max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
src/probflow/utils/initializers.py
chiragnagpal/probflow
134
12665025
"""Initializers. Functions to initialize posterior distribution variables. * :func:`.xavier` - Xavier initializer * :func:`.scale_xavier` - Xavier initializer scaled for scale parameters * :func:`.pos_xavier` - positive-only initizlier ---------- """ import numpy as np from probflow.utils.settings import get_backend, get_datatype def xavier(shape): """Xavier initializer""" scale = np.sqrt(2 / sum(shape)) if get_backend() == "pytorch": # TODO: use truncated normal for torch import torch return torch.randn(shape, dtype=get_datatype()) * scale else: import tensorflow as tf return tf.random.truncated_normal( shape, mean=0.0, stddev=scale, dtype=get_datatype() ) def scale_xavier(shape): """Xavier initializer for scale variables""" vals = xavier(shape) if get_backend() == "pytorch": import torch numel = torch.prod(torch.Tensor(shape)) return vals + 2 - 2 * torch.log(numel) / np.log(10.0) else: import tensorflow as tf numel = float(tf.reduce_prod(shape)) return vals + 2 - 2 * tf.math.log(numel) / tf.math.log(10.0) def pos_xavier(shape): """Xavier initializer for positive variables""" vals = xavier(shape) if get_backend() == "pytorch": import torch numel = torch.prod(torch.Tensor(shape)) return vals + torch.log(numel) / np.log(10.0) else: import tensorflow as tf numel = float(tf.reduce_prod(shape)) return vals + tf.math.log(numel) / tf.math.log(10.0) def full_of(val): """Get initializer which returns tensor full of single value""" import probflow.utils.ops as O def init(shape): return val * O.ones(shape) return init
examples/misc/djangoweb/webpages/models.py
takipsizad/pyjs
739
12665036
from django.db.models import * class Page(Model): name = CharField(max_length=50) text = TextField() def __unicode__(self): return str(self.text)
tests/test_cases/test_multi_dimension_array/test_cocotb_array.py
lavanyajagan/cocotb
350
12665057
<reponame>lavanyajagan/cocotb<filename>tests/test_cases/test_multi_dimension_array/test_cocotb_array.py<gh_stars>100-1000 import cocotb from cocotb.triggers import Timer @cocotb.test() async def test_in_vect_packed(dut): test_value = 0x5 dut.in_vect_packed.value = test_value await Timer(1, "ns") assert dut.out_vect_packed.value == test_value @cocotb.test() async def test_in_vect_unpacked(dut): test_value = [0x1, 0x0, 0x1] dut.in_vect_unpacked.value = test_value await Timer(1, "ns") assert dut.out_vect_unpacked.value == test_value @cocotb.test() async def test_in_arr(dut): test_value = 0x5 dut.in_arr.value = test_value await Timer(1, "ns") assert dut.out_arr.value == test_value @cocotb.test() async def test_in_2d_vect_packed_packed(dut): test_value = (0x5 << 6) | (0x5 << 3) | 0x5 dut.in_2d_vect_packed_packed.value = test_value await Timer(1, "ns") assert dut.out_2d_vect_packed_packed.value == test_value @cocotb.test() async def test_in_2d_vect_packed_unpacked(dut): test_value = [0x5, 0x5, 0x5] dut.in_2d_vect_packed_unpacked.value = test_value await Timer(1, "ns") assert dut.out_2d_vect_packed_unpacked.value == test_value @cocotb.test() async def test_in_2d_vect_unpacked_unpacked(dut): test_value = 3 * [[0x1, 0x0, 0x1]] dut.in_2d_vect_unpacked_unpacked.value = test_value await Timer(1, "ns") assert dut.out_2d_vect_unpacked_unpacked.value == test_value @cocotb.test() async def test_in_arr_packed(dut): test_value = 365 dut.in_arr_packed.value = test_value await Timer(1, "ns") assert dut.out_arr_packed.value == test_value @cocotb.test() async def test_in_arr_unpacked(dut): test_value = [0x5, 0x5, 0x5] dut.in_arr_unpacked.value = test_value await Timer(1, "ns") assert dut.out_arr_unpacked.value == test_value @cocotb.test() async def test_in_2d_arr(dut): test_value = 365 dut.in_2d_arr.value = test_value await Timer(1, "ns") assert dut.out_2d_arr.value == test_value @cocotb.test() async def test_in_vect_packed_packed_packed(dut): test_value = 95869805 dut.in_vect_packed_packed_packed.value = test_value await Timer(1, "ns") assert dut.out_vect_packed_packed_packed.value == test_value # Questa is unable to access elements of a logic array if the last dimension is unpacked (gh-2605) @cocotb.test( expect_error=IndexError if cocotb.LANGUAGE == "verilog" and cocotb.SIM_NAME.lower().startswith("modelsim") else () ) async def test_in_vect_packed_packed_unpacked(dut): test_value = [365, 365, 365] dut.in_vect_packed_packed_unpacked.value = test_value await Timer(1, "ns") assert dut.out_vect_packed_packed_unpacked.value == test_value @cocotb.test() async def test_in_vect_packed_unpacked_unpacked(dut): test_value = 3 * [3 * [5]] dut.in_vect_packed_unpacked_unpacked.value = test_value await Timer(1, "ns") assert dut.out_vect_packed_unpacked_unpacked.value == test_value @cocotb.test() async def test_in_vect_unpacked_unpacked_unpacked(dut): test_value = 3 * [3 * [[1, 0, 1]]] dut.in_vect_unpacked_unpacked_unpacked.value = test_value await Timer(1, "ns") assert dut.out_vect_unpacked_unpacked_unpacked.value == test_value @cocotb.test() async def test_in_arr_packed_packed(dut): test_value = (365 << 18) | (365 << 9) | (365) dut.in_arr_packed_packed.value = test_value await Timer(1, "ns") assert dut.out_arr_packed_packed.value == test_value # Questa is unable to access elements of a logic array if the last dimension is unpacked (gh-2605) @cocotb.test( expect_error=IndexError if cocotb.LANGUAGE == "verilog" and cocotb.SIM_NAME.lower().startswith("modelsim") else () ) async def test_in_arr_packed_unpacked(dut): test_value = [365, 365, 365] dut.in_arr_packed_unpacked.value = test_value await Timer(1, "ns") assert dut.out_arr_packed_unpacked.value == test_value @cocotb.test() async def test_in_arr_unpacked_unpacked(dut): test_value = 3 * [3 * [5]] dut.in_arr_unpacked_unpacked.value = test_value await Timer(1, "ns") assert dut.out_arr_unpacked_unpacked.value == test_value @cocotb.test() async def test_in_2d_arr_packed(dut): test_value = (365 << 18) | (365 << 9) | (365) dut.in_2d_arr_packed.value = test_value await Timer(1, "ns") assert dut.out_2d_arr_packed.value == test_value # Questa is unable to access elements of a logic array if the last dimension is unpacked (gh-2605) @cocotb.test( expect_error=IndexError if cocotb.LANGUAGE == "verilog" and cocotb.SIM_NAME.lower().startswith("modelsim") else () ) async def test_in_2d_arr_unpacked(dut): test_value = [365, 365, 365] dut.in_2d_arr_unpacked.value = test_value await Timer(1, "ns") assert dut.out_2d_arr_unpacked.value == test_value @cocotb.test() async def test_in_3d_arr(dut): test_value = (365 << 18) | (365 << 9) | (365) dut.in_3d_arr.value = test_value await Timer(1, "ns") assert dut.out_3d_arr.value == test_value
tests/issues/test_issue_020.py
RodrigoDeRosa/related
190
12665064
<filename>tests/issues/test_issue_020.py import related @related.immutable class ImageOptions(object): registry = related.URLField() email = related.StringField() def test_image_options(): options = ImageOptions( registry="https://imgur.com/gallery/GAhlfKS", email="<EMAIL>" ) assert options.registry assert options.email
models/__init__.py
briana-jin-zhang/spatial-segmentation
733
12665082
<filename>models/__init__.py from . import backbone from .losses import * from .single_stage_model import * from .supervised import * from .partial_completion_mask import * from .partial_completion_content import * from .partial_completion_content_cgan import *
cryptol-remote-api/python/tests/cryptol/test_EvenMansour.py
GaloisInc/cryptol
773
12665084
import unittest from pathlib import Path import unittest import cryptol from cryptol.single_connection import * from cryptol.bitvector import BV class TestEvenMansour(unittest.TestCase): def test_EvenMansour(self): connect(verify=False) load_file(str(Path('tests','cryptol','test-files','examples','contrib','EvenMansour.cry'))) F_10_4 = cry_eval('F:[10][4]') self.assertTrue(call('is_a_permutation', F_10_4)) Finv_10_4 = cry_eval("F':[10][4]") digits = [ BV(size=4, value=i) for i in range(0,10) ] # ^ the same as: c.eval('[0..9]:[_][4]') self.assertTrue(call('is_inverse_permutation', digits, F_10_4, Finv_10_4)) self.assertTrue(check('E_and_D_are_inverses')) if __name__ == "__main__": unittest.main()
src/django-nonrel/tests/regressiontests/comment_tests/custom_comments/__init__.py
adamjmcgrath/glancydesign
790
12665087
<filename>src/django-nonrel/tests/regressiontests/comment_tests/custom_comments/__init__.py<gh_stars>100-1000 from django.core import urlresolvers from regressiontests.comment_tests.custom_comments.models import CustomComment from regressiontests.comment_tests.custom_comments.forms import CustomCommentForm def get_model(): return CustomComment def get_form(): return CustomCommentForm def get_form_target(): return urlresolvers.reverse( "regressiontests.comment_tests.custom_comments.views.custom_submit_comment" ) def get_flag_url(c): return urlresolvers.reverse( "regressiontests.comment_tests.custom_comments.views.custom_flag_comment", args=(c.id,) ) def get_delete_url(c): return urlresolvers.reverse( "regressiontests.comment_tests.custom_comments.views.custom_delete_comment", args=(c.id,) ) def get_approve_url(c): return urlresolvers.reverse( "regressiontests.comment_tests.custom_comments.views.custom_approve_comment", args=(c.id,) )
mayo/session/test.py
deep-fry/mayo
110
12665122
<reponame>deep-fry/mayo from mayo.session.base import SessionBase class Test(SessionBase): mode = 'test' def __init__(self, config): super().__init__(config) self.load_checkpoint(self.config.system.checkpoint.load) def test(self): todo = list(zip(self.task.names, self.task.predictions)) results = self.run(todo, batch=True) for names, predictions in results: self.task.test(names, predictions)
tests/data/test_DataBuffer.py
ankitshah009/dcase_util
122
12665130
<gh_stars>100-1000 """ Unit tests for FIFOBuffer """ import nose.tools import numpy import dcase_util from dcase_util.containers import MetaDataContainer from dcase_util.data import DataBuffer def test_DataBuffer(): buf = DataBuffer(size=2) nose.tools.eq_(buf.count, 0) nose.tools.eq_(buf.full, False) buf.set(key='key1', data=[1, 2, 3], meta='metadata1') nose.tools.eq_(buf.count, 1) nose.tools.eq_(buf.full, False) buf.set(key='key2', data=[2, 3, 4], meta='metadata2') nose.tools.eq_(buf.count, 2) nose.tools.eq_(buf.full, True) item_data, item_meta = buf.get(key='key1') nose.tools.eq_(item_data, [1, 2, 3]) nose.tools.eq_(item_meta, 'metadata1') item_data, item_meta = buf.get(key='key2') nose.tools.eq_(item_data, [2, 3, 4]) nose.tools.eq_(item_meta, 'metadata2') buf.set(key='key3', data=[3, 4, 5], meta='metadata3') item_data, item_meta = buf.get(key='key3') nose.tools.eq_(item_data, [3, 4, 5]) nose.tools.eq_(item_meta, 'metadata3') nose.tools.eq_(buf.get(key='key4'), (None, None)) nose.tools.eq_(buf.count, 2) buf.clear() nose.tools.eq_(buf.count, 0) def test_log(): with dcase_util.utils.DisableLogger(): DataBuffer( size=2, filename='event_roller.cpickle' ).log()
tests/test_difference.py
ajhynes7/datatest
277
12665144
<reponame>ajhynes7/datatest # -*- coding: utf-8 -*- import datetime import decimal import re import textwrap from . import _unittest as unittest from datatest.differences import ( BaseDifference, Missing, Extra, Invalid, Deviation, _make_difference, NOVALUE, ) # FOR TESTING: A minimal subclass of BaseDifference. # BaseDifference itself should not be instantiated # directly. class MinimalDifference(BaseDifference): def __init__(self, *args): self._args = args @property def args(self): return self._args class TestBaseDifference(unittest.TestCase): def test_instantiation(self): """BaseDifference should not be instantiated directly. It should only serve as a superclass for more specific differences. """ # Subclass should instantiate normally: subclass_instance = MinimalDifference('A') # Base class should raise error. regex = "Can't instantiate abstract class BaseDifference" with self.assertRaisesRegex(TypeError, regex): base_instance = BaseDifference() def test_args(self): """Args should be tuple of arguments.""" diff = MinimalDifference('A') self.assertEqual(diff.args, ('A',)) def test_repr(self): diff = MinimalDifference('A') self.assertEqual(repr(diff), "MinimalDifference('A')") diff = MinimalDifference('A', 'B') self.assertEqual(repr(diff), "MinimalDifference('A', 'B')") diff = MinimalDifference('A', None) self.assertEqual(repr(diff), "MinimalDifference('A', None)") def myfunc(x): return True diff = MinimalDifference('A', myfunc) self.assertEqual(repr(diff), "MinimalDifference('A', myfunc)") class MyClass(object): pass diff = MinimalDifference('A', MyClass) self.assertEqual(repr(diff), "MinimalDifference('A', MyClass)") def test_numbers_equal(self): first = MinimalDifference(1) second = MinimalDifference(1.0) self.assertEqual(first, second) first = MinimalDifference(1) second = MinimalDifference(2) self.assertNotEqual(first, second) def test_string_equal(self): first = MinimalDifference('A') second = MinimalDifference('A') self.assertEqual(first, second) def test_nan_equal(self): """NaN values should test as equal when part of a difference.""" first = MinimalDifference(float('nan')) second = MinimalDifference(float('nan')) self.assertEqual(first, second) # NaNs nested in a tuple should also test as equal. first = MinimalDifference(('abc', float('nan'))) second = MinimalDifference(('abc', float('nan'))) self.assertEqual(first, second) # Complex numbers, too. first = MinimalDifference(float('nan')) second = MinimalDifference(complex(float('nan'))) self.assertEqual(first, second) def test_comparing_different_types(self): diff = MinimalDifference('X') self.assertNotEqual(diff, Exception('X')) self.assertNotEqual(diff, None) self.assertNotEqual(diff, True) self.assertNotEqual(diff, False) class TestSubclassRelationship(unittest.TestCase): def test_subclass(self): self.assertTrue(issubclass(Extra, BaseDifference)) self.assertTrue(issubclass(Missing, BaseDifference)) self.assertTrue(issubclass(Invalid, BaseDifference)) self.assertTrue(issubclass(Deviation, BaseDifference)) class TestInvalid(unittest.TestCase): def test_repr(self): diff = Invalid('foo') self.assertEqual(repr(diff), "Invalid('foo')") diff = Invalid('foo', 'bar') self.assertEqual(repr(diff), "Invalid('foo', expected='bar')") diff = Invalid('foo', None) self.assertEqual(repr(diff), "Invalid('foo', expected=None)") def test_repr_with_callables(self): def myfunc(x): return True class MyClass(object): pass diff = Invalid('foo', myfunc) self.assertEqual(repr(diff), "Invalid('foo', expected=myfunc)") diff = Invalid('foo', MyClass) self.assertEqual(repr(diff), "Invalid('foo', expected=MyClass)") diff = Invalid(myfunc, 'bar') self.assertEqual(repr(diff), "Invalid(myfunc, expected='bar')") diff = Invalid(MyClass, 'bar') self.assertEqual(repr(diff), "Invalid(MyClass, expected='bar')") def test_same_values(self): with self.assertRaises(ValueError): Invalid('foo', 'foo') def test_equality_error(self): class BadObj(object): def __eq__(self, other): if isinstance(other, BadObj): return True raise TypeError('Sudden but inevitable betrayal!') diff = Invalid(BadObj(), float) # <- Checks for equality on init. self.assertEqual(diff.invalid, BadObj()) self.assertEqual(diff.expected, float) class TestDeviation(unittest.TestCase): def test_instantiation(self): Deviation(1, 100) # Pass without error. with self.assertRaises(ValueError): Deviation(0, 100) # Deviation should not be zero. def test_nonquantitative(self): with self.assertRaises(TypeError): Deviation(set([3]), set([1, 2])) def test_repr(self): diff = Deviation(1, 100) # Simple positive. self.assertEqual(repr(diff), "Deviation(+1, 100)") diff = Deviation(-1, 100) # Simple negative. self.assertEqual(repr(diff), "Deviation(-1, 100)") diff = Deviation(float('nan'), 100) # None reference. self.assertEqual(repr(diff), "Deviation(float('nan'), 100)") def test_repr_with_datetime(self): diff = Deviation( datetime.timedelta(hours=-1), datetime.datetime(1989, 2, 24, hour=11, minute=30), ) expected = \ 'Deviation(timedelta(seconds=-3600), datetime(1989, 2, 24, 11, 30))' self.assertEqual(repr(diff), expected) def test_repr_with_date(self): diff = Deviation( datetime.timedelta(days=1), datetime.date(1989, 2, 24), ) expected = 'Deviation(timedelta(days=+1), date(1989, 2, 24))' self.assertEqual(repr(diff), expected) def test_zero_and_empty_value_handling(self): """Empty values receive special handling.""" # Expected 0 (pass without error). Deviation(+5, 0) Deviation(-5, 0) Deviation(float('nan'), 0) with self.assertRaises(ValueError): Deviation(0, 0) # Expected numeric value (pass without error). Deviation(+1, 5) Deviation(-1, 5) Deviation(float('nan'), 5) # Expected non-zero, with empty or zero deviation. with self.assertRaises(ValueError): Deviation(0, 5) with self.assertRaises(TypeError): Deviation(None, 5) with self.assertRaises(TypeError): Deviation('', 5) with self.assertRaises(TypeError): Deviation(5, None) with self.assertRaises(TypeError): Deviation(5, '') # NaN handling. Deviation(float('nan'), 0) Deviation(0, float('nan')) def test_repr_eval(self): diff = Deviation(+1, 100) self.assertEqual(diff, eval(repr(diff))) diff = Deviation(-1, 100) self.assertEqual(diff, eval(repr(diff))) diff = Deviation(float('nan'), 100) self.assertEqual(diff, eval(repr(diff))) class TestImmutability(unittest.TestCase): """Differences should act like an immutable objects.""" def test_missing(self): diff = Missing('foo') with self.assertRaises(AttributeError): diff.attr = ('bar',) with self.assertRaises(AttributeError): diff.new_attribute = 'baz' def test_extra(self): diff = Extra('foo') with self.assertRaises(AttributeError): diff.attr = ('bar',) with self.assertRaises(AttributeError): diff.new_attribute = 'baz' def test_invalid(self): diff = Invalid('foo') with self.assertRaises(AttributeError): diff.expected = 'bar' with self.assertRaises(AttributeError): diff.new_attribute = 'baz' def test_deviation(self): diff = Deviation(+1, 100) with self.assertRaises(AttributeError): diff.expected = 101 with self.assertRaises(AttributeError): diff.new_attribute = 202 class TestHashability(unittest.TestCase): """Built-in differences should be hashable (in the same way that tuples are). """ def test_hashable(self): """Differences with hashable *args should be hashable.""" # Following should all pass without error. hash(Missing('foo')) hash(Extra('bar')) hash(Invalid('baz')) hash(Invalid('baz', 'qux')) hash(Deviation(-1, 10)) def test_unhashable_contents(self): """The hash behavior of differences should act like tuples do. When a difference's contents are unhashable, the difference itself becomes unhashable too. """ with self.assertRaises(TypeError): hash(Missing(['foo'])) with self.assertRaises(TypeError): hash(Extra(['bar'])) with self.assertRaises(TypeError): hash(Invalid(['baz'])) with self.assertRaises(TypeError): hash(Invalid('baz', ['qux'])) class TestMakeDifference(unittest.TestCase): def test_numeric_vs_numeric(self): diff = _make_difference(5, 6) self.assertEqual(diff, Deviation(-1, 6)) def test_decimal_vs_float(self): diff = _make_difference(decimal.Decimal('5'), 6.0) self.assertEqual(diff, Invalid(decimal.Decimal('5'), expected=6.0)) def test_datetime_vs_datetime(self): diff = _make_difference( datetime.datetime(1989, 2, 24, hour=10, minute=30), datetime.datetime(1989, 2, 24, hour=11, minute=30), ) self.assertEqual( diff, Deviation( datetime.timedelta(hours=-1), datetime.datetime(1989, 2, 24, hour=11, minute=30), ), ) def test_numeric_vs_none(self): diff = _make_difference(5, None) self.assertEqual(diff, Invalid(5, None)) diff = _make_difference(0, None) self.assertEqual(diff, Invalid(0, None)) def test_none_vs_numeric(self): diff = _make_difference(None, 6) self.assertEqual(diff, Invalid(None, 6)) diff = _make_difference(None, 0) self.assertEqual(diff, Invalid(None, 0)) def test_object_vs_object(self): """Non-numeric comparisons return Invalid type.""" diff = _make_difference('a', 'b') self.assertEqual(diff, Invalid('a', 'b')) diff = _make_difference(5, 'b') self.assertEqual(diff, Invalid(5, 'b')) diff = _make_difference('a', 6) self.assertEqual(diff, Invalid('a', 6)) diff = _make_difference(float('nan'), 6) self.assertEqual(diff, Deviation(float('nan'), 6)) diff = _make_difference(5, float('nan')) self.assertEqual(diff, Deviation(float('nan'), float('nan'))) fn = lambda x: True diff = _make_difference('a', fn) self.assertEqual(diff, Invalid('a', fn)) regex = re.compile('^test$') diff = _make_difference('a', regex) self.assertEqual(diff, Invalid('a', re.compile('^test$'))) def test_boolean_comparisons(self): """Boolean differences should not be treated quantitatively.""" diff = _make_difference(False, True) self.assertIs(diff.invalid, False) self.assertIs(diff.expected, True) diff = _make_difference(True, False) self.assertIs(diff.invalid, True) self.assertIs(diff.expected, False) diff = _make_difference(0, True) self.assertEqual(diff.invalid, 0) self.assertIsNot(diff.invalid, False) self.assertIs(diff.expected, True) diff = _make_difference(1, False) self.assertEqual(diff.invalid, 1) self.assertIsNot(diff.invalid, True) self.assertIs(diff.expected, False) diff = _make_difference(False, 1) self.assertIs(diff.invalid, False) self.assertEqual(diff.expected, 1) self.assertIsNot(diff.expected, True) diff = _make_difference(True, 0) self.assertIs(diff.invalid, True) self.assertEqual(diff.expected, 0) self.assertIsNot(diff.expected, False) def test_novalue_comparisons(self): diff = _make_difference('a', NOVALUE) self.assertEqual(diff, Extra('a')) diff = _make_difference(5, NOVALUE) self.assertEqual(diff, Extra(5)) diff = _make_difference(0, NOVALUE) self.assertEqual(diff, Extra(0)) diff = _make_difference(NOVALUE, 'a') self.assertEqual(diff, Missing('a')) diff = _make_difference(NOVALUE, 5) self.assertEqual(diff, Missing(5)) diff = _make_difference(NOVALUE, 0) self.assertEqual(diff, Missing(0)) def test_show_expected(self): """If requirement is common it should be omitted from Invalid difference (but not from Deviation differences). """ diff = _make_difference('a', 6, show_expected=True) self.assertEqual(diff, Invalid('a', expected=6)) diff = _make_difference('a', 6, show_expected=False) self.assertEqual(diff, Invalid('a')) # Show expected should not effect Missing, Extra, or Deviation: diff = _make_difference(NOVALUE, 6, show_expected=True) self.assertEqual(diff, Missing(6)) diff = _make_difference(NOVALUE, 6, show_expected=False) self.assertEqual(diff, Missing(6)) diff = _make_difference(6, NOVALUE, show_expected=True) self.assertEqual(diff, Extra(6)) diff = _make_difference(6, NOVALUE, show_expected=False) self.assertEqual(diff, Extra(6)) diff = _make_difference(1, 2, show_expected=True) self.assertEqual(diff, Deviation(-1, 2)) diff = _make_difference(1, 2, show_expected=False) self.assertEqual(diff, Deviation(-1, 2)) def test_same(self): with self.assertRaises(ValueError): diff = _make_difference('a', 'a') with self.assertRaises(ValueError): diff = _make_difference(None, None) # NaN should work though. _make_difference(float('nan'), float('nan'))
mushroom_rl/environments/pybullet_envs/air_hockey/__init__.py
jdsalmonson/mushroom-rl
344
12665147
from mushroom_rl.environments.pybullet_envs.air_hockey.hit import AirHockeyHit from mushroom_rl.environments.pybullet_envs.air_hockey.defend import AirHockeyDefend AirHockeyHit.register() AirHockeyDefend.register()
app/helpers/eventing/helpers.py
DaveCheez/serverless-store-demo
171
12665160
# Copyright 2018 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A collection of helper functions for streaming events. """ import os import json import time from google.cloud import pubsub_v1 publisher = pubsub_v1.PublisherClient() GCP_PROJECT = os.environ.get('GCP_PROJECT') def stream_event(topic_name, event_type, event_context): """ Helper function for publishing an event. Parameters: topic_name (str): The name of the Cloud Pub/Sub topic. event_type (str): The type of the event. event_context: The context of the event. Output: None. """ topic_path = publisher.topic_path(GCP_PROJECT, topic_name) request = { 'event_type': event_type, 'created_time': str(int(time.time())), 'event_context': event_context } data = json.dumps(request).encode() publisher.publish(topic_path, data)
tests_obsolete/extension/dataflow_/manager/dataflow_manager.py
akmaru/veriloggen
232
12665168
from __future__ import absolute_import from __future__ import print_function import sys import os # the next line can be removed after installation sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.dirname( os.path.dirname(os.path.dirname(os.path.abspath(__file__))))))) from veriloggen import * import veriloggen.dataflow as dataflow def mkMain(): m = Module('main') clk = m.Input('CLK') rst = m.Input('RST') df = dataflow.DataflowManager(m, clk, rst) x = df.Counter() y = df.Counter() z = x * 2 - y z.output('zdata', 'zvalid') return m def mkTest(numports=8): m = Module('test') # target instance main = mkMain() params = m.copy_params(main) ports = m.copy_sim_ports(main) clk = ports['CLK'] rst = ports['RST'] uut = m.Instance(main, 'uut', params=m.connect_params(main), ports=m.connect_ports(main)) reset_done = m.Reg('reset_done', initval=0) reset_stmt = [] reset_stmt.append(reset_done(0)) simulation.setup_waveform(m, uut) simulation.setup_clock(m, clk, hperiod=5) init = simulation.setup_reset(m, rst, reset_stmt, period=100) nclk = simulation.next_clock init.add( Delay(1000), reset_done(1), nclk(clk), Delay(10000), Systask('finish'), ) return m if __name__ == '__main__': test = mkTest() verilog = test.to_verilog('tmp.v') print(verilog) # run simulator (Icarus Verilog) sim = simulation.Simulator(test) rslt = sim.run() # display=False #rslt = sim.run(display=True) print(rslt) # launch waveform viewer (GTKwave) # sim.view_waveform() # background=False # sim.view_waveform(background=True)
blockchain-workbench/rest-api-samples/python/swagger_client/api/applications_api.py
chaosmail/blockchain
738
12665173
# coding: utf-8 """ Azure Blockchain Workbench REST API The Azure Blockchain Workbench REST API is a Workbench extensibility point, which allows developers to create and manage blockchain applications, manage users and organizations within a consortium, integrate blockchain applications into services and platforms, perform transactions on a blockchain, and retrieve transactional and contract data from a blockchain. # noqa: E501 OpenAPI spec version: v1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from swagger_client.api_client import ApiClient class ApplicationsApi(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def application_delete(self, application_id, **kwargs): # noqa: E501 """ # noqa: E501 Deletes the specified blockchain application. This method can only be performed by users who are Workbench administrators. NOTE: Currently not implemented. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.application_delete(application_id, async=True) >>> result = thread.get() :param async bool :param str application_id: The id of the application. (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.application_delete_with_http_info(application_id, **kwargs) # noqa: E501 else: (data) = self.application_delete_with_http_info(application_id, **kwargs) # noqa: E501 return data def application_delete_with_http_info(self, application_id, **kwargs): # noqa: E501 """ # noqa: E501 Deletes the specified blockchain application. This method can only be performed by users who are Workbench administrators. NOTE: Currently not implemented. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.application_delete_with_http_info(application_id, async=True) >>> result = thread.get() :param async bool :param str application_id: The id of the application. (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['application_id'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method application_delete" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'application_id' is set if ('application_id' not in params or params['application_id'] is None): raise ValueError("Missing the required parameter `application_id` when calling `application_delete`") # noqa: E501 collection_formats = {} path_params = {} if 'application_id' in params: path_params['applicationID'] = params['application_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/applications/{applicationID}', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def application_disable(self, application_id, **kwargs): # noqa: E501 """ # noqa: E501 Disables the specified blockchain application. This method can only be performed by users who are Workbench administrators. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.application_disable(application_id, async=True) >>> result = thread.get() :param async bool :param int application_id: The id of the application. (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.application_disable_with_http_info(application_id, **kwargs) # noqa: E501 else: (data) = self.application_disable_with_http_info(application_id, **kwargs) # noqa: E501 return data def application_disable_with_http_info(self, application_id, **kwargs): # noqa: E501 """ # noqa: E501 Disables the specified blockchain application. This method can only be performed by users who are Workbench administrators. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.application_disable_with_http_info(application_id, async=True) >>> result = thread.get() :param async bool :param int application_id: The id of the application. (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['application_id'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method application_disable" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'application_id' is set if ('application_id' not in params or params['application_id'] is None): raise ValueError("Missing the required parameter `application_id` when calling `application_disable`") # noqa: E501 collection_formats = {} path_params = {} if 'application_id' in params: path_params['applicationId'] = params['application_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/applications/{applicationID}/disable', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def application_enable(self, application_id, **kwargs): # noqa: E501 """ # noqa: E501 Enables the specified blockchain application. This method can only be performed by users who are Workbench administrators. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.application_enable(application_id, async=True) >>> result = thread.get() :param async bool :param int application_id: The id of the application. (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.application_enable_with_http_info(application_id, **kwargs) # noqa: E501 else: (data) = self.application_enable_with_http_info(application_id, **kwargs) # noqa: E501 return data def application_enable_with_http_info(self, application_id, **kwargs): # noqa: E501 """ # noqa: E501 Enables the specified blockchain application. This method can only be performed by users who are Workbench administrators. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.application_enable_with_http_info(application_id, async=True) >>> result = thread.get() :param async bool :param int application_id: The id of the application. (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['application_id'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method application_enable" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'application_id' is set if ('application_id' not in params or params['application_id'] is None): raise ValueError("Missing the required parameter `application_id` when calling `application_enable`") # noqa: E501 collection_formats = {} path_params = {} if 'application_id' in params: path_params['applicationId'] = params['application_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/applications/{applicationID}/enable', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def application_get(self, application_id, **kwargs): # noqa: E501 """ # noqa: E501 Gets the blockchain application matching a specific application ID. Users who are Workbench administrators get the blockchain application. Non-Workbench administrators get the blockchain application if they have at least one associated application role or is associated with a smart contract instance role. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.application_get(application_id, async=True) >>> result = thread.get() :param async bool :param int application_id: The id of the application. (required) :return: Application If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.application_get_with_http_info(application_id, **kwargs) # noqa: E501 else: (data) = self.application_get_with_http_info(application_id, **kwargs) # noqa: E501 return data def application_get_with_http_info(self, application_id, **kwargs): # noqa: E501 """ # noqa: E501 Gets the blockchain application matching a specific application ID. Users who are Workbench administrators get the blockchain application. Non-Workbench administrators get the blockchain application if they have at least one associated application role or is associated with a smart contract instance role. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.application_get_with_http_info(application_id, async=True) >>> result = thread.get() :param async bool :param int application_id: The id of the application. (required) :return: Application If the method is called asynchronously, returns the request thread. """ all_params = ['application_id'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method application_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'application_id' is set if ('application_id' not in params or params['application_id'] is None): raise ValueError("Missing the required parameter `application_id` when calling `application_get`") # noqa: E501 collection_formats = {} path_params = {} if 'application_id' in params: path_params['applicationId'] = params['application_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/applications/{applicationId}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Application', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def applications_get(self, **kwargs): # noqa: E501 """ # noqa: E501 Lists all blockchain applications to which a user has access in Workbench. Users who are Workbench administrators get all blockchain applications. Non-Workbench administrators get all blockchain applications for which they have at least one associated application role or an associated smart contract instance role. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.applications_get(async=True) >>> result = thread.get() :param async bool :param int top: The maximum number of entries to return in the result set. :param int skip: The number of entries to skip in the result set. :param bool enabled: A Boolean for whether to filter the result set to only enabled applications. :return: ApplicationList If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.applications_get_with_http_info(**kwargs) # noqa: E501 else: (data) = self.applications_get_with_http_info(**kwargs) # noqa: E501 return data def applications_get_with_http_info(self, **kwargs): # noqa: E501 """ # noqa: E501 Lists all blockchain applications to which a user has access in Workbench. Users who are Workbench administrators get all blockchain applications. Non-Workbench administrators get all blockchain applications for which they have at least one associated application role or an associated smart contract instance role. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.applications_get_with_http_info(async=True) >>> result = thread.get() :param async bool :param int top: The maximum number of entries to return in the result set. :param int skip: The number of entries to skip in the result set. :param bool enabled: A Boolean for whether to filter the result set to only enabled applications. :return: ApplicationList If the method is called asynchronously, returns the request thread. """ all_params = ['top', 'skip', 'enabled'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method applications_get" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'top' in params: query_params.append(('top', params['top'])) # noqa: E501 if 'skip' in params: query_params.append(('skip', params['skip'])) # noqa: E501 if 'enabled' in params: query_params.append(('enabled', params['enabled'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/applications', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ApplicationList', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def applications_post(self, file, **kwargs): # noqa: E501 """ # noqa: E501 Creates a new blockchain application. This method can only be performed by users who are Workbench administrators. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.applications_post(file, async=True) >>> result = thread.get() :param async bool :param file file: Upload File (required) :return: int If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.applications_post_with_http_info(file, **kwargs) # noqa: E501 else: (data) = self.applications_post_with_http_info(file, **kwargs) # noqa: E501 return data def applications_post_with_http_info(self, file, **kwargs): # noqa: E501 """ # noqa: E501 Creates a new blockchain application. This method can only be performed by users who are Workbench administrators. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.applications_post_with_http_info(file, async=True) >>> result = thread.get() :param async bool :param file file: Upload File (required) :return: int If the method is called asynchronously, returns the request thread. """ all_params = ['file'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method applications_post" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'file' is set if ('file' not in params or params['file'] is None): raise ValueError("Missing the required parameter `file` when calling `applications_post`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} if 'file' in params: local_var_files['file'] = params['file'] # noqa: E501 body_params = None # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['multipart/form-data']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/applications', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='int', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def contract_code_delete(self, contract_code_id, **kwargs): # noqa: E501 """ # noqa: E501 Deletes the specified blockchain smart contract implementation of a specific blockchain application. This method can only be performed by users who are Workbench administrators. NOTE: not currently implemented # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.contract_code_delete(contract_code_id, async=True) >>> result = thread.get() :param async bool :param int contract_code_id: The id of the contract code (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.contract_code_delete_with_http_info(contract_code_id, **kwargs) # noqa: E501 else: (data) = self.contract_code_delete_with_http_info(contract_code_id, **kwargs) # noqa: E501 return data def contract_code_delete_with_http_info(self, contract_code_id, **kwargs): # noqa: E501 """ # noqa: E501 Deletes the specified blockchain smart contract implementation of a specific blockchain application. This method can only be performed by users who are Workbench administrators. NOTE: not currently implemented # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.contract_code_delete_with_http_info(contract_code_id, async=True) >>> result = thread.get() :param async bool :param int contract_code_id: The id of the contract code (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['contract_code_id'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method contract_code_delete" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'contract_code_id' is set if ('contract_code_id' not in params or params['contract_code_id'] is None): raise ValueError("Missing the required parameter `contract_code_id` when calling `contract_code_delete`") # noqa: E501 collection_formats = {} path_params = {} if 'contract_code_id' in params: path_params['contractCodeId'] = params['contract_code_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/applications/contractCode/{contractCodeId}', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def contract_code_get(self, contract_code_id, **kwargs): # noqa: E501 """ # noqa: E501 Get the blockchain smart contract implementation matching a specific ledger implementation ID. Users who are Workbench administrators get the specified smart contract implementation. Non-Workbench administrators get the smart contract implementation if they have at least one associated application role or is associated with a smart contract instance role. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.contract_code_get(contract_code_id, async=True) >>> result = thread.get() :param async bool :param int contract_code_id: The id of the contract code (required) :return: FileStreamResult If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.contract_code_get_with_http_info(contract_code_id, **kwargs) # noqa: E501 else: (data) = self.contract_code_get_with_http_info(contract_code_id, **kwargs) # noqa: E501 return data def contract_code_get_with_http_info(self, contract_code_id, **kwargs): # noqa: E501 """ # noqa: E501 Get the blockchain smart contract implementation matching a specific ledger implementation ID. Users who are Workbench administrators get the specified smart contract implementation. Non-Workbench administrators get the smart contract implementation if they have at least one associated application role or is associated with a smart contract instance role. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.contract_code_get_with_http_info(contract_code_id, async=True) >>> result = thread.get() :param async bool :param int contract_code_id: The id of the contract code (required) :return: FileStreamResult If the method is called asynchronously, returns the request thread. """ all_params = ['contract_code_id'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method contract_code_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'contract_code_id' is set if ('contract_code_id' not in params or params['contract_code_id'] is None): raise ValueError("Missing the required parameter `contract_code_id` when calling `contract_code_get`") # noqa: E501 collection_formats = {} path_params = {} if 'contract_code_id' in params: path_params['contractCodeId'] = params['contract_code_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/applications/contractCode/{contractCodeId}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='FileStreamResult', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def contract_code_post(self, application_id, file, **kwargs): # noqa: E501 """ # noqa: E501 Uploads one or more smart contracts (ex. .sol or .zip), representing the implementation of the specified blockchain application. This method can only be performed by users who are Workbench administrators. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.contract_code_post(application_id, file, async=True) >>> result = thread.get() :param async bool :param int application_id: The id of the application (required) :param file file: Upload File (required) :param int ledger_id: The index of the ledger :return: int If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.contract_code_post_with_http_info(application_id, file, **kwargs) # noqa: E501 else: (data) = self.contract_code_post_with_http_info(application_id, file, **kwargs) # noqa: E501 return data def contract_code_post_with_http_info(self, application_id, file, **kwargs): # noqa: E501 """ # noqa: E501 Uploads one or more smart contracts (ex. .sol or .zip), representing the implementation of the specified blockchain application. This method can only be performed by users who are Workbench administrators. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.contract_code_post_with_http_info(application_id, file, async=True) >>> result = thread.get() :param async bool :param int application_id: The id of the application (required) :param file file: Upload File (required) :param int ledger_id: The index of the ledger :return: int If the method is called asynchronously, returns the request thread. """ all_params = ['application_id', 'file', 'ledger_id'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method contract_code_post" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'application_id' is set if ('application_id' not in params or params['application_id'] is None): raise ValueError("Missing the required parameter `application_id` when calling `contract_code_post`") # noqa: E501 # verify the required parameter 'file' is set if ('file' not in params or params['file'] is None): raise ValueError("Missing the required parameter `file` when calling `contract_code_post`") # noqa: E501 collection_formats = {} path_params = {} if 'application_id' in params: path_params['applicationId'] = params['application_id'] # noqa: E501 query_params = [] if 'ledger_id' in params: query_params.append(('ledgerId', params['ledger_id'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} if 'file' in params: local_var_files['file'] = params['file'] # noqa: E501 body_params = None # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['multipart/form-data']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/applications/{applicationId}/contractCode', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='int', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def contract_codes_get(self, application_id, **kwargs): # noqa: E501 """ # noqa: E501 List all blockchain smart contract implementations of the specified blockchain application. Users who are Workbench administrators get all smart contract implementations. Non-Workbench administrators get all smart contract implementations for which they have at least one associated application role or is associated with a smart contract instance role. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.contract_codes_get(application_id, async=True) >>> result = thread.get() :param async bool :param int application_id: The id of the application (required) :param int ledger_id: The index of the chain type :param int top: The maximum number of items to return :param int skip: The number of items to skip before returning :return: ContractCodeList If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.contract_codes_get_with_http_info(application_id, **kwargs) # noqa: E501 else: (data) = self.contract_codes_get_with_http_info(application_id, **kwargs) # noqa: E501 return data def contract_codes_get_with_http_info(self, application_id, **kwargs): # noqa: E501 """ # noqa: E501 List all blockchain smart contract implementations of the specified blockchain application. Users who are Workbench administrators get all smart contract implementations. Non-Workbench administrators get all smart contract implementations for which they have at least one associated application role or is associated with a smart contract instance role. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.contract_codes_get_with_http_info(application_id, async=True) >>> result = thread.get() :param async bool :param int application_id: The id of the application (required) :param int ledger_id: The index of the chain type :param int top: The maximum number of items to return :param int skip: The number of items to skip before returning :return: ContractCodeList If the method is called asynchronously, returns the request thread. """ all_params = ['application_id', 'ledger_id', 'top', 'skip'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method contract_codes_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'application_id' is set if ('application_id' not in params or params['application_id'] is None): raise ValueError("Missing the required parameter `application_id` when calling `contract_codes_get`") # noqa: E501 collection_formats = {} path_params = {} if 'application_id' in params: path_params['applicationId'] = params['application_id'] # noqa: E501 query_params = [] if 'ledger_id' in params: query_params.append(('ledgerId', params['ledger_id'])) # noqa: E501 if 'top' in params: query_params.append(('top', params['top'])) # noqa: E501 if 'skip' in params: query_params.append(('skip', params['skip'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/applications/{applicationID}/contractCode', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ContractCodeList', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def role_assignment_delete(self, application_id, role_assignment_id, **kwargs): # noqa: E501 """ # noqa: E501 Deletes the specified role assignment. This method can only be performed by users who are Workbench administrators. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.role_assignment_delete(application_id, role_assignment_id, async=True) >>> result = thread.get() :param async bool :param int application_id: The id of the application (required) :param int role_assignment_id: The id of the role assignment (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.role_assignment_delete_with_http_info(application_id, role_assignment_id, **kwargs) # noqa: E501 else: (data) = self.role_assignment_delete_with_http_info(application_id, role_assignment_id, **kwargs) # noqa: E501 return data def role_assignment_delete_with_http_info(self, application_id, role_assignment_id, **kwargs): # noqa: E501 """ # noqa: E501 Deletes the specified role assignment. This method can only be performed by users who are Workbench administrators. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.role_assignment_delete_with_http_info(application_id, role_assignment_id, async=True) >>> result = thread.get() :param async bool :param int application_id: The id of the application (required) :param int role_assignment_id: The id of the role assignment (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['application_id', 'role_assignment_id'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method role_assignment_delete" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'application_id' is set if ('application_id' not in params or params['application_id'] is None): raise ValueError("Missing the required parameter `application_id` when calling `role_assignment_delete`") # noqa: E501 # verify the required parameter 'role_assignment_id' is set if ('role_assignment_id' not in params or params['role_assignment_id'] is None): raise ValueError("Missing the required parameter `role_assignment_id` when calling `role_assignment_delete`") # noqa: E501 collection_formats = {} path_params = {} if 'application_id' in params: path_params['applicationId'] = params['application_id'] # noqa: E501 if 'role_assignment_id' in params: path_params['roleAssignmentId'] = params['role_assignment_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/applications/{applicationId}/roleAssignments/{roleAssignmentId}', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def role_assignment_get(self, application_id, role_assignment_id, **kwargs): # noqa: E501 """ # noqa: E501 Get a role assignment of the specified blockchain application matching a specific user role assignment ID. Users who are Workbench administrators get the role assignment. Non-Workbench administrators get the role assignment if they are associated in the application. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.role_assignment_get(application_id, role_assignment_id, async=True) >>> result = thread.get() :param async bool :param int application_id: The id of the configuration (required) :param int role_assignment_id: The id of the role assignment (required) :return: RoleAssignment If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.role_assignment_get_with_http_info(application_id, role_assignment_id, **kwargs) # noqa: E501 else: (data) = self.role_assignment_get_with_http_info(application_id, role_assignment_id, **kwargs) # noqa: E501 return data def role_assignment_get_with_http_info(self, application_id, role_assignment_id, **kwargs): # noqa: E501 """ # noqa: E501 Get a role assignment of the specified blockchain application matching a specific user role assignment ID. Users who are Workbench administrators get the role assignment. Non-Workbench administrators get the role assignment if they are associated in the application. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.role_assignment_get_with_http_info(application_id, role_assignment_id, async=True) >>> result = thread.get() :param async bool :param int application_id: The id of the configuration (required) :param int role_assignment_id: The id of the role assignment (required) :return: RoleAssignment If the method is called asynchronously, returns the request thread. """ all_params = ['application_id', 'role_assignment_id'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method role_assignment_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'application_id' is set if ('application_id' not in params or params['application_id'] is None): raise ValueError("Missing the required parameter `application_id` when calling `role_assignment_get`") # noqa: E501 # verify the required parameter 'role_assignment_id' is set if ('role_assignment_id' not in params or params['role_assignment_id'] is None): raise ValueError("Missing the required parameter `role_assignment_id` when calling `role_assignment_get`") # noqa: E501 collection_formats = {} path_params = {} if 'application_id' in params: path_params['applicationId'] = params['application_id'] # noqa: E501 if 'role_assignment_id' in params: path_params['roleAssignmentId'] = params['role_assignment_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/applications/{applicationId}/roleAssignments/{roleAssignmentId}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='RoleAssignment', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def role_assignments_get(self, application_id, **kwargs): # noqa: E501 """ # noqa: E501 List all role assignments of the specified blockchain application. Users who are Workbench administrators get all role assignments. Non-Workbench administrators get all their role assignments. Roles are specified in the Workbench application configuration and can be retrieved from GET /applications/{applicationID}. Also, user information can be retrieved from GET /users/{userID}. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.role_assignments_get(application_id, async=True) >>> result = thread.get() :param async bool :param int application_id: The id of the configuration (required) :param int application_role_id: The id of the application role :param int top: The maximum number of entries to return in the result set. :param int skip: The number of entries to skip in the result set. :return: RoleAssignmentList If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.role_assignments_get_with_http_info(application_id, **kwargs) # noqa: E501 else: (data) = self.role_assignments_get_with_http_info(application_id, **kwargs) # noqa: E501 return data def role_assignments_get_with_http_info(self, application_id, **kwargs): # noqa: E501 """ # noqa: E501 List all role assignments of the specified blockchain application. Users who are Workbench administrators get all role assignments. Non-Workbench administrators get all their role assignments. Roles are specified in the Workbench application configuration and can be retrieved from GET /applications/{applicationID}. Also, user information can be retrieved from GET /users/{userID}. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.role_assignments_get_with_http_info(application_id, async=True) >>> result = thread.get() :param async bool :param int application_id: The id of the configuration (required) :param int application_role_id: The id of the application role :param int top: The maximum number of entries to return in the result set. :param int skip: The number of entries to skip in the result set. :return: RoleAssignmentList If the method is called asynchronously, returns the request thread. """ all_params = ['application_id', 'application_role_id', 'top', 'skip'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method role_assignments_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'application_id' is set if ('application_id' not in params or params['application_id'] is None): raise ValueError("Missing the required parameter `application_id` when calling `role_assignments_get`") # noqa: E501 collection_formats = {} path_params = {} if 'application_id' in params: path_params['applicationId'] = params['application_id'] # noqa: E501 query_params = [] if 'application_role_id' in params: query_params.append(('applicationRoleId', params['application_role_id'])) # noqa: E501 if 'top' in params: query_params.append(('top', params['top'])) # noqa: E501 if 'skip' in params: query_params.append(('skip', params['skip'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/applications/{applicationId}/roleAssignments', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='RoleAssignmentList', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def role_assignments_post(self, application_id, **kwargs): # noqa: E501 """ # noqa: E501 Creates a user-to-role mapping in the specified blockchain application. This method can only be performed by users who are Workbench administrators. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.role_assignments_post(application_id, async=True) >>> result = thread.get() :param async bool :param int application_id: The id of the configuration. (required) :param RoleAssignmentInput role_assignment: New user-to-role mapping. :return: int If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.role_assignments_post_with_http_info(application_id, **kwargs) # noqa: E501 else: (data) = self.role_assignments_post_with_http_info(application_id, **kwargs) # noqa: E501 return data def role_assignments_post_with_http_info(self, application_id, **kwargs): # noqa: E501 """ # noqa: E501 Creates a user-to-role mapping in the specified blockchain application. This method can only be performed by users who are Workbench administrators. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.role_assignments_post_with_http_info(application_id, async=True) >>> result = thread.get() :param async bool :param int application_id: The id of the configuration. (required) :param RoleAssignmentInput role_assignment: New user-to-role mapping. :return: int If the method is called asynchronously, returns the request thread. """ all_params = ['application_id', 'role_assignment'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method role_assignments_post" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'application_id' is set if ('application_id' not in params or params['application_id'] is None): raise ValueError("Missing the required parameter `application_id` when calling `role_assignments_post`") # noqa: E501 collection_formats = {} path_params = {} if 'application_id' in params: path_params['applicationId'] = params['application_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'role_assignment' in params: body_params = params['role_assignment'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/applications/{applicationId}/roleAssignments', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='int', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def workflow_get(self, workflow_id, **kwargs): # noqa: E501 """ # noqa: E501 Get a workflow matching a specific workflow ID. Users who are Workbench administrators get the workflow. Non-Workbench administrators get the workflow if they have at least one associated application role or is associated with a smart contract instance role. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.workflow_get(workflow_id, async=True) >>> result = thread.get() :param async bool :param int workflow_id: The id of the workflow (required) :return: Workflow If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.workflow_get_with_http_info(workflow_id, **kwargs) # noqa: E501 else: (data) = self.workflow_get_with_http_info(workflow_id, **kwargs) # noqa: E501 return data def workflow_get_with_http_info(self, workflow_id, **kwargs): # noqa: E501 """ # noqa: E501 Get a workflow matching a specific workflow ID. Users who are Workbench administrators get the workflow. Non-Workbench administrators get the workflow if they have at least one associated application role or is associated with a smart contract instance role. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.workflow_get_with_http_info(workflow_id, async=True) >>> result = thread.get() :param async bool :param int workflow_id: The id of the workflow (required) :return: Workflow If the method is called asynchronously, returns the request thread. """ all_params = ['workflow_id'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method workflow_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'workflow_id' is set if ('workflow_id' not in params or params['workflow_id'] is None): raise ValueError("Missing the required parameter `workflow_id` when calling `workflow_get`") # noqa: E501 collection_formats = {} path_params = {} if 'workflow_id' in params: path_params['workflowId'] = params['workflow_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/applications/workflows/{workflowId}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Workflow', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def workflows_get(self, application_id, **kwargs): # noqa: E501 """ # noqa: E501 List all workflows of the specified blockchain application. Users who are Workbench administrators get all workflows. Non-Workbench administrators get all workflows for which they have at least one associated application role or is associated with a smart contract instance role. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.workflows_get(application_id, async=True) >>> result = thread.get() :param async bool :param int application_id: The id of the application (required) :param int top: The maximum number of items to return :param int skip: The number of items to skip before returning :return: WorkflowList If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.workflows_get_with_http_info(application_id, **kwargs) # noqa: E501 else: (data) = self.workflows_get_with_http_info(application_id, **kwargs) # noqa: E501 return data def workflows_get_with_http_info(self, application_id, **kwargs): # noqa: E501 """ # noqa: E501 List all workflows of the specified blockchain application. Users who are Workbench administrators get all workflows. Non-Workbench administrators get all workflows for which they have at least one associated application role or is associated with a smart contract instance role. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.workflows_get_with_http_info(application_id, async=True) >>> result = thread.get() :param async bool :param int application_id: The id of the application (required) :param int top: The maximum number of items to return :param int skip: The number of items to skip before returning :return: WorkflowList If the method is called asynchronously, returns the request thread. """ all_params = ['application_id', 'top', 'skip'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method workflows_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'application_id' is set if ('application_id' not in params or params['application_id'] is None): raise ValueError("Missing the required parameter `application_id` when calling `workflows_get`") # noqa: E501 collection_formats = {} path_params = {} if 'application_id' in params: path_params['applicationId'] = params['application_id'] # noqa: E501 query_params = [] if 'top' in params: query_params.append(('top', params['top'])) # noqa: E501 if 'skip' in params: query_params.append(('skip', params['skip'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/applications/{applicationId}/workflows', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='WorkflowList', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
osp/citations/models/citation.py
davidmcclure/open-syllabus-project
220
12665179
<reponame>davidmcclure/open-syllabus-project<filename>osp/citations/models/citation.py from osp.common import config from osp.common.models import BaseModel from osp.corpus.models import Document from osp.citations.models import Text from osp.institutions.models import Institution from osp.institutions.models import Institution_Document from osp.fields.models import Subfield from osp.fields.models import Subfield_Document from playhouse.postgres_ext import ArrayField from peewee import ForeignKeyField, CharField class Citation(BaseModel): text = ForeignKeyField(Text) document = ForeignKeyField(Document) tokens = ArrayField(CharField) class Meta: database = config.get_table_db('citation') indexes = ((('document', 'text'), True),) @property def subfield(self): """ Get the document's subfield, if any. Returns: Subfield """ return ( Subfield .select() .join(Subfield_Document) .join(Document) .where(Document.id==self.document) .order_by(Subfield_Document.offset.asc()) .first() ) @property def institution(self): """ Get the document's institution, if any. Returns: Institution """ return ( Institution .select() .join(Institution_Document) .join(Document) .where(Document.id==self.document) .first() )
kythe/docs/asciidoc.bzl
wcalandro/kythe
1,168
12665193
load("@bazel_skylib//lib:shell.bzl", "shell") load("@bazel_skylib//lib:paths.bzl", "paths") AsciidocInfo = provider( doc = "Information about the asciidoc-generated files.", fields = { "primary_output_path": "Path of the primary output file beneath {resource_dir}.", "resource_dir": "File for the directory containing all of the generated resources.", }, ) _toolchain_type = "//tools/build_rules/external_tools:external_tools_toolchain_type" def _asciidoc_impl(ctx): resource_dir = ctx.actions.declare_directory(ctx.label.name + ".d") primary_output = "{name}.html".format(name = ctx.label.name) # Declared as an output, but not saved as part of the default output group. # Build with --output_groups=+asciidoc_logfile to retain. logfile = ctx.actions.declare_file(ctx.label.name + ".logfile") # Locate the asciidoc binary from the toolchain and construct its args. asciidoc = ctx.toolchains[_toolchain_type].asciidoc args = ["--backend", "html", "--no-header-footer"] for key, value in ctx.attr.attrs.items(): if value: args.append("--attribute=%s=%s" % (key, value)) else: args.append("--attribute=%s!" % (key,)) if ctx.attr.example_script: args.append("--attribute=example_script=" + ctx.file.example_script.path) args += ["--conf-file=%s" % c.path for c in ctx.files.confs] args += ["-o", paths.join(resource_dir.path, primary_output)] args.append(ctx.file.src.path) # Get the path where all our necessary tools are located so it can be set # to PATH in our run_shell command. tool_path = ctx.toolchains[_toolchain_type].path # Resolve data targets to get input files and runfiles manifests. data, _, manifests = ctx.resolve_command(tools = ctx.attr.data) # Run asciidoc and capture stderr to logfile. If it succeeds, look in the # captured log for error messages and fail if we find any. ctx.actions.run_shell( inputs = ([ctx.file.src] + ctx.files.confs + ([ctx.file.example_script] if ctx.file.example_script else []) + data), input_manifests = manifests, outputs = [resource_dir, logfile], arguments = args, command = "\n".join([ "set -e", "mkdir -p {resource_dir}".format(resource_dir = shell.quote(resource_dir.path)), # Run asciidoc itself, and fail if it returns nonzero. "{asciidoc} \"$@\" 2> >(tee -a {logfile} >&2)".format( logfile = shell.quote(logfile.path), asciidoc = shell.quote(asciidoc), ), # The tool succeeded, but now check for error diagnostics. 'if grep -q -e "filter non-zero exit code" -e "no output from filter" {logfile}; then'.format( logfile = shell.quote(logfile.path), ), "exit 1", "fi", # Move SVGs to the appropriate directory. "find . -name '*.svg' -maxdepth 1 -exec mv '{{}}' {out}/ \\;".format(out = shell.quote(resource_dir.path)), ]), env = {"PATH": tool_path}, mnemonic = "RunAsciidoc", ) return [ DefaultInfo(files = depset([resource_dir])), OutputGroupInfo(asciidoc_logfile = depset([logfile])), AsciidocInfo(primary_output_path = primary_output, resource_dir = resource_dir), ] asciidoc = rule( implementation = _asciidoc_impl, toolchains = ["//tools/build_rules/external_tools:external_tools_toolchain_type"], attrs = { "src": attr.label( doc = "asciidoc file to process", allow_single_file = True, ), "attrs": attr.string_dict( doc = "Dict of attributes to pass to asciidoc as --attribute=KEY=VALUE", ), "confs": attr.label_list( doc = "`conf-file`s to pass to asciidoc", allow_files = True, ), "data": attr.label_list( doc = "Files/targets used during asciidoc generation. Only needed for tools used in example_script.", allow_files = True, ), "example_script": attr.label( doc = "Script to pass to asciidoc as --attribute=example_script=VALUE.", allow_single_file = True, ), }, doc = "Generate asciidoc", )
examples/slack/chat.py
q0w/snug
123
12665208
"""queries for the 'chat' method family""" import snug from .query import json_post from .types import Message @json_post('chat.postMessage', rtype=Message, key='message') def post_message(channel: str, text: str) -> snug.Query[Message]: return {'channel': channel, 'text': text}
saas/aiops/api/aiops-server/services/tsp_algorithms_service.py
iuskye/SREWorks
407
12665217
#!/usr/bin/env python # encoding: utf-8 """ """ __author__ = 'sreworks' import logging from services.base_service import BaseService from models.tsp_algorithms_model import TSPAlgorithmsModel class TSPAlgorithmsService(BaseService): def __init__(self): BaseService.__init__(self) self.logger = logging.getLogger(__name__) def get_tsp_algorithm(self, algorithm_id): tsp_algorithm = TSPAlgorithmsModel.query.filter_by(id=algorithm_id).one_or_none() if tsp_algorithm: return tsp_algorithm.to_json() else: return None
LA Team Results/FinalPipeline_LM_mean_per_facies.py
jcohut/2016_ml_competition_facies_classification
182
12665236
<filename>LA Team Results/FinalPipeline_LM_mean_per_facies.py<gh_stars>100-1000 import numpy as np from sklearn.cluster import FeatureAgglomeration from sklearn.ensemble import ExtraTreesClassifier, GradientBoostingClassifier, VotingClassifier from sklearn.feature_selection import SelectFromModel from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline, make_union from sklearn.preprocessing import FunctionTransformer # NOTE: Make sure that the class is labeled 'class' in the data file tpot_data = np.recfromcsv('PATH/TO/DATA/FILE', delimiter='COLUMN_SEPARATOR', dtype=np.float64) features = np.delete(tpot_data.view(np.float64).reshape(tpot_data.size, -1), tpot_data.dtype.names.index('class'), axis=1) training_features, testing_features, training_classes, testing_classes = \ train_test_split(features, tpot_data['class'], random_state=42) exported_pipeline = make_pipeline( make_union( make_union( FeatureAgglomeration(affinity="euclidean", linkage="ward"), SelectFromModel(estimator=ExtraTreesClassifier(bootstrap=False, class_weight=None, criterion='gini', max_depth=None, max_features=0.02, max_leaf_nodes=None, min_impurity_split=1e-07, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False), threshold=0.06) ), FunctionTransformer(lambda X: X) ), GradientBoostingClassifier(learning_rate=0.21, max_features=0.21, n_estimators=500) ) exported_pipeline.fit(training_features, training_classes) results = exported_pipeline.predict(testing_features)
src/db/migrations/00011.py
agu3rra/InfraBox
265
12665249
import os import base64 from Crypto.PublicKey import RSA from pyinfraboxutils.secrets import encrypt_secret import psycopg2 private_key_path = os.environ.get('INFRABOX_RSA_PRIVATE_KEY_PATH', '/var/run/secrets/infrabox.net/rsa/id_rsa') def decrypt_secret(s): with open(private_key_path) as f: key = RSA.importKey(f.read()) s = base64.b64decode(s) return key.decrypt(s) def migrate(conn): cur = conn.cursor(cursor_factory=psycopg2.extras.DictCursor) cur.execute(''' SELECT id, value FROM secret ''') secrets = cur.fetchall() cur.close() for s in secrets: value = decrypt_secret(s['value']) new_value = encrypt_secret(value) cur = conn.cursor() cur.execute(''' UPDATE secret SET value = %s WHERE id = %s ''', [new_value, s['id']]) cur.close()
src/CVC_solver.py
shushu-qin/deeponet
140
12665274
<filename>src/CVC_solver.py from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import matplotlib.pyplot as plt def solve_CVC(xmin, xmax, tmin, tmax, f, g, V, Nx, Nt): """Solve u_t + a(x) * u_x = 0 """ # Case I: Analytical solution for a(x)=1, u(x,0)=V(x) (V,V' periodic) x = np.linspace(xmin, xmax, Nx) t = np.linspace(tmin, tmax, Nt) u = V((x[:, None] - t) % 1) # Case II: Wendroff for a(x)=1, u(x,0)=f(x), u(0,t)=g(t) (f(0)=g(0)) """ x = np.linspace(xmin, xmax, Nx) t = np.linspace(tmin, tmax, Nt) h = x[1] - x[0] dt = t[1] - t[0] lam = dt / h u = np.zeros([Nx, Nt]) u[:, 0] = f(x) u[0, :] = g(t) r = (1 - lam) / (1 + lam) K = np.eye(Nx - 1, k=0) K_temp = np.eye(Nx - 1, k=0) Trans = np.eye(Nx - 1, k=-1) for _ in range(Nx - 2): K_temp = (-r) * (Trans @ K_temp) K += K_temp D = r * np.eye(Nx - 1, k=0) + np.eye(Nx - 1, k=-1) for n in range(Nt - 1): b = np.zeros(Nx - 1) b[0] = g(n * dt) - r * g((n + 1) * dt) u[1:, n + 1] = K @ (D @ u[1:, n] + b) """ # Case III: Wendroff for a(x)=1+0.1*V(x), u(x,0)=f(x), u(0,t)=g(t) (f(0)=g(0)) """ x = np.linspace(xmin, xmax, Nx) t = np.linspace(tmin, tmax, Nt) h = x[1] - x[0] dt = t[1] - t[0] lam = dt / h v = 1 + 0.1 * V(x) u = np.zeros([Nx, Nt]) u[:, 0] = f(x) u[0, :] = g(t) a = (v[:-1] + v[1:]) / 2 k = (1 - a * lam) / (1 + a * lam) K = np.eye(Nx - 1, k=0) K_temp = np.eye(Nx - 1, k=0) Trans = np.eye(Nx - 1, k=-1) for _ in range(Nx - 2): K_temp = (-k[:, None]) * (Trans @ K_temp) K += K_temp D = np.diag(k) + np.eye(Nx - 1, k=-1) for n in range(Nt - 1): b = np.zeros(Nx - 1) b[0] = g(n * dt) - k[0] * g((n + 1) * dt) u[1:, n + 1] = K @ (D @ u[1:, n] + b) """ # Case IV: Wendroff for a(x)=1+0.1*(V(x)+V(1-x))/2, u(x,0)=f(x) (f,f' periodic) """ x = np.linspace(xmin, xmax, Nx) t = np.linspace(tmin, tmax, Nt) h = x[1] - x[0] dt = t[1] - t[0] lam = dt / h v = 1 + 0.1 * (V(x) + V(x)[::-1]) / 2 u = np.zeros([Nx, Nt]) u[:, 0] = f(x) a = (v[:-1] + v[1:]) / 2 I = np.eye(Nx - 1) Ir = np.roll(I, 1, axis=0) D = lam * a[:, None] * (I - Ir) A = I + Ir + D B = I + Ir - D for n in range(Nt - 1): u[1:, n + 1] = np.linalg.solve(A, B @ u[1:, n]) u[0, :] = u[-1, :] """ return x, t, u def main(): # Case I: Analytical solution for a(x)=1, u(x,0)=V(x) (V,V' periodic) xmin, xmax = 0, 1 tmin, tmax = 0, 1 V = lambda x: np.sin(2 * np.pi * x) f = None g = None u_true = lambda x, t: V(x - t) Nx, Nt = 100, 100 x, t, u = solve_CVC(xmin, xmax, tmin, tmax, f, g, V, Nx, Nt) print(np.max(abs(u - u_true(x[:, None], t)))) print(np.average(abs(u - u_true(x[:, None], t)))) # Case II: Wendroff for a(x)=1, u(x,0)=V(x), u(0,t)=0 (V(0)=0) """ xmin, xmax = 0, 1 tmin, tmax = 0, 1 V = None f = lambda x: (2 * np.pi * x) ** 5 g = lambda t: (2 * np.pi * (-t)) ** 5 u_true = lambda x, t: (2 * np.pi * (x - t)) ** 5 Nx, Nt = 100, 100 x, t, u = solve_CVC(xmin, xmax, tmin, tmax, f, g, V, Nx, Nt) print(np.max(abs(u - u_true(x[:, None], t)))) print(np.average(abs(u - u_true(x[:, None], t)))) """ # Case III: Wendroff for a(x)=1+0.1*V(x), u(x,0)=f(x), u(0,t)=g(t) (f(0)=g(0)) """ vel = 1 xmin, xmax = 0, 1 tmin, tmax = 0, 1 V = lambda x: np.ones_like(x) * vel f = lambda x: np.sin(2 * np.pi * x) g = lambda t: np.sin(2 * np.pi * (-(1 + 0.1 * vel) * t)) u_true = lambda x, t: np.sin(2 * np.pi * (x - (1 + 0.1 * vel) * t)) Nx, Nt = 100, 100 x, t, u = solve_CVC(xmin, xmax, tmin, tmax, f, g, V, Nx, Nt) print(np.max(abs(u - u_true(x[:, None], t)))) print(np.average(abs(u - u_true(x[:, None], t)))) """ # Case IV: Wendroff for a(x)=1+0.1*(V(x)+V(1-x))/2, u(x,0)=f(x) (f,f' periodic) """ vel = 1 xmin, xmax = 0, 1 tmin, tmax = 0, 1 V = lambda x: np.ones_like(x) * vel f = lambda x: np.sin(2 * np.pi * x) g = lambda t: np.sin(2 * np.pi * (-(1 + 0.1 * vel) * t)) u_true = lambda x, t: np.sin(2 * np.pi * (x - (1 + 0.1 * vel) * t)) Nx, Nt = 100, 100 x, t, u = solve_CVC(xmin, xmax, tmin, tmax, f, g, V, Nx, Nt) print(np.max(abs(u - u_true(x[:, None], t)))) print(np.average(abs(u - u_true(x[:, None], t)))) """ # plot u_true = u_true(x[:, None], t) error = abs(u - u_true) axis = plt.subplot(111) plt.imshow(error, cmap="rainbow", vmin=0) plt.colorbar() xlabel = [format(i, ".1f") for i in np.linspace(0, 1, num=11)] ylabel = [format(i, ".1f") for i in np.linspace(0, 1, num=11)] axis.set_xticks(range(0, 101, 10)) axis.set_xticklabels(xlabel) axis.set_yticks(range(0, 101, 10)) axis.set_yticklabels(ylabel) axis.set_xlabel("t") axis.set_ylabel("x") axis.set_title(r"Error", fontdict={"fontsize": 30}, loc="left") return error if __name__ == "__main__": error = main()
convfeatures.py
taha-a/image
161
12665279
<filename>convfeatures.py import tensorflow as tf import numpy as np import argparse import os batch_size = 10 files, input_layer, output_layer = [None]*3 def build_prepro_graph(inception_path): global input_layer, output_layer with open(inception_path, 'rb') as f: fileContent = f.read() graph_def = tf.GraphDef() graph_def.ParseFromString(fileContent) tf.import_graph_def(graph_def) graph = tf.get_default_graph() input_layer = graph.get_tensor_by_name("import/InputImage:0") output_layer = graph.get_tensor_by_name( "import/InceptionV4/Logits/AvgPool_1a/AvgPool:0") input_file = tf.placeholder(dtype=tf.string, name="InputFile") image_file = tf.read_file(input_file) jpg = tf.image.decode_jpeg(image_file, channels=3) png = tf.image.decode_png(image_file, channels=3) output_jpg = tf.image.resize_images(jpg, [299, 299]) / 255.0 output_jpg = tf.reshape( output_jpg, [ 1, 299, 299, 3], name="Preprocessed_JPG") output_png = tf.image.resize_images(png, [299, 299]) / 255.0 output_png = tf.reshape( output_png, [ 1, 299, 299, 3], name="Preprocessed_PNG") return input_file, output_jpg, output_png def load_image(sess, io, image): if image.split('.')[-1] == "png": return sess.run(io[2], feed_dict={io[0]: image}) return sess.run(io[1], feed_dict={io[0]: image}) def load_next_batch(sess, io, img_path): for batch_idx in range(0, len(files), batch_size): batch = files[batch_idx:batch_idx + batch_size] batch = np.array( map(lambda x: load_image(sess, io, img_path + x), batch)) batch = batch.reshape((batch_size, 299, 299, 3)) yield batch def forward_pass(io, img_path): global output_layer, files files = sorted(np.array(os.listdir(img_path))) print "#Images:", len(files) n_batch = len(files) / batch_size with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) batch_iter = load_next_batch(sess, io, img_path) for i in xrange(n_batch): batch = batch_iter.next() assert batch.shape == (batch_size, 299, 299, 3) feed_dict = {input_layer: batch} if i is 0: prob = sess.run( output_layer, feed_dict=feed_dict).reshape( batch_size, 1536) else: prob = np.append( prob, sess.run( output_layer, feed_dict=feed_dict).reshape( batch_size, 1536), axis=0) if i % 5 == 0: print "Progress:" + str(((i + 1) / float(n_batch) * 100)) + "%\n" print "Progress:" + str(((n_batch) / float(n_batch) * 100)) + "%\n" print print "Saving Features : features.npy\n" np.save('Dataset/features', prob) def get_features(sess, io, img, saveencoder=False): global output_layer output_layer = tf.reshape(output_layer, [1,1536], name="Output_Features") image = load_image(sess, io, img) feed_dict = {input_layer: image} prob = sess.run(output_layer, feed_dict=feed_dict) if saveencoder: tensors = [n.name for n in sess.graph.as_graph_def().node] with open("model/Encoder/Encoder_Tensors.txt", 'w') as f: for t in tensors: f.write(t + "\n") saver = tf.train.Saver() saver.save(sess, "model/Encoder/model.ckpt") return prob def get_arguments(): parser = argparse.ArgumentParser() parser.add_argument( "--data_path", type=str, help="A valid path to MSCCOCO/flickr30k images(unzipped)", required=True) parser.add_argument( "--inception_path", type=str, help="A valid path to inception_v4.pb", required=True) args = parser.parse_args() return args if __name__ == "__main__": args=get_arguments() print "Extracting Features" io = build_prepro_graph(args.inception_path) forward_pass(io, args.data_path) print "done"
lib/metric/__init__.py
khanhptnk/bandit-nmt
149
12665280
from .PertFunction import PertFunction from .Loss import * from .Reward import * from .Bleu import *
gdc_client/settings/parser.py
jrouly/gdc-client
139
12665300
<filename>gdc_client/settings/parser.py import logging from functools import partial from gdc_client.common.config import GDCClientConfigShared logger = logging.getLogger("gdc-client") HELP = ( "Path to INI-type config file. See what settings will look like if a custom" " config file is used" ) class SettingsResolver(object): def __init__(self, config_file): self.config = GDCClientConfigShared(config_file) def download(self): logger.info(self.config.to_display_string("download")) return self.config.to_display_string("download") def upload(self): logger.info(self.config.to_display_string("upload")) return self.config.to_display_string("upload") def resolve(config_file, args): resolver = SettingsResolver(config_file) func = getattr(resolver, args.section) return func() def config(parser, config_file=None): parser.add_argument("--config", help=HELP, metavar="FILE") choices = parser.add_subparsers(title="Settings to display", dest="section") choices.required = True download_choice = choices.add_parser("download", help="Display download settings") download_choice.add_argument("--config", help=HELP, metavar="FILE") download_choice.set_defaults(func=partial(resolve, config_file)) upload_choice = choices.add_parser("upload", help="Display upload settings") upload_choice.add_argument("--config", help=HELP, metavar="FILE") upload_choice.set_defaults(func=partial(resolve, config_file))
vit/formatter/modified_julian.py
kinifwyne/vit
179
12665313
from vit.formatter.modified import Modified class ModifiedJulian(Modified): def format(self, modified, task): return self.julian(modified)
examples/django_hx_chatserver/example_app/run.py
bliedblad/hendrix
309
12665325
<gh_stars>100-1000 from hendrix.deploy.base import HendrixDeploy from hendrix.experience import hey_joe deployer = HendrixDeploy(options={'wsgi': 'example_app.wsgi.application', 'http_port': 7575}) websocket_service = hey_joe.WebSocketService("127.0.0.1", 9000) deployer.add_non_tls_websocket_service(websocket_service) deployer.run()
tools/find/tokenizer.py
Schweinepriester/oil
2,209
12665341
#!/usr/bin/env python2 # Copyright 2019 <NAME>. All rights reserved. # Copyright 2019 <NAME>. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 """ tokenizer.py: Tokenizer for find. """ _ops = [ ('!', 'BANG'), ('(', 'LPAR'), (')', 'RPAR'), ('-o', 'OR'), ('-a', 'AND'), (',', 'COMMA'), (';', 'SEMI'), ('+', 'PLUS'), ('-true', 'TRUE'), ('-false', 'FALSE'), ('-name', 'NAME'), ('-iname', 'INAME'), ('-lname', 'LNAME'), ('-ilname', 'ILNAME'), ('-path', 'PATH'), ('-ipath', 'IPATH'), ('-regex', 'REGEX'), ('-iregex', 'IREGEX'), ('-executable', 'EXECUTABLE'), ('-readable', 'READABLE'), ('-writable', 'WRITABLE'), ('-empty', 'EMPTY'), ('-size', 'SIZE'), ('-type', 'TYPE'), ('-xtype', 'XTYPE'), ('-perm', 'PERM'), ('-group', 'GROUP'), ('-user', 'USER'), ('-gid', 'GID'), ('-uid', 'UID'), ('-nogroup', 'NOGROUP'), ('-nouser', 'NOUSER'), ('-amin', 'AMIN'), ('-anewer', 'ANEWER'), ('-atime', 'ATIME'), ('-cmin', 'CMIN'), ('-cnewer', 'CNEWER'), ('-ctime', 'CTIME'), ('-mmin', 'MMIN'), # note -newer not -mnewer ('-newer', 'MNEWER'), ('-mtime', 'MTIME'), ('-newerXY', 'NEWERXY'), ('-delete', 'DELETE'), ('-prune', 'PRUNE'), ('-quit', 'QUIT'), ('-print', 'PRINT'), ('-print0', 'PRINT0'), ('-printf', 'PRINTF'), ('-ls', 'LS'), ('-fprint', 'FPRINT'), ('-fprint0', 'FPRINT0'), ('-fprintf', 'FPRINTF'), ('-fls', 'FLS'), ('-exec', 'EXEC'), ('-execdir', 'EXECDIR'), ('-ok', 'OK'), ('-okdir', 'OKDIR'), ] # start=100 is pgen voodoo, don't touch opmap = dict((op, i) for i, (op, name) in enumerate(_ops, start=100)) tok_name = dict((i, name) for i, (op, name) in enumerate(_ops, start=100)) tok_name[0] = 'ENDMARKER' tok_name[1] = 'STRING' #tok_name[len(tok_name)] = 'N_TOKENS' tok_name[256] = 'NT_OFFSET' import sys this_module = sys.modules[__name__] for i, name in tok_name.items(): setattr(this_module, name, i) class TokenDef(object): def GetTerminalNum(self, label): """ e.g. NAME -> 1 """ itoken = getattr(this_module, label, None) assert isinstance(itoken, int), label assert itoken in tok_name, label return itoken def GetOpNum(self, value): """ e.g '(' -> LPAR """ return opmap[value] def GetKeywordNum(self, value): return None def tokenize(argv): start = end = (1, 0) # dummy location data line_text = '' for a in argv: #log('tok = %r', a) typ = opmap.get(a, STRING) # print (typ, a, start, end, line_text) yield (typ, a, start, end, line_text) yield (ENDMARKER, '', start, end, line_text) def is_terminal(type): # type (int) -> bool return type < NT_OFFSET def is_nonterminal(type): # type (int) -> bool return type >= NT_OFFSET def is_eof(type): # type (int) -> bool return type == ENDMARKER
tests/pre_test.py
danielpalstra/mealie
1,927
12665379
<filename>tests/pre_test.py from mealie.core.config import determine_sqlite_path, settings DB_URL = determine_sqlite_path(path=True, suffix="test") DB_URL.unlink(missing_ok=True) if settings.DB_ENGINE != "postgres": # Monkeypatch Database Testing settings.DB_URL = determine_sqlite_path(path=False, suffix="test")
scripts/nfs-roles-management/internal/model/share_mount_model.py
AlfiyaRF/cloud-pipeline
126
12665412
# Copyright 2017-2020 EPAM Systems, Inc. (https://www.epam.com/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class ShareMountModel(object): def __init__(self): self.identifier = None self.region_id = None self.mount_root = None self.mount_type = None self.mount_options = None @classmethod def load(cls, json): instance = ShareMountModel() if not json: return None instance.identifier = json['id'] instance.region_id = json['regionId'] instance.mount_root = json['mountRoot'] instance.mount_type = json['mountType'] instance.mount_options = json['mountOptions'] if 'mountOptions' in json else None return instance
bert-distillation-multimetric/sigopt_clients/sigopt_experiment_client.py
meghanaravikumar/sigopt-examples
213
12665424
<reponame>meghanaravikumar/sigopt-examples import logging class SigOptExperiment: def __init__(self, connection): self.connection = connection def initialize_random_experiment(self, experiment_name, project_name, parameters_list, metrics_list, observation_budget, metadata, parallel_bandwidth=1): return self.initialize_experiment(experiment_name, project_name, parameters_list, list(), list(), metrics_list, observation_budget, metadata, "random", parallel_bandwidth) def initialize_bayesian_experiment(self, experiment_name, project_name, parameters_list, metrics_list, observation_budget, metadata, parallel_bandwidth): return self.initialize_experiment(experiment_name, project_name, parameters_list, list(), list(), metrics_list, observation_budget, metadata, "offline", parallel_bandwidth) def initialize_experiment(self, experiment_name, project_name, parameters_list, conditionals_list, linear_constraints_list, metrics_list, observation_budget, metadata, experiment_type, parallel_bandwidth=1): experiment = self.connection.experiments().create( name=experiment_name, project=project_name, # Define which parameters you would like to tune parameters=parameters_list, linear_constraints=linear_constraints_list, conditionals=conditionals_list, metrics=metrics_list, parallel_bandwidth=parallel_bandwidth, # Define an Observation Budget for your experiment observation_budget=observation_budget, metadata=metadata, type=experiment_type ) logging.info("Created experiment: https://sigopt.com/experiment/%s", experiment.id) return experiment def get_initialized_experiment(self, experiment_id): return self.connection.experiments(experiment_id).fetch() def get_suggestions(self, experiment): return self.connection.experiments(experiment.id).suggestions().create() def get_suggestions_meatadata(self, experiment, metadata_dict): return self.connection.experiments(experiment.id).suggestions().create(metadata=metadata_dict) def get_best_suggestions(self, experiment): return self.connection.experiments(experiment.id).best_assignments().fetch() def update_suggestion(self, experiment_id, suggestion_id, metadata_dict): return self.connection.experiments(experiment_id).suggestions(suggestion_id).update( metadata=metadata_dict ) def update_experiment(self, experiment, suggestion, evaluated_value): observation = self.connection.experiments(experiment.id).observations().create(suggestion=suggestion.id, value=evaluated_value) return self.connection.experiments(experiment.id).fetch(), observation def update_experiment_multimetric_metadata(self, experiment, suggestion, evaluated_value, metadata_dict, failed=False): logging.info("updating experiment %s with metadata %s", experiment.id, str(metadata_dict)) self.connection.experiments(experiment.id).observations().create(suggestion=suggestion.id, values=evaluated_value, failed=failed, metadata=metadata_dict) return self.connection.experiments(experiment.id).fetch() def update_experiment_multimetric(self, experiment, suggestion, evaluated_values, failed=False): self.connection.experiments(experiment.id).observations().create(suggestion=suggestion.id, values=evaluated_values, failed=failed) return self.connection.experiments(experiment.id).fetch() def create_experiment_metadata(self, experiment, metadata_dict): self.connection.experiments(experiment.id).observations().create(metadata=metadata_dict) return self.connection.experiments(experiment.id).fetch() def create_observation_metadata(self, experiment, observation, metadata_dict): updated_observation = self.connection.experiments(experiment.id).observations(observation.id).update(metadata=metadata_dict) return self.connection.experiments(experiment.id).fetch(), updated_observation def get_all_experiments(self): return self.connection.experiments().fetch() def get_all_observations(self, experiment): return self.connection.experiments(experiment.id).observations().fetch() def archive_experiment(self, experiment): logging.info("archiving experiment with id: %s", experiment.id) self.connection.experiments(experiment.id).delete()
ppgan/faceutils/face_enhancement/face_enhance.py
pcwuyu/PaddleGAN
6,852
12665456
<filename>ppgan/faceutils/face_enhancement/face_enhance.py # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import math import cv2 import numpy as np from ppgan.utils.download import get_path_from_url from ppgan.models.generators import GPEN from ppgan.faceutils.face_detection.detection.blazeface.utils import * GPEN_weights = 'https://paddlegan.bj.bcebos.com/models/GPEN-512.pdparams' class FaceEnhancement(object): def __init__(self, path_to_enhance=None, size = 512, batch_size=1 ): super(FaceEnhancement, self).__init__() # Initialise the face detector if path_to_enhance is None: model_weights_path = get_path_from_url(GPEN_weights) model_weights = paddle.load(model_weights_path) else: model_weights = paddle.load(path_to_enhance) self.face_enhance = GPEN(size=512, style_dim=512, n_mlp=8) self.face_enhance.load_dict(model_weights) self.face_enhance.eval() self.size = size self.mask = np.zeros((512, 512), np.float32) cv2.rectangle(self.mask, (26, 26), (486, 486), (1, 1, 1), -1, cv2.LINE_AA) self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11) self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11) self.mask = paddle.tile(paddle.to_tensor(self.mask).unsqueeze(0).unsqueeze(-1), repeat_times=[batch_size,1,1,3]).numpy() def enhance_from_image(self, img): if isinstance(img, np.ndarray): img, _ = resize_and_crop_image(img, 512) img = paddle.to_tensor(img).transpose([2, 0, 1]) else: assert img.shape == [3, 512, 512] return self.enhance_from_batch(img.unsqueeze(0))[0] def enhance_from_batch(self, img): if isinstance(img, np.ndarray): img_ori, _ = resize_and_crop_batch(img, 512) img = paddle.to_tensor(img_ori).transpose([0, 3, 1, 2]) else: assert img.shape[1:] == [3, 512, 512] img_ori = img.transpose([0, 2, 3, 1]).numpy() img_t = (img/255. - 0.5) / 0.5 with paddle.no_grad(): out, __ = self.face_enhance(img_t) image_tensor = out * 0.5 + 0.5 image_tensor = image_tensor.transpose([0, 2, 3, 1]) # RGB image_numpy = paddle.clip(image_tensor, 0, 1) * 255.0 out = image_numpy.astype(np.uint8).cpu().numpy() return out * self.mask + (1-self.mask) * img_ori
open/core/betterself/models/supplement.py
lawrendran/open
105
12665459
<reponame>lawrendran/open from django.db.models import CharField, ManyToManyField, BooleanField from open.core.betterself.constants import BetterSelfResourceConstants from open.core.betterself.models.ingredient_composition import IngredientComposition from open.utilities.models import BaseModelWithUserGeneratedContent class Supplement(BaseModelWithUserGeneratedContent): """ Could be a stack like BCAA (which would have 4 ingredient comps) Or could just be something simple like Caffeine. """ RESOURCE_NAME = BetterSelfResourceConstants.SUPPLEMENTS name = CharField(max_length=300) ingredient_compositions = ManyToManyField(IngredientComposition, blank=True) is_taken_with_food = BooleanField(default=None, blank=True, null=True) class Meta: unique_together = ("user", "name") ordering = ["user", "name"] verbose_name = "Supplement" verbose_name_plural = "Supplements"
examples/classifiers/CeleryTasks.py
jashanmeet-collab/mango
123
12665461
""" This is the file running on all the workers. They will run the classifier with the desired hyper parameters And return back the results. """ # from __future__ import absolute_import, unicode_literals # from __future__ import absolute_import, unicode_literals # from celery import Celery from __future__ import absolute_import, unicode_literals from .celery import app #whether sklearn_xgboost models should be enables on Celery include_sklearn_xgboost = True #whether prophet model should be enabled on Celery include_prophet = True # app = Celery('Mango', # broker='amqp://', # backend='rpc://') # # # Optional configuration # app.conf.update( # result_expires=3600, # broker_heartbeat = 0 # ) if include_sklearn_xgboost: """ All the Classifier Functions from sklearn """ import sklearn """ All the Classifier Functions from xgboost """ import xgboost from sklearn.model_selection import cross_val_score import numpy as np from importlib import import_module #Global variables to identify dataset is loaded by the worker X = None Y = None worker_dataset_name = None #global variables to identify classifier loaded by the worker clf_fxn = None worker_clf_name = None num_counter = 0 # load the dataset for the classifier def get_data_loader(dataset_name): global worker_dataset_name module = import_module('sklearn.datasets') data_loader = getattr(module,dataset_name) worker_dataset_name = dataset_name return data_loader # load the classifier as passed to the worker def get_clf(clf_name): global worker_clf_name worker_clf_name = clf_name for module in sklearn.__all__: try: module = import_module(f'sklearn.{module}') try: for clf in module.__all__: if clf ==clf_name: clf_function = getattr(module,clf_name) return clf_function except: pass except: pass for module in xgboost.__all__: try: if module ==clf_name: module = import_module(f'xgboost') clf_function = getattr(module,clf_name) return clf_function except Exception as e: print(e) @app.task def run_clf_celery(clf_name, dataset_name, hyper_par=None): global X, Y, clf_fxn, worker_clf_name, worker_dataset_name, num_counter num_counter = num_counter+1 #print('Worked is called:',num_counter) #load dataset if not done already if worker_dataset_name!=dataset_name: data_loader = get_data_loader(dataset_name) X,Y= data_loader(return_X_y=True) #load classifier if not done already if worker_clf_name!=clf_name: clf_fxn = get_clf(clf_name) #Assign the hyper parameters to the classifier if hyper_par!=None: clf = clf_fxn(**hyper_par) else: clf = clf_fxn() accuracy = cross_val_score(clf, X, Y, cv=3, scoring='accuracy').mean() #print('accuracy is:',accuracy) return accuracy # If include_prophet is set to true if include_prophet: """ Enabling the functionality of running prophet on PJME """ import numpy as np from .prophet import Prophet from .xgboosttree import Xgboosttree from sklearn.model_selection import cross_val_score from sklearn.metrics import mean_squared_error import os data_path = os.path.abspath('.')+'/classifiers/data/' model = Xgboosttree() #X_train, y_train = model.load_train_dataset("data/PJME/train_data") X_train, y_train = model.load_train_dataset(data_path+"PJME/train_data") X_validate, y_validate = model.load_train_dataset(data_path+"PJME/validate_data") @app.task def run_prophet(hyper_par): global X_train, y_train,X_validate,y_validate clf = Prophet(**hyper_par) clf.fit(X_train, y_train.ravel()) y_pred = clf.predict(X_validate) mse = mean_squared_error(y_validate, y_pred) mse = mse/10e5 result = (-1.0) * mse return result
cartoframes/viz/widget_list.py
CartoDB/cartoframes
236
12665474
from .widget import Widget from .styles.utils import prop class WidgetList: """WidgetList Args: widgets (list, Widget): The list of widgets for a layer. default_widget (Widget, optional): The widget to be used by default. """ def __init__(self, widgets=None, default_widget=None): self._widgets = self._init_widgets(widgets, default_widget) def _init_widgets(self, widgets, default_widget): if isinstance(widgets, list): widget_list = [] for widget in widgets: if isinstance(widget, dict): widget_list.append(Widget(widget)) elif isinstance(widget, Widget): if widget._type == 'default' and default_widget: widget._type = default_widget._type widget._prop = default_widget._prop widget._value = default_widget._value widget_list.append(widget) return widget_list if isinstance(widgets, dict): return [Widget(widgets)] else: return [] def get_widgets_info(self): widgets_info = [] for widget in self._widgets: if widget: widgets_info.append(widget.get_info()) return widgets_info def get_variables(self): output = {} for widget in self._widgets: if widget._variable_name: output[widget._variable_name] = prop(widget._value) if widget.has_bridge() else widget._value return output
create/models.py
Orad/webvirtmgr
1,633
12665478
<reponame>Orad/webvirtmgr from django.db import models class Flavor(models.Model): label = models.CharField(max_length=12) memory = models.IntegerField() vcpu = models.IntegerField() disk = models.IntegerField() def __unicode__(self): return self.name
testing/slides/examples/test_marks.py
ramosmaria/school2021
252
12665513
import pytest import time @pytest.mark.slow def test_slow(): time.sleep(2) assert 1 + 1 == 2 def test_fast(): assert 1 + 1== 2
inferno/extensions/initializers/__init__.py
0h-n0/inferno
204
12665516
from .base import * from .presets import *
IOMC/EventVertexGenerators/python/VtxSmearedEarly2p2TeVCollision_cfi.py
ckamtsikis/cmssw
852
12665520
import FWCore.ParameterSet.Config as cms from IOMC.EventVertexGenerators.VtxSmearedParameters_cfi import Early2p2TeVCollisionVtxSmearingParameters,VtxSmearedCommon VtxSmeared = cms.EDProducer("BetafuncEvtVtxGenerator", Early2p2TeVCollisionVtxSmearingParameters, VtxSmearedCommon )
sk_dsp_comm/test/sandbox.py
chiranthsiddappa/scikit-dsp-comm
139
12665542
import numpy as np from sk_dsp_comm import fec_conv from sk_dsp_comm import digitalcom as dc np.random.seed(100) cc = fec_conv.FecConv() print(cc.Nstates) import matplotlib.pyplot as plt import numpy as np from sk_dsp_comm import fec_conv as fc SNRdB = np.arange(2,12,.1) Pb_uc = fc.conv_Pb_bound(1/2,5,[1,4,12,32,80,192,448,1024],SNRdB,2) Pb_s = fc.conv_Pb_bound(1/2,5,[1,4,12,32,80,192,448,1024],SNRdB,1) plt.figure(figsize=(5,5)) plt.semilogy(SNRdB,Pb_uc) plt.semilogy(SNRdB,Pb_s) plt.axis([2,12,1e-7,1e0]) plt.xlabel(r'$E_b/N_0$ (dB)') plt.ylabel(r'Symbol Error Probability') #plt.legend(('Uncoded BPSK','R=1/2, K=5, Soft'),loc='best') plt.grid(); plt.show()
aries_cloudagent/protocols/present_proof/v2_0/models/__init__.py
kuraakhilesh8230/aries-cloudagent-python
247
12665543
<gh_stars>100-1000 """Package-wide data and code.""" from os import environ UNENCRYPTED_TAGS = environ.get("EXCH_UNENCRYPTED_TAGS", "False").upper() == "TRUE"
mysqloperator/init_main.py
sjmudd/mysql-operator
206
12665554
# Copyright (c) 2020, 2021, Oracle and/or its affiliates. # # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/ # import subprocess import mysqlsh import sys import os import logging import shutil from typing import cast from .controller import utils, k8sobject from .controller.innodbcluster.cluster_api import MySQLPod k8sobject.g_component = "initconf" k8sobject.g_host = os.getenv("HOSTNAME") mysql = mysqlsh.mysql def init_conf(datadir, pod, cluster, logger): """ Initialize MySQL configuration files and init scripts, which must be mounted in /mnt/mycnfdata. The source config files must be mounted in /mnt/initconf. The config files are them symlinked to /etc to be used by mysqld in the rest of the script. The main container should directly mount them in their final locations. Init scripts are executed by the mysql container entrypoint when it's initializing for the 1st time. """ server_id = pod.index + cluster.parsed_spec.baseServerId report_host = f'{os.getenv("MY_POD_NAME")}.{cluster.name}-instances.{cluster.namespace}.svc.cluster.local' logger.info( f"Setting up configurations for {pod.name} server_id={server_id} report_host={report_host}") srcdir = "/mnt/initconf/" destdir = "/mnt/mycnfdata/" os.makedirs(destdir + "my.cnf.d", exist_ok=True) os.makedirs(destdir + "docker-entrypoint-initdb.d", exist_ok=True) with open(srcdir + "my.cnf.in") as f: data = f.read() data = data.replace("@@SERVER_ID@@", str(server_id)) data = data.replace("@@HOSTNAME@@", str(report_host)) data = data.replace("@@DATADIR@@", datadir) with open(destdir + "my.cnf", "w+") as mycnf: mycnf.write(data) for f in os.listdir(srcdir): if f.startswith("initdb-"): shutil.copy(os.path.join(srcdir, f), destdir + "docker-entrypoint-initdb.d") if f.endswith(".sh"): os.chmod(os.path.join( destdir + "docker-entrypoint-initdb.d", f), 0o555) elif f.endswith(".cnf"): shutil.copy(os.path.join(srcdir, f), destdir + "my.cnf.d") if os.path.exists("/etc/my.cnf"): logger.info("Replacing /etc/my.cnf, old contents were:") logger.info(open("/etc/my.cnf").read()) os.remove("/etc/my.cnf") os.symlink(destdir + "my.cnf", "/etc/my.cnf") if os.path.exists("/etc/my.cnf.d"): os.rmdir("/etc/my.cnf.d") os.symlink(destdir + "my.cnf.d", "/etc/my.cnf.d") logger.info(f"Configuration done") def main(argv): datadir = argv[1] if len(argv) > 1 else "/var/lib/mysql" mysqlsh.globals.shell.options.useWizards = False logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - [%(levelname)s] [%(name)s] %(message)s', datefmt="%Y-%m-%dT%H:%M:%S") logger = logging.getLogger("initmysql") name = cast(str, os.getenv("MY_POD_NAME")) namespace = cast(str, os.getenv("MY_POD_NAMESPACE")) utils.log_banner(__file__, logger) logger.info(f"Configuring mysql pod {namespace}/{name}, datadir={datadir}") logger.debug(f"Initial contents of {datadir}:") subprocess.run(["ls", "-l", datadir]) logger.debug("Initial contents of /mnt:") subprocess.run(["ls", "-lR", "/mnt"]) try: pod = MySQLPod.read(name, namespace) cluster = pod.get_cluster() init_conf(datadir, pod, cluster, logger) except Exception as e: import traceback traceback.print_exc() logger.critical(f"Unhandled exception while bootstrapping MySQL: {e}") # TODO post event to the Pod and the Cluster object if this is the seed return 1 # TODO support for restoring from clone snapshot or MEB goes in here return 0
tests/slack_sdk/oauth/installation_store/test_interaface.py
timgates42/python-slack-sdk
2,486
12665556
import unittest from slack_sdk.oauth.installation_store import InstallationStore from slack_sdk.oauth.installation_store.async_installation_store import ( AsyncInstallationStore, ) class TestInterface(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_sync(self): store = InstallationStore() self.assertIsNotNone(store) def test_async(self): store = AsyncInstallationStore() self.assertIsNotNone(store)
python/ray/workflow/examples/comparisons/google_cloud_workflows/concat_array_workflow.py
linyiyue/ray
21,382
12665566
from typing import List from ray import workflow @workflow.step def iterate(array: List[str], result: str, i: int) -> str: if i >= len(array): return result return iterate.step(array, result + array[i], i + 1) if __name__ == "__main__": workflow.init() print(iterate.step(["foo", "ba", "r"], "", 0).run())
src/python/grapl_analyzerlib/tests/test_query_gen.py
msilvey/grapl
313
12665580
<reponame>msilvey/grapl<filename>src/python/grapl_analyzerlib/tests/test_query_gen.py<gh_stars>100-1000 import unittest import pytest import hypothesis from grapl_analyzerlib.prelude import GraphClient from grapl_analyzerlib.nodes.lens import LensView, LensQuery @pytest.mark.integration_test class TestQueryGen(unittest.TestCase): @hypothesis.settings(deadline=None) @hypothesis.given( lens_name=hypothesis.strategies.text(max_size=100), ) def test_weird_chars_in_lens_name(self, lens_name: str) -> None: """ Roundabout way to ensure some basic properties of filter generation. """ client = GraphClient() lens = LensView.get_or_create( gclient=client, lens_name=lens_name, lens_type="engagement", ) requery_lens = LensQuery().with_lens_name(lens_name).query_first(client) assert requery_lens.get_lens_name() == lens_name
ch-poetry-nlg/data_loader.py
shinoyuki222/torch-light
310
12665675
<gh_stars>100-1000 import numpy as np import torch from torch.autograd import Variable import const class DataLoader(object): def __init__(self, src_sents, max_len, batch_size, cuda=True): self.cuda = cuda self.sents_size = len(src_sents) self._step = 0 self._stop_step = self.sents_size // batch_size self._batch_size = batch_size self._max_len = max_len self.gen_data(src_sents) def gen_data(self, src_sents): src_sents = np.asarray(src_sents) self._src_sents = src_sents[:, :-1] self._label = src_sents[:, 1:] def _shuffle(self): indices = np.arange(self._src_sents.shape[0]) np.random.shuffle(indices) self._src_sents = self._src_sents[indices] self._label = self._label[indices] def __iter__(self): return self def __next__(self): def to_longest(insts): inst_data_tensor = Variable(torch.from_numpy(insts)) if self.cuda: inst_data_tensor = inst_data_tensor.cuda() return inst_data_tensor if self._step == self._stop_step: self._step = 0 raise StopIteration() _start = self._step*self._batch_size _bsz = self._batch_size self._step += 1 data = to_longest(self._src_sents[_start: _start+_bsz]) label = to_longest(self._label[_start: _start+_bsz]) return data, label.contiguous().view(-1) if __name__ == "__main__": data = torch.load("data/ch_pro_nlg.pt") _data = DataLoader( data['train'], data["max_word_len"], 64) d = {v: k for k, v in data['dict']['src'].items()} print([d[w] for s in _data._src_sents for w in s]) print([d[w] for s in _data._label for w in s])
tests/core/test_task_composite.py
ai-fast-track/mantisshrimp
580
12665681
# from icevision.all import * # first_task = tasks.Task("first") # second_task = tasks.Task("second") # record = BaseRecord( # ( # FilepathRecordComponent(), # InstancesLabelsRecordComponent(task=first_task), # BBoxesRecordComponent(task=first_task), # InstancesLabelsRecordComponent(task=second_task), # BBoxesRecordComponent(task=second_task), # ) # ) # record.builder_template() # [ # "record.set_img_size(<ImgSize>)", # "record.set_filepath(<Union[str, Path]>)", # "record.first.add_labels_names(<Sequence[Hashable]>)", # "record.first.add_bboxes(<Sequence[BBox]>)", # "record.second.add_labels_names(<Sequence[Hashable]>)", # "record.second.add_bboxes(<Sequence[BBox]>)", # ]
alipay/aop/api/domain/TradeComplainQueryResponse.py
antopen/alipay-sdk-python-all
213
12665685
<reponame>antopen/alipay-sdk-python-all #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class TradeComplainQueryResponse(object): def __init__(self): self._complain_event_id = None self._complain_reason = None self._content = None self._gmt_create = None self._gmt_finished = None self._gmt_modified = None self._images = None self._leaf_category_name = None self._merchant_order_no = None self._phone_no = None self._status = None self._target_id = None self._target_type = None self._trade_no = None @property def complain_event_id(self): return self._complain_event_id @complain_event_id.setter def complain_event_id(self, value): self._complain_event_id = value @property def complain_reason(self): return self._complain_reason @complain_reason.setter def complain_reason(self, value): self._complain_reason = value @property def content(self): return self._content @content.setter def content(self, value): self._content = value @property def gmt_create(self): return self._gmt_create @gmt_create.setter def gmt_create(self, value): self._gmt_create = value @property def gmt_finished(self): return self._gmt_finished @gmt_finished.setter def gmt_finished(self, value): self._gmt_finished = value @property def gmt_modified(self): return self._gmt_modified @gmt_modified.setter def gmt_modified(self, value): self._gmt_modified = value @property def images(self): return self._images @images.setter def images(self, value): if isinstance(value, list): self._images = list() for i in value: self._images.append(i) @property def leaf_category_name(self): return self._leaf_category_name @leaf_category_name.setter def leaf_category_name(self, value): self._leaf_category_name = value @property def merchant_order_no(self): return self._merchant_order_no @merchant_order_no.setter def merchant_order_no(self, value): self._merchant_order_no = value @property def phone_no(self): return self._phone_no @phone_no.setter def phone_no(self, value): self._phone_no = value @property def status(self): return self._status @status.setter def status(self, value): self._status = value @property def target_id(self): return self._target_id @target_id.setter def target_id(self, value): self._target_id = value @property def target_type(self): return self._target_type @target_type.setter def target_type(self, value): self._target_type = value @property def trade_no(self): return self._trade_no @trade_no.setter def trade_no(self, value): self._trade_no = value def to_alipay_dict(self): params = dict() if self.complain_event_id: if hasattr(self.complain_event_id, 'to_alipay_dict'): params['complain_event_id'] = self.complain_event_id.to_alipay_dict() else: params['complain_event_id'] = self.complain_event_id if self.complain_reason: if hasattr(self.complain_reason, 'to_alipay_dict'): params['complain_reason'] = self.complain_reason.to_alipay_dict() else: params['complain_reason'] = self.complain_reason if self.content: if hasattr(self.content, 'to_alipay_dict'): params['content'] = self.content.to_alipay_dict() else: params['content'] = self.content if self.gmt_create: if hasattr(self.gmt_create, 'to_alipay_dict'): params['gmt_create'] = self.gmt_create.to_alipay_dict() else: params['gmt_create'] = self.gmt_create if self.gmt_finished: if hasattr(self.gmt_finished, 'to_alipay_dict'): params['gmt_finished'] = self.gmt_finished.to_alipay_dict() else: params['gmt_finished'] = self.gmt_finished if self.gmt_modified: if hasattr(self.gmt_modified, 'to_alipay_dict'): params['gmt_modified'] = self.gmt_modified.to_alipay_dict() else: params['gmt_modified'] = self.gmt_modified if self.images: if isinstance(self.images, list): for i in range(0, len(self.images)): element = self.images[i] if hasattr(element, 'to_alipay_dict'): self.images[i] = element.to_alipay_dict() if hasattr(self.images, 'to_alipay_dict'): params['images'] = self.images.to_alipay_dict() else: params['images'] = self.images if self.leaf_category_name: if hasattr(self.leaf_category_name, 'to_alipay_dict'): params['leaf_category_name'] = self.leaf_category_name.to_alipay_dict() else: params['leaf_category_name'] = self.leaf_category_name if self.merchant_order_no: if hasattr(self.merchant_order_no, 'to_alipay_dict'): params['merchant_order_no'] = self.merchant_order_no.to_alipay_dict() else: params['merchant_order_no'] = self.merchant_order_no if self.phone_no: if hasattr(self.phone_no, 'to_alipay_dict'): params['phone_no'] = self.phone_no.to_alipay_dict() else: params['phone_no'] = self.phone_no if self.status: if hasattr(self.status, 'to_alipay_dict'): params['status'] = self.status.to_alipay_dict() else: params['status'] = self.status if self.target_id: if hasattr(self.target_id, 'to_alipay_dict'): params['target_id'] = self.target_id.to_alipay_dict() else: params['target_id'] = self.target_id if self.target_type: if hasattr(self.target_type, 'to_alipay_dict'): params['target_type'] = self.target_type.to_alipay_dict() else: params['target_type'] = self.target_type if self.trade_no: if hasattr(self.trade_no, 'to_alipay_dict'): params['trade_no'] = self.trade_no.to_alipay_dict() else: params['trade_no'] = self.trade_no return params @staticmethod def from_alipay_dict(d): if not d: return None o = TradeComplainQueryResponse() if 'complain_event_id' in d: o.complain_event_id = d['complain_event_id'] if 'complain_reason' in d: o.complain_reason = d['complain_reason'] if 'content' in d: o.content = d['content'] if 'gmt_create' in d: o.gmt_create = d['gmt_create'] if 'gmt_finished' in d: o.gmt_finished = d['gmt_finished'] if 'gmt_modified' in d: o.gmt_modified = d['gmt_modified'] if 'images' in d: o.images = d['images'] if 'leaf_category_name' in d: o.leaf_category_name = d['leaf_category_name'] if 'merchant_order_no' in d: o.merchant_order_no = d['merchant_order_no'] if 'phone_no' in d: o.phone_no = d['phone_no'] if 'status' in d: o.status = d['status'] if 'target_id' in d: o.target_id = d['target_id'] if 'target_type' in d: o.target_type = d['target_type'] if 'trade_no' in d: o.trade_no = d['trade_no'] return o
api/brands/urls.py
gaybro8777/osf.io
628
12665704
<gh_stars>100-1000 from django.conf.urls import url from api.brands import views app_name = 'osf' urlpatterns = [ url(r'^$', views.BrandList.as_view(), name=views.BrandList.view_name), url(r'^(?P<brand_id>\w+)/$', views.BrandDetail.as_view(), name=views.BrandDetail.view_name), ]
bot.py
sevazhidkov/tweets-search-bot
2,071
12665726
<gh_stars>1000+ import os import json import requests import telebot import re from telebot import types LOKLAK_API_URL = "http://loklak.org/api/search.json?q={query}" bot = telebot.TeleBot(os.environ['TELEGRAM_BOT_TOKEN']) user_results = {} def get_tweet_rating(tweet): """ Function that count tweet rating based on favourites and retweets """ return (tweet['retweet_count'] * 2) + tweet['favourites_count'] def tweet_answer(tweet, tweets_left): """ Function that making text answer from tweet object """ answer = '"{message}" - {author} \n\n{link}\n\n{more} more tweets.'.format( message=tweet['text'], author=tweet['screen_name'], link=tweet['link'], more=tweets_left ) return answer @bot.message_handler(commands=['start', 'help']) def description(message): bot.reply_to(message, "loklak.org bot - simple Telegram bot for searching tweets.\n" "Just send a message with your query and bot will process it, " "using loklag.org API. \n" "If you want to contribute, project is open source: " "https://github.com/sevazhidkov/tweets-search-bot\n" "You can search a particular user's entire tweets by enter \"/user:USERNAME\"" ) @bot.message_handler(commands=['next-tweet', 'next_tweet']) def next_tweet(message): user_id = message.from_user.id if user_id in user_results and user_results[user_id]: tweet = user_results[user_id].pop() bot.reply_to(message, tweet_answer(tweet, len(user_results[user_id]))) else: bot.reply_to(message, "You haven't searched anything.") @bot.message_handler(regexp="/user:.+") def user_search(message): query_msg = message.text baseURL = "http://loklak.org/api/search.json?q=from:" base_infoURL = "http://loklak.org/api/user.json?screen_name=" pattern = re.compile("/user:(.+)") mtch = pattern.match(query_msg) if mtch: username = mtch.group(1) raw = requests.get(baseURL + username) info_raw = requests.get(base_infoURL + username) try: tweets = json.loads(raw.text)['statuses'] info = json.loads(info_raw.text)['user'] time_zone = info['time_zone'] profile_image = info['profile_image_url'] friends_num = info['friends_count'] except ValueError: return if tweets: tweets.sort(key=get_tweet_rating) tweet = tweets.pop() user_results[message.from_user.id] = tweets #show a botton on top of input markup = types.ReplyKeyboardMarkup(row_width=1) markup.add('/next-tweet') full_text = "" full_text += "Username:" + username + "\n" full_text += "Profile Picture:" + profile_image + "\n" full_text += "Friends Number:" + str(friends_num) + "\n" full_text += tweet_answer(tweet, len(tweets)) bot.reply_to(message, full_text, reply_markup=markup) else: bot.reply_to(message, "Error in find a user, make sure you are in a correct format. \"user:USERNAME\"") else: bot.reply_to(message, "Error in format, make sure you are in a correct format.") @bot.message_handler(func=lambda m: True) def search(message): query_msg = message.text result = requests.get(LOKLAK_API_URL.format(query=query_msg)) try: tweets = json.loads(result.text)['statuses'] except ValueError: return if tweets: # Find the best tweet for this search query, # by using sorting tweets.sort(key=get_tweet_rating) tweet = tweets.pop() user_results[message.from_user.id] = tweets #show a botton on top of input markup = types.ReplyKeyboardMarkup(row_width=2) markup.add('/next-tweet') bot.reply_to(message, tweet_answer(tweet, len(tweets)), reply_markup=markup) else: # Delete words from message until result is not avaliable #Strategy: keep removing the smallest word in a sentence words = query_msg.split() if(len(words) > 1): words.sort(key = len) del words[0] reconstructed = "" for word in words: reconstructed += word + " " message.text = reconstructed search(message) else: bot.reply_to(message, '404 Not found') bot.polling()
libraries/botbuilder-schema/botbuilder/schema/teams/additional_properties.py
Fl4v/botbuilder-python
388
12665752
<gh_stars>100-1000 # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. class ContentType: O365_CONNECTOR_CARD = "application/vnd.microsoft.teams.card.o365connector" FILE_CONSENT_CARD = "application/vnd.microsoft.teams.card.file.consent" FILE_DOWNLOAD_INFO = "application/vnd.microsoft.teams.file.download.info" FILE_INFO_CARD = "application/vnd.microsoft.teams.card.file.info" class Type: O365_CONNECTOR_CARD_VIEWACTION = "ViewAction" O365_CONNECTOR_CARD_OPEN_URI = "OpenUri" O365_CONNECTOR_CARD_HTTP_POST = "HttpPOST" O365_CONNECTOR_CARD_ACTION_CARD = "ActionCard" O365_CONNECTOR_CARD_TEXT_INPUT = "TextInput" O365_CONNECTOR_CARD_DATE_INPUT = "DateInput" O365_CONNECTOR_CARD_MULTICHOICE_INPUT = "MultichoiceInput"
learning_tensorflow/1.py
drpreetyrai/ChatBotCourse
5,087
12665771
<gh_stars>1000+ import tensorflow as tf sess = tf.Session() a = tf.placeholder("float") b = tf.placeholder("float") c = tf.constant(6.0) d = tf.mul(a, b) y = tf.mul(d, c) print sess.run(y, feed_dict={a: 3, b: 3}) A = [[1.1,2.3],[3.4,4.1]] Y = tf.matrix_inverse(A) print sess.run(Y) sess.close()
routeros_api/api_communicator/encoding_decorator.py
davidc/RouterOS-api
183
12665795
class EncodingApiCommunicator(object): def __init__(self, inner): self.inner = inner def call(self, path, command, arguments=None, queries=None, additional_queries=()): path = path.encode() command = command.encode() arguments = self.transform_dictionary(arguments or {}) queries = self.transform_dictionary(queries or {}) promise = self.inner.call( path, command, arguments, queries, additional_queries) return self.decorate_promise(promise) def transform_dictionary(self, dictionary): return dict(self.transform_item(item) for item in dictionary.items()) def transform_item(self, item): key, value = item return (key.encode(), value) def decorate_promise(self, promise): return EncodedPromiseDecorator(promise) class EncodedPromiseDecorator(object): def __init__(self, inner): self.inner = inner def get(self): response = self.inner.get() return response.map(self.transform_row) def __iter__(self): return map(self.transform_row, self.inner) def transform_row(self, row): return dict(self.transform_item(item) for item in row.items()) def transform_item(self, item): key, value = item return (key.decode(), value)
ice/core/utils.py
i2y/ice
313
12665802
from collections import Sequence from .constants import LPARA, RPARA def issequence(obj): return isinstance(obj, Sequence) def issequence_except_str(obj): if isinstance(obj, str): return False return isinstance(obj, Sequence) def is_tuple_or_list(obj): return type(obj) in {tuple, list} def emit_sexp(sexpr): ol = [] stack = [sexpr] while len(stack) > 0: sexpr = stack.pop() if is_tuple_or_list(sexpr): stack.append(RPARA) rsexpr = [] for sub in sexpr: rsexpr.insert(0, sub) stack.extend(rsexpr) stack.append(LPARA) else: ol.append(sexpr) retval = '' oldsitem = '' for item in ol: sitem = repr(item) if sitem[0] == "'" and sitem[-1] == "'": sitem = sitem.replace('"', "\\\"") sitem = '"' + sitem[1:-1] + '"' if not ((sitem == ')') or (oldsitem == '(')): oldsitem = sitem sitem = ' ' + sitem else: oldsitem = sitem retval += sitem return retval[1:]
eeauditor/auditors/aws/AWS_License_Manager_Auditor.py
kbhagi/ElectricEye
442
12665807
<gh_stars>100-1000 #This file is part of ElectricEye. #SPDX-License-Identifier: Apache-2.0 #Licensed to the Apache Software Foundation (ASF) under one #or more contributor license agreements. See the NOTICE file #distributed with this work for additional information #regarding copyright ownership. The ASF licenses this file #to you under the Apache License, Version 2.0 (the #"License"); you may not use this file except in compliance #with the License. You may obtain a copy of the License at #http://www.apache.org/licenses/LICENSE-2.0 #Unless required by applicable law or agreed to in writing, #software distributed under the License is distributed on an #"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY #KIND, either express or implied. See the License for the #specific language governing permissions and limitations #under the License. import boto3 import datetime import os from check_register import CheckRegister registry = CheckRegister() # import boto3 clients licensemanager = boto3.client("license-manager") @registry.register_check("license-manager") def license_manager_hard_count_check(cache: dict, awsAccountId: str, awsRegion: str, awsPartition: str) -> dict: """[LicenseManager.1] License Manager license configurations should be configured to enforce a hard limit""" try: # TODO: need to catch the case that License Manager is not setup response = licensemanager.list_license_configurations() lmCheck = str(response["LicenseConfigurations"]) if lmCheck == "[]": pass else: myLiscMgrConfigs = response["LicenseConfigurations"] for lmconfigs in myLiscMgrConfigs: liscConfigArn = str(lmconfigs["LicenseConfigurationArn"]) # ISO Time iso8601Time = ( datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc).isoformat() ) try: response = licensemanager.get_license_configuration( LicenseConfigurationArn=liscConfigArn ) liscConfigId = str(response["LicenseConfigurationId"]) liscConfigName = str(response["Name"]) hardLimitCheck = str(response["LicenseCountHardLimit"]) if hardLimitCheck == "False": finding = { "SchemaVersion": "2018-10-08", "Id": liscConfigArn + "/license-manager-enforce-hard-limit-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": liscConfigArn, "AwsAccountId": awsAccountId, "Types": [ "Software and Configuration Checks/AWS Security Best Practices" ], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "LOW"}, "Confidence": 99, "Title": "[LicenseManager.1] License Manager license configurations should be configured to enforce a hard limit", "Description": "License Manager license configuration " + liscConfigName + " does not enforce a hard limit. Enforcing a hard limit prevents new instances from being created that if you have already provisioned all available licenses. Refer to the remediation instructions to remediate this behavior", "Remediation": { "Recommendation": { "Text": "For information on hard limits refer to the License Configuration Parameters and Rules section of the AWS License Manager User Guide", "Url": "https://docs.aws.amazon.com/license-manager/latest/userguide/config-overview.html", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsLicenseManagerLicenseConfiguration", "Id": liscConfigArn, "Partition": awsPartition, "Region": awsRegion, "Details": { "Other": { "licenseConfigurationId": liscConfigId, "licenseConfigurationName": liscConfigName, } }, } ], "Compliance": { "Status": "FAILED", "RelatedRequirements": [ "NIST CSF ID.AM-2", "NIST SP 800-53 CM-8", "NIST SP 800-53 PM-5", "AICPA TSC CC3.2", "AICPA TSC CC6.1", "ISO 27001:2013 A.8.1.1", "ISO 27001:2013 A.8.1.2", "ISO 27001:2013 A.12.5.1", ], }, "Workflow": {"Status": "NEW"}, "RecordState": "ACTIVE", } yield finding else: finding = { "SchemaVersion": "2018-10-08", "Id": liscConfigArn + "/license-manager-enforce-hard-limit-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": liscConfigArn, "AwsAccountId": awsAccountId, "Types": [ "Software and Configuration Checks/AWS Security Best Practices" ], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "INFORMATIONAL"}, "Confidence": 99, "Title": "[LicenseManager.1] License Manager license configurations should be configured to enforce a hard limit", "Description": "License Manager license configuration " + liscConfigName + " enforces a hard limit.", "Remediation": { "Recommendation": { "Text": "For information on hard limits refer to the License Configuration Parameters and Rules section of the AWS License Manager User Guide", "Url": "https://docs.aws.amazon.com/license-manager/latest/userguide/config-overview.html", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsLicenseManagerLicenseConfiguration", "Id": liscConfigArn, "Partition": awsPartition, "Region": awsRegion, "Details": { "Other": { "licenseConfigurationId": liscConfigId, "licenseConfigurationName": liscConfigName, } }, } ], "Compliance": { "Status": "PASSED", "RelatedRequirements": [ "NIST CSF ID.AM-2", "NIST SP 800-53 CM-8", "NIST SP 800-53 PM-5", "AICPA TSC CC3.2", "AICPA TSC CC6.1", "ISO 27001:2013 A.8.1.1", "ISO 27001:2013 A.8.1.2", "ISO 27001:2013 A.12.5.1", ], }, "Workflow": {"Status": "RESOLVED"}, "RecordState": "ARCHIVED", } yield finding except Exception as e: print(e) except Exception as e: print(e) @registry.register_check("license-manager") def license_manager_disassociation_check(cache: dict, awsAccountId: str, awsRegion: str, awsPartition: str) -> dict: """[LicenseManager.2] License Manager license configurations should disassociate hosts when license in scope is not found""" try: # TODO: need to catch the case that License Manager is not setup response = licensemanager.list_license_configurations() lmCheck = str(response["LicenseConfigurations"]) if lmCheck == "[]": pass else: myLiscMgrConfigs = response["LicenseConfigurations"] for lmconfigs in myLiscMgrConfigs: liscConfigArn = str(lmconfigs["LicenseConfigurationArn"]) # ISO Time iso8601Time = ( datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc).isoformat() ) try: response = licensemanager.get_license_configuration( LicenseConfigurationArn=liscConfigArn ) liscConfigId = str(response["LicenseConfigurationId"]) liscConfigName = str(response["Name"]) disassocCheck = str(response["DisassociateWhenNotFound"]) if disassocCheck == "False": finding = { "SchemaVersion": "2018-10-08", "Id": liscConfigArn + "/license-manager-disassociation-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": liscConfigArn, "AwsAccountId": awsAccountId, "Types": [ "Software and Configuration Checks/AWS Security Best Practices" ], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "LOW"}, "Confidence": 99, "Title": "[LicenseManager.2] License Manager license configurations should disassociate hosts when license in scope is not found", "Description": "License Manager license configuration " + liscConfigName + " does not enforce automatic disassociation. Refer to the remediation instructions to remediate this behavior.", "Remediation": { "Recommendation": { "Text": "For information on disassociation refer to the Disassociating license configurations and AMIs section of the AWS License Manager User Guide", "Url": "https://docs.aws.amazon.com/license-manager/latest/userguide/license-rules.html#ami-disassociation", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsLicenseManagerLicenseConfiguration", "Id": liscConfigArn, "Partition": awsPartition, "Region": awsRegion, "Details": { "Other": { "LicenseConfigurationId": liscConfigId, "LicenseConfigurationName": liscConfigName, } }, } ], "Compliance": { "Status": "FAILED", "RelatedRequirements": [ "NIST CSF ID.AM-2", "NIST SP 800-53 CM-8", "NIST SP 800-53 PM-5", "AICPA TSC CC3.2", "AICPA TSC CC6.1", "ISO 27001:2013 A.8.1.1", "ISO 27001:2013 A.8.1.2", "ISO 27001:2013 A.12.5.1", ], }, "Workflow": {"Status": "NEW"}, "RecordState": "ACTIVE", } yield finding else: finding = { "SchemaVersion": "2018-10-08", "Id": liscConfigArn + "/license-manager-disassociation-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": liscConfigArn, "AwsAccountId": awsAccountId, "Types": [ "Software and Configuration Checks/AWS Security Best Practices" ], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "INFORMATIONAL"}, "Confidence": 99, "Title": "[LicenseManager.2] License Manager license configurations should disassociate hosts when license in scope is not found", "Description": "License Manager license configuration " + liscConfigName + " enforces automatic disassociation.", "Remediation": { "Recommendation": { "Text": "For information on disassociation refer to the Disassociating license configurations and AMIs section of the AWS License Manager User Guide", "Url": "https://docs.aws.amazon.com/license-manager/latest/userguide/license-rules.html#ami-disassociation", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsLicenseManagerLicenseConfiguration", "Id": liscConfigArn, "Partition": awsPartition, "Region": awsRegion, "Details": { "Other": { "LicenseConfigurationId": liscConfigId, "LicenseConfigurationName": liscConfigName, } }, } ], "Compliance": { "Status": "PASSED", "RelatedRequirements": [ "NIST CSF ID.AM-2", "NIST SP 800-53 CM-8", "NIST SP 800-53 PM-5", "AICPA TSC CC3.2", "AICPA TSC CC6.1", "ISO 27001:2013 A.8.1.1", "ISO 27001:2013 A.8.1.2", "ISO 27001:2013 A.12.5.1" ] }, "Workflow": {"Status": "RESOLVED"}, "RecordState": "ARCHIVED", } yield finding except Exception as e: print(e) except Exception as e: print(e)
vut/lib/python3.8/site-packages/pipenv/vendor/passa/internals/specifiers.py
dan-mutua/djangowk1
6,263
12665842
<reponame>dan-mutua/djangowk1 # -*- coding=utf-8 -*- from __future__ import absolute_import, unicode_literals import itertools import operator from packaging.specifiers import SpecifierSet, Specifier from vistir.misc import dedup def _tuplize_version(version): return tuple(int(x) for x in version.split(".")) def _format_version(version): return ".".join(str(i) for i in version) # Prefer [x,y) ranges. REPLACE_RANGES = {">": ">=", "<=": "<"} def _format_pyspec(specifier): if isinstance(specifier, str): if not any(op in specifier for op in Specifier._operators.keys()): specifier = "=={0}".format(specifier) specifier = Specifier(specifier) if specifier.operator == "==" and specifier.version.endswith(".*"): specifier = Specifier("=={0}".format(specifier.version[:-2])) try: op = REPLACE_RANGES[specifier.operator] except KeyError: return specifier version = specifier.version.replace(".*", "") curr_tuple = _tuplize_version(version) try: next_tuple = (curr_tuple[0], curr_tuple[1] + 1) except IndexError: next_tuple = (curr_tuple[0], 1) specifier = Specifier("{0}{1}".format(op, _format_version(next_tuple))) return specifier def _get_specs(specset): if isinstance(specset, Specifier): specset = str(specset) if isinstance(specset, str): specset = SpecifierSet(specset.replace(".*", "")) return [ (spec._spec[0], _tuplize_version(spec._spec[1])) for spec in getattr(specset, "_specs", []) ] def _group_by_op(specs): specs = [_get_specs(x) for x in list(specs)] flattened = [(op, version) for spec in specs for op, version in spec] specs = sorted(flattened, key=operator.itemgetter(1)) grouping = itertools.groupby(specs, key=operator.itemgetter(0)) return grouping def cleanup_pyspecs(specs, joiner="or"): specs = {_format_pyspec(spec) for spec in specs} # for != operator we want to group by version # if all are consecutive, join as a list results = set() for op, versions in _group_by_op(specs): versions = [version[1] for version in versions] versions = sorted(dedup(versions)) # if we are doing an or operation, we need to use the min for >= # this way OR(>=2.6, >=2.7, >=3.6) picks >=2.6 # if we do an AND operation we need to use MAX to be more selective if op in (">", ">="): if joiner == "or": results.add((op, _format_version(min(versions)))) else: results.add((op, _format_version(max(versions)))) # we use inverse logic here so we will take the max value if we are # using OR but the min value if we are using AND elif op in ("<=", "<"): if joiner == "or": results.add((op, _format_version(max(versions)))) else: results.add((op, _format_version(min(versions)))) # leave these the same no matter what operator we use elif op in ("!=", "==", "~="): version_list = sorted( "{0}".format(_format_version(version)) for version in versions ) version = ", ".join(version_list) if len(version_list) == 1: results.add((op, version)) elif op == "!=": results.add(("not in", version)) elif op == "==": results.add(("in", version)) else: specifier = SpecifierSet(",".join(sorted( "{0}".format(op, v) for v in version_list )))._specs for s in specifier: results &= (specifier._spec[0], specifier._spec[1]) else: if len(version) == 1: results.add((op, version)) else: specifier = SpecifierSet("{0}".format(version))._specs for s in specifier: results |= (specifier._spec[0], specifier._spec[1]) return results def pyspec_from_markers(marker): if marker._markers[0][0] != 'python_version': return op = marker._markers[0][1].value version = marker._markers[0][2].value specset = set() if op == "in": specset.update( Specifier("=={0}".format(v.strip())) for v in version.split(",") ) elif op == "not in": specset.update( Specifier("!={0}".format(v.strip())) for v in version.split(",") ) else: specset.add(Specifier("".join([op, version]))) if specset: return specset return None
model/AO_model/AO_model.py
ishine/Looking-to-Listen-at-the-Cocktail-Party
145
12665871
<filename>model/AO_model/AO_model.py from keras import optimizers from keras.layers import Input, Dense, Convolution2D, Bidirectional,TimeDistributed from keras.layers import Flatten, BatchNormalization, Reshape from keras.layers.core import Activation from keras.models import Model, load_model from keras.layers.recurrent import LSTM from keras.initializers import he_normal,glorot_uniform def AO_model(people_num=2): model_input = Input(shape=(298, 257, 2)) print('0:', model_input.shape) conv1 = Convolution2D(96, kernel_size=(1, 7), strides=(1, 1), padding='same', dilation_rate=(1, 1), name='conv1')(model_input) conv1 = BatchNormalization()(conv1) conv1 = Activation('relu')(conv1) print('1:', conv1.shape) conv2 = Convolution2D(96, kernel_size=(7, 1), strides=(1, 1), padding='same', dilation_rate=(1, 1), name='conv2')(conv1) conv2 = BatchNormalization()(conv2) conv2 = Activation('relu')(conv2) print('2:', conv2.shape) conv3 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(1, 1), name='conv3')(conv2) conv3 = BatchNormalization()(conv3) conv3 = Activation('relu')(conv3) print('3:', conv3.shape) conv4 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(2, 1), name='conv4')(conv3) conv4 = BatchNormalization()(conv4) conv4 = Activation('relu')(conv4) print('4:', conv4.shape) conv5 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(4, 1), name='conv5')(conv4) conv5 = BatchNormalization()(conv5) conv5 = Activation('relu')(conv5) print('5:', conv5.shape) conv6 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(8, 1), name='conv6')(conv5) conv6 = BatchNormalization()(conv6) conv6 = Activation('relu')(conv6) print('6:', conv6.shape) conv7 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(16, 1), name='conv7')(conv6) conv7 = BatchNormalization()(conv7) conv7 = Activation('relu')(conv7) print('7:', conv7.shape) conv8 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(32, 1), name='conv8')(conv7) conv8 = BatchNormalization()(conv8) conv8 = Activation('relu')(conv8) print('8:', conv8.shape) conv9 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(1, 1), name='conv9')(conv8) conv9 = BatchNormalization()(conv9) conv9 = Activation('relu')(conv9) print('9:', conv9.shape) conv10 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(2, 2), name='conv10')(conv9) conv10 = BatchNormalization()(conv10) conv10 = Activation('relu')(conv10) print('10:', conv10.shape) conv11 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(4, 4), name='conv11')(conv10) conv11 = BatchNormalization()(conv11) conv11 = Activation('relu')(conv11) print('11:', conv11.shape) conv12 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(8, 8), name='conv12')(conv11) conv12 = BatchNormalization()(conv12) conv12 = Activation('relu')(conv12) print('12:', conv12.shape) conv13 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(16, 16), name='conv13')(conv12) conv13 = BatchNormalization()(conv13) conv13 = Activation('relu')(conv13) print('13:', conv13.shape) conv14 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(32, 32), name='conv14')(conv13) conv14 = BatchNormalization()(conv14) conv14 = Activation('relu')(conv14) print('14:', conv14.shape) conv15 = Convolution2D(8, kernel_size=(1, 1), strides=(1, 1), padding='same', dilation_rate=(1, 1), name='conv15')(conv14) conv15 = BatchNormalization()(conv15) conv15 = Activation('relu')(conv15) print('15:', conv15.shape) AVfusion = TimeDistributed(Flatten())(conv15) print('AVfusion:', AVfusion.shape) lstm = Bidirectional(LSTM(400,input_shape=(298,8*257),return_sequences=True),merge_mode='sum')(AVfusion) print('lstm:', lstm.shape) fc1 = Dense(600, name="fc1", activation='relu', kernel_initializer=he_normal(seed=27))(lstm) print('fc1:', fc1.shape) fc2 = Dense(600, name="fc2", activation='relu', kernel_initializer=he_normal(seed=42))(fc1) print('fc2:', fc2.shape) fc3 = Dense(600, name="fc3", activation='relu', kernel_initializer=he_normal(seed=65))(fc2) print('fc3:', fc3.shape) complex_mask = Dense(257 * 2 * people_num, name="complex_mask", kernel_initializer=glorot_uniform(seed=87))(fc3) print('complex_mask:', complex_mask.shape) complex_mask_out = Reshape((298, 257, 2, people_num))(complex_mask) print('complex_mask_out:', complex_mask_out.shape) # --------------------------- AO end --------------------------- AO_model = Model(inputs=model_input, outputs=complex_mask_out) return AO_model
doc/examples/sparsevid.py
samgal/scikit-video
615
12665953
<gh_stars>100-1000 import matplotlib.pyplot as plt import numpy as np import scipy import sklearn.linear_model from matplotlib import gridspec from sklearn.feature_extraction import image import skvideo.datasets try: xrange except NameError: xrange = range np.random.seed(0) # use greedy K-SVD algorithm with OMP def code_step(X, D): model = sklearn.linear_model.OrthogonalMatchingPursuit( n_nonzero_coefs=5, fit_intercept=False, normalize=False ) #C = sklearn. model.fit(D.T, X.T) return model.coef_ def dict_step(X, C, D): unused_indices = [] for k in xrange(D.shape[0]): usedidx = np.abs(C[:, k])>0 if np.sum(usedidx) <= 1: print("Skipping filter #%d" % (k,)) unused_indices.append(k) continue selectNotK = np.arange(D.shape[0]) != k used_coef = C[usedidx, :][:, selectNotK] E_kR = X[usedidx, :].T - np.dot(used_coef, D[selectNotK, :]).T U, S, V = scipy.sparse.linalg.svds(E_kR, k=1) # choose sign based on largest dot product choicepos = np.dot(D[k,:], U[:, 0]) choiceneg = np.dot(D[k,:], -U[:, 0]) if choicepos > choiceneg: D[k, :] = U[:, 0] C[usedidx, k] = S[0] * V[0, :] else: D[k, :] = -U[:, 0] C[usedidx, k] = -S[0] * V[0, :] # re-randomize filters that were not used for i in unused_indices: D[i, :] = np.random.normal(size=D.shape[1]) D[i, :] /= np.sqrt(np.dot(D[i,:], D[i,:])) return D def plot_weights(basis): n_filters, n_channels, height, width = basis.shape ncols = 10 nrows = 10 fig = plt.figure() gs = gridspec.GridSpec(nrows, ncols) rown = 0 coln = 0 for filter in xrange(n_filters): ax = fig.add_subplot(gs[rown, coln]) mi = np.min(basis[filter, 0, :, :]) ma = np.max(basis[filter, 0, :, :]) ma = np.max((np.abs(mi), np.abs(ma))) mi = -ma ax.imshow(basis[filter, 0, :, :], vmin=mi, vmax=ma, cmap='Greys_r', interpolation='none') ax.xaxis.set_major_locator(plt.NullLocator()) ax.yaxis.set_major_locator(plt.NullLocator()) coln += 1 if coln >= ncols: coln = 0 rown += 1 gs.tight_layout(fig, pad=0, h_pad=0, w_pad=0) fig.canvas.draw() buf, sz = fig.canvas.print_to_buffer() data = np.fromstring(buf, dtype=np.uint8).reshape(sz[1], sz[0], -1)[:, :, :3] plt.close() return data # a 5 fps video encoded using x264 writer = skvideo.io.FFmpegWriter("sparsity.mp4", inputdict={ "-r": "10" }, outputdict={ '-vcodec': 'libx264', '-b': '30000000' }) # open the first frame of bigbuckbunny filename = skvideo.datasets.bigbuckbunny() vidframe = skvideo.io.vread(filename, outputdict={"-pix_fmt": "gray"})[0, :, :, 0] # initialize D D = np.random.normal(size=(100, 7*7)) for i in range(D.shape[0]): D[i, :] /= np.sqrt(np.dot(D[i,:], D[i,:])) X = image.extract_patches_2d(vidframe, (7, 7)) X = X.reshape(X.shape[0], -1).astype(np.float) # sumsample about 10000 patches X = X[np.random.permutation(X.shape[0])[:10000]] for i in range(200): print("Iteration %d / %d" % (i, 200)) C = code_step(X, D) D = dict_step(X, C, D) frame = plot_weights(D.reshape(100, 1, 7, 7)) writer.writeFrame(frame) writer.close()
pony/orm/tests/test_relations_one2one4.py
ProgHaj/pony
2,628
12665977
<gh_stars>1000+ from __future__ import absolute_import, print_function, division import unittest from pony.orm.core import * from pony.orm.tests.testutils import * from pony.orm.tests import setup_database, teardown_database db = Database() class Person(db.Entity): name = Required(unicode) passport = Optional("Passport") class Passport(db.Entity): code = Required(unicode) person = Required("Person") class TestOneToOne4(unittest.TestCase): def setUp(self): setup_database(db) with db_session: p1 = Person(id=1, name='John') Passport(id=1, code='123', person=p1) def tearDown(self): teardown_database(db) @raises_exception(ConstraintError, 'Cannot unlink Passport[1] from previous Person[1] object, because Passport.person attribute is required') @db_session def test1(self): p2 = Person(id=2, name='Mike') pas2 = Passport(id=2, code='456', person=p2) commit() p1 = Person.get(name='John') pas2.person = p1 if __name__ == '__main__': unittest.main()
USPTO/rank-diff-wln/nntrain.py
wengong-jin/nips17-rexgen
113
12666008
import tensorflow as tf from utils.nn import linearND, linear from mol_graph import atom_fdim as adim, bond_fdim as bdim, max_nb, smiles2graph from models import * import math, sys, random from optparse import OptionParser import threading parser = OptionParser() parser.add_option("-t", "--train", dest="train_path") parser.add_option("-p", "--cand", dest="cand_path", default=None) parser.add_option("-b", "--batch", dest="batch_size", default=4) parser.add_option("-c", "--ncore", dest="core_size", default=10) parser.add_option("-a", "--ncand", dest="cand_size", default=500) parser.add_option("-m", "--save_dir", dest="save_path") parser.add_option("-w", "--hidden", dest="hidden_size", default=100) parser.add_option("-d", "--depth", dest="depth", default=1) parser.add_option("-n", "--max_norm", dest="max_norm", default=50.0) opts,args = parser.parse_args() hidden_size = int(opts.hidden_size) depth = int(opts.depth) core_size = int(opts.core_size) cutoff = int(opts.cand_size) max_norm = float(opts.max_norm) batch_size = int(opts.batch_size) session = tf.Session() _input_atom = tf.placeholder(tf.float32, [None, None, adim]) _input_bond = tf.placeholder(tf.float32, [None, None, bdim]) _atom_graph = tf.placeholder(tf.int32, [None, None, max_nb, 2]) _bond_graph = tf.placeholder(tf.int32, [None, None, max_nb, 2]) _num_nbs = tf.placeholder(tf.int32, [None, None]) _label = tf.placeholder(tf.int32, [None]) _src_holder = [_input_atom, _input_bond, _atom_graph, _bond_graph, _num_nbs, _label] q = tf.FIFOQueue(100, [tf.float32, tf.float32, tf.int32, tf.int32, tf.int32, tf.int32]) enqueue = q.enqueue(_src_holder) input_atom, input_bond, atom_graph, bond_graph, num_nbs, label = q.dequeue() input_atom.set_shape([None, None, adim]) input_bond.set_shape([None, None, bdim]) atom_graph.set_shape([None, None, max_nb, 2]) bond_graph.set_shape([None, None, max_nb, 2]) num_nbs.set_shape([None, None]) label.set_shape([None]) graph_inputs = (input_atom, input_bond, atom_graph, bond_graph, num_nbs) with tf.variable_scope("mol_encoder"): fp_all_atoms = rcnn_wl_only(graph_inputs, hidden_size=hidden_size, depth=depth) reactant = fp_all_atoms[0:1,:] candidates = fp_all_atoms[1:,:] candidates = candidates - reactant candidates = tf.concat(0, [reactant, candidates]) with tf.variable_scope("diff_encoder"): reaction_fp = wl_diff_net(graph_inputs, candidates, hidden_size=hidden_size, depth=1) reaction_fp = reaction_fp[1:] reaction_fp = tf.nn.relu(linear(reaction_fp, hidden_size, "rex_hidden")) score = tf.squeeze(linear(reaction_fp, 1, "score"), [1]) loss = tf.nn.softmax_cross_entropy_with_logits(score, label) pred = tf.argmax(score, 0) _lr = tf.placeholder(tf.float32, []) optimizer = tf.train.AdamOptimizer(learning_rate=_lr) tvs = tf.trainable_variables() param_norm = tf.global_norm(tvs) grads_and_vars = optimizer.compute_gradients(loss, tvs) grads, var = zip(*grads_and_vars) grad_norm = tf.global_norm(grads) new_grads, _ = tf.clip_by_global_norm(grads, max_norm) accum_grads = [tf.Variable(tf.zeros(v.get_shape().as_list()), trainable=False) for v in tvs] zero_ops = [v.assign(tf.zeros(v.get_shape().as_list())) for v in accum_grads] accum_ops = [accum_grads[i].assign_add(grad) for i, grad in enumerate(new_grads)] grads_and_vars = zip(accum_grads, var) backprop = optimizer.apply_gradients(grads_and_vars) tf.global_variables_initializer().run(session=session) size_func = lambda v: reduce(lambda x, y: x*y, v.get_shape().as_list()) n = sum(size_func(v) for v in tf.trainable_variables()) print "Model size: %dK" % (n/1000,) def count(s): c = 0 for i in xrange(len(s)): if s[i] == ':': c += 1 return c def read_data(coord): data = [] train_f = open(opts.train_path, 'r') cand_f = open(opts.cand_path, 'r') for line in train_f: r,e = line.strip("\r\n ").split() cand = cand_f.readline() cbonds = [] for b in e.split(';'): x,y = b.split('-') x,y = int(x)-1,int(y)-1 cbonds.append((x,y)) sbonds = set(cbonds) for b in cand.strip("\r\n ").split(): x,y = b.split('-') x,y = int(x)-1,int(y)-1 if (x,y) not in sbonds: cbonds.append((x,y)) data.append((r,cbonds)) random.shuffle(data) data_len = len(data) it = 0 while True: reaction, cand_bonds = data[it] cand_bonds = cand_bonds[:core_size] it = (it + 1) % data_len r,_,p = reaction.split('>') n = count(r) if n <= 2 or n > 100: continue src_tuple,_ = smiles2graph(r, p, cand_bonds, cutoff=cutoff) feed_map = {x:y for x,y in zip(_src_holder, src_tuple)} session.run(enqueue, feed_dict=feed_map) coord.request_stop() coord = tf.train.Coordinator() t = threading.Thread(target=read_data, args=(coord,)) t.start() saver = tf.train.Saver() it, sum_acc, sum_err, sum_gnorm = 0, 0.0, 0.0, 0.0 lr = 0.001 try: while not coord.should_stop(): it += batch_size session.run(zero_ops) for i in xrange(batch_size): ans = session.run(accum_ops + [pred]) if ans[-1] != 0: sum_err += 1.0 _, pnorm, gnorm = session.run([backprop, param_norm, grad_norm], feed_dict={_lr:lr}) sum_gnorm += gnorm if it % 200 == 0 and it > 0: print "Training Error: %.4f, Param Norm: %.2f, Grad Norm: %.2f" % (sum_err / 200, pnorm, sum_gnorm / 200 * batch_size) sys.stdout.flush() sum_err, sum_gnorm = 0.0, 0.0 if it % 40000 == 0 and it > 0: saver.save(session, opts.save_path + "/model.ckpt-%d" % it) lr *= 0.9 print "Learning Rate: %.6f" % lr except Exception as e: print e coord.request_stop(e) finally: saver.save(session, opts.save_path + "/model.final") coord.request_stop() coord.join([t])
examples/core/data_readers/tum.py
mli0603/lietorch
360
12666030
import numpy as np import torch import csv import os import cv2 import math import random import json import pickle import os.path as osp from lietorch import SE3 from .stream import RGBDStream from .rgbd_utils import loadtum intrinsics_dict = { 'freiburg1': [517.3, 516.5, 318.6, 255.3], 'freiburg2': [520.9, 521.0, 325.1, 249.7], 'freiburg3': [535.4, 539.2, 320.1, 247.6], } distortion_dict = { 'freiburg1': [0.2624, -0.9531, -0.0054, 0.0026, 1.1633], 'freiburg2': [0.2312, -0.7849, -0.0033, -0.0001, 0.9172], 'freiburg3': [0, 0, 0, 0, 0], } def as_intrinsics_matrix(intrinsics): K = np.eye(3) K[0,0] = intrinsics[0] K[1,1] = intrinsics[1] K[0,2] = intrinsics[2] K[1,2] = intrinsics[3] return K class TUMStream(RGBDStream): def __init__(self, datapath, **kwargs): super(TUMStream, self).__init__(datapath=datapath, **kwargs) def _build_dataset_index(self): """ build list of images, poses, depths, and intrinsics """ images, depths, poses, intrinsics = loadtum(self.datapath, self.frame_rate) intrinsic, _ = TUMStream.calib_read(self.datapath) intrinsics = np.tile(intrinsic[None], (len(images), 1)) # set first pose to identity poses = SE3(torch.as_tensor(poses)) poses = poses[[0]].inv() * poses poses = poses.data.cpu().numpy() self.images = images self.poses = poses self.depths = depths self.intrinsics = intrinsics @staticmethod def calib_read(datapath): if 'freiburg1' in datapath: intrinsic = intrinsics_dict['freiburg1'] d_coef = distortion_dict['freiburg1'] elif 'freiburg2' in datapath: intrinsic = intrinsics_dict['freiburg2'] d_coef = distortion_dict['freiburg2'] elif 'freiburg3' in datapath: intrinsic = intrinsics_dict['freiburg3'] d_coef = distortion_dict['freiburg3'] return np.array(intrinsic), np.array(d_coef) @staticmethod def image_read(image_file): intrinsics, d_coef = TUMStream.calib_read(image_file) K = as_intrinsics_matrix(intrinsics) image = cv2.imread(image_file) return cv2.undistort(image, K, d_coef) @staticmethod def depth_read(depth_file): depth = cv2.imread(depth_file, cv2.IMREAD_ANYDEPTH) return depth.astype(np.float32) / 5000.0
components/aws/sagemaker/tests/unit_tests/tests/common/test_boto3_manager.py
Strasser-Pablo/pipelines
2,860
12666042
<gh_stars>1000+ import unittest import os from boto3.session import Session from unittest.mock import patch, MagicMock, ANY from common.boto3_manager import Boto3Manager class Boto3ManagerTestCase(unittest.TestCase): def test_assume_default_boto3_session(self): returned_session = Boto3Manager._get_boto3_session("us-east-1") assert isinstance(returned_session, Session) assert returned_session.region_name == "us-east-1" @patch("common.boto3_manager.DeferredRefreshableCredentials", MagicMock()) @patch("common.boto3_manager.AssumeRoleCredentialFetcher", MagicMock()) def test_assume_role_boto3_session(self): returned_session = Boto3Manager._get_boto3_session( "us-east-1", role_arn="abc123" ) assert isinstance(returned_session, Session) assert returned_session.region_name == "us-east-1" # Bury into the internals to ensure our provider was registered correctly our_provider = returned_session._session._components.get_component( "credential_provider" ).providers[0] assert isinstance(our_provider, Boto3Manager.AssumeRoleProvider) def test_assumed_sagemaker_client(self): Boto3Manager._get_boto3_session = MagicMock() mock_sm_client = MagicMock() # Mock the client("SageMaker", ...) return value Boto3Manager._get_boto3_session.return_value.client.return_value = ( mock_sm_client ) client = Boto3Manager.get_sagemaker_client( "v1.0.0", "us-east-1", assume_role_arn="abc123" ) assert client == mock_sm_client Boto3Manager._get_boto3_session.assert_called_once_with("us-east-1", "abc123") Boto3Manager._get_boto3_session.return_value.client.assert_called_once_with( "sagemaker", endpoint_url=None, config=ANY, region_name="us-east-1" )
dragonfly/nn/syn_nn_functions.py
hase1128/dragonfly
675
12666060
<reponame>hase1128/dragonfly<gh_stars>100-1000 """ Implements various synthetic functions on NN architectures. -- <EMAIL> """ # pylint: disable=invalid-name import numpy as np def _get_vals_wo_None(iter_of_vals): """ Returns a list of values without Nones. """ return [x for x in iter_of_vals if x is not None] def _num_units_signal(num_units_vals, bias_val, decay): """ Signal on the number of units. """ num_units_vals = np.array(_get_vals_wo_None(num_units_vals)) return np.exp(-decay * abs(num_units_vals.mean() - bias_val)) def _degree_signal(in_degrees, out_degrees, bias_val, decay): """ Signal on the degrees. """ avg_degree = (in_degrees.mean() + out_degrees.mean())/2.0 return np.exp(-decay * abs(avg_degree - bias_val)) def _get_ip_op_distance_signal(ip_op_dist, bias_val, decay): """ Signal on distance from input to output. """ return np.exp(-decay * abs(ip_op_dist - bias_val)) def _get_layer_degree_signal(degree_of_layer, bias_val, decay): """ A signal based on the degree of a layer. """ return np.exp(-decay * abs(degree_of_layer - bias_val)) def _get_num_layers_signal(num_layers, bias_val, decay): """ A signal based on the number of layers. """ return np.exp(-decay * abs(num_layers - bias_val)) def _get_num_edges_signal(num_edges, bias_val, decay): """ A signal based on the total number of edges. """ return np.exp(-decay * abs(num_edges - bias_val)) def _get_stride_signal(strides, bias_val, decay): """ A signal using the strides. """ strides = np.array(_get_vals_wo_None(strides)) return np.exp(-decay * abs(strides.mean() - bias_val)) def _get_conv_signal(layer_labels): """ A signal using the convolutional layers. """ conv_layers = [ll for ll in layer_labels if \ ll.startswith('conv') or ll.startswith('res')] conv_filter_vals = np.array([float(ll[-1]) for ll in conv_layers]) return (conv_filter_vals == 3).sum() / float(len(conv_filter_vals) + 1) def _get_sigmoid_signal(layer_labels): """ A function using the sigmoid layer fraction as the signal. """ internal_layers = [ll for ll in layer_labels if ll not in ['ip', 'op', 'linear']] good_layers = [ll in ['logistic', 'relu'] for ll in internal_layers] return sum(good_layers) / float(len(internal_layers) + 1) def syn_func1_common(nn): """ A synthetic function on NN architectures. """ return _num_units_signal(nn.num_units_in_each_layer, 1000, 0.002) + \ _degree_signal(nn.get_in_degrees(), nn.get_out_degrees(), 5, 0.4) + \ _get_ip_op_distance_signal(nn.get_distances_from_ip()[nn.get_op_layer_idx()], 10, 0.2) + \ _get_layer_degree_signal(nn.get_in_degrees()[nn.get_op_layer_idx()], 3, 0.5) + \ _get_layer_degree_signal(nn.get_out_degrees()[nn.get_ip_layer_idx()], 4, 0.5) + \ _get_num_layers_signal(nn.num_layers, 30, 0.1) + \ _get_num_edges_signal(nn.conn_mat.sum(), 100, 0.05) def cnn_syn_func1(nn): """ A synthetic function for CNNs. """ return syn_func1_common(nn) + \ _num_units_signal(nn.num_units_in_each_layer, 500, 0.001) + \ _get_num_layers_signal(nn.num_layers, 50, 0.3) + \ _get_stride_signal(nn.strides, 1.5, 3.0) + \ _get_conv_signal(nn.layer_labels) def mlp_syn_func1(nn): """ A synthetic function for MLPs. """ return syn_func1_common(nn) + \ _get_num_edges_signal(nn.conn_mat.sum(), 50, 0.1) + \ _num_units_signal(nn.num_units_in_each_layer, 2000, 0.001) + \ _get_sigmoid_signal(nn.layer_labels)
trove/common/policies/configuration_parameters.py
sapcc/trove
244
12666065
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_policy import policy from trove.common.policies.base import PATH_DATASTORE, PATH_VERSIONS rules = [ policy.DocumentedRuleDefault( name='configuration-parameter:index', check_str='rule:admin_or_owner', description='List all parameters bind to a datastore version.', operations=[ { 'path': PATH_DATASTORE + '/versions/{version}/parameters', 'method': 'GET' } ]), policy.DocumentedRuleDefault( name='configuration-parameter:show', check_str='rule:admin_or_owner', description='Get a paramter of a datastore version.', operations=[ { 'path': (PATH_DATASTORE + '/versions/{version}/parameters/{param}'), 'method': 'GET' } ]), policy.DocumentedRuleDefault( name='configuration-parameter:index_by_version', check_str='rule:admin_or_owner', description='List all paramters bind to a datastore version by ' 'the id of the version(datastore is not provided).', operations=[ { 'path': PATH_VERSIONS + '/{version}/paramters', 'method': 'GET' } ]), policy.DocumentedRuleDefault( name='configuration-parameter:show_by_version', check_str='rule:admin_or_owner', description='Get a paramter of a datastore version by it names and ' 'the id of the version(datastore is not provided).', operations=[ { 'path': PATH_VERSIONS + '/{version}/paramters/{param}', 'method': 'GET' } ]) ] def list_rules(): return rules
src/python/emane/events/eventservice.py
weston-nrl/emane
114
12666092
# # Copyright (c) 2013-2015,2017 - Adjacent Link LLC, Bridgewater, # New Jersey # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of Adjacent Link LLC nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # from . import event_pb2 from ..ota import otaheader_pb2 from . import EventServiceException import os import socket import threading import fcntl import struct import select import time import uuid import sys def get_ip_address(ifname): # http://code.activestate.com/recipes/439094/ s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) return socket.inet_ntoa(fcntl.ioctl( s.fileno(), 0x8915, # SIOCGIFADDR struct.pack('256s', ifname[:15].encode() if sys.version_info >= (3,0) else ifname[:15]) )[20:24]) def init_multicast_socket(group,port,device): try: sock = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) except socket.error as msg : if sys.version_info >= (3,3): raise EventServiceException("event socket failure %s" % str(msg),True) else: raise EventServiceException("event socket failure %s %s" % (str(msg[0]), msg[1]),True) try: sock.setsockopt(socket.IPPROTO_IP,socket.IP_MULTICAST_TTL,32) except socket.error as msg : if sys.version_info >= (3,3): raise EventServiceException("event socket option failure %s" % str(msg),True) else: raise EventServiceException("event socket option failure %s %s" % (str(msg[0]), msg[1]),True) try: sock.setsockopt(socket.IPPROTO_IP,socket.IP_MULTICAST_LOOP,1) except socket.error as msg : if sys.version_info >= (3,3): raise EventServiceException("event socket option failure %s" % str(msg),True) else: raise EventServiceException("event socket option failure %s %s" % (str(msg[0]), msg[1]),True) try: sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) except socket.error as msg : if sys.version_info >= (3,3): raise EventServiceException("event socket option failure %s" % str(msg),True) else: raise EventServiceException("event socket option failure %s %s" % (str(msg[0]), msg[1]),True) try: sock.bind((group,port)) except socket.error as msg: if sys.version_info >= (3,3): raise EventServiceException("bind failure %s" % str(msg),True) else: raise EventServiceException("bind failure %s %s" % (str(msg[0]), msg[1]),True) try: if device: devAddress = socket.inet_aton(get_ip_address(device)) else: devAddress = socket.inet_aton("0.0.0.0") sock.setsockopt(socket.SOL_IP, socket.IP_ADD_MEMBERSHIP, socket.inet_aton(group) + devAddress) sock.setsockopt(socket.SOL_IP, socket.IP_MULTICAST_IF, devAddress) except socket.error as msg: if sys.version_info >= (3,3): raise EventServiceException("mulicast add membership failure %s" % str(msg),True) else: raise EventServiceException("mulicast add membership failure %s %s" % (str(msg[0]), msg[1]),True) except IOError: raise EventServiceException("unknown device %s" % device,True) return sock class EventService: def __init__(self,eventchannel,otachannel = None): (self._multicastGroup,self._port,_) = eventchannel self._defaultHandler = None self._handlers = {} self._socket = None self._readFd,self._writeFd = os.pipe() self._uuid = uuid.uuid4() self._sequenceNumber = 0 self._socketOTA = None self._socket = init_multicast_socket(*eventchannel) if otachannel: self._socketOTA = init_multicast_socket(*otachannel) self._lock = threading.Lock() def breakloop(self): os.write(self._writeFd,"\n".encode()) def loop(self,default=None): buffer = "" running = True while running: rdfds = [self._socket,self._readFd] if self._socketOTA: rdfds.append(self._socketOTA) try: readable,_,_ = select.select(rdfds,[],[]) except select.error: continue for fd in readable: if fd is self._socket: data,_ = self._socket.recvfrom(65535) if not len(data): running = False break (length,) = struct.unpack_from("!H",data) if length == len(data) - 2: event = event_pb2.Event() event.ParseFromString(data[2:]) for serialization in event.data.serializations: self._lock.acquire() try: if serialization.eventId in self._handlers: self._handlers[serialization.eventId](serialization.nemId, serialization.eventId, serialization.data, uuid.UUID(bytes=event.uuid), event.sequenceNumber) elif default: default(serialization.nemId, serialization.eventId, serialization.data, uuid.UUID(bytes=event.uuid), event.sequenceNumber) finally: self._lock.release() elif fd is self._readFd: running = False break elif fd is self._socketOTA: data,_ = self._socketOTA.recvfrom(65535) if not len(data): running = False break (headerLength,) = struct.unpack_from("!H",data) otaHeader = otaheader_pb2.OTAHeader() otaHeader.ParseFromString(data[2:headerLength+2]) eventData = event_pb2.Event.Data() # currently we only process attached events that # are fully contained in the first part (fragment) # of a one-part (no fragmentation) or multi-part # (fragmented) OTA message # # Notes for below logic: # 2 + headerLength = 2 byte header length field # + header length # # 9 = OTA PartInfo header length. Where PartInfo # is used to support fragmentation. if otaHeader.HasField("payloadInfo") and \ len(data) >= 2 + headerLength + 9 + otaHeader.payloadInfo.eventLength: eventData.ParseFromString(data[2+headerLength + 9:2 + headerLength + 9 + otaHeader.payloadInfo.eventLength]) for serialization in eventData.serializations: self._lock.acquire() try: if serialization.eventId in self._handlers: self._handlers[serialization.eventId](serialization.nemId, serialization.eventId, serialization.data, uuid.UUID(bytes=otaHeader.uuid), otaHeader.sequence) elif default: default(serialization.nemId, serialization.eventId, serialization.data, uuid.UUID(bytes=otaHeader.uuid), otaHeader.sequence) finally: self._lock.release() def nextEvent(self): events = [] eventId = 0 running = True while running: try: rdfds = [self._socket,self._readFd] if self._socketOTA: rdfds.append(self._socketOTA) readable,_,_ = select.select(rdfds,[],[]) except select.error: continue for fd in readable: if fd is self._socket: data,_ = self._socket.recvfrom(65535) if not len(data): running = False break (length,) = struct.unpack_from("!H",data) if length == len(data) - 2: event = event_pb2.Event() event.ParseFromString(data[2:]) for serialization in event.data.serializations: events.append((serialization.nemId, serialization.eventId, serialization.data)) return (uuid.UUID(bytes=event.uuid), event.sequenceNumber, tuple(events)) elif fd is self._readFd: running = False break elif fd is self._socketOTA: data,_ = self._socketOTA.recvfrom(65535) if not len(data): running = False break (headerLength,) = struct.unpack_from("!H",data) otaHeader = otaheader_pb2.OTAHeader() otaHeader.ParseFromString(data[2:headerLength+2]) eventData = event_pb2.Event.Data() eventData.ParseFromString(data[2+headerLength:2 + headerLength +otaHeader.eventLength]) for serialization in eventData.serializations: events.append((serialization.nemId, serialization.eventId, serialization.data)) return (uuid.UUID(bytes=otaHeader.uuid), otaHeader.sequenceNumber, tuple(events)) return (None, None, tuple(events)) def subscribe(self,eventId,callback): self._lock.acquire() if callback: self._handlers[eventId] = callback self._lock.release() def unsubscribe(self,eventId): self._lock.acquire() if eventId in self._handlers: del self._handlers[eventId] self._lock.release() def publish(self,nemId,event): self._sequenceNumber += 1 msg = event_pb2.Event() msg.uuid = self._uuid.bytes msg.sequenceNumber = self._sequenceNumber serialization = msg.data.serializations.add() serialization.nemId = nemId serialization.eventId = event.IDENTIFIER serialization.data = event.serialize() buf = msg.SerializeToString() self._socket.sendto(struct.pack("!H",len(buf)) + buf, (self._multicastGroup,self._port))
dspn/plot-state-progress.py
rishabh1694/dspn-mod
102
12666110
import argparse import itertools import matplotlib import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.colors as colors import numpy as np import os import data from PIL import Image parser = argparse.ArgumentParser() parser.add_argument("n", type=int, nargs="*") parser.add_argument("--keep", type=int, nargs="*") args = parser.parse_args() matplotlib.rc("text", usetex=True) params = {"text.latex.preamble": [r"\usepackage{bm,amsmath,mathtools,amssymb}"]} plt.rcParams.update(params) base_path = "clevr/images/val" val_images = sorted(os.listdir(base_path)) def take(iterable, n): l = [] for _ in range(n): l.append(next(iterable)) return l def load_file(path): with open(path) as fd: for f in fd: tokens = iter(f.strip().split(" ")) take(tokens, 1) if "detect" in path: score = float(take(tokens, 1)[0]) if score < 0.5: continue else: score = 1.0 coord = take(tokens, 3) material = np.argmax(take(tokens, 2)) color = np.argmax(take(tokens, 8)) shape = np.argmax(take(tokens, 3)) size = np.argmax(take(tokens, 2)) access = lambda x, i: data.CLASSES[x][i] yield ( "({:.2f}, {:.2f}, {:.2f})".format(*map(lambda x: 3 * float(x), coord)), access("size", size), access("color", color), access("material", material), access("shape", shape), ) indices_to_use = args.keep indices_to_use.append(-2) indices_to_use.append(-1) plt.figure(figsize=(12, 4)) for j, index in enumerate(args.n): progress = [] path = "out/clevr-state/{}-clevr-state-1-{}/{}/{}.txt" for i in range(31): points = list( load_file(path.format("dspn", "30", "detections", f"{index}-step{i}")) ) progress.append(points) progress.append(list(load_file(path.format("base", "10", "groundtruths", index)))) progress.append(list(load_file(path.format("base", "10", "detections", index)))) img = Image.open(os.path.join(base_path, val_images[int(index)])) img = img.resize((128, 128), Image.LANCZOS) plt.imshow(img) plt.xticks([]) plt.yticks([]) plt.savefig(f"img-{j}.pdf", bbox_inches="tight") matrix = [] for i, progress_n in enumerate(indices_to_use): column = [] step = progress[progress_n] if progress_n == -2: header = r"True $\bm{Y}$" elif progress_n == -1: header = r"Baseline" else: header = r"$\hat{\bm{Y}}^{(" + str(progress_n) + ")}$" column.append(header) for object in sorted( step, key=lambda x: [float(x.strip()) for x in x[0][1:-1].split(",")] ): column.append(object[0]) column.append(" ".join(object[1:])) matrix.append(column) # transpose matrix = itertools.zip_longest(*matrix, fillvalue="") # mark mismatched entries contains_words = lambda row: "small" in row[-2] or "large" in row[-2] # make an attribute red if it isn't correct matrix = [ [ " ".join( ( r"\textcolor{red}{" + attribute + "}" if attribute != correct_attribute else attribute ) for attribute, correct_attribute in zip( state.split(" "), row[-2].split(" ") ) ) for state in row ] if contains_words(row) else row for row in matrix ] matrix = [" & ".join(row) for row in matrix] # format into table template = r""" \includegraphics[width=0.22\linewidth]{{img-{}}} \begin{{tabular}}{} \toprule {}\\ \midrule {}\\ \bottomrule \end{{tabular}} """ table = template.format( j, "{" + "c" * len(indices_to_use) + "}", matrix[0], "\\\\\n".join(matrix[1:]) ) print(table)
libact/query_strategies/tests/test_density_weighted_meta.py
afedyukova/libact
788
12666119
<reponame>afedyukova/libact import unittest import os import numpy as np from numpy.testing import assert_array_equal from sklearn.cluster import KMeans from sklearn.metrics.pairwise import cosine_similarity from libact.base.dataset import Dataset, import_libsvm_sparse from libact.models import LogisticRegression from libact.query_strategies import UncertaintySampling from libact.labelers import IdealLabeler from ..density_weighted_meta import DensityWeightedMeta from .utils import run_qs class DensityWeightedMetaTestCase(unittest.TestCase): def setUp(self): dataset_filepath = os.path.join( os.path.dirname(os.path.realpath(__file__)), 'datasets/heart_scale') self.X, self.y = import_libsvm_sparse( dataset_filepath).format_sklearn() self.quota = 10 def test_density_weighted_meta_uncertainty_lc(self): trn_ds = Dataset(self.X[:20], np.concatenate([self.y[:6], [None] * 14])) base_qs = UncertaintySampling( trn_ds, method='lc', model=LogisticRegression(solver='liblinear', multi_class="ovr")) similarity_metric = cosine_similarity clustering_method = KMeans(n_clusters=3, random_state=1126) qs = DensityWeightedMeta( dataset=trn_ds, base_query_strategy=base_qs, similarity_metric=similarity_metric, clustering_method=clustering_method, beta=1.0, random_state=1126) model = LogisticRegression(solver='liblinear', multi_class="ovr") qseq = run_qs(trn_ds, qs, self.y, self.quota) assert_array_equal(qseq, np.array([13, 18, 9, 12, 8, 16, 10, 19, 15, 17])) if __name__ == '__main__': unittest.main()
tests/test_authentication.py
joshlk/many_requests
398
12666120
<filename>tests/test_authentication.py from asks import BasicAuth from unittest import TestCase import pytest from asks.response_objects import Response from many_requests.many_requests_ import ManyRequests from many_requests.common import BadResponse from .mock_server import web_server @pytest.mark.usefixtures("web_server") class TestManyRequestAuth(TestCase): def test_basic_auth(self): auths = [ BasicAuth(auth_info=(("username", "password"))), # ok BasicAuth(auth_info=(("username", "bad_password"))) # bad ] url = 'http://0.0.0.0:8080/basic_auth' responses = ManyRequests(10, 2, retries=2, retry_sleep=0)(method='GET', url=url, auth=auths) assert len(responses) == 2 ok_res = responses[0] assert isinstance(ok_res, Response) assert ok_res.url == url bad_res = responses[1] assert isinstance(bad_res, BadResponse) assert bad_res.response.status_code == 401 assert bad_res.response.url == url
python/tvm/driver/tvmc/pass_config.py
XiaoSong9905/tvm
4,640
12666121
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ TVMC PassContext Interface """ import importlib import tvm from tvm.driver.tvmc import TVMCException def load_function(full_name): """Dynamic loading a function by the full name. Parameters ---------- full_name: str The name of a PackedFunc or a string of the form "path.to.module.func" that indicates the module that can be imported. You must be aware of the load order here, it first tries to find it via TVM global function, if not find, try to import it by "importlib.import_module". Returns ------- func: function or PackedFunc The loaded fucntion. """ global_func = tvm.get_global_func(full_name, allow_missing=True) if global_func is not None: return global_func # split full name "path.to.module.func" into two parts ["path.to.module", "func"] module_name, func_name = full_name.rsplit(".", 1) # import module and find the function module = importlib.import_module(module_name) if hasattr(module, func_name): return getattr(module, func_name) raise TVMCException(f"No function '{func_name}' found in module '{module_name}'.") def get_pass_config_value(name, value, config_type): """Get a PassContext configuration value, based on its config data type. Parameters ---------- name: str config identifier name. value: str value assigned to the config, provided via command line. config_type: str data type defined to the config, as string. Returns ------- parsed_value: bool, int or str a representation of the input value, converted to the type specified by config_type. """ parsed_value = None if config_type == "IntImm": # "Bool" configurations in the PassContext are recognized as # IntImm, so deal with this case here mapping_values = { "false": False, "true": True, } if value.isdigit(): parsed_value = int(value) else: # if not an int, accept only values on the mapping table, case insensitive parsed_value = mapping_values.get(value.lower(), None) if parsed_value is None: raise TVMCException(f"Invalid value '{value}' for configuration '{name}'.") elif config_type == "runtime.String": parsed_value = value elif config_type == "Array": if name == "tir.add_lower_pass": pass_list = value.split(",") if len(pass_list) % 2 != 0: raise TVMCException( f"The configuration of '{name}' must be of the form " "'tir.add_lower_pass=opt_level1,pass1,opt_evel2,pass2'" ) parsed_value = [] for i in range(0, len(pass_list), 2): level, pass_func = pass_list[i].strip(), pass_list[i + 1].strip() try: level = int(level) except ValueError: raise TVMCException(f"Only integer is allow for configuration '{name}'.") # TODO (@leeexyz) We should parse configurations of each tir Pass. # For now, we only use the defaults. Currently, There are four config nodes: # `tir.transform.LoopPartitionConfig` # `tir.transform.UnrollLoopConfig` # `tir.transform.HoistIfThenElseConfig` # `tir.transform.InjectDoubleBufferConfig` # loading pass func and calling it to get the Pass pass_func = load_function(pass_func)() parsed_value.append((level, pass_func)) else: raise TVMCException(f"Unsupported configuration '{name}' for '{config_type}' type.") else: # not raise here cause we alreay checked before calling this function pass return parsed_value def parse_configs(input_configs): """Parse configuration values set via command line. Parameters ---------- input_configs: list of str list of configurations provided via command line. Returns ------- pass_context_configs: dict a dict containing key-value configs to be used in the PassContext. """ if not input_configs: return {} all_configs = tvm.ir.transform.PassContext.list_configs() supported_config_types = ("IntImm", "runtime.String", "Array") supported_configs = [ name for name in all_configs.keys() if all_configs[name]["type"] in supported_config_types ] pass_context_configs = {} for config in input_configs: if not config: raise TVMCException( f"Invalid format for configuration '{config}', use <config>=<value>" ) # Each config is expected to be provided as "name=value" try: name, value = config.split("=") name = name.strip() value = value.strip() except ValueError: raise TVMCException( f"Invalid format for configuration '{config}', use <config>=<value>" ) if name not in all_configs: raise TVMCException( f"Configuration '{name}' is not defined in TVM. " f"These are the existing configurations: {', '.join(all_configs)}" ) if name not in supported_configs: raise TVMCException( f"Configuration '{name}' uses a data type not supported by TVMC. " f"The following configurations are supported: {', '.join(supported_configs)}" ) config_type = all_configs[name]["type"] parsed_value = get_pass_config_value(name, value, config_type) if config_type == "Array" and name in pass_context_configs: # merge configs if the configuration exists pass_context_configs[name].extend(parsed_value) else: pass_context_configs[name] = parsed_value return pass_context_configs
pygears/lib/cat_util.py
bogdanvuk/pygears
120
12666129
from pygears.typing import Queue, typeof def din_data_cat(intfs, order=None): if order is None: order = range(len(intfs)) data = [] for o in order: intf = intfs[o] if intf['modport'] == 'producer': continue if issubclass(intf['type'], Queue): if intf['type'][0].width > 0: data.append(f'{intf["name"]}_s.data') else: if intf['type'].width > 0: data.append(f'{intf["name"]}_s') return f'{{ {", ".join(reversed(data))} }}' def din_data_cat_value(data): dout = [] for d in data: if isinstance(d, Queue): dout.append(d.data) else: dout.append(d) return tuple(dout)
linter.py
TheBossProSniper/electric-windows
210
12666130
import json, os, sys os.chdir(r'C:\Users\xtrem\Desktop\Electric\Electric Packages\packages') for f in os.listdir(): data = '' try: with open(f, 'r') as file: data = json.load(file) except: continue linted = { 'display-name': data['display-name'], 'package-name': data['package-name'], } # Change Based On Version # Not Portable if 'portable' in list(data.keys()): linted['portable'] = {'latest-version': data['portable']['latest-version']} for version in list(data['portable'].keys()): if version not in ['latest-version', 'auto-update', 'package-name', 'display-name']: linted['portable'][version] = {'url': data['portable'][version]['url']} if 'checksum' in list(data['portable'][version].keys()): linted['portable'][version]['checksum'] = data['portable'][version]['checksum'] if 'file-type' in list(data['portable'][version].keys()): linted['portable'][version]['file-type'] = data['portable'][version]['file-type'] if 'pre-install' in list(data['portable'][version].keys()): linted['portable'][version]['pre-install'] = data['portable'][version]['pre-install'] if 'post-install' in list(data['portable'][version].keys()): linted['portable'][version]['post-install'] = data['portable'][version]['post-install'] for key in list(data['portable'][version].keys()): if key not in list(linted['portable'][version].keys()): linted['portable'][version][key] = data['portable'][version][key] print(json.dumps(linted, indent=4)) # TODO: Handle Portable Section data['portable']
onnx_tf/handlers/backend/max.py
malisit/onnx-tensorflow
1,110
12666152
<filename>onnx_tf/handlers/backend/max.py import tensorflow as tf from onnx_tf.common import exception from onnx_tf.common import data_type from onnx_tf.common import sys_config from onnx_tf.handlers.backend_handler import BackendHandler from onnx_tf.handlers.handler import onnx_op @onnx_op("Max") class Max(BackendHandler): supported_types = [ tf.bfloat16, tf.float16, tf.float32, tf.float64, tf.int32, tf.int64 ] cast_map = { tf.uint8: tf.int32, tf.uint16: tf.int32, tf.uint32: tf.int64, tf.int8: tf.int32, tf.int16: tf.int32 } cast_map[tf.uint64] = tf.int64 if sys_config.auto_cast else None @classmethod def args_check(cls, node, **kwargs): dtype = kwargs["tensor_dict"][node.inputs[0]].dtype if dtype in cls.cast_map and cls.cast_map[dtype] is None: exception.DTYPE_NOT_CAST_EXCEPT( "Max input " + node.inputs[0] + " with data type '" + data_type.tf_to_np_str(dtype) + "'", data_type.tf_to_np_str_list(cls.supported_types)) @classmethod def _common(cls, node, **kwargs): values = [kwargs["tensor_dict"][inp] for inp in node.inputs] dtype = values[0].dtype if dtype in cls.cast_map: values = [tf.cast(v, cls.cast_map[v.dtype]) for v in values] result = values[0] for i in range(1, len(values)): result = tf.maximum(result, values[i]) return [tf.cast(result, dtype) if dtype in cls.cast_map else result] @classmethod def version_1(cls, node, **kwargs): return cls._common(node, **kwargs) @classmethod def version_6(cls, node, **kwargs): return cls._common(node, **kwargs) @classmethod def version_8(cls, node, **kwargs): return cls._common(node, **kwargs) @classmethod def version_12(cls, node, **kwargs): return cls._common(node, **kwargs) @classmethod def version_13(cls, node, **kwargs): return cls._common(node, **kwargs)
ctc_decoder/bk_tree.py
TenaciousC22/CTCDecoder
705
12666179
from typing import List import editdistance as ed class BKTree: """Burkhard Keller tree: used to find strings within tolerance (w.r.t. edit distance metric) to given query string.""" def __init__(self, txt_list: List[str]) -> None: """Pass list of texts (words) which are inserted into the tree.""" self.root = None for txt in txt_list: self._insert(self.root, txt) def query(self, txt: str, tolerance: int) -> List[str]: """Query strings within given tolerance (w.r.t. edit distance metric).""" return self._query(self.root, txt, tolerance) def _insert(self, node, txt): # insert root node if node is None: self.root = (txt, {}) return # insert all other nodes d = ed.eval(node[0], txt) if d in node[1]: self._insert(node[1][d], txt) else: node[1][d] = (txt, {}) def _query(self, node, txt, tolerance): # handle empty root node if node is None: return [] # distance between query and current node d = ed.eval(node[0], txt) # add current node to result if within tolerance res = [] if d <= tolerance: res.append(node[0]) # iterate over children for (edge, child) in node[1].items(): if d - tolerance <= edge <= d + tolerance: res += self._query(child, txt, tolerance) return res
kraino/core/keras_extensions.py
mateuszmalinowski/visual_turing_test-tutorial
151
12666185
<reponame>mateuszmalinowski/visual_turing_test-tutorial """ Additional theano/keras functions. Author: <NAME> Email: <EMAIL> """ #import marshal import numpy #import types from keras.layers.convolutional import Convolution1D from keras.layers.convolutional import MaxPooling1D from keras.layers.core import Lambda from keras.layers.core import MaskedLayer from keras.layers.core import TimeDistributedMerge from keras import backend as K ## functions ## def time_distributed_nonzero_max_pooling(x): """ Computes maximum along the first (time) dimension. It ignores the mask m. In: x - input; a 3D tensor mask_value - value to mask out, if None then no masking; by default 0.0, """ import theano.tensor as T mask_value=0.0 x = T.switch(T.eq(x, mask_value), -numpy.inf, x) masked_max_x = x.max(axis=1) # replace infinities with mask_value masked_max_x = T.switch(T.eq(masked_max_x, -numpy.inf), 0, masked_max_x) return masked_max_x def time_distributed_masked_ave(x, m): """ Computes average along the first (time) dimension. In: x - input; a 3D tensor m - mask """ tmp = K.sum(x, axis=1) nonzeros = K.sum(m, axis=-1) return tmp / K.expand_dims(K.cast(nonzeros, tmp.dtype)) def time_distributed_masked_max(x, m): """ Computes max along the first (time) dimension. In: x - input; a 3D tensor m - mask m_value - value for masking """ # place infinities where mask is off m_value = 0.0 tmp = K.switch(K.equal(m, 0.0), -numpy.inf, 0.0) x_with_inf = x + K.expand_dims(tmp) x_max = K.max(x_with_inf, axis=1) r = K.switch(K.equal(x_max, -numpy.inf), m_value, x_max) return r ## classes ## # Transforms existing layers to masked layers class MaskedTimeDistributedMerge(MaskedLayer, TimeDistributedMerge): pass class MaskedConvolution1D(MaskedLayer, Convolution1D): pass class MaskedMaxPooling1D(MaskedLayer, MaxPooling1D): pass # auxiliary mask-aware layers class DropMask(MaskedLayer): """ Removes a mask from the layer. """ def get_output_mask(self, train=False): return None class LambdaWithMask(MaskedLayer, Lambda): """ Lambda function that takes a two argument function, and returns a value returned by the function applied to the output of the previous layer and the mask. That is: LambdaWithMask(f) = f(previous, mask) """ def get_output(self, train=False): #func = marshal.loads(self.function) #func = types.FunctionType(func, globals()) func = self.function if hasattr(self, 'previous'): return func(self.previous.get_output(train), self.previous.get_output_mask(train)) else: return func(self.input, self.get_output_mask(train))
nikola/data/themes/base/messages/messages_ia.py
asmeurer/nikola
1,901
12666194
<filename>nikola/data/themes/base/messages/messages_ia.py # -*- encoding:utf-8 -*- """Autogenerated file, do not edit. Submit translations on Transifex.""" MESSAGES = { "%d min remaining to read": "%dminutas de lectura remanente", "(active)": "(active)", "Also available in:": "Anque disponibile in:", "Archive": "Archivo", "Atom feed": "Fluxo Atom", "Authors": "Authores", "Categories": "Categorias", "Comments": "Commentos", "LANGUAGE": "Interlingua", "Languages:": "Linguas:", "More posts about %s": "Plure entratas super %s", "Newer posts": "Entratas plus recente", "Next post": "Entrata successive", "Next": "Successive", "No posts found.": "Nulle entrata esseva trovate.", "Nothing found.": "Nihil esseva trovate.", "Older posts": "Entratas plus vetule", "Original site": "Sito original", "Posted:": "Publicate:", "Posts about %s": "Entratas super %s", "Posts by %s": "Entratas per %s", "Posts for year %s": "Entratas del anno %s", "Posts for {month_day_year}": "Entratas de {month_day_year}", "Posts for {month_year}": "Entratas de {month_year}", "Previous post": "Entrata precedente", "Previous": "Precendente", "Publication date": "Data de publication", "RSS feed": "Fluxo RSS", "Read in English": "Lege in interlingua", "Read more": "Lege plus", "Skip to main content": "Salta al contento principal", "Source": "Sorgente", "Subcategories:": "Subcategorias:", "Tags and Categories": "Etiquettas e categorias", "Tags": "Etiquettas", "Toggle navigation": "Commuta navigation", "Uncategorized": "Sin categoria", "Up": "In alto", "Updates": "Actualisationes", "Write your page here.": "Scribe tu pagina hic.", "Write your post here.": "Scribe tu entrata hic.", "old posts, page %d": "Vetule entratas, pagina %d", "page %d": "pagina %d", "updated": "actualisate", }
cnsenti/__init__.py
edddyeddy/cnsenti
140
12666213
from cnsenti.emotion import Emotion from cnsenti.sentiment import Sentiment
qinhaifang/src/evalTools/script/evaluateScene.py
SpaceNetChallenge/BuildingFootprintDetectors
161
12666226
<reponame>SpaceNetChallenge/BuildingFootprintDetectors from spaceNet import evalTools as eT from spaceNet import geoTools as gT import numpy as np import sys import multiprocessing import time if __name__ == "__main__": # load Truth and Test File Locations if len(sys.argv) > 1: truth_fp = sys.argv[1] test_fp = sys.argv[2] else: test_fp = '/data/building_extraction/SpaceNet/data/predict_pixelGeoJson/3band_013022223132_Public_img2052_predict.geojson' truth_fp = '/data/building_extraction/SpaceNet/data/predict_pixelGeoJson/3band_013022223132_Public_img2052_predict.geojson' # check for cores available if len(sys.argv) > 3: max_cpu = int(sys.argv[3]) else: max_cpu = multiprocessing.cpu_count() parallel=False # initialize scene counts true_pos_counts = [] false_pos_counts = [] false_neg_counts = [] t0 = time.time() # Start Ingest Of Truth and Test Case sol_polys = gT.importgeojson(truth_fp, removeNoBuildings=True) prop_polys = gT.importgeojson(test_fp) #print('sol_polys{}'.format(sol_polys)) #print('prop_polys{}'.format(prop_polys)) t1 = time.time() total = t1 - t0 print('time of ingest: ', total) # Speed up search by preprocessing ImageId and polygonIds test_image_ids = set([item['ImageId'] for item in prop_polys if item['ImageId'] > 0]) prop_polysIdList = np.asarray([item['ImageId'] for item in prop_polys if item["ImageId"] > 0 and \ item['BuildingId']!=-1]) #print('prop_polysIdLIST{}'.format(prop_polysIdList)) prop_polysPoly = np.asarray([item['poly'] for item in prop_polys if item["ImageId"] > 0 and \ item['BuildingId']!=-1]) #print('prop_polyspoly{}'.format(prop_polysPoly)) sol_polysIdsList = np.asarray([item['ImageId'] for item in sol_polys if item["ImageId"] > 0 and \ item['BuildingId']!=-1]) sol_polysPoly = np.asarray([item['poly'] for item in sol_polys if item["ImageId"] > 0 and \ item['BuildingId']!=-1]) bad_count = 0 F1ScoreList = [] cpu_count = min(multiprocessing.cpu_count(), max_cpu) #print('{}'.format(max_cpu)) p = multiprocessing.Pool(processes=cpu_count) ResultList = [] eval_function_input_list = eT.create_eval_function_input((test_image_ids, (prop_polysIdList, prop_polysPoly), (sol_polysIdsList, sol_polysPoly))) # evalFunctionInput = creatEevalFunctionInput((test_image_ids, # (prop_polysIdList, prop_polysPoly), # (sol_polysIdsList, sol_polysPoly))) # Calculate Values t3 = time.time() print('time For DataCreation {}s'.format(t3-t1)) #result_list = p.map(eT.evalfunction, eval_function_input_list) if parallel==False: result_list = [] for eval_input in eval_function_input_list: print('eval_input={}'.format(eval_input)) result_list.append(eT.evalfunction(eval_input)) else: result_list = p.map(eT.evalfunction, eval_function_input_list) result_sum = np.sum(result_list, axis=0) true_pos_total = result_sum[1] false_pos_total = result_sum[2] false_neg_total = result_sum[3] print('True_Pos_Total', true_pos_total) print('False_Pos_Total', false_pos_total) print('False_Neg_Total', false_neg_total) precision = float(true_pos_total) / (float(true_pos_total) + float(false_pos_total)) recall = float(true_pos_total) / (float(true_pos_total) + float(false_neg_total)) F1ScoreTotal = 2.0 * precision*recall / (precision + recall) print('F1Total', F1ScoreTotal) t2 = time.time() total = t2-t0 print('time of evaluation: {}'.format(t2-t1)) print('time of evaluation {}s/imageId'.format((t2-t1)/len(result_list))) print('Total Time {}s'.format(total)) print(result_list) print(np.mean(result_list))
proximal/lin_ops/warp.py
kyleaj/ProxImaL
101
12666279
from .lin_op import LinOp import numpy as np import cv2 from proximal.halide.halide import Halide from proximal.utils.utils import Impl class warp(LinOp): """Warp using a homography. """ def __init__(self, arg, H, implem=None): self.H = H.copy() # Compute inverse self.Hinv = np.zeros(H.shape) if len(H.shape) > 2: for j in range(self.H.shape[2]): self.Hinv[:, :, j] = np.linalg.pinv(H[:, :, j]) else: self.Hinv = np.linalg.pinv(H) # Check for the shape if len(H.shape) < 2 or len(H.shape) > 3: raise Exception( 'Error, warp supports only up to 4d inputs (expects first 3 to be image).') # Has to have third dimension #if len(arg.shape) != 3: # raise Exception('Images must have third dimension') shape = arg.shape if len(H.shape) == 3: shape += (H.shape[2],) # Temp array for halide self.tmpfwd = np.zeros((shape[0], shape[1], shape[2] if (len(shape) > 2) else 1, H.shape[2] if (len(H.shape) > 2) else 1), dtype=np.float32, order='F') self.tmpadj = np.zeros((shape[0], shape[1], shape[2] if ( len(shape) > 2) else 1), dtype=np.float32, order='F') super(warp, self).__init__([arg], shape, implem) def forward(self, inputs, outputs): """The forward operator. Reads from inputs and writes to outputs. """ if self.implementation == Impl['halide']: # Halide implementation Halide('A_warp').A_warp(inputs[0], self.H, self.tmpfwd) # Call np.copyto(outputs[0], np.reshape(self.tmpfwd, self.shape)) else: # CV2 version inimg = inputs[0] if len(self.H.shape) == 2: warpedInput = cv2.warpPerspective(np.asfortranarray(inimg), self.H, inimg.shape[1::-1], flags=cv2.INTER_LINEAR | cv2.WARP_INVERSE_MAP, borderMode=cv2.BORDER_CONSTANT, borderValue=0.) # Necessary due to array layout in opencv np.copyto(outputs[0], warpedInput) else: for j in range(self.H.shape[2]): warpedInput = cv2.warpPerspective(np.asfortranarray(inimg), self.H[:, :, j], inimg.shape[1::-1], flags=cv2.INTER_LINEAR | cv2.WARP_INVERSE_MAP, borderMode=cv2.BORDER_CONSTANT, borderValue=0.) # Necessary due to array layout in opencv np.copyto(outputs[0][:, :, :, j], warpedInput) def adjoint(self, inputs, outputs): """The adjoint operator. Reads from inputs and writes to outputs. """ if self.implementation == Impl['halide']: # Halide implementation Halide('At_warp').At_warp(inputs[0], self.Hinv, self.tmpadj) # Call if outputs[0].ndim == 2: np.copyto(outputs[0], self.tmpadj[..., 0]) else: np.copyto(outputs[0], self.tmpadj) else: # CV2 version inimg = inputs[0] if len(self.H.shape) == 2: # + cv2.WARP_INVERSE_MAP warpedInput = cv2.warpPerspective(np.asfortranarray(inimg), self.H, inimg.shape[1::-1], flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=0.) np.copyto(outputs[0], warpedInput) else: outputs[0][:] = 0.0 for j in range(self.H.shape[2]): warpedInput = cv2.warpPerspective(np.asfortranarray(inimg[:, :, :, j]), self.H, inimg.shape[1::-1], flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=0.) # Necessary due to array layout in opencv outputs[0] += warpedInput # TODO what is the spectral norm of a warp?
h2o-py/tests/testdir_munging/pyunit_isax.py
ahmedengu/h2o-3
6,098
12666317
<gh_stars>1000+ from __future__ import print_function import sys sys.path.insert(1,"../../") import h2o from tests import pyunit_utils def isax(): df = h2o.create_frame(rows=1,cols=256,real_fraction=1.0,missing_fraction=0.0,seed=123) df2 = df.cumsum(axis=1) res = df2.isax(num_words=10,max_cardinality=10) res.show() answer = "0^10_0^10_0^10_0^10_5^10_7^10_8^10_9^10_9^10_8^10" assert answer == res[0,0], "expected isax index to be " + answer + " but got" + res[0,0] + " instead." h2o.remove(df) h2o.remove(df2) h2o.remove(res) if __name__ == "__main__": pyunit_utils.standalone_test(isax) else: isax()
test/scrapers/test_hitrust_matches.py
HanselD/aws-allowlister
180
12666324
import unittest from aws_allowlister.database.compliance_data import ComplianceData from aws_allowlister.database.database import connect_db compliance_data = ComplianceData() db_session = connect_db() class HitrustQATestCase(unittest.TestCase): def test_gh_51_HITRUST_compliant_services(self): results = compliance_data.get_compliant_services( db_session=db_session, compliance_standard="HITRUST" ) expected_results = [ "athena", "kendra", "guardduty", "sagemaker", "states" ] # print(len(results)) for expected_result in expected_results: # print(f"{expected_result}: in {expected_result in results}") self.assertTrue(expected_result in results)
src/DataJoin/data_join/example_id_appender.py
huangwei19/9nfl
103
12666326
# Copyright 2020 The 9nFL Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import threading class AppendExamplesManager(object): def __init__(self, queue, partition_id): self._lock = threading.Lock() self._queue = queue self._partition_id = partition_id self._send_example_finished = False self._next_example_index = 0 def get_next_example_index(self): with self._lock: return self._next_example_index def append_batch_examples_into_queue(self, batch_examples): with self._lock: assert batch_examples, "batch_examples is None" assert batch_examples.partition_id == self._partition_id, \ "the partition id of example batch mismatch with " \ "partition id of examples appending into queue : {} != {}".format( self._partition_id, batch_examples.partition_id ) self._next_example_index += len(batch_examples.example_id) - 1 self._queue.put(batch_examples) return True def finish_send_examples(self): with self._lock: self._send_example_finished = True def is_send_example_finished(self): with self._lock: return self._send_example_finished def need_append_into_queue(self): with self._lock: if not self._queue.empty(): return True return False
zeus/modules/operators/quant/__init__.py
shaido987/vega
240
12666361
import zeus if zeus.is_tf_backend(): from .tensorflow_quant import * elif zeus.is_torch_backend(): from .pytorch_quant import *
data/test/python/9b5bb2aa0435ae771160122adef80202b6062e82test_nsobjectcontroller.py
harshp8l/deep-learning-lang-detection
132
12666363
from AppKit import * from PyObjCTools.TestSupport import * class TestNSObjectController (TestCase): def testMethods(self): self.assertResultIsBOOL(NSObjectController.automaticallyPreparesContent) self.assertArgIsBOOL(NSObjectController.setAutomaticallyPreparesContent_, 0) self.assertResultIsBOOL(NSObjectController.isEditable) self.assertArgIsBOOL(NSObjectController.setEditable_, 0) self.assertResultIsBOOL(NSObjectController.canAdd) self.assertResultIsBOOL(NSObjectController.canRemove) self.assertResultIsBOOL(NSObjectController.validateUserInterfaceItem_) self.assertResultIsBOOL(NSObjectController.fetchWithRequest_merge_error_) self.assertArgIsBOOL(NSObjectController.fetchWithRequest_merge_error_, 1) self.assertArgIsOut(NSObjectController.fetchWithRequest_merge_error_, 2) self.assertResultIsBOOL(NSObjectController.usesLazyFetching) self.assertArgIsBOOL(NSObjectController.setUsesLazyFetching_, 0) if __name__ == "__main__": main()
Python/CombinationSumTest.py
TonnyL/Windary
205
12666382
<reponame>TonnyL/Windary from unittest import TestCase from CombinationSum import CombinationSum class TestCombinationSum(TestCase): def test_combinationSum(self): cs = CombinationSum() list0 = cs.combinationSum([2, 3, 6, 7], 7) self.assertTrue(len(list0) == 2) self.assertTrue(list0.__contains__([7])) self.assertTrue(list0.__contains__([2, 2, 3])) self.assertEqual(cs.combinationSum([1], 3), [[1, 1, 1]]) list1 = cs.combinationSum([1, 2], 4) self.assertTrue(len(list1)) self.assertTrue(list1.__contains__([1, 1, 1, 1])) self.assertTrue(list1.__contains__([1, 1, 2])) self.assertTrue(list1.__contains__([2, 2]))
runtime/stdlib/api.py
cheery/lever
136
12666423
<reponame>cheery/lever from rpython.translator.platform import platform import pathobj from space import * import ffi import json, os class ApiConfig: def __init__(self): self.headers_dir = None conf = ApiConfig() def init(lever_path): conf.headers_dir = pathobj.concat(lever_path, pathobj.parse(u"headers")) class Api(Object): def __init__(self, constants, types, variables, dependencies, decorator): self.cache = {} self.typecache = {} self.constants = constants self.types = types self.variables = variables self.dependencies = dependencies self.cycle_catch = {} self.decorator = decorator def getitem(self, name): if not isinstance(name, String): raise OldError(u"API.getitem requires a string") name = name if name.string in self.cache: return self.cache[name.string] self.cache[name.string] = result = self.lookup(name) return result def lookup(self, name): if self.constants.contains(name): return self.constants.getitem(name) if self.variables.contains(name): decl = self.variables.getitem(name) cname = decl.getitem(String(u"name")) if not isinstance(cname, String): raise OldError(u"incorrect name record") if not isinstance(name, String): raise OldError(u"incorrect name record") ctype = decl.getitem(String(u"type")) return ffi.Wrap(cname.string, self.build_ctype(name.string, ctype)) return self.lookup_type(name) def lookup_type(self, name): if isinstance(name, String): if name.string in self.typecache: return self.typecache[name.string] if name.string.endswith(u'*'): ctype = ffi.Pointer(self.lookup_type(String(name.string[:-1]))) self.typecache[name.string] = ctype return ctype if self.types.contains(name): decl = self.types.getitem(name) ctype = self.build_ctype(name.string, decl) self.typecache[name.string] = ctype return ctype if name.string in ffi.systemv.types: return ffi.systemv.types[name.string] if name.string == u'void': return null if u"." in name.string and self.dependencies is not None: namespace, name = name.string.split(u".", 1) return self.dependencies.getitem(String(namespace)).getattr(name) raise unwind(LKeyError(self, name)) else: return self.build_ctype(u"<unnamed>", name) def build_ctype(self, name, decl): if isinstance(decl, String): return self.lookup_type(decl) if self.decorator is not None: return ffi.to_type(self.decorator.call([self, String(name), decl])) else: return self.build_ctype_raw(name, decl) def build_ctype_raw(self, name, decl): which = decl.getitem(String(u"type")) if isinstance(which, String) and which.string == u"cfunc": restype = decl.getitem(String(u'restype')) argtypes_list = decl.getitem(String(u'argtypes')) if not isinstance(argtypes_list, List): raise OldError(u"incorrect function record") restype = self.lookup_type(restype) argtypes = [] for argtype in argtypes_list.contents: argtypes.append(self.lookup_type(argtype)) return ffi.CFunc(restype, argtypes) if isinstance(which, String) and which.string == u"union": if decl in self.cycle_catch: return self.cycle_catch[decl] fields = decl.getitem(String(u"fields")) self.cycle_catch[decl] = ctype = ffi.Union(None, name) ctype.declare(self.parse_fields(name, fields)) return ctype if isinstance(which, String) and which.string == u"struct": if decl in self.cycle_catch: return self.cycle_catch[decl] fields = decl.getitem(String(u"fields")) self.cycle_catch[decl] = ctype = ffi.Struct(None, name) ctype.declare(self.parse_fields(name, fields)) return ctype if isinstance(which, String) and which.string == u"opaque": return ffi.Struct(None, name) if isinstance(which, String) and which.string == u"array": ctype = self.lookup_type(decl.getitem(String(u'ctype'))) length = decl.getitem(String(u"length")) if length is null: return ffi.Array(ctype) elif isinstance(length, Integer): return ffi.Array(ctype, length.value) else: raise OldError(name + u": incorrect length value: %s" % length.repr()) if isinstance(which, String) and which.string == u"pointer": to_obj = decl.getitem(String(u'to')) # A little hack to name common opaque pointers. if isinstance(to_obj, Dict): to = self.build_ctype(name, to_obj) else: to = self.lookup_type(to_obj) return ffi.Pointer(to) if isinstance(which, String) and which.string == u"enum": ctype = self.lookup_type(decl.getitem(String(u'ctype'))) constants = decl.getitem(String(u"constants")) if not isinstance(constants, Dict): raise unwind(LTypeError(name + u": expected constant table to be dictionary")) table = {} for name_, const in constants.data.iteritems(): if not isinstance(name_, String): raise unwind(LTypeError(name + u": expected constants table key to be string")) if not isinstance(const, Integer): raise unwind(LTypeError(name + u": expected constants table value to be integer")) table[name_.string] = const.value return ffi.Bitmask(ffi.to_type(ctype), table, multichoice=False) if isinstance(which, String) and which.string == u"bitmask": ctype = self.lookup_type(decl.getitem(String(u'ctype'))) constants = decl.getitem(String(u"constants")) if not isinstance(constants, Dict): raise unwind(LTypeError(name + u": expected constant table to be dictionary")) table = {} for name_, const in constants.data.iteritems(): if not isinstance(name_, String): raise unwind(LTypeError(name + u": expected constants table key to be string")) if not isinstance(const, Integer): raise unwind(LTypeError(name + u": expected constants table value to be integer")) table[name_.string] = const.value return ffi.Bitmask(ffi.to_type(ctype), table, multichoice=True) raise OldError(name + u": no ctype builder for " + which.repr()) def parse_fields(self, name, fields_list): if not isinstance(fields_list, List): raise OldError(name + u": ctype fields, expected list") fields = [] for field in fields_list.contents: field_name = field.getitem(Integer(0)) if not isinstance(field_name, String): raise OldError(name + u": first column should be the name") ctype = self.lookup_type(field.getitem(Integer(1))) fields.append((field_name.string, ctype)) return fields # I'm not sure how this method should be called. @Api.method(u"build_type", signature(Api, String, Object)) def api_build_type(api, name, obj): return api.build_ctype_raw(name.string, obj) @Api.method(u"lookup_type", signature(Api, Object)) def api_lookup_type(api, obj): return api.lookup_type(obj) class FuncLibrary(Object): def __init__(self, api, func): self.func = func self.api = api self.namespace = {} def getattr(self, name): if name in self.namespace: return self.namespace[name] try: c = self.api.getitem(String(name)) except Unwinder, uw: if isinstance(uw.exception, LKeyError): return Object.getattr(self, name) raise uw if isinstance(c, ffi.Wrap): cname = c.cname ctype = c.ctype else: return c res = self.func.call([String(cname)]) if isinstance(res, ffi.Mem): return ffi.Mem(ctype, res.pointer, 1) elif res is null: raise unwind(LAttributeError(self, name)) else: raise unwind(LTypeError( u"expected api(%s) is memory object, got %s" % ( cname, res.repr()))) @FuncLibrary.instantiator @signature(Object, Object) def _(api, func): return FuncLibrary(api, func) module = Module(u'api', { u"so_ext": from_cstring(platform.so_ext), u"funclibrary": FuncLibrary.interface, }, frozen=True) def builtin(name, deco): def _builtin_(fn): module.setattr_force(name, Builtin(deco(fn))) return fn return _builtin_ @builtin(u"open", signature(String, Object, Object, Object, optional=3)) def open(path, func, dependencies, decorator): print "api.open will be soon removed in favor to api.open_nobind" print "Fix code using api.open(...) to use api.library(...)" return library(path, func, dependencies, decorator) @builtin(u"library", signature(String, Object, Object, Object, optional=3)) def library(path, func, dependencies, decorator): path = path.string if path.endswith(u".so") or path.endswith(u".json") or path.endswith(u".dll"): path = path.rsplit(u'.', 1)[0] json_path = pathobj.parse(path + u".json") so_path = path + u"." + platform.so_ext.decode('utf-8') api = read_file(json_path, dependencies, decorator) if func is not None: return FuncLibrary(api, func) return ffi.Library.interface.call([String(so_path), api]) @builtin(u"open_nobind", signature(pathobj.Path, Object, Object, optional=2)) def open_nobind(path, dependencies, decorator): print "api.open_nobind will be removed in favor to api.read_file" print "Fix code using api.open_nobind(...) to use api.read_file(...)" return read_file(path, dependencies, decorator) @builtin(u"read_file", signature(pathobj.Path, Object, Object, optional=2)) def read_file(path, dependencies, decorator): basename = path.getattr(u"basename") if isinstance(basename, String): if not basename.string.endswith(u".json"): dirname = path.getattr(u"dirname") path = pathobj.concat(dirname, pathobj.parse(basename.string + u".json")) path = pathobj.concat(conf.headers_dir, path) try: apispec = json.read_file(path) except OSError as error: raise OldError(u"[Errno %d]: %s\n" % (error.errno, pathobj.stringify(path))) return read_object(apispec, dependencies, decorator) @builtin(u"read_object", signature(Object, Object, Object, optional=2)) def read_object(apispec, dependencies, decorator): return Api( apispec.getitem(String(u"constants")), apispec.getitem(String(u"types")), apispec.getitem(String(u"variables")), dependencies, decorator)
tests/test_provider_banzaicloud_k8s.py
mjuenema/python-terrascript
507
12666448
<reponame>mjuenema/python-terrascript # tests/test_provider_banzaicloud_k8s.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:19:55 UTC) def test_provider_import(): import terrascript.provider.banzaicloud.k8s def test_resource_import(): from terrascript.resource.banzaicloud.k8s import k8s_manifest # TODO: Shortcut imports without namespace for official and supported providers. # TODO: This has to be moved into a required_providers block. # def test_version_source(): # # import terrascript.provider.banzaicloud.k8s # # t = terrascript.provider.banzaicloud.k8s.k8s() # s = str(t) # # assert 'https://github.com/banzaicloud/terraform-provider-k8s' in s # assert '0.9.1' in s
tests/test_service_catalog/test_api/test_service/test_service_put.py
LaudateCorpus1/squest
112
12666479
<filename>tests/test_service_catalog/test_api/test_service/test_service_put.py from rest_framework import status from rest_framework.reverse import reverse from tests.test_service_catalog.base_test_request import BaseTestRequest from tests.utils import check_data_in_dict class TestApiServicePut(BaseTestRequest): def setUp(self): super(TestApiServicePut, self).setUp() self.put_data = { 'name': "My new name", 'description': "My new description", 'billing_group_id': self.service_test.billing_group_id, 'billing_group_is_shown': self.service_test.billing_group_is_shown, 'billing_group_is_selectable': self.service_test.billing_group_is_selectable, 'billing_groups_are_restricted': self.service_test.billing_groups_are_restricted, 'enabled': self.service_test.enabled } self.kwargs = { 'pk': self.service_test.id } self.get_service_details_url = reverse('api_service_details', kwargs=self.kwargs) def test_admin_put_service(self): response = self.client.put(self.get_service_details_url, data=self.put_data, content_type="application/json") self.assertEqual(response.status_code, status.HTTP_200_OK) check_data_in_dict(self, [self.put_data], [response.data]) def test_admin_cannot_put_on_service_not_full(self): self.put_data.pop('name') response = self.client.put(self.get_service_details_url, data=self.put_data, content_type="application/json") self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_customer_cannot_put_service(self): self.client.force_login(user=self.standard_user) response = self.client.put(self.get_service_details_url, data=self.put_data, content_type="application/json") self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) def test_cannot_put_service_when_logout(self): self.client.logout() response = self.client.put(self.get_service_details_url, data=self.put_data, content_type="application/json") self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN)
pytorch_tools/segmentation_models/__init__.py
YevheniiSemendiak/pytorch-tools
155
12666481
<reponame>YevheniiSemendiak/pytorch-tools<filename>pytorch_tools/segmentation_models/__init__.py<gh_stars>100-1000 from .unet import Unet from .linknet import Linknet from .deeplabv3_plus import DeepLabV3 from .segm_fpn import SegmentationFPN from .segm_bifpn import SegmentationBiFPN from .hrnet import HRNet
infer_tools_tree/metric/dijstra.py
gvieralopez/Coronary-Artery-Tracking-via-3D-CNN-Classification
107
12666545
<reponame>gvieralopez/Coronary-Artery-Tracking-via-3D-CNN-Classification<gh_stars>100-1000 # -*- coding: UTF-8 -*- # @Time : 04/08/2020 15:38 # @Author : QYD # @FileName: dijstra.py # @Software: PyCharm import heapq import numpy as np import copy def get_distance(p1, p2): return np.linalg.norm(np.array(p1) - np.array(p2)) class QueueElement: def __init__(self, dis, connection: list): self.dis = dis self.connection = connection def __lt__(self, other): return self.dis < other.dis def correspondence(ref, infer): """ :param ref: 参考点 :param infer: :return: """ refer_size = len(ref) infer_size = len(infer) if infer == [] or ref == []: print("data error") Done = 0 OnFront = 1 NotVisited = 2 nodeStatus = np.ones((refer_size, infer_size)) * NotVisited # 记录点访问状态的数组 distanceMap = np.ones((refer_size, infer_size)) * float("inf") # 距离数组 prevPointer = np.zeros((refer_size, infer_size)) # 用以对匹配点进行回溯 # q = [] dist = get_distance(ref[0], infer[0]) priorityQueue = QueueElement(dist, [0, 0]) heapq.heappush(q, priorityQueue) # 建立优先级队列 nodeStatus[0][0] = OnFront distanceMap[0][0] = dist while q and q[0].dis < distanceMap[-1][-1]: queueElem = copy.deepcopy(q[0].connection) dist = q[0].dis heapq.heappop(q) while q and nodeStatus[queueElem[0]][queueElem[1]] == Done: # 优先级队列不为空而且该点已经被访问过 queueElem = copy.deepcopy(q[0].connection) dist = q[0].dis heapq.heappop(q) if nodeStatus[queueElem[0]][queueElem[1]] == Done: break if dist > distanceMap[-1][-1]: break nodeStatus[queueElem[0]][queueElem[1]] = Done distanceMap[queueElem[0]][queueElem[1]] = dist if queueElem[1] < infer_size - 1: newDist = dist + get_distance(ref[queueElem[0]], infer[queueElem[1] + 1]) if nodeStatus[queueElem[0]][queueElem[1] + 1] == Done: continue elif nodeStatus[queueElem[0]][queueElem[1] + 1] == OnFront: if newDist >= distanceMap[queueElem[0]][queueElem[1] + 1]: continue nodeStatus[queueElem[0]][queueElem[1] + 1] = OnFront distanceMap[queueElem[0]][queueElem[1] + 1] = newDist prevPointer[queueElem[0]][queueElem[1] + 1] = 2 heapq.heappush(q, QueueElement(newDist, [queueElem[0], queueElem[1] + 1])) if queueElem[0] < refer_size - 1: newDist = dist + get_distance(ref[queueElem[0] + 1], infer[queueElem[1]]) if nodeStatus[queueElem[0] + 1][queueElem[1]] == Done: continue elif nodeStatus[queueElem[0] + 1][queueElem[1]] == OnFront: if newDist >= distanceMap[queueElem[0] + 1][queueElem[1]]: continue nodeStatus[queueElem[0] + 1][queueElem[1]] = OnFront distanceMap[queueElem[0] + 1][queueElem[1]] = newDist prevPointer[queueElem[0] + 1][queueElem[1]] = 1 heapq.heappush(q, QueueElement(newDist, [queueElem[0] + 1, queueElem[1]])) revPath = [] revPath.append([refer_size - 1, infer_size - 1]) while revPath[-1][0] or revPath[-1][1]: pointer = prevPointer[revPath[-1][0]][revPath[-1][1]] if pointer == 1: revPath.append([revPath[-1][0] - 1, revPath[-1][1]]) elif pointer == 2: revPath.append([revPath[-1][0], revPath[-1][1] - 1]) else: raise ValueError revPath.reverse() return revPath
zerver/migrations/0332_realmuserdefault.py
Pulkit007/zulip
17,004
12666589
<reponame>Pulkit007/zulip # Generated by Django 3.2.2 on 2021-05-31 16:49 import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("zerver", "0331_scheduledmessagenotificationemail"), ] operations = [ migrations.CreateModel( name="RealmUserDefault", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID" ), ), ("enter_sends", models.BooleanField(null=True, default=False)), ("left_side_userlist", models.BooleanField(default=False)), ("default_language", models.CharField(default="en", max_length=50)), ("default_view", models.TextField(default="recent_topics")), ("dense_mode", models.BooleanField(default=True)), ("fluid_layout_width", models.BooleanField(default=False)), ("high_contrast_mode", models.BooleanField(default=False)), ("translate_emoticons", models.BooleanField(default=False)), ("twenty_four_hour_time", models.BooleanField(default=False)), ("starred_message_counts", models.BooleanField(default=True)), ("color_scheme", models.PositiveSmallIntegerField(default=1)), ("demote_inactive_streams", models.PositiveSmallIntegerField(default=1)), ( "emojiset", models.CharField( choices=[ ("google", "Google modern"), ("google-blob", "Google classic"), ("twitter", "Twitter"), ("text", "Plain text"), ], default="google-blob", max_length=20, ), ), ("enable_stream_desktop_notifications", models.BooleanField(default=False)), ("enable_stream_email_notifications", models.BooleanField(default=False)), ("enable_stream_push_notifications", models.BooleanField(default=False)), ("enable_stream_audible_notifications", models.BooleanField(default=False)), ("notification_sound", models.CharField(default="zulip", max_length=20)), ("wildcard_mentions_notify", models.BooleanField(default=True)), ("enable_desktop_notifications", models.BooleanField(default=True)), ("pm_content_in_desktop_notifications", models.BooleanField(default=True)), ("enable_sounds", models.BooleanField(default=True)), ("enable_offline_email_notifications", models.BooleanField(default=True)), ("message_content_in_email_notifications", models.BooleanField(default=True)), ("enable_offline_push_notifications", models.BooleanField(default=True)), ("enable_online_push_notifications", models.BooleanField(default=True)), ("desktop_icon_count_display", models.PositiveSmallIntegerField(default=1)), ("enable_digest_emails", models.BooleanField(default=True)), ("enable_login_emails", models.BooleanField(default=True)), ("enable_marketing_emails", models.BooleanField(default=True)), ("realm_name_in_notifications", models.BooleanField(default=False)), ("presence_enabled", models.BooleanField(default=True)), ( "realm", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="zerver.realm" ), ), ], options={ "abstract": False, }, ), ]
uxy/uxy_ls.py
sustrik/uxy
735
12666624
<reponame>sustrik/uxy # Copyright (c) 2019 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom # the Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. import argparse import grp import pwd import re import sys from uxy import base def _linux(args, uxy_args): parser = argparse.ArgumentParser("__main__.py ls", add_help=False) parser.add_argument("--author", action="store_true", default=argparse.SUPPRESS) parser.add_argument("-b", action="store_true", default=argparse.SUPPRESS) parser.add_argument("--escape", action="store_true", default=argparse.SUPPRESS) parser.add_argument("-C", action="store_true", default=argparse.SUPPRESS) parser.add_argument("--color", nargs="?", default=argparse.SUPPRESS) parser.add_argument("-D", action="store_true", default=argparse.SUPPRESS) parser.add_argument("-f", action="store_true", default=argparse.SUPPRESS) parser.add_argument("--format", nargs="?", default=argparse.SUPPRESS) parser.add_argument("--full-time", action="store_true", default=argparse.SUPPRESS) parser.add_argument("-g", action="store_true", default=argparse.SUPPRESS) parser.add_argument("-h", action="store_true", default=argparse.SUPPRESS) parser.add_argument("--human-readable", action="store_true", default=argparse.SUPPRESS) parser.add_argument("--si", action="store_true", default=argparse.SUPPRESS) parser.add_argument("-G", action="store_true", default=argparse.SUPPRESS) parser.add_argument("--no-group", action="store_true", default=argparse.SUPPRESS) parser.add_argument("-i", action="store_true", default=argparse.SUPPRESS) parser.add_argument("--inode", action="store_true", default=argparse.SUPPRESS) parser.add_argument("-k", action="store_true", default=argparse.SUPPRESS) parser.add_argument("--kibibytes", action="store_true", default=argparse.SUPPRESS) parser.add_argument("-l", action="store_true", default=argparse.SUPPRESS) parser.add_argument("-m", action="store_true", default=argparse.SUPPRESS) parser.add_argument("-N", action="store_true", default=argparse.SUPPRESS) parser.add_argument("--literal", action="store_true", default=argparse.SUPPRESS) parser.add_argument("-o", action="store_true", default=argparse.SUPPRESS) parser.add_argument("-q", action="store_true", default=argparse.SUPPRESS) parser.add_argument("--hide-control-chars", action="store_true", default=argparse.SUPPRESS) parser.add_argument("-Q", action="store_true", default=argparse.SUPPRESS) parser.add_argument("--quote-name", action="store_true", default=argparse.SUPPRESS) parser.add_argument("--quoting-style", nargs=1, default=argparse.SUPPRESS) parser.add_argument("-s", action="store_true", default=argparse.SUPPRESS) parser.add_argument("--time", nargs=1, default=argparse.SUPPRESS) parser.add_argument("--time-style", nargs=1, default=argparse.SUPPRESS) parser.add_argument("-T", nargs=1, default=argparse.SUPPRESS) parser.add_argument("--tabsize", nargs=1, default=argparse.SUPPRESS) parser.add_argument("-w", nargs=1, default=argparse.SUPPRESS) parser.add_argument("--width", nargs=1, default=argparse.SUPPRESS) parser.add_argument("-x", action="store_true", default=argparse.SUPPRESS) parser.add_argument("-Z", action="store_true", default=argparse.SUPPRESS) parser.add_argument("--context", action="store_true", default=argparse.SUPPRESS) parser.add_argument("-1", action="store_true", default=argparse.SUPPRESS) parser.add_argument("--help", action="store_true", default=argparse.SUPPRESS) base.check_args(args, parser) if uxy_args.long: fmtargs = ['-lnNisZ', '--time-style=full-iso'] regexp = re.compile(r'\s*([^\s]*)\s+([^\s]*)\s+(.)([^\s]*)\s+([^\s]*)\s+([^\s]*)\s+([^\s]*)\s+([^\s]*)\s+([^\s]*)\s+([^\s]*)\s+([^\s]*)\s+([^\s]*)\s+(.*)') fmt = base.Format("INODE BLOCKS TYPE PERMISSIONS LINKS OWNER GROUP CONTEXT SIZE TIME NAME") owner_col = 6 group_col = 7 else: fmtargs = ['-lnN', '--time-style=full-iso'] regexp = re.compile(r'\s*(.)([^\s]*)\s+([^\s]*)\s+([^\s]*)\s+([^\s]*)\s+([^\s]*)\s+([^\s]*)\s+([^\s]*)\s+([^\s]*)\s+(.*)') fmt = base.Format("TYPE PERMISSIONS LINKS OWNER GROUP SIZE TIME NAME") owner_col = 4 group_col = 5 resolve_ids = True if "-n" in args[1:] or "--numeric-uid-gid" in args[1:]: resolve_ids = False proc = base.launch(uxy_args, ['ls'] + fmtargs + args[1:]) base.writeline(fmt.render()) path = "" for ln in proc: if ln.startswith('total'): continue if ln == "": # When running with -R this is the name of the directory. ln = proc.readline() if ln.endswith(":"): path = ln[:-1] + "/" continue m = regexp.match(ln) if not m: continue fields = [] for i in range(1, regexp.groups - 3): field = m.group(i) # In general, __main__.py is not supposed to supplant the functionality provided # by the wrapped tool. However, there's little option here: User names # can contain spaces (e.g. when provided by LDAP), but ls tool doesn't # escape spaces in the names even with run with -b parameter. if resolve_ids: try: if i == owner_col: field = pwd.getpwuid(int(field)).pw_name elif i == group_col: field = grp.getgrgid(int(field)).gr_name except (KeyError, ValueError): pass fields.append(base.encode_field(field)) # Convert to actual ISO8601 format. time = "%sT%s%s:%s" % ( m.group(regexp.groups - 3), m.group(regexp.groups - 2), m.group(regexp.groups - 1)[:-2], m.group(regexp.groups - 1)[-2:]) fields.append(base.encode_field(time)) fields.append(base.encode_field(path + m.group(regexp.groups))) base.writeline(fmt.render(fields)) return proc.wait() def _bsd(args, uxy_args): fmtargs = ['-l'] # -rw-r--r-- 1 501 20 1025 May 31 07:11:49 2019 LICENSE regexp = re.compile(r'\s*(.)([^\s]*)\s+([^\s]*)\s+([^\s]*)\s+([^\s]*)\s+([^\s]*)\s+([^\s]*\s+[^\s]*\s+[^\s]*\s+[^\s]*)\s+(.*)') fmt = base.Format("TYPE PERMISSIONS LINKS OWNER GROUP SIZE TIME NAME") proc = base.launch(uxy_args, ['ls'] + fmtargs + args[1:]) base.writeline(fmt.render()) path = "" for ln in proc: if ln.startswith('total'): continue if ln == "": # When running with -R this is the name of the directory. ln = proc.readline() if ln.endswith(":"): path = ln[:-1] + "/" continue m = regexp.match(ln) if not m: continue fields = [] for i in range(1, regexp.groups + 1): fields.append(base.encode_field(m.group(i))) base.writeline(fmt.render(fields)) return proc.wait() def ls(args, uxy_args): if uxy_args.platform.startswith("linux"): return _linux(args, uxy_args) else: return _bsd(args, uxy_args)
backend/src/baserow/contrib/database/api/formula/urls.py
ashishdhngr/baserow
839
12666654
from django.urls import re_path from baserow.contrib.database.api.formula.views import TypeFormulaView app_name = "baserow.contrib.database.api.export" urlpatterns = [ re_path( r"(?P<field_id>[0-9]+)/type/$", TypeFormulaView.as_view(), name="type_formula", ), ]
tests/replication_tests/test_lr3opt.py
juicetinliu/VeRyPy
156
12666704
# -*- coding: utf-8 -*- import unittest from collections import namedtuple from os import path from random import shuffle import numpy as np from replicationbase import ReplicationBase, REPRO_QUALITY_LEVELS from classic_heuristics.lr3opt import lr3opt_init, _check_lr3opt_move, _init_with_random from cvrp_ops import calculate_objective def _random_init_lr3opt(pts,D,d,C,L,st,times): best_sol = None best_f = float('inf') for t in range(times): sol = lr3opt_init(D, d, C, L, initialization_algorithm=_init_with_random) sol_f = calculate_objective(sol, D) if sol_f<best_f: best_sol = None best_f = None return best_sol def _random_init_lr3opt_once(pts,D,d,C,L,st): return lr3opt_init(D, d, C, L, initialization_algorithm=_init_with_random) LiteratureResult = namedtuple('LiteratureResult', 'obj_f cpu_time') class TestLR3OPTAlgorithm(unittest.TestCase): def setUp(self): pass def test_penalty_calculation_fig1_example(self): D = np.array([ [ 0, 19, 39, 51, 66, 59, 42, 22, 30, 40, 54, 68, 73, 62, 41], [19, 0, 21, 37, 54, 52, 36, 21, 36, 45, 58, 69, 77, 74, 54], [39, 21, 0, 21, 37, 40, 30, 27, 39, 46, 59, 65, 76, 81, 63], [51, 37, 21, 0, 17, 20, 19, 31, 34, 37, 48, 49, 61, 75, 60], [66, 54, 37, 17, 0, 16, 28, 45, 43, 43, 50, 45, 59, 79, 67], [59, 52, 40, 20, 16, 0, 17, 37, 30, 28, 34, 30, 43, 63, 53], [42, 36, 30, 19, 28, 17, 0, 19, 15, 18, 30, 34, 45, 55, 41], [22, 21, 27, 31, 45, 37, 19, 0, 15, 24, 37, 48, 56, 55, 35], [30, 36, 39, 34, 43, 30, 15, 15, 0, 10, 22, 34, 41, 42, 26], [40, 45, 46, 37, 43, 28, 18, 24, 10, 0, 13, 25, 32, 37, 24], [54, 58, 59, 48, 50, 34, 30, 37, 22, 13, 0, 16, 19, 28, 24], [68, 69, 65, 49, 45, 30, 34, 48, 34, 25, 16, 0, 13, 40, 40], [73, 77, 76, 61, 59, 43, 45, 56, 41, 32, 19, 13, 0, 32, 39], [62, 74, 81, 75, 79, 63, 55, 55, 42, 37, 28, 40, 32, 0, 20], [41, 54, 63, 60, 67, 53, 41, 35, 26, 24, 24, 40, 39, 20, 0]]) C = 140 #d = [30,15,15,15,15,15,15, #route 3 # 10,20,20,20,30,30,20] #route 1 #sol = [0,1,2,3,4,5,6,7,0,8,9,10,11,12,13,14,0] self.assertAlmostEqual( -10, _check_lr3opt_move(D, C, None, 60, 0, [[0,4],[3,1],[2,5]], [6,7,8,9,9,10], #end_p [6,7,0,8,8,9], #end_n [105,15,0,10,10,140], #cum_d None, 8, None, [2.0, None])) class TestStewartGoldenReplications(ReplicationBase): def setUp(self): self.algorithms = [ ("lr3opt_det", lambda pts,D,d,C,L,st:\ lr3opt_init(D, d, C, L)), ("lr3opt_ran", _random_init_lr3opt_once)] self.problem_names = [ "00-CW64_n31_k8c.vrp", "05-E051-k5.vrp", "06-E076-k15s.vrp", "07-E076-k10s.vrp", "08-E076-k8s.vrp", "09-E076-k7s.vrp", "10-E101-k14s.vrp", "11-E101-k8.vrp"] self.targets = [(1212,521,1058,847,751,692,1117,829), #det (1212,521,1058,847,751,692,1117,829)] #rnd self.problem_path = path.join("Classic", "GilletMiller1974") def test_deterministic_LR3OPT_with_GilletMiller1974_instances(self): avgq, sdq, minq, maxq = self.solve_problems( "lr3opt_det", require_K = False, round_f_func = np.int, cost_compare = False) self.assertTrue( abs(avgq) < REPRO_QUALITY_LEVELS.D_AVG, "Average quality not replicated (%.2f)"%avgq) self.assertTrue( abs(sdq) < REPRO_QUALITY_LEVELS.B_SD, "There is too much variation between instances") #TestStewartGoldenReplications.test_stochastic_LR3OPT_with_GilletMiller1974_instances def test_stochastic_LR3OPT_with_GilletMiller1974_instances(self): repeats_per_problem = zip(list(range(8)), [10, 10, 7, 8*3, 10, 10*2, 3, 6*2]) bestqs = [float('inf')]*8 for i, repeats in repeats_per_problem: for repeat in range(repeats): problem_name = self.problem_names[i] print "Repeat %d of %d for %s"%(repeat+1,repeats,problem_name) avgq, sdq, minq, maxq = self.solve_problems( "lr3opt_ran", instance_idx = i, require_K = False, round_f_func = np.int, #round_D_func = np.around, cost_compare = False) if avgq<bestqs[i]: bestqs[i] = avgq # check the average gap of [10, 10, 7, 8, 10, 10, 3, 6] repeats avgq = np.average(bestqs) sdq = np.std(bestqs) # Usually this assertion succeeds, but because it is stochastic, it # is possible that by chance some of the results are (much) worse. # Then, it is best to try again on bump the level up to B. self.assertTrue( abs(avgq) < REPRO_QUALITY_LEVELS.A_AVG, "Average quality not replicated (%.2f)"%avgq) self.assertTrue( abs(sdq) < REPRO_QUALITY_LEVELS.A_SD, "There is too much variation between instances") if __name__ == '__main__': unittest.main()
kivymd/uix/templates/rotatewidget/__init__.py
marvelous-benji/KivyMD
1,111
12666725
from .rotatewidget import RotateWidget
appscan/getJson.py
eiri/java-sdk-core
686
12666744
<reponame>eiri/java-sdk-core import json import sys def main(): data = load_data() printFields(data) def load_data(): data = "" filename = sys.argv[1] with open(filename, "r") as read: data = json.load(read) if isinstance(data, list): data = data[0] return data def printFields(data): fields = sys.argv[2:] for i in fields: print(data[i]) main()
nodejs/node_modules/speaker/deps/mpg123/scripts/tag_lyrics.py
qcuong98/KT-AI-Hackathon
323
12666780
<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- # needs mutagen # grabbed from: http://code.activestate.com/recipes/577138-embed-lyrics-into-mp3-files-using-mutagen-uslt-tag/ # simplified to only work on one file and get lyrics from stdin # I suspect this is public domain code. Just a usage example of the mutagen lib. import os import sys import codecs from mutagen.mp3 import MP3 from mutagen.id3 import ID3NoHeaderError from mutagen.id3 import ID3, USLT TEXT_ENCODING = 'utf8' TEXT_LANG = 'XXX' TEXT_DESC = '' # get workdir from first arg or use current dir if (len(sys.argv) > 1): fname = sys.argv[1] print "fname=" + fname else: print 'Give me at least a file name to work on, plus the lyrics from stdin' print 'Optionally, you can provide the language (3 lowercase letters) of the lyrics and a description' sys.exit() if (len(sys.argv) > 2): TEXT_LANG = sys.argv[2] if (len(sys.argv) > 3): TEXT_DESC = sys.argv[3] print "reading lyrics from standard input ..." lyrics = sys.stdin.read().strip() # try to find the right encoding for enc in ('utf8','iso-8859-1','iso-8859-15','cp1252','cp1251','latin1'): try: lyrics = lyrics.decode(enc) TEXT_DESC = TEXT_DESC.decode(enc) print enc, break except: pass print "Adding lyrics to " + fname print "Language: " + TEXT_LANG print "Description: " + TEXT_DESC # create ID3 tag if not exists try: tags = ID3(fname) except ID3NoHeaderError: print "Adding ID3 header;", tags = ID3() # remove old unsychronized lyrics if len(tags.getall(u"USLT::'"+TEXT_LANG+"'")) != 0: print "Removing Lyrics." tags.delall(u"USLT::'"+TEXT_LANG+"'") #tags.save(fname) # hm, why? #tags.add(USLT(encoding=3, lang=u'eng', desc=u'desc', text=lyrics)) # apparently the description is important when more than one # USLT frames are present #tags[u"USLT::'eng'"] = (USLT(encoding=3, lang=u'eng', desc=u'desc', text=lyrics)) tags[u"USLT::'"+TEXT_LANG+"'"] = (USLT(encoding=3, lang=TEXT_LANG, desc=TEXT_DESC, text=lyrics)) print 'Added USLT frame to', fname tags.save(fname) print 'Done'
tests/test_08b_provider_gencode.py
tilschaef/genomepy
112
12666805
import pytest import genomepy from tests import linux, travis @pytest.mark.skipif(travis and linux, reason="FTP does not work on Travis-Linux") def test_gencodeprovider(gencode): assert gencode.name == "GENCODE" assert gencode.taxid_fields == ["taxonomy_id"] @pytest.mark.skipif(travis and linux, reason="FTP does not work on Travis-Linux") def test_genome_info_tuple(gencode): t = gencode._genome_info_tuple("GRCh37") assert isinstance(t, tuple) assert t[0:4] == ("GRCh37", "GCA_000001405.1", 9606, True) @pytest.mark.skipif(travis and linux, reason="FTP does not work on Travis-Linux") def test_genomes(gencode): assert gencode.genomes["GRCh37"]["other_info"] == "GENCODE annotation + UCSC genome" assert gencode.genomes["GRCh38"]["assembly_accession"] == "GCA_000001405.15" @pytest.mark.skipif(travis and linux, reason="FTP does not work on Travis-Linux") def test_get_genome_download_link(gencode): link = gencode.get_genome_download_link("GRCh37", mask="soft") assert link in [ "http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz", "http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/hg19.fa.masked.gz", ] @pytest.mark.skipif(travis and linux, reason="FTP does not work on Travis-Linux") def test_get_annotation_download_links(gencode): # default annotation filing system genome = "GRCm39" annots = gencode.get_annotation_download_links(genome) expected = [ # release numbers removed "ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M", "/gencode.vM", ".annotation.gtf.gz", ] assert all([exp in annots[0] for exp in expected]) # GRCh37, the one with the unique filing system. genome = "GRCh37" annots = gencode.get_annotation_download_links(genome) expected = [ # release numbers removed "ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_", "/GRCh37_mapping/gencode.v", "lift37.annotation.gtf.gz", ] assert all([exp in annots[0] for exp in expected]) @pytest.mark.skipif(travis and linux, reason="FTP does not work on Travis-Linux") def test_download_annotation(gencode): gencode.download_annotation("GRCm39") # smallest gencode annotation (0.8 GB) def test_get_gencode2ucsc(): genomes = { "test1": {"species": "Homo sapiens"}, "test2": {"species": "Mus Musculus"}, "test3": {"species": "whatever"}, } gencode2ucsc = genomepy.providers.gencode.get_gencode2ucsc(genomes) assert gencode2ucsc["test1"] == "hg1" assert gencode2ucsc["test2"] == "mm2" assert gencode2ucsc["test3"] == "mm3" def test_get_releases(): listing = [ "/path/to/release_22", "/path/to/mouse/release_M44", "/path/to/mouse/release_M33", "/path/to/release_01", # too old "/path/to/something/else", ] specie = "human" releases = genomepy.providers.gencode.get_releases(listing, specie) assert releases == ["44", "33", "22"] specie = "mouse" releases = genomepy.providers.gencode.get_releases(listing, specie) assert releases == ["M44", "M33", "M22"] def test_add_grch37(): release = 42 genomes = { "GRCh11": {}, "GRCh22": {"annotations": [f"ftp/to/release_{release}/gtf"]}, } genomes = genomepy.providers.gencode.add_grch37(genomes, "") expected = ( f"/Gencode_human/release_{release}/GRCh37_mapping/" f"gencode.v{release}lift37.annotation.gtf.gz" ) assert genomes["GRCh22"]["annotations"] == [f"ftp/to/release_{release}/gtf"] assert genomes["GRCh37"]["annotations"] == [expected]
DeepAlignmentNetwork/menpofit/visualize/__init__.py
chiawei-liu/DeepAlignmentNetwork
220
12666821
from .textutils import print_progress, statistics_table from .base import (view_image_multiple_landmarks, plot_cumulative_error_distribution)
tools/inference_synthesis.py
yuzhd/Text2Scene
109
12666857
<reponame>yuzhd/Text2Scene #!/usr/bin/env python import _init_paths import os, sys, cv2, json import math, PIL, cairo import numpy as np import pickle, random import os.path as osp from time import time from copy import deepcopy from glob import glob import matplotlib.pyplot as plt from composites_utils import * from composites_config import get_config from datasets.composites_coco import composites_coco from datasets.composites_loader import sequence_loader, synthesis_loader from modules.synthesis_model import SynthesisModel from modules.synthesis_trainer import SynthesisTrainer import torch, torchtext from torch.utils.data import Dataset from torch.utils.data import DataLoader def test_synthesis_model(config): testdb = composites_coco(config, 'test', '2017') trainer = SynthesisTrainer(config) # we use the official validation set as test set trainer.sample_for_eval(testdb) if __name__ == '__main__': cv2.setNumThreads(0) config, unparsed = get_config() np.random.seed(config.seed) random.seed(config.seed) torch.manual_seed(config.seed) if(config.cuda): torch.cuda.manual_seed_all(config.seed) prepare_directories(config) test_synthesis_model(config)
lib/model/MLP.py
desmondblue/image-reconstruction-web-app
8,045
12666864
<reponame>desmondblue/image-reconstruction-web-app # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F class MLP(nn.Module): def __init__(self, filter_channels, merge_layer=0, res_layers=[], norm='group', last_op=None): super(MLP, self).__init__() self.filters = nn.ModuleList() self.norms = nn.ModuleList() self.merge_layer = merge_layer if merge_layer > 0 else len(filter_channels) // 2 self.res_layers = res_layers self.norm = norm self.last_op = last_op for l in range(0, len(filter_channels)-1): if l in self.res_layers: self.filters.append(nn.Conv1d( filter_channels[l] + filter_channels[0], filter_channels[l+1], 1)) else: self.filters.append(nn.Conv1d( filter_channels[l], filter_channels[l+1], 1)) if l != len(filter_channels)-2: if norm == 'group': self.norms.append(nn.GroupNorm(32, filter_channels[l+1])) elif norm == 'batch': self.norms.append(nn.BatchNorm1d(filter_channels[l+1])) def forward(self, feature): ''' feature may include multiple view inputs args: feature: [B, C_in, N] return: [B, C_out, N] prediction ''' y = feature tmpy = feature phi = None for i, f in enumerate(self.filters): y = f( y if i not in self.res_layers else torch.cat([y, tmpy], 1) ) if i != len(self.filters)-1: if self.norm not in ['batch', 'group']: y = F.leaky_relu(y) else: y = F.leaky_relu(self.norms[i](y)) if i == self.merge_layer: phi = y.clone() if self.last_op is not None: y = self.last_op(y) return y, phi
BPNN/BPNN_Regression/TensorFlow_BPNN_Regression.py
Jojoxiao/Machine-Learning-for-Beginner-by-Python3
397
12666866
#-*- coding:utf-8 -*- # &Author AnFany # 适用于多维输出 from BPNN_DATA_Reg import model_data as R_data import numpy as np import tensorflow as tf '''第一部分:数据准备''' train_x_data = R_data[0] # 训练输入 train_y_data = R_data[1] # 训练输出 predict_x_data = R_data[2] # 测试输入 predict_y_data = R_data[3] # 测试输出 '''第二部分: 基于TensorFlow构建训练函数''' # 创建激活函数 def activate(input_layer, weights, biases, actfunc): layer = tf.add(tf.matmul(input_layer, weights), biases) if actfunc == 'relu': return tf.nn.relu(layer) elif actfunc == 'tanh': return tf.nn.tanh(layer) elif actfunc == 'sigmoid': return tf.nn.sigmoid(layer) # 权重初始化的方式和利用激活函数的关系很大 # sigmoid: xavir tanh: xavir relu: he # 构建训练函数 def Ten_train(xdata, ydata, prexdata, hiddenlayers=3, hiddennodes=100, \ learn_rate=0.05, itertimes=100000, batch_size=200, activate_func='sigmoid', break_error=0.0043): # 开始搭建神经网络 Input_Dimen = len(xdata[0]) Unit_Layers = [Input_Dimen] + [hiddennodes] * hiddenlayers + [len(ydata[0])] # 输入的维数,隐层的神经数,输出的维数1 # 创建占位符 x_data = tf.placeholder(shape=[None, Input_Dimen], dtype=tf.float32) y_target = tf.placeholder(shape=[None, len(ydata[0])], dtype=tf.float32) # 实现动态命名变量 VAR_NAME = locals() for jj in range(hiddenlayers + 1): VAR_NAME['weight%s' % jj] = tf.Variable(np.random.rand(Unit_Layers[jj], Unit_Layers[jj + 1]), dtype=tf.float32,\ name='weight%s' % jj) / np.sqrt(Unit_Layers[jj]) # sigmoid tanh # VAR_NAME['weight%s'%jj] = tf.Variable(np.random.rand(Unit_Layers[jj], Unit_Layers[jj + 1]), dtype=tf.float32,name='weight%s' % jj) \/ np.sqrt(Unit_Layers[jj] / 2) # relu VAR_NAME['bias%s' % jj] = tf.Variable(tf.random_normal([Unit_Layers[jj + 1]], stddev=10, name='bias%s' % jj), dtype=tf.float32) if jj == 0: VAR_NAME['ooutda%s' % jj] = activate(x_data, eval('weight%s' % jj), eval('bias%s' % jj), actfunc=activate_func) else: VAR_NAME['ooutda%s' % jj] = activate(eval('ooutda%s' % (jj - 1)), eval('weight%s' % jj), \ eval('bias%s' % jj), actfunc=activate_func) # 均方误差 loss = tf.reduce_mean(tf.reduce_sum(tf.square(y_target - eval('ooutda%s' % (hiddenlayers))), reduction_indices=[1])) # 优化的方法 my_opt = tf.train.AdamOptimizer(learn_rate) train_step = my_opt.minimize(loss) # 初始化 init = tf.global_variables_initializer() loss_vec = [] # 训练误差 with tf.Session() as sess: saver = tf.train.Saver() sess.run(init) for i in range(itertimes): rand_index = np.random.choice(len(xdata), size=batch_size, replace=False) rand_x = xdata[rand_index] rand_y = ydata[rand_index] sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) temp_loss = sess.run(loss, feed_dict={x_data: xdata, y_target: ydata}) loss_vec.append(temp_loss) # 根据输出的误差,判断训练的情况 if (i + 1) % 25 == 0: print('Generation: ' + str(i + 1) + '. 归一误差:Loss = ' + str(temp_loss)) # 提前退出的判断 if temp_loss < break_error: # 根据经验获得此数值, 因为采用的是随机下降,因此误差在前期可能出现浮动 break # 计算预测数据的输出 pre_in_data0 = np.array(prexdata, dtype=np.float32) for ipre in range(hiddenlayers + 1): VAR_NAME['pre_in_data%s' % (ipre + 1)] = activate(eval('pre_in_data%s' % ipre), eval('weight%s' % ipre).eval(),\ eval('bias%s' % ipre).eval(), actfunc=activate_func) # 计算训练数据的输出 train_in_data0 = np.array(xdata, dtype=np.float32) for ipre in range(hiddenlayers + 1): VAR_NAME['train_in_data%s' % (ipre + 1)] = activate(eval('train_in_data%s' % ipre), eval('weight%s' % ipre).eval(),\ eval('bias%s' % ipre).eval(), actfunc=activate_func) return eval('train_in_data%s'%(hiddenlayers+1)).eval(), eval('pre_in_data%s'%(hiddenlayers+1)).eval(), loss_vec '''第三部分: 结果展示函数''' import matplotlib.pyplot as plt from pylab import mpl # 作图显示中文 mpl.rcParams['font.sans-serif'] = ['FangSong'] # 设置中文字体新宋体 # 绘制图像 def figure(real, net, le='训练', real_line='ko-', net_line='r.-', width=3): length = len(real[0]) # 绘制每个维度的对比图 for iwe in range(length): plt.subplot(length, 1, iwe+1) plt.plot(list(range(len(real.T[iwe]))), real.T[iwe], real_line, linewidth=width) plt.plot(list(range(len(net.T[iwe]))), net.T[iwe], net_line, linewidth=width - 1) plt.legend(['%s真实值'%le, '网络输出值']) if length == 1: plt.title('%s结果对比'%le) else: if iwe == 0: plt.title('%s结果: %s维度对比'%(le, iwe)) else: plt.title('%s维度对比'%iwe) plt.show() # 绘制成本函数曲线图 def costfig(errlist, le='成本函数曲线图'): plt.plot(list(range(len(errlist))), errlist, linewidth=3) plt.title(le) plt.xlabel('迭代次数') plt.ylabel('成本函数值') plt.show() # 因为训练数据较多,为了不影响展示效果,按序随机选取一定数量的数据,便于展示 def select(datax, datay, count=200): sign = list(range(len(datax))) selectr_sign = np.random.choice(sign, count, replace=False) return datax[selectr_sign], datay[selectr_sign] # 将输出的数据转换尺寸,变为原始数据的尺寸 def trans(ydata, minumber=R_data[4][0], maxumber=R_data[4][1]): return ydata * (maxumber - minumber) + minumber if __name__ == '__main__': # 训练 tfrelu = Ten_train(train_x_data, train_y_data, predict_x_data) # 真实的数据转换尺寸 train_y_data_tran = trans(train_y_data) predict_y_data_tran = trans(predict_y_data) # 网络预测的数据转换尺寸 train_output = trans(tfrelu[0]) predict_output = trans(tfrelu[1]) # 数据多影响展示,随机挑选100条数据 random_train_x_data = select(train_output, train_y_data_tran, 200) random_predict_x_data = select(predict_output, predict_y_data_tran, 100) figure(random_train_x_data[1], random_train_x_data[0], le='训练') figure(random_predict_x_data[1], random_predict_x_data[0], le='预测') costfig(tfrelu[2])