)) if done: env.reset() reinforcedControl.reset() episode += 1 if isinstance(settings.get('Test'), bool): if settings['Test']: test() else: train() else: train() def train_low_discretization_rl(): print("Training LOW Discretization RL-Function Approximator") load_path = None#'rl_linear_function_approximation_low_function_discretization_squared_states_2000_episodes.p' save_path = 'rl_linear_function_approximation_low_function_discretization_trained_at_once.p' rocket_rl_function_approximation(env[0], settings=simulation_settings, logger=logger, load_path=load_path, save_path=save_path, low_discretization=True) def train_high_discretization_rl(): print("Training HIGH Discretization RL-Function Approximator") load_path = 'rl_linear_function_approximation_high_function_discretization_5000_episodes_trained_at_once.p' save_path = 'rl_linear_function_approximation_high_function_discretization_5000_episodes_trained_at_once.p' rocket_rl_function_approximation(env[0], settings=simulation_settings, logger=logger, load_path=load_path, save_path=save_path, low_discretization=False) #train_low_discretization_rl() train_high_discretization_rl()
bagel-data/config/tfclassif.py
AnneBeyer/tgen
222
11166714
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import unicode_literals config = {'language': 'en', 'selector': '', 'use_tokens': True, #'nn': '1-hot', 'nn': 'emb', #'nn_shape': 'ff1', 'nn_shape': 'rnn', 'num_hidden_units': 128, 'passes': 100, 'min_passes': 20, 'randomize': True, 'batch_size': 20, 'alpha': 1e-3, 'emb_size': 50, 'max_tree_len': 50, 'validation_freq': 1, }
train/datamodules/touch_detect.py
Pandinosaurus/PyTouch
149
11166722
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import logging import numpy as np from pytorch_lightning import LightningDataModule from torch.utils.data import DataLoader, Subset from pytouch.datasets import DigitFolder from pytouch.tasks import TouchDetect _log = logging.getLogger(__name__) class TouchDetectDataModule(LightningDataModule): def __init__( self, cfg, *args, **kwargs, ): super().__init__() self.cfg = cfg self.transform = TouchDetect.transform def setup(self, stage=None): train_dataset = DigitFolder( root=self.cfg.data.path, exclude=self.cfg.data.exclude, baseline=None, transform=self.transform(self.cfg.data.transform, train=True), ) val_dataset = DigitFolder( root=self.cfg.data.path, exclude=self.cfg.data.exclude, baseline=None, transform=self.transform(self.cfg.data.transform, train=False), ) self.dataset_len = len(train_dataset) dataset_idx = list(range(self.dataset_len)) np.random.shuffle(dataset_idx) split_train_val = int( np.floor(self.cfg.training.train_val_ratio * self.dataset_len) ) self.train_idx, self.val_idx = ( dataset_idx[:split_train_val], dataset_idx[split_train_val:], ) _log.info( f"Total dataset size: {self.dataset_len}, train {len(self.train_idx)}, val {len(self.val_idx)}" + f" using sensors {set(train_dataset.serials)}" ) self.train_dataset = Subset(train_dataset, self.train_idx) self.val_dataset = Subset(val_dataset, self.val_idx) def train_dataloader(self): return DataLoader( self.train_dataset, batch_size=self.cfg.training.batch_size, num_workers=self.cfg.training.n_threads, pin_memory=self.cfg.training.pin_memory, shuffle=True, ) def val_dataloader(self): return DataLoader( self.val_dataset, batch_size=self.cfg.training.batch_size, num_workers=self.cfg.training.n_threads, pin_memory=self.cfg.training.pin_memory, shuffle=False, )
Chapter18/hw/libhw/servo.py
haohaoxiao/Deep-Reinforcement-Learning-Hands-On-Second-Edition
621
11166741
import pyb class ServoBrain: FREQ = 50 # 20ms -- standard pulse interval for servos MIN_PERCENT = 2.3 MAX_PERCENT = 12.7 MIN_POS = 0 MAX_POS = 1 def __init__(self): """ Construct servo brain """ self._timer_channels = None self._inversions = None self._channels = None self._positions = None self._timers = None def init(self, timer_channels, inversions=None): """ :param timer_channels: list of tuples (pin_name, (timer, channel)) :param inversions: list of bools specifying servos to be inverted, if None, no inversions """ self._timer_channels = timer_channels self._inversions = inversions if inversions is not None else [False for _ in timer_channels] self._timers = {} self._channels = [] self._positions = [] for pin_name, (t_idx, ch_idx) in timer_channels: if t_idx not in self._timers: self._timers[t_idx] = pyb.Timer(t_idx, freq=self.FREQ) pin = pyb.Pin(pin_name, pyb.Pin.OUT) self._channels.append(self._timers[t_idx].channel(ch_idx, pyb.Timer.PWM, pin=pin)) self._positions.append(0.0) self._apply_positions(self._positions) def deinit(self): if self._timers is None: return for t in self._timers.values(): t.deinit() self._timer_channels = None self._channels = None self._positions = None self._timers = None @property def positions(self): return self._positions @positions.setter def positions(self, value): self._positions = value self._apply_positions(self._positions) @classmethod def position_to_percent(cls, pos): return (pos-cls.MIN_POS)*(cls.MAX_PERCENT - cls.MIN_PERCENT)/(cls.MAX_POS - cls.MIN_POS) + cls.MIN_PERCENT def _apply_positions(self, values): for p, ch, inv in zip(values, self._channels, self._inversions): if inv: p = self.MAX_POS - p ch.pulse_width_percent(self.position_to_percent(p)) _PINS_TO_TIMER = { "B6": (4, 1), "B7": (4, 2), "B8": (4, 3), "B9": (4, 4), "B10": (2, 3), "B11": (2, 4), } def pins_to_timer_channels(pins): """ Convert list of pins to list of tuples (timer, channel). This function is hardware-specific :param pins: list of pin names :return: list of (pin_name, (timer, channel)) tuples """ res = [] for p in pins: pair = _PINS_TO_TIMER.get(p) assert pair is not None res.append((p, pair)) return res class ServoBrainOld: """ Shouldn't be used, kept only for demonstration purposes """ MIN_POS = -10 MAX_POS = 10 NEUT_POS = 0 _MIN_TIME_US = 500 _MAX_TIME_US = 2500 _NEUTRAL_TIME_US = 1500 _INTERVAL_US = 10000 _BASE_FREQ = 1000000 def __init__(self, servo_pins, base_timer_index=1): if isinstance(servo_pins, str): servo_pins = (servo_pins, ) self.servo_pins = servo_pins self.base_timer_index = base_timer_index self._base_timer = pyb.Timer(base_timer_index) self._pins = [] self._pin_timers = [] self._positions = [] self._frequencies = [] self._pin_callbacks = [] @property def positions(self): return self._positions @positions.setter def positions(self, new_pos): self._positions = new_pos self._frequencies = [self.pos_to_freq(p) for p in new_pos] @classmethod def pos_to_freq(cls, pos): if pos < cls.MIN_POS: pos = cls.MIN_POS elif pos > cls.MAX_POS: pos = cls.MAX_POS return cls._BASE_FREQ // (cls._MIN_TIME_US + (pos + 10) * 100) def init(self): self.positions = [self.NEUT_POS for _ in self.servo_pins] for idx, pin in enumerate(self.servo_pins): self._pin_timers.append(pyb.Timer(idx + self.base_timer_index + 1)) p = pyb.Pin(pin, pyb.Pin.OUT) p.init(pyb.Pin.OUT, pyb.Pin.PULL_UP) p.low() self._pins.append(p) self._pin_callbacks.append(self._get_pin_callback(idx)) self._base_timer.init(freq=self._BASE_FREQ//self._INTERVAL_US) self._base_timer.callback(lambda t: self._base_callback()) def deinit(self): self._base_timer.deinit() self._pins.clear() for t in self._pin_timers: t.deinit() self._pin_timers.clear() self._positions.clear() self._pin_callbacks.clear() def _get_pin_callback(self, idx): def func(t): if not self._pins[idx].value(): self._pins[idx].high() else: self._pins[idx].low() t.deinit() return func def _base_callback(self): for idx in range(len(self.servo_pins)): self._pin_timers[idx].callback(self._pin_callbacks[idx]) self._pin_timers[idx].init(freq=self._frequencies[idx])
deprecated/benchmark/ps/ctr/infer_args.py
hutuxian/FleetX
170
11166748
<reponame>hutuxian/FleetX import argparse import logging def parse_args(): parser = argparse.ArgumentParser(description="PaddlePaddle DeepFM example") parser.add_argument( '--model_path', type=str, required=True, help="The path of model parameters gz file") parser.add_argument( '--data_path', type=str, required=True, help="The path of the dataset to infer") parser.add_argument( '--embedding_size', type=int, default=10, help="The size for embedding layer (default:10)") parser.add_argument( '--sparse_feature_dim', type=int, default=1000001, help="The size for embedding layer (default:1000001)") parser.add_argument( '--batch_size', type=int, default=1000, help="The size of mini-batch (default:1000)") return parser.parse_args()
kaldi/patch/steps/nnet3/train_cvector_dnn.py
ishine/asv-subtools
370
11166750
#!/usr/bin/env python # Copyright 2016 <NAME>. # 2016 <NAME> # 2017 Johns Hopkins University (author: <NAME>) # 2018 <NAME> # Apache 2.0. """ This script is based on steps/nnet3/tdnn/train.sh """ from __future__ import print_function import argparse import logging import os import pprint import shutil import sys import traceback sys.path.insert(0, 'steps') import libs.nnet3.train.common as common_train_lib import libs.common as common_lib import libs.nnet3.train.frame_level_objf as train_lib import libs.nnet3.report.log_parse as nnet3_log_parse logger = logging.getLogger('libs') logger.setLevel(logging.INFO) handler = logging.StreamHandler() handler.setLevel(logging.INFO) formatter = logging.Formatter("%(asctime)s [%(pathname)s:%(lineno)s - " "%(funcName)s - %(levelname)s ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.info('Starting DNN trainer (train_dnn.py)') def get_args(): """ Get args from stdin. We add compulsory arguments as named arguments for readability The common options are defined in the object libs.nnet3.train.common.CommonParser.parser. See steps/libs/nnet3/train/common.py """ parser = argparse.ArgumentParser( description="""Trains a feed forward DNN acoustic model using the cross-entropy objective. DNNs include simple DNNs, TDNNs and CNNs.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter, conflict_handler='resolve', parents=[common_train_lib.CommonParser(include_chunk_context=False).parser]) # Parameters for the optimization parser.add_argument("--trainer.optimization.minibatch-size", type=str, dest='minibatch_size', default='512', help="""Size of the minibatch used in SGD training (argument to nnet3-merge-egs); may be a more general rule as accepted by the --minibatch-size option of nnet3-merge-egs; run that program without args to see the format.""") parser.add_argument("--trainer.num-jobs-compute-prior", type=int, dest='num_jobs_compute_prior', default=10, help="The prior computation jobs are single " "threaded and run on the CPU") # General options parser.add_argument("--am-output-name", type=str, required=True, help="The name of am output-node") parser.add_argument("--xvec-output-name", type=str, required=True, help="The name of xvec output-node") parser.add_argument("--am-weight", type=float, default=1.0, help="The am weight") parser.add_argument("--xvec-weight", type=float, default=1.0, help="The xvec weight") parser.add_argument("--am-egs-dir", type=str, required=True, help="Directory with am egs for training") parser.add_argument("--xvec-egs-dir", type=str, required=True, help="Directory with xvector egs for training") parser.add_argument("--dir", type=str, required=True, help="Directory to store the models and " "all other files.") print(' '.join(sys.argv), file=sys.stderr) print(sys.argv, file=sys.stderr) args = parser.parse_args() [args, run_opts] = process_args(args) return [args, run_opts] def process_args(args): """ Process the options got from get_args() """ if (not os.path.exists(args.dir) or not os.path.exists(args.dir+"/configs")): raise Exception("This scripts expects {0} to exist and have a configs " "directory which is the output of " "make_configs.py script") # set the options corresponding to args.use_gpu run_opts = common_train_lib.RunOpts() if args.use_gpu: if not common_lib.check_if_cuda_compiled(): logger.warning( """You are running with one thread but you have not compiled for CUDA. You may be running a setup optimized for GPUs. If you have GPUs and have nvcc installed, go to src/ and do ./configure; make""") run_opts.train_queue_opt = "--gpu 1" run_opts.parallel_train_opts = "" run_opts.combine_queue_opt = "--gpu 1" run_opts.prior_gpu_opt = "--use-gpu=yes" run_opts.prior_queue_opt = "--gpu 1" else: logger.warning("Without using a GPU this will be very slow. " "nnet3 does not yet support multiple threads.") run_opts.train_queue_opt = "" run_opts.parallel_train_opts = "--use-gpu=no" run_opts.combine_queue_opt = "" run_opts.prior_gpu_opt = "--use-gpu=no" run_opts.prior_queue_opt = "" run_opts.command = args.command run_opts.egs_command = (args.egs_command if args.egs_command is not None else args.command) run_opts.num_jobs_compute_prior = args.num_jobs_compute_prior return [args, run_opts] def train(args, run_opts): """ The main function for training. Args: args: a Namespace object with the required parameters obtained from the function process_args() run_opts: RunOpts object obtained from the process_args() """ arg_string = pprint.pformat(vars(args)) logger.info("Arguments for the experiment\n{0}".format(arg_string)) # Set some variables. config_dir = '{0}/configs'.format(args.dir) am_var_file = '{0}/vars_am'.format(config_dir) xvec_var_file = '{0}/vars_xvec'.format(config_dir) am_variables = common_train_lib.parse_generic_config_vars_file(am_var_file) xvec_variables = common_train_lib.parse_generic_config_vars_file(xvec_var_file) # Set some variables. try: am_model_left_context = am_variables['model_left_context'] am_model_right_context = am_variables['model_right_context'] xvec_model_left_context = xvec_variables['model_left_context'] xvec_model_right_context = xvec_variables['model_right_context'] except KeyError as e: raise Exception("KeyError {0}: Variables need to be defined in " "{1}".format(str(e), '{0}/configs'.format(args.dir))) am_left_context = am_model_left_context am_right_context = am_model_right_context xvec_left_context = xvec_model_left_context xvec_right_context = xvec_model_right_context # Initialize as "raw" nnet, prior to training the LDA-like preconditioning # matrix. This first config just does any initial splicing that we do; # we do this as it's a convenient way to get the stats for the 'lda-like' # transform. if (args.stage <= -5) and os.path.exists(args.dir+"/configs/init.config"): logger.info("Initializing a basic network for estimating " "preconditioning matrix") common_lib.execute_command( """{command} {dir}/log/nnet_init.log \ nnet3-init --srand=-2 {dir}/configs/init.config \ {dir}/init.raw""".format(command=run_opts.command, dir=args.dir)) am_egs_dir = args.am_egs_dir xvec_egs_dir = args.xvec_egs_dir am_output_name = args.am_output_name xvec_output_name = args.xvec_output_name am_weight = args.am_weight xvec_weight = args.xvec_weight feat_dim = int(common_lib.get_command_stdout("cat {0}/info/feat_dim".format(am_egs_dir))) num_archives = int(common_lib.get_command_stdout("cat {0}/info/num_archives".format(am_egs_dir))) tmp_feat_dim = int(common_lib.get_command_stdout("cat {0}/info/feat_dim".format(xvec_egs_dir))) tmp_num_archives = int(common_lib.get_command_stdout("cat {0}/info/num_archives".format(xvec_egs_dir))) # frames_per_eg is no longer a parameter but load from am_egs/info/frames_per_eg am_frames_per_eg = int(common_lib.get_command_stdout("cat {0}/info/frames_per_eg".format(am_egs_dir))) if feat_dim != tmp_feat_dim or num_archives*am_frames_per_eg != tmp_num_archives: raise Exception('The am egs and xvec egs do not match') if args.num_jobs_final > num_archives: raise Exception('num_jobs_final cannot exceed the number of archives ' 'in the egs directory') # # No need to copy files for decoding # common_train_lib.copy_egs_properties_to_exp_dir(am_egs_dir, args.dir) if args.stage <= -3 and os.path.exists(args.dir+"/configs/init.config"): logger.info('Computing the preconditioning matrix for input features') train_lib.common.compute_preconditioning_matrix( args.dir, egs_dir, num_archives, run_opts, max_lda_jobs=args.max_lda_jobs, rand_prune=args.rand_prune) if args.stage <= -1: logger.info("Preparing the initial network.") common_train_lib.prepare_initial_network(args.dir, run_opts) # set num_iters so that as close as possible, we process the data # $num_epochs times, i.e. $num_iters*$avg_num_jobs) == # $num_epochs*$num_archives, where # avg_num_jobs=(num_jobs_initial+num_jobs_final)/2. num_archives_expanded = num_archives * am_frames_per_eg num_archives_to_process = int(args.num_epochs * num_archives_expanded) num_archives_processed = 0 num_iters = ((num_archives_to_process * 2) / (args.num_jobs_initial + args.num_jobs_final)) # If do_final_combination is True, compute the set of models_to_combine. # Otherwise, models_to_combine will be none. if args.do_final_combination: models_to_combine = common_train_lib.get_model_combine_iters( num_iters, args.num_epochs, num_archives_expanded, args.max_models_combine, args.num_jobs_final) else: models_to_combine = None logger.info("Training will run for {0} epochs = " "{1} iterations".format(args.num_epochs, num_iters)) for iter in range(num_iters): if (args.exit_stage is not None) and (iter == args.exit_stage): logger.info("Exiting early due to --exit-stage {0}".format(iter)) return current_num_jobs = int(0.5 + args.num_jobs_initial + (args.num_jobs_final - args.num_jobs_initial) * float(iter) / num_iters) if args.stage <= iter: lrate = common_train_lib.get_learning_rate(iter, current_num_jobs, num_iters, num_archives_processed, num_archives_to_process, args.initial_effective_lrate, args.final_effective_lrate) shrinkage_value = 1.0 - (args.proportional_shrink * lrate) if shrinkage_value <= 0.5: raise Exception("proportional-shrink={0} is too large, it gives " "shrink-value={1}".format(args.proportional_shrink, shrinkage_value)) percent = num_archives_processed * 100.0 / num_archives_to_process epoch = (num_archives_processed * args.num_epochs / num_archives_to_process) shrink_info_str = '' if shrinkage_value != 1.0: shrink_info_str = 'shrink: {0:0.5f}'.format(shrinkage_value) logger.info("Iter: {0}/{1} " "Epoch: {2:0.2f}/{3:0.1f} ({4:0.1f}% complete) " "lr: {5:0.6f} {6}".format(iter, num_iters - 1, epoch, args.num_epochs, percent, lrate, shrink_info_str)) train_lib.common.train_cvector_one_iteration( dir=args.dir, iter=iter, srand=args.srand, am_output_name=am_output_name, am_weight=am_weight, am_egs_dir=am_egs_dir, xvec_output_name=xvec_output_name, xvec_weight=xvec_weight, xvec_egs_dir=xvec_egs_dir, num_jobs=current_num_jobs, num_archives_processed=num_archives_processed, num_archives=num_archives, learning_rate=lrate, minibatch_size_str=args.minibatch_size, momentum=args.momentum, max_param_change=args.max_param_change, shuffle_buffer_size=args.shuffle_buffer_size, run_opts=run_opts, am_frames_per_eg=am_frames_per_eg, dropout_edit_string=common_train_lib.get_dropout_edit_string( args.dropout_schedule, float(num_archives_processed) / num_archives_to_process, iter), shrinkage_value=shrinkage_value, get_raw_nnet_from_am=False, backstitch_training_scale=args.backstitch_training_scale, backstitch_training_interval=args.backstitch_training_interval) if args.cleanup: # do a clean up everythin but the last 2 models, under certain # conditions common_train_lib.remove_model( args.dir, iter-2, num_iters, models_to_combine, args.preserve_model_interval, get_raw_nnet_from_am=False) if args.email is not None: reporting_iter_interval = num_iters * args.reporting_interval if iter % reporting_iter_interval == 0: # lets do some reporting [report, times, data] = ( nnet3_log_parse.generate_acc_logprob_report(args.dir)) message = report subject = ("Update : Expt {dir} : " "Iter {iter}".format(dir=args.dir, iter=iter)) common_lib.send_mail(message, subject, args.email) num_archives_processed = num_archives_processed + current_num_jobs # when we do final combination, just use the xvector egs if args.stage <= num_iters: if args.do_final_combination: logger.info("Doing final combination to produce final.mdl") train_lib.common.combine_models( dir=args.dir, num_iters=num_iters, models_to_combine=models_to_combine, egs_dir=xvec_egs_dir, minibatch_size_str="64", run_opts=run_opts, get_raw_nnet_from_am=False, max_objective_evaluations=args.max_objective_evaluations, use_multitask_egs=True) # sum_to_one_penalty=args.combine_sum_to_one_penalty, else: common_lib.force_symlink("{0}.raw".format(num_iters), "{0}/final.raw".format(args.dir)) if args.cleanup: logger.info("Cleaning up the experiment directory " "{0}".format(args.dir)) remove_egs = False common_train_lib.clean_nnet_dir( nnet_dir=args.dir, num_iters=num_iters, egs_dir=am_egs_dir, preserve_model_interval=args.preserve_model_interval, remove_egs=remove_egs, get_raw_nnet_from_am=False) # TODO: we may trace other output nodes expect for "output" # do some reporting outputs_list = common_train_lib.get_outputs_list("{0}/final.raw".format( args.dir), get_raw_nnet_from_am=False) if 'output' in outputs_list: [report, times, data] = nnet3_log_parse.generate_acc_logprob_report(args.dir) if args.email is not None: common_lib.send_mail(report, "Update : Expt {0} : " "complete".format(args.dir), args.email) with open("{dir}/accuracy.{output_name}.report".format(dir=args.dir, output_name="output"), "w") as f: f.write(report) common_lib.execute_command("steps/info/nnet3_dir_info.pl " "{0}".format(args.dir)) def main(): [args, run_opts] = get_args() try: train(args, run_opts) common_lib.wait_for_background_commands() except BaseException as e: # look for BaseException so we catch KeyboardInterrupt, which is # what we get when a background thread dies. if args.email is not None: message = ("Training session for experiment {dir} " "died due to an error.".format(dir=args.dir)) common_lib.send_mail(message, message, args.email) if not isinstance(e, KeyboardInterrupt): traceback.print_exc() sys.exit(1) if __name__ == "__main__": main()
scripts/ltr_msmarco-passage/convert_common.py
keleog/pyserini
451
11166755
<reponame>keleog/pyserini<filename>scripts/ltr_msmarco-passage/convert_common.py # # Pyserini: Reproducible IR research with sparse and dense representations # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import re import spacy """ This file provides helpers to convert passage and queries """ def read_stopwords(fileName='stopwords.txt', lower_case=True): """Reads a list of stopwords from a file. By default the words are read from a standard repo location and are lower_cased. :param fileName a stopword file name :param lower_case a boolean flag indicating if lowercasing is needed. :return a list of stopwords """ stopwords = set() with open(fileName) as f: for w in f: w = w.strip() if w: if lower_case: w = w.lower() stopwords.add(w) return stopwords def is_alpha_num(s): return s and (re.match("^[a-zA-Z-_.0-9]+$", s) is not None) class SpacyTextParser: def __init__(self, model_name, stopwords, remove_punct=True, sent_split=False, keep_only_alpha_num=False, lower_case=True, enable_POS=True): """Constructor. :param model_name a name of the spacy model to use, e.g., en_core_web_sm :param stopwords a list of stop words to be excluded (case insensitive); a token is also excluded when its lemma is in the stop word list. :param remove_punct a bool flag indicating if the punctuation tokens need to be removed :param sent_split a bool flag indicating if sentence splitting is necessary :param keep_only_alpha_num a bool flag indicating if we need to keep only alpha-numeric characters :param enable_POS a bool flag that enables POS tagging (which, e.g., can improve lemmatization) """ disable_list = ['ner', 'parser'] if not enable_POS: disable_list.append('tagger') print('Disabled Spacy components: ', disable_list) self._nlp = spacy.load(model_name, disable=disable_list) if sent_split: sentencizer = self._nlp.create_pipe("sentencizer") self._nlp.add_pipe(sentencizer) self._remove_punct = remove_punct self._stopwords = frozenset([w.lower() for w in stopwords]) self._keep_only_alpha_num = keep_only_alpha_num self._lower_case = lower_case @staticmethod def _basic_clean(text): return text.replace("’", "'") def __call__(self, text): """A thin wrapper that merely calls spacy. :param text input text string :return a spacy Doc object """ return self._nlp(SpacyTextParser._basic_clean(text)) def proc_text(self, text): """Process text, remove stopwords and obtain lemmas, but does not split into sentences. This function should not emit newlines! :param text input text string :return a tuple (lemmatized text, original-form text). Text is white-space separated. """ lemmas = [] tokens = [] doc = self(text) for tokObj in doc: if self._remove_punct and tokObj.is_punct: continue lemma = tokObj.lemma_ text = tokObj.text if self._keep_only_alpha_num and not is_alpha_num(text): continue tok1 = text.lower() tok2 = lemma.lower() if tok1 in self._stopwords or tok2 in self._stopwords: continue if self._lower_case: text = text.lower() lemma = lemma.lower() lemmas.append(lemma) tokens.append(text) return ' '.join(lemmas), ' '.join(tokens) def get_retokenized(tokenizer, text): """Obtain a space separated re-tokenized text. :param tokenizer: a tokenizer that has the function tokenize that returns an array of tokens. :param text: a text to re-tokenize. """ return ' '.join(tokenizer.tokenize(text)) def add_retokenized_field(data_entry, src_field, dst_field, tokenizer): """ Create a re-tokenized field from an existing one. :param data_entry: a dictionary of entries (keys are field names, values are text items) :param src_field: a source field :param dst_field: a target field :param tokenizer: a tokenizer to use, if None, nothing is done """ if tokenizer is not None: dst = '' if src_field in data_entry: dst = get_retokenized(tokenizer, data_entry[src_field]) data_entry[dst_field] = dst
py_zipkin/exception.py
arthurlogilab/py_zipkin
225
11166756
<reponame>arthurlogilab/py_zipkin # -*- coding: utf-8 -*- class ZipkinError(Exception): """Custom error to be raised on Zipkin exceptions."""
Testing/dataloader.py
dani3l125/TDNet
195
11166765
import os import torch import numpy as np import imageio import cv2 import pdb def recursive_glob(rootdir=".", suffix=""): return [ os.path.join(looproot, filename) for looproot, _, filenames in os.walk(rootdir) for filename in filenames if filename.endswith(suffix)] class cityscapesLoader(): colors = [ # [ 0, 0, 0], [128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153], [153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152], [0, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32], ] label_colours = dict(zip(range(19), colors)) def __init__(self,img_path,in_size): self.img_path = img_path self.n_classes = 19 self.files = recursive_glob(rootdir=self.img_path, suffix=".png") self.files.sort() self.files_num = len(self.files) self.data = [] self.size = (in_size[1],in_size[0]) self.mean = np.array([.485, .456, .406]) self.std = np.array([.229, .224, .225]) def load_frames(self): for idx in range(self.files_num): img_path = self.files[idx].rstrip() img_name = img_path.split('/')[-1] folder = img_path.split('/')[-2] #img = cv2.imread(img_path).astype(np.float32) img = imageio.imread(img_path) ori_size = img.shape[:-1] img = cv2.resize(img,self.size)/255.0 img = (img-self.mean)/self.std img = img.transpose(2, 0, 1) img = img[np.newaxis,:] img = torch.from_numpy(img).float() self.data.append([img,img_name,folder,self.size]) def decode_segmap(self, temp): r = temp.copy() g = temp.copy() b = temp.copy() for l in range(0, self.n_classes): r[temp == l] = self.label_colours[l][0] g[temp == l] = self.label_colours[l][1] b[temp == l] = self.label_colours[l][2] rgb = np.zeros((temp.shape[0], temp.shape[1], 3)) rgb[:, :, 0] = r #/ 255.0 rgb[:, :, 1] = g #/ 255.0 rgb[:, :, 2] = b #/ 255.0 return rgb
src/pretalx/common/management/commands/makemessages.py
lili668668/pretalx
418
11166775
<reponame>lili668668/pretalx """This command supersedes the Django-inbuilt makemessages command. We do this to allow the easy management of translations by way of plugins. The way GNU gettext handles path precedence, it will always create new translation files for given languages in the pretalx root locales directory instead of updating the already existing plugin locale directory. This management command copies all plugin-provided languages to the core locales directory, then moves them back once the translations have been generated and cleans up empty directories. Yes, it's hacky, but have you tried managing symlinks instead? """ import shutil from importlib import import_module from pathlib import Path from django.conf import settings from django.core.management.commands.makemessages import Command as Parent from pretalx.common.signals import register_locales class Command(Parent): def handle(self, *args, **options): locales = {} for receiver, response in register_locales.send(sender=None): module = import_module(receiver.__module__.split(".")[0]) path = Path(module.__path__[0]) for locale in response: if "-" in locale: locale_parts = locale.split("-") locale = ( locale_parts[0] + "_" + "_".join(part.capitalize() for part in locale_parts[1:]) ) locales[locale] = path if not locales: super().handle(*args, **options) locale_path = Path(settings.LOCALE_PATHS[0]) moves = [] for locale, path in locales.items(): translation_path = path / "locale" / locale translation_file = translation_path / "LC_MESSAGES/django.po" new_dir = locale_path / locale moves.append((translation_path, new_dir)) if not translation_file.exists(): print(f"{translation_file} does not exist, regenerating.") continue if new_dir.exists(): shutil.rmtree(new_dir) translation_path.replace(new_dir) super().handle(*args, **options) for move in moves: move[1].replace(move[0])
fastseq/optimizer/fairseq/generate.py
nttcs-ds/fastseq
346
11166790
<filename>fastseq/optimizer/fairseq/generate.py # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. """Optimize fairseq-generate (v0.10.2)""" import ast import logging import math import os import sys from itertools import chain from multiprocessing import Queue, JoinableQueue from torch.multiprocessing import Process import numpy as np import torch from fairseq_cli.generate import main from fairseq.utils import apply_to_sample from fairseq import scoring, checkpoint_utils, tasks, utils from fairseq.logging import progress_bar from fairseq.logging.meters import StopwatchMeter, TimeMeter from fastseq.utils.api_decorator import replace from fairseq.options import add_generation_args GENERATE_FINISHED = "done" POSTPROCESS_FINISHED = None original_add_generation_args = add_generation_args @replace(add_generation_args) def add_generation_args_v2(parser): group = original_add_generation_args(parser) # fmt: off group.add_argument( '--postprocess-workers', default=1, type=int, choices=range(1, 128, 1), metavar='N', help='number of worker for post process') group.add_argument( '--decode-hypothesis', action="store_true", default=True) group.add_argument( '--use-el-attn', action='store_true', help='Use Efficient Lossless Attention optimization ? ') # fmt: on def move_to_cpu(sample): def _move_to_cpu(tensor): # PyTorch has poor support for half tensors (float16) on CPU. # Move any such tensors to float32. if tensor.dtype in {torch.bfloat16, torch.float16}: return tensor.cpu().to(dtype=torch.float32) else: return tensor.cpu() return apply_to_sample(_move_to_cpu, sample) def convert_base_e_to_base_2(t): return t / math.log(2) class IOProcess(Process): """ Single process to handle IO and compute metrics """ def __init__(self, args, task, message_queue, output_file): """ Process to handle IO and compute metrics Args: args (Namespace): paramerter for model and generation task (fairseq.tasks.fairseq_task.Fairseq): use to load dict for detokenize message_queue (multiprocessing.Queue): queue store output """ super(IOProcess, self).__init__() self.tgt_dict = task.target_dictionary # Generate and compute BLEU score self.scorer = scoring.build_scorer(args, self.tgt_dict) self.args = args self.message_queue = message_queue self.has_target = False self.output_file = output_file def run(self): while True: msg = self.message_queue.get() if isinstance(msg, tuple): t, h = msg if hasattr(self.scorer, 'add_string'): self.scorer.add_string(t, h) else: self.scorer.add(t, h) self.has_target = True elif msg == GENERATE_FINISHED: if self.has_target: if self.args.bpe and not self.args.sacrebleu: if self.args.remove_bpe: print("BLEU score is being computed by splitting detokenized string on spaces, this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization") else: print("If you are using BPE on the target side, the BLEU score is computed on BPE tokens, not on proper words. Use --sacrebleu for standard 13a BLEU tokenization") print("Generate {} with beam={}: {}".format( self.args.gen_subset, self.args.beam, self.scorer.result_string()), file=self.output_file,) break else: print(msg, file = self.output_file) self.message_queue.task_done() self.message_queue.close() self.message_queue.join_thread() class PostProcess(Process): """ Use multiple processes to do detokenization """ def __init__(self, args, task, data_queue, message_queue, generator): """ Handle detokenize and belu score computation Args: args (Namespace): paramerter for model and generation task (fairseq.tasks.fairseq_task.Fairseq): use to load dict for detokenize data_queue (multiprocessing.Queue): queue store tensor data for detokenize message_queue (multiprocessing.Queue): queue store output """ super(PostProcess, self).__init__() # Set dictionaries try: self.src_dict = getattr(task, 'source_dictionary', None) except NotImplementedError: self.src_dict = None self.tgt_dict = task.target_dictionary # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) self.align_dict = utils.load_align_dict(args.replace_unk) # Generate and compute BLEU score self.scorer = scoring.build_scorer(args, self.tgt_dict) self.args = args self.task = task self.data_queue = data_queue self.message_queue = message_queue self.generator = generator if args.decode_hypothesis: self.tokenizer = task.build_tokenizer(args) self.bpe = task.build_bpe(args) def _decode(self, x): if self.bpe is not None: x = self.bpe.decode(x) if self.tokenizer is not None: x = self.tokenizer.decode(x) return x def _get_symbols_to_strip_from_output(self, generator): if hasattr(generator, "symbols_to_strip_from_output"): return generator.symbols_to_strip_from_output else: return {generator.eos} def _detokenize(self, sample, hypos): """ Detokenize and compute BELU """ message_list = [] for i, sample_id in enumerate(sample['id'].tolist()): has_target = sample['target'] is not None # Remove padding if "src_tokens" in sample["net_input"]: src_tokens = utils.strip_pad( sample["net_input"]["src_tokens"][i, :], self.tgt_dict.pad() ) else: src_tokens = None target_tokens = None if has_target: target_tokens = ( utils.strip_pad(sample["target"][i, :], self.tgt_dict.pad()).int().cpu() ) # Either retrieve the original sentences or regenerate them from tokens if self.align_dict is not None: src_str = self.task.dataset( self.args.gen_subset).src.get_original_text(sample_id) target_str = self.task.dataset( self.args.gen_subset).tgt.get_original_text(sample_id) else: if self.src_dict is not None: src_str = self.src_dict.string(src_tokens, self.args.remove_bpe) else: src_str = "" if has_target: target_str = self.tgt_dict.string( target_tokens, self.args.remove_bpe, escape_unk = True, extra_symbols_to_ignore = self._get_symbols_to_strip_from_output(self.generator), ) if not self.args.quiet: if self.src_dict is not None: if self.args.decode_hypothesis: message_list.append('S-{}\t{}'.format( sample_id, self._decode(src_str))) else: message_list.append('S-{}\t{}'.format( sample_id, src_str)) if has_target: if self.args.decode_hypothesis: message_list.append('T-{}\t{}'.format( sample_id, self._decode(target_str))) else: message_list.append('T-{}\t{}'.format( sample_id, target_str)) # Process top predictions for j, hypo in enumerate(hypos[i][:self.args.nbest]): hypo_tokens, hypo_str, alignment = utils.post_process_prediction( hypo_tokens = hypo['tokens'].int(), src_str = src_str, alignment = hypo['alignment'], align_dict = self.align_dict, tgt_dict = self.tgt_dict, remove_bpe = self.args.remove_bpe, extra_symbols_to_ignore = self._get_symbols_to_strip_from_output(self.generator), ) if not self.args.quiet: score = convert_base_e_to_base_2(hypo["score"]) message_list.append('H-{}\t{}\t{}'.format( sample_id, score, hypo_str)) if self.args.decode_hypothesis: detok_hypo_str = self._decode(hypo_str) message_list.append('D-{}\t{}\t{}'.format( sample_id, score, detok_hypo_str)) message_list.append('P-{}\t{}'.format( sample_id, ' '.join( map( lambda x: '{:.4f}'.format(x), convert_base_e_to_base_2(hypo['positional_scores']).tolist(), )))) if self.args.print_alignment: message_list.append('A-{}\t{}'.format( sample_id, ' '.join([ '{}-{}'.format(src_idx, tgt_idx) for src_idx, tgt_idx in alignment ]))) if self.args.print_step: message_list.append('I-{}\t{}'.format( sample_id, hypo['steps'])) if getattr(self.args, 'retain_iter_history', False): for step, h in enumerate(hypo['history']): _, h_str, _ = utils.post_process_prediction( hypo_tokens = h['tokens'].int(), src_str = self.src_str, alignment = None, align_dict = None, tgt_dict = self.tgt_dict, remove_bpe = None, ) message_list.append('E-{}_{}\t{}'.format(sample_id, step, h_str)) # Score only the top hypothesis if has_target and j == 0: if (self.align_dict is not None or self.args.remove_bpe is not None): # Convert back to tokens for evaluation with unk # replacement and/or without BPE target_tokens = self.tgt_dict.encode_line( target_str, add_if_not_exist = True) hypo_tokens = self.tgt_dict.encode_line( detok_hypo_str, add_if_not_exist = True) if hasattr(self.scorer, "add_string"): self.message_queue.put((target_str, detok_hypo_str)) else: self.message_queue.put((target_tokens, hypo_tokens)) self.message_queue.put('\n'.join(message_list)) def run(self): while True: r = self.data_queue.get() if r == GENERATE_FINISHED or r is POSTPROCESS_FINISHED: self.data_queue.put(POSTPROCESS_FINISHED) break else: sample, hypos = r self._detokenize(sample, hypos) self.data_queue.close() self.data_queue.join_thread() self.message_queue.close() self.message_queue.join_thread() self.message_queue.join() def _main(args, output_file): for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, stream=output_file, ) logger = logging.getLogger("fastseq.optimizer.fairseq.generate") utils.import_user_module(args) if args.max_tokens is None and args.batch_size is None: args.max_tokens = 12000 logger.info(args) # Fix seed for stochastic decoding if args.seed is not None and not args.no_seed_provided: np.random.seed(args.seed) utils.set_torch_seed(args.seed) use_cuda = torch.cuda.is_available() and not args.cpu # Load dataset splits task = tasks.setup_task(args) task.load_dataset(args.gen_subset) overrides = ast.literal_eval(args.model_overrides) # Load ensemble logger.info("loading model(s) from {}".format(args.path)) models, _ = checkpoint_utils.load_model_ensemble( utils.split_paths(args.path), arg_overrides = overrides, task = task, suffix = getattr(args, "checkpoint_suffix", ""), strict = (args.checkpoint_shard_count == 1), num_shards = args.checkpoint_shard_count, ) if args.lm_path is not None: overrides["data"] = args.data try: lms, _ = checkpoint_utils.load_model_ensemble( [args.lm_path], arg_overrides=overrides, task=None, ) except: logger.warning("Failed to load language model! Please make sure that the language model dict is the same as target dict and is located in the data dir ({})".format(args.data)) raise assert len(lms) == 1 else: lms = [None] # Optimize ensemble for generation for model in chain(models, lms): if model is None: continue if args.fp16: model.half() if use_cuda and not args.pipeline_model_parallel: model.cuda() model.prepare_for_inference_(args) # Load dataset (possibly sharded) itr = task.get_batch_iterator( dataset = task.dataset(args.gen_subset), max_tokens = args.max_tokens, max_sentences = args.batch_size, max_positions = utils.resolve_max_positions( task.max_positions(), *[model.max_positions() for model in models]), ignore_invalid_inputs = args.skip_invalid_size_inputs_valid_test, required_batch_size_multiple = args.required_batch_size_multiple, num_shards = args.num_shards, shard_id = args.shard_id, num_workers = args.num_workers, data_buffer_size = args.data_buffer_size, ).next_epoch_itr(shuffle = False) progress = progress_bar.progress_bar( itr, log_format = args.log_format, log_interval = args.log_interval, default_log_format = ("tqdm" if not args.no_progress_bar else "none"), ) # Initialize generator gen_timer = StopwatchMeter() extra_gen_cls_kwargs = {"lm_model": lms[0], "lm_weight": args.lm_weight} generator = task.build_generator( models, args, extra_gen_cls_kwargs = extra_gen_cls_kwargs ) num_sentences = 0 data_queue = Queue() message_queue = JoinableQueue() p_list = [] for _ in range(args.postprocess_workers): p = PostProcess(args, task, data_queue, message_queue, generator) p_list.append(p) p.start() io_process = IOProcess(args, task, message_queue, output_file) io_process.start() if args.use_el_attn: task.transpose_enc_dec_kv_proj(models) wps_meter = TimeMeter() for sample in progress: cpu_sample = sample if 'net_input' not in sample: continue sample = utils.move_to_cuda(sample) if use_cuda else sample prefix_tokens = None if args.prefix_size > 0: prefix_tokens = sample['target'][:, :args.prefix_size] constraints = None if "constraints" in sample: constraints = sample["constraints"] gen_timer.start() try: hypos = task.inference_step( generator, models, sample, prefix_tokens, constraints) except: logging.exception(sys.exc_info()[0]) for p in p_list: p.terminate() io_process.terminate() data_queue.close() message_queue.close() sys.exit(1) num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos) gen_timer.stop(num_generated_tokens) hypos = [h[:args.nbest] for h in hypos] hypos = move_to_cpu(hypos) if use_cuda else hypos data_queue.put((cpu_sample, hypos)) wps_meter.update(num_generated_tokens) progress.log({'wps': round(wps_meter.avg)}) num_sentences += ( cpu_sample['nsentences'] if "nsentences" in cpu_sample else cpu_sample["id"].numel() ) data_queue.put(GENERATE_FINISHED) for p in p_list: p.join() message_queue.put(GENERATE_FINISHED) io_process.join() sent_through = num_sentences / gen_timer.sum if num_sentences > 0 else 0 tokens_through = 1. / gen_timer.avg if num_sentences > 0 else 0 logger.info("NOTE: hypothesis and token scores are output in base 2") logger.info( "Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)".format( num_sentences, gen_timer.n, gen_timer.sum, sent_through, tokens_through, ) ) return @replace(main) def main_v2(args): assert args.path is not None, '--path required for generation!' assert ( not args.sampling or args.nbest == args.beam ), "--sampling requires --nbest to be equal to --beam" assert ( args.replace_unk is None or args.dataset_impl == "raw" ), "--replace-unk requires a raw text dataset (--dataset-impl=raw)" if args.results_path is not None: os.makedirs(args.results_path, exist_ok = True) output_path = os.path.join( args.results_path, "generate-{}.txt".format(args.gen_subset) ) with open(output_path, "w", buffering = 1, encoding = "utf-8") as h: return _main(args, h) else: return _main(args, sys.stdout)
examples/seismic/test_seismic_utils.py
kristiantorres/devito
204
11166802
import pytest import numpy as np from devito import norm from examples.seismic import Model, setup_geometry, AcquisitionGeometry def not_bcs(bc): return ("mask", 1) if bc == "damp" else ("damp", 0) @pytest.mark.parametrize('nbl, bcs', [ (20, ("mask", 1)), (0, ("mask", 1)), (20, ("damp", 0)), (0, ("damp", 0)) ]) def test_damp(nbl, bcs): shape = (21, 21) vp = np.ones(shape) model = Model((0, 0), (10, 10), shape, 4, vp, nbl=nbl, bcs=bcs[0]) try: center = model.damp.data[tuple(s // 2 for s in model.damp.shape)] except AttributeError: center = model.damp assert all([s == s0 + 2 * nbl for s, s0 in zip(model.vp.shape, shape)]) assert center == bcs[1] switch_bcs = not_bcs(bcs[0]) model._initialize_bcs(bcs=switch_bcs[0]) try: center = model.damp.data[tuple(s // 2 for s in model.damp.shape)] except AttributeError: center = model.damp assert center == switch_bcs[1] @pytest.mark.parametrize('shape', [(41,), (21, 21), (11, 11, 11)]) def test_default_geom(shape): vp = np.ones(shape) o = tuple([0]*len(shape)) d = tuple([10]*len(shape)) model = Model(o, d, shape, 4, vp, nbl=20, dt=1) assert model.critical_dt == 1 geometry = setup_geometry(model, 250) nrec = shape[0] * (shape[1] if len(shape) > 2 else 1) assert geometry.grid == model.grid assert geometry.nrec == nrec assert geometry.nsrc == 1 assert geometry.src_type == "Ricker" assert geometry.rec.shape == (251, nrec) assert norm(geometry.rec) == 0 assert geometry.src.shape == (251, 1) assert norm(geometry.new_src(src_type=None)) == 0 rec2 = geometry.rec.resample(num=501) assert rec2.shape == (501, nrec) assert rec2.grid == model.grid assert geometry.new_rec(name="bonjour").name == "bonjour" assert geometry.new_src(name="bonjour").name == "bonjour" @pytest.mark.parametrize('shape', [(41,), (21, 21), (11, 11, 11)]) def test_geom(shape): vp = np.ones(shape) o = tuple([0]*len(shape)) d = tuple([10]*len(shape)) model = Model(o, d, shape, 4, vp, nbl=20, dt=1) assert model.critical_dt == 1 nrec = 31 nsrc = 4 rec_coordinates = np.ones((nrec, len(shape))) src_coordinates = np.ones((nsrc, len(shape))) geometry = AcquisitionGeometry(model, rec_coordinates, src_coordinates, t0=0.0, tn=250) assert geometry.grid == model.grid assert geometry.nrec == nrec assert geometry.nsrc == nsrc assert geometry.src_type is None assert geometry.rec.shape == (251, nrec) assert norm(geometry.rec) == 0 assert geometry.src.shape == (251, nsrc) assert norm(geometry.new_src(src_type=None)) == 0 assert norm(geometry.src) == 0 rec2 = geometry.rec.resample(num=501) assert rec2.shape == (501, nrec) assert rec2.grid == model.grid assert geometry.new_rec(name="bonjour").name == "bonjour" assert geometry.new_src(name="bonjour").name == "bonjour"
test/stress_tests/hid_usb_test.py
Intellinium/DAPLink
1,354
11166807
<filename>test/stress_tests/hid_usb_test.py # # DAPLink Interface Firmware # Copyright (c) 2016-2017, ARM Limited, All Rights Reserved # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import mbed_lstools import threading import time import pyocd should_exit = False exit_cond = threading.Condition() print_mut = threading.RLock() global_start_time = time.time() def _get_time(): return time.time() - global_start_time def sync_print(msg): with print_mut: print(msg) def hid_main(thread_index, board_id): global should_exit count = 0 try: device = pyocd.probe.pydapaccess.DAPAccess.get_device(board_id) while not should_exit: device.open() info = device.vendor(0) info = str(bytearray(info[1:1 + info[0]])) assert info == board_id device.close() if count % 100 == 0: sync_print("Thread %i on loop %10i at %.6f - %s - board %s" % (thread_index, count, _get_time(), time.strftime("%H:%M:%S"), board_id)) count += 1 except: sync_print("Thread %i exception board %s" % (thread_index, board_id)) with exit_cond: should_exit = 1 exit_cond.notify_all() raise def main(): global should_exit lstools = mbed_lstools.create() mbed_list = lstools.list_mbeds() for thread_index, mbed in enumerate(mbed_list): msd_thread = threading.Thread(target=hid_main, args=(thread_index, mbed['target_id'])) msd_thread.start() try: with exit_cond: while not should_exit: exit_cond.wait(1) except KeyboardInterrupt: pass should_exit = True sync_print("Exiting") if __name__ == "__main__": main()
leetcode.com/python/1268_Search_Suggestions_System.py
its-sushant/coding-interview-gym
713
11166816
<filename>leetcode.com/python/1268_Search_Suggestions_System.py import bisect # Usig binary search class Solution(object): def suggestedProducts(self, products, searchWord): """ :type products: List[str] :type searchWord: str :rtype: List[List[str]] """ products.sort() result, prefix, startIdx = [], "", 0 for char in searchWord: prefix += char startIdx = bisect.bisect_left(products, prefix, startIdx) currnetSearchRes = [] for product in products[startIdx: startIdx + 3]: if product.startswith(prefix): currnetSearchRes.append(product) result.append(currnetSearchRes) return result
rsbook_code/planning/plotting.py
patricknaughton01/RoboticSystemsBook
116
11166845
def mpl_plot_graph(ax,G,vertex_options={},edge_options={},dims=[0,1],directed=False): """Plots a graph G=(V,E) using matplotlib. ax is a matplotlib Axes object. If states have more than 2 dimensions, you can control the x-y axes using the dims argument. """ import numpy as np V,E = G if len(V)==0: return X = [v[dims[0]] for v in V] Y = [v[dims[1]] for v in V] import matplotlib.pyplot as plt from matplotlib.collections import LineCollection lines = [] for e in E: x1,y1 = X[e[0]],Y[e[0]] x2,y2 = X[e[1]],Y[e[1]] lines.append(np.array([[x1,y1],[x2,y2]],dtype=float)) #convert normal edge options to collection options collection_options = {} for k,opt in edge_options.items(): if not k.endswith('s') and k not in ['alpha']: collection_options[k+'s'] = np.asarray([opt]*len(lines)) linecoll = LineCollection(lines,zorder=2,**collection_options) ax.add_collection(linecoll) ax.scatter(X,Y,zorder=3,**vertex_options)
experiments/annual_reviews/figure8/mpsc_experiment.py
catgloss/safe-control-gym
120
11166847
"""This script runs the MPSC experiment in our Annual Reviews article. See Figure 8 in https://arxiv.org/pdf/2108.06266.pdf. """ import os import sys import shutil import matplotlib.pyplot as plt from munch import munchify from functools import partial from safe_control_gym.utils.utils import read_file from safe_control_gym.utils.registration import make from safe_control_gym.utils.configuration import ConfigFactory def main(): # Define arguments. fac = ConfigFactory() config = fac.merge() env_func = partial(make, config.task, **config.task_config) # Create controller from PPO YAML. ppo_config_dir = os.path.dirname(os.path.abspath(__file__))+'/config_overrides' ppo_dict = read_file(os.path.join(ppo_config_dir,'unsafe_ppo_config.yaml')) ppo_config = munchify(ppo_dict) # Setup PPO controller. ppo_ctrl = make(ppo_config.algo, env_func, **ppo_config.algo_config) # Load state_dict from trained PPO. ppo_model_dir = os.path.dirname(os.path.abspath(__file__))+'/unsafe_ppo_model' ppo_ctrl.load(os.path.join(ppo_model_dir,'unsafe_ppo_model_30000.pt')) # Show violation. # Remove temporary files and directories shutil.rmtree(os.path.dirname(os.path.abspath(__file__))+'/temp') # Setup MPSC. ctrl = make(config.algo, env_func, rl_controller=ppo_ctrl, **config.algo_config) ctrl.reset() train_env = env_func(init_state=None) ctrl.learn(env=train_env) test_env = env_func() uncertified_env = env_func() results = ctrl.run(env=test_env, uncertified_env=uncertified_env) ctrl.close() fig_obs, ax_obs = plt.subplots() ax_obs.plot(results.obs[:, 0], results.obs[:, 2], '.-', label='Certified') ax_obs.plot(results.uncertified_obs[:10, 0], results.uncertified_obs[:10, 2], 'r--', label='Uncertified') ax_obs.plot(results.obs[results.corrections>1e-6, 0], results.obs[results.corrections>1e-6, 2], 'r.', label='Modified') ax_obs.legend() ax_obs.set_title('State Space') ax_obs.set_xlabel(r'$x$') ax_obs.set_ylabel(r'$\theta$') ax_obs.set_box_aspect(0.5) fig_act, ax_act = plt.subplots() ax_act.plot(results.actions[:], 'b-', label='Certified Inputs') ax_act.plot(results.learning_actions[:], 'r--', label='Uncertified Input') ax_act.legend() ax_act.set_title('Input comparison') ax_act.set_xlabel('Step') ax_act.set_ylabel('Input') ax_act.set_box_aspect(0.5) fig, ax = plt.subplots() ax.plot(results.obs[:,2], results.obs[:,3],'.-', label='Certified') modified_inds = results.corrections>1e-6 ax.plot(results.obs[results.corrections>1e-6, 2], results.obs[results.corrections>1e-6, 3], 'r.', label='Modified') uncert_end = results.uncertified_obs.shape[0] ax.plot(results.uncertified_obs[:uncert_end, 2], results.uncertified_obs[:uncert_end, 3], 'r--', label='Uncertified') ax.axvline(x=-0.2, color='r', label='Limit') ax.axvline(x=0.2, color='r') ax.set_xlabel(r"$\theta$") ax.set_ylabel(r"$\dot{\theta}$") ax.set_box_aspect(0.5) ax.legend() plt.tight_layout() plt.show() if __name__ == "__main__": main()
qt__pyqt__pyside__pyqode/pyqt5_simple_check_password.py
gil9red/SimplePyScripts
117
11166905
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' import sys from PyQt5.QtWidgets import QMainWindow, QApplication, QInputDialog, QMessageBox, QLabel, QLineEdit class Example(QMainWindow): def __init__(self): super().__init__() self.setWindowTitle('Example') self.setCentralWidget(QLabel('<font size="100">Hello, <b>USER</b>!</font>')) if __name__ == '__main__': app = QApplication([]) password, ok = QInputDialog.getText(None, 'Auth', 'Input password:', QLineEdit.Password) if not ok: QMessageBox.warning(None, 'Warning', 'Need input password!') sys.exit() if password != '<PASSWORD>': QMessageBox.warning(None, 'Warning', 'Invalid password!') sys.exit() w = Example() w.show() app.exec_()
test/hlt/pytest/python/com/huawei/iotplatform/client/dto/NotifyNBCommandStatusChangedDTO.py
yuanyi-thu/AIOT-
128
11166908
<filename>test/hlt/pytest/python/com/huawei/iotplatform/client/dto/NotifyNBCommandStatusChangedDTO.py<gh_stars>100-1000 from com.huawei.iotplatform.client.dto.NBCommandResult import NBCommandResult class NotifyNBCommandStatusChangedDTO(object): result = NBCommandResult() def __init__(self): self.deviceId = None self.commandId = None def getDeviceId(self): return self.deviceId def setDeviceId(self, deviceId): self.deviceId = deviceId def getCommandId(self): return self.commandId def setCommandId(self, commandId): self.commandId = commandId def getResult(self): return self.result def setResult(self, result): self.result = result
ML/confusion-matrix/split_two.py
saneravi/ML_Stuff
209
11166915
#!/usr/bin/env python """Split the classes into two equal-sized groups to maximize accuracy.""" import json import os import random import numpy as np random.seed(0) import logging import sys from visualize import apply_permutation, plot_cm, read_symbols, swap, swap_1d logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s', level=logging.DEBUG, stream=sys.stdout) def calculate_split_accuracy(cm): """ Calculate the accuracy of the adjusted classifier. The adjusted classifier is built by joining the first n/2 classes into one group and the rest into another group. """ n = len(cm) first = int(n / 2) cm_small = np.zeros((2, 2)) for i in range(n): class_i = int(i < first) for j in range(n): class_j = int(j < first) cm_small[class_i][class_j] += cm[i][j] return (float(cm_small[0][0] + cm_small[1][1]) / cm_small.sum()) def calculate_split_error(cm): """Calculate the error of 2 group split.""" return 1.0 - calculate_split_accuracy(cm) def simulated_annealing(current_cm, current_perm=None, score=calculate_split_error, steps=2 * 10**5, temp=100.0, cooling_factor=0.99, deterministic=False): """ Optimize current_cm by randomly swapping elements. Parameters ---------- current_cm : numpy array current_perm : None or iterable, optional (default: None) steps : int, optional (default: 2 * 10**4) temp : float > 0.0, optional (default: 100.0) Temperature cooling_factor: float in (0, 1), optional (default: 0.99) """ assert temp > 0 assert cooling_factor > 0 assert cooling_factor < 1 n = len(current_cm) if current_perm is None: current_perm = list(range(n)) current_perm = np.array(current_perm) # Debugging code perm_exp = np.zeros((n, n), dtype=np.int) for i in range(n): for j in range(n): perm_exp[i][j] = j current_cm = apply_permutation(current_cm, current_perm) perm_exp_current = apply_permutation(perm_exp, current_perm) logging.debug(perm_exp_current[0]) print("apply permutation %s" % str(current_perm)) current_score = score(current_cm) best_perm = current_perm best_cm = current_cm best_score = current_score print("## Starting Score: {:0.2f}%".format(current_score * 100)) for step in range(steps): tmp = np.array(current_cm, copy=True) split_part = int(n / 2) - 1 i = random.randint(0, split_part) j = random.randint(split_part + 1, n - 1) perm = swap_1d(current_perm.copy(), i, j) tmp = swap(tmp, i, j) # tmp = apply_permutation(tmp, perm) tmp_score = score(tmp) if deterministic: chance = 1.0 else: chance = random.random() temp *= 0.99 hot_prob = min(1, np.exp(-(tmp_score - current_score) / temp)) if chance <= hot_prob: if best_score > tmp_score: # Minimize the score best_perm = perm best_cm = tmp best_score = tmp_score current_score = tmp_score perm_exp_current = swap(perm_exp_current, i, j) print(list(perm_exp_current[0])) current_cm = tmp logging.info(("Current: %0.2f%% (best: %0.2f%%, hot_prob=%0.2f%%, " "step=%i)"), (current_score * 100), (best_score * 100), (hot_prob * 100), step) return {'cm': best_cm, 'perm': list(perm_exp_current[0])} def main(cm_file, perm_file, steps, labels_file): """Orchestrate.""" # Load confusion matrix with open(cm_file) as f: cm = json.load(f) cm = np.array(cm) # Load permutation if os.path.isfile(perm_file): print("loaded %s" % perm_file) with open(perm_file) as data_file: perm = json.load(data_file) else: perm = random.shuffle(list(range(len(cm)))) print("Score without perm: {:0.2f}%".format(calculate_split_error(cm) * 100)) result = simulated_annealing(cm, perm, score=calculate_split_error, deterministic=True, steps=steps) # First recursive step # split_i = int(len(cm) / 2) # cm = result['cm'][:split_i, :split_i] # perm = list(range(split_i)) # result = simulated_annealing(cm, perm, # score=calculate_split_error, # deterministic=True, # steps=steps) print("Score: {}".format(calculate_split_error(result['cm']))) print("Perm: {}".format(list(result['perm']))) # Load labels if os.path.isfile(labels_file): with open(labels_file) as f: symbols = json.load(f) else: symbols = read_symbols() print("Symbols: {}".format([symbols[i] for i in result['perm']])) plot_cm(result['cm'], zero_diagonal=True) def get_parser(): """Get parser object for script xy.py.""" from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser parser = ArgumentParser(description=__doc__, formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument("--cm", dest="cm_file", help=("path of a json file with a confusion matrix"), metavar="cm.json", default='confusion-matrix.json') parser.add_argument("--perm", dest="perm_file", help=("path of a json file with a permutation to " "start with"), metavar="perm.json", default="") parser.add_argument("--labels", dest="labels_file", help=("path of a json file with a list of label " "names"), metavar="labels.json", default="") parser.add_argument("-n", dest="n", default=4 * 10**5, type=int, help="number of steps to iterate") return parser if __name__ == "__main__": args = get_parser().parse_args() main(args.cm_file, args.perm_file, args.n, args.labels_file)
alipay/aop/api/response/AlipayOverseasTravelPoiQueryResponse.py
antopen/alipay-sdk-python-all
213
11166968
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse from alipay.aop.api.domain.PoiQueryResult import PoiQueryResult class AlipayOverseasTravelPoiQueryResponse(AlipayResponse): def __init__(self): super(AlipayOverseasTravelPoiQueryResponse, self).__init__() self._poi_query_result = None @property def poi_query_result(self): return self._poi_query_result @poi_query_result.setter def poi_query_result(self, value): if isinstance(value, PoiQueryResult): self._poi_query_result = value else: self._poi_query_result = PoiQueryResult.from_alipay_dict(value) def parse_response_content(self, response_content): response = super(AlipayOverseasTravelPoiQueryResponse, self).parse_response_content(response_content) if 'poi_query_result' in response: self.poi_query_result = response['poi_query_result']
configs/new_baselines/mask_rcnn_R_101_FPN_100ep_LSJ.py
mmabrouk/detectron2
21,274
11167011
<gh_stars>1000+ from .mask_rcnn_R_50_FPN_100ep_LSJ import ( dataloader, lr_multiplier, model, optimizer, train, ) model.backbone.bottom_up.stages.depth = 101
aztk/core/models/validators.py
Geims83/aztk
161
11167017
<filename>aztk/core/models/validators.py import collections from aztk.error import InvalidModelFieldError class Validator: """ Base class for a validator. To write your validator extend this class and implement the validate method. To raise an error raise InvalidModelFieldError """ def __call__(self, value): self.validate(value) def validate(self, value): raise NotImplementedError() class Required(Validator): """ Validate the field value is not `None` """ def validate(self, value): if value is None: raise InvalidModelFieldError("is required") class String(Validator): """ Validate the value of the field is a `str` """ def validate(self, value): if not value: return if not isinstance(value, str): raise InvalidModelFieldError("{0} should be a string".format(value)) class Integer(Validator): """ Validate the value of the field is a `int` """ def validate(self, value): if not value: return if not isinstance(value, int): raise InvalidModelFieldError("{0} should be an integer".format(value)) class Float(Validator): """ Validate the value of the field is a `float` """ def validate(self, value): if not value: return if not isinstance(value, float): raise InvalidModelFieldError("{0} should be a float".format(value)) class Boolean(Validator): """This validator forces fields values to be an instance of `bool`.""" def validate(self, value): if not value: return if not isinstance(value, bool): raise InvalidModelFieldError("{0} should be a boolean".format(value)) class In(Validator): """ Validate the field value is in the list of allowed choices """ def __init__(self, choices): self.choices = choices def validate(self, value): if not value: return if value not in self.choices: raise InvalidModelFieldError("{0} should be in {1}".format(value, self.choices)) class InstanceOf(Validator): """ Check if the field is an instance of the given type """ def __init__(self, cls): self.type = cls def validate(self, value): if not value: return if not isinstance(value, self.type): raise InvalidModelFieldError("should be an instance of '{}'".format(self.type.__name__)) class Model(Validator): """ Validate the field is a model """ def __init__(self, model): self.model = model def validate(self, value): if not value: return if not isinstance(value, self.model): raise InvalidModelFieldError("should be an instance of '{}'".format(self.model.__name__)) value.validate() class List(Validator): """ Validate the given item is a list """ def __init__(self, *validators): self.validators = validators def validate(self, value): if not value: return if not isinstance(value, collections.MutableSequence): raise InvalidModelFieldError("should be a list") for i in value: for validator in self.validators: validator(i)
src_joint/utils_io.py
msc42/HPSG-Neural-Parser
119
11167031
__author__ = 'max' import re MAX_CHAR_LENGTH = 45 NUM_CHAR_PAD = 2 # Regular expressions used to normalize digits. DIGIT_RE = re.compile(br"\d")
tests/test_client.py
Aliemeka/supabase-py
181
11167105
from __future__ import annotations from typing import Any import pytest @pytest.mark.xfail( reason="None of these values should be able to instanciate a client object" ) @pytest.mark.parametrize("url", ["", None, "valeefgpoqwjgpj", 139, -1, {}, []]) @pytest.mark.parametrize("key", ["", None, "<KEY>", 139, -1, {}, []]) def test_incorrect_values_dont_instanciate_client(url: Any, key: Any) -> None: """Ensure we can't instanciate client with nonsense values.""" from supabase import Client, create_client _: Client = create_client(url, key)
alipay/aop/api/domain/MyBkAccountVO.py
snowxmas/alipay-sdk-python-all
213
11167136
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class MyBkAccountVO(object): def __init__(self): self._account_ext_no = None self._account_fip_branch_code = None self._account_fip_code = None self._account_fip_name = None self._account_no = None self._account_type = None self._available = None self._bank_card_category = None self._card_holder_name = None self._grant_channel = None self._refuse_code = None @property def account_ext_no(self): return self._account_ext_no @account_ext_no.setter def account_ext_no(self, value): self._account_ext_no = value @property def account_fip_branch_code(self): return self._account_fip_branch_code @account_fip_branch_code.setter def account_fip_branch_code(self, value): self._account_fip_branch_code = value @property def account_fip_code(self): return self._account_fip_code @account_fip_code.setter def account_fip_code(self, value): self._account_fip_code = value @property def account_fip_name(self): return self._account_fip_name @account_fip_name.setter def account_fip_name(self, value): self._account_fip_name = value @property def account_no(self): return self._account_no @account_no.setter def account_no(self, value): self._account_no = value @property def account_type(self): return self._account_type @account_type.setter def account_type(self, value): self._account_type = value @property def available(self): return self._available @available.setter def available(self, value): self._available = value @property def bank_card_category(self): return self._bank_card_category @bank_card_category.setter def bank_card_category(self, value): self._bank_card_category = value @property def card_holder_name(self): return self._card_holder_name @card_holder_name.setter def card_holder_name(self, value): self._card_holder_name = value @property def grant_channel(self): return self._grant_channel @grant_channel.setter def grant_channel(self, value): self._grant_channel = value @property def refuse_code(self): return self._refuse_code @refuse_code.setter def refuse_code(self, value): self._refuse_code = value def to_alipay_dict(self): params = dict() if self.account_ext_no: if hasattr(self.account_ext_no, 'to_alipay_dict'): params['account_ext_no'] = self.account_ext_no.to_alipay_dict() else: params['account_ext_no'] = self.account_ext_no if self.account_fip_branch_code: if hasattr(self.account_fip_branch_code, 'to_alipay_dict'): params['account_fip_branch_code'] = self.account_fip_branch_code.to_alipay_dict() else: params['account_fip_branch_code'] = self.account_fip_branch_code if self.account_fip_code: if hasattr(self.account_fip_code, 'to_alipay_dict'): params['account_fip_code'] = self.account_fip_code.to_alipay_dict() else: params['account_fip_code'] = self.account_fip_code if self.account_fip_name: if hasattr(self.account_fip_name, 'to_alipay_dict'): params['account_fip_name'] = self.account_fip_name.to_alipay_dict() else: params['account_fip_name'] = self.account_fip_name if self.account_no: if hasattr(self.account_no, 'to_alipay_dict'): params['account_no'] = self.account_no.to_alipay_dict() else: params['account_no'] = self.account_no if self.account_type: if hasattr(self.account_type, 'to_alipay_dict'): params['account_type'] = self.account_type.to_alipay_dict() else: params['account_type'] = self.account_type if self.available: if hasattr(self.available, 'to_alipay_dict'): params['available'] = self.available.to_alipay_dict() else: params['available'] = self.available if self.bank_card_category: if hasattr(self.bank_card_category, 'to_alipay_dict'): params['bank_card_category'] = self.bank_card_category.to_alipay_dict() else: params['bank_card_category'] = self.bank_card_category if self.card_holder_name: if hasattr(self.card_holder_name, 'to_alipay_dict'): params['card_holder_name'] = self.card_holder_name.to_alipay_dict() else: params['card_holder_name'] = self.card_holder_name if self.grant_channel: if hasattr(self.grant_channel, 'to_alipay_dict'): params['grant_channel'] = self.grant_channel.to_alipay_dict() else: params['grant_channel'] = self.grant_channel if self.refuse_code: if hasattr(self.refuse_code, 'to_alipay_dict'): params['refuse_code'] = self.refuse_code.to_alipay_dict() else: params['refuse_code'] = self.refuse_code return params @staticmethod def from_alipay_dict(d): if not d: return None o = MyBkAccountVO() if 'account_ext_no' in d: o.account_ext_no = d['account_ext_no'] if 'account_fip_branch_code' in d: o.account_fip_branch_code = d['account_fip_branch_code'] if 'account_fip_code' in d: o.account_fip_code = d['account_fip_code'] if 'account_fip_name' in d: o.account_fip_name = d['account_fip_name'] if 'account_no' in d: o.account_no = d['account_no'] if 'account_type' in d: o.account_type = d['account_type'] if 'available' in d: o.available = d['available'] if 'bank_card_category' in d: o.bank_card_category = d['bank_card_category'] if 'card_holder_name' in d: o.card_holder_name = d['card_holder_name'] if 'grant_channel' in d: o.grant_channel = d['grant_channel'] if 'refuse_code' in d: o.refuse_code = d['refuse_code'] return o
docs/examples/python/scomparator_test_client.py
radetsky/themis
1,561
11167138
<reponame>radetsky/themis # # Copyright (c) 2015 Cossack Labs Limited # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ echo client with handmade ssession wrappers (see ssession_wrappers.py) for none event handled transport, like plain socket """ import socket from pythemis import scomparator comparator = scomparator.SComparator(b"shared secret") socket = socket.socket() socket.connect(("127.0.0.1", 26260)) try: data = comparator.begin_compare() while not comparator.is_compared(): socket.sendall(data) data = comparator.proceed_compare(socket.recv(1024)) if comparator.is_equal(): print("match") else: print("not match") finally: socket.close()
code_examples/popart/block_sparse/examples/conftest.py
payoto/graphcore_examples
260
11167144
<reponame>payoto/graphcore_examples # Copyright (c) 2020 Graphcore Ltd. All rights reserved. import pathlib from utils import build_custom_ops from mnist.common import download_mnist import pytest import ctypes import os def pytest_sessionstart(session): # Builds the custom ops so_path = pathlib.Path(__file__).parent.parent.resolve() / "custom_ops.so" build_custom_ops(so_path) # Download MNIST dataset download_mnist(pathlib.Path(__file__).parent.resolve() / "mnist") # Sets the IPUs to wait before attaching. os.environ["POPTORCH_WAIT_FOR_IPU"] = "1" @pytest.fixture def custom_ops(): so_path = pathlib.Path(__file__).parent.parent.resolve() / "custom_ops.so" ctypes.cdll.LoadLibrary(so_path) return so_path
examples/basic_geometries.py
ConnectionMaster/qgis-earthengine-plugin
307
11167153
import ee from ee_plugin import Map point = ee.Geometry.Point([1.5, 1.5]) Map.addLayer(point, {'color': '1eff05'}, 'point') lineString = ee.Geometry.LineString( [[-35, -10], [35, -10], [35, 10], [-35, 10]]) Map.addLayer(lineString, {'color': 'FF0000'}, 'lineString') linearRing = ee.Geometry.LinearRing( [[-35, -10], [35, -10], [35, 10], [-35, 10], [-35, -10]]) Map.addLayer(linearRing, {'color': 'ee38ff'}, 'linearRing') rectangle = ee.Geometry.Rectangle([-40, -20, 40, 20]) Map.addLayer(rectangle, {'color': 'ffa05c'}, 'rectangle') polygon = ee.Geometry.Polygon([ [[-5, 40], [65, 40], [65, 60], [-5, 60], [-5, 60]] ]) planarPolygon = ee.Geometry(polygon, None, False) Map.addLayer(polygon, {'color': 'FF0000'}, 'geodesic polygon') Map.addLayer(planarPolygon, {'color': '000000'}, 'planar polygon') Map.centerObject(polygon)
manila/api/views/share_instance.py
kpawar89/manila
159
11167160
<reponame>kpawar89/manila # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from manila.api import common from manila.common import constants class ViewBuilder(common.ViewBuilder): """Model a server API response as a python dictionary.""" _collection_name = 'share_instances' _collection_links = 'share_instances_links' _detail_version_modifiers = [ "remove_export_locations", "add_access_rules_status_field", "add_replication_fields", "add_share_type_field", "add_cast_rules_to_readonly_field", "add_progress_field", "translate_creating_from_snapshot_status", ] def detail_list(self, request, instances): """Detailed view of a list of share instances.""" return self._list_view(self.detail, request, instances) def detail(self, request, share_instance): """Detailed view of a single share instance.""" export_locations = [e['path'] for e in share_instance.export_locations] instance_dict = { 'id': share_instance.get('id'), 'share_id': share_instance.get('share_id'), 'availability_zone': share_instance.get('availability_zone'), 'created_at': share_instance.get('created_at'), 'host': share_instance.get('host'), 'status': share_instance.get('status'), 'share_network_id': share_instance.get('share_network_id'), 'share_server_id': share_instance.get('share_server_id'), 'export_location': share_instance.get('export_location'), 'export_locations': export_locations, } self.update_versioned_resource_dict( request, instance_dict, share_instance) return {'share_instance': instance_dict} def _list_view(self, func, request, instances): """Provide a view for a list of share instances.""" instances_list = [func(request, instance)['share_instance'] for instance in instances] instances_links = self._get_collection_links(request, instances, self._collection_name) instances_dict = {self._collection_name: instances_list} if instances_links: instances_dict[self._collection_links] = instances_links return instances_dict @common.ViewBuilder.versioned_method("2.9") def remove_export_locations(self, context, share_instance_dict, share_instance): share_instance_dict.pop('export_location') share_instance_dict.pop('export_locations') @common.ViewBuilder.versioned_method("2.10") def add_access_rules_status_field(self, context, instance_dict, share_instance): instance_dict['access_rules_status'] = ( share_instance.get('access_rules_status') ) @common.ViewBuilder.versioned_method("2.11") def add_replication_fields(self, context, instance_dict, share_instance): instance_dict['replica_state'] = share_instance.get('replica_state') @common.ViewBuilder.versioned_method("2.22") def add_share_type_field(self, context, instance_dict, share_instance): instance_dict['share_type_id'] = share_instance.get('share_type_id') @common.ViewBuilder.versioned_method("2.30") def add_cast_rules_to_readonly_field(self, context, instance_dict, share_instance): instance_dict['cast_rules_to_readonly'] = share_instance.get( 'cast_rules_to_readonly', False) @common.ViewBuilder.versioned_method("1.0", "2.53") def translate_creating_from_snapshot_status(self, context, instance_dict, share_instance): if (share_instance.get('status') == constants.STATUS_CREATING_FROM_SNAPSHOT): instance_dict['status'] = constants.STATUS_CREATING @common.ViewBuilder.versioned_method("2.54") def add_progress_field(self, context, instance_dict, share_instance): instance_dict['progress'] = share_instance.get('progress')
scripts/pendulum_data_collect.py
SaminYeasar/inverse_rl
220
11167164
from sandbox.rocky.tf.algos.trpo import TRPO from sandbox.rocky.tf.envs.base import TfEnv from sandbox.rocky.tf.policies.gaussian_mlp_policy import GaussianMLPPolicy from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline from rllab.envs.gym_env import GymEnv from inverse_rl.utils.log_utils import rllab_logdir def main(): env = TfEnv(GymEnv('Pendulum-v0', record_video=False, record_log=False)) policy = GaussianMLPPolicy(name='policy', env_spec=env.spec, hidden_sizes=(32, 32)) algo = TRPO( env=env, policy=policy, n_itr=200, batch_size=1000, max_path_length=100, discount=0.99, store_paths=True, baseline=LinearFeatureBaseline(env_spec=env.spec) ) with rllab_logdir(algo=algo, dirname='data/pendulum'): algo.train() if __name__ == "__main__": main()
self_driving/ml_training/test/TestTrainer.py
cclauss/self_driving_pi_car
724
11167182
#!/usr/bin/env python # -*- coding: utf-8 -*- import unittest import os import sys import inspect import numpy as np import tensorflow as tf import itertools import shutil almost_current = os.path.abspath(inspect.getfile(inspect.currentframe())) currentdir = os.path.dirname(almost_current) parentdir = os.path.dirname(currentdir) sys.path.insert(0, parentdir) from util import run_test, reconstruct_from_record # noqa from Config import Config # noqa from DataHolder import DataHolder # noqa from DFN import DFN # noqa from Trainer import Trainer # noqa class TestTrainer(unittest.TestCase): """ Class that test the Trainer class in optimization and prediction """ @classmethod def setUpClass(cls): data_name = "toy_160_90_3_data.npy" label_name = "toy_160_90_3_labels.npy" cls.config3d = Config(epochs=1, architecture=[4], num_steps=100, save_step=10) cls.config_green = Config(epochs=1, architecture=[4], num_steps=100, save_step=10) cls.config_gray = Config(epochs=1, architecture=[4], num_steps=100, save_step=10) cls.config_bin = Config(epochs=1, architecture=[4], num_steps=100, save_step=10) cls.data_aug = DataHolder(cls.config3d, data_name, label_name, record_path="toy_aug", flip=True, augmentation=True) cls.data_gray = DataHolder(cls.config_gray, data_name, label_name, record_path="toy_gray", flip=True, augmentation=False, gray=True) cls.data_green = DataHolder(cls.config_green, data_name, label_name, record_path="toy_green", flip=True, augmentation=False, green=True) cls.data_binary = DataHolder(cls.config_bin, data_name, label_name, flip=True, augmentation=False, record_path="toy_bin", binary=True) cls.data_aug.create_records() cls.data_gray.create_records() cls.data_green.create_records() cls.data_binary.create_records() cls.all_paths = ["toy_aug", "toy_gray", "toy_green", "toy_bin"] cls.data_list = [cls.data_gray, cls.data_green, cls.data_binary] cls.end = False @classmethod def tearDown(cls): if cls.end: sufixes = ['_train.tfrecords', '_valid.tfrecords', '_test.tfrecords'] # noqa for car, cdr in itertools.product(cls.all_paths, sufixes): file_name = car + cdr if os.path.exists(file_name): os.remove(file_name) if os.path.exists("checkpoints"): shutil.rmtree("checkpoints") def check_overfitting_valid_data(self, config, dataholder): if os.path.exists("checkpoints"): shutil.rmtree("checkpoints") graph = tf.Graph() network = DFN(graph, config) trainer = Trainer(graph, config, network, dataholder) non_trained_acc = trainer.get_valid_accuracy() trainer.fit(verbose=False) trained_acc = trainer.get_valid_accuracy() condition = non_trained_acc < trained_acc msg = "Performance on valid data not better after training\n" msg += " non_trained_acc = {0:.6f}".format(non_trained_acc) msg += " | trained_acc = {0:.6f}".format(trained_acc) self.assertTrue(condition, msg=msg) def check_prediction(self, config, dataholder, num_classes=4): if os.path.exists("checkpoints"): shutil.rmtree("checkpoints") record_path = dataholder.get_test_tfrecord() images, _, shape = reconstruct_from_record(record_path) images = images.astype(np.float32) / 255 num_images = images.shape[0] graph = tf.Graph() network = DFN(graph, config) trainer = Trainer(graph, config, network, dataholder) non_trained_predictions = trainer.predict(images) trainer.fit(verbose=False) trained_predictions = trainer.predict(images) image = images[0].reshape((1, images[0].shape[0])) single_prediction = trainer.predict(image) self.assertEqual(non_trained_predictions.shape, (num_images,)) self.assertEqual(trained_predictions.shape, (num_images,)) self.assertEqual(np.int32, non_trained_predictions.dtype) self.assertEqual(np.int32, trained_predictions.dtype) self.assertEqual(np.int32, single_prediction.dtype) def test_model_is_fitting_valid_dataset(self): self.check_overfitting_valid_data(self.config3d, self.data_aug) for dh in self.data_list: self.check_overfitting_valid_data(self.config_gray, dh) def test_prediction(self): self.check_prediction(self.config3d, self.data_aug) for dh in self.data_list: self.check_prediction(self.config_gray, dh) TestTrainer.end = True # hack to use TearDown only here if __name__ == "__main__": run_test(TestTrainer)
tools/azure-sdk-tools/packaging_tools/__main__.py
rsdoherty/azure-sdk-for-python
2,728
11167206
import argparse import logging import os import sys from . import build_packaging _LOGGER = logging.getLogger(__name__) _epilog = """This script will automatically build the TOML configuration file with default value if it doesn't exist. """ parser = argparse.ArgumentParser( description="Packaging tools for Azure SDK for Python", formatter_class=argparse.RawTextHelpFormatter, epilog=_epilog, ) parser.add_argument( "--output", "-o", dest="output", default=".", help="Output dir, should be SDK repo folder. [default: %(default)s]" ) parser.add_argument("--debug", dest="debug", action="store_true", help="Verbosity in DEBUG mode") parser.add_argument( "--build-conf", dest="build_conf", action="store_true", help="Build a default TOML file, with package name, fake pretty name, as beta package and no doc page. Do nothing if the file exists, remove manually the file if needed.", ) parser.add_argument( "--jenkins", dest="jenkins", action="store_true", help="In Jenkins mode, try to find what to generate from Jenkins env variables. Package names are then optional.", ) parser.add_argument("package_names", nargs="*", help="The package name.") args = parser.parse_args() main_logger = logging.getLogger() logging.basicConfig() main_logger.setLevel(logging.DEBUG if args.debug else logging.INFO) if not args.package_names and not args.jenkins: raise ValueError("At least one package name or Jenkins mode is required") try: build_packaging( args.output, os.environ.get("GH_TOKEN", None), args.jenkins, args.package_names, build_conf=args.build_conf ) except Exception as err: if args.debug: _LOGGER.exception(err) else: _LOGGER.critical(err) sys.exit(1)
mayan/apps/lock_manager/apps.py
nattangwiwat/Mayan-EDMS-recitation
343
11167209
import logging import sys from django.utils.translation import ugettext_lazy as _ from mayan.apps.common.apps import MayanAppConfig from .backends.base import LockingBackend from .literals import PURGE_LOCKS_COMMAND, TEST_LOCK_NAME from .settings import setting_backend logger = logging.getLogger(name=__name__) class LockManagerApp(MayanAppConfig): has_tests = True name = 'mayan.apps.lock_manager' verbose_name = _('Lock manager') def ready(self): super().ready() if PURGE_LOCKS_COMMAND not in sys.argv: logger.debug('Starting lock backend connectivity test') # Don't test for locks during the `purgelocks` command as there # may be some stuck locks which will block the command. lock_instance = LockingBackend.get_backend() try: lock = lock_instance.acquire_lock( name=TEST_LOCK_NAME, timeout=1 ) lock.release() except Exception as exception: raise RuntimeError( 'Error initializing the locking backend: {}; {}'.format( setting_backend.value, exception ) ) from exception
dart_fss/api/filings/document.py
dveamer/dart-fss
243
11167221
<filename>dart_fss/api/filings/document.py<gh_stars>100-1000 # -*- coding: utf-8 -*- from dart_fss.auth import get_api_key from dart_fss.utils import request def download_document(path: str, rcept_no: str) -> str: """ 공시서류원본파일 다운로드 Parameters ---------- path: str download path rcept_no: str 접수번호 Returns ------- str download full path """ url = 'https://opendart.fss.or.kr/api/document.xml' # Set API KEY api_key = get_api_key() payload = { 'crtfc_key': api_key, 'rcept_no': rcept_no, } resp = request.download(url=url, path=path, payload=payload) return resp['full_path']
tests/r/test_rdtelec.py
hajime9652/observations
199
11167234
from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import sys import tempfile from observations.r.rdtelec import rdtelec def test_rdtelec(): """Test module rdtelec.py by downloading rdtelec.csv and testing shape of extracted data has 29 rows and 6 columns """ test_path = tempfile.mkdtemp() x_train, metadata = rdtelec(test_path) try: assert x_train.shape == (29, 6) except: shutil.rmtree(test_path) raise()
tests/utils_tests/autoload/__init__.py
fy0/mapi
219
11167268
<reponame>fy0/mapi FLAG = 1
lldb/test/API/lang/cpp/enum_types/TestCPP11EnumTypes.py
LaudateCorpus1/llvm-project
605
11167283
<reponame>LaudateCorpus1/llvm-project<gh_stars>100-1000 """Look up enum type information and check for correct display.""" import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * import lldbsuite.test.lldbutil as lldbutil class CPP11EnumTypesTestCase(TestBase): mydir = TestBase.compute_mydir(__file__) def check_enum(self, suffix): """ :param suffix The suffix of the enum type name (enum_<suffix>) that should be checked. :param test_values A list of integet values that shouldn't be converted to any valid enum case. """ enum_name = "enum_" + suffix unsigned = suffix.startswith("u") self.expect("image lookup -t " + enum_name, patterns=["enum( struct| class)? " + enum_name + " {"], substrs=["Case1", "Case2", "Case3"]) # Test each case in the enum. self.expect_expr("var1_" + suffix, result_type=enum_name, result_value="Case1") self.expect_expr("var2_" + suffix, result_type=enum_name, result_value="Case2") self.expect_expr("var3_" + suffix, result_type=enum_name, result_value="Case3") if unsigned: self.expect_expr("var_below_" + suffix, result_type=enum_name, result_value="199") self.expect_expr("var_above_" + suffix, result_type=enum_name, result_value="203") else: self.expect_expr("var_below_" + suffix, result_type=enum_name, result_value="-3") self.expect_expr("var_above_" + suffix, result_type=enum_name, result_value="1") @skipIf(dwarf_version=['<', '4']) def test(self): self.build() target = self.dbg.CreateTarget(self.getBuildArtifact("a.out")) self.check_enum("uc") self.check_enum("c") self.check_enum("us") self.check_enum("s") self.check_enum("ui") self.check_enum("i") self.check_enum("ul") self.check_enum("l") self.check_enum("ull") self.check_enum("ll")
questionary/form.py
qualichat/questionary
851
11167292
<filename>questionary/form.py from typing import Any, Dict, NamedTuple, Sequence from questionary.constants import DEFAULT_KBI_MESSAGE from questionary.question import Question class FormField(NamedTuple): key: str question: Question def form(**kwargs: Question) -> "Form": """Create a form with multiple questions. The parameter name of a question will be the key for the answer in the returned dict. Args: kwargs: Questions to ask in the form. """ return Form(*(FormField(k, q) for k, q in kwargs.items())) class Form: """Multi question prompts. Questions are asked one after another. All the answers are returned as a dict with one entry per question. This class should not be invoked directly, instead use :func:`form`. """ form_fields: Sequence[FormField] def __init__(self, *form_fields: FormField) -> None: self.form_fields = form_fields def unsafe_ask(self, patch_stdout: bool = False) -> Dict[str, Any]: """Ask the questions synchronously and return user response. Does not catch keyboard interrupts. Args: patch_stdout: Ensure that the prompt renders correctly if other threads are printing to stdout. Returns: The answers from the form. """ return {f.key: f.question.unsafe_ask(patch_stdout) for f in self.form_fields} async def unsafe_ask_async(self, patch_stdout: bool = False) -> Dict[str, Any]: """Ask the questions using asyncio and return user response. Does not catch keyboard interrupts. Args: patch_stdout: Ensure that the prompt renders correctly if other threads are printing to stdout. Returns: The answers from the form. """ return { f.key: await f.question.unsafe_ask_async(patch_stdout) for f in self.form_fields } def ask( self, patch_stdout: bool = False, kbi_msg: str = DEFAULT_KBI_MESSAGE ) -> Dict[str, Any]: """Ask the questions synchronously and return user response. Args: patch_stdout: Ensure that the prompt renders correctly if other threads are printing to stdout. kbi_msg: The message to be printed on a keyboard interrupt. Returns: The answers from the form. """ try: return self.unsafe_ask(patch_stdout) except KeyboardInterrupt: print("") print(kbi_msg) print("") return {} async def ask_async( self, patch_stdout: bool = False, kbi_msg: str = DEFAULT_KBI_MESSAGE ) -> Dict[str, Any]: """Ask the questions using asyncio and return user response. Args: patch_stdout: Ensure that the prompt renders correctly if other threads are printing to stdout. kbi_msg: The message to be printed on a keyboard interrupt. Returns: The answers from the form. """ try: return await self.unsafe_ask_async(patch_stdout) except KeyboardInterrupt: print("") print(kbi_msg) print("") return {}
recipes/Python/576477_Yet_another_signalslot/recipe-576477.py
tdiprima/code
2,023
11167326
<filename>recipes/Python/576477_Yet_another_signalslot/recipe-576477.py """ File: signal.py Author: <NAME> Created: August 28, 2008 Purpose: A signal/slot implementation """ from weakref import WeakValueDictionary class Signal(object): def __init__(self): self.__slots = WeakValueDictionary() def __call__(self, *args, **kargs): for key in self.__slots: func, _ = key func(self.__slots[key], *args, **kargs) def connect(self, slot): key = (slot.im_func, id(slot.im_self)) self.__slots[key] = slot.im_self def disconnect(self, slot): key = (slot.im_func, id(slot.im_self)) if key in self.__slots: self.__slots.pop(key) def clear(self): self.__slots.clear() # Sample usage: class Model(object): def __init__(self, value): self.__value = value self.changed = Signal() def set_value(self, value): self.__value = value self.changed() # Emit signal def get_value(self): return self.__value class View(object): def __init__(self, model): self.model = model model.changed.connect(self.model_changed) def model_changed(self): print "New value:", self.model.get_value() model = Model(10) view1 = View(model) view2 = View(model) view3 = View(model) model.set_value(20) del view1 model.set_value(30) model.changed.clear() model.set_value(40)
tests/popmon/spark/test_spark.py
Sharath302/popmon
265
11167334
<reponame>Sharath302/popmon<gh_stars>100-1000 from os.path import abspath, dirname, join import pandas as pd import pytest from popmon.hist.filling import make_histograms from popmon.pipeline.metrics import df_stability_metrics try: from pyspark import __version__ as pyspark_version from pyspark.sql import SparkSession spark_found = True except (ModuleNotFoundError, AttributeError): spark_found = False @pytest.fixture def spark_context(): if not spark_found: return None current_path = dirname(abspath(__file__)) scala = "2.12" if int(pyspark_version[0]) >= 3 else "2.11" hist_spark_jar = join( current_path, f"jars/histogrammar-sparksql_{scala}-1.0.11.jar" ) hist_jar = join(current_path, f"jars/histogrammar_{scala}-1.0.11.jar") spark = ( SparkSession.builder.master("local") .appName("popmon-pytest") .config("spark.jars", f"{hist_spark_jar},{hist_jar}") .config("spark.sql.execution.arrow.enabled", "false") .config("spark.sql.session.timeZone", "GMT") .getOrCreate() ) return spark @pytest.mark.spark @pytest.mark.skipif(not spark_found, reason="spark not found") @pytest.mark.filterwarnings( "ignore:createDataFrame attempted Arrow optimization because" ) def test_spark_stability_metrics(spark_context): spark_df = spark_context.createDataFrame(pytest.test_df) # generate metrics directly from spark dataframe features = ["date:isActive", "date:eyeColor", "date:latitude"] bin_specs = { "date": { "bin_width": pd.Timedelta("1y").value, "bin_offset": pd.Timestamp("2000-1-1").value, }, "latitude": {"bin_width": 5.0, "bin_offset": 0.0}, } ds = df_stability_metrics( spark_df, time_axis="date", features=features, binning="unit", bin_specs=bin_specs, ) cols = ["profiles", "comparisons", "traffic_lights", "alerts"] for c in cols: assert c in list(ds.keys()) @pytest.mark.spark @pytest.mark.skipif(not spark_found, reason="spark not found") @pytest.mark.filterwarnings( "ignore:createDataFrame attempted Arrow optimization because" ) def test_spark_make_histograms(spark_context): pytest.age["data"]["name"] = "b'age'" pytest.company["data"]["name"] = "b'company'" pytest.eyesColor["data"]["name"] = "b'eyeColor'" pytest.gender["data"]["name"] = "b'gender'" pytest.isActive["data"]["name"] = "b'isActive'" pytest.latitude["data"]["name"] = "b'latitude'" pytest.longitude["data"]["name"] = "b'longitude'" pytest.transaction["data"]["name"] = "b'transaction'" pytest.latitude_longitude["data"]["name"] = "b'latitude:longitude'" pytest.latitude_longitude["data"]["bins:name"] = "unit_func" spark_df = spark_context.createDataFrame(pytest.test_df) # test make_histograms() function call with spark df current_hists = make_histograms( spark_df, features=[ "date", "isActive", "age", "eyeColor", "gender", "company", "latitude", "longitude", ["isActive", "age"], ["latitude", "longitude"], "transaction", ], bin_specs={ "transaction": {"num": 100, "low": -2000, "high": 2000}, "longitude": {"bin_width": 5.0, "bin_offset": 0.0}, "latitude": {"bin_width": 5.0, "bin_offset": 0.0}, }, binning="unit", ) assert current_hists["age"].toJson() == pytest.age assert current_hists["company"].toJson() == pytest.company assert current_hists["eyeColor"].toJson() == pytest.eyesColor assert current_hists["gender"].toJson() == pytest.gender assert current_hists["latitude"].toJson() == pytest.latitude assert current_hists["longitude"].toJson() == pytest.longitude assert current_hists["transaction"].toJson() == pytest.transaction
code/deep/CSG/a-mnist/makedata.py
jiaruonan/transferlearning
9,657
11167361
#!/usr/bin/env python3.6 '''For generating MNIST-01 and its shifted interventional datasets. ''' import torch as tc import torchvision as tv import torchvision.transforms.functional as tvtf import argparse __author__ = "<NAME>" __email__ = "<EMAIL>" def select_xy(dataset, selected_y = (0,1), piltransf = None, ytransf = None): dataset_selected = [( tvtf.to_tensor( img if piltransf is None else piltransf(img, label) ), label if ytransf is None else ytransf(label) ) for img, label in dataset if label in selected_y] xs, ys = tuple(zip(*dataset_selected)) return tc.cat(xs, dim=0), tc.tensor(ys) def get_shift_transf(pleft: list, distr: str, loc: float, scale: float): return lambda img, label: tvtf.affine(img, angle=0, translate=( scale * getattr(tc, distr)(()) + loc * (1. - 2. * tc.bernoulli(tc.tensor(pleft[label]))), 0. ), scale=1., shear=0, fillcolor=0) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("mode", type = str, choices = {"train", "test"}) parser.add_argument("--pleft", type = float, nargs = '+', default = [0.5, 0.5]) parser.add_argument("--distr", type = str, choices = {"randn", "rand"}) parser.add_argument("--loc", type = float, default = 4.) parser.add_argument("--scale", type = float, default = 1.) parser.add_argument("--procroot", type = str, default = "./data/MNIST/processed/") ag = parser.parse_args() dataset = tv.datasets.MNIST(root="./data", train = ag.mode=="train", download=True) # as PIL piltransf = get_shift_transf(ag.pleft, ag.distr, ag.loc, ag.scale) selected_y = tuple(range(len(ag.pleft))) shift_x, shift_y = select_xy(dataset, selected_y, piltransf) filename = ag.procroot + ag.mode + "".join(str(y) for y in selected_y) + ( "_" + "_".join(f"{p:.1f}" for p in ag.pleft) + "_" + ag.distr + f"_{ag.loc:.1f}_{ag.scale:.1f}.pt" ) tc.save((shift_x, shift_y), filename) print("Processed data saved to '" + filename + "'")
custom_components/reolink_dev/device_action.py
gasecki/Home-Assistant_Config
163
11167364
""" custom helper actions """ import logging from typing import List, Optional import voluptuous as vol from homeassistant.const import ( ATTR_ENTITY_ID, CONF_DEVICE_ID, CONF_DOMAIN, CONF_ENTITY_ID, CONF_TYPE, DEVICE_CLASS_TIMESTAMP, ) from homeassistant.core import Context, HomeAssistant from homeassistant.helpers import config_validation as cv from homeassistant.components.camera import DOMAIN as CAMERA_DOMAIN, SERVICE_SNAPSHOT from homeassistant.components.sensor import DOMAIN as SENSOR_DOMAIN from .utils import async_get_device_entries from .const import DOMAIN VOD_THUMB_CAP = "capture_vod_thumbnail" ACTION_TYPES = {VOD_THUMB_CAP} ACTION_SCHEMA = cv.DEVICE_ACTION_BASE_SCHEMA.extend( { vol.Required(CONF_TYPE): vol.In(ACTION_TYPES), vol.Optional(CONF_ENTITY_ID): cv.entities_domain( [CAMERA_DOMAIN, SENSOR_DOMAIN] ), } ) _LOGGER = logging.getLogger(__name__) async def async_get_actions(hass: HomeAssistant, device_id: str): """List device actions for devices.""" actions = [] (device, device_entries) = await async_get_device_entries(hass, device_id) if not device or not device_entries or len(device_entries) < 2: return actions sensor = None camera = None for entry in device_entries: if ( entry.domain == SENSOR_DOMAIN and entry.device_class == DEVICE_CLASS_TIMESTAMP ): sensor = entry if entry.domain == CAMERA_DOMAIN: camera = entry if sensor and camera: actions.append( { CONF_DOMAIN: DOMAIN, CONF_DEVICE_ID: device_id, CONF_ENTITY_ID: [camera.entity_id, sensor.cv.entity_id], CONF_TYPE: VOD_THUMB_CAP, } ) sensor = None camera = None _LOGGER.debug("actions: %s", actions) return actions async def async_call_action_from_config( hass: HomeAssistant, config: dict, variables: dict, context: Optional[Context] ): """Execute a device action.""" if config[CONF_TYPE] == VOD_THUMB_CAP: entity_ids: List[str] = config.get(CONF_ENTITY_ID) camera_entity_id: str = None thumbnail_path: str = None if entity_ids and len(entity_ids) > 0: for entity_id in entity_ids: state = hass.states.get(entity_id) if state and state.domain == CAMERA_DOMAIN: camera_entity_id = entity_id elif state and state.domain == SENSOR_DOMAIN: thumbnail_path = state.attributes.get("thumbnail_path") if not camera_entity_id or not thumbnail_path: (_, device_entries) = await async_get_device_entries( hass, config[CONF_DEVICE_ID] ) for entry in device_entries: if not camera_entity_id and entry.domain == CAMERA_DOMAIN: camera_entity_id = entry.entity_id if ( not thumbnail_path and entry.domain == SENSOR_DOMAIN and entry.device_class == DEVICE_CLASS_TIMESTAMP ): state = hass.states.get(entry.entity_id) thumbnail_path = ( state.attributes.get("thumbnail_path") if state else None ) service_data = { ATTR_ENTITY_ID: camera_entity_id, "filename": thumbnail_path, } _LOGGER.debug("service_data: %s", service_data) _LOGGER.debug("variables: %s", variables) return await hass.services.async_call( CAMERA_DOMAIN, SERVICE_SNAPSHOT, service_data, blocking=True, context=context, )
depth_upsampling/sampler.py
Levintsky/ARKitScenes
237
11167367
import numpy as np import torch.utils.data class MultiEpochSampler(torch.utils.data.Sampler): r"""Samples elements randomly over multiple epochs Arguments: data_source (Dataset): dataset to sample from num_iter (int) : Number of times to loop over the dataset start_itr (int) : which iteration to begin from """ def __init__(self, data_source, num_iter, start_itr=0, batch_size=128): super().__init__(data_source) self.data_source = data_source self.dataset_size = len(self.data_source) self.num_iter = num_iter self.start_itr = start_itr self.batch_size = batch_size self.num_epochs = int(np.ceil((self.num_iter * self.batch_size) / float(self.dataset_size))) if not isinstance(self.dataset_size, int) or self.dataset_size <= 0: raise ValueError("dataset size should be a positive integeral " "value, but got dataset_size={}".format(self.dataset_size)) def __iter__(self): n = self.dataset_size # Determine number of epochs num_epochs = int(np.ceil(((self.num_iter - self.start_itr) * self.batch_size) / float(n))) out = np.concatenate([np.random.permutation(n) for epoch in range(self.num_epochs)])[-num_epochs * n: self.num_iter * self.batch_size] out = out[(self.start_itr * self.batch_size % n):] return iter(out) def __len__(self): return (self.num_iter - self.start_itr) * self.batch_size
homeassistant/components/humidifier/const.py
mtarjoianu/core
30,023
11167401
"""Provides the constants needed for component.""" from enum import IntEnum MODE_NORMAL = "normal" MODE_ECO = "eco" MODE_AWAY = "away" MODE_BOOST = "boost" MODE_COMFORT = "comfort" MODE_HOME = "home" MODE_SLEEP = "sleep" MODE_AUTO = "auto" MODE_BABY = "baby" ATTR_AVAILABLE_MODES = "available_modes" ATTR_HUMIDITY = "humidity" ATTR_MAX_HUMIDITY = "max_humidity" ATTR_MIN_HUMIDITY = "min_humidity" DEFAULT_MIN_HUMIDITY = 0 DEFAULT_MAX_HUMIDITY = 100 DOMAIN = "humidifier" # DEVICE_CLASS_* below are deprecated as of 2021.12 # use the HumidifierDeviceClass enum instead. DEVICE_CLASS_HUMIDIFIER = "humidifier" DEVICE_CLASS_DEHUMIDIFIER = "dehumidifier" SERVICE_SET_MODE = "set_mode" SERVICE_SET_HUMIDITY = "set_humidity" class HumidifierEntityFeature(IntEnum): """Supported features of the alarm control panel entity.""" MODES = 1 # The SUPPORT_MODES constant is deprecated as of Home Assistant 2022.5. # Please use the HumidifierEntityFeature enum instead. SUPPORT_MODES = 1
run_gradient_descent_2d.py
Gautam-J/ML-Sklearn
415
11167422
import os import time import argparse import numpy as np import seaborn as sns import matplotlib.pyplot as plt from matplotlib import animation from algorithms.gradient_descent_2d import GradientDescent2D from algorithms.momentum_2d import Momentum2D plt.style.use('seaborn') def getArguments(): parser = argparse.ArgumentParser(description='Parameters to tweak gradient descent.') parser.add_argument('--lr', type=float, default=3e-2, help='Learning rate. Set to 0.2 to see gradient descent NOT converging. Defaults to 0.03') parser.add_argument('--max_iterations', type=int, default=150, help='Maximum iterations for gradient descent to run. Defaults to 150') parser.add_argument('--start_point', type=float, default=1.0, help='Starting point for gradient descent. Defaults to 1.0') parser.add_argument('-e', '--epsilon', type=float, default=1e-3, help='Epsilon for checking convergence. Defaults to 0.001') parser.add_argument('-r', '--random', action='store_true', help='Flag to initialize a random starting point') parser.add_argument('-s', '--save', action='store_true', help="Flag to save visualizations and animations") parser.add_argument('-l', '--length', type=int, default=5, help="Length of the animation in seconds. Defaults to 5") parser.add_argument('--use-momentum', action='store_true', help='Flag to use momentum in gradient descent') parser.add_argument('--momentum', type=float, default=0.3, help='Momentum for gradient descent. Only used when use-momentum is True. Defaults to 0.3') return parser.parse_args() def animate(i, dataset, line): line.set_data(dataset[:, :i]) return line def plotAndSaveGraphs(gd, args): fig = plt.figure(figsize=(16, 9)) # plot the original function ax = fig.add_subplot(111) x = np.linspace(-2.5, 1, 1000) y = gd.f(x) ax.plot(x, y, c='b', label='function', alpha=0.6) # destructure history object history = gd.getHistory() gradientHistory = history['grads'] xHistory = history['x'] yHistory = gd.f(np.array(xHistory)) dataset = np.array([xHistory, yHistory]) totalIterations = len(xHistory) - 1 line = ax.plot(dataset[0], dataset[1], label='optimization', c='r', marker='.', alpha=0.4)[0] ax.set_title(f'Iterations: {totalIterations} lr: {args.lr}') ax.set_xlabel('X') ax.set_ylabel('f(x)') ax.legend() lengthOfVideo = args.length nFrames = totalIterations + 1 interval = lengthOfVideo * 1000 / nFrames fps = (1 / (interval / 1000)) print('=' * 80) print('[INFO]\t\tParameters for Animation') print('=' * 80) print(f'[INFO] Duration of video: {lengthOfVideo} seconds') print(f'[DEBUG] Total number of frames: {nFrames}') print(f'[DEBUG] Interval for each frame: {interval}') print(f'[DEBUG] FPS of video: {fps}') print('=' * 80) ani = animation.FuncAnimation(fig, animate, fargs=(dataset, line), frames=nFrames, blit=False, interval=interval, repeat=True) # make directories if args.save: pathToDirectory = os.path.join('visualizations', 'gradient_descent') if not os.path.exists(pathToDirectory): os.makedirs(pathToDirectory) # save animation if args.save: fileName = os.path.join(pathToDirectory, 'GradientDescent2D.mp4') print('[INFO] Saving animation...') startTime = time.time() ani.save(fileName, fps=fps) timeDifference = time.time() - startTime print(f'[INFO] Animation saved to {fileName}. Took {timeDifference:.2f} seconds.') plt.close() else: plt.show() sns.kdeplot(x=gradientHistory, fill=True) plt.xlabel('Gradients') plt.title('Distribution of Gradients') # save distribution of gradients if args.save: fileName = os.path.join(pathToDirectory, 'DistributionOfGradients2D.png') plt.savefig(fileName) print(f'[INFO] Distribution of gradients saved to {fileName}') plt.close() else: plt.show() def main(): args = getArguments() print('[DEBUG]', args) if args.use_momentum: gd = Momentum2D(alpha=args.lr, max_iterations=args.max_iterations, start_point=args.start_point, random=args.random, epsilon=args.epsilon, momentum=args.momentum) else: gd = GradientDescent2D(alpha=args.lr, max_iterations=args.max_iterations, start_point=args.start_point, random=args.random, epsilon=args.epsilon) gd.run() print(f'[DEBUG] Value of x: {gd.x}') print('[DEBUG] Expected value: -1.59791') plotAndSaveGraphs(gd, args) if __name__ == "__main__": main()
src/admin/widgets/polygon.py
aimanow/sft
280
11167440
<reponame>aimanow/sft import wtforms from flask import render_template from godmode.widgets.base import BaseWidget class PolygonWidget(BaseWidget): filterable = False field = wtforms.TextAreaField() def render_list(self, item): value = getattr(item, self.name, None) if item else None value = str(value if value is not None else "") maps_path = value[2:-2].replace("),(", "|") return "<img src='http://maps.googleapis.com/maps/api/staticmap?size=300x100" \ "&path=color:0xff0000|fillcolor:0xAA000033|weight:1|%s" \ "&sensor=false&key=<KEY>'>" % maps_path def render_edit(self, form=None, item=None): value = getattr(item, self.name, None) if item else None value = str(value if value is not None else "") value = value.replace('"', "&quot;") return render_template("widgets/polygon.html", name=self.name, value=value, form=form)
examples/postgres-alembic/app.py
psy-repos-rust/vagga
1,974
11167451
import os from flask import Flask from flask.ext.sqlalchemy import SQLAlchemy app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = os.environ.get('DATABASE_URL') db = SQLAlchemy(app) @app.route('/') def hello_world(): return '; '.join(db.engine.table_names()) if __name__ == '__main__': app.run(host='0.0.0.0')
tools/perf/benchmarks/jitter.py
google-ar/chromium
777
11167468
<reponame>google-ar/chromium # Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from core import perf_benchmark from telemetry.timeline import chrome_trace_category_filter from telemetry.web_perf import timeline_based_measurement from telemetry.web_perf.metrics import jitter_timeline import page_sets JITTER_CATEGORY = 'cdp.perf' TIMELINE_REQUIRED_CATEGORY = 'blink.console' class Jitter(perf_benchmark.PerfBenchmark): """Timeline based measurement benchmark for jitter.""" page_set = page_sets.JitterPageSet def CreateTimelineBasedMeasurementOptions(self): cat_filter = chrome_trace_category_filter.ChromeTraceCategoryFilter() cat_filter.AddIncludedCategory(JITTER_CATEGORY) cat_filter.AddIncludedCategory(TIMELINE_REQUIRED_CATEGORY) options = timeline_based_measurement.Options( overhead_level=cat_filter) options.SetLegacyTimelineBasedMetrics( [jitter_timeline.JitterTimelineMetric()]) return options @classmethod def Name(cls): return 'jitter'
notebook/pandas_error_ambiguous.py
vhn0912/python-snippets
174
11167477
import pandas as pd df = pd.DataFrame(pd.np.arange(12).reshape(3, 4), columns=['a', 'b', 'c', 'd'], index=['x', 'y', 'z']) print(df) # a b c d # x 0 1 2 3 # y 4 5 6 7 # z 8 9 10 11 print((df > 3) & (df % 2 == 0)) # a b c d # x False False False False # y True False True False # z True False True False # print((df > 3) and (df % 2 == 0)) # ValueError: The truth value of a DataFrame is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all(). # print(df > 3 & df % 2 == 0) # ValueError: The truth value of a DataFrame is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all(). print(df & 7) # a b c d # x 0 1 2 3 # y 4 5 6 7 # z 0 1 2 3 print(df | 1) # a b c d # x 1 1 3 3 # y 5 5 7 7 # z 9 9 11 11 # print(df << 1) # TypeError: unsupported operand type(s) for <<: 'DataFrame' and 'int' # print(df << df) # TypeError: unsupported operand type(s) for <<: 'DataFrame' and 'DataFrame' print(df > 3) # a b c d # x False False False False # y True True True True # z True True True True print((df > 3).all()) # a False # b False # c False # d False # dtype: bool print((df > 3).all(axis=1)) # x False # y True # z True # dtype: bool print((df > 3).all(axis=None)) # False print(df.empty) # False df_empty = pd.DataFrame() print(df_empty.empty) # True print(df.size) # 12 print(df_empty.size) # 0
configs/repvgg/deploy/repvgg-A0_deploy_4xb64-coslr-120e_in1k.py
YuxinZou/mmclassification
1,190
11167478
<gh_stars>1000+ _base_ = '../repvgg-A0_4xb64-coslr-120e_in1k.py' model = dict(backbone=dict(deploy=True))
alipay/aop/api/domain/LiveInfo.py
antopen/alipay-sdk-python-all
213
11167486
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.LiveContentInfo import LiveContentInfo class LiveInfo(object): def __init__(self): self._content_info_list = None self._live_end_time = None self._live_id = None self._live_start_time = None self._summary = None self._title = None @property def content_info_list(self): return self._content_info_list @content_info_list.setter def content_info_list(self, value): if isinstance(value, list): self._content_info_list = list() for i in value: if isinstance(i, LiveContentInfo): self._content_info_list.append(i) else: self._content_info_list.append(LiveContentInfo.from_alipay_dict(i)) @property def live_end_time(self): return self._live_end_time @live_end_time.setter def live_end_time(self, value): self._live_end_time = value @property def live_id(self): return self._live_id @live_id.setter def live_id(self, value): self._live_id = value @property def live_start_time(self): return self._live_start_time @live_start_time.setter def live_start_time(self, value): self._live_start_time = value @property def summary(self): return self._summary @summary.setter def summary(self, value): self._summary = value @property def title(self): return self._title @title.setter def title(self, value): self._title = value def to_alipay_dict(self): params = dict() if self.content_info_list: if isinstance(self.content_info_list, list): for i in range(0, len(self.content_info_list)): element = self.content_info_list[i] if hasattr(element, 'to_alipay_dict'): self.content_info_list[i] = element.to_alipay_dict() if hasattr(self.content_info_list, 'to_alipay_dict'): params['content_info_list'] = self.content_info_list.to_alipay_dict() else: params['content_info_list'] = self.content_info_list if self.live_end_time: if hasattr(self.live_end_time, 'to_alipay_dict'): params['live_end_time'] = self.live_end_time.to_alipay_dict() else: params['live_end_time'] = self.live_end_time if self.live_id: if hasattr(self.live_id, 'to_alipay_dict'): params['live_id'] = self.live_id.to_alipay_dict() else: params['live_id'] = self.live_id if self.live_start_time: if hasattr(self.live_start_time, 'to_alipay_dict'): params['live_start_time'] = self.live_start_time.to_alipay_dict() else: params['live_start_time'] = self.live_start_time if self.summary: if hasattr(self.summary, 'to_alipay_dict'): params['summary'] = self.summary.to_alipay_dict() else: params['summary'] = self.summary if self.title: if hasattr(self.title, 'to_alipay_dict'): params['title'] = self.title.to_alipay_dict() else: params['title'] = self.title return params @staticmethod def from_alipay_dict(d): if not d: return None o = LiveInfo() if 'content_info_list' in d: o.content_info_list = d['content_info_list'] if 'live_end_time' in d: o.live_end_time = d['live_end_time'] if 'live_id' in d: o.live_id = d['live_id'] if 'live_start_time' in d: o.live_start_time = d['live_start_time'] if 'summary' in d: o.summary = d['summary'] if 'title' in d: o.title = d['title'] return o
futu/common/pb/Qot_GetUserSecurityGroup_pb2.py
Hason-Cheung/py-futu-api
858
11167487
<gh_stars>100-1000 # Generated by the protocol buffer compiler. DO NOT EDIT! # source: Qot_GetUserSecurityGroup.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() import Common_pb2 as Common__pb2 import Qot_Common_pb2 as Qot__Common__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='Qot_GetUserSecurityGroup.proto', package='Qot_GetUserSecurityGroup', syntax='proto2', serialized_pb=_b('\n\x1eQot_GetUserSecurityGroup.proto\x12\x18Qot_GetUserSecurityGroup\x1a\x0c\x43ommon.proto\x1a\x10Qot_Common.proto\"\x18\n\x03\x43\x32S\x12\x11\n\tgroupType\x18\x01 \x02(\x05\"1\n\tGroupData\x12\x11\n\tgroupName\x18\x01 \x02(\t\x12\x11\n\tgroupType\x18\x02 \x02(\x05\"=\n\x03S2C\x12\x36\n\tgroupList\x18\x01 \x03(\x0b\x32#.Qot_GetUserSecurityGroup.GroupData\"5\n\x07Request\x12*\n\x03\x63\x32s\x18\x01 \x02(\x0b\x32\x1d.Qot_GetUserSecurityGroup.C2S\"n\n\x08Response\x12\x15\n\x07retType\x18\x01 \x02(\x05:\x04-400\x12\x0e\n\x06retMsg\x18\x02 \x01(\t\x12\x0f\n\x07\x65rrCode\x18\x03 \x01(\x05\x12*\n\x03s2c\x18\x04 \x01(\x0b\x32\x1d.Qot_GetUserSecurityGroup.S2C*a\n\tGroupType\x12\x15\n\x11GroupType_Unknown\x10\x00\x12\x14\n\x10GroupType_Custom\x10\x01\x12\x14\n\x10GroupType_System\x10\x02\x12\x11\n\rGroupType_All\x10\x03\x42N\n\x13\x63om.futu.openapi.pbZ7github.com/futuopen/ftapi4go/pb/qotgetusersecuritygroup') , dependencies=[Common__pb2.DESCRIPTOR,Qot__Common__pb2.DESCRIPTOR,]) _GROUPTYPE = _descriptor.EnumDescriptor( name='GroupType', full_name='Qot_GetUserSecurityGroup.GroupType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='GroupType_Unknown', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='GroupType_Custom', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='GroupType_System', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='GroupType_All', index=3, number=3, options=None, type=None), ], containing_type=None, options=None, serialized_start=399, serialized_end=496, ) _sym_db.RegisterEnumDescriptor(_GROUPTYPE) GroupType = enum_type_wrapper.EnumTypeWrapper(_GROUPTYPE) GroupType_Unknown = 0 GroupType_Custom = 1 GroupType_System = 2 GroupType_All = 3 _C2S = _descriptor.Descriptor( name='C2S', full_name='Qot_GetUserSecurityGroup.C2S', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='groupType', full_name='Qot_GetUserSecurityGroup.C2S.groupType', index=0, number=1, type=5, cpp_type=1, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=92, serialized_end=116, ) _GROUPDATA = _descriptor.Descriptor( name='GroupData', full_name='Qot_GetUserSecurityGroup.GroupData', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='groupName', full_name='Qot_GetUserSecurityGroup.GroupData.groupName', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='groupType', full_name='Qot_GetUserSecurityGroup.GroupData.groupType', index=1, number=2, type=5, cpp_type=1, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=118, serialized_end=167, ) _S2C = _descriptor.Descriptor( name='S2C', full_name='Qot_GetUserSecurityGroup.S2C', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='groupList', full_name='Qot_GetUserSecurityGroup.S2C.groupList', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=169, serialized_end=230, ) _REQUEST = _descriptor.Descriptor( name='Request', full_name='Qot_GetUserSecurityGroup.Request', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='c2s', full_name='Qot_GetUserSecurityGroup.Request.c2s', index=0, number=1, type=11, cpp_type=10, label=2, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=232, serialized_end=285, ) _RESPONSE = _descriptor.Descriptor( name='Response', full_name='Qot_GetUserSecurityGroup.Response', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='retType', full_name='Qot_GetUserSecurityGroup.Response.retType', index=0, number=1, type=5, cpp_type=1, label=2, has_default_value=True, default_value=-400, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='retMsg', full_name='Qot_GetUserSecurityGroup.Response.retMsg', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='errCode', full_name='Qot_GetUserSecurityGroup.Response.errCode', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='s2c', full_name='Qot_GetUserSecurityGroup.Response.s2c', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=287, serialized_end=397, ) _S2C.fields_by_name['groupList'].message_type = _GROUPDATA _REQUEST.fields_by_name['c2s'].message_type = _C2S _RESPONSE.fields_by_name['s2c'].message_type = _S2C DESCRIPTOR.message_types_by_name['C2S'] = _C2S DESCRIPTOR.message_types_by_name['GroupData'] = _GROUPDATA DESCRIPTOR.message_types_by_name['S2C'] = _S2C DESCRIPTOR.message_types_by_name['Request'] = _REQUEST DESCRIPTOR.message_types_by_name['Response'] = _RESPONSE DESCRIPTOR.enum_types_by_name['GroupType'] = _GROUPTYPE _sym_db.RegisterFileDescriptor(DESCRIPTOR) C2S = _reflection.GeneratedProtocolMessageType('C2S', (_message.Message,), dict( DESCRIPTOR = _C2S, __module__ = 'Qot_GetUserSecurityGroup_pb2' # @@protoc_insertion_point(class_scope:Qot_GetUserSecurityGroup.C2S) )) _sym_db.RegisterMessage(C2S) GroupData = _reflection.GeneratedProtocolMessageType('GroupData', (_message.Message,), dict( DESCRIPTOR = _GROUPDATA, __module__ = 'Qot_GetUserSecurityGroup_pb2' # @@protoc_insertion_point(class_scope:Qot_GetUserSecurityGroup.GroupData) )) _sym_db.RegisterMessage(GroupData) S2C = _reflection.GeneratedProtocolMessageType('S2C', (_message.Message,), dict( DESCRIPTOR = _S2C, __module__ = 'Qot_GetUserSecurityGroup_pb2' # @@protoc_insertion_point(class_scope:Qot_GetUserSecurityGroup.S2C) )) _sym_db.RegisterMessage(S2C) Request = _reflection.GeneratedProtocolMessageType('Request', (_message.Message,), dict( DESCRIPTOR = _REQUEST, __module__ = 'Qot_GetUserSecurityGroup_pb2' # @@protoc_insertion_point(class_scope:Qot_GetUserSecurityGroup.Request) )) _sym_db.RegisterMessage(Request) Response = _reflection.GeneratedProtocolMessageType('Response', (_message.Message,), dict( DESCRIPTOR = _RESPONSE, __module__ = 'Qot_GetUserSecurityGroup_pb2' # @@protoc_insertion_point(class_scope:Qot_GetUserSecurityGroup.Response) )) _sym_db.RegisterMessage(Response) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n\023com.futu.openapi.pbZ7github.com/futuopen/ftapi4go/pb/qotgetusersecuritygroup')) # @@protoc_insertion_point(module_scope)
etc/pending_ugens/Formant.py
butayama/supriya
191
11167490
import collections from supriya.enums import CalculationRate from supriya.synthdefs import PureUGen class Formant(PureUGen): """ :: >>> formant = supriya.ugens.Formant.ar( ... bwfrequency=880, ... formfrequency=1760, ... fundfrequency=440, ... ) >>> formant Formant.ar() """ ### CLASS VARIABLES ### __documentation_section__ = None _ordered_input_names = collections.OrderedDict( 'fundfrequency', 'formfrequency', 'bwfrequency', ) _valid_calculation_rates = None ### INITIALIZER ### def __init__( self, calculation_rate=None, bwfrequency=880, formfrequency=1760, fundfrequency=440, ): PureUGen.__init__( self, calculation_rate=calculation_rate, bwfrequency=bwfrequency, formfrequency=formfrequency, fundfrequency=fundfrequency, ) ### PUBLIC METHODS ### @classmethod def ar( cls, bwfrequency=880, formfrequency=1760, fundfrequency=440, ): """ Constructs an audio-rate Formant. :: >>> formant = supriya.ugens.Formant.ar( ... bwfrequency=880, ... formfrequency=1760, ... fundfrequency=440, ... ) >>> formant Formant.ar() Returns ugen graph. """ import supriya.synthdefs calculation_rate = supriya.CalculationRate.AUDIO ugen = cls._new_expanded( calculation_rate=calculation_rate, bwfrequency=bwfrequency, formfrequency=formfrequency, fundfrequency=fundfrequency, ) return ugen ### PUBLIC PROPERTIES ### @property def bwfrequency(self): """ Gets `bwfrequency` input of Formant. :: >>> formant = supriya.ugens.Formant.ar( ... bwfrequency=880, ... formfrequency=1760, ... fundfrequency=440, ... ) >>> formant.bwfrequency 880.0 Returns ugen input. """ index = self._ordered_input_names.index('bwfrequency') return self._inputs[index] @property def formfrequency(self): """ Gets `formfrequency` input of Formant. :: >>> formant = supriya.ugens.Formant.ar( ... bwfrequency=880, ... formfrequency=1760, ... fundfrequency=440, ... ) >>> formant.formfrequency 1760.0 Returns ugen input. """ index = self._ordered_input_names.index('formfrequency') return self._inputs[index] @property def fundfrequency(self): """ Gets `fundfrequency` input of Formant. :: >>> formant = supriya.ugens.Formant.ar( ... bwfrequency=880, ... formfrequency=1760, ... fundfrequency=440, ... ) >>> formant.fundfrequency 440.0 Returns ugen input. """ index = self._ordered_input_names.index('fundfrequency') return self._inputs[index]
test/py/TestRenderedDoubleConstants.py
Jimexist/thrift
8,514
11167503
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import unittest from DoubleConstantsTest import constants # # In order to run the test under Windows. We need to create symbolic link # name 'thrift' to '../src' folder by using: # # mklink /D thrift ..\src # class TestRenderedDoubleConstants(unittest.TestCase): ASSERTION_MESSAGE_FOR_RENDERED_DOUBLE_CONSTANTS_TEST = \ "failed to verify a double constant generated by Thrift (expected = %f, got = %f)" ASSERTION_MESSAGE_FOR_RENDERED_DOUBLE_LIST_TEST =\ "failed to verify a list item by Thrift (expected = %f, got = %f)" ASSERTION_MESSAGE_FOR_TYPE_CHECKS = "the rendered variable with name %s is not of double type" # to make sure the variables inside Thrift files are generated correctly def test_rendered_double_constants(self): EXPECTED_DOUBLE_ASSIGNED_TO_INT_CONSTANT = 1.0 EXPECTED_DOUBLE_ASSIGNED_TO_NEGATIVE_INT_CONSTANT = -100.0 EXPECTED_DOUBLE_ASSIGNED_TO_LARGEST_INT_CONSTANT = 9223372036854775807.0 EXPECTED_DOUBLE_ASSIGNED_TO_SMALLEST_INT_CONSTANT = -9223372036854775807.0 EXPECTED_DOUBLE_ASSIGNED_TO_DOUBLE_WITH_MANY_DECIMALS = 3.14159265359 EXPECTED_DOUBLE_ASSIGNED_TO_FRACTIONAL_DOUBLE = 1000000.1 EXPECTED_DOUBLE_ASSIGNED_TO_NEGATIVE_FRACTIONAL_DOUBLE = -1000000.1 EXPECTED_DOUBLE_ASSIGNED_TO_LARGE_DOUBLE = 1.7e+308 EXPECTED_DOUBLE_ASSIGNED_TO_LARGE_FRACTIONAL_DOUBLE = 9223372036854775816.43 EXPECTED_DOUBLE_ASSIGNED_TO_SMALL_DOUBLE = -1.7e+308 EXPECTED_DOUBLE_ASSIGNED_TO_NEGATIVE_BUT_LARGE_FRACTIONAL_DOUBLE = -9223372036854775816.43 self.assertAlmostEqual( constants.DOUBLE_ASSIGNED_TO_INT_CONSTANT_TEST, EXPECTED_DOUBLE_ASSIGNED_TO_INT_CONSTANT, places=7, msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_RENDERED_DOUBLE_CONSTANTS_TEST % ( EXPECTED_DOUBLE_ASSIGNED_TO_INT_CONSTANT, constants.DOUBLE_ASSIGNED_TO_INT_CONSTANT_TEST)) self.assertAlmostEqual( constants.DOUBLE_ASSIGNED_TO_NEGATIVE_INT_CONSTANT_TEST, EXPECTED_DOUBLE_ASSIGNED_TO_NEGATIVE_INT_CONSTANT, places=7, msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_RENDERED_DOUBLE_CONSTANTS_TEST % ( EXPECTED_DOUBLE_ASSIGNED_TO_NEGATIVE_INT_CONSTANT, constants.DOUBLE_ASSIGNED_TO_NEGATIVE_INT_CONSTANT_TEST)) self.assertAlmostEqual( constants.DOUBLE_ASSIGNED_TO_LARGEST_INT_CONSTANT_TEST, EXPECTED_DOUBLE_ASSIGNED_TO_LARGEST_INT_CONSTANT, places=7, msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_RENDERED_DOUBLE_CONSTANTS_TEST % ( EXPECTED_DOUBLE_ASSIGNED_TO_LARGEST_INT_CONSTANT, constants.DOUBLE_ASSIGNED_TO_LARGEST_INT_CONSTANT_TEST)) self.assertAlmostEqual( constants.DOUBLE_ASSIGNED_TO_SMALLEST_INT_CONSTANT_TEST, EXPECTED_DOUBLE_ASSIGNED_TO_SMALLEST_INT_CONSTANT, places=7, msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_RENDERED_DOUBLE_CONSTANTS_TEST % ( EXPECTED_DOUBLE_ASSIGNED_TO_SMALLEST_INT_CONSTANT, constants.DOUBLE_ASSIGNED_TO_SMALLEST_INT_CONSTANT_TEST)) self.assertAlmostEqual( constants.DOUBLE_ASSIGNED_TO_DOUBLE_WITH_MANY_DECIMALS_TEST, EXPECTED_DOUBLE_ASSIGNED_TO_DOUBLE_WITH_MANY_DECIMALS, places=7, msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_RENDERED_DOUBLE_CONSTANTS_TEST % ( EXPECTED_DOUBLE_ASSIGNED_TO_DOUBLE_WITH_MANY_DECIMALS, constants.DOUBLE_ASSIGNED_TO_DOUBLE_WITH_MANY_DECIMALS_TEST)) self.assertAlmostEqual( constants.DOUBLE_ASSIGNED_TO_FRACTIONAL_DOUBLE_TEST, EXPECTED_DOUBLE_ASSIGNED_TO_FRACTIONAL_DOUBLE, places=7, msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_RENDERED_DOUBLE_CONSTANTS_TEST % ( EXPECTED_DOUBLE_ASSIGNED_TO_FRACTIONAL_DOUBLE, constants.DOUBLE_ASSIGNED_TO_FRACTIONAL_DOUBLE_TEST)) self.assertAlmostEqual( constants.DOUBLE_ASSIGNED_TO_NEGATIVE_FRACTIONAL_DOUBLE_TEST, EXPECTED_DOUBLE_ASSIGNED_TO_NEGATIVE_FRACTIONAL_DOUBLE, places=7, msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_RENDERED_DOUBLE_CONSTANTS_TEST % ( EXPECTED_DOUBLE_ASSIGNED_TO_NEGATIVE_FRACTIONAL_DOUBLE, constants.DOUBLE_ASSIGNED_TO_NEGATIVE_FRACTIONAL_DOUBLE_TEST)) self.assertAlmostEqual( constants.DOUBLE_ASSIGNED_TO_LARGE_DOUBLE_TEST, EXPECTED_DOUBLE_ASSIGNED_TO_LARGE_DOUBLE, places=7, msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_RENDERED_DOUBLE_CONSTANTS_TEST % ( EXPECTED_DOUBLE_ASSIGNED_TO_LARGE_DOUBLE, constants.DOUBLE_ASSIGNED_TO_LARGE_DOUBLE_TEST)) self.assertAlmostEqual( constants.DOUBLE_ASSIGNED_TO_LARGE_FRACTIONAL_DOUBLE_TEST, EXPECTED_DOUBLE_ASSIGNED_TO_LARGE_FRACTIONAL_DOUBLE, places=7, msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_RENDERED_DOUBLE_CONSTANTS_TEST % ( EXPECTED_DOUBLE_ASSIGNED_TO_LARGE_FRACTIONAL_DOUBLE, constants.DOUBLE_ASSIGNED_TO_LARGE_FRACTIONAL_DOUBLE_TEST)) self.assertAlmostEqual( constants.DOUBLE_ASSIGNED_TO_SMALL_DOUBLE_TEST, EXPECTED_DOUBLE_ASSIGNED_TO_SMALL_DOUBLE, places=7, msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_RENDERED_DOUBLE_CONSTANTS_TEST % ( EXPECTED_DOUBLE_ASSIGNED_TO_SMALL_DOUBLE, constants.DOUBLE_ASSIGNED_TO_SMALL_DOUBLE_TEST)) self.assertAlmostEqual( constants.DOUBLE_ASSIGNED_TO_NEGATIVE_BUT_LARGE_FRACTIONAL_DOUBLE_TEST, EXPECTED_DOUBLE_ASSIGNED_TO_NEGATIVE_BUT_LARGE_FRACTIONAL_DOUBLE, places=7, msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_RENDERED_DOUBLE_CONSTANTS_TEST % ( EXPECTED_DOUBLE_ASSIGNED_TO_NEGATIVE_BUT_LARGE_FRACTIONAL_DOUBLE, constants.DOUBLE_ASSIGNED_TO_NEGATIVE_BUT_LARGE_FRACTIONAL_DOUBLE_TEST)) self.assertTrue( isinstance(constants.DOUBLE_ASSIGNED_TO_INT_CONSTANT_TEST, float), msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_TYPE_CHECKS % "DOUBLE_ASSIGNED_TO_INT_CONSTANT_TEST") self.assertTrue( isinstance(constants.DOUBLE_ASSIGNED_TO_NEGATIVE_INT_CONSTANT_TEST, float), msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_TYPE_CHECKS % "DOUBLE_ASSIGNED_TO_NEGATIVE_INT_CONSTANT_TEST") self.assertTrue( isinstance(constants.DOUBLE_ASSIGNED_TO_LARGEST_INT_CONSTANT_TEST, float), msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_TYPE_CHECKS % "DOUBLE_ASSIGNED_TO_LARGEST_INT_CONSTANT_TEST") self.assertTrue( isinstance(constants.DOUBLE_ASSIGNED_TO_SMALLEST_INT_CONSTANT_TEST, float), msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_TYPE_CHECKS % "DOUBLE_ASSIGNED_TO_SMALLEST_INT_CONSTANT_TEST") self.assertTrue( isinstance(constants.DOUBLE_ASSIGNED_TO_DOUBLE_WITH_MANY_DECIMALS_TEST, float), msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_TYPE_CHECKS % "DOUBLE_ASSIGNED_TO_DOUBLE_WITH_MANY_DECIMALS_TEST") self.assertTrue( isinstance(constants.DOUBLE_ASSIGNED_TO_FRACTIONAL_DOUBLE_TEST, float), msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_TYPE_CHECKS % "DOUBLE_ASSIGNED_TO_FRACTIONAL_DOUBLE_TEST") self.assertTrue( isinstance(constants.DOUBLE_ASSIGNED_TO_NEGATIVE_FRACTIONAL_DOUBLE_TEST, float), msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_TYPE_CHECKS % "DOUBLE_ASSIGNED_TO_NEGATIVE_FRACTIONAL_DOUBLE_TEST") self.assertTrue( isinstance(constants.DOUBLE_ASSIGNED_TO_LARGE_DOUBLE_TEST, float), msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_TYPE_CHECKS % "DOUBLE_ASSIGNED_TO_LARGE_DOUBLE_TEST") self.assertTrue( isinstance(constants.DOUBLE_ASSIGNED_TO_LARGE_FRACTIONAL_DOUBLE_TEST, float), msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_TYPE_CHECKS % "DOUBLE_ASSIGNED_TO_LARGE_FRACTIONAL_DOUBLE_TEST") self.assertTrue( isinstance(constants.DOUBLE_ASSIGNED_TO_SMALL_DOUBLE_TEST, float), msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_TYPE_CHECKS % "DOUBLE_ASSIGNED_TO_SMALL_DOUBLE_TEST") self.assertTrue( isinstance(constants.DOUBLE_ASSIGNED_TO_NEGATIVE_BUT_LARGE_FRACTIONAL_DOUBLE_TEST, float), msg=TestRenderedDoubleConstants.ASSERTION_MESSAGE_FOR_TYPE_CHECKS % "DOUBLE_ASSIGNED_TO_NEGATIVE_BUT_LARGE_FRACTIONAL_DOUBLE_TEST") # to make sure the variables inside Thrift files are generated correctly def test_rendered_double_list(self): EXPECTED_DOUBLE_LIST = [1.0, -100.0, 100.0, 9223372036854775807.0, -9223372036854775807.0, 3.14159265359, 1000000.1, -1000000.1, 1.7e+308, -1.7e+308, 9223372036854775816.43, -9223372036854775816.43] self.assertEqual(len(constants.DOUBLE_LIST_TEST), len(EXPECTED_DOUBLE_LIST)) for i, expectedValue in enumerate(EXPECTED_DOUBLE_LIST): self.assertAlmostEqual(constants.DOUBLE_LIST_TEST[i], expectedValue, places=7) def suite(): suite = unittest.TestSuite() loader = unittest.TestLoader() suite.addTest(loader.loadTestsFromTestCase(TestRenderedDoubleConstants)) return suite if __name__ == "__main__": unittest.main(defaultTest="suite", testRunner=unittest.TextTestRunner(verbosity=2))
api/v2/tests/tools.py
nathandarnell/sal
215
11167529
<reponame>nathandarnell/sal """Tools used in testing the Sal API app.""" import contextlib import io import sys from django.urls import reverse from rest_framework import status from rest_framework.test import APITestCase from server.models import (ApiKey, BusinessUnit, MachineGroup, Machine) # Get rid of pylint complaining about Django ORM stuff # pylint: disable=no-member @contextlib.contextmanager def no_stdout(): """Method decorator to prevent stdout from mucking up test output""" saved_stdout = sys.stdout sys.stdout = io.StringIO() try: yield except Exception: saved_output = sys.stdout sys.stdout = saved_stdout print(saved_output.getvalue()) raise sys.stdout = saved_stdout class SalAPITestCase(APITestCase): """Overriden DRF TestCase to simplify data setup and authenticated request generation. """ setup_data = [] def setUp(self): # Set up an APIKey for authenticated tests to use. api_key = ApiKey.objects.create() self.headers = { 'HTTP_PRIVATEKEY': api_key.private_key, 'HTTP_PUBLICKEY': api_key.public_key} for data_method_name in self.setup_data: data_method = getattr(self, data_method_name) data_method() # pylint: disable=no-self-use def create_machine_data(self): """Created all data needed for machine testing.""" machine_group = self.create_machine_group_data() Machine.objects.create( serial='C0DEADBEEF', machine_group=machine_group) Machine.objects.create( serial='C1DEADBEEF', machine_group=machine_group) # pylint: disable=no-self-use def create_business_unit_data(self): """Set up business unit data.""" return BusinessUnit.objects.create(name='test') # pylint: disable=no-self-use def create_machine_group_data(self): """Set up machine group and dependent data.""" business_unit = self.create_business_unit_data() return MachineGroup.objects.create( name='test', business_unit=business_unit) def authed_get(self, name, args=None, params=None): """Perform an authenticated get request to API.""" if not params: params = {} url = reverse(name, args=args) if args else reverse(name) return self.client.get(url, params, **self.headers) def authed_options(self, name, args=None, params=None): """Perform an authenticated get request to API.""" if not params: params = {} url = reverse(name, args=args) if args else reverse(name) return self.client.options(url, params, **self.headers) class TestGeneratorMeta(type): """Automatically generate basic tests for 'boring' endpoints. By replacing a UnitTest subclass' metaclass with this, and by adding a `tests` class property, you can automatically generate access, listing, and detail tests (that basically just ensure they return 200 at this time). `tests` should be an iterable of route names (lowercase, underscores stripped). """ def __new__(mcs, name, bases, attrs): """Override new to create our test methods with correct names""" for test_name in attrs['tests']: access_method, list_method, detail_method = mcs.generate_tests( test_name) attrs['test_{}_access'.format(test_name)] = access_method attrs['test_{}_list'.format(test_name)] = list_method attrs['test_{}_detail'.format(test_name)] = detail_method return super(TestGeneratorMeta, mcs).__new__(mcs, name, bases, attrs) @classmethod def generate_tests(mcs, route_name): """Generate the tests to attach to the new class.""" def access_method(self): """Test that unauthenticated access is denied.""" response = self.client.get(reverse('{}-list'.format(route_name))) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) def list_method(self): """Test that listing operations work""" response = self.authed_get('{}-list'.format(route_name)) self.assertEqual(response.status_code, status.HTTP_200_OK) def detail_method(self): """Test that detail operations work""" response = self.authed_get( '{}-detail'.format(route_name), args=(1,)) self.assertEqual(response.status_code, status.HTTP_200_OK) return (access_method, list_method, detail_method)
src/common/config.py
THUKElab/Video2Description
152
11167552
""" Configuration Parser for V2D """ import json import threading import os lock = threading.Lock() def get_config(): with lock: if hasattr(get_config, "config"): return get_config.config fname = os.environ.get("V2D_CONFIG_FILE", "config.json") with open(fname, "r") as fin: get_config.config = json.load(fin) return get_config.config def clear(): with lock: if hasattr(get_config, "config"): delattr(get_config, "config") def get_app_config(): return get_config()["app"] def get_rpc_config(): return get_config()["rpc"] def get_vpreprocess_config(): return get_config()["vpreprocess"] def get_vocab_config(): return get_config()["vocab"] def get_tests_config(): return get_config()["tests"]
utils.py
VishnuAvNair/ICIAR2018
185
11167566
#!/usr/bin/env python3 """Utilities for cross-validation. Notice data/folds-10.pkl we use in 10-fold cross-val. Keep it to replicate our results""" import numpy as np import glob from os.path import basename, join from sklearn.model_selection import StratifiedKFold import pickle def load_data(in_dir, folds=None, split=None): """Builds train/test data from preprocessed features for a given split # Arguments in_dir: Input directory containing *.npy CNN feature files. folds: None or list of splits dict{ "train": { "x": train files list, "y": train labels}, "test": { "x": test files list, "y": test labels}} } split: None or split number. # Returns Tran/test data (features and labels) for a given split, if `folds` is not None Test data (only features) and file names, if `folds` is None """ if folds: y_train = [] x_train = [] for f, l in zip(folds[split]["train"]["x"], folds[split]["train"]["y"]): x = np.load(join(in_dir, f)) x_train.append(x) y_train.append([l] * len(x)) x_train = np.vstack(x_train) y_train = np.concatenate(y_train) y_test = [] x_test = [] for f, l in zip(folds[split]["test"]["x"], folds[split]["test"]["y"]): x = np.load(join(in_dir, f)) x_test.append(x) y_test.append([l] * len(x)) x_test = np.vstack(x_test) y_test = np.concatenate(y_test) return x_train, y_train, x_test, y_test else: files = glob.glob(in_dir + "/*.npy") x = [] for f in files: x.append(np.load(f)) return np.vstack(x), np.array([basename(f) for f in files]) def make_folds(): """Creates stratified splits based on train directory listing # Dumps folds: list of splits dict{ "train": { "x": train files list, "y": train labels}, "test": { "x": test files list, "y": test labels}} } """ files = np.array([basename(f) for f in glob.glob("data/preprocessed/train/ResNet-0.5-400/*.npy")]) labels = [] classes = np.array([0, 1, 2, 3]) for f in files: lb = np.array([f.startswith("n"), f.startswith("b"), f.startswith("is"), f.startswith("iv")]) labels.append(classes[np.argmax(lb)]) labels = np.array(labels) folds = [] skf = StratifiedKFold(n_splits=10, shuffle=True) for train_index, test_index in skf.split(files, labels): f_train, f_test = files[train_index], files[test_index] y_train, y_test = labels[train_index], labels[test_index] folds.append({"train": {"x": f_train, "y": y_train}, "test": {"x": f_test, "y": y_test}}) with open("data/folds-10.pkl", "wb") as f: pickle.dump(folds, f)
infra/scripts/legacy/scripts/common/chromium_utils.py
google-ar/chromium
2,151
11167576
<reponame>google-ar/chromium<filename>infra/scripts/legacy/scripts/common/chromium_utils.py # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Set of basic operations/utilities that are used by the build. """ from contextlib import contextmanager import ast import cStringIO import copy import errno import fnmatch import glob import json import os import re import shutil import socket import stat import subprocess import sys import threading import time import traceback BUILD_DIR = os.path.realpath(os.path.join( os.path.dirname(__file__), os.pardir, os.pardir)) # Local errors. class MissingArgument(Exception): pass class PathNotFound(Exception): pass class ExternalError(Exception): pass def IsWindows(): return sys.platform == 'cygwin' or sys.platform.startswith('win') def IsLinux(): return sys.platform.startswith('linux') def IsMac(): return sys.platform.startswith('darwin') def convert_json(option, _, value, parser): """Provide an OptionParser callback to unmarshal a JSON string.""" setattr(parser.values, option.dest, json.loads(value)) def AddPropertiesOptions(option_parser): """Registers command line options for parsing build and factory properties. After parsing, the options object will have the 'build_properties' and 'factory_properties' attributes. The corresponding values will be python dictionaries containing the properties. If the options are not given on the command line, the dictionaries will be empty. Args: option_parser: An optparse.OptionParser to register command line options for build and factory properties. """ option_parser.add_option('--build-properties', action='callback', callback=convert_json, type='string', nargs=1, default={}, help='build properties in JSON format') option_parser.add_option('--factory-properties', action='callback', callback=convert_json, type='string', nargs=1, default={}, help='factory properties in JSON format')
neurst_pt/models/model_utils.py
ishine/neurst
208
11167595
# Copyright 2020 ByteDance Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch def input_length_to_nonpadding(lengths, max_len, dtype=None): """ Creates a bias tensor according to the non-padding tensor for cross entropy. Args: length: A Tensor with shape [batch_size, ], indicating the true length. max_len: A scalar tensor indicating the maximum length. Returns: A float tensor with shape [batch_size, max_len], indicating the padding positions, where 0.0 for padding and 1.0 for non-padding. """ row_vector = torch.arange(0, max_len) matrix = torch.unsqueeze(lengths, dim=-1) mask = (row_vector < matrix).to(dtype or torch.float) return mask # 1.0 for non-padding def input_length_to_padding(lengths, max_len, dtype=None): """ Creates a bias tensor according to the padding tensor for attention. Args: length: A Tensor with shape [batch_size, ], indicating the true length. max_len: A scalar tensor indicating the maximum length. Returns: A float tensor with shape [batch_size, max_len], indicating the padding positions, where 1.0 for padding and 0.0 for non-padding. """ return 1. - input_length_to_nonpadding(lengths, max_len, dtype)
tests/test_db.py
witold-gren/django-health-check
739
11167606
from django.db import DatabaseError, IntegrityError from django.db.models import Model from django.test import TestCase from mock import patch from health_check.db.backends import DatabaseBackend class MockDBModel(Model): """ A Mock database used for testing. error_thrown - The Exception to be raised when save() is called, if any """ error_thrown = None def __init__(self, error_thrown=None, *args, **kwargs): super(MockDBModel, self).__init__(*args, **kwargs) self.error_thrown = error_thrown def save(self, *args, **kwargs): if self.error_thrown is not None: raise self.error_thrown else: return True def delete(self, *args, **kwargs): return True def raise_(ex): raise ex class HealthCheckDatabaseTests(TestCase): """ Tests health check behavior with a mocked database backend. Ensures check_status returns/raises the expected result when the database works or raises exceptions. """ @patch('health_check.db.backends.TestModel.objects.create', lambda title=None: MockDBModel()) def test_check_status_works(self): db_backend = DatabaseBackend() db_backend.check_status() self.assertFalse(db_backend.errors) @patch('health_check.db.backends.TestModel.objects.create', lambda title=None: raise_(IntegrityError)) def test_raise_integrity_error(self): db_backend = DatabaseBackend() db_backend.run_check() self.assertTrue(db_backend.errors) self.assertIn('unexpected result: Integrity Error', db_backend.pretty_status()) @patch('health_check.db.backends.TestModel.objects.create', lambda title=None: MockDBModel(error_thrown=DatabaseError)) def test_raise_database_error(self): db_backend = DatabaseBackend() db_backend.run_check() self.assertTrue(db_backend.errors) self.assertIn('unavailable: Database error', db_backend.pretty_status()) @patch('health_check.db.backends.TestModel.objects.create', lambda title=None: MockDBModel(error_thrown=Exception)) def test_raise_exception(self): db_backend = DatabaseBackend() with self.assertRaises(Exception): db_backend.run_check()
intro/numpy/examples/plot_polyfit.py
zmoon/scipy-lecture-notes
2,538
11167617
<filename>intro/numpy/examples/plot_polyfit.py """ Fitting to polynomial ===================== Plot noisy data and their polynomial fit """ import numpy as np import matplotlib.pyplot as plt np.random.seed(12) x = np.linspace(0, 1, 20) y = np.cos(x) + 0.3*np.random.rand(20) p = np.poly1d(np.polyfit(x, y, 3)) t = np.linspace(0, 1, 200) plt.plot(x, y, 'o', t, p(t), '-') plt.show()
EXAMPLES/Python/DHT11_SENSOR/dht11.py
CodeRancher/pigpio
654
11167629
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals import time import pigpio class DHT11(object): """ The DHT11 class is a stripped version of the DHT22 sensor code by joan2937. You can find the initial implementation here: - https://github.com/srounet/pigpio/tree/master/EXAMPLES/Python/DHT22_AM2302_SENSOR example code: >>> pi = pigpio.pi() >>> sensor = DHT11(pi, 4) # 4 is the data GPIO pin connected to your sensor >>> for response in sensor: .... print("Temperature: {}".format(response['temperature'])) .... print("Humidity: {}".format(response['humidity'])) """ def __init__(self, pi, gpio): """ pi (pigpio): an instance of pigpio gpio (int): gpio pin number """ self.pi = pi self.gpio = gpio self.high_tick = 0 self.bit = 40 self.temperature = 0 self.humidity = 0 self.either_edge_cb = None self.setup() def setup(self): """ Clears the internal gpio pull-up/down resistor. Kills any watchdogs. """ self.pi.set_pull_up_down(self.gpio, pigpio.PUD_OFF) self.pi.set_watchdog(self.gpio, 0) self.register_callbacks() def register_callbacks(self): """ Monitors RISING_EDGE changes using callback. """ self.either_edge_cb = self.pi.callback( self.gpio, pigpio.EITHER_EDGE, self.either_edge_callback ) def either_edge_callback(self, gpio, level, tick): """ Either Edge callbacks, called each time the gpio edge changes. Accumulate the 40 data bits from the dht11 sensor. """ level_handlers = { pigpio.FALLING_EDGE: self._edge_FALL, pigpio.RISING_EDGE: self._edge_RISE, pigpio.EITHER_EDGE: self._edge_EITHER } handler = level_handlers[level] diff = pigpio.tickDiff(self.high_tick, tick) handler(tick, diff) def _edge_RISE(self, tick, diff): """ Handle Rise signal. """ val = 0 if diff >= 50: val = 1 if diff >= 200: # Bad bit? self.checksum = 256 # Force bad checksum if self.bit >= 40: # Message complete self.bit = 40 elif self.bit >= 32: # In checksum byte self.checksum = (self.checksum << 1) + val if self.bit == 39: # 40th bit received self.pi.set_watchdog(self.gpio, 0) total = self.humidity + self.temperature # is checksum ok ? if not (total & 255) == self.checksum: raise elif 16 <= self.bit < 24: # in temperature byte self.temperature = (self.temperature << 1) + val elif 0 <= self.bit < 8: # in humidity byte self.humidity = (self.humidity << 1) + val else: # skip header bits pass self.bit += 1 def _edge_FALL(self, tick, diff): """ Handle Fall signal. """ self.high_tick = tick if diff <= 250000: return self.bit = -2 self.checksum = 0 self.temperature = 0 self.humidity = 0 def _edge_EITHER(self, tick, diff): """ Handle Either signal. """ self.pi.set_watchdog(self.gpio, 0) def read(self): """ Start reading over DHT11 sensor. """ self.pi.write(self.gpio, pigpio.LOW) time.sleep(0.017) # 17 ms self.pi.set_mode(self.gpio, pigpio.INPUT) self.pi.set_watchdog(self.gpio, 200) time.sleep(0.2) def close(self): """ Stop reading sensor, remove callbacks. """ self.pi.set_watchdog(self.gpio, 0) if self.either_edge_cb: self.either_edge_cb.cancel() self.either_edge_cb = None def __iter__(self): """ Support the iterator protocol. """ return self def next(self): """ Call the read method and return temperature and humidity informations. """ self.read() response = { 'humidity': self.humidity, 'temperature': self.temperature } return response if __name__ == '__main__': pi = pigpio.pi() sensor = DHT11(pi, 4) for d in sensor: print("temperature: {}".format(d['temperature'])) print("humidity: {}".format(d['humidity'])) time.sleep(1) sensor.close()
help_utils/head_op.py
loceyi/CSL_RetinaNet_Tensorflow
187
11167640
<reponame>loceyi/CSL_RetinaNet_Tensorflow # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import cv2 import numpy as np import tensorflow as tf def get_head_quadrant(head, gtbox): """ :param head: [head_x, head_y] :param gtbox: [x_c, y_c, w, h, theta, label] :return: head quadrant 0/1/2/3 """ head_quadrant = [] for i, box in enumerate(gtbox): detla_x = head[i][0] - box[0] detla_y = head[i][1] - box[1] if (detla_x >= 0) and (detla_y >= 0): head_quadrant.append(0) elif (detla_x >= 0) and (detla_y <= 0): head_quadrant.append(1) elif (detla_x <= 0) and (detla_y <= 0): head_quadrant.append(2) else: head_quadrant.append(3) return np.array(head_quadrant, np.int32) def get_head(gtboxes_and_label_batch): """ :param gtboxes_and_label_batch: [x1, y1, x2, y2, x3, y3, x4, y4, head_x, head_y, label] :return: [x1, y1, x2, y2, x3, y3, x4, y4, label], [head_x, head_y] """ x1, y1, x2, y2, x3, y3, x4, y4, head_x, head_y, label = tf.unstack(gtboxes_and_label_batch, axis=1) coords_label = tf.transpose(tf.stack([x1, y1, x2, y2, x3, y3, x4, y4, label])) head = tf.transpose(tf.stack([head_x, head_y])) return coords_label, head
tests/micropython/const.py
LabAixBidouille/micropython
303
11167644
<reponame>LabAixBidouille/micropython # test constant optimisation X = const(123) Y = const(X + 456) print(X, Y + 1) def f(): print(X, Y + 1) f()
RecoEgamma/Examples/python/photonsWithConversionsAnalyzer_cfi.py
ckamtsikis/cmssw
852
11167647
<gh_stars>100-1000 import FWCore.ParameterSet.Config as cms # # Author: <NAME>, U. of Notre Dame, US # photonsWithConversionsAnalyzer = cms.EDAnalyzer("PhotonsWithConversionsAnalyzer", phoProducer = cms.string('correctedPhotons'), HistOutFile = cms.untracked.string('analyzer.root'), moduleLabelMC = cms.untracked.string('source'), moduleLabelTk = cms.untracked.string('g4SimHits'), photonCollection = cms.string('correctedPhotonsWithConversions'), moduleLabelHit = cms.untracked.string('g4SimHits'), moduleLabelVtx = cms.untracked.string('g4SimHits') )
samples/python/49.qnamaker-all-features/bots/__init__.py
Aliacf21/BotBuilder-Samples
1,998
11167650
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from .qna_bot import QnABot __all__ = ["QnABot"]
bernoulli.py
susan120433/distribution-is-all-you-need
1,390
11167697
""" Code by <NAME>(@graykode) https://en.wikipedia.org/wiki/Bernoulli_distribution """ import random import numpy as np from matplotlib import pyplot as plt def bernoulli(p, k): return p if k else 1 - p n_experiment = 100 p = 0.6 x = np.arange(n_experiment) y = [] for _ in range(n_experiment): pick = bernoulli(p, k=bool(random.getrandbits(1))) y.append(pick) u, s = np.mean(y), np.std(y) plt.scatter(x, y, label=r'$\mu=%.2f,\ \sigma=%.2f$' % (u, s)) plt.legend() plt.savefig('graph/bernoulli.png') plt.show()
s5_r2/local/prepare_dir_structure.py
protofy/kaldi-tuda-de
125
11167747
# This script builds the folder structure needed to train the model. It also asks where bigger files (mfcc, lm, exp) # Copyright 2015 Language Technology, Technische Universitaet Darmstadt (author: <NAME>) # Copyright 2018 Language Technology, Universitaet Hamburg (author: <NAME>) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from common_utils import make_sure_path_exists from six.moves import input import os import sys def symlink_file(file1,file2): try: os.symlink(file1, file2) except OSError as e: if e.errno == errno.EEXIST: print('Omitted symlink', file1, '->', file2, ', because it already exists') if not os.path.exists('run.sh'): print('You have to run this python script from the base dir, where run.sh is located. WARNING: aborting.') sys.exit('wrong woring directory') data_lex_dir = 'data/lexicon/' data_local_dir = 'data/local/' data_local_dict_dir = 'data/local/dict/' print('Creating local data directories...') print('Creating directoy if necessary:', data_lex_dir) make_sure_path_exists(data_lex_dir) print('Creating directoy if necessary:', data_local_dir) make_sure_path_exists(data_local_dir) print('Creating directoy if necessary:', data_local_dict_dir) make_sure_path_exists(data_local_dict_dir) #if exp and mfcc don't exist locally, create them as link to some other directory on a larger disk if not os.path.exists('exp/') and not os.path.exists('mfcc/'): default_dir = '/srv/data/speech/tuda_kaldi_de/' myinput = '' while(myinput != 'y' and myinput != 'n'): myinput = input('Do you want to symlink big data directories (features, models, wavs) to another path than the current directory? (y/n) ') data_dir = '.' mfcc_dir_src = data_dir + '/mfcc/' exp_dir_src = data_dir + '/exp/' lm_dir_src = data_dir + '/lm/' lm_dir_3gram_src = data_dir + '/lm/3gram-mincount/' lang_dir_src = data_dir + '/lang/' wav_dir_src = data_dir + '/wav/' if myinput == 'y': data_dir = input('Where do you want to store mfcc vectors and models (exp)? It should point to some largish disk. default: ' + default_dir + ' : ') if data_dir == '': data_dir = default_dir if data_dir.endswith('/'): data_dir = data_dir[:-1] print('Mfcc source dir: ',mfcc_dir_src,' model (exp) dir: ', exp_dir_src) mfcc_dir_src = data_dir + '/mfcc/' exp_dir_src = data_dir + '/exp/' lm_dir_src = data_dir + '/lm/' lm_dir_3gram_src = data_dir + '/lm/3gram-mincount/' lang_dir_src = data_dir + '/lang/' wav_dir_src = data_dir + '/wav/' print(mfcc_dir_src) make_sure_path_exists(mfcc_dir_src) print(exp_dir_src) make_sure_path_exists(exp_dir_src) print(lm_dir_src) make_sure_path_exists(lm_dir_src) print(lm_dir_3gram_src) make_sure_path_exists(lm_dir_3gram_src) print(lang_dir_src) make_sure_path_exists(lang_dir_src) print(wav_dir_src) make_sure_path_exists(wav_dir_src) symlink_file(mfcc_dir_src,'./mfcc') symlink_file(exp_dir_src,'./exp') symlink_file(lm_dir_src,'./data/local/lm') symlink_file(lang_dir_src,'./data/local/lang') symlink_file(wav_dir_src,'./data/wav') else: # just create the directories without symlinking them print('Creating directoy if necessary:', mfcc_dir_src) make_sure_path_exists(mfcc_dir_src) print('Creating directoy if necessary:', exp_dir_src) make_sure_path_exists(exp_dir_src) print('Creating directoy if necessary:', lm_dir_src) make_sure_path_exists(lm_dir_src) print('Creating directoy if necessary:', lang_dir_src) make_sure_path_exists(lang_dir_src) print('Creating directoy if necessary:', wav_dir_src) make_sure_path_exists(wav_dir_src)
aicsimageio/tests/utils/test_io_utils.py
brisvag/aicsimageio
110
11167786
#!/usr/bin/env python # -*- coding: utf-8 -*- import pytest from aicsimageio.utils.io_utils import pathlike_to_fs from ..conftest import LOCAL, REMOTE, get_resource_full_path @pytest.mark.parametrize("host", [LOCAL, REMOTE]) @pytest.mark.parametrize( "filename, enforce_exists", [ ("example.txt", False), ("example.txt", False), ("does-not-exist.good", False), ("does-not-exist.good", False), pytest.param( "does-not-exist.bad", True, marks=pytest.mark.raises(exception=FileNotFoundError), ), pytest.param( "does-not-exist.bad", True, marks=pytest.mark.raises(exception=FileNotFoundError), ), ], ) def test_pathlike_to_fs(filename: str, host: str, enforce_exists: bool) -> None: # Construct full filepath uri = get_resource_full_path(filename, host) pathlike_to_fs(uri, enforce_exists)
tests/import/import-from.test/kitchen/__init__.py
nanolikeyou/pysonar2
2,574
11167794
# knife is not exported __all__ = ["spoon", "fork"] def spoon(x): return x def fork(x): return [x,x] # knife is not exported def knife(x): return x+1
tests/context.py
chatzich/python-bitcoin-utils
104
11167804
<gh_stars>100-1000 # Copyright (C) 2018-2020 The python-bitcoin-utils developers # # This file is part of python-bitcoin-utils # # It is subject to the license terms in the LICENSE file found in the top-level # directory of this distribution. # # No part of python-bitcoin-utils, including this file, may be copied, # modified, propagated, or distributed except according to the terms contained # in the LICENSE file. import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'bitcoinutils'))) import bitcoinutils
tests/api/endpoints/admin/test_sys_notifications.py
weimens/seahub
420
11167811
import json from django.utils.crypto import get_random_string from seahub.test_utils import BaseTestCase from seahub.notifications.models import Notification class AdminSysNotificationsTest(BaseTestCase): def setUp(self): self.url = '/api/v2.1/admin/sys-notifications/' self.notification = Notification.objects.create() def tearDown(self): try: self.notification.delete() except Exception as e: pass def test_get_notifications(self): self.login_as(self.admin) resp = self.client.get(self.url) self.assertEqual(200, resp.status_code) json_resp = json.loads(resp.content) assert 'id' in json_resp['notifications'][0] assert 'msg' in json_resp['notifications'][0] assert 'is_current' in json_resp['notifications'][0] def test_no_permission(self): self.login_as(self.admin_no_other_permission) resp = self.client.get(self.url) self.assertEqual(403, resp.status_code) def test_get_with_invalid_user_permission(self): self.login_as(self.user) resp = self.client.get(self.url) self.assertEqual(403, resp.status_code) def test_create_notification(self): self.login_as(self.admin) data = { 'msg': get_random_string(), } resp = self.client.post(self.url, json.dumps(data), 'application/json') json_resp = json.loads(resp.content) self.assertEqual(200, resp.status_code) assert json_resp['notification']['msg'] == data['msg'] def test_create_notification_with_invalid_user_permission(self): self.login_as(self.user) data = { 'msg': get_random_string(), } resp = self.client.post(self.url, json.dumps(data), 'application/json') self.assertEqual(403, resp.status_code) class AdminSysNotificationTest(BaseTestCase): def setUp(self): self.url = '/api/v2.1/admin/sys-notifications/' self.notification = Notification.objects.create() def tearDown(self): try: self.notification.delete() except Exception as e: pass def test_set_notification_primary(self): self.login_as(self.admin) resp = self.client.put(self.url + str(self.notification.id) + '/') self.assertEqual(200, resp.status_code) def delete_notification(self): self.login_as(self.admin) resp = self.client.delete(self.url + str(self.notification.id) + '/') self.assertEqual(200, resp.status_code)