max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
corehq/messaging/smsbackends/start_enterprise/migrations/0001_initial.py
dimagilg/commcare-hq
471
12705617
# Generated by Django 1.10.8 on 2017-10-12 10:35 from django.db import migrations, models import jsonfield.fields class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='StartEnterpriseDeliveryReceipt', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('sms_id', models.CharField(db_index=True, max_length=126)), ('message_id', models.CharField(db_index=True, max_length=126, unique=True)), ('received_on', models.DateTimeField(db_index=True, null=True)), ('info', jsonfield.fields.JSONField(default=dict, null=True)), ], ), ]
rojak-analyzer/show_word_frequency.py
pyk/rojak
107
12705621
import csv from bs4 import BeautifulSoup from collections import Counter import re csv_file = open('data_detikcom_740.csv') csv_reader = csv.DictReader(csv_file) words = [] for row in csv_reader: title = row['title'].strip().lower() raw_content = row['raw_content'] clean_content = BeautifulSoup(raw_content, 'lxml').text # Compile regex to remove non-alphanum char nonalpha = re.compile('[\W_]+') for word in title.split(' '): word = word.lower() word = nonalpha.sub('', word) if word != '': words.append(word) for word in clean_content.split(' '): word = word.lower() word = nonalpha.sub('', word) if word != '': words.append(word) counter = Counter(words) for word in counter.most_common(len(counter)): print '{},{}'.format(word[0], word[1]) csv_file.close()
src/embedding/recognition.py
mykiscool/DeepCamera
914
12705673
# coding=utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import os, json, time, sys import shutil import time import os.path import requests from uuid import uuid1 import numpy as np from utilslib.save2gst import generate_protocol_string import classifier_classify_new as classifier from faces import save_embedding all_face_index = 0 #每当识别出一个人脸就+1,当2个人同时出现在图片里面并且都不认识,需要区分开来 BASEDIR = os.getenv('RUNTIME_BASEDIR',os.path.abspath(os.path.dirname(__file__))) TMP_DIR_PATH = os.path.join(BASEDIR, 'data', 'faces', 'tmp_pic_path') UPLOAD_FOLDER = os.path.join(BASEDIR, 'image') DATABASE = 'sqlite:///' + os.path.join(BASEDIR, 'data', 'data.sqlite') face_tmp_objid = None obje_tmp_objid = None EN_OBJECT_DETECTION = False FACE_DETECTION_WITH_DLIB = False # Disable DLIB at this time EN_SOFTMAX = False SOFTMAX_ONLY = False isUpdatingDataSet = False webShowFace = False EXT_IMG='png' DO_NOT_UPLOAD_IMAGE = False DO_NOT_REPORT_TO_SERVER = False FOR_ARLO = True USE_DEFAULT_DATA=True # Enable to use "groupid_default" for SVM training SVM_CLASSIFIER_ENABLED=True SVM_SAVE_TEST_DATASET=True SVM_TRAIN_WITHOUT_CATEGORY=True SVM_HIGH_SCORE_WITH_DB_CHECK=True svm_face_dataset=None svm_face_embedding=None svm_tmp_dir=None svm_face_testdataset=None svm_stranger_testdataset=None data_collection=None def init_fs(): global svm_face_dataset global svm_face_embedding global svm_tmp_dir global svm_face_testdataset global svm_stranger_testdataset try: if not os.path.exists(UPLOAD_FOLDER): os.makedirs(UPLOAD_FOLDER) # if not os.path.exists(os.path.join(BASEDIR, 'data.sqlite')): # db.create_all() if not os.path.exists(os.path.join(BASEDIR, 'data', 'data.sqlite')): if os.path.exists(os.path.join(BASEDIR, 'data_init')): shutil.copyfile(os.path.join(BASEDIR, 'data_init'), os.path.join(BASEDIR, 'data', 'data.sqlite')) if not os.path.exists(TMP_DIR_PATH): os.makedirs(TMP_DIR_PATH) if SVM_CLASSIFIER_ENABLED: svm_face_dataset = os.path.join(BASEDIR, 'data', 'face_dataset') svm_face_embedding = os.path.join(BASEDIR, 'data', 'face_embedding') svm_tmp_dir = os.path.join(BASEDIR, 'data', 'faces', 'noname', 'person') svm_face_testdataset = os.path.join(BASEDIR, 'data', 'face_testdataset') svm_stranger_testdataset = os.path.join(BASEDIR, 'data', 'stranger_testdataset') if not os.path.exists(svm_face_dataset): os.mkdir(svm_face_dataset) if not os.path.exists(svm_face_embedding): os.mkdir(svm_face_embedding) if not os.path.exists(svm_tmp_dir): os.makedirs(svm_tmp_dir) if not os.path.exists(svm_face_testdataset): os.mkdir(svm_face_testdataset) if not os.path.exists(svm_stranger_testdataset): os.mkdir(svm_stranger_testdataset) except Exception as e: print(e) def updatePeopleImgURL(ownerid, url, embedding, uuid, objid, img_type, accuracy, fuzziness, sqlId, style, img_ts, tid, p_ids, waiting): print('debug updatePeopleImgURL 1') if len(url) < 1 or len(uuid) < 1 or len(objid) < 1 or len(img_type) < 1: return if not DO_NOT_REPORT_TO_SERVER: print('save2gst') save2gst(uuid, objid, url, '', 'face', accuracy, int(fuzziness), int(sqlId), style, img_ts, tid, p_ids, waiting) # 发送请求给workai def upload_forecast_result(key, forecast_result, json_data, num_p): uuid = forecast_result['uuid'] face_id = forecast_result['face_id'] face_accuracy = forecast_result['face_accuracy'] people_sqlId = forecast_result['people_sqlId'] align_image_path = forecast_result['align_image_path'] img_style_str = forecast_result['img_style_str'] ts = forecast_result['ts'] trackerId = forecast_result['trackerId'] face_fuzziness = forecast_result['face_fuzziness'] people = forecast_result['people'] p_ids = forecast_result['p_ids'] embedding_string = forecast_result['embedding_string'] #embedding_bytes = embedding_string.encode('utf-8') img_type = forecast_result['img_type'] waiting = forecast_result['waiting'] do_not_report_to_server = DO_NOT_REPORT_TO_SERVER uploadedimgurl = None return generate_protocol_string(key, face_id, align_image_path, embedding='', uuid=uuid, DO_NOT_REPORT_TO_SERVER=do_not_report_to_server,block=False, objid=face_id, img_type=img_type, accuracy=face_accuracy, fuzziness=face_fuzziness, sqlId=people_sqlId, style=img_style_str, ts=ts, tid=str(trackerId), p_ids=p_ids, waiting = waiting) def face_recognition_on_embedding(align_image_path, embedding, totalPeople, blury, uuid, current_groupid, style, trackerId, timestamp1, ts, embedding_path): img_objid = trackerId print("img_objid = {}".format(img_objid)) print("number of people=%d" % (totalPeople)) if totalPeople > 1: trackerId = str(uuid1()) number_people=totalPeople img_style_str = style img_style = img_style_str json_data = {'detected':False, 'recognized': False, 'style': img_style_str} forecast_result = {'people':None, 'img_type': 'face', 'people_sqlId': 0, 'face_id': None, # 当前这个人脸图片的objId/face_id 'trackerId': trackerId, 'uuid': uuid, 'ts': ts, 'img_style_str': img_style_str, 'align_image_path': align_image_path, 'face_accuracy': 0, 'face_fuzziness': 0, 'embedding_string': '', 'waiting': False, 'p_ids': None, } # 保存发送给uploadImage的数据 forecast_result['face_fuzziness'] = blury print(">>> blury=%d" %(blury)) json_data['detected'] = True print("2 %.2f seconds" % (time.time() - timestamp1)) if forecast_result['face_fuzziness'] < int(data_collection.get("blury_threhold")): json_data, forecast_result = get_empty_faceid(current_groupid, uuid, embedding, img_style, number_people, img_objid, forecast_result) print("Too blurry image, skip it img_objid={}, trackerId={}".format(img_objid, trackerId)) elif SVM_CLASSIFIER_ENABLED is True: #img_style = 'front' # embedding = embedding.reshape((1, -1)) forecast_result['waiting'] = False json_data, forecast_result = SVM_classifier(embedding,align_image_path, uuid,current_groupid,img_style,number_people,img_objid,json_data,forecast_result, embedding_path) print("3 %.2f seconds" % (time.time() - timestamp1)) if json_data['recognized'] is True: if webShowFace is True: showRecognizedImage(forecast_result['align_image_path'], 1) forecast_result['trackerId'] = trackerId # 人脸预测结果发送 key = str(<KEY> _,api_url,payload = upload_forecast_result(key, forecast_result, json_data, number_people) json_data['key'] = key json_data['face_fuzziness'] = blury return json_data, {'api_url':api_url,'payload':payload} def get_empty_faceid(current_groupid, uuid, embedding, img_style, number_people, img_objid, forecast_result): """ 当softmax无结果时(无模型/预测置信度低)调用遍历数据库识别 :param current_groupid: :param uuid: :param embedding: :param img_style: :param number_people: :param img_objid: :return: """ json_data = {'detected': True, 'recognized': False} face_id = img_objid + str(all_face_index).zfill(4) json_data['recognized'] = False json_data['face_id'] = face_id json_data['accuracy'] = 0 json_data['style'] = img_style forecast_result['face_id'] = face_id forecast_result['face_accuracy'] = 0 embedding_string = ','.join(str(x) for x in embedding) forecast_result['embedding_string'] = embedding_string return json_data, forecast_result def SVM_classifier(embedding,align_image_path,uuid,current_groupid,img_style,number_people, img_objid,json_data, forecast_result, embedding_path): #Save image to src/face_dataset_classify/group/person/ if SVM_SAVE_TEST_DATASET is True: group_path = os.path.join(BASEDIR,svm_face_testdataset, current_groupid) if not os.path.exists(group_path): os.mkdir(group_path) print('test dataset group_path=%s' % group_path) pkl_path = "" if SVM_TRAIN_WITHOUT_CATEGORY is True: pkl_path = '{}/data/faces/{}/{}/classifier_182.pkl'.format(BASEDIR,current_groupid, 'front') face_dataset_path = '{}/data/faces/{}/{}/face_dataset'.format(BASEDIR,current_groupid, 'front') else: pkl_path = '{}/data/faces/{}/{}/classifier_182.pkl'.format(BASEDIR,current_groupid, img_style) face_dataset_path = '{}/data/faces/{}/{}/face_dataset'.format(BASEDIR,current_groupid, img_style) svm_detected = False if os.path.exists(pkl_path): nrof_classes = 0 if os.path.exists(face_dataset_path): classes = [path for path in os.listdir(face_dataset_path) \ if os.path.isdir(os.path.join(face_dataset_path, path))] nrof_classes = len(classes) print("SVM_classifier: nrof_classes={}".format(nrof_classes)) #tmp_image_path = BASEDIR + '/data/faces/noname/person/face_tmp.'+EXT_IMG #shutil.copyfile(align_image_path, tmp_image_path) # 输入embedding的预测方法, 速度很快 svm_stime = time.time() _, human_string, score, top_three_name, judge_result = classifier.classify([embedding], pkl_path, embedding_path) if top_three_name: top_three_faceid = [name.split(' ')[1] for name in top_three_name] else: top_three_faceid = None print('-> svm classify cost {}s'.format(time.time()-svm_stime)) print("current value of score_1 ", float(data_collection.get("score_1"))) print("current value of score_2 ", float(data_collection.get("score_2"))) print("current value of fuzziness_1 ", float(data_collection.get("fuzziness_1"))) print("current value of fuzziness_2 ", float(data_collection.get("fuzziness_2"))) print("current value of update interval ", float(data_collection.get("_interval"))) if human_string is not None: message = "" message2 = "" face_id = human_string.split(' ')[1] score = round(score, 2) fuzziness = forecast_result['face_fuzziness'] if USE_DEFAULT_DATA is True: if face_id == 'defaultfaceid': score = 0.0 if not FOR_ARLO: if score >= float(data_collection.get("score_1")) or (score >= float(data_collection.get("score_2")) and fuzziness >= float(data_collection.get("fuzziness_1")) and fuzziness < float(data_collection.get("fuzziness_2"))): found, total = check_embedding_on_detected_person_forSVM(current_groupid=current_groupid, embedding=embedding,style=img_style,classid=face_id, nrof_classes=nrof_classes) if found > 0: svm_detected = True message = "<DB Recognized> Face ID: %s %s/%s, 2nd %s/%s" % (face_id, score, img_style, found, total) else: message = "<DB 2nd Score Low> Face ID: %s %s/%s, 2nd %s/%s" % (face_id, score, img_style, found, total) elif 0.35<score<0.8: message = "Send this face to Zone Waiting: %s,%s"%(score, fuzziness) forecast_result['waiting'] = True else: message = "<1st Score Low> Face ID: %s %s/%s" % (face_id, score, img_style) else: if score > float(data_collection.get("score_2")):#0.40 found, total = check_embedding_on_detected_person_forSVM_ByDir(current_groupid=current_groupid, embedding=embedding,style=img_style,classid=human_string.replace(' ', '_'),nrof_classes=nrof_classes) if found > 0: if score > float(data_collection.get("score_1")) or judge_result != 0:#0.9 svm_detected = True message = "<1, SVM Recognized> Face ID: %s %s/%s, 2nd %s/%s" % (face_id, score, img_style, found, total) else: message = "<2, SVM Recognized> Face ID: %s %s/%s, 2nd %s/%s" % (face_id, score, img_style, found, total) else: message = "<3, SVM Recognized Not, found=0> Face ID: %s %s/%s, 2nd %s/%s" % (face_id, score, img_style, found, total) else: message = "<4, SVM Recognized Not, Low score> Face ID: %s %s/%s" % (face_id, score, img_style) print(message) if (message2 != ""): print(message2) if svm_detected is True: json_data['recognized'] = True json_data['face_id'] = face_id json_data['accuracy'] = int(score*100) json_data['style'] = img_style forecast_result['face_id'] = face_id forecast_result['face_accuracy'] = score embedding_string = ','.join(str(x) for x in embedding) forecast_result['embedding_string'] = embedding_string else: forecast_result['p_ids'] = top_three_faceid print("Not Recognized %s" % face_id) #sendDebugLogToGroup(uuid, current_groupid, message) #Save image to src/face_dataset_classify/group/person/ if SVM_SAVE_TEST_DATASET is True: if svm_detected is True: svm_face_testdataset_person_path = os.path.join(group_path, human_string) else: svm_face_testdataset_person_path = os.path.join(group_path, 'noname') if not os.path.exists(svm_face_testdataset_person_path): os.mkdir(svm_face_testdataset_person_path) print('test dataset person path=%s' % svm_face_testdataset_person_path) dir = os.path.basename(align_image_path) name = os.path.splitext(dir)[0] save_testdataset_filepath = os.path.join(svm_face_testdataset_person_path, name+'_'+str(int(time.time()))+'.png') print('save classified image to path: %s' % save_testdataset_filepath) try: shutil.copyfile(align_image_path, save_testdataset_filepath) except IOError: print('cant copy file from {} to {},need check later'.format(align_image_path,save_testdataset_filepath )) pass if svm_detected is False: json_data, forecast_result = get_empty_faceid(current_groupid, uuid, embedding, img_style, number_people, img_objid, forecast_result) print('not in train classification or need to more train_dataset') return json_data, forecast_result def check_embedding_on_detected_person_forSVM(current_groupid, embedding, style, classid, nrof_classes): total = 0 found = 0 people = None #遍历整个数据库, 检查这个人是谁 if SVM_TRAIN_WITHOUT_CATEGORY is True: people = People.query.filter_by(group_id=current_groupid, classId=classid).all() else: people = People.query.filter_by(group_id=current_groupid, style=style, classId=classid).all() if people: for person in people: val = compare2(embedding, person.embed) total = total+1 face_accuracy = val print('face_accuracy={}'.format(face_accuracy)) threshold = 0.70 if nrof_classes <= 5 and nrof_classes > 0: threshold = 0.90 elif nrof_classes <= 10 and nrof_classes > 0: threshold = 0.82 if face_accuracy >= threshold: found = found+1 if total >= 500: break return found, total def check_embedding_on_detected_person_forSVM_ByDir(current_groupid, embedding, style, classid, nrof_classes): total = 0 found = 0 people = None if SVM_TRAIN_WITHOUT_CATEGORY is True: facedir = '{}/data/faces/{}/{}/face_dataset/{}'.format(BASEDIR,current_groupid, 'front', classid) else: facedir = '{}/data/faces/{}/{}/face_dataset/{}'.format(BASEDIR,current_groupid, style, classid) print("check embedding: facedir = {}".format(facedir)) embedding_array = [] if os.path.isdir(facedir): image_paths = [] images = os.listdir(facedir) if len(images) < 1: print("Check embedding: Empty directory: facedir={}".format(facedir)) return 0, 0 for img in images: img_path = os.path.join(facedir, img) emb_path = save_embedding.get_embedding_path(img_path) emb = save_embedding.read_embedding_string(emb_path) emb = np.asarray(emb) embedding_array.append(emb) if len(embedding_array) > 0: for emb in embedding_array: val = compare2(embedding, emb) total = total+1 face_accuracy = val print('face_accuracy={}'.format(face_accuracy)) ''' threshold = 1.0 if nrof_classes <= 5 and nrof_classes > 0: threshold = 1.0 elif nrof_classes <= 10 and nrof_classes > 0: threshold = 1.0 ''' threshold = 0.42 if face_accuracy > threshold: found = found+1 if total >= 500: break return found, total def compare(emb1, emb2): dist = np.sqrt(np.sum(np.square(np.subtract(emb1, emb2)))) # d = emb1 - emb2 # sqL2 = np.dot(d, d) # print("+ Squared l2 distance between representations: {:0.3f}, dist is {:0.3f}".format(sqL2,dist)) # print("+ distance between representations: {:0.3f}".format(dist)) # return sqL2 return dist def compare2(emb1, emb2): dist = np.sum([emb2]*emb1, axis=1) return dist def compare3(emb1, emb2): return np.sum(np.square(emb1-emb2)) class DataCollection(object): def __init__(self, update_freq=10): self.url = "http://localhost:5000/api/parameters" self.pre_time = time.time() self.update_freq = update_freq self.items = self.fetch() def fetch(self): try: resp = requests.get(self.url) assert resp.status_code == 200 r = resp.json() except Exception as e: print(e) #print("status_code: %s" %resp.status_code) # if web server not work return default values. r = None if not FOR_ARLO: r = { "blury_threhold": "10", "fuzziness_1": "40", "fuzziness_2": "200", "score_1": "0.75", "score_2": "0.60", } else: r = { "blury_threhold": "60", "fuzziness_1": "40", "fuzziness_2": "200", "score_1": "0.90", "score_2": "0.40", } if "_interval" in r: _freq = int(r["_interval"]) if self.update_freq != _freq: self.update_freq = _freq r.update({"_interval": self.update_freq}) return r def reload(self): cur_time = time.time() if cur_time - self.pre_time > self.update_freq: self.pre_time = cur_time self.items = self.fetch() def get(self, key): key = key.lower() self.reload() return self.items.get(key, None) data_collection = DataCollection() init_fs()
Master Script/manual db updater.py
avinashkranjan/PraticalPythonProjects
930
12705696
from optparse import OptionParser import json import sys import os usage = """ <Script> [Options] [Options] -h, --help Show this help message and exit. -a, --add Goes straight to the add script phase """ # Load args parser = OptionParser() parser.add_option("-a", "--add", action="store_true", dest="add", help="Goes straight to the add script phase") # The database is automatically updated after the PR is merged. # ONLY Use this function if you were asked to, to manually add projects to the database. def add_script(): """ Add a Contributor script through a series of inputs """ print("Double check inputs before pressing enter. If one input is incorrect press CTRL-C and re-run the script") category = input("Enter What category does your script belongs to > ") name = input("Enter script title > ") path = input("Enter folder name that contains your script > ") requirments_path = input("Enter requirements.txt path (else none) > ") entry = input("Enter name of the file that runs the script > ") arguments = input("Enter scripts arugments if needed ( '-' seperated + no whitespaces) (else none) > ") contributor = input("Enter your GitHub username > ") description = input("Enter a description for your script > ") new_data = {category: {name: [path, entry, arguments, requirments_path, contributor, description]}} data_store = read_data() try: # If category doesn't exist try will fail and except will ask to add a new category with the project if data_store[category]: # Check for existing category or a new one data_store[category].update(new_data[category]) # Add script except: sure = "Y" sure = input("A new category is about to be added. You sure? Y/n > ") if sure.lower() == "y" or sure == "": data_store.update(new_data) # Add new category else: print("Data wasn't added please re-run the script and add the correct inputs.") sys.exit(1) with open("datastore.json", "w") as file: json.dump(data_store, file) print("Script added to database") def read_data(): """ Loads datastore.json """ with open("datastore.json", "r") as file: data = json.load(file) return data def check_data(): """ Validates that all projects exists in the datastore and prints out those are not in the DB """ data = read_data() paths = [] for category in data: for project in data[category]: paths.append(data[category][project][0]) i=0 repo_dir = os.listdir("../") ignore = [".deepsource.toml", ".git", ".github", ".gitignore", "CODE_OF_CONDUCT.md", "CONTRIBUTING.md", "LICENSE", "README.md", "SCRIPTS.md", "script_updater.py", "Template for README.md", "Master Script", ] for element in repo_dir: if (not element in paths) and (not element in ignore): print(element) i+=1 print(f"Total of {i} non-added projects.") # Start checkpoint if __name__ == "__main__": (options, args) = parser.parse_args() # Inputs add = options.add if add: add_script() #add_script() check_data()
templates/powershell/ps_system_time.py
ohoph/Ebowla
738
12705710
buildcode=""" function Get-SystemTime(){ $time_mask = @() $the_time = Get-Date $time_mask += [string]$the_time.Year + "0000" $time_mask += [string]$the_time.Year + [string]$the_time.Month + "00" $time_mask += [string]$the_time.Year + [string]$the_time.Month + [string]$the_time.Day return $time_mask } """ callcode=""" $key_combos += ,(Get-SystemTime) """
examples/generate_embeddings.py
JackHopkins/onnxt5
197
12705718
<gh_stars>100-1000 from onnxruntime import InferenceSession from transformers import T5Tokenizer from onnxt5.api import get_encoder_decoder_tokenizer, run_embeddings_text, get_sess # The easiest way is to use the onnxt5 api and load the default pre-trained version of t5 decoder_sess, encoder_sess, tokenizer = get_encoder_decoder_tokenizer() # You can load pre-exported models with get_sess (do note you need the tokenizer you trained also) # decoder_sess, encoder_sess = get_sess(output_path) # You can also load model_data manually: # decoder_sess = InferenceSession('/home/abel/t5-decoder-with-lm-head.onnx') # encoder_sess = InferenceSession('/home/abel/t5-encoder.onnx') # The tokenizer should be the one you trained in the case of fine-tuning # tokenizer = T5Tokenizer.from_pretrained('t5-base') prompt = 'Listen, <NAME> has come unstuck in time.' # To get embeddings you can either use our utility function encoder_embeddings, decoder_embeddings = run_embeddings_text(encoder_sess, decoder_sess, tokenizer, prompt) # Or do it manually as follow input_ids = tokenizer.encode(prompt, return_tensors='pt').numpy() # To generate the encoder's last hidden state encoder_output = encoder_sess.run(None, {"input_ids": input_ids})[0] # To generate the full model's embeddings decoder_output = decoder_sess.run(None, { "input_ids": input_ids, "encoder_hidden_states": encoder_output })[0]
raspberryio/project/admin.py
cvautounix/raspberryio
113
12705727
<gh_stars>100-1000 try: from PIL import Image except ImportError: import Image from django import forms from django.contrib import admin from raspberryio.project.models import (FeaturedProject, Project, ProjectStep, ProjectCategory) class FeaturedProjectAdminForm(forms.ModelForm): class Meta: model = FeaturedProject def clean_photo(self): photo = self.cleaned_data.get('photo', False) if 'photo' in self.changed_data: img = Image.open(photo) if photo.size > 5 * 1024 * 1024: error = "Photo file too large ( maximum 5MB )" raise forms.ValidationError(error) if img.size[0] < 1252 or img.size[1] < 626: error = "Photo dimensions too small ( minimum 1252x636 pixels )" raise forms.ValidationError(error) return photo class FeaturedProjectAdmin(admin.ModelAdmin): model = FeaturedProject form = FeaturedProjectAdminForm list_display = ('project', 'featured_start_date') class ProjectAdminForm(forms.ModelForm): class Meta: model = Project fields = ( 'title', 'status', 'publish_date', 'user', 'featured_photo', 'featured_video', 'tldr', 'categories' ) class ProjectStepInline(admin.TabularInline): model = ProjectStep extra = 1 class ProjectAdmin(admin.ModelAdmin): model = Project form = ProjectAdminForm list_display = ('title', 'created_datetime', 'admin_thumb') inlines = (ProjectStepInline,) raw_id_fields = ('user',) class ProjectCategoryAdmin(admin.ModelAdmin): model = ProjectCategory fields = ('title',) admin.site.register(FeaturedProject, FeaturedProjectAdmin) admin.site.register(Project, ProjectAdmin) admin.site.register(ProjectCategory, ProjectCategoryAdmin)
synapse/lib/queue.py
ackroute/synapse
216
12705731
import asyncio import collections import synapse.exc as s_exc import synapse.common as s_common import synapse.lib.base as s_base class AQueue(s_base.Base): ''' An async queue with chunk optimized sync compatible consumer. ''' async def __anit__(self): await s_base.Base.__anit__(self) self.fifo = [] self.event = asyncio.Event() self.onfini(self.event.set) def put(self, item): ''' Add an item to the queue. ''' if self.isfini: return False self.fifo.append(item) if len(self.fifo) == 1: self.event.set() return True async def slice(self): # sync interface to the async queue if len(self.fifo) == 0: await self.event.wait() retn = list(self.fifo) self.fifo.clear() self.event.clear() return retn class Queue: ''' An asyncio Queue with batch methods and graceful close. ''' def __init__(self, maxsize=None): self.q = asyncio.Queue(maxsize=maxsize) self.closed = False async def close(self): await self.q.put(s_common.novalu) self.closed = True async def put(self, item): if self.closed: mesg = 'The Queue has been closed.' raise s_exc.BadArg(mesg=mesg) await self.q.put(item) async def size(self): size = self.q.qsize() if self.closed: size -= 1 return size async def puts(self, items): if self.closed: mesg = 'The Queue has been closed.' raise s_exc.BadArg(mesg=mesg) for item in items: await self.q.put(item) async def slice(self, size=1000): if self.closed and self.q.qsize() == 0: return None items = [] item = await self.q.get() if item is s_common.novalu: return None items.append(item) size -= 1 for i in range(min(size, self.q.qsize())): item = await self.q.get() if item is s_common.novalu: break items.append(item) return items async def slices(self, size=1000): while True: items = await self.slice(size=size) if items is None: return yield items class Window(s_base.Base): ''' A Queue like object which yields added items. If the queue ever reaches its maxsize, it will be fini()d. On fini(), the Window will continue to yield results until empty and then return. ''' async def __anit__(self, maxsize=None): await s_base.Base.__anit__(self) self.maxsize = maxsize self.event = asyncio.Event() self.linklist = collections.deque() async def fini(): self.event.set() self.onfini(fini) async def __aiter__(self): while True: if self.linklist: yield self.linklist.popleft() continue if self.isfini: return self.event.clear() await self.event.wait() async def put(self, item): ''' Add a single item to the Window. ''' if self.isfini: return False self.linklist.append(item) self.event.set() if self.maxsize is not None and len(self.linklist) >= self.maxsize: await self.fini() return True async def puts(self, items): ''' Add multiple items to the window. ''' if self.isfini: return False self.linklist.extend(items) self.event.set() if self.maxsize is not None and len(self.linklist) >= self.maxsize: await self.fini() return True
tests/plugins/test_lyx_filters.py
dsoto/dexy
136
12705739
from tests.utils import assert_output def test_lyx(): assert_output("lyxjinja", "dexy:foo.py|idio:multiply", "<< d['foo.py|idio']['multiply'] >>", ".tex")
data/operator/bbox/spatial/vectorized/torch/utility/normalize.py
zhangzhengde0225/SwinTrack
143
12705764
<reponame>zhangzhengde0225/SwinTrack import torch class BoundingBoxNormalizationHelper: def __init__(self, interval, range_): assert interval in ('[)', '[]') self.right_open = (interval == '[)') assert range_[1] > range_[0] self.scale = range_[1] - range_[0] self.offset = range_[0] def normalize_(self, bbox: torch.Tensor, image_size): if self.right_open: bbox[..., ::2] /= image_size[0] bbox[..., 1::2] /= image_size[1] else: bbox[..., ::2] /= (image_size[0] - 1) bbox[..., 1::2] /= (image_size[1] - 1) bbox *= self.scale bbox += self.offset return bbox def normalize(self, bbox: torch.Tensor, image_size): return self.normalize_(bbox.clone(), image_size) def denormalize_(self, bbox: torch.Tensor, image_size): bbox -= self.offset bbox /= self.scale if self.right_open: bbox[..., ::2] *= image_size[0] bbox[..., 1::2] *= image_size[1] else: bbox[..., ::2] *= (image_size[0] - 1) bbox[..., 1::2] *= (image_size[1] - 1) return bbox def denormalize(self, bbox: torch.Tensor, image_size): return self.denormalize_(bbox.clone(), image_size)
video_funnel/server.py
fakegit/video-funnel
113
12705771
import asyncio from pathlib import Path import aiohttp from aiohttp import web from .funnel import Funnel from .utils import ( HttpRange, RangeNotSupportedError, convert_unit, load_browser_cookies, retry, ) async def make_response(request, url, block_size, piece_size, cookies_from, use_original_url): session = request.app['session'] if cookies_from: session.cookie_jar.update_cookies( load_browser_cookies(cookies_from, url)) @retry async def get_info(): nonlocal url async with session.head(url, allow_redirects=True) as resp: if resp.headers.get('Accept-Ranges') != 'bytes': raise RangeNotSupportedError if not use_original_url: url = resp.url return resp.content_length, resp.content_type try: content_length, content_type = await get_info() except RangeNotSupportedError as exc: msg = str(exc) print(msg) return web.Response(status=501, text=msg) except aiohttp.ClientError as exc: print(exc) return web.Response(status=exc.status) range = request.headers.get('Range') if range is None: # not a Range request - the whole file range = HttpRange(0, content_length - 1) resp = web.StreamResponse( status=200, headers={ 'Content-Length': str(content_length), 'Content-Type': content_type, 'Accept-Ranges': 'bytes' }) else: try: range = HttpRange.from_str(range, content_length) except ValueError: return web.Response( status=416, headers={'Content-Range': f'*/{content_length}'}) else: resp = web.StreamResponse( status=206, headers={ 'Content-Type': content_type, 'Content-Range': f'bytes {range.begin}-{range.end}/{content_length}' }) if request.method == 'HEAD': return resp await resp.prepare(request) async with Funnel( url, range, session, block_size, piece_size, ) as funnel: try: async for chunk in funnel: await resp.write(chunk) return resp except (aiohttp.ClientError, RangeNotSupportedError) as exc: print(exc) return web.Response(status=exc.status) except asyncio.CancelledError: raise ROOT = Path(__file__).parent async def index(request): return web.FileResponse(ROOT / 'index.html') async def cli(request): args = request.app['args'] url = request.raw_path[1:] or args.url return await make_response( request, url, convert_unit(args.block_size), convert_unit(args.piece_size), args.cookies_from, args.use_original_url, ) async def api(request): args = request.app['args'] query = request.query block_size = convert_unit(query.get('block_size', args.block_size)) piece_size = convert_unit(query.get('piece_size', args.piece_size)) return await make_response( request, query.get('url', args.url), block_size, piece_size, query.get('cookies_from', args.cookies_from), query.get('use_original_url', args.use_original_url), ) async def make_app(args): app = web.Application() app['args'] = args if args.url is None: app.router.add_get('/', index) # app.router.add_static('/static', ROOT / 'static') app.router.add_get('/api', api) app.router.add_get('/{_:https?://.+}', cli) else: app.router.add_get('/', cli) app.router.add_get('/{_:https?://.+}', cli) async def session(app): app['session'] = aiohttp.ClientSession(raise_for_status=True) yield await app['session'].close() app.cleanup_ctx.append(session) return app
tests/api/test_docker.py
peddamat/home-assistant-supervisor-test
597
12705772
"""Test Docker API.""" import pytest @pytest.mark.asyncio async def test_api_docker_info(api_client): """Test docker info api.""" resp = await api_client.get("/docker/info") result = await resp.json() assert result["data"]["logging"] == "journald" assert result["data"]["storage"] == "overlay2" assert result["data"]["version"] == "1.0.0"
setup.py
bingqingsuimeng/ctypesgen
200
12705778
#!/usr/bin/env python3 """Examples: setup.py sdist setup.py bdist_wininst """ from setuptools import setup if __name__ == "__main__": setup()
k8s_handle/__init__.py
jetbrains-infra/k8s-handle
152
12705781
<reponame>jetbrains-infra/k8s-handle import argparse import logging import os import sys from kubernetes import client from kubernetes.config import list_kube_config_contexts, load_kube_config from k8s_handle import config from k8s_handle import settings from k8s_handle import templating from k8s_handle.exceptions import ProvisioningError, ResourceNotAvailableError from k8s_handle.filesystem import InvalidYamlError from k8s_handle.k8s.deprecation_checker import ApiDeprecationChecker from k8s_handle.k8s.provisioner import Provisioner from k8s_handle.k8s.diff import Diff from k8s_handle.k8s.availability_checker import ResourceAvailabilityChecker, make_resource_getters_list COMMAND_DEPLOY = 'deploy' COMMAND_DIFF = 'diff' COMMAND_DESTROY = 'destroy' log = logging.getLogger(__name__) logging.basicConfig(level=settings.LOG_LEVEL, format=settings.LOG_FORMAT, datefmt=settings.LOG_DATE_FORMAT) def handler_deploy(args): _handler_deploy_destroy(args, COMMAND_DEPLOY) def handler_destroy(args): _handler_deploy_destroy(args, COMMAND_DESTROY) def handler_apply(args): _handler_apply_delete(args, COMMAND_DEPLOY) def handler_delete(args): _handler_apply_delete(args, COMMAND_DESTROY) def handler_render(args): context = config.load_context_section(args.get('section')) templating.Renderer( settings.TEMPLATES_DIR, args.get('tags'), args.get('skip_tags') ).generate_by_context(context) def handler_diff(args): _handler_deploy_destroy(args, COMMAND_DIFF) def _handler_deploy_destroy(args, command): context = config.load_context_section(args.get('section')) resources = templating.Renderer( settings.TEMPLATES_DIR, args.get('tags'), args.get('skip_tags') ).generate_by_context(context) if args.get('dry_run'): return _handler_provision( command, resources, config.PriorityEvaluator(args, context, os.environ), args.get('use_kubeconfig'), args.get('sync_mode'), args.get('show_logs') ) def _handler_apply_delete(args, command): _handler_provision( command, [os.path.join(settings.TEMP_DIR, args.get('resource'))], config.PriorityEvaluator(args, {}, os.environ), args.get('use_kubeconfig'), args.get('sync_mode'), args.get('show_logs') ) def _handler_provision(command, resources, priority_evaluator, use_kubeconfig, sync_mode, show_logs): kubeconfig_namespace = None if priority_evaluator.environment_deprecated(): log.warning("K8S_HOST and K8S_CA environment variables support is deprecated " "and will be discontinued in the future. Use K8S_MASTER_URI and K8S_CA_BASE64 instead.") # INFO rvadim: https://github.com/kubernetes-client/python/issues/430#issuecomment-359483997 if use_kubeconfig: try: load_kube_config() kubeconfig_namespace = list_kube_config_contexts()[1].get('context').get('namespace') except Exception as e: raise RuntimeError(e) else: client.Configuration.set_default(priority_evaluator.k8s_client_configuration()) settings.K8S_NAMESPACE = priority_evaluator.k8s_namespace_default(kubeconfig_namespace) log.info('Default namespace "{}"'.format(settings.K8S_NAMESPACE)) if not settings.K8S_NAMESPACE: log.info("Default namespace is not set. " "This may lead to provisioning error, if namespace is not set for each resource.") try: deprecation_checker = ApiDeprecationChecker(client.VersionApi().get_code().git_version[1:]) available_checker = ResourceAvailabilityChecker(make_resource_getters_list()) for resource in resources: deprecation_checker.run(resource) available_checker.run(resource) except client.exceptions.ApiException: log.warning("Error while getting API version, deprecation check will be skipped.") if command == COMMAND_DIFF: executor = Diff() else: executor = Provisioner(command, sync_mode, show_logs) for resource in resources: executor.run(resource) parser = argparse.ArgumentParser(description='CLI utility generate k8s resources by templates and apply it to cluster') subparsers = parser.add_subparsers(dest="command") subparsers.required = True parser_target_config = argparse.ArgumentParser(add_help=False) parser_target_config.add_argument('-s', '--section', required=True, type=str, help='Section to deploy from config file') parser_target_config.add_argument('-c', '--config', required=False, help='Config file, default: config.yaml') parser_target_config.add_argument('--tags', action='append', required=False, help='Only use templates tagged with these values') parser_target_config.add_argument('--skip-tags', action='append', required=False, help='Only use templates whose tags do not match these values') parser_target_resource = argparse.ArgumentParser(add_help=False) parser_target_resource.add_argument('-r', '--resource', required=True, type=str, help='Resource spec path, absolute (started with slash) or relative from TEMP_DIR') parser_deprecated = argparse.ArgumentParser(add_help=False) parser_deprecated.add_argument('--dry-run', required=False, action='store_true', help='Don\'t run kubectl commands. Deprecated, use "k8s-handle template" instead') parser_provisioning = argparse.ArgumentParser(add_help=False) parser_provisioning.add_argument('--sync-mode', action='store_true', required=False, default=False, help='Turn on sync mode and wait deployment ending') parser_provisioning.add_argument('--tries', type=int, required=False, default=360, help='Count of tries to check deployment status') parser_provisioning.add_argument('--retry-delay', type=int, required=False, default=5, help='Sleep between tries in seconds') parser_provisioning.add_argument('--strict', action='store_true', required=False, help='Check existence of all env variables in config.yaml and stop if var is not set') parser_provisioning.add_argument('--use-kubeconfig', action='store_true', required=False, help='Try to use kube config') parser_provisioning.add_argument('--k8s-handle-debug', action='store_true', required=False, help='Show K8S client debug messages') parser_logs = argparse.ArgumentParser(add_help=False) parser_logs.add_argument('--show-logs', action='store_true', required=False, default=False, help='Show logs for jobs') parser_logs.add_argument('--tail-lines', type=int, required=False, help='Lines of recent log file to display') arguments_connection = parser_provisioning.add_argument_group() arguments_connection.add_argument('--k8s-master-uri', required=False, help='K8S master to connect to') arguments_connection.add_argument('--k8s-ca-base64', required=False, help='base64-encoded K8S certificate authority') arguments_connection.add_argument('--k8s-token', required=False, help='K8S token to use') parser_deploy = subparsers.add_parser( 'deploy', parents=[parser_provisioning, parser_target_config, parser_logs, parser_deprecated], help='Do attempt to create specs from templates and deploy K8S resources of the selected section') parser_deploy.set_defaults(func=handler_deploy) parser_apply = subparsers.add_parser('apply', parents=[parser_provisioning, parser_target_resource, parser_logs], help='Do attempt to deploy K8S resource from the existing spec') parser_apply.set_defaults(func=handler_apply) parser_destroy = subparsers.add_parser('destroy', parents=[parser_provisioning, parser_target_config, parser_deprecated], help='Do attempt to destroy K8S resources of the selected section') parser_destroy.set_defaults(func=handler_destroy) parser_delete = subparsers.add_parser('delete', parents=[parser_provisioning, parser_target_resource], help='Do attempt to destroy K8S resource from the existing spec') parser_delete.set_defaults(func=handler_delete) parser_template = subparsers.add_parser('render', parents=[parser_target_config], help='Make resources from the template and config. ' 'Created resources will be placed into the TEMP_DIR') parser_template.set_defaults(func=handler_render) parser_diff = subparsers.add_parser('diff', parents=[parser_target_config], help='Show diff between current rendered yamls and apiserver yamls') parser_diff.add_argument('--use-kubeconfig', action='store_true', required=False, help='Try to use kube config') parser_diff.set_defaults(func=handler_diff) def main(): # INFO furiousassault: backward compatibility rough attempt # must be removed later according to https://github.com/2gis/k8s-handle/issues/40 deprecation_warnings = 0 filtered_arguments = [] for argument in sys.argv[1:]: if argument in ['--sync-mode=true', '--sync-mode=True', '--dry-run=true', '--dry-run=True']: deprecation_warnings += 1 filtered_arguments.append(argument.split('=')[0]) continue if argument in ['--sync-mode=false', '--sync-mode=False', '--dry-run=false', '--dry-run=False']: deprecation_warnings += 1 continue filtered_arguments.append(argument) args, unrecognized_args = parser.parse_known_args(filtered_arguments) if deprecation_warnings or unrecognized_args: log.warning("Explicit true/false arguments to --sync-mode and --dry-run keys are deprecated " "and will be discontinued in the future. Use these keys without arguments instead.") args_dict = vars(args) settings.CHECK_STATUS_TRIES = args_dict.get('tries') settings.CHECK_DAEMONSET_STATUS_TRIES = args_dict.get('tries') settings.CHECK_STATUS_TIMEOUT = args_dict.get('retry_delay') settings.CHECK_DAEMONSET_STATUS_TIMEOUT = args_dict.get('retry_delay') settings.GET_ENVIRON_STRICT = args_dict.get('strict') settings.COUNT_LOG_LINES = args_dict.get('tail_lines') settings.CONFIG_FILE = args_dict.get('config') or settings.CONFIG_FILE try: args.func(args_dict) except templating.TemplateRenderingError as e: log.error('Template generation error: {}'.format(e)) sys.exit(1) except InvalidYamlError as e: log.error('{}'.format(e)) sys.exit(1) except RuntimeError as e: log.error('RuntimeError: {}'.format(e)) sys.exit(1) except ResourceNotAvailableError as e: log.error('Resource not available: {}'.format(e)) sys.exit(1) except ProvisioningError: sys.exit(1) print(r''' _(_)_ wWWWw _ @@@@ (_)@(_) vVVVv _ @@@@ (___) _(_)_ @@()@@ wWWWw (_)\ (___) _(_)_ @@()@@ Y (_)@(_) @@@@ (___) `|/ Y (_)@(_) @@@@ \|/ (_) / Y \| \|/ /(_) \| |/ | \ | \ |/ | / \ | / \|/ |/ \| \|/ \|// \|/// \|// \|/// \|/// \|// |// \|// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^''')
examples/mark_safe_secure.py
mikelolasagasti/bandit
4,016
12705785
<gh_stars>1000+ import os from django.utils import safestring safestring.mark_safe('<b>secure</b>') safestring.SafeText('<b>secure</b>') safestring.SafeUnicode('<b>secure</b>') safestring.SafeString('<b>secure</b>') safestring.SafeBytes('<b>secure</b>') my_secure_str = '<b>Hello World</b>' safestring.mark_safe(my_secure_str) my_secure_str, _ = ('<b>Hello World</b>', '') safestring.mark_safe(my_secure_str) also_secure_str = my_secure_str safestring.mark_safe(also_secure_str) def try_secure(): try: my_secure_str = 'Secure' except Exception: my_secure_str = 'Secure' else: my_secure_str = 'Secure' finally: my_secure_str = 'Secure' safestring.mark_safe(my_secure_str) def format_secure(): safestring.mark_safe('<b>{}</b>'.format('secure')) my_secure_str = 'secure' safestring.mark_safe('<b>{}</b>'.format(my_secure_str)) safestring.mark_safe('<b>{} {}</b>'.format(my_secure_str, 'a')) safestring.mark_safe('<b>{} {}</b>'.format(*[my_secure_str, 'a'])) safestring.mark_safe('<b>{b}</b>'.format(b=my_secure_str)) # nosec TODO safestring.mark_safe('<b>{b}</b>'.format(**{'b': my_secure_str})) # nosec TODO my_secure_str = '<b>{}</b>'.format(my_secure_str) safestring.mark_safe(my_secure_str) def percent_secure(): safestring.mark_safe('<b>%s</b>' % 'secure') my_secure_str = 'secure' safestring.mark_safe('<b>%s</b>' % my_secure_str) safestring.mark_safe('<b>%s %s</b>' % (my_secure_str, 'a')) safestring.mark_safe('<b>%(b)s</b>' % {'b': my_secure_str}) # nosec TODO def with_secure(path): with open(path) as f: safestring.mark_safe('Secure') def loop_secure(): my_secure_str = '' for i in range(ord(os.urandom(1))): my_secure_str += ' Secure' safestring.mark_safe(my_secure_str) while ord(os.urandom(1)) % 2 == 0: my_secure_str += ' Secure' safestring.mark_safe(my_secure_str) def all_secure_case(): if ord(os.urandom(1)) % 2 == 0: my_secure_str = 'Secure' elif ord(os.urandom(1)) % 2 == 0: my_secure_str = 'Secure' else: my_secure_str = 'Secure' safestring.mark_safe(my_secure_str)
hypernets/core/callbacks.py
Enpen/Hypernets
1,080
12705790
# -*- coding:utf-8 -*- """ """ import datetime import json import os import time import numpy as np import pandas as pd from IPython.display import display, update_display, display_markdown from tqdm.auto import tqdm from ..utils import logging, fs, to_repr logger = logging.get_logger(__name__) class Callback(): def __init__(self): pass def on_search_start(self, hyper_model, X, y, X_eval, y_eval, cv, num_folds, max_trials, dataset_id, trial_store, **fit_kwargs): pass def on_search_end(self, hyper_model): pass def on_search_error(self, hyper_model): pass def on_build_estimator(self, hyper_model, space, estimator, trial_no): pass def on_trial_begin(self, hyper_model, space, trial_no): pass def on_trial_end(self, hyper_model, space, trial_no, reward, improved, elapsed): pass def on_trial_error(self, hyper_model, space, trial_no): pass def on_skip_trial(self, hyper_model, space, trial_no, reason, reward, improved, elapsed): pass def __repr__(self): return to_repr(self) class EarlyStoppingError(RuntimeError): def __init__(self, *arg): self.args = arg class EarlyStoppingCallback(Callback): REASON_TRIAL_LIMIT = 'max_no_improvement_trials' REASON_TIME_LIMIT = 'time_limit' REASON_EXPECTED_REWARD = 'expected_reward' def __init__(self, max_no_improvement_trials=0, mode='min', min_delta=0, time_limit=None, expected_reward=None): super(Callback, self).__init__() # assert time_limit is None or time_limit > 60, 'If `time_limit` is not None, it must be greater than 60.' # settings if mode == 'min': self.op = np.less elif mode == 'max': self.op = np.greater else: raise ValueError(f'Unsupported mode:{mode}') self.max_no_improvement_trials = max_no_improvement_trials self.mode = mode self.min_delta = min_delta self.time_limit = time_limit self.expected_reward = expected_reward # running state self.start_time = None self.best_reward = None self.best_trial_no = None self.counter_no_improvement_trials = 0 self.triggered = None self.triggered_reason = None def on_search_start(self, hyper_model, X, y, X_eval, y_eval, cv, num_folds, max_trials, dataset_id, trial_store, **fit_kwargs): self.triggered = False self.triggered_reason = None def on_trial_begin(self, hyper_model, space, trial_no): if self.start_time is None: self.start_time = time.time() def on_trial_end(self, hyper_model, space, trial_no, reward, improved, elapsed): if self.start_time is None: self.start_time = time.time() time_total = time.time() - self.start_time if self.time_limit is not None and self.time_limit > 0: if time_total > self.time_limit: self.triggered = True self.triggered_reason = self.REASON_TIME_LIMIT if self.expected_reward is not None and self.expected_reward != 0.0: if self.op(reward, self.expected_reward): self.triggered = True self.triggered_reason = self.REASON_EXPECTED_REWARD if self.max_no_improvement_trials is not None and self.max_no_improvement_trials > 0: if self.best_reward is None: self.best_reward = reward self.best_trial_no = trial_no else: if self.op(reward, self.best_reward - self.min_delta): self.best_reward = reward self.best_trial_no = trial_no self.counter_no_improvement_trials = 0 else: self.counter_no_improvement_trials += 1 if self.counter_no_improvement_trials >= self.max_no_improvement_trials: self.triggered = True self.triggered_reason = self.REASON_TRIAL_LIMIT if self.triggered: msg = f'Early stopping on trial : {trial_no}, reason: {self.triggered_reason}, ' \ f'best reward: {self.best_reward}, best trial: {self.best_trial_no}, ' \ f'elapsed seconds: {time_total}' if logger.is_info_enabled(): logger.info(msg) raise EarlyStoppingError(msg) class FileLoggingCallback(Callback): def __init__(self, searcher, output_dir=None): super(FileLoggingCallback, self).__init__() self.output_dir = self._prepare_output_dir(output_dir, searcher) @staticmethod def open(file_path, mode): return open(file_path, mode=mode) @staticmethod def mkdirs(dir_path, exist_ok): os.makedirs(dir_path, exist_ok=exist_ok) def _prepare_output_dir(self, log_dir, searcher): if log_dir is None: log_dir = 'log' if log_dir[-1] == '/': log_dir = log_dir[:-1] running_dir = f'exp_{searcher.__class__.__name__}_{datetime.datetime.now().__format__("%m%d-%H%M%S")}' output_path = os.path.expanduser(f'{log_dir}/{running_dir}') self.mkdirs(output_path, exist_ok=True) return output_path def on_build_estimator(self, hyper_model, space, estimator, trial_no): pass def on_trial_begin(self, hyper_model, space, trial_no): pass # with open(f'{self.output_dir}/trial_{trial_no}.log', 'w') as f: # f.write(space.params_summary()) def on_trial_end(self, hyper_model, space, trial_no, reward, improved, elapsed): with self.open(f'{self.output_dir}/trial_{improved}_{trial_no:04d}_{reward:010.8f}_{elapsed:06.2f}.log', 'w') as f: f.write(space.params_summary()) f.write('\r\n----------------Summary for Searcher----------------\r\n') f.write(hyper_model.searcher.summary()) topn = 10 diff = hyper_model.history.diff(hyper_model.history.get_top(topn)) with self.open(f'{self.output_dir}/top_{topn}_diff.txt', 'w') as f: diff_str = json.dumps(diff, indent=5) f.write(diff_str) f.write('\r\n') f.write(hyper_model.searcher.summary()) with self.open(f'{self.output_dir}/top_{topn}_config.txt', 'w') as f: trials = hyper_model.history.get_top(topn) configs = hyper_model.export_configuration(trials) for trial, conf in zip(trials, configs): f.write(f'Trial No: {trial.trial_no}, Reward: {trial.reward}\r\n') f.write(conf) f.write('\r\n---------------------------------------------------\r\n\r\n') def on_skip_trial(self, hyper_model, space, trial_no, reason, reward, improved, elapsed): with self.open( f'{self.output_dir}/trial_{reason}_{improved}_{trial_no:04d}_{reward:010.8f}_{elapsed:06.2f}.log', 'w') as f: f.write(space.params_summary()) topn = 5 diff = hyper_model.history.diff(hyper_model.history.get_top(topn)) with self.open(f'{self.output_dir}/top_{topn}_diff.txt', 'w') as f: diff_str = json.dumps(diff, indent=5) f.write(diff_str) class FileStorageLoggingCallback(FileLoggingCallback): @staticmethod def open(file_path, mode): return fs.open(file_path, mode=mode) @staticmethod def mkdirs(dir_path, exist_ok): fs.mkdirs(dir_path, exist_ok=exist_ok) class SummaryCallback(Callback): def __init__(self): super(SummaryCallback, self).__init__() self.start_search_time = None def on_search_start(self, hyper_model, X, y, X_eval, y_eval, cv, num_folds, max_trials, dataset_id, trial_store, **fit_kwargs): self.start_search_time = time.time() def on_build_estimator(self, hyper_model, space, estimator, trial_no): # if logger.is_info_enabled(): # logger.info(f'\nTrial No:{trial_no}') # logger.info(space.params_summary()) estimator.summary() def on_trial_begin(self, hyper_model, space, trial_no): if logger.is_info_enabled(): msg = f'\nTrial No:{trial_no}{space.params_summary()}\ntrial {trial_no} begin' logger.info(msg) def on_trial_end(self, hyper_model, space, trial_no, reward, improved, elapsed): if logger.is_info_enabled(): logger.info(f'trial end. reward:{reward}, improved:{improved}, elapsed:{elapsed}') logger.info(f'Total elapsed:{time.time() - self.start_search_time}') def on_skip_trial(self, hyper_model, space, trial_no, reason, reward, improved, elapsed): if logger.is_info_enabled(): logger.info(f'&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&') logger.info(f'trial skip. reason:{reason}, reward:{reward}, improved:{improved}, elapsed:{elapsed}') logger.info(f'&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&') class NotebookCallback(Callback): def __init__(self): super(NotebookCallback, self).__init__() self.current_trial_display_id = None self.search_summary_display_id = None self.best_trial_display_id = None self.title_display_id = None self.last_trial_no = 0 self.last_reward = 0 self.start_time = 0 self.max_trials = 0 def on_search_start(self, hyper_model, X, y, X_eval, y_eval, cv, num_folds, max_trials, dataset_id, trial_store, **fit_kwargs): self.start_time = time.time() self.max_trials = max_trials df_holder = pd.DataFrame() settings = {'X': X.shape, 'y': y.shape, 'X_eval': X_eval.shape if X_eval is not None else None, 'y_eval': y_eval.shape if y_eval is not None else None, 'cv': cv, 'num_folds': num_folds, 'max_trials': max_trials, # 'dataset_id': dataset_id, # 'trail_store': trial_store, 'fit_kwargs': fit_kwargs.keys() } df_settings = pd.DataFrame({k: [v] for k, v in settings.items()}) display_markdown('#### Experiment Settings:', raw=True) display(hyper_model, display_id=False) display(df_settings, display_id=False) display_markdown('#### Trials Summary:', raw=True) handle = display(df_holder, display_id=True) if handle is not None: self.search_summary_display_id = handle.display_id display_markdown('#### Best Trial:', raw=True) handle = display(df_holder, display_id=True) if handle is not None: self.best_trial_display_id = handle.display_id handle = display({'text/markdown': '#### Current Trial:'}, raw=True, include=['text/markdown'], display_id=True) if handle is not None: self.title_display_id = handle.display_id handle = display(df_holder, display_id=True) if handle is not None: self.current_trial_display_id = handle.display_id def on_trial_begin(self, hyper_model, space, trial_no): df_summary = pd.DataFrame([(trial_no, self.last_reward, hyper_model.best_trial_no, hyper_model.best_reward, time.time() - self.start_time, len([t for t in hyper_model.history.trials if t.succeeded]), self.max_trials)], columns=['Trial No.', 'Previous reward', 'Best trial', 'Best reward', 'Total elapsed', 'Valid trials', 'Max trials']) if self.search_summary_display_id is not None: update_display(df_summary, display_id=self.search_summary_display_id) if self.current_trial_display_id is not None: update_display(space, display_id=self.current_trial_display_id) def on_search_end(self, hyper_model): df_summary = pd.DataFrame([(self.last_trial_no, self.last_reward, hyper_model.best_trial_no, hyper_model.best_reward, time.time() - self.start_time, len([t for t in hyper_model.history.trials if t.succeeded]), self.max_trials)], columns=['Trial No.', 'Previous reward', 'Best trial', 'Best reward', 'Total elapsed', 'Valid trials', 'Max trials']) if self.search_summary_display_id is not None: update_display(df_summary, display_id=self.search_summary_display_id) if self.title_display_id is not None: update_display({'text/markdown': '#### Top trials:'}, raw=True, include=['text/markdown'], display_id=self.title_display_id) df_best_trials = pd.DataFrame([ (t.trial_no, t.reward, t.elapsed, t.space_sample.vectors) for t in hyper_model.get_top_trials(5)], columns=['Trial No.', 'Reward', 'Elapsed', 'Space Vector']) if self.current_trial_display_id is not None: update_display(df_best_trials, display_id=self.current_trial_display_id) def on_trial_end(self, hyper_model, space, trial_no, reward, improved, elapsed): self.last_trial_no = trial_no self.last_reward = reward best_trial = hyper_model.get_best_trial() if best_trial is not None and self.best_trial_display_id is not None: update_display(best_trial.space_sample, display_id=self.best_trial_display_id) def on_trial_error(self, hyper_model, space, trial_no): self.last_trial_no = trial_no self.last_reward = 'ERR' class ProgressiveCallback(Callback): def __init__(self): super(ProgressiveCallback, self).__init__() self.pbar = None def on_search_start(self, hyper_model, X, y, X_eval, y_eval, cv, num_folds, max_trials, dataset_id, trial_store, **fit_kwargs): self.pbar = tqdm(total=max_trials, leave=False, desc='search') def on_search_end(self, hyper_model): self.pbar.update(self.pbar.total) self.pbar.close() self.pbar = None def on_search_error(self, hyper_model): self.on_search_end(hyper_model) def on_trial_end(self, hyper_model, space, trial_no, reward, improved, elapsed): self.pbar.update(1) def on_trial_error(self, hyper_model, space, trial_no): self.pbar.update(1)
textworld/gym/spaces/text_spaces.py
JohnnySun8/TextWorld
307
12705799
<reponame>JohnnySun8/TextWorld import re import string import numpy as np import gym import gym.spaces class VocabularyHasDuplicateTokens(ValueError): pass class Char(gym.spaces.MultiDiscrete): """ Character observation/action space This space consists of a series of `gym.spaces.Discrete` objects all with the same parameters. Each `gym.spaces.Discrete` can take integer values between 0 and len(self.vocab). Notes ----- The following special token will be prepended (if needed) to the vocabulary: * '#' : Padding token """ def __init__(self, max_length, vocab=None, extra_vocab=[]): """ Parameters ---------- max_length : int Maximum number of characters in a text. vocab : list of char, optional Vocabulary defining this space. It shouldn't contain any duplicate characters. If not provided, the vocabulary will consists in characters [a-z0-9], punctuations [" ", "-", "'"] and padding '#'. extra_vocab : list of char, optional Additional tokens to add to the vocabulary. """ if vocab is None: vocab = list(string.ascii_lowercase + string.digits) vocab += [" ", "-", "'"] vocab += extra_vocab if len(vocab) != len(set(vocab)): raise VocabularyHasDuplicateTokens() self.max_length = max_length self.PAD = "#" special_tokens = [self.PAD] self.vocab = [t for t in special_tokens if t not in vocab] self.vocab += list(vocab) self.vocab_set = set(self.vocab) # For faster lookup. self.vocab_size = len(self.vocab) self.id2c = {i: c for i, c in enumerate(self.vocab)} self.c2id = {c: i for i, c in self.id2c.items()} self.PAD_id = self.c2id[self.PAD] super().__init__([len(self.vocab) - 1] * self.max_length) self.dtype = np.int64 # Overwrite Gym's dtype=int8. def filter_unknown(self, text): """ Strip out all characters not in the vocabulary. """ return "".join(c for c in text if c in self.vocab_set) def tokenize(self, text, padding=False): """ Tokenize characters found in the vocabulary. Note: text will be padded up to `self.max_length`. """ text = self.filter_unknown(text.lower()) ids = [self.c2id[c] for c in text] # Add padding. if padding: nb_pads = self.max_length - len(ids) msg = "Provided `max_length` was not large enough ({} chars).".format(len(ids)) assert nb_pads >= 0, msg ids += [self.PAD_id] * nb_pads return np.array(ids) def __repr__(self): return "Character({})".format(self.max_length) class Word(gym.spaces.MultiDiscrete): """ Word observation/action space This space consists of a series of `gym.spaces.Discrete` objects all with the same parameters. Each `gym.spaces.Discrete` can take integer values between 0 and `len(self.vocab)`. Notes ----- The following special tokens will be prepended (if needed) to the vocabulary: * '<PAD>' : Padding * '<UNK>' : Unknown word * '<S>' : Beginning of sentence * '</S>' : End of sentence Example ------- Let's create an action space that can be used with :py:meth:`textworld.gym.register_game <textworld.gym.utils.register_game>`. We are going to assume actions are short phrases up to 8 words long. >>> import textworld >>> gamefiles = ["/path/to/game.ulx", "/path/to/another/game.z8"] >>> vocab = textworld.vocab.extract_from(gamefiles) >>> vocab = sorted(vocab) # Sorting the vocabulary, optional. >>> action_space = textworld.gym.text_spaces.Word(max_length=8, vocab=vocab) """ def __init__(self, max_length, vocab): """ Parameters ---------- max_length : int Maximum number of words in a text. vocab : list of strings Vocabulary defining this space. It shouldn't contain any duplicate words. """ if len(vocab) != len(set(vocab)): raise VocabularyHasDuplicateTokens() self.max_length = max_length self.PAD = "<PAD>" self.UNK = "<UNK>" self.BOS = "<S>" self.EOS = "</S>" self.SEP = "<|>" special_tokens = [self.PAD, self.UNK, self.EOS, self.BOS, self.SEP] self.vocab = [w for w in special_tokens if w not in vocab] self.vocab += list(vocab) self.vocab_set = set(self.vocab) # For faster lookup. self.vocab_size = len(self.vocab) self.id2w = {i: w for i, w in enumerate(self.vocab)} self.w2id = {w: i for i, w in self.id2w.items()} self.PAD_id = self.w2id[self.PAD] self.UNK_id = self.w2id[self.UNK] self.BOS_id = self.w2id[self.BOS] self.EOS_id = self.w2id[self.EOS] self.SEP_id = self.w2id[self.SEP] super().__init__([len(self.vocab) - 1] * self.max_length) self.dtype = np.int64 # Overwrite Gym's dtype=int8. def tokenize(self, text, padding=False): """ Tokenize words found in the vocabulary. Note: text will be padded up to `self.max_length`. """ text = text.lower() # Work only with lowercase letters. # Find beginning and end of sentences. text = text.replace(".", " </S> <S> ") text = "<S> " + text + " </S>" # Strip out all non-alphabetic characters. text = text.replace("'", "") text = re.sub("[^a-z0-9 <S>/]", " ", text) # TODO: convert numbers to text? # Get words ids and replace unknown words with <UNK>. words = text.split() ids = [self.w2id.get(w, self.UNK_id) for w in words] # Add padding. if padding: nb_pads = self.max_length - len(ids) msg = "Provided `max_length` was not large enough ({} words).".format(len(ids)) assert nb_pads >= 0, msg ids += [self.PAD_id] * nb_pads return np.array(ids) def __repr__(self): return "Word(L={}, V={})".format(self.max_length, self.vocab_size)
tis/client.py
Fudan-Autonomous-Driving-Perception/BiSeNet
966
12705819
import numpy as np import cv2 import grpc from tritonclient.grpc import service_pb2, service_pb2_grpc import tritonclient.grpc.model_config_pb2 as mc np.random.seed(123) palette = np.random.randint(0, 256, (100, 3)) # url = '10.128.61.7:8001' url = '127.0.0.1:8001' model_name = 'bisenetv2' model_version = '1' inp_name = 'input_image' outp_name = 'preds' inp_dtype = 'FP32' outp_dtype = np.int64 inp_shape = [1, 3, 1024, 2048] outp_shape = [1024, 2048] impth = '../example.png' mean = [0.3257, 0.3690, 0.3223] # city, rgb std = [0.2112, 0.2148, 0.2115] option = [ ('grpc.max_receive_message_length', 1073741824), ('grpc.max_send_message_length', 1073741824), ] channel = grpc.insecure_channel(url, options=option) grpc_stub = service_pb2_grpc.GRPCInferenceServiceStub(channel) metadata_request = service_pb2.ModelMetadataRequest( name=model_name, version=model_version) metadata_response = grpc_stub.ModelMetadata(metadata_request) print(metadata_response) config_request = service_pb2.ModelConfigRequest( name=model_name, version=model_version) config_response = grpc_stub.ModelConfig(config_request) print(config_response) request = service_pb2.ModelInferRequest() request.model_name = model_name request.model_version = model_version inp = service_pb2.ModelInferRequest().InferInputTensor() inp.name = inp_name inp.datatype = inp_dtype inp.shape.extend(inp_shape) mean = np.array(mean).reshape(1, 1, 3) std = np.array(std).reshape(1, 1, 3) im = cv2.imread(impth)[:, :, ::-1] im = cv2.resize(im, dsize=tuple(inp_shape[-1:-3:-1])) im = ((im / 255.) - mean) / std im = im[None, ...].transpose(0, 3, 1, 2) inp_bytes = im.astype(np.float32).tobytes() request.ClearField("inputs") request.ClearField("raw_input_contents") request.inputs.extend([inp,]) request.raw_input_contents.extend([inp_bytes,]) outp = service_pb2.ModelInferRequest().InferRequestedOutputTensor() outp.name = outp_name request.outputs.extend([outp,]) # sync # resp = grpc_stub.ModelInfer(request).raw_output_contents[0] # async resp = grpc_stub.ModelInfer.future(request) resp = resp.result().raw_output_contents[0] out = np.frombuffer(resp, dtype=outp_dtype).reshape(*outp_shape) out = palette[out] cv2.imwrite('res.png', out)
ISMLnextGen/TornadoTestAsync2.py
Ravenclaw-OIer/ISML_auto_voter
128
12705821
# coding: utf-8 from AsyncIteratorWrapper import AsyncIteratorWrapper import asyncio import functools import aiohttp import tornado.web from tornado.platform.asyncio import AsyncIOMainLoop from threading import Thread headers={ "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8", "Accept-Encoding": "gzip, deflate, sdch", "Accept-Language": "zh-CN,zh;q=0.8", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36 SE 2.X MetaSr 1.0", } session = aiohttp.ClientSession(headers=headers) f=open('./tmp.txt','a',encoding='utf-8') def printer(future): print(future.result()[0]) f.write(future.result()[1]) print('done') async def producer(): future=asyncio.run_coroutine_threadsafe(coro(),worker_loop) future.add_done_callback(functools.partial(printer)) await asyncio.sleep(0) async def coro(): async with session.get("https://www.internationalsaimoe.com",ssl=False) as res: text = await res.text() return [res.status,text] class MainHandler(tornado.web.RequestHandler): async def get(self): async for i in AsyncIteratorWrapper(range(1)): future=asyncio.run_coroutine_threadsafe(coro(),worker_loop) future.add_done_callback(functools.partial(printer)) #await producer() #await asyncio.run_coroutine_threadsafe(coro(), loop) #text = await asyncio.get_event_loop().create_task(coro()) #self.write(text) self.finish('It works!') def post(self): print(self.request.body) #data=self.get_argument('data') #print(data) self.write('收到POST') print('收到POST') def start_loop(loop): # 运行事件循环, loop以参数的形式传递进来运行 loop.run_forever() if __name__ == "__main__": AsyncIOMainLoop().install() app = tornado.web.Application([(r"/", MainHandler)]) app.listen(8888) print('TornadoTestAsync2@localhost:8888') producer_loop=asyncio.get_event_loop() tornadoThread=Thread(target=start_loop, args=(producer_loop,)) #生产者 tornadoThread.start() #启动生产者tornado worker_loop=asyncio.get_event_loop()
sumatra/dependency_finder/core.py
usnistgov/corr-sumatra
143
12705845
<gh_stars>100-1000 """ Functions for finding the version of a dependency. Classes ------- BaseDependency - base class for holding information about a program component. Functions --------- find_version_from_versioncontrol - determines whether a file is under version control, and if so, obtains version information from this. find_version() - tries to find version information by calling a series of functions in turn. :copyright: Copyright 2006-2015 by the Sumatra team, see doc/authors.txt :license: BSD 2-clause, see LICENSE for details. """ from __future__ import unicode_literals from builtins import object import os from sumatra import versioncontrol def find_versions_from_versioncontrol(dependencies): """Determine whether a file is under version control, and if so, obtain version information from this.""" for dependency in dependencies: if dependency.version == "unknown": try: wc = versioncontrol.get_working_copy(dependency.path) except versioncontrol.VersionControlError: pass # dependency.version remains "unknown" else: if wc.has_changed(): dependency.diff = wc.diff() dependency.version = wc.current_version() dependency.source = wc.repository.url return dependencies # add support for using packaging systems, e.g. apt, to find versions. # add support for looking for Subversion $Id:$ tags, etc. def find_versions(dependencies, heuristics): """ Try to find version information by calling a series of functions in turn. *dependencies*: a list of Dependency objects. *heuristics*: a list of functions that accept a component as the single argument and return a version number or 'unknown'. Returns a possibly modified list of dependencies """ for heuristic in heuristics: dependencies = heuristic(dependencies) return dependencies def find_file(path, current_directory, search_dirs): """ Look for path as an absolute path then relative to the current directory, then relative to *search_dirs*. Return the absolute path. """ op = os.path if op.exists(path): return op.abspath(path) for dir in [current_directory] + search_dirs: search_path = op.join(dir, path) if op.exists(search_path): return search_path raise IOError("File %s does not exist" % path) class BaseDependency(object): """ Contains information about a program component, and tries to determine version information. *name*: an identifying name, e.g. the module name in Python *path*: the location of the dependency file in the local filesystem *version*: the version of the dependency, if that can be determined, otherwise 'unknown'. Always a string, even if the version can also be represented as a number. *diff*: if the dependency is under version control and has been modified, the diff between the actual version and the last-committed version. *source*: an identifier for where the dependency came from, if known, e.g. the url of a version control repository or the name of a Linux package. """ def __init__(self, name, path=None, version='unknown', diff='', source=None): self.name = name self.path = path self.diff = diff self.version = version self.source = source # e.g. url of (upstream?) repository def __repr__(self): return "%s (%s) version=%s%s" % (self.name, self.path, self.version, self.diff and "*" or '') def __eq__(self, other): return self.name == other.name and self.path == other.path and \ self.version == other.version and self.diff == other.diff def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash(self.name) ^ hash(self.path) ^ hash(self.version) ^ hash(self.diff)
tests/serializers.py
chachabooboo/king-phisher
1,143
12705873
#!/usr/bin/env python # -*- coding: utf-8 -*- # # tests/serializers.py # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of the project nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import datetime import xml.etree.ElementTree as ET from king_phisher import testing from king_phisher import serializers class _SerializerTests(testing.KingPhisherServerTestCase): serializer = None serializer_output_type = None test_objects = ('test', True, 100) def test_dump_basic_types(self): for obj in self.test_objects: self.assertIsInstance(self.serializer.dumps(obj), self.serializer_output_type) def test_simple_reload(self): for obj in self.test_objects: try: self.serializer.loads(self.serializer.dumps(obj)) except ValueError: self.fail("Invalid data type for serializer.{0}.loads()".format(self.serializer.name)) def test_special_types(self): now = datetime.datetime.now() serialized = self.serializer.dumps(now) self.assertIsInstance(serialized, self.serializer_output_type) self.assertNotEqual(now, serialized) self.assertNotEqual(type(now), type(serialized)) now_loaded = self.serializer.loads(serialized) self.assertEqual(now, now_loaded) class _ElementTreeSerializer(object): # this class defines a pseudo serializer that allows the functions to be # tested in the same way as the serializers that are implemented as classes def dumps(self, value): parent = ET.Element('parent') return serializers.to_elementtree_subelement(parent, 'child', value) def loads(self, element): return serializers.from_elementtree_element(element) class ElementTreeTests(_SerializerTests): serializer = _ElementTreeSerializer() serializer_output_type = ET.Element class JSONSerializerTests(_SerializerTests): serializer = serializers.JSON serializer_output_type = str def test_loads_invalid(self): with self.assertRaises(ValueError): serializers.JSON.loads("'test") class MsgPackSerializerTests(_SerializerTests): serializer = serializers.MsgPack serializer_output_type = bytes
cleo/io/buffered_io.py
Ivoz/cleo
859
12705887
<reponame>Ivoz/cleo from typing import Optional from typing import cast from .inputs.input import Input from .io import IO from .outputs.buffered_output import BufferedOutput class BufferedIO(IO): def __init__( self, input: Optional[Input] = None, decorated: bool = False, supports_utf8: bool = True, ) -> None: super(BufferedIO, self).__init__( input, BufferedOutput(decorated=decorated, supports_utf8=supports_utf8), BufferedOutput(decorated=decorated, supports_utf8=supports_utf8), ) self._output = cast(BufferedOutput, self._output) self._error_output = cast(BufferedOutput, self._error_output) def fetch_output(self) -> str: return self._output.fetch() def fetch_error(self) -> str: return self._error_output.fetch() def clear(self) -> None: self._output.clear() self._error_output.clear() def clear_output(self) -> None: self._output.clear() def clear_error(self) -> None: self._error_output.clear() def supports_utf8(self) -> bool: return self._output.supports_utf8() def clear_user_input(self) -> None: self._input.stream.truncate(0) self._input.stream.seek(0) def set_user_input(self, user_input: str) -> None: self.clear_user_input() self._input.stream.write(user_input) self._input.stream.seek(0)
Python3/988.py
rakhi2001/ecom7
854
12705902
<gh_stars>100-1000 __________________________________________________________________________________________________ sample 44 ms submission class Solution: def smallestFromLeaf(self, root: TreeNode) -> str: def convert(num): return chr(ord('a') + num) def dfs(node, pval): cur_val = convert(node.val) if not node.left and not node.right: return cur_val l = r = None if node.left: l = dfs(node.left, convert(node.val)) + cur_val if node.right: r = dfs(node.right, convert(node.val)) + cur_val if node.left and node.right: if l + pval > r + pval: return r else: return l return l or r ret = dfs(root, convert(root.val)) return ret def smallestFromLeaf(self, root: TreeNode) -> str: def convert(num): return chr(ord('a') + num) def dfs(node, pval): if not node: return '' val = convert(node.val) if not node.left and not node.right: return val lval = rval = '' if node.left: lval = dfs(node.left, val) + val if node.right: rval = dfs(node.right, val) + val if not node.left or not node.right: return lval or rval if lval + pval < rval + pval: return lval return rval return dfs(root, convert(root.val)) __________________________________________________________________________________________________ sample 14560 kb submission # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def smallestFromLeaf(self, root: TreeNode) -> str: def dfs(node, path): if not node: return path.append(chr(ord('a') + node.val)) if not node.left and not node.right: res[0] = min(res[0], ''.join(path)[::-1]) else: dfs(node.left, path) dfs(node.right, path) del path[-1] res = [str(chr(ord('z') + 1))] dfs(root, []) return res[0] __________________________________________________________________________________________________
atlas/foundations_events/src/test/consumers/jobs/queued/test_creation_time.py
DeepLearnI/atlas
296
12705945
import unittest from mock import Mock from foundations_events.consumers.jobs.queued.creation_time import CreationTime class TestCreationTime(unittest.TestCase): def setUp(self): self._redis = Mock() self._consumer = CreationTime(self._redis) def test_call_saves_creation_time(self): self._consumer.call({'job_id': 'space pinball'}, 34344, None) self._redis.set.assert_called_with( 'jobs:space pinball:creation_time', '34344') def test_call_saves_creation_time_different_job_id(self): self._consumer.call({'job_id': 'dimensional pinball'}, 34344, None) self._redis.set.assert_called_with( 'jobs:dimensional pinball:creation_time', '34344') def test_call_saves_creation_time_different_time(self): self._consumer.call({'job_id': 'space pinball'}, 99999, None) self._redis.set.assert_called_with( 'jobs:space pinball:creation_time', '99999')
Split a string into two elements.py
DazEB2/SimplePyScripts
117
12705969
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' def split_by_pair(text): items = list() for i in range(0, len(text), 2): pair = text[i] + text[i + 1] items.append(pair) return items def split_by_pair_1(text): result = [a + b for a, b in list(zip(text[::2], text[1::2]))] return result def split_by_pair_2(text): import re return re.findall('..', text) if __name__ == '__main__': text = 'a1b2c3d4f5' items = split_by_pair(text) print(items) # ['a1', 'b2', 'c3', 'd4', 'f5'] items = split_by_pair_1(text) print(items) # ['a1', 'b2', 'c3', 'd4', 'f5'] items = split_by_pair_2(text) print(items) # ['a1', 'b2', 'c3', 'd4', 'f5']
venv/lib/python3.8/site-packages/waitress/tests/fixtureapps/runner.py
ayfallen/urler
978
12705976
def app(): # pragma: no cover return None def returns_app(): # pragma: no cover return app
osp/test/common/utils/test_parse_domain.py
davidmcclure/open-syllabus-project
220
12705984
import pytest from osp.common.utils import parse_domain @pytest.mark.parametrize('url,domain', [ # Unchanged ( 'test.edu', 'test.edu', ), # Strip protocol ( 'http://test.edu', 'test.edu', ), ( 'https://test.edu', 'test.edu', ), # Stip subdomains ( 'www.test.edu', 'test.edu', ), ( 'sub.test.edu', 'test.edu', ), # Strip path ( 'http://test.edu/syllabus.pdf', 'test.edu', ), # Strip whitespace ( ' http://test.edu ', 'test.edu', ), # Downcase ( 'WWW.TEST.EDU', 'test.edu', ), # Take second domain in embedded URLs ( 'https://web.archive.org/123/http:/test.edu/syllabus.pdf', 'test.edu', ), ( 'https://web.archive.org/123/https:/test.edu/syllabus.pdf', 'test.edu', ), ]) def test_parse_domain(url, domain): assert parse_domain(url) == domain
examples/cicd/sig-mlops-jenkins-classic/models/news_classifier/src/train_model.py
jsreid13/seldon-core
3,049
12706006
<gh_stars>1000+ from sklearn.datasets import fetch_20newsgroups from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfTransformer, CountVectorizer from sklearn.naive_bayes import MultinomialNB import numpy as np import joblib def fetch_data(): categories = ["alt.atheism", "soc.religion.christian", "comp.graphics", "sci.med"] twenty_train = fetch_20newsgroups( subset="train", categories=categories, shuffle=True, random_state=42 ) twenty_test = fetch_20newsgroups( subset="test", categories=categories, shuffle=True, random_state=42 ) return twenty_train, twenty_test def build_train_model(twenty_train): text_clf = Pipeline( [ ("vect", CountVectorizer()), ("tfidf", TfidfTransformer()), ("clf", MultinomialNB()), ] ) text_clf.fit(twenty_train.data, twenty_train.target) return text_clf def print_accuracy(twenty_test, text_clf): predicted = text_clf.predict(twenty_test.data) print(f"Accuracy: {np.mean(predicted == twenty_test.target):.2f}") def save_model(text_clf): joblib.dump(text_clf, "src/model.joblib") if __name__ == "__main__": twenty_train, twenty_test = fetch_data() text_clf = build_train_model(twenty_train) print_accuracy(twenty_test, text_clf) save_model(text_clf)
hpccm/building_blocks/mkl.py
robertmaynard/hpc-container-maker
340
12706117
<reponame>robertmaynard/hpc-container-maker # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=invalid-name, too-few-public-methods # pylint: disable=too-many-instance-attributes """MKL building block""" from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function import logging # pylint: disable=unused-import import hpccm.config import hpccm.templates.envvars import hpccm.templates.wget from hpccm.building_blocks.base import bb_base from hpccm.building_blocks.packages import packages from hpccm.common import cpu_arch, linux_distro from hpccm.primitives.comment import comment from hpccm.primitives.environment import environment from hpccm.primitives.shell import shell class mkl(bb_base, hpccm.templates.envvars, hpccm.templates.wget): """The `mkl` building block downloads and installs the [Intel Math Kernel Library](http://software.intel.com/mkl). You must agree to the [Intel End User License Agreement](https://software.intel.com/en-us/articles/end-user-license-agreement) to use this building block. # Parameters environment: Boolean flag to specify whether the environment (`LD_LIBRARY_PATH`, `PATH`, and other variables) should be modified to include MKL. The default is True. eula: By setting this value to `True`, you agree to the [Intel End User License Agreement](https://software.intel.com/en-us/articles/end-user-license-agreement). The default value is `False`. mklvars: MKL provides an environment script (`mklvars.sh`) to setup the MKL environment. If this value is `True`, the bashrc is modified to automatically source this environment script. However, the MKL environment is not automatically available to subsequent container image build steps; the environment is available when the container image is run. To set the MKL environment in subsequent build steps you can explicitly call `source /opt/intel/mkl/bin/mklvars.sh intel64` in each build step. If this value is to set `False`, then the environment is set such that the environment is visible to both subsequent container image build steps and when the container image is run. However, the environment may differ slightly from that set by `mklvars.sh`. The default value is `True`. ospackages: List of OS packages to install prior to installing MKL. For Ubuntu, the default values are `apt-transport-https`, `ca-certificates`, `gnupg`, and `wget`. For RHEL-based Linux distributions, the default is an empty list. version: The version of MKL to install. The default value is `2020.0-088`. # Examples ```python mkl(eula=True, version='2018.3-051') ``` """ def __init__(self, **kwargs): """Initialize building block""" super(mkl, self).__init__(**kwargs) # By setting this value to True, you agree to the # corresponding Intel End User License Agreement # (https://software.intel.com/en-us/articles/end-user-license-agreement) self.__eula = kwargs.get('eula', False) self.__mklvars = kwargs.get('mklvars', True) self.__ospackages = kwargs.get('ospackages', []) self.__version = kwargs.get('version', '2020.0-088') self.__year = '2019' # Also used by 2018 and 2020 versions self.__bashrc = '' # Filled in by __distro() if hpccm.config.g_cpu_arch != cpu_arch.X86_64: # pragma: no cover logging.warning('Using mkl on a non-x86_64 processor') # Set the Linux distribution specific parameters self.__distro() # Fill in container instructions self.__instructions() def __instructions(self): """Fill in container instructions""" self += comment('MKL version {}'.format(self.__version)) if self.__ospackages: self += packages(ospackages=self.__ospackages) if not self.__eula: raise RuntimeError('Intel EULA was not accepted. To accept, see the documentation for this building block') self += packages( apt_keys=['https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS-{}.PUB'.format(self.__year)], apt_repositories=['deb https://apt.repos.intel.com/mkl all main'], ospackages=['intel-mkl-64bit-{}'.format(self.__version)], yum_keys=['https://yum.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS-{}.PUB'.format(self.__year)], yum_repositories=['https://yum.repos.intel.com/mkl/setup/intel-mkl.repo']) # Set the environment if self.__mklvars: # Source the mklvars environment script when starting the # container, but the variables not be available for any # subsequent build steps. self += shell(commands=['echo "source /opt/intel/mkl/bin/mklvars.sh intel64" >> {}'.format(self.__bashrc)]) else: # Set the environment so that it will be available to # subsequent build steps and when starting the container, # but this may miss some things relative to the mklvars # environment script. self.environment_variables={ 'CPATH': '/opt/intel/mkl/include:$CPATH', 'LD_LIBRARY_PATH': '/opt/intel/mkl/lib/intel64:/opt/intel/lib/intel64:$LD_LIBRARY_PATH', 'LIBRARY_PATH': '/opt/intel/mkl/lib/intel64:/opt/intel/lib/intel64:$LIBRARY_PATH', 'MKLROOT': '/opt/intel/mkl'} self += environment(variables=self.environment_step()) def __distro(self): """Based on the Linux distribution, set values accordingly. A user specified value overrides any defaults.""" if hpccm.config.g_linux_distro == linux_distro.UBUNTU: if not self.__ospackages: self.__ospackages = ['apt-transport-https', 'ca-certificates', 'gnupg', 'wget'] self.__bashrc = '/etc/bash.bashrc' elif hpccm.config.g_linux_distro == linux_distro.CENTOS: if not self.__ospackages: self.__ospackages = [] self.__bashrc = '/etc/bashrc' else: # pragma: no cover raise RuntimeError('Unknown Linux distribution') def runtime(self, _from='0'): """Generate the set of instructions to install the runtime specific components from a build in a previous stage. # Examples ```python m = mkl(...) Stage0 += m Stage1 += m.runtime() ``` """ return str(self)
tf3d/losses/box_prediction_losses_test.py
deepneuralmachine/google-research
23,901
12706136
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for ...tf3d.losses.box_prediction_losses.""" import tensorflow as tf from tf3d import standard_fields from tf3d.losses import box_prediction_losses class BoxPredictionLossesTest(tf.test.TestCase): def _get_random_inputs(self): return { standard_fields.InputDataFields.object_rotation_matrix_voxels: tf.random.uniform([1, 100, 3, 3], minval=-1.0, maxval=1.0, dtype=tf.float32), standard_fields.InputDataFields.object_length_voxels: tf.random.uniform([1, 100, 1], minval=0.1, maxval=2.0, dtype=tf.float32), standard_fields.InputDataFields.object_height_voxels: tf.random.uniform([1, 100, 1], minval=0.1, maxval=2.0, dtype=tf.float32), standard_fields.InputDataFields.object_width_voxels: tf.random.uniform([1, 100, 1], minval=0.1, maxval=2.0, dtype=tf.float32), standard_fields.InputDataFields.object_center_voxels: tf.random.uniform([1, 100, 3], minval=-5.0, maxval=5.0, dtype=tf.float32), standard_fields.InputDataFields.object_class_voxels: tf.random.uniform([1, 100, 1], minval=0, maxval=7, dtype=tf.int32), standard_fields.InputDataFields.object_instance_id_voxels: tf.random.uniform([1, 100, 1], minval=0, maxval=20, dtype=tf.int32), } def _get_empty_inputs(self): inputs = self._get_random_inputs() for key in inputs: if key in inputs: tensor_shape = inputs[key].shape.as_list() tensor_shape[1] = 0 inputs[key] = tf.zeros(tensor_shape, dtype=inputs[key].dtype) inputs[standard_fields.InputDataFields.num_valid_voxels] = tf.constant( [0], dtype=tf.int32) return inputs def _get_dictionaries_for_distance_loss_relative(self): gt_box_center = tf.reshape( tf.constant([10.0, -20.0, 30.0], dtype=tf.float32), [1, 1, 3]) gt_box_length = tf.reshape( tf.constant([1.0], dtype=tf.float32), [1, 1, 1]) gt_box_height = tf.reshape( tf.constant([2.0], dtype=tf.float32), [1, 1, 1]) gt_box_width = tf.reshape( tf.constant([3.0], dtype=tf.float32), [1, 1, 1]) gt_box_r = tf.reshape(tf.eye(3, dtype=tf.float32), [1, 1, 3, 3]) gt_box_class = tf.reshape(tf.constant([1], dtype=tf.int32), [1, 1, 1]) gt_instance_ids = tf.reshape(tf.constant([1], dtype=tf.int32), [1, 1, 1]) pred_box_center1 = tf.reshape( tf.constant([10.1, -20.1, 30.1], dtype=tf.float32), [1, 1, 3]) pred_box_length1 = tf.reshape( tf.constant([1.1], dtype=tf.float32), [1, 1, 1]) pred_box_height1 = tf.reshape( tf.constant([2.1], dtype=tf.float32), [1, 1, 1]) pred_box_width1 = tf.reshape( tf.constant([3.1], dtype=tf.float32), [1, 1, 1]) pred_box_r1 = tf.reshape(tf.eye(3, dtype=tf.float32), [1, 1, 3, 3]) pred_box_center2 = tf.reshape( tf.constant([10.1, -20.2, 30.2], dtype=tf.float32), [1, 1, 3]) pred_box_length2 = tf.reshape( tf.constant([1.11], dtype=tf.float32), [1, 1, 1]) pred_box_height2 = tf.reshape( tf.constant([2.11], dtype=tf.float32), [1, 1, 1]) pred_box_width2 = tf.reshape( tf.constant([3.11], dtype=tf.float32), [1, 1, 1]) pred_box_r2 = tf.reshape(tf.eye(3, dtype=tf.float32), [1, 1, 3, 3]) inputs = { standard_fields.InputDataFields.object_rotation_matrix_voxels: gt_box_r, standard_fields.InputDataFields.object_length_voxels: gt_box_length, standard_fields.InputDataFields.object_height_voxels: gt_box_height, standard_fields.InputDataFields.object_width_voxels: gt_box_width, standard_fields.InputDataFields.object_center_voxels: gt_box_center, standard_fields.InputDataFields.object_class_voxels: gt_box_class, standard_fields.InputDataFields.object_instance_id_voxels: gt_instance_ids, } outputs1 = { standard_fields.DetectionResultFields.object_rotation_matrix_voxels: pred_box_r1, standard_fields.DetectionResultFields.object_length_voxels: pred_box_length1, standard_fields.DetectionResultFields.object_height_voxels: pred_box_height1, standard_fields.DetectionResultFields.object_width_voxels: pred_box_width1, standard_fields.DetectionResultFields.object_center_voxels: pred_box_center1, } outputs2 = { standard_fields.DetectionResultFields.object_rotation_matrix_voxels: pred_box_r2, standard_fields.DetectionResultFields.object_length_voxels: pred_box_length2, standard_fields.DetectionResultFields.object_height_voxels: pred_box_height2, standard_fields.DetectionResultFields.object_width_voxels: pred_box_width2, standard_fields.DetectionResultFields.object_center_voxels: pred_box_center2, } return inputs, outputs1, outputs2 def test_box_size_regression_loss_on_voxel_tensors_empty_inputs(self): inputs = self._get_empty_inputs() outputs = { standard_fields.DetectionResultFields.object_length_voxels: tf.zeros([1, 0, 3], dtype=tf.float32), standard_fields.DetectionResultFields.object_height_voxels: tf.zeros([1, 0, 3], dtype=tf.float32), standard_fields.DetectionResultFields.object_width_voxels: tf.zeros([1, 0, 3], dtype=tf.float32), } loss = box_prediction_losses.box_size_regression_loss_on_voxel_tensors( inputs=inputs, outputs=outputs, loss_type='huber') self.assertAllClose(loss.numpy(), 0.0) def test_box_size_regression_loss_on_voxel_tensors_correct_prediction(self): inputs = self._get_random_inputs() inputs[standard_fields.InputDataFields.num_valid_voxels] = tf.constant( [100], dtype=tf.int32) outputs = { standard_fields.DetectionResultFields.object_length_voxels: inputs[standard_fields.InputDataFields.object_length_voxels], standard_fields.DetectionResultFields.object_height_voxels: inputs[standard_fields.InputDataFields.object_height_voxels], standard_fields.DetectionResultFields.object_width_voxels: inputs[standard_fields.InputDataFields.object_width_voxels], } loss = box_prediction_losses.box_size_regression_loss_on_voxel_tensors( inputs=inputs, outputs=outputs, loss_type='huber') self.assertAllClose(loss.numpy(), 0.0) def test_box_size_regression_loss_on_voxel_tensors_relative(self): (inputs, outputs1, outputs2) = self._get_dictionaries_for_distance_loss_relative() inputs[standard_fields.InputDataFields.num_valid_voxels] = tf.constant( [1], dtype=tf.int32) loss1 = box_prediction_losses.box_size_regression_loss_on_voxel_tensors( inputs=inputs, outputs=outputs1, loss_type='huber') loss2 = box_prediction_losses.box_size_regression_loss_on_voxel_tensors( inputs=inputs, outputs=outputs2, loss_type='huber') self.assertGreater(loss2.numpy(), loss1.numpy()) def test_box_center_distance_loss_on_voxel_tensors_empty_inputs(self): inputs = self._get_empty_inputs() outputs = { standard_fields.DetectionResultFields.object_center_voxels: tf.zeros([1, 0, 3], dtype=tf.float32), } loss = box_prediction_losses.box_center_distance_loss_on_voxel_tensors( inputs=inputs, outputs=outputs, loss_type='huber') self.assertAllClose(loss.numpy(), 0.0) def test_box_center_distance_loss_on_voxel_tensors_correct_prediction(self): inputs = self._get_random_inputs() inputs[standard_fields.InputDataFields.num_valid_voxels] = tf.constant( [100], dtype=tf.int32) outputs = { standard_fields.DetectionResultFields.object_center_voxels: inputs[standard_fields.InputDataFields.object_center_voxels], } loss = box_prediction_losses.box_center_distance_loss_on_voxel_tensors( inputs=inputs, outputs=outputs, loss_type='huber') self.assertAllClose(loss.numpy(), 0.0) def test_box_center_distance_loss_on_voxel_tensors_relative(self): (inputs, outputs1, outputs2) = self._get_dictionaries_for_distance_loss_relative() inputs[standard_fields.InputDataFields.num_valid_voxels] = tf.constant( [1], dtype=tf.int32) loss1 = box_prediction_losses.box_center_distance_loss_on_voxel_tensors( inputs=inputs, outputs=outputs1, loss_type='huber') loss2 = box_prediction_losses.box_center_distance_loss_on_voxel_tensors( inputs=inputs, outputs=outputs2, loss_type='huber') self.assertGreater(loss2.numpy(), loss1.numpy()) def test_box_corner_distance_loss_on_voxel_tensors_empty_inputs(self): inputs = self._get_empty_inputs() inputs[standard_fields.InputDataFields.num_valid_voxels] = tf.constant( [0], dtype=tf.int32) outputs = { standard_fields.DetectionResultFields.object_rotation_matrix_voxels: tf.zeros([1, 0, 3, 3], dtype=tf.float32), standard_fields.DetectionResultFields.object_length_voxels: tf.zeros([1, 0, 1], dtype=tf.float32), standard_fields.DetectionResultFields.object_height_voxels: tf.zeros([1, 0, 1], dtype=tf.float32), standard_fields.DetectionResultFields.object_width_voxels: tf.zeros([1, 0, 1], dtype=tf.float32), standard_fields.DetectionResultFields.object_center_voxels: tf.zeros([1, 0, 3], dtype=tf.float32), } loss = box_prediction_losses.box_corner_distance_loss_on_voxel_tensors( inputs=inputs, outputs=outputs, loss_type='normalized_huber') self.assertAllClose(loss.numpy(), 0.0) def test_box_corner_distance_loss_on_voxel_tensors_correct_prediction(self): inputs = self._get_random_inputs() inputs[standard_fields.InputDataFields.num_valid_voxels] = tf.constant( [100], dtype=tf.int32) outputs = { standard_fields.DetectionResultFields.object_rotation_matrix_voxels: inputs[standard_fields.InputDataFields.object_rotation_matrix_voxels ], standard_fields.DetectionResultFields.object_length_voxels: inputs[standard_fields.InputDataFields.object_length_voxels], standard_fields.DetectionResultFields.object_height_voxels: inputs[standard_fields.InputDataFields.object_height_voxels], standard_fields.DetectionResultFields.object_width_voxels: inputs[standard_fields.InputDataFields.object_width_voxels], standard_fields.DetectionResultFields.object_center_voxels: inputs[standard_fields.InputDataFields.object_center_voxels], } loss = box_prediction_losses.box_corner_distance_loss_on_voxel_tensors( inputs=inputs, outputs=outputs, loss_type='normalized_huber') self.assertAllClose(loss.numpy(), 0.0) def test_box_corner_distance_loss_on_voxel_tensors_relative(self): (inputs, outputs1, outputs2) = self._get_dictionaries_for_distance_loss_relative() inputs[standard_fields.InputDataFields.num_valid_voxels] = tf.constant( [1], dtype=tf.int32) loss1 = box_prediction_losses.box_corner_distance_loss_on_voxel_tensors( inputs=inputs, outputs=outputs1, loss_type='normalized_huber') loss2 = box_prediction_losses.box_corner_distance_loss_on_voxel_tensors( inputs=inputs, outputs=outputs2, loss_type='normalized_huber') self.assertGreater(loss2.numpy(), loss1.numpy()) def test_box_corner_distance_loss_on_object_tensors_correct_prediction(self): voxel_inputs = self._get_random_inputs() inputs = {} for key, value in standard_fields.get_input_voxel_to_object_field_mapping( ).items(): if key in voxel_inputs: inputs[value] = [voxel_inputs[key][0, Ellipsis]] outputs = { standard_fields.DetectionResultFields.objects_rotation_matrix: inputs[standard_fields.InputDataFields.objects_rotation_matrix], standard_fields.DetectionResultFields.objects_length: inputs[standard_fields.InputDataFields.objects_length], standard_fields.DetectionResultFields.objects_height: inputs[standard_fields.InputDataFields.objects_height], standard_fields.DetectionResultFields.objects_width: inputs[standard_fields.InputDataFields.objects_width], standard_fields.DetectionResultFields.objects_center: inputs[standard_fields.InputDataFields.objects_center], } loss = box_prediction_losses.box_corner_distance_loss_on_object_tensors( inputs=inputs, outputs=outputs, loss_type='normalized_huber') self.assertAllClose(loss.numpy(), 0.0) def test_box_corner_distance_loss_on_object_tensors_relative(self): (voxel_inputs, voxel_outputs1, voxel_outputs2) = self._get_dictionaries_for_distance_loss_relative() inputs = {} outputs1 = {} outputs2 = {} for key, value in standard_fields.get_input_voxel_to_object_field_mapping( ).items(): if key in voxel_inputs: inputs[value] = [voxel_inputs[key][0, Ellipsis]] for key, value in standard_fields.get_output_voxel_to_object_field_mapping( ).items(): if key in voxel_outputs1: outputs1[value] = [voxel_outputs1[key][0, Ellipsis]] for key, value in standard_fields.get_output_voxel_to_object_field_mapping( ).items(): if key in voxel_outputs2: outputs2[value] = [voxel_outputs2[key][0, Ellipsis]] loss1 = box_prediction_losses.box_corner_distance_loss_on_object_tensors( inputs=inputs, outputs=outputs1, loss_type='normalized_huber') loss2 = box_prediction_losses.box_corner_distance_loss_on_object_tensors( inputs=inputs, outputs=outputs2, loss_type='normalized_huber') self.assertGreater(loss2.numpy(), loss1.numpy()) if __name__ == '__main__': tf.test.main()
src/python/pants/jvm/util_rules_test.py
rcuza/pants
1,806
12706148
<reponame>rcuza/pants # Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations import hashlib import pytest from pants.engine.fs import EMPTY_FILE_DIGEST, CreateDigest, Digest, FileContent, FileDigest from pants.jvm.util_rules import ExtractFileDigest from pants.jvm.util_rules import rules as util_rules from pants.testutil.rule_runner import QueryRule, RuleRunner @pytest.fixture def rule_runner() -> RuleRunner: return RuleRunner( preserve_tmpdirs=True, rules=[ *util_rules(), QueryRule(FileDigest, (ExtractFileDigest,)), ], ) def get_digest(rule_runner: RuleRunner, source_files: dict[str, str]) -> Digest: files = [FileContent(path, content.encode()) for path, content in source_files.items()] return rule_runner.request(Digest, [CreateDigest(files)]) def test_extract_empty_file(rule_runner: RuleRunner) -> None: digest = get_digest(rule_runner, {"foo.txt": ""}) file_digest = rule_runner.request( FileDigest, [ExtractFileDigest(digest=digest, file_path="foo.txt")], ) assert file_digest == EMPTY_FILE_DIGEST def test_extract_nonempty_file(rule_runner: RuleRunner) -> None: digest = get_digest(rule_runner, {"foo.txt": "bar"}) file_digest = rule_runner.request( FileDigest, [ExtractFileDigest(digest=digest, file_path="foo.txt")], ) hasher = hashlib.sha256() hasher.update(b"bar") assert file_digest == FileDigest(fingerprint=hasher.hexdigest(), serialized_bytes_length=3) def test_extract_missing_file(rule_runner: RuleRunner) -> None: digest = get_digest(rule_runner, {"foo.txt": ""}) with pytest.raises(Exception, match=r".*?not found in.*?"): rule_runner.request( FileDigest, [ExtractFileDigest(digest=digest, file_path="missing")], ) def test_subset_with_multiple_files(rule_runner: RuleRunner) -> None: digest = get_digest(rule_runner, {"foo.txt": "", "bar.txt": ""}) with pytest.raises(Exception, match=r".*?found multiple times.*?"): rule_runner.request( FileDigest, [ExtractFileDigest(digest=digest, file_path="*")], )
tools/bin/pythonSrc/pychecker-0.8.18/test/test_module.py
YangHao666666/hawq
450
12706153
<filename>tools/bin/pythonSrc/pychecker-0.8.18/test/test_module.py # -*- Mode: Python -*- # vi:si:et:sw=4:sts=4:ts=4 ''' Tests related to modules. ''' import unittest import common class SameModuleNameTestCase(common.TestCase): ''' Test that modules with the same name do not shadow eachother. ''' def test_getmodule(self): self.checkMultiple('test_getmodule', [ 'getmodule/A/C.py', 'getmodule/B/C.py', ]) if __name__ == '__main__': unittest.main()
pdfarchiver.py
jordanwildon/Telepathy
213
12706156
<gh_stars>100-1000 #!/usr/bin/env python """Telepathy file archiver module: A tool for archiving files in a chat which may contain metadata. """ from telethon.sync import TelegramClient from telethon.tl.functions.messages import GetDialogsRequest from telethon.errors import SessionPasswordNeededError from telethon.tl.types import InputPeerEmpty from telethon.utils import get_display_name import pandas as pd import details as ds import getpass, csv __author__ = "<NAME> (@jordanwildon)" __license__ = "MIT License" __version__ = "1.0.3" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" #Login details# api_id = ds.apiID api_hash = ds.apiHash phone = ds.number client = TelegramClient(phone, api_id, api_hash) #Check authorisation# client.connect() if not client.is_user_authorized(): client.send_code_request(phone) client.sign_in(phone) try: client.sign_in(code=input('Enter code: ')) except SessionPasswordNeededError: client.sign_in(password=<PASSWORD>(prompt='Password: ', stream=None)) chats = [] last_date = None chunk_size = 200 groups=[] result = client(GetDialogsRequest( offset_date=last_date, offset_id=0, offset_peer=InputPeerEmpty(), limit=chunk_size, hash = 0 )) chats.extend(result.chats) for chat in chats: groups.append(chat) print('Archiving PDFs...') async def main(): df = pd.read_csv('to_archive.csv', sep=';') df = df.To.unique() for i in df: print("Working on ", i, "...") l = [] try: async for message in client.iter_messages(i): if message.forward is None: if message.video is None: if message.sticker is None: if message.audio is None: if message.voice is None: if message.document: i_clean = i alphanumeric = "" for character in i_clean: if character.isalnum(): alphanumeric += character directory = './' + alphanumeric try: os.makedirs(directory) except FileExistsError: pass media_directory = directory + '/media' try: os.makedirs(media_directory) except FileExistsError: pass path = await message.download_media(file=media_directory) print('File saved to', path) i_clean = i alphanumeric = "" print("Scrape completed for", i,", file saved") except Exception as e: print("An exception occurred: ", e) with client: client.loop.run_until_complete(main()) print('List archived successfully') again = input('Do you want to archive more chats? (y/n)') if again == 'y': print('Restarting...') exec(open("archiver.py").read()) else: pass launcher = input('Do you want to return to the launcher? (y/n)') if launcher == 'y': print('Restarting...') exec(open("launcher.py").read()) else: print('Thank you for using Telepathy.')
docs/source/tutorials/code/serialization.py
PuzeLiu/mushroom-rl
344
12706208
from mushroom_rl.core import Serializable import torch import numpy as np from mushroom_rl.utils.parameters import Parameter class TestClass(Serializable): def __init__(self, value): # Create some different types of variables self._primitive_variable = value # Primitive python variable self._numpy_vector = np.array([1, 2, 3]*value) # Numpy array self._dictionary = dict(some='random', keywords=2, fill='the dictionary') # A dictionary # Building a torch object data_array = np.ones(3)*value data_tensor = torch.from_numpy(data_array) self._torch_object = torch.nn.Parameter(data_tensor) # Some variables that implement the Serializable interface self._mushroom_parameter = Parameter(2.0*value) self._list_of_objects = [Parameter(i) for i in range(value)] # This is a list! # A variable that is not important e.g. a buffer self.not_important = np.zeros(10000) # A variable that contains a reference to another variable self._list_reference = [self._dictionary] # Superclass constructor super().__init__() # Here we specify how to save each component self._add_save_attr( _primitive_variable='primitive', _numpy_vector='numpy', _dictionary='pickle', _torch_object='torch', _mushroom_parameter='mushroom', # List of mushroom objects can also be saved with the 'mushroom' mode _list_of_objects='mushroom', # The '!' is to specify that we save the variable only if full_save is True not_important='numpy!', ) def _post_load(self): if self.not_important is None: self.not_important = np.zeros(10000) self._list_reference = [self._dictionary] def print_variables(obj): for label, var in vars(obj).items(): if label != '_save_attributes': if isinstance(var, Parameter): print(f'{label}: Parameter({var()})') elif isinstance(var, list) and isinstance(var[0], Parameter): new_list = [f'Parameter({item()})' for item in var] print(f'{label}: {new_list}') else: print(label, ': ', var) if __name__ == '__main__': # Create test object and print its variables test_object = TestClass(1) print('###########################################################################################################') print('The test object contains the following:') print('-----------------------------------------------------------------------------------------------------------') print_variables(test_object) # Changing the buffer test_object.not_important[0] = 1 # Save the object on disk test_object.save('test.msh') # Create another test object test_object = TestClass(2) print('###########################################################################################################') print('After overwriting the test object:') print('-----------------------------------------------------------------------------------------------------------') print_variables(test_object) # Changing the buffer again test_object.not_important[0] = 1 # Save the other test object, this time remember buffer test_object.save('test_full.msh', full_save=True) # Load first test object and print its variables print('###########################################################################################################') test_object = TestClass.load('test.msh') print('Loading previous test object:') print('-----------------------------------------------------------------------------------------------------------') print_variables(test_object) # Load second test object and print its variables print('###########################################################################################################') test_object = TestClass.load('test_full.msh') print('Loading previous test object:') print('-----------------------------------------------------------------------------------------------------------') print_variables(test_object)
example_training(without_GPUTaskScheduler)/main.py
lipikaramaswamy/DoppelGANger
157
12706217
<reponame>lipikaramaswamy/DoppelGANger<filename>example_training(without_GPUTaskScheduler)/main.py import sys sys.path.append("..") from gan import output sys.modules["output"] = output from gan.doppelganger import DoppelGANger from gan.util import add_gen_flag, normalize_per_sample from gan.load_data import load_data from gan.network import DoppelGANgerGenerator, Discriminator, AttrDiscriminator import os import tensorflow as tf if __name__ == "__main__": sample_len = 10 (data_feature, data_attribute, data_gen_flag, data_feature_outputs, data_attribute_outputs) = \ load_data("../data/web") print(data_feature.shape) print(data_attribute.shape) print(data_gen_flag.shape) (data_feature, data_attribute, data_attribute_outputs, real_attribute_mask) = \ normalize_per_sample( data_feature, data_attribute, data_feature_outputs, data_attribute_outputs) print(real_attribute_mask) print(data_feature.shape) print(data_attribute.shape) print(len(data_attribute_outputs)) data_feature, data_feature_outputs = add_gen_flag( data_feature, data_gen_flag, data_feature_outputs, sample_len) print(data_feature.shape) print(len(data_feature_outputs)) generator = DoppelGANgerGenerator( feed_back=False, noise=True, feature_outputs=data_feature_outputs, attribute_outputs=data_attribute_outputs, real_attribute_mask=real_attribute_mask, sample_len=sample_len) discriminator = Discriminator() attr_discriminator = AttrDiscriminator() checkpoint_dir = "./test/checkpoint" if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) sample_dir = "./test/sample" if not os.path.exists(sample_dir): os.makedirs(sample_dir) time_path = "./test/time.txt" epoch = 400 batch_size = 100 vis_freq = 200 vis_num_sample = 5 d_rounds = 1 g_rounds = 1 d_gp_coe = 10.0 attr_d_gp_coe = 10.0 g_attr_d_coe = 1.0 extra_checkpoint_freq = 5 num_packing = 1 run_config = tf.ConfigProto() with tf.Session(config=run_config) as sess: gan = DoppelGANger( sess=sess, checkpoint_dir=checkpoint_dir, sample_dir=sample_dir, time_path=time_path, epoch=epoch, batch_size=batch_size, data_feature=data_feature, data_attribute=data_attribute, real_attribute_mask=real_attribute_mask, data_gen_flag=data_gen_flag, sample_len=sample_len, data_feature_outputs=data_feature_outputs, data_attribute_outputs=data_attribute_outputs, vis_freq=vis_freq, vis_num_sample=vis_num_sample, generator=generator, discriminator=discriminator, attr_discriminator=attr_discriminator, d_gp_coe=d_gp_coe, attr_d_gp_coe=attr_d_gp_coe, g_attr_d_coe=g_attr_d_coe, d_rounds=d_rounds, g_rounds=g_rounds, num_packing=num_packing, extra_checkpoint_freq=extra_checkpoint_freq) gan.build() gan.train()
src/backend/common/queries/exceptions.py
guineawheek/ftc-data-take-2
266
12706264
class DoesNotExistException(Exception): pass
infrabox/test/pyinfraboxutils/test.py
agu3rra/InfraBox
265
12706283
<gh_stars>100-1000 #! /usr/bin/env python import unittest import sys import xmlrunner from pyinfraboxutils.coverage import * class TestCoverageMethods(unittest.TestCase): def test_jacoco(self): parser = Parser("data/report_test.xml") parser.parse(None, create_markup=False) self.assertTrue(parser.files[0].functions_found == 2) self.assertTrue(parser.files[0].functions_hit == 0) self.assertTrue(parser.files[0].branches_found == 2) self.assertTrue(parser.files[0].branches_hit == 0) self.assertTrue(parser.files[0].lines_hit == 0) self.assertTrue(parser.files[0].lines_found == 3) self.assertTrue(parser.files[0].name == "HelloWorld.java") def test_parse_dir(self): parser = Parser("data/") parser.parse(None, create_markup=False) hello = 0 hello2 = 1 if parser.files[0].name == "HelloWorld2.java": hello = 1 hello2 = 0 self.assertTrue(parser.files[hello].functions_found == 2*2) self.assertTrue(parser.files[hello].functions_hit == 0*2) self.assertTrue(parser.files[hello].branches_found == 2*2) self.assertTrue(parser.files[hello].branches_hit == 0*2) self.assertTrue(parser.files[hello].lines_hit == 0*2) self.assertTrue(parser.files[hello].lines_found == 3*2) self.assertTrue(parser.files[hello].name == "HelloWorld.java") self.assertTrue(parser.files[hello2].functions_found == 2) self.assertTrue(parser.files[hello2].functions_hit == 0) self.assertTrue(parser.files[hello2].branches_found == 2) self.assertTrue(parser.files[hello2].branches_hit == 0) self.assertTrue(parser.files[hello2].lines_hit == 0) self.assertTrue(parser.files[hello2].lines_found == 3) self.assertTrue(parser.files[hello2].name == "HelloWorld2.java") if __name__ == '__main__': s = unittest.defaultTestLoader.discover('.') r = xmlrunner.XMLTestRunner(output='/infrabox/upload/testresult/').run(s) sys.exit(not r.wasSuccessful())
sacrebleu/__init__.py
bricksdont/sacreBLEU
373
12706302
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2017--2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. __version__ = '2.0.0' __description__ = 'Hassle-free computation of shareable, comparable, and reproducible BLEU, chrF, and TER scores' from .utils import smart_open, SACREBLEU_DIR, download_test_set # noqa: F401 from .utils import get_source_file, get_reference_files # noqa: F401 from .utils import get_available_testsets, get_langpairs_for_testset # noqa: F401 from .metrics.helpers import extract_word_ngrams, extract_char_ngrams # noqa: F401 from .dataset import DATASETS # noqa: F401 from .metrics import BLEU, CHRF, TER # noqa: F401 # Backward compatibility functions for old style API access (<= 1.4.10) from .compat import corpus_bleu, raw_corpus_bleu, sentence_bleu # noqa: F401 from .compat import corpus_chrf, sentence_chrf # noqa: F401 from .compat import corpus_ter, sentence_ter # noqa: F401
cmd/gencudnn/parse.py
xkey-/cu
275
12706314
from bs4 import BeautifulSoup import requests import re import sys import os inputs ={} outputs = {} ios = {} docs = {} def get(): if os.path.isfile("cache/docs.html"): with open("cache/docs.html", 'r') as f: print("Using cache", file=sys.stderr) return f.read() r = requests.get("https://docs.nvidia.com/deeplearning/cudnn/api/index.html") with open("cache/docs.html", 'w') as f: f.write(r.text) return r.text def main(): txt = get() soup = BeautifulSoup(txt, "html5lib") contents = soup.find_all(id="contents") ids = ["cudnn-ops-infer-so-library", "cudnn-ops-train-so-library", "cudnn-cnn-infer-so-library", "cudnn-cnn-train-so-library", "cudnn-adv-infer-so-library", "cudnn-adv-train-so-library", "cudnn-backend-api"] topics = [contents[0].find_all(id=i)[0].find_all(id=re.compile("-api")) for i in ids] topics = [t.find_all(class_="topic concept nested2") for topic in topics for t in topic] topics = [t for ts in topics for t in ts] #print(topics[0]) for i, topic in enumerate(topics): rawFnName = topic.find_all(class_='title topictitle2')[0].text rawFnName = rawFnName.rstrip('()') try: fnName = re.search('cudnn.+$', rawFnName).group(0) except AttributeError as e: print("rawFnName: {}".format(rawFnName), file=sys.stderr) continue try: paramsDL = topic.find_all(class_='dl')[0] # first definition list is params except IndexError: print("rawFnName: {} - topic has no dl class".format(fnName), file=sys.stderr) continue #print(paramsDL) # check previous #if paramsDL.previous_sibling.previous_sibling.text != "Parameters": # print("rawFnName: {} has no params::: {}".format(fnName, paramsDL.previous_sibling), file=sys.stderr) # continue params = paramsDL.find_all(class_='dt dlterm') # name paramsDesc = paramsDL.find_all(class_='dd') # use type paramUse = [] for d in paramsDesc: try: use = d.find_all(class_='ph i')[0].text except IndexError as e: use = "Input" paramUse.append(use) if len(params) != len(paramUse): print("rawFnName: {} - differing params and use cases".format(fnName), file=sys.stderr) continue inputParams = [p.text.strip() for i, p in enumerate(params) if (paramUse[i].strip()=='Input') or (paramUse[i].strip()=="Inputs")] outputParams = [p.text.strip() for i, p in enumerate(params) if (paramUse[i].strip()=='Output') or (paramUse[i].strip()=="Outputs")] ioParams = [p.text.strip() for i, p in enumerate(params) if paramUse[i].strip()=='Input/Output'] inputs[fnName] = inputParams outputs[fnName] = outputParams ios[fnName] = ioParams # extract docs try: docbody = topic.find_all(class_='body conbody')[0] except IndexError: print("fnName: {} - no body".format(fnName), file=sys.stderr) continue # clear is better than clever. try: doc = docbody.find_all("p")[0].text except: print("fnName: {} - no p".format(fnName), file=sys.stderr) continue doc = doc.replace("\n", "") doc = re.sub("\t+", " ", doc) doc = re.sub("\s+", " ", doc) doc = doc.replace('"', '`') doc = doc.replace("This function", fnName) doc = doc.replace("This routine", fnName) doc = doc.replace("This", fnName) doc = doc.strip() docs[fnName] = doc # write the go file print("package main") print("/* generated by parse.py. DO NOT EDIT */") print("var inputParams = map[string][]string{") for k, v in inputs.items(): if len(v) == 0: continue print('"{}": {{ '.format(k), end="") for inp in v : split = inp.split(",") for s in split: print('"{}", '.format(s.strip()), end="") print("},") print("}") print("var outputParams = map[string][]string{") for k, v in outputs.items(): if len(v) == 0: continue print('"{}": {{ '.format(k), end="") for inp in v : split = inp.split(",") for s in split: print('"{}", '.format(s.strip()), end="") print("},") print("}") print("var ioParams = map[string][]string{") for k, v in ios.items(): if len(v) == 0: continue print('"{}": {{ '.format(k), end="") for inp in v : split = inp.split(",") for s in split: print('"{}", '.format(s.strip()), end="") print("},") print("}") print("var docs = map[string]string{") for k, v in docs.items(): print('"{}": "{}",'.format(k, v.strip())) print("}") main()
module/Probe_Packet.py
Yiidiir/SniffAir
1,173
12706349
#!/usr/bin/python import sys import signal import argparse import logging logging.getLogger ( "scapy.runtime" ).setLevel ( logging.CRITICAL ) from scapy.all import * # Setup signal handler to catch CTRL-C def signal_handler(signal, frame): sys.exit(0) signal.signal(signal.SIGINT, signal_handler) # Get arguments parser = argparse.ArgumentParser() parser.add_argument('-i', '--interface', metavar='interface', help='wireless interface to use', required=True) parser.add_argument('-d', '--delay', metavar='delay', help='seconds to delay (default=.3)', default=.3, type=float) parser.add_argument('-c', '--count', metavar='count', \ help='number of packets to send per SSID per iteration (default=10)', default=10, type=int) parser.add_argument('-m', '--mac', metavar='mac', help='last 3 octets of source mac address (default=00:11:22)', default='00:11:22') ssid_group = parser.add_mutually_exclusive_group(required=True) ssid_group.add_argument('-s', '--ssid', metavar='ssid', help='ssid name') ssid_group.add_argument('-f', '--file', metavar='file', help='ssid file') args = parser.parse_args() # Create ssid list ssids = [] if args.file == None: ssids.extend([args.ssid]) else: with open(args.file) as f: content = f.readlines() ssids = [x.strip() for x in content] # Setup probe request packet param = Dot11ProbeReq() ratestr = '03\x12\x96\x18\x24\x30\x48\x60' rates = Dot11Elt(ID='Rates',info=ratestr) dst = 'ff:ff:ff:ff:ff:ff' # Loop until CTRL-C while True: for ssid in ssids: essid = Dot11Elt(ID='SSID',info=ssid) #dsset = Dot11Elt(ID='DSset',info='\x01') pkt = RadioTap()\ /Dot11(type=0,subtype=4,addr1=dst,addr2=RandMAC()[0:9]+args.mac,addr3=dst)\ /param/essid/rates print '[*] 802.11 Probe Request: SSID=[%s], count=%d' % (ssid,args.count) try: sendp(pkt,count=args.count,inter=args.delay,verbose=0,iface=args.interface) except: raise
DQM/Physics/test/qcdPhotonsDQM_cfg.py
ckamtsikis/cmssw
852
12706354
import FWCore.ParameterSet.Config as cms process = cms.Process("QcdPhotonsDQM") process.load("DQM.Physics.qcdPhotonsDQM_cfi") process.load("DQMServices.Core.DQM_cfg") process.load("DQMServices.Components.DQMEnvironment_cfi") process.DQM.collectorHost = '' process.dqmSaver.workflow = cms.untracked.string('/My/Test/DataSet') ## Geometry and Detector Conditions (needed for spike removal code) process.load("Configuration.StandardSequences.GeometryRecoDB_cff") process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") process.GlobalTag.globaltag = cms.string('START38_V9::All') process.load("Configuration.StandardSequences.MagneticField_cff") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1000) ) process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring( '/store/relval/CMSSW_3_8_2/RelValPhotonJets_Pt_10/GEN-SIM-RECO/START38_V9-v1/0018/B81EF896-9AAF-DF11-B31B-001A92971BCA.root', '/store/relval/CMSSW_3_8_2/RelValPhotonJets_Pt_10/GEN-SIM-RECO/START38_V9-v1/0018/886F398A-B8AF-DF11-91A8-003048678FC6.root', '/store/relval/CMSSW_3_8_2/RelValPhotonJets_Pt_10/GEN-SIM-RECO/START38_V9-v1/0018/7830F828-87AF-DF11-9DE0-003048678FD6.root', '/store/relval/CMSSW_3_8_2/RelValPhotonJets_Pt_10/GEN-SIM-RECO/START38_V9-v1/0018/26CC6A78-A8AF-DF11-97A5-003048678F78.root', '/store/relval/CMSSW_3_8_2/RelValPhotonJets_Pt_10/GEN-SIM-RECO/START38_V9-v1/0017/3E226F93-7FAF-DF11-A908-001A92810AF4.root' ) ) process.p = cms.Path(process.qcdPhotonsDQM+process.dqmSaver)
galaxy/api/fields.py
bmclaughlin/galaxy
904
12706369
<reponame>bmclaughlin/galaxy<gh_stars>100-1000 # (c) 2012-2019, Ansible by Red Hat # # This file is part of Ansible Galaxy # # Ansible Galaxy is free software: you can redistribute it and/or modify # it under the terms of the Apache License as published by # the Apache Software Foundation, either version 2 of the License, or # (at your option) any later version. # # Ansible Galaxy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # Apache License for more details. # # You should have received a copy of the Apache License # along with Galaxy. If not, see <http://www.apache.org/licenses/>. import datetime as dt from rest_framework import serializers from rest_framework.reverse import reverse class NativeTimestampField(serializers.DateTimeField): """Represents internal timestamp value as date time string.""" def to_representation(self, value): if value is None: return None value = dt.datetime.utcfromtimestamp(value).replace( tzinfo=dt.timezone.utc) return super().to_representation(value) def to_internal_value(self, value): if value is None: return None value = super().to_internal_value(value) return value.astimezone(dt.timezone.utc).timestamp() class NamespaceObjectField(serializers.Field): """Return namespace object for a serializer field.""" def to_representation(self, value): return { 'id': value.pk, 'href': reverse( 'api:namespace_detail', kwargs={'pk': value.pk}, request=self.context.get('request'), ), 'name': value.name, } class VersionUrlField(serializers.Field): """Return version detail url under collection namespace and name.""" def to_representation(self, value): return reverse( 'api:v2:version-detail', kwargs={ 'namespace': value.collection.namespace.name, 'name': value.collection.name, 'version': value.version, }, request=self.context.get('request'), )
webwaybooks/utils/meta.py
bysorry/telegram_media_downloader
401
12706374
<gh_stars>100-1000 """Utility module to manage meta info.""" import platform from . import __version__, __copyright__, __license__ APP_VERSION = f"Telegram Media Downloader {__version__}" DEVICE_MODEL = ( f"{platform.python_implementation()} {platform.python_version()}" ) SYSTEM_VERSION = f"{platform.system()} {platform.release()}" LANG_CODE = "en" def print_meta(logger): """Prints meta-data of the downloader script.""" print(f"Telegram Media Downloader v{__version__}, {__copyright__}") print(f"Licensed under the terms of the {__license__}", end="\n\n") logger.info(f"Device: {DEVICE_MODEL} - {APP_VERSION}") logger.info(f"System: {SYSTEM_VERSION} ({LANG_CODE.upper()})")
circus/commands/dstats.py
BradleyKirton/circus
820
12706385
<filename>circus/commands/dstats.py from circus.exc import ArgumentError from circus.commands.base import Command from circus.util import get_info _INFOLINE = ("%(pid)s %(cmdline)s %(username)s %(nice)s %(mem_info1)s " "%(mem_info2)s %(cpu)s %(mem)s %(ctime)s") class Daemontats(Command): """\ Get circusd stats ================= You can get at any time some statistics about circusd with the dstat command. ZMQ Message ----------- To get the circusd stats, simply run:: { "command": "dstats" } The response returns a mapping the property "infos" containing some process informations:: { "info": { "children": [], "cmdline": "python", "cpu": 0.1, "ctime": "0:00.41", "mem": 0.1, "mem_info1": "3M", "mem_info2": "2G", "nice": 0, "pid": 47864, "username": "root" }, "status": "ok", "time": 1332265655.897085 } Command Line ------------ :: $ circusctl dstats """ name = "dstats" def message(self, *args, **opts): if len(args) > 0: raise ArgumentError("Invalid message") return self.make_message() def execute(self, arbiter, props): return {'info': get_info(interval=0.01)} def _to_str(self, info): children = info.pop("children", []) ret = ['Main Process:', ' ' + _INFOLINE % info] if len(children) > 0: ret.append('Children:') for child in children: ret.append(' ' + _INFOLINE % child) return "\n".join(ret) def console_msg(self, msg): if msg['status'] == "ok": return self._to_str(msg['info']) else: return self.console_error(msg)
car/scripts/lidarEvasion.py
GNSS523/Cherry-Autonomous-Racecar
330
12706396
#!/usr/bin/env python """ Copyright (c) 2017 <NAME>, <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import rospy from geometry_msgs.msg import Twist, TwistStamped from std_msgs.msg import String from sensor_msgs.msg import Image from sensor_msgs.msg import Joy from cv_bridge import CvBridge, CvBridgeError from Xbox360 import XBox360 import sys, os import cv2 print cv2.__version__ import time from threading import Lock """ This node subscribes to the lidargrid image topic which is basicially a birds eye view of the Neato XV-11 LIDAR's /scan topic. It then uses the image and checks for white pixels(points) in predefined regions of the image. If a region contains an white pixel it will publish a twist message with a steering angle or throttle value to try and avoid the object or stop. This node's intention was to be used as a primitive layer to help prevent the car from crashing into a wall under the Neural Net's control. Future plans: This node is very simple currently but could be expanded upon with fusion of IMU data. The regions that are being defined to look for collision could be modeled based on current speed and steering angle as a sort of basic look ahead for obstacles function Note: The region function is defined using the TF coordinates which is a right handed coordinate system see http://www.pirobot.org/blog/0018/ Toggle on or off with select button on Xbox 360 controller """ lidarRadius = 5.0 ##meters class evasion(object): def __init__(self): self.evadeSet = False self.controller = XBox360() self.bridge = CvBridge() self.throttle = 0 self.grid_img = None ##self.throttleLock = Lock() print "evasion" rospy.Subscriber("/lidargrid", Image, self.gridCB, queue_size=1) rospy.Subscriber("/cmd_vel", TwistStamped , self.twistCB , queue_size = 1) rospy.Subscriber("/joy", Joy, self.joyCB, queue_size=5) self.pub_img = rospy.Publisher("/steering_img", Image) self.pub_twist = rospy.Publisher("/lidar_twist", TwistStamped, queue_size=1) self.sound = rospy.Publisher("/sound_server/speech_synth", String, queue_size=1) rospy.init_node ('lidar_cmd',anonymous=True) rospy.spin() def twistCB(self, cmd_vel): if self.evadeSet == True: try: ##rospy.loginfo("cmd_vel Recieved") self.throttle = cmd_vel.twist.linear.x normed_throttle = (self.throttle*2.0)-1.0 front_max = 0.3 + 4.5*(normed_throttle**2.5) ##front region scales with throttle value rospy.loginfo('normed_throttle: '+str(normed_throttle) + ' front_max: '+str(front_max)) front = self.Occupancy(self.grid_img, 0.1, front_max, -0.2, 0.2) ##(2,0.2) to (0.5,-0.2) right = self.Occupancy(self.grid_img, 0.0, 1, -0.7, -0.2) ##(2,-0.2) to (0,-0.7) left = self.Occupancy(self.grid_img, 0.0, 1, 0.2, 0.7) ##(2,0.7) to (0,0.2) everywhere = self.Occupancy(self.grid_img, -4.0, 4.0, -4.0, 4.0) cmd = TwistStamped() #rospy.loginfo(self.throttle) cmd.twist.angular.z = 0.5 cmd.twist.linear.x = -1.0 if front: cmd.twist.linear.x = 0.5 ##stop self.pub_twist.publish(cmd) self.sound.publish("Forward collision detected") elif left: cmd.twist.angular.z = 0.7 ##turn right self.pub_twist.publish(cmd) self.sound.publish("Left collision detected") elif right: cmd.twist.angular.z = 0.3 ##turn left self.pub_twist.publish(cmd) self.sound.publish("Right collision detected") else: #self.pub_twist.publish(cmd) pass except Exception as f: print(f) else: pass ##rospy.loginfo("Not using Evasion") def gridCB(self, grid): rospy.loginfo("Grid Recieved") try: self.grid_img = self.bridge.imgmsg_to_cv2(grid) except CvBridgeError as e: print(e) """ Toggle LIDAR evasion with select button on Xbox 360 Controller """ def joyCB(self, joy): self.controller.update(joy) events = self.controller.buttonEvents() if 'back_pressed' in events: self.evadeSet = not self.evadeSet rospy.loginfo(self.evadeSet) """ Converts TF to pixels(x1,y1),(x2,y2) """ def Region(self, grid, xmin, xmax, ymin, ymax): pixelwidth = grid.shape[0] tfwidth = lidarRadius*2.0 endx = int( pixelwidth * ((xmin*-1.0+5.0)/tfwidth) ) endy = int( pixelwidth * ((ymin*-1.0+5.0)/tfwidth) ) startx = int( pixelwidth * ((xmax*-1.0+5.0)/tfwidth) ) starty = int( pixelwidth * ((ymax*-1.0+5.0)/tfwidth) ) startx, starty = max(0, startx), max(0, starty) endx, endy = min(endx, pixelwidth), min(endy, pixelwidth) return (startx, starty, endx, endy) """ checks for occupancy in regions specified then returns a true or false from a sum """ def Occupancy(self, grid, xmin, xmax, ymin, ymax): (startx, starty, endx, endy) = self.Region(grid, xmin, xmax, ymin, ymax) #rospy.loginfo(str(startx)+" "+str(starty)+" "+str(endx)+" "+str(endy)) region = grid[startx:endx,starty:endy] #rospy.loginfo(str(region.shape)) sum_ = region.sum() #rospy.loginfo(str(sum_)) if sum_ > 0: return True else: return False if __name__ == '__main__': try: evasion() except rospy.ROSInterruptException: pass
testing/buildbot/scripts/upload_test_result_artifacts_unittest.py
zealoussnow/chromium
14,668
12706415
<reponame>zealoussnow/chromium # Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Tests for upload_test_result_artifacts.""" from __future__ import print_function import json import mock import os import random import string import tempfile import unittest import upload_test_result_artifacts class UploadTestResultArtifactsTest(unittest.TestCase): def setUp(self): # Used for load tests self._temp_files = [] def tearDown(self): # Used for load tests for fname in self._temp_files: os.unlink(fname) ### These are load tests useful for seeing how long it takes to upload ### different kinds of test results files. They won't be run as part of ### presubmit testing, since they take a while and talk to the network, ### but the code will stay here in case anyone wants to edit the code ### and wants to check performance. Change the test names from 'loadTestBlah' ### to 'testBlah' to get them to run. def makeTemp(self, size): _, fname = tempfile.mkstemp() with open(fname, 'w') as f: f.write(random.choice(string.ascii_letters) * size) self._temp_files.append(fname) return os.path.basename(fname) def makeTestJson(self, num_tests, artifact_size): return { 'tests': { 'suite': { 'test%d' % i: { 'artifacts': { 'artifact': self.makeTemp(artifact_size), }, 'expected': 'PASS', 'actual': 'PASS', } for i in range(num_tests) } }, 'artifact_type_info': { 'artifact': 'text/plain' } } def _loadTest(self, json_data, upload): return upload_test_result_artifacts.upload_artifacts( json_data, '/tmp', upload, 'test-bucket') def loadTestEndToEndSimple(self): test_data = self.makeTestJson(1, 10) print(self._loadTest(test_data, False)) def loadTestEndToEndManySmall(self): test_data = self.makeTestJson(1000, 10) self._loadTest(test_data, False) def loadTestEndToEndSomeBig(self): test_data = self.makeTestJson(100, 10000000) self._loadTest(test_data, False) def loadTestEndToEndVeryBig(self): test_data = self.makeTestJson(2, 1000000000) self._loadTest(test_data, False) ### End load test section. def testGetTestsSimple(self): self.assertEqual(upload_test_result_artifacts.get_tests({ 'foo': { 'expected': 'PASS', 'actual': 'PASS', }, }), { ('foo',): { 'actual': 'PASS', 'expected': 'PASS', } }) def testGetTestsNested(self): self.assertEqual(upload_test_result_artifacts.get_tests({ 'foo': { 'bar': { 'baz': { 'actual': 'PASS', 'expected': 'PASS', }, 'bam': { 'actual': 'PASS', 'expected': 'PASS', }, }, }, }), { ('foo', 'bar', 'baz'): { 'actual': 'PASS', 'expected': 'PASS', }, ('foo', 'bar', 'bam'): { 'actual': 'PASS', 'expected': 'PASS', } }) def testGetTestsError(self): with self.assertRaises(ValueError): upload_test_result_artifacts.get_tests([]) def testUploadArtifactsMissingType(self): """Tests that the type information is used for validation.""" data = { 'artifact_type_info': { 'log': 'text/plain' }, 'tests': { 'foo': { 'actual': 'PASS', 'expected': 'PASS', 'artifacts': { 'screenshot': 'foo.png', } } } } with self.assertRaises(ValueError): upload_test_result_artifacts.upload_artifacts( data, '/tmp', True, 'test-bucket') @mock.patch('upload_test_result_artifacts.get_file_digest') @mock.patch('upload_test_result_artifacts.tempfile.mkdtemp') @mock.patch('upload_test_result_artifacts.shutil.rmtree') @mock.patch('upload_test_result_artifacts.shutil.copyfile') def testUploadArtifactsNoUpload( self, copy_patch, rmtree_patch, mkd_patch, digest_patch): """Simple test; no artifacts, so data shouldn't change.""" mkd_patch.return_value = 'foo_dir' data = { 'artifact_type_info': { 'log': 'text/plain' }, 'tests': { 'foo': { 'actual': 'PASS', 'expected': 'PASS', } } } self.assertEqual(upload_test_result_artifacts.upload_artifacts( data, '/tmp', True, 'test-bucket'), data) mkd_patch.assert_called_once_with(prefix='upload_test_artifacts') digest_patch.assert_not_called() copy_patch.assert_not_called() rmtree_patch.assert_called_once_with('foo_dir') @mock.patch('upload_test_result_artifacts.get_file_digest') @mock.patch('upload_test_result_artifacts.tempfile.mkdtemp') @mock.patch('upload_test_result_artifacts.shutil.rmtree') @mock.patch('upload_test_result_artifacts.shutil.copyfile') @mock.patch('upload_test_result_artifacts.os.path.exists') def testUploadArtifactsBasic( self, exists_patch, copy_patch, rmtree_patch, mkd_patch, digest_patch): """Upload a single artifact.""" mkd_patch.return_value = 'foo_dir' exists_patch.return_value = False digest_patch.return_value = 'deadbeef' data = { 'artifact_type_info': { 'log': 'text/plain' }, 'tests': { 'foo': { 'actual': 'PASS', 'expected': 'PASS', 'artifacts': { 'log': 'foo.txt', } } } } self.assertEqual(upload_test_result_artifacts.upload_artifacts( data, '/tmp', True, 'test-bucket'), { 'artifact_type_info': { 'log': 'text/plain' }, 'tests': { 'foo': { 'actual': 'PASS', 'expected': 'PASS', 'artifacts': { 'log': 'deadbeef', } } }, 'artifact_permanent_location': 'gs://chromium-test-artifacts/sha1', }) mkd_patch.assert_called_once_with(prefix='upload_test_artifacts') digest_patch.assert_called_once_with('/tmp/foo.txt') copy_patch.assert_called_once_with('/tmp/foo.txt', 'foo_dir/deadbeef') rmtree_patch.assert_called_once_with('foo_dir') @mock.patch('upload_test_result_artifacts.get_file_digest') @mock.patch('upload_test_result_artifacts.tempfile.mkdtemp') @mock.patch('upload_test_result_artifacts.shutil.rmtree') @mock.patch('upload_test_result_artifacts.shutil.copyfile') @mock.patch('upload_test_result_artifacts.os.path.exists') def testUploadArtifactsComplex( self, exists_patch, copy_patch, rmtree_patch, mkd_patch, digest_patch): """Upload multiple artifacts.""" mkd_patch.return_value = 'foo_dir' exists_patch.return_value = False digest_patch.side_effect = [ 'deadbeef1', 'deadbeef2', 'deadbeef3', 'deadbeef4'] data = { 'artifact_type_info': { 'log': 'text/plain', 'screenshot': 'image/png', }, 'tests': { 'bar': { 'baz': { 'actual': 'PASS', 'expected': 'PASS', 'artifacts': { 'log': 'baz.log.txt', 'screenshot': 'baz.png', } } }, 'foo': { 'actual': 'PASS', 'expected': 'PASS', 'artifacts': { 'log': 'foo.log.txt', 'screenshot': 'foo.png', } }, } } self.assertEqual(upload_test_result_artifacts.upload_artifacts( data, '/tmp', True, 'test-bucket'), { 'artifact_type_info': { 'log': 'text/plain', 'screenshot': 'image/png', }, 'tests': { 'bar': { 'baz': { 'actual': 'PASS', 'expected': 'PASS', 'artifacts': { 'log': 'deadbeef1', 'screenshot': 'deadbeef2', } } }, 'foo': { 'actual': 'PASS', 'expected': 'PASS', 'artifacts': { 'log': 'deadbeef3', 'screenshot': 'deadbeef4', } }, }, 'artifact_permanent_location': 'gs://chromium-test-artifacts/sha1', }) mkd_patch.assert_called_once_with(prefix='upload_test_artifacts') digest_patch.assert_has_calls([ mock.call('/tmp/baz.log.txt'), mock.call('/tmp/baz.png'), mock.call('/tmp/foo.log.txt'), mock.call('/tmp/foo.png')]) copy_patch.assert_has_calls([ mock.call('/tmp/baz.log.txt', 'foo_dir/deadbeef1'), mock.call('/tmp/baz.png', 'foo_dir/deadbeef2'), mock.call('/tmp/foo.log.txt', 'foo_dir/deadbeef3'), mock.call('/tmp/foo.png', 'foo_dir/deadbeef4'), ]) rmtree_patch.assert_called_once_with('foo_dir') def testFileDigest(self): _, path = tempfile.mkstemp(prefix='file_digest_test') with open(path, 'w') as f: f.write('a') self.assertEqual( upload_test_result_artifacts.get_file_digest(path), '86f7e437faa5a7fce15d1ddcb9eaeaea377667b8') if __name__ == '__main__': unittest.main()
applications/cli/commands/workflow/tests/test_cancel.py
nparkstar/nauta
390
12706428
<filename>applications/cli/commands/workflow/tests/test_cancel.py # # Copyright (c) 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from unittest.mock import MagicMock import pytest from click.testing import CliRunner from kubernetes.client import CustomObjectsApi from commands.workflow.cancel import cancel from cli_text_consts import WorkflowDeleteTexts as Texts from platform_resources.workflow import ArgoWorkflow FAKE_WORKFLOW = ArgoWorkflow(name='fake-workflow', namespace='fake-namespace', k8s_custom_object_api=MagicMock(spec=CustomObjectsApi)) class WorkflowCancelMocks: def __init__(self, mocker): self.get_namespace = mocker.patch('commands.workflow.cancel.get_kubectl_current_context_namespace', return_value='fake-namespace') self.get_workflow = mocker.patch('commands.workflow.cancel.ArgoWorkflow.get', return_value=FAKE_WORKFLOW) self.delete_workflow = mocker.patch.object(self.get_workflow.return_value, 'delete') @pytest.fixture() def cancel_mocks(mocker) -> WorkflowCancelMocks: return WorkflowCancelMocks(mocker=mocker) def test_cancel(cancel_mocks: WorkflowCancelMocks): result = CliRunner().invoke(cancel, [FAKE_WORKFLOW.name], catch_exceptions=False) assert result.exit_code == 0 assert Texts.SUCCESS_MSG.format(workflow_name=FAKE_WORKFLOW.name) in result.output def test_cancel_not_found(cancel_mocks: WorkflowCancelMocks): cancel_mocks.get_workflow.return_value = None result = CliRunner().invoke(cancel, [FAKE_WORKFLOW.name]) assert result.exit_code == 0 assert Texts.NOT_FOUND_MSG.format(workflow_name=FAKE_WORKFLOW.name) in result.output def test_cancel_other_error(cancel_mocks: WorkflowCancelMocks): cancel_mocks.delete_workflow.side_effect = RuntimeError result = CliRunner().invoke(cancel, [FAKE_WORKFLOW.name]) assert result.exit_code == 1 assert Texts.OTHER_ERROR_MSG in result.output
examples/docs_snippets_crag/docs_snippets_crag/concepts/configuration/configured_named_op_example.py
dagster-io/dagster
4,606
12706436
from dagster import Field, In, Int, List, configured, job, op # start_configured_named @op( config_schema={ "is_sample": Field(bool, is_required=False, default_value=False), }, ins={"xs": In(List[Int])}, ) def get_dataset(context, xs): if context.op_config["is_sample"]: return xs[:5] else: return xs # If we want to use the same op configured in multiple ways in the same pipeline, # we have to specify unique names when configuring them: sample_dataset = configured(get_dataset, name="sample_dataset")({"is_sample": True}) full_dataset = configured(get_dataset, name="full_dataset")({"is_sample": False}) @job def datasets(): sample_dataset() full_dataset() # end_configured_named
test/test_format_utils.py
toskachin/athenacli
175
12706441
# -*- coding: utf-8 -*- from collections import namedtuple from athenacli.packages.format_utils import format_status, humanize_size def test_format_status_plural(): assert format_status(rows_length=1) == "1 row in set" assert format_status(rows_length=2) == "2 rows in set" def test_format_status_no_results(): assert format_status(rows_length=None) == "Query OK" def test_format_status_with_stats(): FakeCursor = namedtuple("FakeCursor", ["engine_execution_time_in_millis", "data_scanned_in_bytes"]) assert format_status(rows_length=1, cursor=FakeCursor(10, 12345678900)) == "1 row in set\nExecution time: 10 ms, Data scanned: 11.5 GB, Approximate cost: $0.06" assert format_status(rows_length=2, cursor=FakeCursor(1000, 1234)) == "2 rows in set\nExecution time: 1000 ms, Data scanned: 1.21 KB, Approximate cost: $0.00" def test_humanize_size(): assert humanize_size(20) == "20 B" assert humanize_size(2000) == "1.95 KB" assert humanize_size(200000) == "195.31 KB" assert humanize_size(20000000) == "19.07 MB" assert humanize_size(200000000000) == "186.26 GB"
kafkashell/__init__.py
amzyang/kafka-shell
109
12706472
# -*- coding: utf-8 -*- # # Copyright 2019 <NAME>. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from kafkashell import completer from kafkashell import config from kafkashell import constants from kafkashell import executor from kafkashell import helpers from kafkashell import main from kafkashell import settings from kafkashell import style from kafkashell import toolbar from kafkashell import version name = "kafkashell" __all__ = [ "bindings", "completer", "config", "constants", "executor", "helpers", "main", "settings", "style", "toolbar", "version" ]
738 Monotone Increasing Digits.py
krishna13052001/LeetCode
872
12706485
<gh_stars>100-1000 #!/usr/bin/python3 """ Given a non-negative integer N, find the largest number that is less than or equal to N with monotone increasing digits. (Recall that an integer has monotone increasing digits if and only if each pair of adjacent digits x and y satisfy x <= y.) Example 1: Input: N = 10 Output: 9 Example 2: Input: N = 1234 Output: 1234 Example 3: Input: N = 332 Output: 299 Note: N is an integer in the range [0, 10^9]. """ class Solution: def monotoneIncreasingDigits(self, N: int) -> int: """ 332 322 222 fill 9 299 """ digits = [int(e) for e in str(N)] pointer = len(digits) for i in range(len(digits) - 1, 0, -1): if digits[i - 1] > digits[i]: pointer = i digits[i - 1] -= 1 for i in range(pointer, len(digits)): digits[i] = 9 return int("".join(map(str, digits))) if __name__ == "__main__": assert Solution().monotoneIncreasingDigits(10) == 9 assert Solution().monotoneIncreasingDigits(332) == 299
exec.py
fredcallaway/SendCode
177
12706495
import sublime_plugin class SendCodeExecCommand(sublime_plugin.WindowCommand): def run(self, code=None, prog=None): self.window.active_view().run_command( "send_code", {"code": code, "prog": prog} ) # backward compatibility class SendCodeBuildCommand(SendCodeExecCommand): pass
Chapter09/list_comp_read_file.py
4n3i5v74/Python-3-Object-Oriented-Programming-Third-Edition
393
12706531
<filename>Chapter09/list_comp_read_file.py import sys filename = sys.argv[1] with open(filename) as file: header = file.readline().strip().split("\t") contacts = [ dict(zip(header, line.strip().split("\t"))) for line in file ] for contact in contacts: print("email: {email} -- {last}, {first}".format(**contact))
Validation/RecoEgamma/python/egammaPostValidationMiniAOD_cff.py
ckamtsikis/cmssw
852
12706559
import FWCore.ParameterSet.Config as cms from Validation.RecoEgamma.electronPostValidationSequenceMiniAOD_cff import * egammaPostValidationMiniAOD = cms.Sequence( electronPostValidationSequenceMiniAOD )
nets/helloworld.py
postBG/netadapt
158
12706576
import torch import torch.nn as nn __all__ = ['HelloWorld', 'helloworld'] class HelloWorld(nn.Module): def __init__(self, num_classes=10): super(HelloWorld, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False), nn.ReLU(inplace=True), nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1, bias=False), nn.ReLU(inplace=True), nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.ReLU(inplace=True), nn.Conv2d(64, num_classes, kernel_size=3, stride=1, padding=1, bias=False) ) self.avgpool = nn.AvgPool2d(32, 32) def forward(self, x): x = self.features(x) x = self.avgpool(x) x = x.view(x.shape[0], -1) return x def helloworld(num_classes=10): return HelloWorld()
chaos_genius/utils/datetime_helper.py
rsohlot/chaos_genius
320
12706595
"""Provides helper functions related to datetime operations.""" from datetime import date, datetime, timedelta, timezone import pandas as pd import pytz from chaos_genius.core.utils.constants import SUPPORTED_TIMEZONES from chaos_genius.settings import TIMEZONE def get_server_timezone(): """Get server timezone.""" return datetime.now(timezone.utc).astimezone().tzname() def get_rca_date_from_string(date_value): """Get RCA date from string.""" return datetime.strptime(date_value, "%Y/%m/%d %H:%M:%S").date() def get_datetime_string_with_tz(date_value, hourly=False) -> str: """Get date string with timezone.""" if hourly: main_str = date_value.strftime("%d %b %Y %H:%M") + f" ({TIMEZONE})" else: main_str = date_value.strftime("%d %b %Y") + f" ({TIMEZONE})" return main_str def _get_tz_from_offset_str(utc_offset_str): # TODO: update code when tz implementation is complete sign = -1 if utc_offset_str[-6] == "-" else 1 utc_offset_mins = int(utc_offset_str[-2:]) * sign utc_offset_hrs = int(utc_offset_str[-5:-3]) * sign utc_offset = timedelta(hours=utc_offset_hrs, minutes=utc_offset_mins) timezones = pytz.all_timezones for tz_name in timezones: try: tz = pytz.timezone(tz_name) tz_offset = tz._transition_info[-1][0] if utc_offset == tz_offset: return tz except AttributeError: pass return _get_tz_from_offset_str("GMT+00:00") def get_lastscan_string_with_tz(datetime_value_str) -> str: """Get last scan time in reporting timezone.""" server_tz_offset = timezone(datetime.now().astimezone().utcoffset()) datetime_value = pd.Timestamp( datetime.strptime(datetime_value_str, "%Y-%m-%dT%H:%M:%S.%f") ).tz_localize(tz=server_tz_offset) # TODO : Deprecate SUPPORTED_TIMEZONES over releases. if TIMEZONE in SUPPORTED_TIMEZONES: timezone_info = _get_tz_from_offset_str(SUPPORTED_TIMEZONES[TIMEZONE]) else: timezone_info = TIMEZONE datetime_value = datetime_value.tz_convert(tz=timezone_info) main_str = datetime_value.strftime("%d %b %Y %H:%M") + f" ({TIMEZONE})" return main_str def convert_datetime_to_timestamp(date_value) -> int: """Convert datetime to timestamp.""" if isinstance(date_value, date): date_value = datetime( year=date_value.year, month=date_value.month, day=date_value.day ) return int(date_value.timestamp()) * 1000
alipay/aop/api/response/AlipayFundJointaccountFundallocCountQueryResponse.py
antopen/alipay-sdk-python-all
213
12706599
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AlipayFundJointaccountFundallocCountQueryResponse(AlipayResponse): def __init__(self): super(AlipayFundJointaccountFundallocCountQueryResponse, self).__init__() self._alloc_amount = None self._alloc_times = None @property def alloc_amount(self): return self._alloc_amount @alloc_amount.setter def alloc_amount(self, value): self._alloc_amount = value @property def alloc_times(self): return self._alloc_times @alloc_times.setter def alloc_times(self, value): self._alloc_times = value def parse_response_content(self, response_content): response = super(AlipayFundJointaccountFundallocCountQueryResponse, self).parse_response_content(response_content) if 'alloc_amount' in response: self.alloc_amount = response['alloc_amount'] if 'alloc_times' in response: self.alloc_times = response['alloc_times']
armada_backend/api_images.py
firesoft/armada
281
12706616
<reponame>firesoft/armada<filename>armada_backend/api_images.py from armada_backend import api_base, docker_client from armada_command.docker_utils.images import LocalArmadaImage from armada_command.scripts.compat import json class Images(api_base.ApiCommand): def on_get(self, req, resp, image_name_or_address, image_name=None): if image_name is None: dockyard_address = None image_name = image_name_or_address else: dockyard_address = image_name_or_address image = LocalArmadaImage(dockyard_address, image_name) try: docker_api = docker_client.api() image_info = json.dumps(docker_api.images(image.image_path)) return self.status_ok(resp, {'image_info': '{image_info}'.format(**locals())}) except Exception as e: return self.status_exception(resp, "Cannot get info about image.", e)
sonnet/src/conformance/descriptors.py
ScriptBox99/deepmind-sonnet
10,287
12706622
<reponame>ScriptBox99/deepmind-sonnet # Copyright 2019 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Module descriptors programatically describe how to use modules.""" import collections from typing import Callable, Union import sonnet as snt import tensorflow as tf class Wrapped(snt.Module): @snt.no_name_scope def __init__(self, wrapped: snt.Module): super().__init__() self.wrapped = wrapped class Training(Wrapped): @snt.no_name_scope def __call__(self, x: tf.Tensor): return self.wrapped(x, is_training=True) class Recurrent(Wrapped): """Unrolls a recurrent module.""" def __init__(self, module: Union[snt.RNNCore, snt.UnrolledRNN], unroller=None): super().__init__(module) self.unroller = unroller @snt.no_name_scope def __call__(self, x: tf.Tensor): initial_state = self.wrapped.initial_state(batch_size=tf.shape(x)[0]) if isinstance(self.wrapped, snt.UnrolledRNN): assert self.unroller is None # The module expects TB...-shaped input as opposed to BT... x = tf.transpose(x, [1, 0] + list(range(2, x.shape.rank))) return self.wrapped(x, initial_state) else: x = tf.expand_dims(x, axis=0) return self.unroller(self.wrapped, x, initial_state) def unwrap(module: snt.Module) -> snt.Module: while isinstance(module, Wrapped): module = module.wrapped return module # TODO(tomhennigan) De-duplicate this, BATCH_MODULES and goldens.py. ModuleDescriptor = collections.namedtuple("ModuleDescriptor", ["name", "create", "shape", "dtype"]) ModuleDescriptor.__new__.__defaults__ = (None, None, None, tf.float32) BATCH_SIZE = 8 # pylint: disable=unnecessary-lambda BATCH_MODULES = ( ModuleDescriptor( name="BatchNorm", create=lambda: Training(snt.BatchNorm(True, True)), shape=(BATCH_SIZE, 2, 2, 3)), ModuleDescriptor( name="Bias", create=lambda: snt.Bias(), shape=(BATCH_SIZE, 3, 3, 3)), ModuleDescriptor( name="Conv1D", create=lambda: snt.Conv1D(3, 3), shape=(BATCH_SIZE, 2, 2)), ModuleDescriptor( name="Conv1DTranspose", create=lambda: snt.Conv1DTranspose(3, 3), shape=(BATCH_SIZE, 2, 2)), ModuleDescriptor( name="Conv2D", create=lambda: snt.Conv2D(3, 3), shape=(BATCH_SIZE, 2, 2, 2)), ModuleDescriptor( name="Conv2DTranspose", create=lambda: snt.Conv2DTranspose(3, 3), shape=(BATCH_SIZE, 2, 2, 2)), ModuleDescriptor( name="Conv3D", create=lambda: snt.Conv3D(3, 3), shape=(BATCH_SIZE, 2, 2, 2, 2)), ModuleDescriptor( name="Conv3DTranspose", create=lambda: snt.Conv3DTranspose(3, 3), shape=(BATCH_SIZE, 2, 2, 2, 2)), ModuleDescriptor( name="CrossReplicaBatchNorm", create=lambda: Training(snt.distribute.CrossReplicaBatchNorm( # pylint: disable=g-long-lambda True, True, snt.ExponentialMovingAverage(0.9), snt.ExponentialMovingAverage(0.9))), shape=(BATCH_SIZE, 2, 2, 3)), ModuleDescriptor( name="DepthwiseConv2D", create=lambda: snt.DepthwiseConv2D(3), shape=(BATCH_SIZE, 2, 2, 2)), ModuleDescriptor( name="Dropout", create=lambda: Training(snt.Dropout(0.5)), shape=(BATCH_SIZE, 3, 3)), ModuleDescriptor( name="Embed", create=lambda: snt.Embed(10), shape=(BATCH_SIZE,), dtype=tf.int32), ModuleDescriptor( name="Flatten", create=lambda: snt.Flatten(), shape=(BATCH_SIZE, 3, 3, 3)), ModuleDescriptor( name="GroupNorm", create=lambda: snt.GroupNorm(2, True, True), shape=(BATCH_SIZE, 3, 4)), ModuleDescriptor( name="InstanceNorm", create=lambda: snt.InstanceNorm(True, True), shape=(BATCH_SIZE, 3, 2)), ModuleDescriptor( name="LayerNorm", create=lambda: snt.LayerNorm(1, True, True), shape=(BATCH_SIZE, 3, 2)), ModuleDescriptor( name="Linear", create=lambda: snt.Linear(10), shape=(BATCH_SIZE, 1)), ModuleDescriptor( name="Sequential", create=lambda: snt.Sequential([lambda x: x]), shape=(BATCH_SIZE, 2, 2)), ModuleDescriptor( name="nets.VectorQuantizer", create=lambda: Training(snt.nets.VectorQuantizer(4, 6, 0.25)), shape=(BATCH_SIZE, 3, 4)), ModuleDescriptor( name="nets.VectorQuantizerEMA", create=lambda: Training(snt.nets.VectorQuantizerEMA(5, 7, 0.5, 0.9)), shape=(BATCH_SIZE, 5)), ModuleDescriptor( name="nets.Cifar10ConvNet", create=lambda: Training(snt.nets.Cifar10ConvNet()), shape=(BATCH_SIZE, 3, 3, 2)), ModuleDescriptor( name="nets.ResNet50", create=lambda: Training(snt.nets.ResNet([1, 1, 1, 1], 4)), shape=(BATCH_SIZE, 3, 3, 2)), ModuleDescriptor( name="nets.MLP", create=lambda: snt.nets.MLP([3, 4, 5]), shape=(BATCH_SIZE, 3)), ) RNN_CORES = ( ModuleDescriptor( name="Conv1DLSTM", create=lambda: snt.Conv1DLSTM((2, 2), 3, 3), shape=(BATCH_SIZE, 2, 2)), ModuleDescriptor( name="Conv2DLSTM", create=lambda: snt.Conv2DLSTM((2, 2, 2), 3, 3), shape=(BATCH_SIZE, 2, 2, 2)), ModuleDescriptor( name="Conv3DLSTM", create=lambda: snt.Conv3DLSTM((2, 2, 2, 2), 3, 3), shape=(BATCH_SIZE, 2, 2, 2, 2)), ModuleDescriptor( name="GRU", create=lambda: snt.GRU(1), shape=(BATCH_SIZE, 128)), ModuleDescriptor( name="LSTM", create=lambda: snt.LSTM(1), shape=(BATCH_SIZE, 128)), ModuleDescriptor( name="VanillaRNN", create=lambda: snt.VanillaRNN(8), shape=(BATCH_SIZE, 128)), ) UNROLLED_RNN_CORES = ( ModuleDescriptor( name="UnrolledLSTM", create=lambda: snt.UnrolledLSTM(1), shape=(BATCH_SIZE, 1, 128)), ) def recurrent_factory( create_core: Callable[[], snt.RNNCore], unroller, ) -> Callable[[], Recurrent]: return lambda: Recurrent(create_core(), unroller) def unroll_descriptors(descriptors, unroller=None): """Returns `Recurrent` wrapped descriptors with the given unroller applied.""" out = [] for name, create, shape, dtype in descriptors: if unroller is None: name = "Recurrent({})".format(name) else: name = "Recurrent({}, {})".format(name, unroller.__name__) out.append( ModuleDescriptor(name=name, create=recurrent_factory(create, unroller), shape=shape, dtype=dtype)) return tuple(out) RECURRENT_MODULES = ( unroll_descriptors(RNN_CORES, snt.dynamic_unroll) + unroll_descriptors(RNN_CORES, snt.static_unroll) + unroll_descriptors(UNROLLED_RNN_CORES)) OPTIMIZER_MODULES = ( ModuleDescriptor( name="optimizers.Adam", create=lambda: snt.optimizers.Adam(learning_rate=0.1)), ModuleDescriptor( name="optimizers.Momentum", create=lambda: snt.optimizers.Momentum(learning_rate=0.1, momentum=.9)), ModuleDescriptor( name="optimizers.RMSProp", create=lambda: snt.optimizers.RMSProp(learning_rate=0.1)), ModuleDescriptor( name="optimizers.SGD", create=lambda: snt.optimizers.SGD(learning_rate=0.1)), ) IGNORED_MODULES = { # Stateless or abstract. snt.BatchApply, snt.Deferred, snt.Module, snt.Optimizer, snt.Reshape, # Metrics. snt.ExponentialMovingAverage, snt.Mean, snt.Metric, snt.Sum, # Normalization. snt.BaseBatchNorm, # Tested via `snt.BatchNorm`. # Recurrent. snt.DeepRNN, snt.RNNCore, snt.TrainableState, snt.UnrolledRNN, # Tested via `snt.nets.ResNet`. snt.nets.ResNet50, snt.nets.resnet.BottleNeckBlockV1, snt.nets.resnet.BottleNeckBlockV2, snt.nets.resnet.BlockGroup, }
pipeline/oia/oiaTimingPlot.py
konradotto/TS
125
12706629
# /* Copyright (C) 2016 Ion Torrent Systems, Inc. All Rights Reserved */ import pandas as pd import datetime import dateutil import matplotlib.dates as dates from matplotlib import pyplot as plt import numpy as np from time import strptime import os # put the date on the same line with the cpu data os.system("awk 'NR%2{printf \"%s \",$0;next;}1' cpu_util.log > cpu_data.log") df = pd.read_csv( "cpu_data.log", names=[ "dow", "mon", "day", "time", "tz", "year", "lcpu", "us", "lus", "sy", "lsy", "ni", "lni", "id", "lid", "wa", "lwa", "hi", "lhi", "si", "lsi", "st", "lst", ], delim_whitespace=True, header=None, ) data = list(df.T.to_dict().values()) # export the data frame to a python dictionary x_axis = np.zeros(len(data), dtype="datetime64[s]") y_axis_idle = np.zeros(len(data)) y_axis_idle_smoothed = np.zeros(len(data)) y_axis_usr = np.zeros(len(data)) y_axis_usr_smoothed = np.zeros(len(data)) y_axis_nice = np.zeros(len(data)) y_axis_nice_smoothed = np.zeros(len(data)) y_axis_sys = np.zeros(len(data)) y_axis_sys_smoothed = np.zeros(len(data)) span = 5 span_gpu = 10 for key in range(0, len(data)): month = str(strptime(data[key]["mon"], "%b").tm_mon).zfill(2) datekey = ( str(data[key]["year"]) + "-" + month + "-" + str(data[key]["day"]) + "T" + data[key]["time"] ) x_axis[key] = np.datetime64(datekey) y_axis_idle[key] = int(data[key]["id"]) y_axis_usr[key] = int(data[key]["us"]) y_axis_nice[key] = int(data[key]["ni"]) y_axis_sys[key] = int(data[key]["sy"]) # now, read in the gpu data df = pd.read_csv( "gpu_util.log", names=["systemtime", "percent"], sep=",", parse_dates=[0] ) # or:, infer_datetime_format=True) data2 = list(df.T.to_dict().values()) # export the data frame to a python dictionary x_axis_gpu = np.zeros(len(data2), dtype="datetime64[s]") y_axis_gpu = np.zeros(len(data)) y_axis_gpu_smoothed = np.zeros(len(data)) for key in range(0, len(data)): x_axis_gpu[key] = np.datetime64((data2[key]["systemtime"])) if key < len(data2): y_axis_gpu[key] = int((data2[key]["percent"].replace(" ", "").replace("%", ""))) else: y_axis_gpu[key] = 0 # print x_axis[0] # print x_axis_gpu[0] # print x_axis[len(x_axis)-1] # print x_axis_gpu[len(x_axis_gpu)-1] # smooth the data if len(data) > span: for key in range(span, len(data) - span): sum_gpu = 0 for key2 in range(key - span, key + span): sum_gpu += y_axis_gpu[key2] y_axis_gpu_smoothed[key] = sum_gpu / (2 * span) for key in range(span, len(data) - span): sum_idle = sum_usr = sum_nice = sum_sys = 0 for key2 in range(key - span, key + span): sum_idle += y_axis_idle[key2] sum_usr += y_axis_usr[key2] sum_nice += y_axis_nice[key2] sum_sys += y_axis_sys[key2] y_axis_idle_smoothed[key] = sum_idle / (2 * span) y_axis_usr_smoothed[key] = sum_usr / (2 * span) y_axis_nice_smoothed[key] = sum_nice / (2 * span) y_axis_sys_smoothed[key] = sum_sys / (2 * span) s = data wl = 0.6 fsz = 8 fig = plt.figure(figsize=(15, 5)) ax = plt.subplot(111) box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.85, box.height]) for item in ax.get_xticklabels() + ax.get_yticklabels(): item.set_fontsize(fsz) # xstart, xend = ax.get_xlim() # xtickvals = # ax.xaxis.set_ticks(xtickvals) plt.plot(x_axis, y_axis_usr, "#be4b48", linewidth=wl, label="% usr") plt.plot(x_axis, y_axis_nice, "#98b954", linewidth=wl, label="% nice") plt.plot(x_axis, y_axis_sys, "#7d60a0", linewidth=wl, label="% sys") plt.plot(x_axis, y_axis_idle, "#46aac5", linewidth=wl, label="% idle") plt.plot(x_axis, y_axis_gpu, "#000000", linewidth=wl, label="% gpu") plt.legend(loc="right", bbox_to_anchor=(1.25, 0.5), fontsize=fsz) plt.savefig("oiaTimingRaw.png") plt.clf() wl = 1.0 ax = plt.subplot(111) box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.85, box.height]) for item in ax.get_xticklabels() + ax.get_yticklabels(): item.set_fontsize(fsz) plt.plot(x_axis, y_axis_usr_smoothed, "#be4b48", linewidth=wl, label="% usr") plt.plot(x_axis, y_axis_nice_smoothed, "#98b954", linewidth=wl, label="% nice") plt.plot(x_axis, y_axis_sys_smoothed, "#7d60a0", linewidth=wl, label="% sys") plt.plot(x_axis, y_axis_idle_smoothed, "#46aac5", linewidth=wl, label="% idle") plt.plot(x_axis, y_axis_gpu_smoothed, "#000000", linewidth=0.4, label="% gpu") plt.legend(loc="right", bbox_to_anchor=(1.25, 0.5), fontsize=fsz) plt.savefig("oiaTiming.png") os.remove("cpu_data.log")
3-2.Lattice_LSTM/eval.py
techthiyanes/nlp-notebook
136
12706632
# -*- coding: utf-8 -*- import torch from model import LatticeLSTM from load_data import char2idx, idx2char, label2idx, idx2label, word2idx, data_generator character_size = len(char2idx) word_size = len(word2idx) embed_dim = 300 hidden_dim = 128 TEST_DATA_PATH = "./data/test_data" # 测试数据 device = "cuda" if torch.cuda.is_available() else 'cpu' model = LatticeLSTM(character_size, word_size, label2idx, embed_dim, hidden_dim).to(device) model.load_state_dict(torch.load("./saved_model/model_lattice.pth", map_location=device)) model.eval() def extract(chars, tags): result = [] pre = '' w = [] for idx, tag in enumerate(tags): if not pre: if tag.startswith('B'): pre = tag.split('-')[1] w.append(chars[idx]) else: if tag == f'I-{pre}': w.append(chars[idx]) else: result.append([w, pre]) w = [] pre = '' if tag.startswith('B'): pre = tag.split('-')[1] w.append(chars[idx]) return [[''.join(x[0]), x[1]] for x in result] gold_num = 0 predict_num = 0 correct_num = 0 for sent, input_ids, input_words, labels_idx in data_generator(TEST_DATA_PATH, char2idx, word2idx, label2idx): print(f"Sent: {sent}") chars = [idx2char[ix] for ix in input_ids] labels = [idx2label[ix] for ix in labels_idx] entities = extract(chars, labels) gold_num += len(entities) print (f'NER: {entities}') res = model(input_ids, input_words) pred_labels = [idx2label[ix] for ix in res[1]] pred_entities = extract(chars, pred_labels) predict_num += len(pred_entities) print (f'Predicted NER: {pred_entities}') print ('---------------\n') for pred in pred_entities: if pred in entities: correct_num += 1 print(f'gold_num = {gold_num}') print(f'predict_num = {predict_num}') print(f'correct_num = {correct_num}') precision = correct_num/predict_num print(f'precision = {precision}') recall = correct_num/gold_num print(f'recall = {recall}') print(f'f1-score = {2*precision*recall/(precision+recall)}')
siphon/tests/test_catalog.py
DanielWatkins/siphon
164
12706640
<gh_stars>100-1000 # Copyright (c) 2013-2019 Siphon Contributors. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause """Test the catalog access API.""" from datetime import datetime import logging import pytest from siphon.catalog import get_latest_access_url, TDSCatalog from siphon.testing import get_recorder log = logging.getLogger('siphon.catalog') log.setLevel(logging.WARNING) recorder = get_recorder(__file__) @recorder.use_cassette('thredds-test-toplevel-catalog') def test_basic(): """Test of parsing a basic catalog.""" url = 'http://thredds-test.unidata.ucar.edu/thredds/catalog.xml' cat = TDSCatalog(url) assert 'Forecast Model Data' in cat.catalog_refs @recorder.use_cassette('thredds-test-toplevel-catalog') def test_catalog_representation(): """Test string representation of the catalog object.""" url = 'http://thredds-test.unidata.ucar.edu/thredds/catalog.xml' cat = TDSCatalog(url) assert str(cat) == 'Unidata THREDDS Data Server' @recorder.use_cassette('thredds-test-toplevel-catalog') def test_catalog_session(): """Test of catalog session.""" url = 'http://thredds-test.unidata.ucar.edu/thredds/catalog.xml' cat = TDSCatalog(url) assert 'Forecast Model Data' in cat.catalog_refs # nothing is returned from the session close nor can you check it # but the ability to close is what is desired cat.session.close() @recorder.use_cassette('thredds-test-latest-gfs-0p5') def test_access(): """Test catalog parsing of access methods.""" url = ('http://thredds-test.unidata.ucar.edu/thredds/catalog/grib/' 'NCEP/GFS/Global_0p5deg/latest.xml') cat = TDSCatalog(url) ds = list(cat.datasets.values())[0] assert 'OPENDAP' in ds.access_urls @recorder.use_cassette('thredds-test-default-5-0') def test_access_default_catalog(): """Test case-insensitive parsing of access methods in default catalog.""" url = ('http://localhost:8081/thredds/catalog/catalog.xml') cat = TDSCatalog(url) ds = list(cat.datasets.values())[0] assert 'OPENDAP' in ds.access_urls @recorder.use_cassette('top_level_20km_rap_catalog') def test_virtual_access(): """Test access of virtual datasets.""" url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) # find the 2D time coordinate "full collection" dataset for dataset in list(cat.datasets.values()): if 'Full Collection' in dataset.name: ds = dataset break assert 'OPENDAP' in ds.access_urls # TwoD is a virtual dataset, so HTTPServer # should not be listed here assert 'HTTPServer' not in ds.access_urls @recorder.use_cassette('latest_rap_catalog') def test_get_latest(): """Test latest dataset helper function.""" url = ('http://thredds-test.unidata.ucar.edu/thredds/catalog/' 'grib/NCEP/RAP/CONUS_13km/catalog.xml') latest_url = get_latest_access_url(url, 'OPENDAP') assert latest_url @recorder.use_cassette('latest_rap_catalog') def test_latest_attribute(): """Test using the catalog latest attribute.""" url = ('http://thredds-test.unidata.ucar.edu/thredds/catalog/' 'grib/NCEP/RAP/CONUS_13km/catalog.xml') cat = TDSCatalog(url) assert cat.latest.name == 'RR_CONUS_13km_20150527_0100.grib2' @recorder.use_cassette('top_level_cat') def test_tds_top_catalog(): """Test parsing top-level catalog.""" url = 'http://thredds.ucar.edu/thredds/catalog.xml' cat = TDSCatalog(url) assert cat @recorder.use_cassette('radar_dataset_cat') def test_simple_radar_cat(): """Test parsing of radar server catalog.""" url = 'http://thredds.ucar.edu/thredds/radarServer/nexrad/level2/IDD/dataset.xml' cat = TDSCatalog(url) assert cat @recorder.use_cassette('point_feature_dataset_xml') def test_simple_point_feature_collection_xml(): """Test accessing point feature top-level catalog.""" url = ('http://thredds.ucar.edu/thredds/catalog/nws/metar/ncdecoded/catalog.xml' '?dataset=nws/metar/ncdecoded/Metar_Station_Data_fc.cdmr') cat = TDSCatalog(url) assert cat @recorder.use_cassette('html_then_xml_catalog') def test_html_link(recwarn): """Test that we fall-back when given an HTML catalog page.""" url = ('http://thredds-test.unidata.ucar.edu/thredds/catalog/' 'grib/NCEP/RAP/CONUS_13km/catalog.html') TDSCatalog(url) assert 'Changing' in str(recwarn.pop(UserWarning).message) @recorder.use_cassette('follow_cat') def test_catalog_follow(): """Test catalog reference following.""" url = 'http://thredds.ucar.edu/thredds/catalog.xml' ref_name = 'Forecast Model Data' cat = TDSCatalog(url).catalog_refs[ref_name].follow() assert cat @recorder.use_cassette('top_level_20km_rap_catalog') def test_datasets_order(): """Test that we properly order datasets parsed from the catalog.""" url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) assert list(cat.datasets) == ['Full Collection (Reference / Forecast Time) Dataset', 'Best NAM CONUS 20km Time Series', 'Latest Collection for NAM CONUS 20km'] @recorder.use_cassette('top_level_20km_rap_catalog') def test_datasets_get_by_index(): """Test that datasets can be accessed by index.""" url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) assert cat.datasets[0].name == 'Full Collection (Reference / Forecast Time) Dataset' assert cat.datasets[1].name == 'Best NAM CONUS 20km Time Series' assert cat.datasets[2].name == 'Latest Collection for NAM CONUS 20km' @recorder.use_cassette('top_level_20km_rap_catalog') def test_datasets_str(): """Test that datasets are printed as expected.""" url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) assert str(cat.datasets) == ("['Full Collection (Reference / Forecast Time) Dataset', " "'Best NAM CONUS 20km Time Series', " "'Latest Collection for NAM CONUS 20km']") @recorder.use_cassette('top_level_20km_rap_catalog') def test_datasets_sliced_str(): """Test that datasets are printed as expected when sliced.""" url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) assert str(cat.datasets[-2:]) == ('[Best NAM CONUS 20km Time Series, ' 'Latest Collection for NAM CONUS 20km]') @recorder.use_cassette('top_level_20km_rap_catalog') def test_datasets_nearest_time(): """Test getting dataset by time using filenames.""" url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) nearest = cat.catalog_refs.filter_time_nearest(datetime(2015, 5, 28, 17)) assert nearest.title == 'NAM_CONUS_20km_noaaport_20150528_1800.grib1' @recorder.use_cassette('top_level_20km_rap_catalog') def test_datasets_nearest_time_30(): """Test getting dataset by time; check for a day in the 30s (#gh-173).""" url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) nearest = cat.catalog_refs.filter_time_nearest(datetime(2015, 5, 30, 11)) assert nearest.title == 'NAM_CONUS_20km_noaaport_20150530_1200.grib1' @recorder.use_cassette('top_level_20km_rap_catalog') def test_datasets_nearest_time_raises(): """Test getting dataset by time using filenames.""" url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) # Datasets doesn't have any timed datasets with pytest.raises(ValueError): cat.datasets.filter_time_nearest(datetime(2015, 5, 28, 17)) @recorder.use_cassette('top_level_20km_rap_catalog') def test_datasets_time_range(): """Test getting datasets by time range using filenames.""" url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) in_range = cat.catalog_refs.filter_time_range(datetime(2015, 5, 28, 0), datetime(2015, 5, 29, 0)) titles = [item.title for item in in_range] assert titles == ['NAM_CONUS_20km_noaaport_20150528_0000.grib1', 'NAM_CONUS_20km_noaaport_20150528_0600.grib1', 'NAM_CONUS_20km_noaaport_20150528_1200.grib1', 'NAM_CONUS_20km_noaaport_20150528_1800.grib1', 'NAM_CONUS_20km_noaaport_20150529_0000.grib1'] @recorder.use_cassette('top_level_20km_rap_catalog') def test_datasets_bad_time_range(): """Test warning message for bad time range.""" with pytest.warns(UserWarning): url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) in_range = cat.catalog_refs.filter_time_range(datetime(2015, 5, 29, 0), datetime(2015, 5, 28, 0)) assert in_range == [] @recorder.use_cassette('top_level_20km_rap_catalog') def test_datasets_time_range_regex(): """Test getting datasets by time range using filenames, with manual regex.""" # This is DatasetCollection.default_regex, but tests passing it explicitly regex = (r'(?P<year>\d{4})(?P<month>[01]\d)(?P<day>[0123]\d)_' r'(?P<hour>[012]\d)(?P<minute>[0-5]\d)') url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) in_range = cat.catalog_refs.filter_time_range(datetime(2015, 5, 28, 0), datetime(2015, 5, 29, 0), regex=regex) titles = [item.title for item in in_range] assert titles == ['NAM_CONUS_20km_noaaport_20150528_0000.grib1', 'NAM_CONUS_20km_noaaport_20150528_0600.grib1', 'NAM_CONUS_20km_noaaport_20150528_1200.grib1', 'NAM_CONUS_20km_noaaport_20150528_1800.grib1', 'NAM_CONUS_20km_noaaport_20150529_0000.grib1'] @recorder.use_cassette('top_level_20km_rap_catalog') def test_datasets_time_range_strptime(): """Test getting datasets by time range using filenames, with strptime.""" regex = r'noaaport_(?P<strptime>\d{8}_\d{4})' strptime = '%Y%m%d_%H%M' url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) in_range = cat.catalog_refs.filter_time_range(datetime(2015, 5, 28, 0), datetime(2015, 5, 29, 0), regex=regex, strptime=strptime) titles = [item.title for item in in_range] assert titles == ['NAM_CONUS_20km_noaaport_20150528_0000.grib1', 'NAM_CONUS_20km_noaaport_20150528_0600.grib1', 'NAM_CONUS_20km_noaaport_20150528_1200.grib1', 'NAM_CONUS_20km_noaaport_20150528_1800.grib1', 'NAM_CONUS_20km_noaaport_20150529_0000.grib1'] @recorder.use_cassette('top_level_20km_rap_catalog') def test_datasets_time_range_raises(): """Test getting datasets by time range using filenames.""" url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) # No time-based dataset names with pytest.raises(ValueError): cat.datasets.filter_time_range(datetime(2015, 5, 28, 0), datetime(2015, 5, 29, 0)) @recorder.use_cassette('top_level_cat') def test_catalog_ref_order(): """Test that catalog references are properly ordered.""" url = 'http://thredds.ucar.edu/thredds/catalog.xml' cat = TDSCatalog(url) assert list(cat.catalog_refs) == ['Forecast Model Data', 'Forecast Products and Analyses', 'Observation Data', 'Radar Data', 'Satellite Data', 'Unidata case studies'] @recorder.use_cassette('cat_non_standard_context_path') def test_non_standard_context_path(): """Test accessing TDS with non-standard Context Path.""" url = 'http://ereeftds.bom.gov.au/ereefs/tds/catalog/ereef/mwq/P1A/catalog.xml' cat = TDSCatalog(url) ds = cat.datasets['A20020101.P1A.ANN_MIM_RMP.nc'] expected = ('http://ereeftds.bom.gov.au/ereefs/tds/dodsC/ereef/mwq/' 'P1A/A20020101.P1A.ANN_MIM_RMP.nc') assert ds.access_urls['OPENDAP'] == expected @recorder.use_cassette('cat_access_elements') def test_access_elements(): """Test parsing access elements in TDS client catalog.""" url = 'http://oceandata.sci.gsfc.nasa.gov/opendap/SeaWiFS/L3SMI/2001/001/catalog.xml' cat = TDSCatalog(url) assert len(list(cat.datasets)) != 0 @recorder.use_cassette('cat_only_http') def test_simple_service_within_compound(): """Test parsing of a catalog that asks for a single service within a compound one.""" url = ('http://thredds-test.unidata.ucar.edu/thredds/catalog/noaaport/text/' 'tropical/atlantic/hdob/catalog.xml') cat = TDSCatalog(url) assert (cat.datasets[0].access_urls == {'HTTPServer': 'http://thredds-test.unidata.ucar.edu/thredds/' 'fileServer/noaaport/text/tropical/atlantic/hdob/' 'High_density_obs_20170824.txt'}) @recorder.use_cassette('rsmas_ramadda') def test_ramadda_catalog(): """Test parsing a catalog from RAMADDA.""" url = 'http://weather.rsmas.miami.edu/repository?output=thredds.catalog' cat = TDSCatalog(url) assert len(cat.catalog_refs) == 12 @recorder.use_cassette('rsmas_ramadda_datasets') def test_ramadda_access_urls(): """Test creating access urls from a catalog from RAMADDA.""" url = 'http://weather.rsmas.miami.edu/repository?output=thredds.catalog' # Walk down a few levels to where we can get a dataset cat = (TDSCatalog(url).catalog_refs[0].follow().catalog_refs[0].follow() .catalog_refs[0].follow()) ds = cat.datasets[3] assert ds.access_urls['opendap'] == ('http://weather.rsmas.miami.edu/repository/opendap/' 'synth:a43c1cc4-1cf2-4365-97b9-6768b8201407:L3YyYl91c' '2VzRUNPQS9keW5hbW9fYmFzaWNfdjJiXzIwMTFhbGwubmM=' '/entry.das') @recorder.use_cassette('tds50_catalogref_follow') def test_tds50_catalogref_follow(): """Test following a catalog ref url on TDS 5.""" cat = TDSCatalog('http://thredds-test.unidata.ucar.edu/thredds/catalog.xml') assert len(cat.catalog_refs[0].follow().catalog_refs) == 59 @recorder.use_cassette('top_level_cat') def test_catalog_ref_str(): """Test that catalog references are properly represented as strings.""" url = 'http://thredds.ucar.edu/thredds/catalog.xml' cat = TDSCatalog(url) assert str(cat.catalog_refs[0]) == 'Forecast Model Data' @recorder.use_cassette('ncei_embedded_metadata') def test_catalog_with_embedded_metadata_elements(): """Test catalog with embedded metadata elements.""" url = 'https://www.ncei.noaa.gov/thredds/catalog/namanl/201802/20180220/catalog.xml' cat = TDSCatalog(url) md = cat.metadata assert 'external_metadata' in md assert 'serviceName' in md @recorder.use_cassette('latest_resolver_on_latest_dataset') def test_latest_resolver_fail(): """Test getting latest on catalog that does not have a resolver.""" cat = TDSCatalog('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/GFS/' 'Global_0p25deg_ana/latest.xml') latest = '' with pytest.raises(AttributeError) as excinfo: latest = cat.latest assert latest == '' assert '"latest" not available for this catalog' in str(excinfo.value)
challenge_1/python/jcpattison/src/reverse.py
rchicoli/2017-challenges
271
12706642
<reponame>rchicoli/2017-challenges a = input("Enter your string to reverse: \n") print(a[::-1])
projects/DensePose/tests/test_video_keyframe_dataset.py
mmabrouk/detectron2
21,274
12706671
<gh_stars>1000+ # Copyright (c) Facebook, Inc. and its affiliates. import contextlib import os import random import tempfile import unittest import torch import torchvision.io as io from densepose.data.transform import ImageResizeTransform from densepose.data.video import RandomKFramesSelector, VideoKeyframeDataset try: import av except ImportError: av = None # copied from torchvision test/test_io.py def _create_video_frames(num_frames, height, width): y, x = torch.meshgrid(torch.linspace(-2, 2, height), torch.linspace(-2, 2, width)) data = [] for i in range(num_frames): xc = float(i) / num_frames yc = 1 - float(i) / (2 * num_frames) d = torch.exp(-((x - xc) ** 2 + (y - yc) ** 2) / 2) * 255 data.append(d.unsqueeze(2).repeat(1, 1, 3).byte()) return torch.stack(data, 0) # adapted from torchvision test/test_io.py @contextlib.contextmanager def temp_video(num_frames, height, width, fps, lossless=False, video_codec=None, options=None): if lossless: if video_codec is not None: raise ValueError("video_codec can't be specified together with lossless") if options is not None: raise ValueError("options can't be specified together with lossless") video_codec = "libx264rgb" options = {"crf": "0"} if video_codec is None: video_codec = "libx264" if options is None: options = {} data = _create_video_frames(num_frames, height, width) with tempfile.NamedTemporaryFile(suffix=".mp4") as f: f.close() io.write_video(f.name, data, fps=fps, video_codec=video_codec, options=options) yield f.name, data os.unlink(f.name) @unittest.skipIf(av is None, "PyAV unavailable") class TestVideoKeyframeDataset(unittest.TestCase): def test_read_keyframes_all(self): with temp_video(60, 300, 300, 5, video_codec="mpeg4") as (fname, data): video_list = [fname] category_list = [None] dataset = VideoKeyframeDataset(video_list, category_list) self.assertEqual(len(dataset), 1) data1, categories1 = dataset[0]["images"], dataset[0]["categories"] self.assertEqual(data1.shape, torch.Size((5, 3, 300, 300))) self.assertEqual(data1.dtype, torch.float32) self.assertIsNone(categories1[0]) return self.assertTrue(False) def test_read_keyframes_with_selector(self): with temp_video(60, 300, 300, 5, video_codec="mpeg4") as (fname, data): video_list = [fname] category_list = [None] random.seed(0) frame_selector = RandomKFramesSelector(3) dataset = VideoKeyframeDataset(video_list, category_list, frame_selector) self.assertEqual(len(dataset), 1) data1, categories1 = dataset[0]["images"], dataset[0]["categories"] self.assertEqual(data1.shape, torch.Size((3, 3, 300, 300))) self.assertEqual(data1.dtype, torch.float32) self.assertIsNone(categories1[0]) return self.assertTrue(False) def test_read_keyframes_with_selector_with_transform(self): with temp_video(60, 300, 300, 5, video_codec="mpeg4") as (fname, data): video_list = [fname] category_list = [None] random.seed(0) frame_selector = RandomKFramesSelector(1) transform = ImageResizeTransform() dataset = VideoKeyframeDataset(video_list, category_list, frame_selector, transform) data1, categories1 = dataset[0]["images"], dataset[0]["categories"] self.assertEqual(len(dataset), 1) self.assertEqual(data1.shape, torch.Size((1, 3, 800, 800))) self.assertEqual(data1.dtype, torch.float32) self.assertIsNone(categories1[0]) return self.assertTrue(False)
qcengine/procedures/nwchem_opt/__init__.py
MolSSI/dqm_compute
105
12706703
from typing import Union, Dict, Any from qcelemental.models import OptimizationInput, AtomicInput, OptimizationResult, Provenance from qcengine.config import TaskConfig from qcengine.exceptions import UnknownError, InputError from qcengine.procedures.nwchem_opt.harvester import harvest_as_atomic_result from qcengine.programs.nwchem.runner import NWChemHarness from qcengine.procedures.model import ProcedureHarness class NWChemDriverProcedure(ProcedureHarness): """Structural relaxation using NWChem's optimizer""" _defaults = {"name": "NWChemDriver", "procedure": "optimization"} class Config(ProcedureHarness.Config): pass def found(self, raise_error: bool = False) -> bool: nwc_harness = NWChemHarness() return nwc_harness.found(raise_error) def get_version(self) -> str: nwc_harness = NWChemHarness() return nwc_harness.get_version() def build_input_model(self, data: Union[Dict[str, Any], "OptimizationInput"]) -> OptimizationInput: return self._build_model(data, OptimizationInput) def compute(self, input_data: OptimizationInput, config: TaskConfig) -> "BaseModel": nwc_harness = NWChemHarness() self.found(raise_error=True) # Unify the keywords from the OptimizationInput and QCInputSpecification # Optimization input will override, but don't tell users this as it seems unnecessary keywords = input_data.keywords.copy() keywords.update(input_data.input_specification.keywords) if keywords.get("program", "nwchem").lower() != "nwchem": raise InputError("NWChemDriver procedure only works with NWChem") # Make an atomic input atomic_input = AtomicInput( molecule=input_data.initial_molecule, driver="energy", keywords=keywords, **input_data.input_specification.dict(exclude={"driver", "keywords"}), ) # Build the inputs for the job job_inputs = nwc_harness.build_input(atomic_input, config) # Replace the last line with a "task {} optimize" input_file: str = job_inputs["infiles"]["nwchem.nw"].strip() beginning, last_line = input_file.rsplit("\n", 1) assert last_line.startswith("task") last_line = f"task {last_line.split(' ')[1]} optimize" job_inputs["infiles"]["nwchem.nw"] = f"{beginning}\n{last_line}" # Run it! success, dexe = nwc_harness.execute(job_inputs) # Check for common errors if "There is an error in the input file" in dexe["stdout"]: raise InputError(dexe["stdout"]) if "not compiled" in dexe["stdout"]: # recoverable with a different compilation with optional modules raise InputError(dexe["stdout"]) # Parse it if success: dexe["outfiles"]["stdout"] = dexe["stdout"] dexe["outfiles"]["stderr"] = dexe["stderr"] return self.parse_output(dexe["outfiles"], input_data) else: raise UnknownError(dexe["stdout"]) def parse_output(self, outfiles: Dict[str, str], input_model: OptimizationInput) -> OptimizationResult: # Get the stdout from the calculation (required) stdout = outfiles.pop("stdout") stderr = outfiles.pop("stderr") # Parse out the atomic results from the file atomic_results = harvest_as_atomic_result(input_model, stdout) # Isolate the converged result final_step = atomic_results[-1] return OptimizationResult( initial_molecule=input_model.initial_molecule, input_specification=input_model.input_specification, final_molecule=final_step.molecule, trajectory=atomic_results, energies=[float(r.extras["qcvars"]["CURRENT ENERGY"]) for r in atomic_results], stdout=stdout, stderr=stderr, success=True, provenance=Provenance(creator="NWChemRelax", version=self.get_version(), routine="nwchem_opt"), )
examples/render/dimension_linear.py
mozman/ezdxf
515
12706709
<filename>examples/render/dimension_linear.py # Purpose: using DIMENSION horizontal, vertical and rotated # Copyright (c) 2018-2021, <NAME> # License: MIT License from typing import TYPE_CHECKING import sys import math import pathlib import random import ezdxf from ezdxf.tools.standards import setup_dimstyle from ezdxf.math import Vec3, UCS import logging if TYPE_CHECKING: from ezdxf.eztypes import DimStyle, DimStyleOverride # ======================================== # IMPORTANT: # this script uses f-strings (Python 3.6) # ======================================== if sys.version_info < (3, 6): print("This script requires Python 3.6 (f-strings)") sys.exit() # ======================================== # Setup logging # ======================================== logging.basicConfig(level="WARNING") # ======================================== # Setup your preferred output directory # ======================================== OUTDIR = pathlib.Path("~/Desktop/Outbox").expanduser() if not OUTDIR.exists(): OUTDIR = pathlib.Path() # ======================================== # Default text attributes # ======================================== TEXT_ATTRIBS = { "height": 0.25, "style": ezdxf.options.default_dimension_text_style, } DIM_TEXT_STYLE = ezdxf.options.default_dimension_text_style # ======================================================= # Discarding dimension rendering is possible # for BricsCAD, but is incompatible to AutoCAD -> error # ======================================================= BRICSCAD = False def set_text_style(doc, textstyle=DIM_TEXT_STYLE, name="EZDXF"): if doc.dxfversion == "AC1009": return dimstyle = doc.dimstyles.get(name) # type: DimStyle dimstyle.dxf.dimtxsty = textstyle def linear_tutorial(dxfversion="R12"): doc = ezdxf.new(dxfversion, setup=True) msp = doc.modelspace() msp.add_line((0, 0), (3, 0)) msp.add_line((0, 7), (10, 0)) # horizontal DIMENSION # Default DimStyle EZDXF: 1 drawing unit == 1m; scale 1: 100; length_factor=100 -> measurement in cm # # base: defines the dimension line, ezdxf accepts any point on the dimension line # p1: defines the start point of the first extension line, which also defines the first point to measure # p2: defines the start point of the second extension line, which also defines the second point to measure dim = msp.add_linear_dim( base=(3, 2), p1=(0, 0), p2=(3, 0), dimstyle="EZDXF", override={"dimtxsty": "OpenSans"}, ) # Necessary second step, to create the BLOCK entity with the DIMENSION geometry. # ezdxf supports DXF R2000 attributes for DXF R12 rendering, but they have to be applied by the DIMSTYLE override # feature, this additional attributes are not stored in the XDATA section of the DIMENSION entity, they are just # used to render the DIMENSION entity. # The return value `dim` is not a DIMENSION entity, instead a DimStyleOverride object is returned, the DIMENSION # entity is stored as dim.dimension, see also ezdxf.override.DimStyleOverride class. dim.render() # rotated DIMENSION without `override` uses ezdxf.options.default_dimension_text_style (OpenSansCondensed-Light) # angle: defines the angle of the dimension line in relation to the x-axis of the WCS or UCS, measurement is the # distance between first and second measurement point in direction of `angle` dim2 = msp.add_linear_dim( base=(10, 2), p1=(7, 0), p2=(10, 0), angle=-30, dimstyle="EZDXF", override={ "dimdle": 0, "dimdec": 2, "dimtfill": 2, # custom text fill "dimtfillclr": 4, # cyan }, ) # type: DimStyleOverride # Some properties have setter methods for convenience, this is also the reason for not calling dim2.render() # automatically. dim2.set_arrows(blk=ezdxf.ARROWS.closed_filled, size=0.25) dim2.set_text_align(halign="right") dim2.render() doc.set_modelspace_vport(height=5, center=(5, 0)) doc.saveas(OUTDIR / f"dim_linear_{dxfversion}_tutorial.dxf") def example_background_fill(dxfversion="R12"): """ This example shows the background fill feature, ezdxf uses MTEXT for this feature and has no effect in DXF R12. """ doc = ezdxf.new(dxfversion, setup=True) msp = doc.modelspace() msp.add_line((0, 2.2), (10, 2.2)) dim = msp.add_linear_dim( base=(0, 2), p1=(0, 0), p2=(3, 0), dimstyle="EZDXF", override={ "dimtfill": 1, # background color }, ) # type: DimStyleOverride dim.set_text("bgcolor") dim.render() dim = msp.add_linear_dim( base=(0, 2), p1=(5, 0), p2=(8, 0), dimstyle="EZDXF", override={ "dimtfill": 2, # custom text fill "dimtfillclr": 4, # cyan }, ) # type: DimStyleOverride dim.set_text("cyan") dim.render() doc.saveas(OUTDIR / f"background_fill_example_{dxfversion}.dxf") def example_for_all_text_placings_R12(): doc = ezdxf.new("R12", setup=True) example_for_all_text_placings(doc, "dim_linear_text_placing_R12.dxf") def example_for_all_text_placings_ucs_R12(): ucs = UCS(origin=(10, 10, 0), ux=(3, 1, 0), uz=(0, 0, 1)) doc = ezdxf.new("R12", setup=True) example_for_all_text_placings( doc, "dim_linear_text_placing_ucs_R12.dxf", ucs ) def example_for_all_text_placings_in_space_R12(): ucs = UCS(ux=(1, 1, 0), uy=(0, 0, 1)) doc = ezdxf.new("R12", setup=True) example_for_all_text_placings( doc, "dim_linear_text_placing_in_space_R12.dxf", ucs ) def example_for_all_text_placings_R2007(): doc = ezdxf.new("R2007", setup=True) set_text_style(doc) example_for_all_text_placings(doc, "dim_linear_text_placing_R2007.dxf") def example_for_all_text_placings_ucs_R2007(): ucs = UCS(origin=(10, 10, 0), ux=(3, 1, 0), uz=(0, 0, 1)) doc = ezdxf.new("R2007", setup=True) set_text_style(doc) example_for_all_text_placings( doc, "dim_linear_text_placing_ucs_R2007.dxf", ucs ) def example_for_all_text_placings_in_space_R2007(): ucs = ( UCS(origin=(20, 20, 0)) .rotate_local_x(math.radians(45)) .rotate_local_z(math.radians(45)) ) doc = ezdxf.new("R2007", setup=True) set_text_style(doc) example_for_all_text_placings( doc, "dim_linear_text_placing_in_space_R2007.dxf", ucs ) def example_for_all_text_placings(doc, filename, ucs=None): """ This example shows many combinations of dimension text placing by `halign`, `valign` and user defined location override. Args: doc: DXF drawing filename: file name for saving ucs: user defined coordinate system """ def add_text(lines, insert): insert += (0.2, 0) attribs = dict(TEXT_ATTRIBS) line_space = 0.4 delta = Vec3(0, line_space, 0) for line in lines: text = msp.add_text(line, dxfattribs=attribs).set_pos(insert) if ucs: text.transform(ucs.matrix) insert -= delta msp = doc.modelspace() setup_dimstyle( doc, name="TICK", fmt="EZ_M_100_H25_CM", style=DIM_TEXT_STYLE, ) setup_dimstyle( doc, name="ARCHTICK", fmt="EZ_M_100_H25_CM", blk=ezdxf.ARROWS.architectural_tick, style=DIM_TEXT_STYLE, ) setup_dimstyle( doc, name="CLOSEDBLANK", fmt="EZ_M_100_H25_CM", blk=ezdxf.ARROWS.closed_blank, style=DIM_TEXT_STYLE, ) def text(dimstyle, x, y, halign, valign, oblique=0): """ Default dimension text placing Args: dimstyle: dimstyle to use x: start point x y: start point y halign: horizontal text alignment - `left`, `right`, `center`, `above1`, `above2`, requires DXF R2000+ valign: vertical text alignment `above`, `center`, `below` oblique: angle of oblique extension line, 0 = orthogonal to dimension line """ dimattr = {} if oblique: dimattr["oblique_angle"] = oblique base = (x, y + 2) # wide dim = msp.add_linear_dim( base=base, p1=(x, y), p2=(x + 5, y), dimstyle=dimstyle, dxfattribs=dimattr, ) # type: DimStyleOverride dim.set_text_align(halign=halign, valign=valign) dim.render(ucs=ucs, discard=BRICSCAD) add_text( [f"halign={halign}", f"valign={valign}", f"oblique={oblique}"], insert=Vec3(x, y), ) # narrow dim = msp.add_linear_dim( base=base, p1=(x + 7, y), p2=(x + 7.3, y), dimstyle=dimstyle, dxfattribs=dimattr, ) # type: DimStyleOverride dim.set_text_align(halign=halign, valign=valign) dim.render(ucs=ucs, discard=BRICSCAD) # arrows inside, text outside dim = msp.add_linear_dim( base=base, p1=(x + 10, y), p2=(x + 10.9999, y), dimstyle=dimstyle, override={"dimdec": 2}, dxfattribs=dimattr, ) # type: DimStyleOverride dim.set_text_align(halign=halign, valign=valign) dim.render(ucs=ucs, discard=BRICSCAD) # narrow and force text inside dim = msp.add_linear_dim( base=base, p1=(x + 14, y), p2=(x + 14.3, y), dimstyle=dimstyle, override={"dimtix": 1}, dxfattribs=dimattr, ) # type: DimStyleOverride dim.set_text_align(halign=halign, valign=valign) dim.render(ucs=ucs, discard=BRICSCAD) def user_text_free(dimstyle, x=0, y=0, leader=False): """ User defined dimension text placing. Args: dimstyle: dimstyle to use x: start point x y: start point y leader: use leader line if True """ override = { "dimdle": 0.0, "dimexe": 0.5, # length of extension line above dimension line "dimexo": 0.5, # extension line offset "dimtfill": 2, # custom text fill "dimtfillclr": 4, # cyan } base = (x, y + 2) dim = msp.add_linear_dim( base=base, p1=(x, y), p2=(x + 3, y), dimstyle=dimstyle, override=override, ) # type: DimStyleOverride location = Vec3(x + 3, y + 3, 0) dim.set_location(location, leader=leader) dim.render(ucs=ucs, discard=BRICSCAD) add_text( [f"usr absolute={location}", f"leader={leader}"], insert=Vec3(x, y) ) x += 4 dim = msp.add_linear_dim( base=base, p1=(x, y), p2=(x + 3, y), dimstyle=dimstyle, override=override, ) # type: DimStyleOverride relative = Vec3(-1, +1) # relative to dimline center dim.set_location(relative, leader=leader, relative=True) dim.render(ucs=ucs, discard=BRICSCAD) add_text( [f"usr relative={relative}", f"leader={leader}"], insert=Vec3(x, y) ) x += 4 dim = msp.add_linear_dim( base=base, p1=(x, y), p2=(x + 3, y), dimstyle=dimstyle, override=override, ) # type: DimStyleOverride dh = -0.7 dv = 1.5 dim.shift_text(dh, dv) dim.render(ucs=ucs, discard=BRICSCAD) add_text( [ f"shift text=({dh}, {dv})", ], insert=Vec3(x, y), ) override["dimtix"] = 1 # force text inside x += 4 dim = msp.add_linear_dim( base=base, p1=(x, y), p2=(x + 0.3, y), dimstyle=dimstyle, override=override, ) # type: DimStyleOverride dh = 0 dv = 1 dim.shift_text(dh, dv) dim.render(ucs=ucs, discard=BRICSCAD) add_text( [ f"shift text=({dh}, {dv})", ], insert=Vec3(x, y), ) dimstyles = ["TICK", "ARCHTICK", "CLOSEDBLANK"] xoffset = 17 yoffset = 5 for col, dimstyle in enumerate(dimstyles): row = 0 for halign in ("center", "left", "right"): text( dimstyle, x=col * xoffset, y=row * yoffset, halign=halign, valign="above", ) row += 1 text( dimstyle, x=col * xoffset, y=row * yoffset, halign=halign, valign="center", ) row += 1 text( dimstyle, x=col * xoffset, y=row * yoffset, halign=halign, valign="below", ) row += 1 text( dimstyle, x=col * xoffset, y=row * yoffset, halign="above1", valign="above", ) row += 1 text( dimstyle, x=col * xoffset, y=row * yoffset, halign="above2", valign="above", ) row += 1 user_text_free(dimstyle, x=col * xoffset, y=row * yoffset) row += 1 user_text_free(dimstyle, x=col * xoffset, y=row * yoffset, leader=True) row += 1 text( dimstyle, x=col * xoffset, y=row * yoffset, halign="center", valign="above", oblique=70, ) row += 1 text( dimstyle, x=col * xoffset, y=row * yoffset, halign="above1", valign="above", oblique=80, ) row += 1 doc.saveas(OUTDIR / filename) def example_multi_point_linear_dimension(): """ Example for using the ezdxf "multi-point linear dimension" feature, which generates dimension entities for multiple points at ones and tries to move dimension text to a readable location. This feature works best with DXF R2007+. """ doc = ezdxf.new("R2007", setup=True) msp = doc.modelspace() points = [(0, 0), (5, 1), (5.2, 1), (5.4, 0), (7, 0), (10, 3)] msp.add_lwpolyline(points) # create quick a new DIMSTYLE as alternative to overriding DIMSTYLE attributes dimstyle = doc.dimstyles.duplicate_entry( "EZDXF", "WITHTFILL" ) # type: DimStyle dimstyle.dxf.dimtfill = 1 msp.add_multi_point_linear_dim( base=(0, 5), points=points, dimstyle="WITHTFILL" ) doc.saveas(OUTDIR / f"multi_point_linear_dim_R2007.dxf") def random_point(start, end): dist = end - start return Vec3(start + random.random() * dist, start + random.random() * dist) def example_random_multi_point_linear_dimension( count=10, length=20, discard=BRICSCAD ): """ Example for using the ezdxf "multi-point linear dimension" feature, which generates dimension entities for multiple points at ones and tries to move dimension text to a readable location. This feature works best with DXF R2007+. """ doc = ezdxf.new("R2007", setup=True) msp = doc.modelspace() # create a random polyline. points = [random_point(0, length) for _ in range(count)] msp.add_lwpolyline(points, dxfattribs={"color": 1}) # create quick a new DIMSTYLE as alternative to overriding DIMSTYLE attributes dimstyle = doc.dimstyles.duplicate_entry( "EZDXF", "WITHTFILL" ) # type: DimStyle dimstyle.dxf.dimtfill = 1 dimstyle.dxf.dimdec = 2 dimstyle = doc.dimstyles.duplicate_entry( "WITHTFILL", "WITHTXT" ) # type: DimStyle dimstyle.dxf.dimblk = ezdxf.ARROWS.closed dimstyle.dxf.dimtxsty = "STANDARD" dimstyle.dxf.dimrnd = 0.5 dimstyle.set_text_align(valign="center") msp.add_multi_point_linear_dim( base=(0, length + 2), points=points, dimstyle="WITHTFILL", discard=discard, ) msp.add_multi_point_linear_dim( base=(-2, 0), points=points, angle=90, dimstyle="WITHTFILL", discard=discard, ) msp.add_multi_point_linear_dim( base=(10, -10), points=points, angle=45, dimstyle="WITHTXT", discard=discard, ) doc.saveas(OUTDIR / f"multi_random_point_linear_dim_R2007.dxf") def linear_all_arrow_style( version="R12", dimltype=None, dimltex1=None, dimltex2=None, filename="" ): """ Show all AutoCAD standard arrows on a linear dimension. Args: version: DXF version dimltype: dimension linetype dimltex1: linetype for first extension line dimltex2: linetype for second extension line filename: filename for saving """ doc = ezdxf.new(version, setup=True) msp = doc.modelspace() ezdxf_dimstyle = doc.dimstyles.get("EZDXF") # type: DimStyle ezdxf_dimstyle.copy_to_header(doc) for index, name in enumerate(sorted(ezdxf.ARROWS.__all_arrows__)): y = index * 4 attributes = { "dimtxsty": "LiberationMono", "dimdle": 0.5, } if dimltype: attributes["dimltype"] = dimltype if dimltex1: attributes["dimltex1"] = dimltex1 if dimltex2: attributes["dimltex2"] = dimltex2 dim = msp.add_linear_dim( base=(3, y + 2), p1=(0, y), p2=(3, y), dimstyle="EZDXF", override=attributes, ) # type: DimStyleOverride dim.set_arrows(blk=name, size=0.25) dim.render() if not filename: filename = "all_arrow_styles_dim_{}.dxf".format(version) doc.saveas(OUTDIR / filename) def linear_tutorial_using_tolerances(version="R2000"): """ Shows usage of tolerances for the dimension text. ezdxf uses MTEXT features for tolerance rendering and therefore requires DXF R2000+, but if you are using a friendly CAD application like BricsCAD, you can let the CAD application do the rendering job, be aware this files are not AutoCAD compatible. Args: version: DXF version """ doc = ezdxf.new(version, setup=True) msp = doc.modelspace() # DO NOT RENDER BY EZDXF for DXF R12 discard = version == "R12" tol_style = doc.dimstyles.duplicate_entry( "EZDXF", "TOLERANCE" ) # type: DimStyle # not all features are supported by DXF R12: # zero suppression (DIMTZIN), align (DIMTOLJ) and dec (DIMTDEC) require DXF R2000+ tol_style.set_tolerance(0.1, hfactor=0.5, align="top", dec=2) msp.add_linear_dim( base=(0, 3), p1=(0, 0), p2=(10, 0), dimstyle="tolerance" ).render(discard=discard) dim = msp.add_linear_dim( base=(0, 3), p1=(15, 0), p2=(15.5, 0), dimstyle="tolerance" ) # set tolerance attributes by dim style override dim.set_tolerance(0.1, 0.15, hfactor=0.4, align="middle", dec=2) dim.render(discard=discard) doc.saveas(OUTDIR / f"dimensions_with_tolerance_{version}.dxf") def linear_tutorial_using_limits(version="R2000"): """ Shows usage of limits for the dimension text, limits are the lower and upper limit for the measured distance, the measurement itself is not shown. ezdxf uses MTEXT features for limits rendering and therefore requires DXF R2000+, but if you are using a friendly CAD application like BricsCAD, you can let the CAD application do the rendering job, be aware this files are not AutoCAD compatible. Args: version: DXF version """ doc = ezdxf.new(version, setup=True) msp = doc.modelspace() # DO NOT RENDER BY EZDXF for DXF R12 discard = version == "R12" tol_style = doc.dimstyles.duplicate_entry( "EZDXF", "LIMITS" ) # type: DimStyle # not all features are supported by DXF R12: # zero suppression (DIMTZIN), align (DIMTOLJ) and dec (DIMTDEC) require DXF R2000+ tol_style.set_limits(upper=0.1, lower=0.1, hfactor=0.5, dec=2) msp.add_linear_dim( base=(0, 3), p1=(0, 0), p2=(10, 0), dimstyle="limits" ).render(discard=discard) msp.add_linear_dim( base=(0, 3), p1=(15, 0), p2=(15.5, 0), dimstyle="limits" ).render(discard=discard) doc.saveas(OUTDIR / f"dimensions_with_limits_{version}.dxf") def linear_tutorial_using_tvp(): """ For the vertical text alignment `center`, exists an additional DXF feature, to move the dimension text vertical up and down (DIMTVP). Vertical distance dimension line to text center = text_height * vshift (DIMTVP) """ doc = ezdxf.new("R2000", setup=True) msp = doc.modelspace() style = doc.dimstyles.duplicate_entry("EZDXF", "TVP") # type: DimStyle # shift text upwards style.set_text_align(valign="center", vshift=2.0) msp.add_linear_dim( base=(0, 3), p1=(0, 0), p2=(10, 0), dimstyle="TVP" ).render() msp.add_linear_dim( base=(0, 3), p1=(15, 0), p2=(15.5, 0), dimstyle="TVP" ).render() style = doc.dimstyles.duplicate_entry("EZDXF", "TVP2") # type: DimStyle # shift text downwards style.set_text_align(valign="center", vshift=-2.0) msp.add_linear_dim( base=(0, 7), p1=(0, 5), p2=(10, 5), dimstyle="TVP2" ).render() msp.add_linear_dim( base=(0, 7), p1=(15, 5), p2=(15.5, 5), dimstyle="TVP2" ).render() doc.saveas(OUTDIR / "dimensions_with_dimtvp.dxf") def linear_tutorial_ext_lines(): doc = ezdxf.new("R12", setup=True) msp = doc.modelspace() msp.add_line((0, 0), (3, 0)) attributes = { "dimexo": 0.5, "dimexe": 0.5, "dimdle": 0.5, "dimblk": ezdxf.ARROWS.none, "dimclrt": 3, } msp.add_linear_dim( base=(3, 2), p1=(0, 0), p2=(3, 0), dimstyle="EZDXF", override=attributes ).render() attributes = { "dimtad": 4, "dimclrd": 2, "dimclrt": 4, } msp.add_linear_dim( base=(10, 2), p1=(7, 0), p2=(10, 0), angle=-30, dimstyle="EZDXF", override=attributes, ).render() msp.add_linear_dim( base=(3, 5), p1=(0, 10), p2=(3, 10), dimstyle="EZDXF", override=attributes, ).render() doc.saveas(OUTDIR / "dim_linear_R12_ext_lines.dxf") def linear_EZ_M(fmt): doc = ezdxf.new("R12", setup=("linetypes", "styles")) msp = doc.modelspace() ezdxf.setup_dimstyle(doc, fmt) msp.add_line((0, 0), (1, 0)) msp.add_linear_dim(base=(0, 1), p1=(0, 0), p2=(1, 0), dimstyle=fmt).render() doc.saveas(OUTDIR / f"dim_linear_R12_{fmt}.dxf") def linear_EZ_CM(fmt): doc = ezdxf.new("R12", setup=("linetypes", "styles")) msp = doc.modelspace() ezdxf.setup_dimstyle(doc, fmt) msp.add_line((0, 0), (100, 0)) msp.add_linear_dim( base=(0, 100), p1=(0, 0), p2=(100, 0), dimstyle=fmt ).render() doc.saveas(OUTDIR / f"dim_linear_R12_{fmt}.dxf") def linear_EZ_MM(fmt): doc = ezdxf.new("R12", setup=("linetypes", "styles")) msp = doc.modelspace() ezdxf.setup_dimstyle(doc, fmt) msp.add_line((0, 0), (1000, 0)) msp.add_linear_dim( base=(0, 1000), p1=(0, 0), p2=(1000, 0), dimstyle=fmt ).render() doc.saveas(OUTDIR / f"dim_linear_R12_{fmt}.dxf") ALL = True if __name__ == "__main__": example_for_all_text_placings_ucs_R12() example_for_all_text_placings_in_space_R12() example_for_all_text_placings_ucs_R2007() example_for_all_text_placings_in_space_R2007() if ALL: linear_tutorial("R2007") linear_tutorial_using_tvp() linear_tutorial_using_limits("R2000") linear_tutorial_using_limits("R12") linear_tutorial_using_tolerances("R2000") linear_tutorial_using_tolerances("R12") linear_tutorial("R2007") linear_tutorial("R12") example_background_fill("R2007") example_for_all_text_placings_R12() example_for_all_text_placings_R2007() example_multi_point_linear_dimension() example_random_multi_point_linear_dimension(count=10, length=20) linear_all_arrow_style("R12") linear_all_arrow_style( "R12", dimltex1="DOT2", dimltex2="DOT2", filename="dotted_extension_lines_R12.dxf", ) linear_all_arrow_style("R2000") linear_all_arrow_style( "R2007", dimltex1="DOT2", dimltex2="DOT2", filename="dotted_extension_lines_R2007.dxf", ) linear_tutorial_ext_lines() linear_EZ_M("EZ_M_100_H25_CM") linear_EZ_M("EZ_M_1_H25_CM") linear_EZ_CM("EZ_CM_100_H25_CM") linear_EZ_CM("EZ_CM_1_H25_CM") linear_EZ_MM("EZ_MM_100_H25_MM") linear_EZ_MM("EZ_MM_1_H25_MM")
stable_nalu/network/number_translation.py
wlm2019/Neural-Arithmetic-Units
147
12706716
import torch from ..abstract import ExtendedTorchModule from ..layer import GeneralizedLayer, GeneralizedCell class NumberTranslationNetwork(ExtendedTorchModule): UNIT_NAMES = GeneralizedCell.UNIT_NAMES def __init__(self, unit_name, embedding_size=2, # 1 for the number, 1 for the gate ? hidden_size=2, # 1 for the number, 1 for the gate ? dictionary_size=30, writer=None, **kwags): super().__init__('network', writer=writer, **kwags) self.unit_name = unit_name self.embedding_size = embedding_size self.hidden_size = hidden_size self.dictionary_size = dictionary_size self.register_buffer('lstm_zero_state_h', torch.Tensor(hidden_size)) self.register_buffer('lstm_zero_state_c', torch.Tensor(hidden_size)) self.register_buffer('output_zero_state', torch.Tensor(1)) self.embedding = torch.nn.Embedding(dictionary_size, embedding_size) self.lstm_cell = torch.nn.LSTMCell(embedding_size, hidden_size) self.output_cell = GeneralizedCell(hidden_size, 1, unit_name, writer=self.writer, name='recurrent_output', **kwags) self.reset_parameters() def reset_parameters(self): torch.nn.init.zeros_(self.lstm_zero_state_h) torch.nn.init.zeros_(self.lstm_zero_state_c) torch.nn.init.zeros_(self.output_zero_state) self.embedding.reset_parameters() self.lstm_cell.reset_parameters() self.output_cell.reset_parameters() def forward(self, x): """Performs recurrent iterations over the input. Arguments: input: Expected to have the shape [obs, time] """ # Perform recurrent iterations over the input h_1_tm1 = self.lstm_zero_state_h.repeat(x.size(0), 1) c_1_tm1 = self.lstm_zero_state_c.repeat(x.size(0), 1) h_2_tm1 = self.output_zero_state.repeat(x.size(0), 1) for t in range(x.size(1)): x_t = x[:, t] h_0_t = self.embedding(x_t) h_1_t, c_1_t = self.lstm_cell(h_0_t, (h_1_tm1, c_1_tm1)) h_2_t = self.output_cell(h_1_t, h_2_tm1) # Just use previuse results if x is a <pad> token h_2_t = torch.where(x[:, t].view(-1, 1) == 0, h_2_tm1, h_2_t) # Prepear for next iterations h_1_tm1 = h_1_t c_1_tm1 = c_1_t h_2_tm1 = h_2_t return h_2_t def extra_repr(self): return 'unit_name={}, embedding_size={}, hidden_size={}, dictionary_size={}'.format( self.unit_name, self.embedding_size, self.hidden_size, self.dictionary_size )
sdk/python/pulumi_gcp/monitoring/alert_policy.py
sisisin/pulumi-gcp
121
12706727
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._inputs import * __all__ = ['AlertPolicyArgs', 'AlertPolicy'] @pulumi.input_type class AlertPolicyArgs: def __init__(__self__, *, combiner: pulumi.Input[str], conditions: pulumi.Input[Sequence[pulumi.Input['AlertPolicyConditionArgs']]], display_name: pulumi.Input[str], documentation: Optional[pulumi.Input['AlertPolicyDocumentationArgs']] = None, enabled: Optional[pulumi.Input[bool]] = None, notification_channels: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, project: Optional[pulumi.Input[str]] = None, user_labels: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ The set of arguments for constructing a AlertPolicy resource. :param pulumi.Input[str] combiner: How to combine the results of multiple conditions to determine if an incident should be opened. Possible values are `AND`, `OR`, and `AND_WITH_MATCHING_RESOURCE`. :param pulumi.Input[Sequence[pulumi.Input['AlertPolicyConditionArgs']]] conditions: A list of conditions for the policy. The conditions are combined by AND or OR according to the combiner field. If the combined conditions evaluate to true, then an incident is created. A policy can have from one to six conditions. Structure is documented below. :param pulumi.Input[str] display_name: A short name or phrase used to identify the condition in dashboards, notifications, and incidents. To avoid confusion, don't use the same display name for multiple conditions in the same policy. :param pulumi.Input['AlertPolicyDocumentationArgs'] documentation: Documentation that is included with notifications and incidents related to this policy. Best practice is for the documentation to include information to help responders understand, mitigate, escalate, and correct the underlying problems detected by the alerting policy. Notification channels that have limited capacity might not show this documentation. Structure is documented below. :param pulumi.Input[bool] enabled: Whether or not the policy is enabled. The default is true. :param pulumi.Input[Sequence[pulumi.Input[str]]] notification_channels: Identifies the notification channels to which notifications should be sent when incidents are opened or closed or when new violations occur on an already opened incident. Each element of this array corresponds to the name field in each of the NotificationChannel objects that are returned from the notificationChannels.list method. The syntax of the entries in this field is `projects/[PROJECT_ID]/notificationChannels/[CHANNEL_ID]` :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] user_labels: This field is intended to be used for organizing and identifying the AlertPolicy objects.The field can contain up to 64 entries. Each key and value is limited to 63 Unicode characters or 128 bytes, whichever is smaller. Labels and values can contain only lowercase letters, numerals, underscores, and dashes. Keys must begin with a letter. """ pulumi.set(__self__, "combiner", combiner) pulumi.set(__self__, "conditions", conditions) pulumi.set(__self__, "display_name", display_name) if documentation is not None: pulumi.set(__self__, "documentation", documentation) if enabled is not None: pulumi.set(__self__, "enabled", enabled) if notification_channels is not None: pulumi.set(__self__, "notification_channels", notification_channels) if project is not None: pulumi.set(__self__, "project", project) if user_labels is not None: pulumi.set(__self__, "user_labels", user_labels) @property @pulumi.getter def combiner(self) -> pulumi.Input[str]: """ How to combine the results of multiple conditions to determine if an incident should be opened. Possible values are `AND`, `OR`, and `AND_WITH_MATCHING_RESOURCE`. """ return pulumi.get(self, "combiner") @combiner.setter def combiner(self, value: pulumi.Input[str]): pulumi.set(self, "combiner", value) @property @pulumi.getter def conditions(self) -> pulumi.Input[Sequence[pulumi.Input['AlertPolicyConditionArgs']]]: """ A list of conditions for the policy. The conditions are combined by AND or OR according to the combiner field. If the combined conditions evaluate to true, then an incident is created. A policy can have from one to six conditions. Structure is documented below. """ return pulumi.get(self, "conditions") @conditions.setter def conditions(self, value: pulumi.Input[Sequence[pulumi.Input['AlertPolicyConditionArgs']]]): pulumi.set(self, "conditions", value) @property @pulumi.getter(name="displayName") def display_name(self) -> pulumi.Input[str]: """ A short name or phrase used to identify the condition in dashboards, notifications, and incidents. To avoid confusion, don't use the same display name for multiple conditions in the same policy. """ return pulumi.get(self, "display_name") @display_name.setter def display_name(self, value: pulumi.Input[str]): pulumi.set(self, "display_name", value) @property @pulumi.getter def documentation(self) -> Optional[pulumi.Input['AlertPolicyDocumentationArgs']]: """ Documentation that is included with notifications and incidents related to this policy. Best practice is for the documentation to include information to help responders understand, mitigate, escalate, and correct the underlying problems detected by the alerting policy. Notification channels that have limited capacity might not show this documentation. Structure is documented below. """ return pulumi.get(self, "documentation") @documentation.setter def documentation(self, value: Optional[pulumi.Input['AlertPolicyDocumentationArgs']]): pulumi.set(self, "documentation", value) @property @pulumi.getter def enabled(self) -> Optional[pulumi.Input[bool]]: """ Whether or not the policy is enabled. The default is true. """ return pulumi.get(self, "enabled") @enabled.setter def enabled(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "enabled", value) @property @pulumi.getter(name="notificationChannels") def notification_channels(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ Identifies the notification channels to which notifications should be sent when incidents are opened or closed or when new violations occur on an already opened incident. Each element of this array corresponds to the name field in each of the NotificationChannel objects that are returned from the notificationChannels.list method. The syntax of the entries in this field is `projects/[PROJECT_ID]/notificationChannels/[CHANNEL_ID]` """ return pulumi.get(self, "notification_channels") @notification_channels.setter def notification_channels(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "notification_channels", value) @property @pulumi.getter def project(self) -> Optional[pulumi.Input[str]]: """ The ID of the project in which the resource belongs. If it is not provided, the provider project is used. """ return pulumi.get(self, "project") @project.setter def project(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "project", value) @property @pulumi.getter(name="userLabels") def user_labels(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ This field is intended to be used for organizing and identifying the AlertPolicy objects.The field can contain up to 64 entries. Each key and value is limited to 63 Unicode characters or 128 bytes, whichever is smaller. Labels and values can contain only lowercase letters, numerals, underscores, and dashes. Keys must begin with a letter. """ return pulumi.get(self, "user_labels") @user_labels.setter def user_labels(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "user_labels", value) @pulumi.input_type class _AlertPolicyState: def __init__(__self__, *, combiner: Optional[pulumi.Input[str]] = None, conditions: Optional[pulumi.Input[Sequence[pulumi.Input['AlertPolicyConditionArgs']]]] = None, creation_records: Optional[pulumi.Input[Sequence[pulumi.Input['AlertPolicyCreationRecordArgs']]]] = None, display_name: Optional[pulumi.Input[str]] = None, documentation: Optional[pulumi.Input['AlertPolicyDocumentationArgs']] = None, enabled: Optional[pulumi.Input[bool]] = None, name: Optional[pulumi.Input[str]] = None, notification_channels: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, project: Optional[pulumi.Input[str]] = None, user_labels: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ Input properties used for looking up and filtering AlertPolicy resources. :param pulumi.Input[str] combiner: How to combine the results of multiple conditions to determine if an incident should be opened. Possible values are `AND`, `OR`, and `AND_WITH_MATCHING_RESOURCE`. :param pulumi.Input[Sequence[pulumi.Input['AlertPolicyConditionArgs']]] conditions: A list of conditions for the policy. The conditions are combined by AND or OR according to the combiner field. If the combined conditions evaluate to true, then an incident is created. A policy can have from one to six conditions. Structure is documented below. :param pulumi.Input[Sequence[pulumi.Input['AlertPolicyCreationRecordArgs']]] creation_records: A read-only record of the creation of the alerting policy. If provided in a call to create or update, this field will be ignored. :param pulumi.Input[str] display_name: A short name or phrase used to identify the condition in dashboards, notifications, and incidents. To avoid confusion, don't use the same display name for multiple conditions in the same policy. :param pulumi.Input['AlertPolicyDocumentationArgs'] documentation: Documentation that is included with notifications and incidents related to this policy. Best practice is for the documentation to include information to help responders understand, mitigate, escalate, and correct the underlying problems detected by the alerting policy. Notification channels that have limited capacity might not show this documentation. Structure is documented below. :param pulumi.Input[bool] enabled: Whether or not the policy is enabled. The default is true. :param pulumi.Input[str] name: - The unique resource name for this condition. Its syntax is: projects/[PROJECT_ID]/alertPolicies/[POLICY_ID]/conditions/[CONDITION_ID] [CONDITION_ID] is assigned by Stackdriver Monitoring when the condition is created as part of a new or updated alerting policy. :param pulumi.Input[Sequence[pulumi.Input[str]]] notification_channels: Identifies the notification channels to which notifications should be sent when incidents are opened or closed or when new violations occur on an already opened incident. Each element of this array corresponds to the name field in each of the NotificationChannel objects that are returned from the notificationChannels.list method. The syntax of the entries in this field is `projects/[PROJECT_ID]/notificationChannels/[CHANNEL_ID]` :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] user_labels: This field is intended to be used for organizing and identifying the AlertPolicy objects.The field can contain up to 64 entries. Each key and value is limited to 63 Unicode characters or 128 bytes, whichever is smaller. Labels and values can contain only lowercase letters, numerals, underscores, and dashes. Keys must begin with a letter. """ if combiner is not None: pulumi.set(__self__, "combiner", combiner) if conditions is not None: pulumi.set(__self__, "conditions", conditions) if creation_records is not None: pulumi.set(__self__, "creation_records", creation_records) if display_name is not None: pulumi.set(__self__, "display_name", display_name) if documentation is not None: pulumi.set(__self__, "documentation", documentation) if enabled is not None: pulumi.set(__self__, "enabled", enabled) if name is not None: pulumi.set(__self__, "name", name) if notification_channels is not None: pulumi.set(__self__, "notification_channels", notification_channels) if project is not None: pulumi.set(__self__, "project", project) if user_labels is not None: pulumi.set(__self__, "user_labels", user_labels) @property @pulumi.getter def combiner(self) -> Optional[pulumi.Input[str]]: """ How to combine the results of multiple conditions to determine if an incident should be opened. Possible values are `AND`, `OR`, and `AND_WITH_MATCHING_RESOURCE`. """ return pulumi.get(self, "combiner") @combiner.setter def combiner(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "combiner", value) @property @pulumi.getter def conditions(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['AlertPolicyConditionArgs']]]]: """ A list of conditions for the policy. The conditions are combined by AND or OR according to the combiner field. If the combined conditions evaluate to true, then an incident is created. A policy can have from one to six conditions. Structure is documented below. """ return pulumi.get(self, "conditions") @conditions.setter def conditions(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['AlertPolicyConditionArgs']]]]): pulumi.set(self, "conditions", value) @property @pulumi.getter(name="creationRecords") def creation_records(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['AlertPolicyCreationRecordArgs']]]]: """ A read-only record of the creation of the alerting policy. If provided in a call to create or update, this field will be ignored. """ return pulumi.get(self, "creation_records") @creation_records.setter def creation_records(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['AlertPolicyCreationRecordArgs']]]]): pulumi.set(self, "creation_records", value) @property @pulumi.getter(name="displayName") def display_name(self) -> Optional[pulumi.Input[str]]: """ A short name or phrase used to identify the condition in dashboards, notifications, and incidents. To avoid confusion, don't use the same display name for multiple conditions in the same policy. """ return pulumi.get(self, "display_name") @display_name.setter def display_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "display_name", value) @property @pulumi.getter def documentation(self) -> Optional[pulumi.Input['AlertPolicyDocumentationArgs']]: """ Documentation that is included with notifications and incidents related to this policy. Best practice is for the documentation to include information to help responders understand, mitigate, escalate, and correct the underlying problems detected by the alerting policy. Notification channels that have limited capacity might not show this documentation. Structure is documented below. """ return pulumi.get(self, "documentation") @documentation.setter def documentation(self, value: Optional[pulumi.Input['AlertPolicyDocumentationArgs']]): pulumi.set(self, "documentation", value) @property @pulumi.getter def enabled(self) -> Optional[pulumi.Input[bool]]: """ Whether or not the policy is enabled. The default is true. """ return pulumi.get(self, "enabled") @enabled.setter def enabled(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "enabled", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ - The unique resource name for this condition. Its syntax is: projects/[PROJECT_ID]/alertPolicies/[POLICY_ID]/conditions/[CONDITION_ID] [CONDITION_ID] is assigned by Stackdriver Monitoring when the condition is created as part of a new or updated alerting policy. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="notificationChannels") def notification_channels(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ Identifies the notification channels to which notifications should be sent when incidents are opened or closed or when new violations occur on an already opened incident. Each element of this array corresponds to the name field in each of the NotificationChannel objects that are returned from the notificationChannels.list method. The syntax of the entries in this field is `projects/[PROJECT_ID]/notificationChannels/[CHANNEL_ID]` """ return pulumi.get(self, "notification_channels") @notification_channels.setter def notification_channels(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "notification_channels", value) @property @pulumi.getter def project(self) -> Optional[pulumi.Input[str]]: """ The ID of the project in which the resource belongs. If it is not provided, the provider project is used. """ return pulumi.get(self, "project") @project.setter def project(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "project", value) @property @pulumi.getter(name="userLabels") def user_labels(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ This field is intended to be used for organizing and identifying the AlertPolicy objects.The field can contain up to 64 entries. Each key and value is limited to 63 Unicode characters or 128 bytes, whichever is smaller. Labels and values can contain only lowercase letters, numerals, underscores, and dashes. Keys must begin with a letter. """ return pulumi.get(self, "user_labels") @user_labels.setter def user_labels(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "user_labels", value) class AlertPolicy(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, combiner: Optional[pulumi.Input[str]] = None, conditions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['AlertPolicyConditionArgs']]]]] = None, display_name: Optional[pulumi.Input[str]] = None, documentation: Optional[pulumi.Input[pulumi.InputType['AlertPolicyDocumentationArgs']]] = None, enabled: Optional[pulumi.Input[bool]] = None, notification_channels: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, project: Optional[pulumi.Input[str]] = None, user_labels: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): """ A description of the conditions under which some aspect of your system is considered to be "unhealthy" and the ways to notify people or services about this state. To get more information about AlertPolicy, see: * [API documentation](https://cloud.google.com/monitoring/api/ref_v3/rest/v3/projects.alertPolicies) * How-to Guides * [Official Documentation](https://cloud.google.com/monitoring/alerts/) ## Example Usage ### Monitoring Alert Policy Basic ```python import pulumi import pulumi_gcp as gcp alert_policy = gcp.monitoring.AlertPolicy("alertPolicy", combiner="OR", conditions=[gcp.monitoring.AlertPolicyConditionArgs( condition_threshold=gcp.monitoring.AlertPolicyConditionConditionThresholdArgs( aggregations=[gcp.monitoring.AlertPolicyConditionConditionThresholdAggregationArgs( alignment_period="60s", per_series_aligner="ALIGN_RATE", )], comparison="COMPARISON_GT", duration="60s", filter="metric.type=\"compute.googleapis.com/instance/disk/write_bytes_count\" AND resource.type=\"gce_instance\"", ), display_name="test condition", )], display_name="My Alert Policy", user_labels={ "foo": "bar", }) ``` ## Import AlertPolicy can be imported using any of these accepted formats ```sh $ pulumi import gcp:monitoring/alertPolicy:AlertPolicy default {{name}} ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] combiner: How to combine the results of multiple conditions to determine if an incident should be opened. Possible values are `AND`, `OR`, and `AND_WITH_MATCHING_RESOURCE`. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['AlertPolicyConditionArgs']]]] conditions: A list of conditions for the policy. The conditions are combined by AND or OR according to the combiner field. If the combined conditions evaluate to true, then an incident is created. A policy can have from one to six conditions. Structure is documented below. :param pulumi.Input[str] display_name: A short name or phrase used to identify the condition in dashboards, notifications, and incidents. To avoid confusion, don't use the same display name for multiple conditions in the same policy. :param pulumi.Input[pulumi.InputType['AlertPolicyDocumentationArgs']] documentation: Documentation that is included with notifications and incidents related to this policy. Best practice is for the documentation to include information to help responders understand, mitigate, escalate, and correct the underlying problems detected by the alerting policy. Notification channels that have limited capacity might not show this documentation. Structure is documented below. :param pulumi.Input[bool] enabled: Whether or not the policy is enabled. The default is true. :param pulumi.Input[Sequence[pulumi.Input[str]]] notification_channels: Identifies the notification channels to which notifications should be sent when incidents are opened or closed or when new violations occur on an already opened incident. Each element of this array corresponds to the name field in each of the NotificationChannel objects that are returned from the notificationChannels.list method. The syntax of the entries in this field is `projects/[PROJECT_ID]/notificationChannels/[CHANNEL_ID]` :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] user_labels: This field is intended to be used for organizing and identifying the AlertPolicy objects.The field can contain up to 64 entries. Each key and value is limited to 63 Unicode characters or 128 bytes, whichever is smaller. Labels and values can contain only lowercase letters, numerals, underscores, and dashes. Keys must begin with a letter. """ ... @overload def __init__(__self__, resource_name: str, args: AlertPolicyArgs, opts: Optional[pulumi.ResourceOptions] = None): """ A description of the conditions under which some aspect of your system is considered to be "unhealthy" and the ways to notify people or services about this state. To get more information about AlertPolicy, see: * [API documentation](https://cloud.google.com/monitoring/api/ref_v3/rest/v3/projects.alertPolicies) * How-to Guides * [Official Documentation](https://cloud.google.com/monitoring/alerts/) ## Example Usage ### Monitoring Alert Policy Basic ```python import pulumi import pulumi_gcp as gcp alert_policy = gcp.monitoring.AlertPolicy("alertPolicy", combiner="OR", conditions=[gcp.monitoring.AlertPolicyConditionArgs( condition_threshold=gcp.monitoring.AlertPolicyConditionConditionThresholdArgs( aggregations=[gcp.monitoring.AlertPolicyConditionConditionThresholdAggregationArgs( alignment_period="60s", per_series_aligner="ALIGN_RATE", )], comparison="COMPARISON_GT", duration="60s", filter="metric.type=\"compute.googleapis.com/instance/disk/write_bytes_count\" AND resource.type=\"gce_instance\"", ), display_name="test condition", )], display_name="My Alert Policy", user_labels={ "foo": "bar", }) ``` ## Import AlertPolicy can be imported using any of these accepted formats ```sh $ pulumi import gcp:monitoring/alertPolicy:AlertPolicy default {{name}} ``` :param str resource_name: The name of the resource. :param AlertPolicyArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(AlertPolicyArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, combiner: Optional[pulumi.Input[str]] = None, conditions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['AlertPolicyConditionArgs']]]]] = None, display_name: Optional[pulumi.Input[str]] = None, documentation: Optional[pulumi.Input[pulumi.InputType['AlertPolicyDocumentationArgs']]] = None, enabled: Optional[pulumi.Input[bool]] = None, notification_channels: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, project: Optional[pulumi.Input[str]] = None, user_labels: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = AlertPolicyArgs.__new__(AlertPolicyArgs) if combiner is None and not opts.urn: raise TypeError("Missing required property 'combiner'") __props__.__dict__["combiner"] = combiner if conditions is None and not opts.urn: raise TypeError("Missing required property 'conditions'") __props__.__dict__["conditions"] = conditions if display_name is None and not opts.urn: raise TypeError("Missing required property 'display_name'") __props__.__dict__["display_name"] = display_name __props__.__dict__["documentation"] = documentation __props__.__dict__["enabled"] = enabled __props__.__dict__["notification_channels"] = notification_channels __props__.__dict__["project"] = project __props__.__dict__["user_labels"] = user_labels __props__.__dict__["creation_records"] = None __props__.__dict__["name"] = None super(AlertPolicy, __self__).__init__( 'gcp:monitoring/alertPolicy:AlertPolicy', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, combiner: Optional[pulumi.Input[str]] = None, conditions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['AlertPolicyConditionArgs']]]]] = None, creation_records: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['AlertPolicyCreationRecordArgs']]]]] = None, display_name: Optional[pulumi.Input[str]] = None, documentation: Optional[pulumi.Input[pulumi.InputType['AlertPolicyDocumentationArgs']]] = None, enabled: Optional[pulumi.Input[bool]] = None, name: Optional[pulumi.Input[str]] = None, notification_channels: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, project: Optional[pulumi.Input[str]] = None, user_labels: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None) -> 'AlertPolicy': """ Get an existing AlertPolicy resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] combiner: How to combine the results of multiple conditions to determine if an incident should be opened. Possible values are `AND`, `OR`, and `AND_WITH_MATCHING_RESOURCE`. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['AlertPolicyConditionArgs']]]] conditions: A list of conditions for the policy. The conditions are combined by AND or OR according to the combiner field. If the combined conditions evaluate to true, then an incident is created. A policy can have from one to six conditions. Structure is documented below. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['AlertPolicyCreationRecordArgs']]]] creation_records: A read-only record of the creation of the alerting policy. If provided in a call to create or update, this field will be ignored. :param pulumi.Input[str] display_name: A short name or phrase used to identify the condition in dashboards, notifications, and incidents. To avoid confusion, don't use the same display name for multiple conditions in the same policy. :param pulumi.Input[pulumi.InputType['AlertPolicyDocumentationArgs']] documentation: Documentation that is included with notifications and incidents related to this policy. Best practice is for the documentation to include information to help responders understand, mitigate, escalate, and correct the underlying problems detected by the alerting policy. Notification channels that have limited capacity might not show this documentation. Structure is documented below. :param pulumi.Input[bool] enabled: Whether or not the policy is enabled. The default is true. :param pulumi.Input[str] name: - The unique resource name for this condition. Its syntax is: projects/[PROJECT_ID]/alertPolicies/[POLICY_ID]/conditions/[CONDITION_ID] [CONDITION_ID] is assigned by Stackdriver Monitoring when the condition is created as part of a new or updated alerting policy. :param pulumi.Input[Sequence[pulumi.Input[str]]] notification_channels: Identifies the notification channels to which notifications should be sent when incidents are opened or closed or when new violations occur on an already opened incident. Each element of this array corresponds to the name field in each of the NotificationChannel objects that are returned from the notificationChannels.list method. The syntax of the entries in this field is `projects/[PROJECT_ID]/notificationChannels/[CHANNEL_ID]` :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] user_labels: This field is intended to be used for organizing and identifying the AlertPolicy objects.The field can contain up to 64 entries. Each key and value is limited to 63 Unicode characters or 128 bytes, whichever is smaller. Labels and values can contain only lowercase letters, numerals, underscores, and dashes. Keys must begin with a letter. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _AlertPolicyState.__new__(_AlertPolicyState) __props__.__dict__["combiner"] = combiner __props__.__dict__["conditions"] = conditions __props__.__dict__["creation_records"] = creation_records __props__.__dict__["display_name"] = display_name __props__.__dict__["documentation"] = documentation __props__.__dict__["enabled"] = enabled __props__.__dict__["name"] = name __props__.__dict__["notification_channels"] = notification_channels __props__.__dict__["project"] = project __props__.__dict__["user_labels"] = user_labels return AlertPolicy(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def combiner(self) -> pulumi.Output[str]: """ How to combine the results of multiple conditions to determine if an incident should be opened. Possible values are `AND`, `OR`, and `AND_WITH_MATCHING_RESOURCE`. """ return pulumi.get(self, "combiner") @property @pulumi.getter def conditions(self) -> pulumi.Output[Sequence['outputs.AlertPolicyCondition']]: """ A list of conditions for the policy. The conditions are combined by AND or OR according to the combiner field. If the combined conditions evaluate to true, then an incident is created. A policy can have from one to six conditions. Structure is documented below. """ return pulumi.get(self, "conditions") @property @pulumi.getter(name="creationRecords") def creation_records(self) -> pulumi.Output[Sequence['outputs.AlertPolicyCreationRecord']]: """ A read-only record of the creation of the alerting policy. If provided in a call to create or update, this field will be ignored. """ return pulumi.get(self, "creation_records") @property @pulumi.getter(name="displayName") def display_name(self) -> pulumi.Output[str]: """ A short name or phrase used to identify the condition in dashboards, notifications, and incidents. To avoid confusion, don't use the same display name for multiple conditions in the same policy. """ return pulumi.get(self, "display_name") @property @pulumi.getter def documentation(self) -> pulumi.Output[Optional['outputs.AlertPolicyDocumentation']]: """ Documentation that is included with notifications and incidents related to this policy. Best practice is for the documentation to include information to help responders understand, mitigate, escalate, and correct the underlying problems detected by the alerting policy. Notification channels that have limited capacity might not show this documentation. Structure is documented below. """ return pulumi.get(self, "documentation") @property @pulumi.getter def enabled(self) -> pulumi.Output[Optional[bool]]: """ Whether or not the policy is enabled. The default is true. """ return pulumi.get(self, "enabled") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ - The unique resource name for this condition. Its syntax is: projects/[PROJECT_ID]/alertPolicies/[POLICY_ID]/conditions/[CONDITION_ID] [CONDITION_ID] is assigned by Stackdriver Monitoring when the condition is created as part of a new or updated alerting policy. """ return pulumi.get(self, "name") @property @pulumi.getter(name="notificationChannels") def notification_channels(self) -> pulumi.Output[Optional[Sequence[str]]]: """ Identifies the notification channels to which notifications should be sent when incidents are opened or closed or when new violations occur on an already opened incident. Each element of this array corresponds to the name field in each of the NotificationChannel objects that are returned from the notificationChannels.list method. The syntax of the entries in this field is `projects/[PROJECT_ID]/notificationChannels/[CHANNEL_ID]` """ return pulumi.get(self, "notification_channels") @property @pulumi.getter def project(self) -> pulumi.Output[str]: """ The ID of the project in which the resource belongs. If it is not provided, the provider project is used. """ return pulumi.get(self, "project") @property @pulumi.getter(name="userLabels") def user_labels(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ This field is intended to be used for organizing and identifying the AlertPolicy objects.The field can contain up to 64 entries. Each key and value is limited to 63 Unicode characters or 128 bytes, whichever is smaller. Labels and values can contain only lowercase letters, numerals, underscores, and dashes. Keys must begin with a letter. """ return pulumi.get(self, "user_labels")
pyltr/metrics/tests/test_roc.py
Haiga/pyltr
432
12706749
""" Testing for AUC ROC metric. """ from . import helpers import itertools import numpy as np import pyltr import sklearn.metrics class TestAUCROC(helpers.TestMetric): def get_metric(self): return pyltr.metrics.AUCROC() def get_queries_with_values(self): for i in range(0, 7): for tup in itertools.product(*([(0, 1)] * i)): if any(e != tup[0] for e in tup): yield (np.array(tup), sklearn.metrics.roc_auc_score(tup, range(i, 0, -1))) else: yield np.array(tup), 0.0 def get_queries(self): for i in range(0, 7): for tup in itertools.product(*([(0, 1)] * i)): yield np.array(tup)
beartype/_util/hint/pep/proposal/pep484/utilpep484ref.py
posita/beartype
1,056
12706753
#!/usr/bin/env python3 # --------------------( LICENSE )-------------------- # Copyright (c) 2014-2021 Beartype authors. # See "LICENSE" for further details. ''' Project-wide :pep:`484`-compliant **forward reference type hint utilities** (i.e., callables specifically applicable to :pep:`484`-compliant forward reference type hints). This private submodule is *not* intended for importation by downstream callers. ''' # ....................{ IMPORTS }.................... import typing from beartype.roar import BeartypeDecorHintForwardRefException from beartype._util.py.utilpyversion import IS_PYTHON_AT_LEAST_3_7 from beartype._util.cache.utilcachecall import callable_cached from typing import Any # See the "beartype.cave" submodule for further commentary. __all__ = ['STAR_IMPORTS_CONSIDERED_HARMFUL'] # ....................{ HINTS }.................... # Conditionally define the "typing.ForwardRef" superclass depending on the # current Python version. This superclass was thankfully publicized under # Python >= 3.7 after its initial privatization under Python <= 3.6. HINT_PEP484_FORWARDREF_TYPE: Any = ( typing.ForwardRef if IS_PYTHON_AT_LEAST_3_7 else typing._ForwardRef # type: ignore [attr-defined] ) ''' :pep:`484`-compliant **forward reference type** (i.e., class of all forward reference objects implicitly created by all :mod:`typing` type hint factories when subscripted by a string). ''' # ....................{ TESTERS }.................... def is_hint_pep484_forwardref(hint: object) -> bool: ''' ``True`` only if the passed object is a :pep:`484`-compliant **forward reference type hint** (i.e., instance of the :class:`typing.ForwardRef` class implicitly replacing all string arguments subscripting :mod:`typing` objects). The :mod:`typing` module implicitly replaces all strings subscripting :mod:`typing` objects (e.g., the ``MuhType`` in ``List['MuhType']``) with :class:`typing.ForwardRef` instances containing those strings as instance variables, for nebulous reasons that make little justifiable sense. This tester is intentionally *not* memoized (e.g., by the :func:`callable_cached` decorator), as the implementation trivially reduces to an efficient one-liner. Parameters ---------- hint : object Object to be inspected. Returns ---------- bool ``True`` only if this object is a :pep:`484`-compliant forward reference type hint. ''' # Return true only if this hint is an instance of the PEP 484-compliant # forward reference superclass. return isinstance(hint, HINT_PEP484_FORWARDREF_TYPE) # ....................{ GETTERS }.................... @callable_cached def get_hint_pep484_forwardref_type_basename(hint: Any) -> str: ''' **Unqualified classname** (i.e., name of a class *not* containing a ``.`` delimiter and thus relative to the fully-qualified name of the lexical scope declaring that class) referred to by the passed :pep:`484`-compliant **forward reference type hint** (i.e., instance of the :class:`typing.ForwardRef` class implicitly replacing all string arguments subscripting :mod:`typing` objects). This tester is intentionally *not* memoized (e.g., by the :func:`callable_cached` decorator), as the implementation trivially reduces to an efficient one-liner. Parameters ---------- hint : object Object to be inspected. Returns ---------- str Unqualified classname referred to by this :pep:`484`-compliant forward reference type hint. Raises ---------- BeartypeDecorHintForwardRefException If this object is *not* a :pep:`484`-compliant forward reference. See Also ---------- :func:`is_hint_pep484_forwardref` Further commentary. ''' # If this object is *NOT* a PEP 484-compliant forward reference, raise an # exception. if not is_hint_pep484_forwardref(hint): raise BeartypeDecorHintForwardRefException( f'Type hint {repr(hint)} not forward reference.') # Else, this object is a PEP 484-compliant forward reference. # Return the unqualified classname referred to by this reference. Note # that: # * This requires violating privacy encapsulation by accessing a dunder # instance variable unique to the "typing.ForwardRef" class. # * This object defines a significant number of other "__forward_"-prefixed # dunder instance variables, which exist *ONLY* to enable the blatantly # useless typing.get_type_hints() function to avoid repeatedly (and thus # inefficiently) reevaluating the same forward reference. *sigh* return hint.__forward_arg__
precise/stats.py
Tony763/mycroft-precise
626
12706783
#!/usr/bin/env python3 # Copyright 2019 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """ Module handles computing and formatting basic statistics about a dataset like false negatives and false positives """ import numpy as np counts_str = ''' === Counts === False Positives: {false_pos} True Negatives: {true_neg} False Negatives: {false_neg} True Positives: {true_pos} '''.strip() summary_str = ''' === Summary === {num_correct} out of {total} {accuracy_ratio:.2%} {false_pos_ratio:.2%} false positives {false_neg_ratio:.2%} false negatives ''' class Stats: """Represents a set of statistics from a model run on a dataset""" def __init__(self, outputs, targets, filenames): self.outputs = np.array(outputs) self.targets = np.array(targets) self.filenames = filenames self.num_positives = int((self.targets > 0.5).sum()) self.num_negatives = int((self.targets < 0.5).sum()) # Methods self.false_positives = lambda threshold=0.5: self.calc_metric(False, True, threshold) / max(1, self.num_negatives) self.false_negatives = lambda threshold=0.5: self.calc_metric(False, False, threshold) / max(1, self.num_positives) self.num_correct = lambda threshold=0.5: ( (self.outputs >= threshold) == self.targets.astype(bool) ).sum() self.num_incorrect = lambda threshold=0.5: len(self) - self.num_correct(threshold) self.accuracy = lambda threshold=0.5: self.num_correct(threshold) / max(1, len(self)) def __len__(self): return len(self.outputs) def to_np_dict(self): import numpy as np return { 'outputs': self.outputs, 'targets': self.targets, 'filenames': np.array(self.filenames) } @staticmethod def from_np_dict(data) -> 'Stats': return Stats(data['outputs'], data['targets'], data['filenames']) def to_dict(self, threshold=0.5): return { 'true_pos': self.calc_metric(True, True, threshold), 'true_neg': self.calc_metric(True, False, threshold), 'false_pos': self.calc_metric(False, True, threshold), 'false_neg': self.calc_metric(False, False, threshold), } def counts_str(self, threshold=0.5): return counts_str.format(**self.to_dict(threshold)) def summary_str(self, threshold=0.5): return summary_str.format( num_correct=self.num_correct(threshold), total=len(self), accuracy_ratio=self.accuracy(threshold), false_pos_ratio=self.false_positives(threshold), false_neg_ratio=self.false_negatives(threshold) ) def calc_filenames(self, is_correct: bool, actual_output: bool, threshold=0.5) -> list: """Find a list of files with the given classification""" return [ filename for output, target, filename in zip(self.outputs, self.targets, self.filenames) if ((output > threshold) == bool(target)) == is_correct and actual_output == bool(output > threshold) ] def calc_metric(self, is_correct: bool, actual_output: bool, threshold=0.5) -> int: """For example, calc_metric(False, True) calculates false positives""" return int( ((((self.outputs > threshold) == self.targets.astype(bool)) == is_correct) & ((self.outputs > threshold) == actual_output)).sum() ) @staticmethod def matches_sample(output, target, threshold, is_correct, actual_output): """ Check if a sample with the given network output, target output, and threshold is the classification (is_correct, actual_output) like true positive or false negative """ return (bool(output > threshold) == bool(target)) == is_correct and actual_output == bool(output > threshold)
rex/exploit/cgc/__init__.py
tiedaoxiaotubie/rex
471
12706800
<filename>rex/exploit/cgc/__init__.py<gh_stars>100-1000 from .cgc_type1_exploit import CGCType1Exploit from .cgc_type2_exploit import CGCType2Exploit from .cgc_exploit import CGCExploit from .type1 import CGCType1RopExploit, CGCType1ShellcodeExploit, CGCType1CircumstantialExploit from .type2 import CGCType2RopExploit, CGCType2ShellcodeExploit
models/mli/fairness/reweighing_recipe.py
pragnesh-ai/driverlessai-recipes
194
12706819
"""Debiasing using reweighing""" """ This data recipe performs reweighing debiasing using the AIF360 package. https://github.com/Trusted-AI/AIF360 <NAME>., <NAME>. Data preprocessing techniques for classification without discrimination. Knowl Inf Syst 33, 1–33 (2012). https://doi.org/10.1007/s10115-011-0463-8 The transformer splits the original data as specified and returns training, validation, and test sets with weights added. 1. Update the folder_path and data_file variables to indicate the location of the dataset(s). 2. validation_test_files lists additional validation or test files that need to be updated with weights. 3. validation_split indicates the percentiles at which the original data should be split to create a validation and test set. If it's empty, no validation or test set is created. [0.7] would create a 70/30 training/validation split. [0.7, 0.9] would create a 70/20/10 training, validation, and test split. 4. target is the name of the target column. 5. favorable_label and unfavorable_label are the socially positive and negative target value respectively. 6. protected_group_info list of lists, where each sublist contains the name of a protected column, the unprivledged level, and the privleged level. Each of the protected columns must be binary. 7. From the Datasets section of driverless, click on ADD DATASET and then UPLOAD DATA RECIPE to upload this file. Be sure to use the specified validation set to be used for validation when a model is trained. The weights can cause leakage if the validation or test data is used for determining the weights. """ import datatable as dt import numpy as np import os from h2oaicore.data import CustomData from h2oaicore.systemutils import config class MyReweightingData(CustomData): _modules_needed_by_name = ['datetime', 'fairlearn', 'aif360', 'sklearn'] @staticmethod def create_data(): import pandas as pd from h2oaicore.models_utils import import_tensorflow tf = import_tensorflow() # above is because aif360 requires tensorflow from aif360.datasets import BinaryLabelDataset from aif360.algorithms.preprocessing.reweighing import Reweighing """ Update the below as needed """ ######### ######### ######### # Path to the data folder_path = 'tmp/' # Data file data_file = 'housing_train_proc.csv' full_data_file = folder_path + data_file if not os.path.isfile(full_data_file): # for testing, just return something if config.hard_asserts: return dt.Frame(np.array([[1, 2, 3], [4, 5, 6]])) else: return [] train = pd.read_csv(full_data_file) validation_test_files = ['housing_test_proc.csv'] validation_split = [0.6, 0.8] # Target column target = 'high_priced' favorable_label = 0 unfavorable_label = 1 # Privleged_group_info = [[Protetected group name 1, prevleged level, unprivleged level], [Protetected group name 2, prevleged level, unprivleged level]] # The protected group columns need to be binary protected_group_info = [['hispanic', 0, 1], ['black', 0, 1]] ######### ######### ######### # Set up protected group info protected_groups = [group_info[0] for group_info in protected_group_info] dataset_orig = BinaryLabelDataset(df=train, label_names=[target], favorable_label=favorable_label, unfavorable_label=unfavorable_label, protected_attribute_names=protected_groups) privileged_groups = [] unprivileged_groups = [] for protected_group in protected_group_info: privileged_groups_dict = {} unprivileged_groups_dict = {} privileged_groups_dict[protected_group[0]] = protected_group[1] unprivileged_groups_dict[protected_group[0]] = protected_group[2] privileged_groups.append(privileged_groups_dict) unprivileged_groups.append(unprivileged_groups_dict) # Fit weights on the full dataset to be used on the external test set, if given RW_full = Reweighing(unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) RW_full.fit(dataset_orig) # Split the original data into train, validation, and test if applicable if len(validation_split) == 1: dataset_orig_train, dataset_orig_valid = dataset_orig.split(validation_split, shuffle=True) elif len(validation_split) == 2: dataset_orig_train_valid, dataset_orig_test = dataset_orig.split([validation_split[1]], shuffle=True) # Fit the weights on both the validation and test set for the test set split RW_train_valid = Reweighing(unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) RW_train_valid.fit(dataset_orig_train_valid) dataset_orig_train, dataset_orig_valid = dataset_orig_train_valid.split( [validation_split[0] / (validation_split[1])], shuffle=True) else: dataset_orig_train = dataset_orig # Fit weights on the training set only RW = Reweighing(unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) RW.fit(dataset_orig_train) dataset_transf_train = RW.transform(dataset_orig_train) # Add the weigts to the training set train_df = pd.DataFrame(dataset_transf_train.features, columns=dataset_transf_train.feature_names) train_df[target] = dataset_transf_train.labels.ravel() train_df['weights'] = dataset_transf_train.instance_weights.ravel() # Create datasets with minimum features calculated the given number of days ahead dataset_dict = {} dataset_dict[data_file.split('.')[0] + "_rw_train.csv"] = train_df # Add weights to the validation split (if a validation split was specified) if len(validation_split) >= 1: dataset_transf_valid = RW.transform(dataset_orig_valid) valid_df = pd.DataFrame(dataset_transf_valid.features, columns=dataset_transf_valid.feature_names) valid_df[target] = dataset_transf_valid.labels.ravel() valid_df['weights'] = dataset_transf_valid.instance_weights.ravel() dataset_dict[data_file.split('.')[0] + "_rw_validation.csv"] = valid_df # Add weights to the test split (if a test split was specified) if len(validation_split) >= 2: dataset_transf_test = RW_train_valid.transform(dataset_orig_test) test_df = pd.DataFrame(dataset_transf_test.features, columns=dataset_transf_test.feature_names) test_df[target] = dataset_transf_test.labels.ravel() test_df['weights'] = dataset_transf_test.instance_weights.ravel() dataset_dict[data_file.split('.')[0] + "_rw_test.csv"] = test_df # Add weights to the test files (If provided) for valid_file in validation_test_files: valid = pd.read_csv(folder_path + valid_file) dataset_valid_orig = BinaryLabelDataset(df=valid, label_names=[target], favorable_label=favorable_label, unfavorable_label=unfavorable_label, protected_attribute_names=protected_groups) dataset_transf_valid = RW_full.transform(dataset_valid_orig) valid_df = pd.DataFrame(dataset_transf_valid.features, columns=dataset_transf_valid.feature_names) valid_df[target] = dataset_transf_valid.labels.ravel() valid_df['weights'] = dataset_transf_valid.instance_weights.ravel() dataset_dict[valid_file.split('.')[0] + "_rw_transformed.csv"] = valid_df return dataset_dict
tests/test_defs.py
jayvdb/ipynb
208
12706839
import pytest import importlib @pytest.fixture( scope='module', params=[ 'ipynb.fs.defs.pure_ipynb.foo', 'ipynb.fs.defs.mixed_ipynb.foo' ] ) def foo(request): return importlib.import_module(request.param) @pytest.fixture( scope='module', params=[ 'ipynb.fs.defs.pure_ipynb', 'ipynb.fs.defs.mixed_ipynb' ] ) def init(request): return importlib.import_module(request.param) def test_execute(foo): assert foo.foo() == 'foo' rawr = foo.RAWR() assert rawr.rawr() == 'rawr' def test_no_execute(foo): assert not hasattr(foo, 'bar') assert not hasattr(foo, 'r') def test_allcaps_execute(foo): assert foo.WAT == 'boo' def test_all(init): r = init.RAWR() assert r.rawr() == 'rawr' def test_bogus_ipynb(): with pytest.raises(ImportError): import ipynb.fs.defs.bogus_ipynb as bogus_ipynb def test_r_notebook(): with pytest.raises(ImportError): import ipynb.fs.defs.r_notebook def test_nbformat_2(): with pytest.raises(ImportError): import ipynb.fs.defs.older_nbformat
mealpy/human_based/CA.py
thieu1995/mealpy
162
12706851
<filename>mealpy/human_based/CA.py #!/usr/bin/env python # ------------------------------------------------------------------------------------------------------% # Created by "Thieu" at 12:09, 02/03/2021 % # % # Email: <EMAIL> % # Homepage: https://www.researchgate.net/profile/Nguyen_Thieu2 % # Github: https://github.com/thieu1995 % # ------------------------------------------------------------------------------------------------------% import concurrent.futures as parallel from functools import partial import numpy as np from mealpy.optimizer import Optimizer class OriginalCA(Optimizer): """ The original version of: Culture Algorithm (CA) Based on Ruby version in the book: Clever Algorithm (Jason Brown) """ def __init__(self, problem, epoch=10000, pop_size=100, accepted_rate=0.15, **kwargs): """ Args: epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size (Harmony Memory Size), default = 100 accepted_rate (float): probability of accepted rate, Default: 0.15, """ super().__init__(problem, kwargs) self.nfe_per_epoch = pop_size self.sort_flag = True self.epoch = epoch self.pop_size = pop_size self.accepted_rate = accepted_rate ## Dynamic variables self.dyn_belief_space = { "lb": self.problem.lb, "ub": self.problem.ub, } self.dyn_accepted_num = int(self.accepted_rate * self.pop_size) # update situational knowledge (g_best here is a element inside belief space) def binary_tournament(self, population): id1, id2 = np.random.choice(list(range(0, len(population))), 2, replace=False) return population[id1] if (population[id1][self.ID_FIT] < population[id2][self.ID_FIT]) else population[id2] def create_faithful(self, lb, ub): position = np.random.uniform(lb, ub) fitness = self.get_fitness_position(position=position) return [position, fitness] def update_belief_space(self, belief_space, pop_accepted): pos_list = np.array([solution[self.ID_POS] for solution in pop_accepted]) belief_space["lb"] = np.min(pos_list, axis=0) belief_space["ub"] = np.max(pos_list, axis=0) return belief_space def evolve(self, mode='sequential', epoch=None, pop=None, g_best=None): """ Args: mode (str): 'sequential', 'thread', 'process' + 'sequential': recommended for simple and small task (< 10 seconds for calculating objective) + 'thread': recommended for IO bound task, or small computing task (< 2 minutes for calculating objective) + 'process': recommended for hard and big task (> 2 minutes for calculating objective) Returns: [position, fitness value] """ if mode != "sequential": print("CA optimizer is support sequential mode only!") exit(0) # create next generation pop_child = [self.create_faithful(self.dyn_belief_space["lb"], self.dyn_belief_space["ub"]) for _ in range(0, self.pop_size)] # select next generation pop = [self.binary_tournament(pop + pop_child) for _ in range(0, self.pop_size)] if self.problem.minmax == "min": pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR]) else: pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR], reverse=True) # Get accepted faithful accepted = pop[:self.dyn_accepted_num] # Update belief_space self.dyn_belief_space = self.update_belief_space(self.dyn_belief_space, accepted) return pop
davarocr/davarocr/davar_common/core/__init__.py
icedream2/DAVAR-Lab-OCR
387
12706872
<reponame>icedream2/DAVAR-Lab-OCR<gh_stars>100-1000 """ ################################################################################################## # Copyright Info : Copyright (c) Davar Lab @ Hikvision Research Institute. All rights reserved. # Filename : __init__.py # Abstract : # Current Version: 1.0.0 # Date : 2021-05-20 ################################################################################################## """ from .builder import POSTPROCESS, build_postprocess from .evaluation import DavarDistEvalHook, DavarEvalHook __all__ = ['POSTPROCESS', 'build_postprocess', "DavarEvalHook", "DavarDistEvalHook", ]
gui/custom.py
AXeL-dev/Dindo-Bot
102
12706893
<reponame>AXeL-dev/Dindo-Bot<gh_stars>100-1000 # <NAME> # Copyright (c) 2018 - 2019 AXeL import gi gi.require_version('Gtk', '3.0') from gi.repository import Gtk, Gdk, Pango from lib.tools import fit_position_to_destination from lib.parser import parse_color import math class CustomComboBox(Gtk.ComboBoxText): def __init__(self, data_list=[], sort=False): Gtk.ComboBoxText.__init__(self) # set max chars width for renderer in self.get_cells(): renderer.props.max_width_chars = 10 renderer.props.ellipsize = Pango.EllipsizeMode.END # append data self.append_list(data_list, sort) def append_list(self, data_list, sort=False, clear=False): # clear combobox if clear: self.remove_all() # sort data if sort: data_list = sorted(data_list) # append data for text in data_list: self.append_text(text) def sync_with_combo(self, combo, use_contains=False): if self.get_active() != -1 and combo.get_active() != -1: # do not allow same text at same time self_text = self.get_active_text() combo_text = combo.get_active_text() if (use_contains and (self_text in combo_text or combo_text in self_text)) or self_text == combo_text: combo.set_active(-1) class TextValueComboBox(Gtk.ComboBox): def __init__(self, data_list=[], model=None, text_key=None, value_key=None, sort_key=None): Gtk.ComboBox.__init__(self) # set max chars width renderer_text = Gtk.CellRendererText() renderer_text.props.max_width_chars = 10 renderer_text.props.ellipsize = Pango.EllipsizeMode.END # append data if model is None: self.model = Gtk.ListStore(str, str) else: self.model = model self.append_list(data_list, text_key, value_key, sort_key) self.set_model(self.model) self.pack_start(renderer_text, True) self.add_attribute(renderer_text, 'text', 0) # save data list values (for further use) self.values = [ item[value_key] for item in data_list ] def append_list(self, data_list, text_key, value_key, sort_key=None, clear=False): # clear combobox if clear: self.remove_all() # sort data if sort_key is not None: data_list = sorted(data_list, key=lambda item: item[sort_key]) # append data if text_key is not None and value_key is not None: for data in data_list: self.model.append([data[text_key], data[value_key]]) def _get_active(self, index): active = self.get_active() if active != -1: return self.model[active][index] else: return None def get_active_text(self): return self._get_active(0) def get_active_value(self): return self._get_active(1) def set_active_value(self, value): self.set_active(self.values.index(value)) def remove_all(self): self.model.clear() class CustomTreeView(Gtk.Frame): def __init__(self, model, columns): Gtk.Frame.__init__(self) self.perform_scroll = False self.model = model self.columns = columns self.vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL) self.add(self.vbox) ## ScrolledWindow scrolled_window = Gtk.ScrolledWindow() self.vbox.pack_start(scrolled_window, True, True, 0) # TreeView self.tree_view = Gtk.TreeView(model) scrolled_window.add(self.tree_view) for column in columns: self.tree_view.append_column(column) self.tree_view.connect('size-allocate', self.scroll_tree_view) self.selection = self.tree_view.get_selection() self.selection.set_mode(Gtk.SelectionMode.SINGLE) def is_empty(self): return len(self.model) == 0 def connect(self, event_name, event_callback): if event_name == 'selection-changed': self.selection.connect('changed', event_callback) else: self.tree_view.connect(event_name, event_callback) def append_row(self, row, select=True, scroll_to=True): # append row self.model.append(row) # scroll to row if scroll_to: self.perform_scroll = True # select row if select: index = len(self.model) - 1 self.select_row(index) def select_row(self, index): path = Gtk.TreePath(index) self.selection.select_path(path) def get_row_index(self, row_iter): return self.model.get_path(row_iter).get_indices()[0] def get_rows_count(self): return len(self.model) def get_selected_row(self): model, tree_iter = self.selection.get_selected() if tree_iter: row = [] for i in range(len(self.columns)): column_value = model.get_value(tree_iter, i) row.append(column_value) return row else: return None def remove_selected_row(self): # remove selected row model, tree_iter = self.selection.get_selected() if tree_iter: model.remove(tree_iter) def scroll_tree_view(self, widget, event): if self.perform_scroll: adj = widget.get_vadjustment() adj.set_value(adj.get_upper() - adj.get_page_size()) self.perform_scroll = False class CustomListBox(Gtk.Frame): def __init__(self, parent=None, allow_moving=True): Gtk.Frame.__init__(self) self.parent = parent self.allow_moving = allow_moving self.perform_scroll = False self.add_callback = None self.delete_callback = None self.activate_callback = None ## ListBox vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL) self.add(vbox) self.listbox = Gtk.ListBox() self.listbox.set_selection_mode(Gtk.SelectionMode.SINGLE) self.listbox.connect('size-allocate', self.on_size_allocate) self.listbox.connect('row-activated', self.on_row_activated) scrolled_window = Gtk.ScrolledWindow() scrolled_window.add(self.listbox) vbox.pack_start(scrolled_window, True, True, 0) ## ActionBar actionbar = Gtk.ActionBar() vbox.pack_end(actionbar, False, False, 0) default_buttons_box = ButtonBox(linked=True) actionbar.pack_start(default_buttons_box) if allow_moving: # Move up self.move_up_button = Gtk.Button() self.move_up_button.set_tooltip_text('Move up') self.move_up_button.set_image(Gtk.Image(icon_name='go-up-symbolic')) self.move_up_button.connect('clicked', self.on_move_up_button_clicked) default_buttons_box.add(self.move_up_button) # Move down self.move_down_button = Gtk.Button() self.move_down_button.set_tooltip_text('Move down') self.move_down_button.set_image(Gtk.Image(icon_name='go-down-symbolic')) self.move_down_button.connect('clicked', self.on_move_down_button_clicked) default_buttons_box.add(self.move_down_button) # Delete self.delete_button = Gtk.Button() self.delete_button.set_tooltip_text('Delete') self.delete_button.set_image(Gtk.Image(icon_name='edit-delete-symbolic')) self.delete_button.connect('clicked', self.on_delete_button_clicked) default_buttons_box.add(self.delete_button) # Clear all self.clear_all_button = Gtk.Button() self.clear_all_button.set_tooltip_text('Clear all') self.clear_all_button.set_image(Gtk.Image(icon_name='edit-clear-all-symbolic')) self.clear_all_button.connect('clicked', self.on_clear_all_button_clicked) default_buttons_box.add(self.clear_all_button) # Initialise default buttons status self.reset_buttons() # Buttons box self.buttons_box = ButtonBox(linked=True) actionbar.pack_end(self.buttons_box) def on_add(self, callback): self.add_callback = callback def on_delete(self, callback): self.delete_callback = callback def on_activate(self, callback): self.activate_callback = callback def on_row_activated(self, listbox, row): if self.allow_moving: rows_count = len(self.get_rows()) index = row.get_index() # Move up enable_move_up = True if index > 0 else False self.move_up_button.set_sensitive(enable_move_up) # Move down enable_move_down = True if index < rows_count - 1 else False self.move_down_button.set_sensitive(enable_move_down) # Delete self.delete_button.set_sensitive(True) # Clear all self.clear_all_button.set_sensitive(True) # Invoke activate callback if self.activate_callback is not None: self.activate_callback() def on_size_allocate(self, listbox, event): if self.perform_scroll: adj = listbox.get_adjustment() adj.set_value(adj.get_upper() - adj.get_page_size()) self.perform_scroll = False def add_button(self, button): self.buttons_box.add(button) def append_text(self, text): # add new row row = Gtk.ListBoxRow() label = Gtk.Label(text, xalign=0, margin=5) row.add(label) self.listbox.add(row) self.listbox.show_all() self.perform_scroll = True self.select_row(row) if self.add_callback is not None: self.add_callback() def select_row(self, row): self.listbox.select_row(row) self.on_row_activated(self.listbox, row) def get_rows(self): return self.listbox.get_children() def is_empty(self): return len(self.get_rows()) == 0 def get_row_text(self, row): label = row.get_children()[0] return label.get_text() def reset_buttons(self): if self.allow_moving: self.move_up_button.set_sensitive(False) self.move_down_button.set_sensitive(False) self.delete_button.set_sensitive(False) if self.is_empty(): self.clear_all_button.set_sensitive(False) def remove_row(self, row, reset=True): row_index = row.get_index() self.listbox.remove(row) if reset: self.reset_buttons() if self.delete_callback is not None: self.delete_callback(row_index) def on_delete_button_clicked(self, button): row = self.listbox.get_selected_row() self.remove_row(row) def move_row(self, row, new_index): self.listbox.select_row(None) # remove selection self.listbox.remove(row) self.listbox.insert(row, new_index) self.select_row(row) def on_move_up_button_clicked(self, button): row = self.listbox.get_selected_row() if row: index = row.get_index() self.move_row(row, index - 1) def on_move_down_button_clicked(self, button): row = self.listbox.get_selected_row() if row: index = row.get_index() self.move_row(row, index + 1) def clear(self): for row in self.get_rows(): self.remove_row(row, False) self.reset_buttons() def on_clear_all_button_clicked(self, button): dialog = Gtk.MessageDialog(text='Confirm clear all?', transient_for=self.parent, buttons=Gtk.ButtonsType.OK_CANCEL, message_type=Gtk.MessageType.QUESTION) response = dialog.run() dialog.destroy() # We only clear when the user presses the OK button if response == Gtk.ResponseType.OK: self.clear() class SpinButton(Gtk.SpinButton): def __init__(self, min=0, max=100, value=0, step=1, page_step=5): adjustment = Gtk.Adjustment(value=value, lower=min, upper=max, step_increment=step, page_increment=page_step, page_size=0) Gtk.SpinButton.__init__(self, adjustment=adjustment) class ImageLabel(Gtk.Box): def __init__(self, image, text, padding=0): Gtk.Box.__init__(self, orientation=Gtk.Orientation.HORIZONTAL, spacing=3) self.set_border_width(padding) self.add(image) self.label = Gtk.Label(text, ellipsize=Pango.EllipsizeMode.END) self.label.set_tooltip_text(text) self.add(self.label) def get_text(self): return self.label.get_text() class StackListBox(Gtk.Box): def __init__(self): Gtk.Box.__init__(self, orientation=Gtk.Orientation.HORIZONTAL, spacing=5) self.count = 0 frame = Gtk.Frame() scrolled_window = Gtk.ScrolledWindow(hscrollbar_policy=Gtk.PolicyType.NEVER) self.listbox = Gtk.ListBox() self.listbox.set_selection_mode(Gtk.SelectionMode.SINGLE) self.listbox.connect('row-activated', self.on_row_activated) scrolled_window.add(self.listbox) frame.add(scrolled_window) self.pack_start(frame, True, True, 0) self.stack = Gtk.Stack() self.pack_end(self.stack, False, False, 0) def on_row_activated(self, listbox, row): name = row.get_children()[0].get_text() self.stack.set_visible_child_name(name) def append(self, label, widget): # add listbox label self.listbox.add(label) if self.count == 0: # select first row self.listbox.select_row(self.listbox.get_row_at_index(self.count)) # add stack widget self.stack.add_named(widget, label.get_text()) self.count += 1 class ButtonBox(Gtk.Box): def __init__(self, orientation=Gtk.Orientation.HORIZONTAL, spacing=5, centered=False, linked=False): Gtk.Box.__init__(self, orientation=orientation) self.buttons_container = Gtk.Box(orientation=orientation) self.orientation = orientation self.linked = linked # set centered if centered: self.pack_start(self.buttons_container, True, False, 0) else: self.pack_start(self.buttons_container, False, False, 0) # set linked if linked: Gtk.StyleContext.add_class(self.buttons_container.get_style_context(), Gtk.STYLE_CLASS_LINKED) else: self.buttons_container.set_spacing(spacing) def add(self, button): if self.orientation == Gtk.Orientation.VERTICAL and not self.linked: hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL) hbox.pack_start(button, True, False, 0) self.buttons_container.add(hbox) else: self.buttons_container.add(button) class MessageBox(Gtk.Box): def __init__(self, text=None, color='black', enable_buttons=False): Gtk.Box.__init__(self, orientation=Gtk.Orientation.HORIZONTAL, spacing=5) self.enable_buttons = enable_buttons # label self.label = Gtk.Label(text) self.label.modify_fg(Gtk.StateType.NORMAL, Gdk.color_parse(color)) self.add(self.label) # question buttons if enable_buttons: self.button_box = ButtonBox(linked=True) self.pack_end(self.button_box, False, False, 0) # yes self.yes_button = Gtk.Button() self.yes_button.set_tooltip_text('Yes') self.yes_button.set_image(Gtk.Image(icon_name='emblem-ok-symbolic')) self.button_box.add(self.yes_button) # no self.no_button = Gtk.Button() self.no_button.set_tooltip_text('No') self.no_button.set_image(Gtk.Image(icon_name='window-close-symbolic')) self.button_box.add(self.no_button) def print_message(self, text, is_question=False): self.label.set_text(text) if self.enable_buttons: if is_question: self.button_box.show() else: self.button_box.hide() self.show() class MenuButton(Gtk.Button): def __init__(self, text=None, position=Gtk.PositionType.BOTTOM, icon_name=None, padding=2): Gtk.Button.__init__(self, text) if icon_name is not None: self.set_image(Gtk.Image(icon_name=icon_name)) self.connect('clicked', self.on_clicked) # popover self.popover = Gtk.Popover(relative_to=self, position=position) self.popover.set_border_width(padding) def on_clicked(self, button): self.popover.show_all() def add(self, widget): self.popover.add(widget) class MenuImage(Gtk.EventBox): def __init__(self, icon_name='pan-down-symbolic', pixel_size=13, position=Gtk.PositionType.BOTTOM, padding=2): Gtk.EventBox.__init__(self) self.add(Gtk.Image(icon_name=icon_name, pixel_size=pixel_size)) self.connect('button-press-event', self.on_button_press) self.connect('enter-notify-event', self.on_enter_notify) # popover self.popover = Gtk.Popover(relative_to=self, position=position) self.popover.set_border_width(padding) def on_button_press(self, widget, event): self.popover.show_all() def on_enter_notify(self, widget, event): window = self.get_window() window.set_cursor(Gdk.Cursor(Gdk.CursorType.HAND1)) def set_widget(self, widget): self.popover.add(widget) class FileChooserButton(Gtk.FileChooserButton): def __init__(self, title, filter=None): Gtk.FileChooserButton.__init__(self, title=title) if filter is not None and len(filter) > 1: name, pattern = filter file_filter = Gtk.FileFilter() file_filter.set_name('%s (%s)' % (name, pattern)) file_filter.add_pattern(pattern) self.add_filter(file_filter) class MiniMap(Gtk.Frame): point_colors = { 'Monster': 'red', 'Resource': 'green', 'NPC': 'blue', 'None': 'black' } def __init__(self, background_color='#CECECE', show_grid=True, grid_color='#DDDDDD', grid_size=(15, 15), point_radius=3): Gtk.Frame.__init__(self) self.points = [] self.point_opacity = 0.7 self.point_radius = point_radius self.show_grid = show_grid self.grid_color = grid_color self.grid_size = grid_size self.background_color = background_color self.use_origin_colors = False self.add_borders = False self.drawing_area = Gtk.DrawingArea() self.drawing_area.set_has_tooltip(True) self.drawing_area.connect('draw', self.on_draw) self.drawing_area.connect('query-tooltip', self.on_query_tooltip) self.add(self.drawing_area) def set_use_origin_colors(self, value): self.use_origin_colors = value if self.points: self.drawing_area.queue_draw() def set_add_borders(self, value): self.add_borders = value if self.points: self.drawing_area.queue_draw() def get_color_key(self): return 'origin_color' if self.use_origin_colors else 'color' def add_point(self, point, name=None, color=None, redraw=True): # set point coordinates new_point = { 'x': point['x'], 'y': point['y'], 'width': point['width'], 'height': point['height'] } # set point name if name is not None: new_point['name'] = name elif 'name' in point: new_point['name'] = point['name'] else: new_point['name'] = None # set point color new_point['color'] = color new_point['origin_color'] = parse_color(point['color'], as_hex=True) if 'color' in point else None # add point self.points.append(new_point) if redraw: self.drawing_area.queue_draw() def add_points(self, points, name=None, color=None): for point in points: self.add_point(point, name, color, False) self.drawing_area.queue_draw() def remove_point(self, index): if 0 <= index < len(self.points): del self.points[index] self.drawing_area.queue_draw() def clear(self): if self.points: self.points = [] self.drawing_area.queue_draw() def on_draw(self, widget, cr): drawing_area = widget.get_allocation() square_width, square_height = self.grid_size cr.set_line_width(1) # set color function def set_color(value, opacity=1.0): color = Gdk.color_parse(value) cr.set_source_rgba(float(color.red) / 65535, float(color.green) / 65535, float(color.blue) / 65535, opacity) # fill background with color if self.background_color: cr.rectangle(0, 0, drawing_area.width, drawing_area.height) set_color(self.background_color) cr.fill() # draw grid lines if self.show_grid: set_color(self.grid_color) # draw vertical lines for x in range(square_width, drawing_area.width, square_width + 1): # +1 for line width cr.move_to(x + 0.5, 0) # +0.5 for smooth line cr.line_to(x + 0.5, drawing_area.height) # draw horizontal lines for y in range(square_height, drawing_area.height, square_height + 1): cr.move_to(0, y + 0.5) cr.line_to(drawing_area.width, y + 0.5) cr.stroke() # draw points for point in self.points: # fit point to drawing area (should keep here, because it's useful when drawing area get resized) x, y = fit_position_to_destination(point['x'], point['y'], point['width'], point['height'], drawing_area.width, drawing_area.height) if self.add_borders: set_color('black') cr.arc(x, y, self.point_radius, 0, 2*math.pi) if self.add_borders: cr.stroke_preserve() color_key = self.get_color_key() color = self.point_colors['None'] if point[color_key] is None else point[color_key] set_color(color, self.point_opacity) cr.fill() def get_tooltip_widget(self, point): # on draw function def on_draw(widget, cr): cr.set_line_width(1) # draw point color_key = self.get_color_key() color = Gdk.color_parse(point[color_key]) cr.set_source_rgba(float(color.red) / 65535, float(color.green) / 65535, float(color.blue) / 65535, self.point_opacity) cr.arc(self.point_radius, self.point_radius, self.point_radius, 0, 2*math.pi) cr.fill() # tooltip widget if point['name'] is not None: widget = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=3) color_key = self.get_color_key() if point[color_key] is not None: drawing_area = Gtk.DrawingArea() point_diameter = self.point_radius*2 drawing_area.set_size_request(point_diameter, point_diameter) drawing_area.connect('draw', on_draw) box = Gtk.Box(orientation=Gtk.Orientation.VERTICAL) box.pack_start(drawing_area, True, False, 0) widget.add(box) widget.add(Gtk.Label(point['name'])) widget.show_all() else: widget = None return widget def on_query_tooltip(self, widget, x, y, keyboard_mode, tooltip): drawing_area = self.drawing_area.get_allocation() tooltip_widget = None # check if a point is hovered for point in self.points: # fit point to drawing area point_x, point_y = fit_position_to_destination(point['x'], point['y'], point['width'], point['height'], drawing_area.width, drawing_area.height) # TODO: the check below should be circular, not rectangular if point_x - self.point_radius <= x <= point_x + self.point_radius and point_y - self.point_radius <= y <= point_y + self.point_radius: tooltip_widget = self.get_tooltip_widget(point) break # if so if tooltip_widget is not None: # set tooltip widget tooltip.set_custom(tooltip_widget) # show the tooltip return True else: return False
tools/accuracy_checker/accuracy_checker/annotation_converters/lmdb.py
APrigarina/open_model_zoo
1,031
12706912
""" Copyright (c) 2018-2021 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import cv2 from .format_converter import DirectoryBasedAnnotationConverter, ConverterReturn from ..utils import UnsupportedPackage from ..representation import CharacterRecognitionAnnotation from ..config import BoolField try: import lmdb except ImportError as import_error: lmdb = UnsupportedPackage("lmdb", import_error.msg) class LMDBConverter(DirectoryBasedAnnotationConverter): __provider__ = 'lmdb_text_recognition_database' annotation_types = (CharacterRecognitionAnnotation, ) supported_symbols = '0123456789abcdefghijklmnopqrstuvwxyz' @classmethod def parameters(cls): configuration_parameters = super().parameters() configuration_parameters.update({ 'lower_case': BoolField(description='Convert GT text to lowercase.', optional=True) }) return configuration_parameters def configure(self): super().configure() self.lower_case = self.get_value_from_config('lower_case') def convert(self, check_content=False, progress_callback=None, progress_interval=100, **kwargs): """Reads data from disk and returns dataset in converted for AC format Args: check_content (bool, optional): Check if content is valid. Defaults to False. progress_callback (bool, optional): Display progress. Defaults to None. progress_interval (int, optional): Units to display progress. Defaults to 100 (percent). Returns: [type]: Converted dataset """ annotations = [] content_errors = None if not check_content else [] lmdb_env = lmdb.open(bytes(self.data_dir), readonly=True) with lmdb_env.begin(write=False) as txn: num_iterations = int(txn.get('num-samples'.encode())) for index in range(1, num_iterations + 1): label_key = f'label-{index:09d}'.encode() text = txn.get(label_key).decode('utf-8') if self.lower_case: text = text.lower() if progress_callback is not None and index % progress_interval == 0: progress_callback(index / num_iterations * 100) if check_content: img_key = f'label-{index:09d}'.encode() image_bytes = txn.get(img_key) image = cv2.imdecode(np.frombuffer(image_bytes, np.uint8), cv2.IMREAD_ANYCOLOR) if image is None: content_errors.append(f'label-{index:09d}: does not exist') annotations.append(CharacterRecognitionAnnotation(index, text)) label_map = {ind: str(key) for ind, key in enumerate(self.supported_symbols)} meta = {'label_map': label_map, 'blank_label': len(label_map)} return ConverterReturn(annotations, meta, content_errors)
setup.py
nigoroll/django-rest-framework-jwt
165
12706918
<filename>setup.py """A setuptools based setup module. See: https://packaging.python.org/en/latest/distributing.html https://github.com/pypa/sampleproject """ # Always prefer setuptools over distutils from setuptools import setup, find_packages setup( package_dir={"": "src"}, packages=find_packages(where="src"), )
organize/filters/created.py
tank0226/organize
1,231
12706941
import sys from typing import Dict, Optional, SupportsFloat import pendulum # type: ignore from pathlib import Path from organize.utils import DotDict from .filter import Filter class Created(Filter): """ Matches files by created date :param int years: specify number of years :param int months: specify number of months :param float weeks: specify number of weeks :param float days: specify number of days :param float hours: specify number of hours :param float minutes: specify number of minutes :param float seconds: specify number of seconds :param str mode: either 'older' or 'newer'. 'older' matches all files created before the given time, 'newer' matches all files created within the given time. (default = 'older') :param str timezone: specify timezone :returns: - ``{created.year}`` -- the year the file was created - ``{created.month}`` -- the month the file was created - ``{created.day}`` -- the day the file was created - ``{created.hour}`` -- the hour the file was created - ``{created.minute}`` -- the minute the file was created - ``{created.second}`` -- the second the file was created Examples: - Show all files on your desktop created at least 10 days ago: .. code-block:: yaml :caption: config.yaml rules: - folders: '~/Desktop' filters: - created: days: 10 actions: - echo: 'Was created at least 10 days ago' - Show all files on your desktop which were created within the last 5 hours: .. code-block:: yaml :caption: config.yaml rules: - folders: '~/Desktop' filters: - created: hours: 5 mode: newer actions: - echo: 'Was created within the last 5 hours' - Sort pdfs by year of creation: .. code-block:: yaml :caption: config.yaml rules: - folders: '~/Documents' filters: - extension: pdf - created actions: - move: '~/Documents/PDF/{created.year}/' - Use specific timezone when processing files .. code-block:: yaml :caption: config.yaml rules: - folders: '~/Documents' filters: - extension: pdf - created: timezone: "Europe/Moscow" actions: - move: '~/Documents/PDF/{created.day}/{created.hour}/' """ def __init__( self, years=0, months=0, weeks=0, days=0, hours=0, minutes=0, seconds=0, mode="older", timezone=pendulum.tz.local_timezone(), ) -> None: self._mode = mode.strip().lower() if self._mode not in ("older", "newer"): raise ValueError("Unknown option for 'mode': must be 'older' or 'newer'.") self.is_older = self._mode == "older" self.timezone = timezone self.timedelta = pendulum.duration( years=years, months=months, weeks=weeks, days=days, hours=hours, minutes=minutes, seconds=seconds, ) print(bool(self.timedelta)) def pipeline(self, args: DotDict) -> Optional[Dict[str, pendulum.DateTime]]: created_date = self._created(args.path) # Pendulum bug: https://github.com/sdispater/pendulum/issues/387 # in_words() is a workaround: total_seconds() returns 0 if years are given if self.timedelta.in_words(): is_past = (created_date + self.timedelta).is_past() match = self.is_older == is_past else: match = True if match: return {"created": created_date} return None def _created(self, path: Path) -> pendulum.DateTime: # see https://stackoverflow.com/a/39501288/300783 stat = path.stat() time = 0 # type: SupportsFloat if sys.platform.startswith("win"): time = stat.st_ctime else: try: time = stat.st_birthtime except AttributeError: # We're probably on Linux. No easy way to get creation dates here, # so we'll settle for when its content was last modified. time = stat.st_mtime return pendulum.from_timestamp(float(time), tz=self.timezone) def __str__(self): return "[Created] All files %s than %s" % ( self._mode, self.timedelta.in_words(), )
test/bibliopixel/util/image/extract_gif_lines_test.py
rec/leds
253
12706943
import unittest from unittest.mock import patch from bibliopixel.util.image import extract_gif_lines class ExtractGifLinesTest(unittest.TestCase): def test_extract(self): actual = list(extract_gif_lines._extract(GIF_LINES)) self.assertEqual(actual, EXPECTED1) def test_extract_gif_lines(self): actual = list(extract_gif_lines.extract_gif_lines(GIF_LINES)) self.assertEqual(actual, EXPECTED2) def test_errors(self): actual = list(extract_gif_lines.extract_gif_lines(BAD_LINES)) self.assertEqual(actual, EXPECTED2) GIF_LINES = """ # Here's some stuff. # now code .. code-block:: yaml math.frog(23) print('glog') # But there's no GIF file. # More code: .. code-block:: yaml animation: BiblioPixelAnimations.matrix.MatrixRain shape: [2, 2] .. code-block:: yaml animation: BiblioPixelAnimations.matrix.MatrixRain shape: [32, 32] .. image:: https://raw.githubusercontent.com/ManiacalLabs/DocsFiles/master/\ BiblioPixel/doc/bibliopixel/animations/something.gif .. code-block:: yaml animation: .split shape: 128 .. image:: https://raw.githubusercontent.com/ManiacalLabs/DocsFiles/master/\ BiblioPixel/doc/bibliopixel/animations/minimal.gif """.splitlines() BAD_LINES = GIF_LINES + """ .. code-block:: json }}} ... image: blah.gif """.splitlines() YAML_LINES_1 = """\ animation: BiblioPixelAnimations.matrix.MatrixRain shape: [32, 32] """.splitlines() YAML_LINES_2 = """\ animation: .split shape: 128 """.splitlines() EXPECTED1 = [ ('doc/bibliopixel/animations/something.gif', YAML_LINES_1), ('doc/bibliopixel/animations/minimal.gif', YAML_LINES_2)] DATA1 = { 'animation': 'BiblioPixelAnimations.matrix.MatrixRain', 'shape': [32, 32]} DATA2 = { 'animation': '.split', 'shape': 128} EXPECTED2 = [ ('doc/bibliopixel/animations/something.gif', DATA1), ('doc/bibliopixel/animations/minimal.gif', DATA2)]
kitti360scripts/devkits/convertOxtsPose/python/testPoseToOxts.py
carloradice/kitti360Scripts
214
12706958
<reponame>carloradice/kitti360Scripts<gh_stars>100-1000 # Test script for loading Oxts data and convert to Mercator coordinate import os from data import loadPoses from utils import postprocessPoses from convertPoseToOxts import convertPoseToOxts if __name__=="__main__": # root dir of KITTI-360 if 'KITTI360_DATASET' in os.environ: kitti360_dir = os.environ['KITTI360_DATASET'] else: kitti360_dir = os.path.join(os.path.dirname( os.path.realpath(__file__)), '..', '..') # load poses seq_id = 0 pose_file = os.path.join(kitti360_dir, 'data_poses', '2013_05_28_drive_%04d_sync'%seq_id, 'poses.txt') if not os.path.isfile(pose_file): raise ValueError('%s does not exist! \nPlease specify KITTI360_DATASET in your system path.\nPlease check if you have downloaded system poses (data_poses.zip) and unzipped them under KITTI360_DATASET' % pose_file) [ts, poses] = loadPoses(pose_file) print('Loaded pose file %s' % pose_file) # convert coordinate system from # x=forward, y=left, z=up # to # x=forward, y=right, z=down poses = postprocessPoses(poses) # convert to lat/lon coordinate oxts = convertPoseToOxts(poses) # write to file output_dir = 'output' if not os.path.isdir(output_dir): os.makedirs(output_dir) output_file = '%s/2013_05_28_drive_%04d_sync_pose2oxts.txt'% (output_dir, seq_id) with open(output_file, 'w') as f: for oxts_ in oxts: oxts_ = ' '.join(['%.6f'%x for x in oxts_]) f.write('%s\n'%oxts_) print('Output written to %s' % output_file)
st3/mdpopups/pygments/lexers/agile.py
evandroforks/mdpopups
109
12706992
<reponame>evandroforks/mdpopups # -*- coding: utf-8 -*- """ pygments.lexers.agile ~~~~~~~~~~~~~~~~~~~~~ Just export lexer classes previously contained in this module. :copyright: Copyright 2006-2015 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ from .lisp import SchemeLexer from .jvm import IokeLexer, ClojureLexer from .python import PythonLexer, PythonConsoleLexer, \ PythonTracebackLexer, Python3Lexer, Python3TracebackLexer, DgLexer from .ruby import RubyLexer, RubyConsoleLexer, FancyLexer from .perl import PerlLexer, Perl6Lexer from .d import CrocLexer, MiniDLexer from .iolang import IoLexer from .tcl import TclLexer from .factor import FactorLexer from .scripting import LuaLexer, MoonScriptLexer __all__ = []
models/multi_speech_model.py
gaoyiyeah/KWS-CTC
340
12706997
from __future__ import division import tensorflow as tf import speech_model class MultiSpeechModel(object): def __init__(self, num_gpus): self.num_gpus = num_gpus self._init_inference = False self._init_cost = False self._init_train = False def init_inference(self, config): batch_size = config['batch_size'] assert batch_size % self.num_gpus == 0, \ "Batch size must be divisible by the number of GPUs." batch_per_gpu = batch_size // self.num_gpus self._models = [] for i in range(self.num_gpus): with tf.device('/gpu:{}'.format(i)): model = speech_model.SpeechModel() config['batch_size'] = batch_per_gpu model.init_inference(config) tf.get_variable_scope().reuse_variables() self._models.append(model) self._init_inference = True def init_cost(self): assert self._init_inference, "Must init inference before cost." for i in range(self.num_gpus): with tf.device('/gpu:{}'.format(i)): with tf.variable_scope(tf.get_variable_scope(), reuse=True): self._models[i].init_cost() costs = [model.cost for model in self._models] zero = tf.constant(0.0) finite_costs = [tf.where(tf.is_finite(c), c, zero) for c in costs] self._cost = tf.div(tf.add_n(finite_costs), self.num_gpus) self._init_cost = True def init_train(self, config): assert self._init_inference, "Must init inference before train." assert self._init_cost, "Must init cost before train." learning_rate = config['learning_rate'] self._momentum_val = config['momentum'] max_grad_norm = config['max_grad_norm'] decay_steps = config['lr_decay_steps'] decay_rate = config['lr_decay_rate'] self._momentum = tf.Variable(0.5, trainable=False) self._global_step = step = tf.Variable(0, trainable=False) self.lr = tf.train.exponential_decay(learning_rate, step, decay_steps, decay_rate, staircase=True) with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE): ema = tf.train.ExponentialMovingAverage(0.99, name="avg") avg_cost_op = ema.apply([self.cost]) self._avg_cost = ema.average(self.cost) grads = [] for i in range(self.num_gpus): with tf.device('/gpu:{}'.format(i)): tvars = tf.trainable_variables() grads.append(tf.gradients(self._models[i].cost, tvars)) average_grads = _average_gradients(grads) scaled_grads, norm = tf.clip_by_global_norm(average_grads, max_grad_norm) self._grad_norm = norm with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE): optimizer = tf.train.MomentumOptimizer(self.lr, self._momentum) with tf.control_dependencies([avg_cost_op]): self._train_op = optimizer.apply_gradients(zip(scaled_grads, tvars), global_step=step) self._init_train = True def feed_dict(self, inputs, labels=None): """ Constructs the feed dictionary from given inputs necessary to run an operations for the model. Args: inputs : List of 2D numpy array input spectrograms. Should be of shape [input_dim x time] labels : List of labels for each item in the batch. Each label should be a list of integers. If label=None does not feed the label placeholder (for e.g. inference only). Returns: A dictionary of placeholder keys and feed values. """ feed_dict = {} batches = _split_batch(self.num_gpus, inputs, labels) for model, (i, l) in zip(self._models, batches): feed_dict.update(model.feed_dict(i, labels=l)) return feed_dict def start_momentum(self, session): m = self._momentum.assign(self._momentum_val) session.run([m]) def set_mean_std(self, mean, std, session): self._models[0].set_mean_std(mean, std, session) @property def cost(self): assert self._init_cost, "Must init cost." return self._cost @property def avg_cost(self): assert self._init_train, "Must init train." return self._avg_cost @property def grad_norm(self): assert self._init_train, "Must init train." return self._grad_norm @property def global_step(self): assert self._init_train, "Must init train." return self._global_step @property def input_dim(self): assert self._init_inference, "Must init inference." return self._models[0].input_dim @property def output_dim(self): assert self._init_inference, "Must init inference." return self._models[0].output_dim @property def train_op(self): assert self._init_train, "Must init train." return self._train_op def _average_gradients(model_grads): """ Calculate the average gradient for each shared variable across all towers. Note that this function provides a synchronization point across all towers. Args: tower_grads: List of list of gradients for each model. Returns: List of gradients where each gradient has been averaged across all models. """ average_grads = [] for grads in zip(*model_grads): grads = [tf.expand_dims(g, 0) for g in grads] # Average over the 'model' dimension. grad = tf.concat(grads, axis=0) grad = tf.reduce_mean(grad, 0) average_grads.append(grad) return average_grads def _split_batch(num_gpus, data, labels=None): """ Split a set of data into batch_size // num_gpus batches. Args: inputs : List of 2D numpy array input spectrograms. Should be of shape [input_dim x time] labels : List of labels for each item in the batch. Each label should be a list of integers. If labels=None the corresponding labels item for each batch will also be None. Returns: A num_gpus length list of (inputs, labels) of the same types as above but with batch_size // num_gpus entries in each. """ batch_size = len(data) n = batch_size // num_gpus batches = [] for i in range(0, batch_size, n): batch = [data[i:i + n], None] if labels: batch[1] = labels[i:i + n] batches.append(batch) return batches
tests/test_simulation.py
SebastianoF/pyro2
151
12707010
<filename>tests/test_simulation.py import simulation_null as sn from util import runparams import mesh.patch as patch import mesh.boundary as bnd class TestSimulation(object): @classmethod def setup_class(cls): """ this is run once for each class before any tests """ pass @classmethod def teardown_class(cls): """ this is run once for each class after all tests """ pass def setup_method(self): """ this is run before each test """ self.rp = runparams.RuntimeParameters() self.rp.params["driver.tmax"] = 1.0 self.rp.params["driver.max_steps"] = 100 self.rp.params["driver.init_tstep_factor"] = 0.5 self.rp.params["driver.max_dt_change"] = 1.2 self.rp.params["driver.fix_dt"] = -1.0 self.sim = sn.NullSimulation("test", "test", self.rp) myg = patch.Grid2d(8, 16) myd = patch.CellCenterData2d(myg) bc = bnd.BC() myd.register_var("a", bc) myd.create() self.sim.cc_data = myd def teardown_method(self): """ this is run after each test """ self.rp = None self.sim = None def test_finished_n(self): self.sim.n = 1000 assert self.sim.finished() def test_finished_t(self): self.sim.cc_data.t = 2.0 assert self.sim.finished() def test_compute_timestep(self): # set a dt and n = 0, then init_tstep_factor should kick in self.sim.dt = 2.0 self.sim.n = 0 self.sim.compute_timestep() assert self.sim.dt == 1.0 # now set dt_old and a new dt and see if the max_dt_change kicks in self.sim.n = 1.0 self.sim.dt_old = 1.0 self.sim.dt = 2.0 self.sim.compute_timestep() assert self.sim.dt == 1.2 # now test what happens if we go over tmax self.sim.cc_data.t = 0.75 self.dt = 0.5 self.sim.compute_timestep() assert self.sim.dt == 0.25 def test_grid_setup(): rp = runparams.RuntimeParameters() rp.params["mesh.nx"] = 8 rp.params["mesh.ny"] = 16 rp.params["mesh.xmin"] = 0.0 rp.params["mesh.xmax"] = 1.0 rp.params["mesh.ymin"] = 0.0 rp.params["mesh.ymax"] = 2.0 g = sn.grid_setup(rp) assert g.nx == 8 assert g.ny == 16 assert g.dx == 1.0/8 assert g.dy == 1.0/8
applications/DEMApplication/tests/test_glued_particles.py
lkusch/Kratos
778
12707035
import os import KratosMultiphysics as Kratos from KratosMultiphysics import Logger Logger.GetDefaultOutput().SetSeverity(Logger.Severity.WARNING) import KratosMultiphysics.KratosUnittest as KratosUnittest import KratosMultiphysics.DEMApplication.DEM_analysis_stage as DEM_analysis_stage import auxiliary_functions_for_tests this_working_dir_backup = os.getcwd() def GetFilePath(fileName): return os.path.join(os.path.dirname(os.path.realpath(__file__)), fileName) class GluedParticlesTestSolution(DEM_analysis_stage.DEMAnalysisStage, KratosUnittest.TestCase): @classmethod def GetMainPath(self): return os.path.join(os.path.dirname(os.path.realpath(__file__)), "glued_particles_tests_files") def GetProblemNameWithPath(self): return os.path.join(self.main_path, self.DEM_parameters["problem_name"].GetString()) def FinalizeSolutionStep(self): super().FinalizeSolutionStep() tolerance = 1e-4 for node in self.spheres_model_part.Nodes: angular_velocity = node.GetSolutionStepValue(Kratos.ANGULAR_VELOCITY) if node.Id == 1: if self.time > 0.01: self.assertAlmostEqual(angular_velocity[0], 2.0, delta=tolerance) if self.time > 0.499999 and self.time < 0.5000001: self.assertAlmostEqual(node.X, -1.0, delta=tolerance) self.assertAlmostEqual(node.Y, 0.6634116060768411, delta=tolerance) self.assertAlmostEqual(node.Z, 0.21612092234725555, delta=tolerance) if self.time > 0.999999 and self.time < 1.0000001: self.assertAlmostEqual(node.X, -1.0, tolerance) self.assertAlmostEqual(node.Y, 0.6362810292697275, delta=tolerance) self.assertAlmostEqual(node.Z, -0.16645873461885752, delta=tolerance) def Finalize(self): self.procedures.RemoveFoldersWithResults(str(self.main_path), str(self.problem_name), '') super().Finalize() class TestGluedParticles(KratosUnittest.TestCase): def setUp(self): pass @classmethod def test_Glued_Particles_1(self): path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "glued_particles_tests_files") parameters_file_name = os.path.join(path, "ProjectParametersDEM.json") model = Kratos.Model() auxiliary_functions_for_tests.CreateAndRunStageInSelectedNumberOfOpenMPThreads(GluedParticlesTestSolution, model, parameters_file_name, auxiliary_functions_for_tests.GetHardcodedNumberOfThreads()) if __name__ == "__main__": Kratos.Logger.GetDefaultOutput().SetSeverity(Logger.Severity.WARNING) KratosUnittest.main()
Algorithms/Longest_Consecutive_Sequence.py
abdzitter/Daily-Coding-DS-ALGO-Practice
289
12707045
<gh_stars>100-1000 # lcs = longest_consecutive_series # ccn = count_of_consecutive_numbers class Solution(object): #main function def longestConsecutive(self, values): #sub funcction lcs = 0 # Initializing for i in values: # Iteration the given value if i-1 not in values: # condition check value = i ccn = 0 while i in values: i+=1 #increament ccn+=1 #increment lcs = max(lcs,ccn) #maximum finding return lcs print(" Length of LCS is ",Solution().longestConsecutive({13,15,19,16,21,17,18,23,1,4})) #Calling two function Solution and longestConsecutive ''' longestConsecutive will be called and it will pass the value. longest_consecutive_series value will be assign loop will be called for i = 1 (True ):- if i-1 not in values ( True ):- value = 1 count_of_consecutive_numbers = 0 for i =1 (True ) i +=1 , i=2 count_of_consecutive_numbers = 1 max will be find between longest_consecutive_series,count_of_consecutive_numbers for i =2 ( False ) back to main loop. for i = 4 ( True ) :- if i-1 not in values ( True ):- value = 4 count_of_consecutive_numbers = 0 for i = 4 (True ) i +=1 , i = 5 count_of_consecutive_numbers = 1 longest_consecutive_series =1 for i = 5 ( False ) back to main loop for i = 5 (False ) :- The value of i will be iterate for i = 13 (True ) :- if i-1 not in values ( True ):- value = 13 count_of_consecutive_numbers = 0 for i = 13 ( True ) i +=1 , i = 13 count_of_consecutive_numbers = 1 longest_consecutive_series = for i = 14 (False) back to main loop for i = 14 (False ):- if i-1 not in values ( False ) for i = 15 (True ):- if i-1 not in values ( True ):- value = 15 count_of_consecutive_numbers = 0 for i = 15 ( True ) i +=1 , i = 16 count_of_consecutive_numbers = 1 longest_consecutive_series =1 for i = 16 ( True ) i +=1 , i = 17 count_of_consecutive_numbers = 2 longest_consecutive_series =2 for i = 17 ( True ) i +=1 , i = 18 count_of_consecutive_numbers = 3 longest_consecutive_series =3 for i = 18 ( True ) i +=1 , i = 19 count_of_consecutive_numbers = 4 longest_consecutive_series =4 for i = 19 ( True ) i +=1 , i = 20 count_of_consecutive_numbers = 5 longest_consecutive_series =5 for i = 20 ( False ) back to main loop for i = 16 ( True ):- if i-1 not in values ( False ):- back to main loop for i = 17 ( True ):- if i-1 not in values ( False ):- back to main loop for i = 18 ( True ):- if i-1 not in values ( False ):- back to main loo for i = 19 ( True ):- if i-1 not in values ( False ):- back to main loo for i = 21 ( True ):- if i-1 not in values ( True ):- value = 21 count_of_consecutive_numbers = 0 for i = 21 ( True ) i +=1 , i = 22 count_of_consecutive_numbers = 1 longest_consecutive_series =1 for i = 22 ( False ):- back to main loop for i = 23 ( True ):- if i-1 not in values ( True ):- value = 23 count_of_consecutive_numbers = 0 for i = 23 ( True ) i +=1 , i = 24 count_of_consecutive_numbers = 1 longest_consecutive_series = 1 for i = 24 (False ):- back to main loop '''
DaPy/methods/regressors/lr.py
huihui7987/DaPy
552
12707078
<gh_stars>100-1000 from DaPy.methods.core import BaseLinearModel class LinearRegressor(BaseLinearModel): def __init__(self, engine='numpy', learn_rate=0.05, l1_penalty=0, l2_penalty=0, fit_intercept=True): BaseLinearModel.__init__(self, engine, learn_rate, l1_penalty, l2_penalty, fit_intercept) def _forecast(self, X): return X.dot(self._weight) + self._bias def fit(self, X, Y, epoch=500, early_stop=True, verbose=False): self._fit(X, Y, epoch, early_stop, verbose) return self def predict(self, X): X = self._engine.mat(X) return self._forecast(X)
owtf/lib/exceptions.py
Udbhavbisarya23/owtf
1,514
12707151
<gh_stars>1000+ """ owtf.lib.exceptions ~~~~~~~~~~~~~~~~~~~ Declares the framework exceptions and HTTP errors """ try: from http.client import responses except ImportError: from httplib import responses import tornado.web class FrameworkException(Exception): def __init__(self, value): self.parameter = value def __repr__(self): return self.parameter class APIError(tornado.web.HTTPError): """Equivalent to ``RequestHandler.HTTPError`` except for in name""" def api_assert(condition, *args, **kwargs): """Assertion to fail with if not ``condition`` Asserts that ``condition`` is ``True``, else raises an ``APIError`` with the provided ``args`` and ``kwargs`` :type condition: bool """ if not condition: raise APIError(*args, **kwargs) class FrameworkAbortException(FrameworkException): pass class PluginAbortException(FrameworkException): pass class UnreachableTargetException(FrameworkException): pass class UnresolvableTargetException(FrameworkException): pass class DBIntegrityException(FrameworkException): pass class InvalidTargetReference(FrameworkException): pass class InvalidSessionReference(FrameworkException): pass class InvalidTransactionReference(FrameworkException): pass class InvalidParameterType(FrameworkException): pass class InvalidWorkerReference(FrameworkException): pass class InvalidErrorReference(FrameworkException): pass class InvalidWorkReference(FrameworkException): pass class InvalidConfigurationReference(FrameworkException): pass class InvalidUrlReference(FrameworkException): pass class InvalidActionReference(FrameworkException): pass class InvalidMessageReference(FrameworkException): pass class InvalidMappingReference(FrameworkException): pass class DatabaseNotRunningException(Exception): pass class PluginException(Exception): pass class PluginsDirectoryDoesNotExist(PluginException): """The specified plugin directory does not exist.""" class PluginsAlreadyLoaded(PluginException): """`load_plugins()` called twice."""
openmdao/docs/openmdao_book/other/disable_snopt_cells.py
friedenhe/OpenMDAO
451
12707154
import json def disable_snopt_cells(fname): """ Once the first SNOPT cell is found, delete all code cells. Parameters ---------- fname : str Name of the notebook file, from openmdao_book. """ fname = f'openmdao_book/{fname}' with open(fname) as f: dct = json.load(f) changed = False newcells = [] found_snopt = False for cell in dct['cells']: if cell['cell_type'] == 'code': if cell['source']: # cell is not empty code = ''.join(cell['source']) if found_snopt or 'SNOPT' in code: found_snopt = True else: newcells.append(cell) else: newcells.append(cell) dct['cells'] = newcells with open(fname, 'w') as f: json.dump(dct, f, indent=1, ensure_ascii=False) return changed if __name__ == '__main__': notebooks = ['features/building_blocks/drivers/pyoptsparse_driver.ipynb'] for notebook in notebooks: disable_snopt_cells(notebook)
AutotestWebD/apps/myadmin/service/UserLogService.py
yangjourney/sosotest
422
12707216
<filename>AutotestWebD/apps/myadmin/service/UserLogService.py from all_models.models import TbUserLog class UserLogService(object): @staticmethod def updateUserLogService(permissionData): tbModel = TbUserLog.objects.filter(id=permissionData["id"]) tbModel.update(**permissionData)
plenario/apiary/views.py
vforgione/plenario
109
12707224
<filename>plenario/apiary/views.py<gh_stars>100-1000 from json import dumps, loads from flask import Blueprint from redis import Redis from sqlalchemy import desc, select from plenario.database import redshift_base as rshift_base from plenario.models.SensorNetwork import SensorMeta from plenario.settings import REDIS_HOST blueprint = Blueprint('apiary', __name__) redis = Redis(REDIS_HOST) def index() -> list: """Generate the information necessary for displaying unknown features on the admin index page. """ rshift_base.metadata.reflect() unknown_features = rshift_base.metadata.tables['unknown_feature'] query = select([unknown_features]) \ .order_by(desc(unknown_features.c.datetime)) \ .limit(5) rp = query.execute() results = [] for row in rp: sensor = SensorMeta.query.get(row.sensor) if sensor is None: expected = 'No metadata exists for this sensor!' else: expected = dumps(sensor.observed_properties, indent=2, sort_keys=True) result = { 'sensor': row.sensor, 'datetime': row.datetime, 'incoming': dumps(loads(row.data), indent=2, sort_keys=True, default=str), 'expected': expected } results.append(result) return results
longclaw/shipping/serializers/rates.py
al-bezd/longclaw
351
12707229
from rest_framework import serializers from longclaw.shipping.models.rates import ShippingRate class ShippingRateSerializer(serializers.ModelSerializer): class Meta: model = ShippingRate fields = "__all__"
configs/_base_/schedules/schedule_1x.py
kazakh-shai/kaggle-global-wheat-detection
136
12707257
# optimizer optimizer = dict(type="SGD", lr=0.04, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict(policy="step", warmup="linear", warmup_iters=100, warmup_ratio=0.001, step=[7, 11]) total_epochs = 12
ufora/FORA/Compiler/Compiler_test.py
ufora/ufora
571
12707265
<gh_stars>100-1000 # Copyright 2015 Ufora Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import ufora.FORA.python.Runtime as Runtime import ufora.FORA.python.FORA as FORA import ufora.native.FORA as ForaNative class TestCompiler(unittest.TestCase): def setUp(self): self.runtime = Runtime.getMainRuntime() self.axioms = self.runtime.getAxioms() self.compiler = self.runtime.getTypedForaCompiler() def test_resolveAxiomDirectly_smallStrings(self): instance = ForaNative.ImplValContainer( ("s1", ForaNative.makeSymbol("Operator"), ForaNative.makeSymbol("+"), "s2") ) jov = ForaNative.implValToJOV(instance) joa = self.axioms.resolveAxiomDirectly(self.compiler, jov.getTuple()) self.assertEqual(len(joa.throwPart()),0) self.assertEqual(len(joa.resultPart()),1) result = joa.resultPart()[0] self.assertEqual(result, ForaNative.parseStringToJOV('"s1s2"')) def test_resolveAxiomDirectly_Vector(self): vectorIVC = FORA.extractImplValContainer(FORA.eval("[]")) jov = ForaNative.parseStringToJOV(("({Vector([])}, `append, 2)")) joa = self.axioms.resolveAxiomDirectly(self.compiler, jov.getTuple()) self.assertEqual(len(joa.throwPart()),0) self.assertEqual(len(joa.resultPart()),1) result = joa.resultPart()[0] self.assertEqual(result, ForaNative.parseStringToJOV("{Vector([{Int64}])}")) def test_resolveAxiomDirectly_VeryLongComputation(self): vectorIVC = FORA.extractImplValContainer(FORA.eval("[]")) jov = ForaNative.parseStringToJOV(("({Vector([])}, `append, 2)")) joa = self.axioms.resolveAxiomDirectly(self.compiler, jov.getTuple()) self.assertEqual(len(joa.throwPart()),0) self.assertEqual(len(joa.resultPart()),1) result = joa.resultPart()[0] self.assertEqual(result, ForaNative.parseStringToJOV("{Vector([{Int64}])}"))
tests/test_serialisation.py
gaganchhabra/appkernel
156
12707270
from .utils import * def setup_function(function): """ executed before each method call """ print('\n\nSETUP ==> ') def teardown_function(function): """ teardown any state that was previously setup with a setup_method call. """ print("\nTEAR DOWN <==") def test_basic_serialisation(): p = create_rich_project() p.finalise_and_validate() print(('\n> serialized project: {}'.format(p.dumps(pretty_print=True)))) deserialised_proj = Project.loads(p.dumps()) print(('> deserialized project: {}'.format(deserialised_proj))) assert type(deserialised_proj.created) == datetime assert deserialised_proj.created == p.created, '!!! the deserialized project has created field w. type {} while it should be {}'.format( type(deserialised_proj.created), type(p.created))
src/plugins/nat/extras/nat_ses_open.py
yasics/vpp
751
12707271
from trex_stl_lib.api import * class STLS1: def __init__ (self): self.ip_range = {'local': {'start': "10.0.0.3", 'end': "10.1.255.255"}, 'external': {'start': "172.16.1.3", 'end': "172.16.1.3"}, 'remote': {'start': "2.2.0.1", 'end': "2.2.0.1"}} self.port_range = {'local': {'start': 1025, 'end': 65535}, 'remote': {'start': 12, 'end': 12}} def create_stream (self, vm): base_pkt = Ether()/IP()/UDP() if len(base_pkt) < 64: pad_len = 64 - len(base_pkt) pad = Padding() pad.load = '\x00' * pad_len base_pkt = base_pkt/pad pkt = STLPktBuilder(pkt=base_pkt, vm=vm) return STLStream(packet=pkt, mode=STLTXCont()) def get_streams (self, direction = 0, **kwargs): if direction == 0: ip_src = self.ip_range['remote'] ip_dst = self.ip_range['external'] src_port = self.port_range['remote'] dst_port = self.port_range['local'] else: ip_src = self.ip_range['local'] ip_dst = self.ip_range['remote'] src_port = self.port_range['local'] dst_port = self.port_range['remote'] vm = STLVM() vm.var(name="ip_src", min_value=ip_src['start'], max_value=ip_src['end'], size=4, op="random") vm.var(name="ip_dst", min_value=ip_dst['start'], max_value=ip_dst['end'], size=4, op="random") vm.var(name="src_port", min_value=src_port['start'], max_value=src_port['end'], size=2, op="random") vm.var(name="dst_port", min_value=dst_port['start'], max_value=dst_port['end'], size=2, op="random") vm.write(fv_name="ip_src", pkt_offset="IP.src") vm.write(fv_name="ip_dst", pkt_offset="IP.dst") vm.write(fv_name="src_port", pkt_offset="UDP.sport") vm.write(fv_name="dst_port", pkt_offset="UDP.dport") vm.fix_chksum() return [ self.create_stream(vm) ] # dynamic load - used for trex console or simulator def register(): return STLS1()
src/app/tests/tests_s3_client.py
iNerV/education-backend
151
12707297
import pytest from app.integrations.s3 import AppS3 pytestmark = [pytest.mark.django_db] def test_client_init(): client = AppS3().client assert 'botocore.client.S3' in str(client.__class__)
sublime_jedi/go_to.py
zjzh/SublimeJEDI
641
12707312
<gh_stars>100-1000 # -*- coding: utf-8 -*- try: from typing import Set, List, Tuple, Any except Exception: pass import sublime import sublime_plugin from functools import partial import re from .utils import to_relative_path, PythonCommandMixin, get_settings, is_python_scope, debounce from .daemon import ask_daemon from .settings import get_settings_param class BaseLookUpJediCommand(PythonCommandMixin): def _jump_to_in_window(self, filename, line_number=None, column_number=None, transient=False): """ Opens a new window and jumps to declaration if possible :param filename: string or int :param line_number: int :param column_number: int :param transient: bool If transient is True, opens a transient view """ active_window = self.view.window() # restore saved location try: if self.view.sel()[0] != self.point: self.view.sel().clear() self.view.sel().add(self.point) except AttributeError: # called without setting self.point pass # If the file was selected from a drop down list if isinstance(filename, int): if filename == -1: # cancelled # restore view active_window.focus_view(self.view) self.view.show(self.point) return filename, line_number, column_number = self.options[filename] flags = self.prepare_layout(active_window, transient, filename) active_window.open_file('%s:%s:%s' % (filename, line_number or 0, column_number or 0), flags) def prepare_layout(self, window, transient, filename): """ prepares the layout of the window to configured and returns flags for opening the file """ flags = sublime.ENCODED_POSITION if transient: flags |= sublime.TRANSIENT # sublime cant show quick panel with options on one panel and # file's content in transient mode on another panel # so dont do anything if its a requrest to show just options return flags goto_layout = get_settings_param(self.view, 'sublime_goto_layout') if goto_layout == 'single-panel-transient' and not transient: flags |= sublime.TRANSIENT elif goto_layout == 'two-panel': self.switch_to_two_panel_layout(window, filename) elif goto_layout == 'two-panel-transient': self.switch_to_two_panel_layout(window, filename) if not transient: flags |= sublime.TRANSIENT return flags def switch_to_two_panel_layout(self, window, filename): curr_group = window.active_group() layout = window.get_layout() if len(layout['cells']) == 1: # currently a single panel layout so switch to two panels window.set_layout({ 'cols': [0.0, 0.5, 1.0], 'rows': [0.0, 1.0], 'cells': [[0, 0, 1, 1], [1, 0, 2, 1]], }) # select non current group(panel) selected_group = None for group in range(window.num_groups()): if group != curr_group: selected_group = group window.focus_group(group) break # if the file is already opened and is in current group # move it to another panel. files_in_curr_group = dict([ (i.file_name(), i) for i in window.views_in_group(curr_group) ]) if filename and filename in files_in_curr_group: if files_in_curr_group[filename].view_id != self.view.view_id: window.set_view_index(files_in_curr_group[filename], selected_group, 0) def _window_quick_panel_open_window(self, view, options): """ Shows the active `sublime.Window` quickpanel (dropdown) for user selection. :param option: list of `jedi.api_classes.BasDefinition` """ active_window = view.window() # remember filenames self.options = options # remember current file location self.point = self.view.sel()[0] # Show the user a selection of filenames active_window.show_quick_panel( [self.prepare_option(o) for o in options], self._jump_to_in_window, on_highlight=partial(self._jump_to_in_window, transient=True)) def prepare_option(self, option): """ prepare option to display out in quick panel """ raise NotImplementedError( "{} require `prepare_option` definition".format(self.__class__) ) class SublimeJediGoto(BaseLookUpJediCommand, sublime_plugin.TextCommand): """ Go to object definition """ def run(self, edit): follow_imports = get_settings(self.view)['follow_imports'] ask_daemon( self.view, self.handle_definitions, 'goto', ask_kwargs={ 'follow_imports': follow_imports }, ) def handle_definitions(self, view, defns): if not defns: return False if len(defns) == 1: defn = defns[0] self._jump_to_in_window(*defn) else: self._window_quick_panel_open_window(view, defns) def prepare_option(self, option): return to_relative_path(option[0]) class SublimeJediFindUsages(BaseLookUpJediCommand, sublime_plugin.TextCommand): """ Find object usages, and optionally rename objects. """ def run(self, edit): self.edit = edit ask_daemon(self.view, self.handle_usages, 'usages') def handle_usages(self, view, options) -> None: if not options: return active_window = view.window() # remember filenames self.options = options # remember current file location self.point = self.view.sel()[0] # expands selection to all of "focused" symbol name = expand_selection(self.view, self.point) def handle_rename(new_name: str) -> None: groups = [] # type: List[List[Tuple[str, int, int]]] files = set() # type: Set[str] for option in options: file = option[0] if not file: # can't replace text (or even show usages) in unsaved file continue if file in files: groups[-1].append(option) else: groups.append([option]) files.add(file) for group in groups: rename_in_file(group, group[0][0], new_name) def rename_in_file(group, file_, new_name): # type: (List[Tuple[str, int, int]], str, str) -> None with open(file_) as f: text = f.read() original_text = text offset = 0 for option in group: assert text and name _, row, col = option point = text_point(original_text, row-1, col-1) text = text[:point + offset] + new_name + text[point + offset + len(name):] offset += len(new_name) - len(name) with open(file_, "w") as f: f.write(text) def handle_choose(idx): if not name: return if idx == 0: view.window().show_input_panel("New name:", name, handle_rename, None, None) return self._jump_to_in_window(idx - 1 if idx != -1 else idx) def handle_highlight(idx): if idx == 0: return self._jump_to_in_window(idx - 1 if idx != -1 else idx, transient=True) # Show the user a selection of filenames files = {option[0] for option in options} # type: Set[str] first_option = [[ 'rename "{}"'.format(name), "{} occurrence{} in {} file{}".format( len(options), 's' if len(options) != 1 else '', len(files), 's' if len(files) != 1 else '') ]] active_window.show_quick_panel( first_option + [self.prepare_option(o) for o in options], handle_choose, on_highlight=handle_highlight) def prepare_option(self, option): return [to_relative_path(option[0]), "line: %d column: %d" % (option[1], option[2])] def expand_selection(view, point): # type: (Any, Any) -> str name = "" _, col = view.rowcol(point.begin()) for match in re.finditer(r"[A-Za-z0-9_]+", view.substr(view.line(point.begin()))): if match.start() <= col and match.end() >= col: name = match.group() return name def text_point(text: str, row: int, col: int) -> int: """ Return the integer offset for the char at 0-indexed row and col in text. Similar to View.text_point, but doesn't require loading the view first. """ chars = 0 for line in text.splitlines()[:row]: chars += len(line) + 1 return chars + col class SublimeJediEventListener(sublime_plugin.EventListener): def on_selection_modified_async(self, view) -> None: should_highlight = get_settings_param(view, 'highlight_usages_on_select') if not view.file_name() or not is_python_scope(view, view.sel()[0].begin()) or not should_highlight: return highlight_usages(view) @debounce(0.35) def highlight_usages(view) -> None: ask_daemon(view, handle_highlight_usages, 'usages') def handle_highlight_usages(view, options): # type: (Any, List[Tuple[str, int, int]]) -> None name = expand_selection(view, view.sel()[0]) file_name = view.file_name() def get_region(o): # type: (Tuple[str, int, int]) -> Any _, row, col = o point = view.text_point(row-1, col-1) return sublime.Region(point, point + len(name)) regions = [get_region(o) for o in options if o[0] == file_name] if not regions: view.erase_regions('sublime-jedi-usages') return highlight_color = get_settings_param(view, 'highlight_usages_color') view.add_regions("sublime-jedi-usages", regions, highlight_color or "region.bluish", flags=sublime.DRAW_NO_FILL | sublime.DRAW_NO_OUTLINE | sublime.DRAW_SOLID_UNDERLINE)
grow/extensions/hooks/deployment_register_hook_test.py
tabulon-ext/grow
335
12707320
<reponame>tabulon-ext/grow<gh_stars>100-1000 """Tests for deployment destination registration hook.""" import unittest from grow.extensions.hooks import deployment_register_hook class DeploymentRegisterHookTestCase(unittest.TestCase): """Test the deployment destination registration hook.""" def test_something(self): """?""" pass