max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
tools/manylinux1/build_scripts/ssl-check.py
limeng357/Paddle
17,085
12711193
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # cf. https://github.com/pypa/manylinux/issues/53 GOOD_SSL = "https://google.com" BAD_SSL = "https://self-signed.badssl.com" import sys print("Testing SSL certificate checking for Python:", sys.version) if (sys.version_info[:2] < (2, 7) or sys.version_info[:2] < (3, 4)): print("This version never checks SSL certs; skipping tests") sys.exit(0) if sys.version_info[0] >= 3: from urllib.request import urlopen EXC = OSError else: from urllib import urlopen EXC = IOError print("Connecting to %s should work" % (GOOD_SSL, )) urlopen(GOOD_SSL) print("...it did, yay.") print("Connecting to %s should fail" % (BAD_SSL, )) try: urlopen(BAD_SSL) # If we get here then we failed: print("...it DIDN'T!!!!!11!!1one!") sys.exit(1) except EXC: print("...it did, yay.")
tests/pytests/unit/renderers/test_toml.py
babs/salt
9,425
12711194
<reponame>babs/salt<gh_stars>1000+ import pytest import salt.renderers.tomlmod import salt.serializers.toml @pytest.mark.skipif( salt.serializers.toml.HAS_TOML is False, reason="The 'toml' library is missing" ) def test_toml_render_string(): data = """[[user-sshkey."ssh_auth.present"]] user = "username" [[user-sshkey."ssh_auth.present"]] config = "%h/.ssh/authorized_keys" [[user-sshkey."ssh_auth.present"]] names = [ "hereismykey", "anotherkey" ] """ expected_result = { "user-sshkey": { "ssh_auth.present": [ {"user": "username"}, {"config": "%h/.ssh/authorized_keys"}, {"names": ["hereismykey", "anotherkey"]}, ] } } result = salt.renderers.tomlmod.render(data) assert result == expected_result
tests/core/utils/test_time.py
cercos/masonite
1,816
12711208
import pendulum from tests import TestCase from src.masonite.utils.time import ( migration_timestamp, parse_human_time, cookie_expire_time, ) class TestTimeUtils(TestCase): def tearDown(self): super().tearDown() self.restoreTime() def test_parse_human_time_now(self): ref_time = pendulum.datetime(2021, 1, 1) self.fakeTime(ref_time) instance = parse_human_time("now") self.assertEqual(ref_time, instance) def test_parse_human_time_expired(self): self.fakeTime(pendulum.datetime(2021, 1, 1)) instance = parse_human_time("expired") self.assertEqual(pendulum.datetime(2001, 1, 1), instance) def test_parse_human_time(self): self.fakeTime(pendulum.datetime(2021, 1, 1, 12, 0, 0)) self.assertEqual( pendulum.datetime(2021, 1, 1, 12, 0, 2), parse_human_time("2 seconds") ) self.assertEqual( pendulum.datetime(2021, 1, 1, 12, 2, 0), parse_human_time("2 minutes") ) self.assertEqual( pendulum.datetime(2021, 1, 1, 14, 0, 0), parse_human_time("2 hour") ) self.assertEqual( pendulum.datetime(2021, 1, 2, 12, 0, 0), parse_human_time("1 day") ) self.assertEqual( pendulum.datetime(2021, 1, 15, 12, 0, 0), parse_human_time("2 weeks") ) self.assertEqual( pendulum.datetime(2021, 4, 1, 12, 0, 0), parse_human_time("3 months") ) self.assertEqual( pendulum.datetime(2030, 1, 1, 12, 0, 0), parse_human_time("9 years") ) self.assertEqual(None, parse_human_time("10 nanoseconds")) def test_cookie_expire_time(self): self.fakeTime(pendulum.datetime(2021, 1, 21, 7, 28, 0)) expiration_time_str = cookie_expire_time("7 days") self.assertEqual(expiration_time_str, "Thu, 28 Jan 2021 07:28:00") def test_migration_timestamp(self): self.fakeTime(pendulum.datetime(2021, 10, 25, 8, 12, 54)) self.assertEqual(migration_timestamp(), "2021_10_25_081254")
Tools/Scenarios/list_bg.py
ErQing/Nova
212
12711216
#!/usr/bin/env python3 from luaparser import astnodes from nova_script_parser import get_node_name, parse_chapters, walk_functions in_filename = 'scenario.txt' def do_chapter(entries, bg_list): for code, _, _ in entries: if not code: continue for func_name, args, _ in walk_functions(code): if (func_name in [ 'show', 'trans', 'trans2', 'trans_fade', 'trans_left', 'trans_right', 'trans_up', 'trans_down' ] and args and get_node_name(args[0]).startswith('bg') and isinstance(args[1], astnodes.String)): bg_name = args[1].s if bg_name not in bg_list: bg_list.append(bg_name) elif (func_name == 'show_loop' and args and get_node_name(args[0]).startswith('bg')): for field in args[1].fields: bg_name = field.value.s if bg_name not in bg_list: bg_list.append(bg_name) def main(): with open(in_filename, 'r', encoding='utf-8') as f: chapters = parse_chapters(f) bg_list = [] for chapter_name, entries, _, _ in chapters: print(chapter_name) do_chapter(entries, bg_list) print() for x in bg_list: print(x) if __name__ == '__main__': main()
installer/core/providers/aws/boto3/es.py
jonico/pacbot
1,165
12711219
from core.providers.aws.boto3 import prepare_aws_client_with_given_cred import boto3 def get_es_client(aws_auth_cred): """ Returns the client object for AWS Elasticsearch Args: aws_auth (dict): Dict containing AWS credentials Returns: obj: AWS Elasticsearch Object """ return prepare_aws_client_with_given_cred("es", aws_auth_cred) def check_es_domain_exists(domain_name, aws_auth_cred): """ Check wheter the given ES Domain already exists in the AWS Account Args: domain_name (str): ES Domain name aws_auth (dict): Dict containing AWS credentials Returns: Boolean: True if env exists else False """ client = get_es_client(aws_auth_cred) try: response = client.describe_elasticsearch_domain( DomainName=domain_name ) return True if response['DomainStatus'] else False except: return False
fixtures/tmva_net.py
kgarg8/torchinfo
736
12711242
# type: ignore # pylint: skip-file import torch import torch.nn as nn import torch.nn.functional as F class DoubleConvBlock(nn.Module): """(2D conv => BN => LeakyReLU) * 2""" def __init__(self, in_ch, out_ch, k_size, pad, dil): super().__init__() self.block = nn.Sequential( nn.Conv2d(in_ch, out_ch, kernel_size=k_size, padding=pad, dilation=dil), nn.BatchNorm2d(out_ch), nn.LeakyReLU(inplace=True), nn.Conv2d(out_ch, out_ch, kernel_size=k_size, padding=pad, dilation=dil), nn.BatchNorm2d(out_ch), nn.LeakyReLU(inplace=True), ) def forward(self, x): x = self.block(x) return x class Double3DConvBlock(nn.Module): """(3D conv => BN => LeakyReLU) * 2""" def __init__(self, in_ch, out_ch, k_size, pad, dil): super().__init__() self.block = nn.Sequential( nn.Conv3d(in_ch, out_ch, kernel_size=k_size, padding=pad, dilation=dil), nn.BatchNorm3d(out_ch), nn.LeakyReLU(inplace=True), nn.Conv3d(out_ch, out_ch, kernel_size=k_size, padding=pad, dilation=dil), nn.BatchNorm3d(out_ch), nn.LeakyReLU(inplace=True), ) def forward(self, x): x = self.block(x) return x class ConvBlock(nn.Module): """(2D conv => BN => LeakyReLU)""" def __init__(self, in_ch, out_ch, k_size, pad, dil): super().__init__() self.block = nn.Sequential( nn.Conv2d(in_ch, out_ch, kernel_size=k_size, padding=pad, dilation=dil), nn.BatchNorm2d(out_ch), nn.LeakyReLU(inplace=True), ) def forward(self, x): x = self.block(x) return x class ASPPBlock(nn.Module): """Atrous Spatial Pyramid Pooling Parallel conv blocks with different dilation rate """ def __init__(self, in_ch, out_ch=256): super().__init__() self.global_avg_pool = nn.AvgPool2d((64, 64)) self.conv1_1x1 = nn.Conv2d(in_ch, out_ch, kernel_size=1, padding=0, dilation=1) self.single_conv_block1_1x1 = ConvBlock(in_ch, out_ch, k_size=1, pad=0, dil=1) self.single_conv_block1_3x3 = ConvBlock(in_ch, out_ch, k_size=3, pad=6, dil=6) self.single_conv_block2_3x3 = ConvBlock(in_ch, out_ch, k_size=3, pad=12, dil=12) self.single_conv_block3_3x3 = ConvBlock(in_ch, out_ch, k_size=3, pad=18, dil=18) def forward(self, x): x1 = F.interpolate( self.global_avg_pool(x), size=(64, 64), align_corners=False, mode="bilinear" ) x1 = self.conv1_1x1(x1) x2 = self.single_conv_block1_1x1(x) x3 = self.single_conv_block1_3x3(x) x4 = self.single_conv_block2_3x3(x) x5 = self.single_conv_block3_3x3(x) x_cat = torch.cat((x2, x3, x4, x5, x1), 1) return x_cat class EncodingBranch(nn.Module): """ Encoding branch for a single radar view PARAMETERS ---------- signal_type: str Type of radar view. Supported: 'range_doppler', 'range_angle' and 'angle_doppler' """ def __init__(self, signal_type): super().__init__() self.signal_type = signal_type self.double_3dconv_block1 = Double3DConvBlock( in_ch=1, out_ch=128, k_size=3, pad=(0, 1, 1), dil=1 ) self.doppler_max_pool = nn.MaxPool2d(2, stride=(2, 1)) self.max_pool = nn.MaxPool2d(2, stride=2) self.double_conv_block2 = DoubleConvBlock( in_ch=128, out_ch=128, k_size=3, pad=1, dil=1 ) self.single_conv_block1_1x1 = ConvBlock( in_ch=128, out_ch=128, k_size=1, pad=0, dil=1 ) def forward(self, x): x1 = self.double_3dconv_block1(x) x1 = torch.squeeze(x1, 2) # remove temporal dimension if self.signal_type in ("range_doppler", "angle_doppler"): # The Doppler dimension requires a specific processing x1_pad = F.pad(x1, (0, 1, 0, 0), "constant", 0) x1_down = self.doppler_max_pool(x1_pad) else: x1_down = self.max_pool(x1) x2 = self.double_conv_block2(x1_down) if self.signal_type in ("range_doppler", "angle_doppler"): # The Doppler dimension requires a specific processing x2_pad = F.pad(x2, (0, 1, 0, 0), "constant", 0) x2_down = self.doppler_max_pool(x2_pad) else: x2_down = self.max_pool(x2) x3 = self.single_conv_block1_1x1(x2_down) # return input of ASPP block + latent features return x2_down, x3 class TMVANet_Encoder(nn.Module): """ Temporal Multi-View with ASPP Network (TMVA-Net) PARAMETERS ---------- n_classes: int Number of classes used for the semantic segmentation task n_frames: int Total numer of frames used as a sequence """ def __init__(self, n_classes, n_frames): super().__init__() self.n_classes = n_classes self.n_frames = n_frames # Backbone (encoding) self.rd_encoding_branch = EncodingBranch("range_doppler") self.ra_encoding_branch = EncodingBranch("range_angle") self.ad_encoding_branch = EncodingBranch("angle_doppler") # ASPP Blocks self.rd_aspp_block = ASPPBlock(in_ch=128, out_ch=128) self.ra_aspp_block = ASPPBlock(in_ch=128, out_ch=128) self.ad_aspp_block = ASPPBlock(in_ch=128, out_ch=128) self.rd_single_conv_block1_1x1 = ConvBlock( in_ch=640, out_ch=128, k_size=1, pad=0, dil=1 ) self.ra_single_conv_block1_1x1 = ConvBlock( in_ch=640, out_ch=128, k_size=1, pad=0, dil=1 ) self.ad_single_conv_block1_1x1 = ConvBlock( in_ch=640, out_ch=128, k_size=1, pad=0, dil=1 ) def forward(self, x_rd, x_ra, x_ad, printshape=False): # Backbone ra_features, ra_latent = self.ra_encoding_branch(x_ra) rd_features, rd_latent = self.rd_encoding_branch(x_rd) ad_features, ad_latent = self.ad_encoding_branch(x_ad) # ASPP blocks x1_rd = self.rd_aspp_block(rd_features) x1_ra = self.ra_aspp_block(ra_features) x1_ad = self.ad_aspp_block(ad_features) x2_rd = self.rd_single_conv_block1_1x1(x1_rd) x2_ra = self.ra_single_conv_block1_1x1(x1_ra) x2_ad = self.ad_single_conv_block1_1x1(x1_ad) # Features join either the RD or the RA branch x3 = torch.cat((rd_latent, ra_latent, ad_latent), 1) return x3, x2_rd, x2_ad, x2_ra class TMVANet_Decoder(nn.Module): """ Temporal Multi-View with ASPP Network (TMVA-Net) PARAMETERS ---------- n_classes: int Number of classes used for the semantic segmentation task n_frames: int Total numer of frames used as a sequence """ def __init__(self, n_classes, n_frames): super().__init__() self.n_classes = n_classes self.n_frames = n_frames # Decoding self.rd_single_conv_block2_1x1 = ConvBlock( in_ch=384, out_ch=128, k_size=1, pad=0, dil=1 ) self.ra_single_conv_block2_1x1 = ConvBlock( in_ch=384, out_ch=128, k_size=1, pad=0, dil=1 ) # Pallel range-Doppler (RD) and range-angle (RA) decoding branches self.rd_upconv1 = nn.ConvTranspose2d(384, 128, (2, 1), stride=(2, 1)) self.ra_upconv1 = nn.ConvTranspose2d(384, 128, 2, stride=2) self.rd_double_conv_block1 = DoubleConvBlock( in_ch=128, out_ch=128, k_size=3, pad=1, dil=1 ) self.ra_double_conv_block1 = DoubleConvBlock( in_ch=128, out_ch=128, k_size=3, pad=1, dil=1 ) self.rd_upconv2 = nn.ConvTranspose2d(128, 128, (2, 1), stride=(2, 1)) self.ra_upconv2 = nn.ConvTranspose2d(128, 128, 2, stride=2) self.rd_double_conv_block2 = DoubleConvBlock( in_ch=128, out_ch=128, k_size=3, pad=1, dil=1 ) self.ra_double_conv_block2 = DoubleConvBlock( in_ch=128, out_ch=128, k_size=3, pad=1, dil=1 ) # Final 1D convs self.rd_final = nn.Conv2d( in_channels=128, out_channels=n_classes, kernel_size=1 ) self.ra_final = nn.Conv2d( in_channels=128, out_channels=n_classes, kernel_size=1 ) def forward(self, x3, x2_rd, x2_ad, x2_ra): # Parallel decoding branches with upconvs # Latent Space x3_rd = self.rd_single_conv_block2_1x1(x3) x3_ra = self.ra_single_conv_block2_1x1(x3) # Latent Space + ASPP features x4_rd = torch.cat((x2_rd, x3_rd, x2_ad), 1) x4_ra = torch.cat((x2_ra, x3_ra, x2_ad), 1) x5_rd = self.rd_upconv1(x4_rd) x5_ra = self.ra_upconv1(x4_ra) x6_rd = self.rd_double_conv_block1(x5_rd) x6_ra = self.ra_double_conv_block1(x5_ra) x7_rd = self.rd_upconv2(x6_rd) x7_ra = self.ra_upconv2(x6_ra) x8_rd = self.rd_double_conv_block2(x7_rd) x8_ra = self.ra_double_conv_block2(x7_ra) # Final 1D convolutions x9_rd = self.rd_final(x8_rd) x9_ra = self.ra_final(x8_ra) return x9_rd, x9_ra class TMVANet(nn.Module): """ Temporal Multi-View with ASPP Network (TMVA-Net) PARAMETERS ---------- n_classes: int Number of classes used for the semantic segmentation task n_frames: int Total numer of frames used as a sequence """ def __init__(self, n_classes, n_frames): super().__init__() self.n_classes = n_classes self.n_frames = n_frames self.encoder = TMVANet_Encoder(n_classes, n_frames) self.decoder = TMVANet_Decoder(n_classes, n_frames) def forward(self, x_rd, x_ra, x_ad): x3, x2_rd, x2_ad, x2_ra = self.encoder(x_rd, x_ra, x_ad) x9_rd, x9_ra = self.decoder(x3, x2_rd, x2_ad, x2_ra) return x9_rd, x9_ra
packages/pyright-internal/src/tests/samples/typeAlias3.py
sasano8/pyright
4,391
12711327
# This sample tests that type aliases can consist of # partially-specialized classes that can be further # specialized. # pyright: strict from typing import Callable, Generic, Literal, Tuple, Optional, TypeVar from typing_extensions import ParamSpec T = TypeVar("T") P = ParamSpec("P") ValidationResult = Tuple[bool, Optional[T]] def foo() -> ValidationResult[str]: return False, "valid" class ClassA(Generic[T]): def __new__(cls, value: T) -> "ClassA[T]": ... TypeAliasA = ClassA[T] a1 = ClassA(3.0) t_a1: Literal["ClassA[float]"] = reveal_type(a1) a2 = TypeAliasA(3.0) t_a2: Literal["ClassA[float]"] = reveal_type(a2) Func = Callable[P, T] AnyFunc = Func[P, int] AnyFunc[P]
crank/net/trainer/__init__.py
abeersaqib/crank
162
12711328
<gh_stars>100-1000 from .basetrainer import BaseTrainer # noqa from .trainer_vqvae import VQVAETrainer # noqa from .trainer_lsgan import LSGANTrainer # noqa from .trainer_cyclegan import CycleGANTrainer # noqa from .trainer_stargan import StarGANTrainer # noqa from .basetrainer import TrainerWrapper # noqa
examples/algorithms/clustering_comparisons.py
rkalahasty/nipy
236
12711375
<filename>examples/algorithms/clustering_comparisons.py #!/usr/bin/env python3 # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: from __future__ import print_function # Python 2/3 compatibility __doc__ = """ Simple demo that partitions a smooth field into 10 clusters. In most cases, Ward's clustering behaves best. Requires matplotlib Author: <NAME>, 2009 """ print(__doc__) import numpy as np import numpy.random as nr from scipy.ndimage import gaussian_filter try: import matplotlib.pyplot as plt except ImportError: raise RuntimeError("This script needs the matplotlib library") from nipy.algorithms.graph.field import Field dx = 50 dy = 50 dz = 1 nbseeds = 10 data = gaussian_filter( np.random.randn(dx, dy), 2) F = Field(dx * dy * dz) xyz = np.reshape(np.indices((dx, dy, dz)), (3, dx * dy * dz)).T.astype(np.int) F.from_3d_grid(xyz, 6) F.set_field(data) seeds = np.argsort(nr.rand(F.V))[:nbseeds] seeds, label, J0 = F.geodesic_kmeans(seeds) wlabel, J1 = F.ward(nbseeds) seeds, label, J2 = F.geodesic_kmeans(seeds, label=wlabel.copy(), eps=1.e-7) print('Inertia values for the 3 algorithms: ') print('Geodesic k-means: ', J0, 'Wards: ', J1, 'Wards + gkm: ', J2) plt.figure(figsize=(8, 4)) plt.subplot(1, 3, 1) plt.imshow(np.reshape(data, (dx, dy)), interpolation='nearest') plt.title('Input data') plt.subplot(1, 3, 2) plt.imshow(np.reshape(wlabel, (dx, dy)), interpolation='nearest') plt.title('Ward clustering \n into 10 components') plt.subplot(1, 3, 3) plt.imshow(np.reshape(label, (dx, dy)), interpolation='nearest') plt.title('geodesic kmeans clust. \n into 10 components') plt.show()
python/args-test.py
honux77/practice
152
12711390
a = [1, 2, 3, 4, 5,] print(*a) for i in a: print(i, end=' ')
Chapter09/Python 3.5/classify_image.py
littlealexchen/Deep-Learning-with-TensorFlow-master
194
12711416
<gh_stars>100-1000 import tensorflow as tf, sys # You will be sending the image to be classified as a parameter provided_image_path = sys.argv[1] # then we will read the image data provided_image_data = tf.gfile.FastGFile(provided_image_path, 'rb').read() # Loads label file label_lines = [line.rstrip() for line in tf.gfile.GFile("tensorflow_files/retrained_labels.txt")] # Unpersists graph from file with tf.gfile.FastGFile("tensorflow_files/retrained_graph.pb", 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(graph_def, name='') with tf.Session() as sess: # pass the provided_image_data as input to the graph softmax_tensor = sess.graph.get_tensor_by_name('final_result:0') netowrk_predictions = sess.run(softmax_tensor, \ {'DecodeJpeg/contents:0': provided_image_data}) # Sort the result by confidence to show the flower labels accordingly top_predictions = netowrk_predictions[0].argsort()[-len(netowrk_predictions[0]):][::-1] for prediction in top_predictions: flower_type = label_lines[prediction] score = netowrk_predictions[0][prediction] print('%s (score = %.5f)' % (flower_type, score))
tests/guinea-pigs/nose/docstrings/testa.py
djeebus/teamcity-python
105
12711431
def test_func(): """ My cool test.name """ assert True
awdphpspear/protect.py
hillmanyoung/AWD
146
12711432
# -*- coding:utf-8 -*- import os import hashlib import time import shutil def get_file_md5(filename): m = hashlib.md5() with open(filename,'rb') as fobj: while True: data = fobj.read(4096) if not data: break m.update(data) return m.hexdigest() def file_md5_build(startpath): global md5_list global file_list global dir_list global root md5_list = [] file_list = [] dir_list = [] for root,dirs,files in os.walk(startpath,topdown=True): for d in dirs: dir_list.append(root+'/'+d) for f in files: if f[-4:] == '.txt': continue file_list.append(root+'/'+f) md5_list.append(get_file_md5(root+'/'+f)) def file_md5_defense(): file_backup() global root file_md5_build('./') old_list = [] old_dir_list = [] new_list = [] new_dir_list = [] check_list = [] old_file_list = [] new_file_list = [] check_file_list = [] old_file_list = file_list[:] old_list = md5_list[:] old_dir_list = dir_list[:] while (1): print "*******************************************************" print '[+]The old file total:',len(old_list) print '[+]The old dir total:',len(old_dir_list) print "*******************************************************" check_list = old_list[:] check_file_list = old_file_list[:] file_md5_build('./') new_list = md5_list[:] new_file_list = file_list[:] new_dir_list = dir_list[:] sign2 = 0 for i in range(len(old_dir_list)): sign3 = 0 for j in range(len(new_dir_list)): if (old_dir_list[i] == new_dir_list[j]): sign3 = 1 break if sign3 == 0: sign3 = 1 print old_dir_list[i].replace('./',''),'Disappear!' try: shutil.copytree(tgt+old_dir_list[i].replace('./','/'),old_dir_list[i]) print "[+]Repaired." except: print "[-]No such dir." for i in range(len(new_list)): sign = 0 for j in range(len(old_list)): if (new_list[i] == old_list[j] and new_file_list[i] == old_file_list[j]): check_list[j] = '0' sign = 1 break if sign == 0: sign2 = 1 print new_file_list[i].replace('./',''),'Add or Changed!' try: os.remove(new_file_list[i]) shutil.copyfile(tgt+new_file_list[i].replace('./','/'),new_file_list[i]) print "[+]Repaired." except: print "[-]No such file." for i in range(len(check_list)): if check_list[i] != '0' and sign2 != 1: print check_file_list[i].replace('./',''),'Disappear!' sign2 = 0 try: shutil.copyfile(tgt+check_file_list[i].replace('./','/'),check_file_list[i]) print "[+]Repaired." except: print "[-]No such file." print "*******************************************************" print '[+]Total file:',len(new_list) print '[+]Total dir:',len(new_dir_list) print "*******************************************************" time.sleep(5) def file_md5_check(): file_backup() global root file_md5_build('./') old_list = [] old_dir_list = [] new_list = [] new_dir_list = [] check_list = [] old_file_list = [] new_file_list = [] check_file_list = [] old_file_list = file_list[:] old_list = md5_list[:] old_dir_list = dir_list[:] while (1): print "*******************************************************" print '[+]The old file total:',len(old_list) print '[+]The old dir total:',len(old_dir_list) print "*******************************************************" check_list = old_list[:] check_file_list = old_file_list[:] file_md5_build('./') new_list = md5_list[:] new_file_list = file_list[:] new_dir_list = dir_list[:] sign2 = 0 for i in range(len(old_dir_list)): sign3 = 0 for j in range(len(new_dir_list)): if (old_dir_list[i] == new_dir_list[j]): sign3 = 1 break if sign3 == 0: sign3 = 1 print old_dir_list[i].replace('./',''),'Disappear!' for i in range(len(new_list)): sign = 0 for j in range(len(old_list)): if (new_list[i] == old_list[j] and new_file_list[i] == old_file_list[j]): check_list[j] = '0' sign = 1 break if sign == 0: sign2 = 1 print new_file_list[i].replace('./',''),'Add or Changed!' for i in range(len(check_list)): if check_list[i] != '0' and sign2 != 1: print check_file_list[i].replace('./',''),'Disappear!' sign2 = 0 print "*******************************************************" print '[+]Total file:',len(new_list) print '[+]Total dir:',len(new_dir_list) print "*******************************************************" time.sleep(5) def file_log_add(): php_list=[] for root,dirs,files in os.walk('./',topdown=True): for f in files: if f[-4:] == '.php': php_list.append(root+'/'+f) for i in range(len(php_list)): php_list[i] = php_list[i].replace('//','/') print php_list[i] print '[+]Total PHP file:',len(php_list) confirm = raw_input("Confirm Open Log Monitoring. 1 or 0:") if confirm == '1': print "*******************************************************" for i in range(len(php_list)): level_dir = 0 for j in range(len(php_list[i])): if php_list[i][j] == '/': level_dir += 1 lines = open(php_list[i],"r").readlines() length = len(lines)-1 for j in range(length): if '<?php' in lines[j]: lines[j]=lines[j].replace('<?php','<?php\nrequire_once("./'+'../'*(level_dir-1)+'log.php");') open(php_list[i],'w').writelines(lines) print "[+]Log monitoring turned on." def file_backup(): src = './' try: shutil.copytree(src,tgt) print "[+]File backup succeed." except: print "[-]File backup fail.Maybe it exists." def file_backup_remove(): try: shutil.rmtree(tgt) print "[+]File backup remove succeed." except: print "[-]File backup remove fail.Maybe it doesn't exist." global tgt tgt = './backup'
main.py
shubhamkumar906/DeepFake-Detection
223
12711433
<gh_stars>100-1000 import numpy as np import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler from apex import amp from data_loader import create_dataloaders from model import get_trainable_params, create_model, print_model_params from train import train from utils import parse_and_override_params import foundations # Fix random seed torch.manual_seed(0) np.random.seed(0) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False params = foundations.load_parameters() data_dict = parse_and_override_params(params) # Set job tags to easily spot data in use foundations.set_tag(f'{data_dict[params["train_data"]]}: {params["train_data"]}') # foundations.set_tag(f'big {params["train_data"]}') print('Creating datasets') # Get dataloaders train_dl, val_base_dl, val_augment_dl, display_dl_iter = create_dataloaders(params) print('Creating loss function') # Loss function criterion = nn.CrossEntropyLoss() print('Creating model') # Create model, freeze layers and change last layer model = create_model(bool(params['use_hidden_layer']), params['dropout']) _ = print_model_params(model) params_to_update = get_trainable_params(model) print('Creating optimizer') # Create optimizer and learning rate schedules optimizer = optim.Adam(params_to_update, lr=params['max_lr'], weight_decay=params['weight_decay']) model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0) # Learning rate scheme if bool(params['use_lr_scheduler']): step_size_up = int(params['n_epochs'] * len(train_dl) * 0.3) step_size_down = params['n_epochs'] * len(train_dl) - step_size_up scheduler = lr_scheduler.OneCycleLR(optimizer, params['max_lr'], total_steps=None, epochs=params['n_epochs'], steps_per_epoch=len(train_dl), pct_start=params['pct_start'], anneal_strategy='cos', cycle_momentum=False) else: scheduler = None print('Training start..') # Train train(train_dl, val_base_dl, val_augment_dl, display_dl_iter, model, optimizer, params['n_epochs'], params['max_lr'], scheduler, criterion, train_source=params["train_data"])
example/validators/with_python/development_settings.py
rroden12/dynaconf
2,293
12711464
<gh_stars>1000+ EXAMPLE = True MYSQL_HOST = "development.com" VERSION = 1 AGE = 15 NAME = "MIKE" IMAGE_1 = "aaa" IMAGE_2 = "bbb" IMAGE_4 = "a" IMAGE_5 = "b"
rel-eng/lib/osbsbuilder.py
SalatskySal/atomic-reactor
113
12711477
<gh_stars>100-1000 from tito.builder import Builder class AtomicReactorBuilder(Builder): def __init__(self, **kwargs): super(AtomicReactorBuilder, self).__init__(**kwargs) # tarball has to represent Source0 # but internal structure should remain same # i.e. {name}-{version} otherwise %setup -q # will fail self.tgz_filename = self.display_version + ".tar.gz"
cacreader/swig-4.0.2/Examples/test-suite/python/return_const_value_runme.py
kyletanyag/LL-Smartcard
1,031
12711506
import return_const_value import sys p = return_const_value.Foo_ptr_getPtr() if (p.getVal() != 17): print "Runtime test1 failed. p.getVal()=", p.getVal() sys.exit(1) p = return_const_value.Foo_ptr_getConstPtr() if (p.getVal() != 17): print "Runtime test2 failed. p.getVal()=", p.getVal() sys.exit(1)
utils.py
karhankaan/CausalGAN
119
12711577
from __future__ import print_function import tensorflow as tf from functools import partial import os from os import listdir from os.path import isfile, join import shutil import sys from glob import glob import math import json import logging import numpy as np from PIL import Image from datetime import datetime from tensorflow.core.framework import summary_pb2 def make_summary(name, val): return summary_pb2.Summary(value=[summary_pb2.Summary.Value(tag=name, simple_value=val)]) def summary_stats(name,tensor,collections=None,hist=False): collections=collections or [tf.GraphKeys.SUMMARIES] ave=tf.reduce_mean(tensor) std=tf.sqrt(tf.reduce_mean(tf.square(ave-tensor))) tf.summary.scalar(name+'_ave',ave,collections) tf.summary.scalar(name+'_std',std,collections) if hist: tf.summary.histogram(name+'_hist',tensor,collections) def prepare_dirs_and_logger(config): if config.load_path: strip_lp=config.load_path.strip('./') if strip_lp.startswith(config.log_dir): config.model_dir = config.load_path else: if config.load_path.startswith(config.dataset): config.model_name = config.load_path else: config.model_name = "{}_{}".format(config.dataset, config.load_path) else:#new model config.model_name = "{}_{}".format(config.dataset, get_time()) if config.descrip: config.model_name+='_'+config.descrip if not hasattr(config, 'model_dir'): config.model_dir = os.path.join(config.log_dir, config.model_name) config.data_path = os.path.join(config.data_dir, config.dataset) if not config.load_path: config.log_code_dir=os.path.join(config.model_dir,'code') for path in [config.log_dir, config.data_dir, config.model_dir]: if not os.path.exists(path): os.makedirs(path) #Copy python code in directory into model_dir/code for future reference: #All python files in this directory are copied. code_dir=os.path.dirname(os.path.realpath(sys.argv[0])) ##additionally, all python files in these directories are also copied. Also symlinks are copied. The idea is to allow easier model loading in the future allowed_dirs=['causal_controller','causal_began','causal_dcgan','figure_scripts'] #ignore copy of all non-*.py except for these directories #If you make another folder you want copied, you have to add it here ignore_these=partial(ignore_except,allowed_dirs=allowed_dirs) shutil.copytree(code_dir,config.log_code_dir,symlinks=True,ignore=ignore_these) # model_files = [f for f in listdir(code_dir) if isfile(join(code_dir, f))] # for f in model_files: # if f.endswith('.py'): # shutil.copy2(f,config.log_code_dir) def ignore_except(src,contents,allowed_dirs): files=filter(os.path.isfile,contents) dirs=filter(os.path.isdir,contents) ignored_files=[f for f in files if not f.endswith('.py')] ignored_dirs=[d for d in dirs if not d in allowed_dirs] return ignored_files+ignored_dirs def get_time(): return datetime.now().strftime("%m%d_%H%M%S") def save_configs(config,cc_config,dcgan_config,began_config): model_dir=config.model_dir print("[*] MODEL dir: %s" % model_dir) save_config(config) save_config(cc_config,'cc_params.json',model_dir) save_config(dcgan_config,'dcgan_params.json',model_dir) save_config(began_config,'began_params.json',model_dir) def save_config(config,name="params.json",where=None): where=where or config.model_dir param_path = os.path.join(where, name) print("[*] PARAM path: %s" % param_path) with open(param_path, 'w') as fp: json.dump(config.__dict__, fp, indent=4, sort_keys=True) def get_available_gpus(): from tensorflow.python.client import device_lib local_device_protos = device_lib.list_local_devices() return [x.name for x in local_device_protos if x.device_type=='GPU'] def distribute_input_data(data_loader,num_gpu): ''' data_loader is a dictionary of tensors that are fed into our model This function takes that dictionary of n*batch_size dimension tensors and breaks it up into n dictionaries with the same key of tensors with dimension batch_size. One is given to each gpu ''' if num_gpu==0: return {'/cpu:0':data_loader} gpus=get_available_gpus() if num_gpu > len(gpus): raise ValueError('number of gpus specified={}, more than gpus available={}'.format(num_gpu,len(gpus))) gpus=gpus[:num_gpu] data_by_gpu={g:{} for g in gpus} for key,value in data_loader.items(): spl_vals=tf.split(value,num_gpu) for gpu,val in zip(gpus,spl_vals): data_by_gpu[gpu][key]=val return data_by_gpu def rank(array): return len(array.shape) def make_grid(tensor, nrow=8, padding=2, normalize=False, scale_each=False): """Code based on https://github.com/pytorch/vision/blob/master/torchvision/utils.py minor improvement, row/col was reversed""" nmaps = tensor.shape[0] ymaps = min(nrow, nmaps) xmaps = int(math.ceil(float(nmaps) / ymaps)) height, width = int(tensor.shape[1] + padding), int(tensor.shape[2] + padding) grid = np.zeros([height * ymaps + 1 + padding // 2, width * xmaps + 1 + padding // 2, 3], dtype=np.uint8) k = 0 for y in range(ymaps): for x in range(xmaps): if k >= nmaps: break h, h_width = y * height + 1 + padding // 2, height - padding w, w_width = x * width + 1 + padding // 2, width - padding grid[h:h+h_width, w:w+w_width] = tensor[k] k = k + 1 return grid def save_image(tensor, filename, nrow=8, padding=2, normalize=False, scale_each=False): ndarr = make_grid(tensor, nrow=nrow, padding=padding, normalize=normalize, scale_each=scale_each) im = Image.fromarray(ndarr) im.save(filename)
tests/ut/cpp/python_input/gtest_input/optimizer/clean_test.py
GuoSuiming/mindspore
3,200
12711599
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ @File : opt_clean.py @Author : wangqiuliang @Date : 2019-03-18 @Desc : parse python function for ut of erase class """ from dataclasses import dataclass # Test_Erase_class @dataclass class Point: x: float y: float def product(self): return self.x * self.y def test_erase_class_fn(p_in): p = Point(p_in) return p.x * p.y
atest/resources/testlibs/cache_error.py
hugovk/SeleniumLibrary
792
12711645
from robot.libraries.BuiltIn import BuiltIn def invalidate_driver(): sl = BuiltIn().get_library_instance("SeleniumLibrary") sl.register_driver(None, "tidii") sl.register_driver(None, "foobar")
nmmo/entity/__init__.py
zhm9484/environment
230
12711652
<filename>nmmo/entity/__init__.py from nmmo.entity.entity import Entity from nmmo.entity.player import Player
search/binary_search/python/binary_search_first_occurrence.py
CarbonDDR/al-go-rithms
1,253
12711653
def binary_search(arr, item): low = 0 high = len(arr)-1 result = -1 while (low <= high): mid = (low + high)//2 if item == arr[mid]: result = mid high = mid - 1 elif (item < arr[mid]): high = mid - 1 else: low = mid + 1 return result
tests/example_tests/custom_query_strategies.py
simonlevine/modAL
1,460
12711654
<gh_stars>1000+ import numpy as np from modAL.utils.combination import make_linear_combination, make_product from modAL.utils.selection import multi_argmax from modAL.uncertainty import classifier_uncertainty, classifier_margin from modAL.models import ActiveLearner from sklearn.datasets import make_blobs from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF # generating the data centers = np.asarray([[-2, 3], [0.5, 5], [1, 1.5]]) X, y = make_blobs( n_features=2, n_samples=1000, random_state=0, cluster_std=0.7, centers=centers ) # initial training data initial_idx = np.random.choice(range(len(X)), size=20) X_training, y_training = X[initial_idx], y[initial_idx] # initializing the learner learner = ActiveLearner( estimator=GaussianProcessClassifier(1.0 * RBF(1.0)), X_training=X_training, y_training=y_training ) # creating new utility measures by linear combination and product # linear_combination will return 1.0*classifier_uncertainty + 1.0*classifier_margin linear_combination = make_linear_combination( classifier_uncertainty, classifier_margin, weights=[1.0, 1.0] ) # product will return (classifier_uncertainty**0.5)*(classifier_margin**0.1) product = make_product( classifier_uncertainty, classifier_margin, exponents=[0.5, 0.1] ) # defining the custom query strategy, which uses the linear combination of # classifier uncertainty and classifier margin def custom_query_strategy(classifier, X, n_instances=1): utility = linear_combination(classifier, X) return multi_argmax(utility, n_instances=n_instances) custom_query_learner = ActiveLearner( estimator=GaussianProcessClassifier(1.0 * RBF(1.0)), query_strategy=custom_query_strategy, X_training=X_training, y_training=y_training ) # pool-based sampling n_queries = 20 for idx in range(n_queries): query_idx, query_instance = custom_query_learner.query(X, n_instances=2) custom_query_learner.teach( X=X[query_idx].reshape(-1, 2), y=y[query_idx].reshape(-1, ) )
nodes/0.7.x/python/Roof.KindIsGlazed.py
jdehotin/Clockworkfordynamo
147
12711661
import clr clr.AddReference('RevitAPI') from Autodesk.Revit.DB import * items = UnwrapElement(IN[0]) booleans = list() for item in items: try: if item.CurtainGrids: booleans.append(True) else: booleans.append(False) except: booleans.append(False) OUT = booleans
fastAutoTest/core/wx/wxCommandManager.py
FranciscoShi/FAutoTest
903
12711668
<reponame>FranciscoShi/FAutoTest # -*- coding: utf-8 -*- ''' Tencent is pleased to support the open source community by making FAutoTest available. Copyright (C) 2018 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the BSD 3-Clause License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://opensource.org/licenses/BSD-3-Clause Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from fastAutoTest.core.wx.wxUserAPI import ActionType from fastAutoTest.core.wx.wxUserAPI import ByType class WxCommandManager(object): # 使用$$可以作为格式化时的转义 _elementMap = { ByType.ID: "$$('#$id')[0]", ByType.NAME: "$$('.$name')[$index]", ByType.XPATH: "var xpath ='$xpath';" "xpath_obj = document.evaluate(xpath,document,null, XPathResult.ANY_TYPE, null);" "var button = xpath_obj.iterateNext()" } # doCommandWithElement中执行的参数 _jsActionMap = { ActionType.GET_ELEMENT_RECT: ";left=Math.round(button.getBoundingClientRect().left);" "right=Math.round(button.getBoundingClientRect().right);" "bottom=Math.round(button.getBoundingClientRect().bottom);" "topp=Math.round(button.getBoundingClientRect().top);" "x=Math.round((left+right)/2);" "y=Math.round((topp+bottom)/2);", ActionType.IS_ELEMENT_EXIST: ";button", ActionType.GET_ELEMENT_TEXT: ";button.textContent;", ActionType.GET_ELEMENT_SRC: ";button.getAttribute('src')", } _methodMap = { ActionType.GET_DOCUMENT: "DOM.getDocument", ActionType.GET_HTML: "DOM.getOuterHTML", ActionType.SCROLL: "Input.synthesizeScrollGesture", ActionType.CLICK: "Input.synthesizeTapGesture", ActionType.GET_ELEMENT_RECT: "Runtime.evaluate", ActionType.GET_PICKER_RECT: "Runtime.evaluate", ActionType.GET_ELEMENT_TEXT: "Runtime.evaluate", ActionType.GET_ELEMENT_SRC: "Runtime.evaluate", ActionType.GET_PAGE_HEIGHT: "Runtime.evaluate", ActionType.GET_JS_VALUE: "Runtime.evaluate", ActionType.TEXT: "Input.dispatchKeyEvent", ActionType.IS_ELEMENT_EXIST: "Runtime.evaluate", ActionType.GET_WINDOW_HEIGHT: "Runtime.evaluate", ActionType.GET_WINDOW_WIDTH: "Runtime.evaluate" } # string.Template # jsonConcat最终拼接的模板 _paramsMap = { "Runtime.evaluate": '{"expression": "$expression"}', "Input.synthesizeScrollGesture": '{"type": "mouseWheel", "x": $x, "y": $y,"xDistance": $xDistance, "yDistance": $yDistance,"speed":$speed}', "Page.navigate": '{"url":"$url"}', "Input.dispatchKeyEvent": '{"type":"$type","text":"$text","unmodifiedText":"$text"}', "Input.synthesizeTapGesture": '{"x":$x,"y":$y}', "DOM.getDocument": "{''}", "DOM.getOuterHTML": '{"nodeId": $nodeId}', } # doCommandWithoutElement 中执行的参数 _expressionMap = { ActionType.GET_PAGE_HEIGHT: 'document.body.scrollHeight', ActionType.GET_JS_VALUE: '$value', ActionType.GET_WINDOW_HEIGHT: 'document.documentElement.clientHeight', ActionType.GET_WINDOW_WIDTH: "document.documentElement.clientWidth" } def getElement(self, actionType, default=None): return self._elementMap.get(actionType, default) def getJsAction(self, actionType, default=None): return self._jsActionMap.get(actionType, default) def getMethod(self, actionType, default=None): return self._methodMap.get(actionType, default) def getParams(self, actionType, default=None): return self._paramsMap.get(actionType, default) def getExpression(self, actionType, default=None): return self._expressionMap.get(actionType, default)
seahub/api2/endpoints/ocm.py
weimens/seahub
420
12711689
<reponame>weimens/seahub<filename>seahub/api2/endpoints/ocm.py<gh_stars>100-1000 import logging import random import string import requests import json from constance import config from rest_framework import status from rest_framework.authentication import SessionAuthentication from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from rest_framework.views import APIView from seahub.api2.authentication import TokenAuthentication from seahub.api2.throttling import UserRateThrottle from seahub.api2.utils import api_error from seaserv import seafile_api from seahub.utils.repo import get_available_repo_perms, get_repo_owner from seahub.base.templatetags.seahub_tags import email2nickname from seahub.constants import PERMISSION_READ, PERMISSION_READ_WRITE from seahub.ocm.models import OCMShareReceived, OCMShare from seahub.ocm.settings import ENABLE_OCM, SUPPORTED_OCM_PROTOCOLS, \ OCM_SEAFILE_PROTOCOL, OCM_RESOURCE_TYPE_LIBRARY, OCM_API_VERSION, \ OCM_SHARE_TYPES, OCM_ENDPOINT, OCM_PROVIDER_ID, OCM_NOTIFICATION_TYPE_LIST, \ OCM_NOTIFICATION_SHARE_UNSHARED, OCM_NOTIFICATION_SHARE_DECLINED, OCM_PROTOCOL_URL, \ OCM_NOTIFICATION_URL, OCM_CREATE_SHARE_URL, OCM_REMOTE_SERVERS logger = logging.getLogger(__name__) # Convert seafile permission to ocm protocol standard permission SEAFILE_PERMISSION2OCM_PERMISSION = { PERMISSION_READ: ['read'], PERMISSION_READ_WRITE: ['read', 'write'], } def get_server_name_by_url(url): for name_domain_dict in OCM_REMOTE_SERVERS: if name_domain_dict['server_url'] == url: return name_domain_dict['server_name'] def gen_shared_secret(length=23): return ''.join(random.choice(string.ascii_lowercase + string.digits) for i in range(length)) def get_remote_protocol(url): response = requests.get(url) return json.loads(response.text) def is_valid_url(url): if not url.startswith('https://') and not url.startswith('http://'): return False if not url.endswith('/'): return False return True def check_url_slash(url): if not url.endswith('/'): url += '/' return url class OCMProtocolView(APIView): throttle_classes = (UserRateThrottle,) def get(self, request): """ return ocm protocol info to remote server """ # TODO # currently if ENABLE_OCM is False, return 404 as if ocm protocol is not implemented # ocm protocol is not clear about this, https://github.com/GEANT/OCM-API/pull/37 if not ENABLE_OCM: error_msg = 'feature not enabled.' return api_error(status.HTTP_404_NOT_FOUND, error_msg) result = { 'enabled': True, 'apiVersion': OCM_API_VERSION, 'endPoint': config.SERVICE_URL + '/' + OCM_ENDPOINT, 'resourceTypes': { 'name': OCM_RESOURCE_TYPE_LIBRARY, 'shareTypes': OCM_SHARE_TYPES, 'protocols': { OCM_SEAFILE_PROTOCOL: OCM_SEAFILE_PROTOCOL, } } } return Response(result) class OCMSharesView(APIView): throttle_classes = (UserRateThrottle,) def post(self, request): """ create ocm in consumer server """ # argument check share_with = request.data.get('shareWith', '') if not share_with: error_msg = 'shareWith invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) # curently only support repo share repo_name = request.data.get('name', '') if not repo_name: error_msg = 'name invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) sender = request.data.get('sender', '') if not sender: error_msg = 'sender invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) share_type = request.data.get('shareType', '') if share_type not in OCM_SHARE_TYPES: error_msg = 'shareType %s invalid.' % share_type return api_error(status.HTTP_400_BAD_REQUEST, error_msg) resource_type = request.data.get('resourceType', '') if resource_type != OCM_RESOURCE_TYPE_LIBRARY: error_msg = 'resourceType %s invalid.' % resource_type return api_error(status.HTTP_400_BAD_REQUEST, error_msg) provider_id = request.data.get('providerId', '') if not provider_id: error_msg = 'providerId invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) """ other ocm protocol fields currently not used description = request.data.get('description', '') owner = request.data.get('owner', '') ownerDisplayName = request.data.get('ownerDisplayName', '') senderDisplayName = request.data.get('senderDisplayName', '') """ protocol = request.data.get('protocol', '') if not protocol: error_msg = 'protocol invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) if 'name' not in protocol.keys(): error_msg = 'protocol.name invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) if protocol['name'] not in SUPPORTED_OCM_PROTOCOLS: error_msg = 'protocol %s not support.' % protocol['name'] return api_error(status.HTTP_400_BAD_REQUEST, error_msg) if 'options' not in protocol.keys(): error_msg = 'protocol.options invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) if 'sharedSecret' not in protocol['options'].keys(): error_msg = 'protocol.options.sharedSecret invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) if 'permissions' not in protocol['options'].keys(): error_msg = 'protocol.options.permissions invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) if protocol['name'] == OCM_SEAFILE_PROTOCOL: if 'repoId' not in protocol['options'].keys(): error_msg = 'protocol.options.repoId invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) if 'seafileServiceURL' not in protocol['options'].keys(): error_msg = 'protocol.options.seafileServiceURL invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) if protocol['name'] == OCM_SEAFILE_PROTOCOL: shared_secret = protocol['options']['sharedSecret'] permissions = protocol['options']['permissions'] repo_id = protocol['options']['repoId'] from_server_url = protocol['options']['seafileServiceURL'] if OCMShareReceived.objects.filter( from_user=sender, to_user=share_with, from_server_url=from_server_url, repo_id=repo_id, repo_name=repo_name, provider_id=provider_id, ).exists(): return api_error(status.HTTP_400_BAD_REQUEST, 'same share already exists.') if 'write' in permissions: permission = PERMISSION_READ_WRITE else: permission = PERMISSION_READ OCMShareReceived.objects.add( shared_secret=shared_secret, from_user=sender, to_user=share_with, from_server_url=from_server_url, repo_id=repo_id, repo_name=repo_name, permission=permission, provider_id=provider_id, ) return Response(request.data, status=status.HTTP_201_CREATED) class OCMNotificationsView(APIView): throttle_classes = (UserRateThrottle,) def post(self, request): """ Handle notifications from remote server """ notification_type = request.data.get('notificationType', '') if not notification_type: error_msg = 'notificationType %s invalid.' % notification_type return api_error(status.HTTP_400_BAD_REQUEST, error_msg) if notification_type not in OCM_NOTIFICATION_TYPE_LIST: error_msg = 'notificationType %s not supportd.' % notification_type return api_error(status.HTTP_400_BAD_REQUEST, error_msg) resource_type = request.data.get('resourceType', '') if resource_type != OCM_RESOURCE_TYPE_LIBRARY: error_msg = 'resourceType %s invalid.' % resource_type return api_error(status.HTTP_400_BAD_REQUEST, error_msg) notification = request.data.get('notification', '') if not notification: error_msg = 'notification invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) shared_secret = notification.get('sharedSecret', '') if not shared_secret: error_msg = 'sharedSecret invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) if notification_type == OCM_NOTIFICATION_SHARE_UNSHARED: """ Provider unshared, then delete ocm_share_received record on Consumer """ try: ocm_share_received = OCMShareReceived.objects.get(shared_secret=shared_secret) except OCMShareReceived.DoesNotExist: return Response(request.data) if ocm_share_received: try: ocm_share_received.delete() except Exception as e: logger.error(e) return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, 'Invernal Server Error') elif notification_type == OCM_NOTIFICATION_SHARE_DECLINED: """ Consumer declined share, then delete ocm_share record on Provider """ try: ocm_share = OCMShare.objects.get(shared_secret=shared_secret) except OCMShareReceived.DoesNotExist: return Response(request.data) if ocm_share: try: ocm_share.delete() except Exception as e: logger.error(e) return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, 'Invernal Server Error') return Response(request.data) class OCMSharesPrepareView(APIView): authentication_classes = (TokenAuthentication, SessionAuthentication) permission_classes = (IsAuthenticated,) throttle_classes = (UserRateThrottle,) def get(self, request): """ list ocm shares of request user, filt by repo_id """ repo_id = request.GET.get('repo_id', '') if repo_id: ocm_shares = OCMShare.objects.filter(repo_id=repo_id, from_user=request.user.username) else: ocm_shares = OCMShare.objects.filter(from_user=request.user.username) ocm_share_list = [] for ocm_share in ocm_shares: ocm_info = ocm_share.to_dict() ocm_info['to_server_name'] = get_server_name_by_url(ocm_share.to_server_url) ocm_share_list.append(ocm_info) return Response({'ocm_share_list': ocm_share_list}) def post(self, request): """ prepare provider server info for ocm, and send post request to consumer three step: 1. send get request to remote server, ask if support ocm, and get other info 2. send post request to remote server, remote server create a recored in remote ocm_share_received table 3. store a recored in local ocm_share table """ # argument check to_user = request.data.get('to_user', '') if not to_user: error_msg = 'to_user invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) to_server_url = request.data.get('to_server_url', '').lower().strip() if not to_server_url or not is_valid_url(to_server_url): error_msg = 'to_server_url %s invalid.' % to_server_url return api_error(status.HTTP_400_BAD_REQUEST, error_msg) repo_id = request.data.get('repo_id', '') if not repo_id: error_msg = 'repo_id invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) repo = seafile_api.get_repo(repo_id) if not repo: return api_error(status.HTTP_404_NOT_FOUND, 'Library %s not found.' % repo_id) path = request.data.get('path', '/') # TODO # 1. folder check # 2. encrypted repo check # # if seafile_api.get_dir_id_by_path(repo.id, path) is None: # return api_error(status.HTTP_404_NOT_FOUND, 'Folder %s not found.' % path) # # if repo.encrypted and path != '/': # return api_error(status.HTTP_400_BAD_REQUEST, 'Folder invalid.') permission = request.data.get('permission', PERMISSION_READ) if permission not in get_available_repo_perms(): return api_error(status.HTTP_400_BAD_REQUEST, 'permission invalid.') username = request.user.username repo_owner = get_repo_owner(request, repo_id) if repo_owner != username: return api_error(status.HTTP_403_FORBIDDEN, 'Permission denied.') if OCMShare.objects.filter( from_user=request.user.username, to_user=to_user, to_server_url=to_server_url, repo_id=repo_id, repo_name=repo.repo_name, path=path, ).exists(): return api_error(status.HTTP_400_BAD_REQUEST, 'same share already exists.') consumer_protocol = get_remote_protocol(to_server_url + OCM_PROTOCOL_URL) shared_secret = gen_shared_secret() from_user = username post_data = { 'shareWith': to_user, 'name': repo.repo_name, 'description': '', 'providerId': OCM_PROVIDER_ID, 'owner': repo_owner, 'sender': from_user, 'ownerDisplayName': email2nickname(repo_owner), 'senderDisplayName': email2nickname(from_user), 'shareType': consumer_protocol['resourceTypes']['shareTypes'][0], # currently only support user type 'resourceType': consumer_protocol['resourceTypes']['name'], # currently only support repo 'protocol': { 'name': OCM_SEAFILE_PROTOCOL, 'options': { 'sharedSecret': shared_secret, 'permissions': SEAFILE_PERMISSION2OCM_PERMISSION[permission], 'repoId': repo_id, 'seafileServiceURL': check_url_slash(config.SERVICE_URL), }, }, } url = consumer_protocol['endPoint'] + OCM_CREATE_SHARE_URL try: requests.post(url, json=post_data) except Exception as e: logging.error(e) return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, 'Internal Server Error') ocm_share = OCMShare.objects.add( shared_secret=shared_secret, from_user=request.user.username, to_user=to_user, to_server_url=to_server_url, repo_id=repo_id, repo_name=repo.repo_name, path=path, permission=permission, ) ocm_info = ocm_share.to_dict() ocm_info['to_server_name'] = get_server_name_by_url(ocm_share.to_server_url) return Response(ocm_info) class OCMSharePrepareView(APIView): authentication_classes = (TokenAuthentication, SessionAuthentication) permission_classes = (IsAuthenticated,) throttle_classes = (UserRateThrottle,) def delete(self, request, pk): """ delete an share received record """ try: ocm_share = OCMShare.objects.get(pk=pk) except OCMShareReceived.DoesNotExist: error_msg = 'OCMShare %s not found.' % pk return api_error(status.HTTP_404_NOT_FOUND, error_msg) if ocm_share.from_user != request.user.username: error_msg = 'permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) to_server_url = ocm_share.to_server_url shared_secret = ocm_share.shared_secret consumer_protocol = get_remote_protocol(to_server_url + OCM_PROTOCOL_URL) # send unshare notification to consumer post_data = { 'notificationType': OCM_NOTIFICATION_SHARE_UNSHARED, 'resourceType': OCM_RESOURCE_TYPE_LIBRARY, 'providerId': OCM_PROVIDER_ID, 'notification': { 'sharedSecret': shared_secret, 'message': '', }, } url = consumer_protocol['endPoint'] + OCM_NOTIFICATION_URL try: requests.post(url, json=post_data) except Exception as e: logging.error(e) return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, 'Internal Server Error') try: ocm_share.delete() except Exception as e: logger.error(e) return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, 'Internal Server Error') return Response({'success': True}) class OCMSharesReceivedView(APIView): authentication_classes = (TokenAuthentication, SessionAuthentication) permission_classes = (IsAuthenticated,) throttle_classes = (UserRateThrottle,) def get(self, request): """ list ocm shares received """ ocm_share_received_list = [] ocm_shares_received = OCMShareReceived.objects.filter(to_user=request.user.username) for ocm_share_received in ocm_shares_received: ocm_share_received_list.append(ocm_share_received.to_dict()) return Response({'ocm_share_received_list': ocm_share_received_list}) class OCMShareReceivedView(APIView): authentication_classes = (TokenAuthentication, SessionAuthentication) permission_classes = (IsAuthenticated,) throttle_classes = (UserRateThrottle,) def delete(self, request, pk): """ delete an share received record """ try: ocm_share_received = OCMShareReceived.objects.get(pk=pk) except OCMShareReceived.DoesNotExist: error_msg = 'OCMShareReceived %s not found.' % pk return api_error(status.HTTP_404_NOT_FOUND, error_msg) if ocm_share_received.to_user != request.user.username: error_msg = 'permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) from_server_url = ocm_share_received.from_server_url shared_secret = ocm_share_received.shared_secret provider_protocol = get_remote_protocol(from_server_url + OCM_PROTOCOL_URL) # send unshare notification to consumer post_data = { 'notificationType': OCM_NOTIFICATION_SHARE_DECLINED, 'resourceType': OCM_RESOURCE_TYPE_LIBRARY, 'providerId': OCM_PROVIDER_ID, 'notification': { 'sharedSecret': shared_secret, 'message': '', }, } url = provider_protocol['endPoint'] + OCM_NOTIFICATION_URL try: requests.post(url, json=post_data) except Exception as e: logging.error(e) return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, 'Internal Server Error') try: ocm_share_received.delete() except Exception as e: logger.error(e) return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, 'Internal Server Error') return Response({'success': True})
lib/datasets/factory.py
LeiYangJustin/UnseenObjectClustering
101
12711702
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md """Factory method for easily getting imdbs by name.""" __sets = {} import datasets.tabletop_object import datasets.osd_object import datasets.ocid_object import numpy as np # tabletop object dataset for split in ['train', 'test', 'all']: name = 'tabletop_object_{}'.format(split) print(name) __sets[name] = (lambda split=split: datasets.TableTopObject(split)) # OSD object dataset for split in ['test']: name = 'osd_object_{}'.format(split) print(name) __sets[name] = (lambda split=split: datasets.OSDObject(split)) # OCID object dataset for split in ['test']: name = 'ocid_object_{}'.format(split) print(name) __sets[name] = (lambda split=split: datasets.OCIDObject(split)) def get_dataset(name): """Get an imdb (image database) by name.""" if name not in __sets: raise KeyError('Unknown dataset: {}'.format(name)) return __sets[name]() def list_datasets(): """List all registered imdbs.""" return __sets.keys()
src/beanmachine/ppl/compiler/tests/tutorial_GMM_with_1_dimensions_and_4_components_test.py
feynmanliang/beanmachine
177
12711708
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """End-to-end test for 1D GMM with K > 2 number of components""" import logging import unittest # Comments after imports suggest alternative comment style (for original tutorial) import beanmachine.ppl as bm import torch # from torch import manual_seed, tensor import torch.distributions as dist # from torch.distributions import Bernoulli, Normal, Uniform from beanmachine.ppl.inference.bmg_inference import BMGInference from torch import tensor # This makes the results deterministic and reproducible. logging.getLogger("beanmachine").setLevel(50) torch.manual_seed(42) # Model class GaussianMixtureModel(object): def __init__(self, k): self.K = k @bm.random_variable def alpha(self, k): return dist.Dirichlet(5 * torch.ones(k)) @bm.random_variable def mu(self, c): return dist.Normal(0, 10) @bm.random_variable def sigma(self, c): return dist.Gamma(1, 10) @bm.random_variable def component(self, i): alpha = self.alpha(self.K) return dist.Categorical(alpha) @bm.random_variable def y(self, i): c = self.component(i) return dist.Normal(self.mu(c), self.sigma(c)) # Creating sample data n = 6 # num observations k = 4 # true number of clusters gmm = GaussianMixtureModel(k=k) ground_truth = { **{ gmm.alpha(k): torch.ones(k) * 1.0 / k, }, **{gmm.mu(i): tensor(i % 2).float() for i in range(k)}, **{gmm.sigma(i): tensor(0.1) for i in range(k)}, **{gmm.component(i): tensor(i % k).float() for i in range(n)}, } # [Visualization code in tutorial skipped] # Inference parameters num_samples = ( 1 ###00 Sample size should not affect (the ability to find) compilation issues. ) queries = ( [gmm.alpha(gmm.K)] + [gmm.component(j) for j in range(n)] + [gmm.mu(i) for i in range(k)] + [gmm.sigma(i) for i in range(k)] ) observations = { gmm.y(i): ground_truth[gmm.mu(ground_truth[gmm.component(i)].item())] for i in range(n) } class tutorialGMMwith1DimensionsAnd4Components(unittest.TestCase): def test_tutorial_GMM_with_1_dimensions_and_4_components(self) -> None: """Check BM and BMG inference both terminate""" self.maxDiff = None # Inference with BM torch.manual_seed( 42 ) # Note: Second time we seed. Could be a good tutorial style mh = bm.CompositionalInference({...: bm.SingleSiteNewtonianMonteCarlo()}) mh.infer( queries, observations, num_samples=num_samples, num_chains=1, ) self.assertTrue(True, msg="We just want to check this point is reached") def test_tutorial_GMM_with_1_dimensions_and_4_components_to_dot_cpp_python( self, ) -> None: self.maxDiff = None observed = BMGInference().to_dot(queries, observations) expected = """digraph "graph" { N00[label="[5.0,5.0,5.0,5.0]"]; N01[label=Dirichlet]; N02[label=Sample]; N03[label=Categorical]; N04[label=Sample]; N05[label=0.0]; N06[label=10.0]; N07[label=Normal]; N08[label=Sample]; N09[label=Sample]; N10[label=Sample]; N11[label=Sample]; N12[label=1.0]; N13[label=Gamma]; N14[label=Sample]; N15[label=Sample]; N16[label=Sample]; N17[label=Sample]; N18[label=Choice]; N19[label=Choice]; N20[label=Normal]; N21[label=Sample]; N22[label="Observation 0.0"]; N23[label=Sample]; N24[label=Choice]; N25[label=Choice]; N26[label=Normal]; N27[label=Sample]; N28[label="Observation 1.0"]; N29[label=Sample]; N30[label=Choice]; N31[label=Choice]; N32[label=Normal]; N33[label=Sample]; N34[label="Observation 0.0"]; N35[label=Sample]; N36[label=Choice]; N37[label=Choice]; N38[label=Normal]; N39[label=Sample]; N40[label="Observation 1.0"]; N41[label=Sample]; N42[label=Choice]; N43[label=Choice]; N44[label=Normal]; N45[label=Sample]; N46[label="Observation 0.0"]; N47[label=Sample]; N48[label=Choice]; N49[label=Choice]; N50[label=Normal]; N51[label=Sample]; N52[label="Observation 1.0"]; N53[label=Query]; N54[label=Query]; N55[label=Query]; N56[label=Query]; N57[label=Query]; N58[label=Query]; N59[label=Query]; N60[label=Query]; N61[label=Query]; N62[label=Query]; N63[label=Query]; N64[label=Query]; N65[label=Query]; N66[label=Query]; N67[label=Query]; N00 -> N01; N01 -> N02; N02 -> N03; N02 -> N53; N03 -> N04; N03 -> N23; N03 -> N29; N03 -> N35; N03 -> N41; N03 -> N47; N04 -> N18; N04 -> N19; N04 -> N54; N05 -> N07; N06 -> N07; N06 -> N13; N07 -> N08; N07 -> N09; N07 -> N10; N07 -> N11; N08 -> N18; N08 -> N24; N08 -> N30; N08 -> N36; N08 -> N42; N08 -> N48; N08 -> N60; N09 -> N18; N09 -> N24; N09 -> N30; N09 -> N36; N09 -> N42; N09 -> N48; N09 -> N61; N10 -> N18; N10 -> N24; N10 -> N30; N10 -> N36; N10 -> N42; N10 -> N48; N10 -> N62; N11 -> N18; N11 -> N24; N11 -> N30; N11 -> N36; N11 -> N42; N11 -> N48; N11 -> N63; N12 -> N13; N13 -> N14; N13 -> N15; N13 -> N16; N13 -> N17; N14 -> N19; N14 -> N25; N14 -> N31; N14 -> N37; N14 -> N43; N14 -> N49; N14 -> N64; N15 -> N19; N15 -> N25; N15 -> N31; N15 -> N37; N15 -> N43; N15 -> N49; N15 -> N65; N16 -> N19; N16 -> N25; N16 -> N31; N16 -> N37; N16 -> N43; N16 -> N49; N16 -> N66; N17 -> N19; N17 -> N25; N17 -> N31; N17 -> N37; N17 -> N43; N17 -> N49; N17 -> N67; N18 -> N20; N19 -> N20; N20 -> N21; N21 -> N22; N23 -> N24; N23 -> N25; N23 -> N55; N24 -> N26; N25 -> N26; N26 -> N27; N27 -> N28; N29 -> N30; N29 -> N31; N29 -> N56; N30 -> N32; N31 -> N32; N32 -> N33; N33 -> N34; N35 -> N36; N35 -> N37; N35 -> N57; N36 -> N38; N37 -> N38; N38 -> N39; N39 -> N40; N41 -> N42; N41 -> N43; N41 -> N58; N42 -> N44; N43 -> N44; N44 -> N45; N45 -> N46; N47 -> N48; N47 -> N49; N47 -> N59; N48 -> N50; N49 -> N50; N50 -> N51; N51 -> N52; } """ self.assertEqual(expected.strip(), observed.strip()) observed = BMGInference().to_cpp(queries, observations) expected = """graph::Graph g; Eigen::MatrixXd m0(4, 1) m0 << 5.0, 5.0, 5.0, 5.0; uint n0 = g.add_constant_pos_matrix(m0); uint n1 = g.add_distribution( graph::DistributionType::DIRICHLET, graph::ValueType( graph::VariableType::COL_SIMPLEX_MATRIX, graph::AtomicType::PROBABILITY, 4, 1 ), std::vector<uint>({n0})); uint n2 = g.add_operator( graph::OperatorType::SAMPLE, std::vector<uint>({n1})); uint n3 = g.add_distribution( graph::DistributionType::CATEGORICAL, graph::AtomicType::NATURAL, std::vector<uint>({n2})); uint n4 = g.add_operator( graph::OperatorType::SAMPLE, std::vector<uint>({n3})); uint n5 = g.add_constant(0.0); uint n6 = g.add_constant_pos_real(10.0); uint n7 = g.add_distribution( graph::DistributionType::NORMAL, graph::AtomicType::REAL, std::vector<uint>({n5, n6})); uint n8 = g.add_operator( graph::OperatorType::SAMPLE, std::vector<uint>({n7})); uint n9 = g.add_operator( graph::OperatorType::SAMPLE, std::vector<uint>({n7})); uint n10 = g.add_operator( graph::OperatorType::SAMPLE, std::vector<uint>({n7})); uint n11 = g.add_operator( graph::OperatorType::SAMPLE, std::vector<uint>({n7})); uint n12 = g.add_constant_pos_real(1.0); uint n13 = g.add_distribution( graph::DistributionType::GAMMA, graph::AtomicType::POS_REAL, std::vector<uint>({n12, n6})); uint n14 = g.add_operator( graph::OperatorType::SAMPLE, std::vector<uint>({n13})); uint n15 = g.add_operator( graph::OperatorType::SAMPLE, std::vector<uint>({n13})); uint n16 = g.add_operator( graph::OperatorType::SAMPLE, std::vector<uint>({n13})); uint n17 = g.add_operator( graph::OperatorType::SAMPLE, std::vector<uint>({n13})); uint n18 = g.add_operator( graph::OperatorType::CHOICE, std::vector<uint>({n4, n8, n9, n10, n11})); uint n19 = g.add_operator( graph::OperatorType::CHOICE, std::vector<uint>({n4, n14, n15, n16, n17})); uint n20 = g.add_distribution( graph::DistributionType::NORMAL, graph::AtomicType::REAL, std::vector<uint>({n18, n19})); uint n21 = g.add_operator( graph::OperatorType::SAMPLE, std::vector<uint>({n20})); g.observe([n21], 0.0); uint n22 = g.add_operator( graph::OperatorType::SAMPLE, std::vector<uint>({n3})); uint n23 = g.add_operator( graph::OperatorType::CHOICE, std::vector<uint>({n22, n8, n9, n10, n11})); uint n24 = g.add_operator( graph::OperatorType::CHOICE, std::vector<uint>({n22, n14, n15, n16, n17})); uint n25 = g.add_distribution( graph::DistributionType::NORMAL, graph::AtomicType::REAL, std::vector<uint>({n23, n24})); uint n26 = g.add_operator( graph::OperatorType::SAMPLE, std::vector<uint>({n25})); g.observe([n26], 1.0); uint n27 = g.add_operator( graph::OperatorType::SAMPLE, std::vector<uint>({n3})); uint n28 = g.add_operator( graph::OperatorType::CHOICE, std::vector<uint>({n27, n8, n9, n10, n11})); uint n29 = g.add_operator( graph::OperatorType::CHOICE, std::vector<uint>({n27, n14, n15, n16, n17})); uint n30 = g.add_distribution( graph::DistributionType::NORMAL, graph::AtomicType::REAL, std::vector<uint>({n28, n29})); uint n31 = g.add_operator( graph::OperatorType::SAMPLE, std::vector<uint>({n30})); g.observe([n31], 0.0); uint n32 = g.add_operator( graph::OperatorType::SAMPLE, std::vector<uint>({n3})); uint n33 = g.add_operator( graph::OperatorType::CHOICE, std::vector<uint>({n32, n8, n9, n10, n11})); uint n34 = g.add_operator( graph::OperatorType::CHOICE, std::vector<uint>({n32, n14, n15, n16, n17})); uint n35 = g.add_distribution( graph::DistributionType::NORMAL, graph::AtomicType::REAL, std::vector<uint>({n33, n34})); uint n36 = g.add_operator( graph::OperatorType::SAMPLE, std::vector<uint>({n35})); g.observe([n36], 1.0); uint n37 = g.add_operator( graph::OperatorType::SAMPLE, std::vector<uint>({n3})); uint n38 = g.add_operator( graph::OperatorType::CHOICE, std::vector<uint>({n37, n8, n9, n10, n11})); uint n39 = g.add_operator( graph::OperatorType::CHOICE, std::vector<uint>({n37, n14, n15, n16, n17})); uint n40 = g.add_distribution( graph::DistributionType::NORMAL, graph::AtomicType::REAL, std::vector<uint>({n38, n39})); uint n41 = g.add_operator( graph::OperatorType::SAMPLE, std::vector<uint>({n40})); g.observe([n41], 0.0); uint n42 = g.add_operator( graph::OperatorType::SAMPLE, std::vector<uint>({n3})); uint n43 = g.add_operator( graph::OperatorType::CHOICE, std::vector<uint>({n42, n8, n9, n10, n11})); uint n44 = g.add_operator( graph::OperatorType::CHOICE, std::vector<uint>({n42, n14, n15, n16, n17})); uint n45 = g.add_distribution( graph::DistributionType::NORMAL, graph::AtomicType::REAL, std::vector<uint>({n43, n44})); uint n46 = g.add_operator( graph::OperatorType::SAMPLE, std::vector<uint>({n45})); g.observe([n46], 1.0); uint q0 = g.query(n2); uint q1 = g.query(n4); uint q2 = g.query(n22); uint q3 = g.query(n27); uint q4 = g.query(n32); uint q5 = g.query(n37); uint q6 = g.query(n42); uint q7 = g.query(n8); uint q8 = g.query(n9); uint q9 = g.query(n10); uint q10 = g.query(n11); uint q11 = g.query(n14); uint q12 = g.query(n15); uint q13 = g.query(n16); uint q14 = g.query(n17); """ self.assertEqual(expected.strip(), observed.strip())
Python/FactorialOfNumbers.py
OluSure/Hacktoberfest2021-1
215
12711717
<filename>Python/FactorialOfNumbers.py<gh_stars>100-1000 for i in range(int(input())): fact=1 a=int(input()) for j in range(1,a+1,1): fact=fact*j print(fact)
become_yukarin/data_struct.py
nameless-writer/become-yukarin
562
12711738
<gh_stars>100-1000 from typing import NamedTuple, Dict, List import numpy import pyworld _min_mc = -18.3 class Wave(NamedTuple): wave: numpy.ndarray sampling_rate: int class AcousticFeature(NamedTuple): f0: numpy.ndarray = numpy.nan spectrogram: numpy.ndarray = numpy.nan aperiodicity: numpy.ndarray = numpy.nan mfcc: numpy.ndarray = numpy.nan voiced: numpy.ndarray = numpy.nan @staticmethod def dtypes(): return dict( f0=numpy.float32, spectrogram=numpy.float32, aperiodicity=numpy.float32, mfcc=numpy.float32, voiced=numpy.bool, ) def astype(self, dtype): return AcousticFeature( f0=self.f0.astype(dtype), spectrogram=self.spectrogram.astype(dtype), aperiodicity=self.aperiodicity.astype(dtype), mfcc=self.mfcc.astype(dtype), voiced=self.voiced.astype(dtype), ) def astype_only_float(self, dtype): return AcousticFeature( f0=self.f0.astype(dtype), spectrogram=self.spectrogram.astype(dtype), aperiodicity=self.aperiodicity.astype(dtype), mfcc=self.mfcc.astype(dtype), voiced=self.voiced, ) def validate(self): assert self.f0.ndim == 2 assert self.spectrogram.ndim == 2 assert self.aperiodicity.ndim == 2 assert self.mfcc.ndim == 2 assert self.voiced.ndim == 2 len_time = len(self.f0) assert len(self.spectrogram) == len_time assert len(self.aperiodicity) == len_time assert len(self.mfcc) == len_time assert len(self.voiced) == len_time assert self.voiced.dtype == numpy.bool @staticmethod def silent(length: int, sizes: Dict[str, int], keys: List[str]): d = {} if 'f0' in keys: d['f0'] = numpy.zeros((length, sizes['f0']), dtype=AcousticFeature.dtypes()['f0']) if 'spectrogram' in keys: d['spectrogram'] = numpy.zeros((length, sizes['spectrogram']), dtype=AcousticFeature.dtypes()['spectrogram']) if 'aperiodicity' in keys: d['aperiodicity'] = numpy.zeros((length, sizes['aperiodicity']), dtype=AcousticFeature.dtypes()['aperiodicity']) if 'mfcc' in keys: d['mfcc'] = numpy.hstack(( numpy.ones((length, 1), dtype=AcousticFeature.dtypes()['mfcc']) * _min_mc, numpy.zeros((length, sizes['mfcc'] - 1), dtype=AcousticFeature.dtypes()['mfcc']) )) if 'voiced' in keys: d['voiced'] = numpy.zeros((length, sizes['voiced']), dtype=AcousticFeature.dtypes()['voiced']) feature = AcousticFeature(**d) return feature @staticmethod def concatenate(fs: List['AcousticFeature'], keys: List[str]): is_target = lambda a: not numpy.any(numpy.isnan(a)) return AcousticFeature(**{ key: numpy.concatenate([getattr(f, key) for f in fs]) if is_target(getattr(fs[0], key)) else numpy.nan for key in keys }) def pick(self, first: int, last: int): is_target = lambda a: not numpy.any(numpy.isnan(a)) return AcousticFeature( f0=self.f0[first:last] if is_target(self.f0) else numpy.nan, spectrogram=self.spectrogram[first:last] if is_target(self.spectrogram) else numpy.nan, aperiodicity=self.aperiodicity[first:last] if is_target(self.aperiodicity) else numpy.nan, mfcc=self.mfcc[first:last] if is_target(self.mfcc) else numpy.nan, voiced=self.voiced[first:last] if is_target(self.voiced) else numpy.nan, ) @staticmethod def get_sizes(sampling_rate: int, order: int): fft_size = pyworld.get_cheaptrick_fft_size(fs=sampling_rate) return dict( f0=1, spectrogram=fft_size // 2 + 1, aperiodicity=fft_size // 2 + 1, mfcc=order + 1, voiced=1, ) class LowHighSpectrogramFeature(NamedTuple): low: numpy.ndarray high: numpy.ndarray def validate(self): assert self.low.ndim == 2 assert self.high.ndim == 2 assert self.low.shape == self.high.shape
transcrypt/modules/org/reactjs/__init__.py
kochelmonster/Transcrypt
2,200
12711743
createElement = React.createElement createContext = React.createContext forwardRef = React.forwardRef Component = ReactComponent = React.Component useState = React.useState useEffect = React.useEffect useContext = React.useContext useReducer = React.useReducer useCallback = React.useCallback useMemo = React.useMemo useRef = React.useRef useImperativeHandle = React.useImperativeHandle useLayoutEffect = React.useLayoutEffect useDebugValue = React.useDebugValue def withDeps(*deps): useHook = this def decorator(fn): useHook(fn, deps) return fn return decorator useEffect.withDeps = withDeps useLayoutEffect.withDeps = withDeps def useCallbackWithDeps(*deps): def decorator(fn): return React.useCallback(fn, deps) return decorator useCallback.withDeps = useCallbackWithDeps
release/stubs.min/Tekla/Structures/ModelInternal_parts/dotLoadCommonAttributes_t.py
htlcnn/ironpython-stubs
182
12711744
<reponame>htlcnn/ironpython-stubs<filename>release/stubs.min/Tekla/Structures/ModelInternal_parts/dotLoadCommonAttributes_t.py class dotLoadCommonAttributes_t(object): # no doc aPartFilter=None AutomaticPrimaryAxisWeight=None BoundingBoxDx=None BoundingBoxDy=None BoundingBoxDz=None CreateFixedSupportConditionsAutomatically=None FatherId=None LoadAttachment=None LoadDispersionAngle=None LoadGroupId=None ModelObject=None PartNames=None PrimaryAxisDirection=None Spanning=None Weight=None
tests/isolated/patcher_importlib_lock.py
li-caspar/eventlet_0.30.2
5,079
12711790
<filename>tests/isolated/patcher_importlib_lock.py __test__ = False def do_import(): import encodings.idna if __name__ == '__main__': import sys import eventlet eventlet.monkey_patch() threading = eventlet.patcher.original('threading') sys.modules.pop('encodings.idna', None) # call "import encodings.idna" in a new thread thread = threading.Thread(target=do_import) thread.start() # call "import encodings.idna" in the main thread do_import() thread.join() print('pass')
examples_allennlp/utils/embedders/scalar_mix_transoformer_embedder.py
techthiyanes/luke
467
12711802
<filename>examples_allennlp/utils/embedders/scalar_mix_transoformer_embedder.py from allennlp.modules.token_embedders import TokenEmbedder, PretrainedTransformerEmbedder from allennlp.modules.scalar_mix import ScalarMix @TokenEmbedder.register("intermediate_pretrained_transformer") class IntermediatePretrainedTransformerEmbedder(PretrainedTransformerEmbedder): def __init__(self, layer_index: int, **kwargs) -> None: super().__init__(**kwargs, last_layer_only=False) initial_scalar_parameters = [-1e9 for _ in range(self.config.num_hidden_layers)] initial_scalar_parameters[layer_index] = 0 self._scalar_mix = ScalarMix( self.config.num_hidden_layers, initial_scalar_parameters=initial_scalar_parameters, trainable=False, do_layer_norm=False, )
src/masonite/providers/WhitenoiseProvider.py
cercos/masonite
1,816
12711822
from .Provider import Provider from whitenoise import WhiteNoise import os class WhitenoiseProvider(Provider): def __init__(self, application): self.application = application def register(self): response_handler = WhiteNoise( self.application.get_response_handler(), root=self.application.get_storage_path(), autorefresh=True, ) for location, alias in ( self.application.make("storage_capsule").get_storage_assets().items() ): response_handler.add_files(location, prefix=alias) self.application.set_response_handler(response_handler) def boot(self): return
caption/encoders/vanilla.py
SikandarBakht/asg2cap
169
12711851
<gh_stars>100-1000 import torch import torch.nn as nn import torch.nn.functional as F import framework.configbase import framework.ops ''' Vanilla Encoder: embed nd array (batch_size, ..., dim_ft) - EncoderConfig - Encoder Multilayer Perceptrons: feed forward networks + softmax - MLPConfig - MLP ''' class EncoderConfig(framework.configbase.ModuleConfig): def __init__(self): super().__init__() self.dim_fts = [2048] self.dim_embed = 512 self.is_embed = True self.dropout = 0 self.norm = False self.nonlinear = False def _assert(self): if not self.is_embed: assert self.dim_embed == sum(self.dim_fts) class Encoder(nn.Module): def __init__(self, config): super().__init__() self.config = config if self.config.is_embed: self.ft_embed = nn.Linear(sum(self.config.dim_fts), self.config.dim_embed) self.dropout = nn.Dropout(self.config.dropout) def forward(self, fts): ''' Args: fts: size=(batch, ..., sum(dim_fts)) Returns: embeds: size=(batch, dim_embed) ''' embeds = fts if self.config.is_embed: embeds = self.ft_embed(embeds) if self.config.nonlinear: embeds = F.relu(embeds) if self.config.norm: embeds = framework.ops.l2norm(embeds) embeds = self.dropout(embeds) return embeds
setup.py
adamserafini/pyxl
366
12711868
<gh_stars>100-1000 #!/usr/bin/env python import distutils.core import sys version = "1.0" distutils.core.setup( name="pyxl", version=version, packages = ["pyxl", "pyxl.codec", "pyxl.scripts", "pyxl.examples"], author="<NAME>", author_email="<EMAIL>", url="http://github.com/awable/pyxl", download_url="http://github.com/downloads/awable/pyxl/pyxl-%s.tar.gz" % version, license="http://www.apache.org/licenses/LICENSE-2.0", description=""" Pyxl is an open source package that extends Python to support inline HTML. It converts HTML fragments into valid Python expressions, and is meant as a replacement for traditional python templating systems like Mako or Cheetah. It automatically escapes data, enforces correct markup and makes it easier to write reusable and well structured UI code. Pyxl was inspired by the XHP project at Facebook. """ )
numpy/mnist/adam.py
wiseodd/natural-gradients
104
12711905
import numpy as np import input_data from sklearn.utils import shuffle np.random.seed(9999) mnist = input_data.read_data_sets('../MNIST_data', one_hot=True) X_train = mnist.train.images t_train = mnist.train.labels X_test = mnist.test.images t_test = mnist.test.labels X_train, t_train = shuffle(X_train, t_train) # Model W1 = np.random.randn(784, 100) * 0.01 W2 = np.random.randn(100, 10) * 0.01 def softmax(x): ex = np.exp(x - np.max(x, axis=1)[:, None]) return ex / ex.sum(axis=1)[:, None] def NLL(z, t): return -np.mean(np.sum(t*np.log(softmax(z) + eps), axis=1)) m = 200 # mb size alpha = 0.001 rho1 = 0.9 # Decay for F rho2 = 0.999 # Momentum s1 = np.zeros_like(W1) r1 = np.zeros_like(W1) s2 = np.zeros_like(W2) r2 = np.zeros_like(W2) eps = 1e-8 # Visualization stuffs losses = [] # Training for i in range(1, 5000): X_mb, t_mb = mnist.train.next_batch(m) t_mb_idx = t_mb.argmax(axis=1) # Forward a = X_mb @ W1 h = np.maximum(a, 0) z = h @ W2 loss = NLL(z, t_mb) # Loss if (i-1) % 100 == 0: print(f'Iter-{i}; Loss: {loss:.3f}') losses.append(loss if i == 1 else 0.99*losses[-1] + 0.01*loss) m = z.shape[0] # Gradients dz = softmax(z) dz[range(dz.shape[0]), t_mb_idx] -= 1 # m*10 dz /= m dW2 = h.T @ dz # 100*10 dh = dz @ W2.T # m*100 dh[a < 0] = 0 # ReLU dW1 = X_mb.T @ dh # 784*100 # Moments s1 = rho1*s1 + (1-rho1)*dW1 r1 = rho2*r1 + (1-rho2)*(dW1*dW1) s2 = rho1*s2 + (1-rho1)*dW2 r2 = rho2*r2 + (1-rho2)*(dW2*dW2) # r = rho2*r + (1-rho2)*(m*g*g) # Corresponds to diagonal approx. of FIM # Bias correction s1_ = s1/(1-rho1**i) r1_ = r1/(1-rho2**i) s2_ = s2/(1-rho1**i) r2_ = r2/(1-rho2**i) # Step delta1 = s1_ / (np.sqrt(r1_) + eps) delta2 = s2_ / (np.sqrt(r2_) + eps) # delta = s_ / (r_ + eps) # Inverse of diagonal FIM # W = W - alpha * g # SGD update W1 = W1 - alpha * delta1 W2 = W2 - alpha * delta2 y = softmax(np.maximum(X_test @ W1, 0) @ W2).argmax(axis=1) acc = np.mean(y == t_test.argmax(axis=1)) print(f'Accuracy: {acc:.3f}') np.save('adam_losses.npy', losses)
mode/examples/Contributed Libraries in Python/OpenCV/BrightnessContrast/BrightnessContrast.pyde
timgates42/processing.py
1,224
12711920
add_library('opencv_processing') img = None opencv = None def setup(): img = loadImage("test.jpg") size(img.width, img.height, P2D) opencv = OpenCV(this, img) def draw(): opencv.loadImage(img) opencv.brightness(int(map(mouseX, 0, width, -255, 255))) image(opencv.getOutput(), 0, 0)
tools/openmldb_migrate.py
jasleon/OpenMLDB
2,659
12711955
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2021 4Paradigm # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import subprocess import sys import time USE_SHELL = sys.platform.startswith( "win" ) from optparse import OptionParser parser = OptionParser() parser.add_option("--openmldb_bin_path", dest="openmldb_bin_path", help="the openmldb bin path") parser.add_option("--zk_cluster", dest="zk_cluster", help="the zookeeper cluster") parser.add_option("--zk_root_path", dest="zk_root_path", help="the zookeeper root path") parser.add_option("--cmd", dest="cmd", help="the cmd for migrate") parser.add_option("--endpoint", dest="endpoint", help="the endpoint for migrate") parser.add_option("--showtable_path", dest="showtable_path", help="the path of showtable result file") (options, args) = parser.parse_args() common_cmd = [options.openmldb_bin_path, "--zk_cluster=" + options.zk_cluster, "--zk_root_path=" + options.zk_root_path, "--role=ns_client", "--interactive=false"] def promot_input(msg,validate_func=None,try_times=1): while try_times>0: answer = raw_input(msg).strip() if validate_func and validate_func(answer): return answer try_times-=1 return None def promot_password_input(msg,validate_func=None,try_times=1): while try_times>0: answer = getpass.getpass(msg).strip() if validate_func and validate_func(answer): return answer try_times-=1 return None def not_none_or_empty(user_input): if input: return True return False def yes_or_no_validate(user_input): if user_input and user_input.lower()=='y': return True return False def yes_or_no_promot(msg): answer = raw_input(msg).strip() return yes_or_no_validate(answer) def RunWithRealtimePrint(command, universal_newlines = True, useshell = USE_SHELL, env = os.environ, print_output = True): try: p = subprocess.Popen(command, stdout = subprocess.PIPE, stderr = subprocess.STDOUT, shell = useshell, env = env ) if print_output: for line in iter(p.stdout.readline,''): sys.stdout.write(line) sys.stdout.write('\r') p.wait() return p.returncode except Exception,ex: print(ex) return -1 def RunWithRetuncode(command, universal_newlines = True, useshell = USE_SHELL, env = os.environ): try: p = subprocess.Popen(command, stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell = useshell, universal_newlines = universal_newlines, env = env ) output = p.stdout.read() p.wait() errout = p.stderr.read() p.stdout.close() p.stderr.close() return p.returncode,output,errout except Exception,ex: print(ex) return -1,None,None def GetTables(output): # name tid pid endpoint role ttl is_alive compress_type lines = output.split("\n") content_is_started = False partition_on_tablet = {} for line in lines: if line.startswith("---------"): content_is_started = True continue if not content_is_started: continue partition = line.split() if len(partition) < 4: continue partitons = partition_on_tablet.get(partition[3], []) partitons.append(partition) partition_on_tablet[partition[3]] = partitons return partition_on_tablet def GetTablesStatus(output): # tid pid offset mode state enable_expire ttl ttl_offset memused compress_type skiplist_height lines = output.split("\n") content_is_started = False partition_on_tablet = {} for line in lines: if line.startswith("---------"): content_is_started = True continue if not content_is_started: continue partition = line.split() if len(partition) < 4: continue key = "{}_{}".format(partition[0], partition[1]) partition_on_tablet[key] = partition return partition_on_tablet def Analysis(): # show table show_table = [options.openmldb_bin_path, "--zk_cluster=" + options.zk_cluster, "--zk_root_path=" + options.zk_root_path, "--role=ns_client", "--interactive=false", "--cmd=showtable"] code, stdout,stderr = RunWithRetuncode(show_table) if code != 0: print "fail to show table" return partitions = GetTables(stdout) leader_partitions = [] for p in partitions[options.endpoint]: if p[4] == "leader": leader_partitions.append(p) if not leader_partitions: print "you can restart the tablet directly" return print "the following cmd in ns should be executed for migrating the node" for p in leader_partitions: print ">changeleader %s %s auto"%(p[0], p[2]) print "the current leader and follower offset" GetLeaderFollowerOffset(p[3], p[1], p[2]) print "use the following cmd in tablet to make sure the changeleader is done" print ">getablestatus" def GetLeaderFollowerOffset(endpoint, tid, pid): command = [options.openmldb_bin_path, "--endpoint=%s"%endpoint, "--role=client", "--interactive=false", "--cmd=getfollower %s %s"%(tid, pid)] code, stdout,stderr = RunWithRetuncode(command) if code != 0: print "fail to getfollower" return print stdout def ChangeLeader(): # show tablet show_tablet = list(common_cmd) show_tablet.append("--cmd=showtablet") _,stdout,_ = RunWithRetuncode(show_tablet) print stdout # show table show_table = list(common_cmd) show_table.append("--cmd=showtable") code, stdout,stderr = RunWithRetuncode(show_table) if code != 0: print "fail to show table" return partitions = GetTables(stdout) leader_partitions = [] for p in partitions[options.endpoint]: if p[4] == "leader": leader_partitions.append(p) if not leader_partitions: print "you can restart the tablet directly" return print "start to change leader on %s"%options.endpoint for p in leader_partitions: print "the current leader and follower offset" GetLeaderFollowerOffset(p[3], p[1], p[2]) changeleader = list(common_cmd) changeleader.append("--cmd=changeleader %s %s auto"%(p[0], p[2])) msg = "command:%s \nwill be excute, sure to change leader(y/n):"%(" ".join(changeleader)) yes = yes_or_no_promot(msg) if yes: code, stdout, stderr = RunWithRetuncode(changeleader) if code != 0: print "fail to change leader for %s %s"%(p[0], p[2]) print stdout print stderr else: print stdout else: print "skip to change leader for %s %s"%(p[0], p[2]) def RecoverEndpoint(): # show table show_table = list(common_cmd) show_table.append("--cmd=showtable") code, stdout,stderr = RunWithRetuncode(show_table) if code != 0: print "fail to show table" return partitions = GetTables(stdout) not_alive_partitions = [] for p in partitions[options.endpoint]: # follower status no # leader status no if p[6] == "no": not_alive_partitions.append(p) if not not_alive_partitions: print "no need recover not alive partition" return print "start to recover partiton on %s"%options.endpoint for p in not_alive_partitions: print "not a alive partition information" print " ".join(p) recover_cmd = list(common_cmd) recover_cmd.append("--cmd=recovertable %s %s %s"%(p[0], p[2], options.endpoint)) msg = "command:%s \nwill be excute, sure to recover endpoint(y/n):"%(" ".join(recover_cmd)) yes = yes_or_no_promot(msg) if yes: code, stdout, stderr = RunWithRetuncode(recover_cmd) if code != 0: print "fail to recover partiton for %s %s on %s"%(p[0], p[2], options.endpoint) print stdout print stderr else: print stdout else: print "skip to recover partiton for %s %s on %s"%(p[0], p[2], options.endpoint) def RecoverData(): # show table show_table = list(common_cmd) show_table.append("--cmd=showtable") code, stdout,stderr = RunWithRetuncode(show_table) if code != 0: print "fail to show table" return # check whether table partition is not exixted partitions = GetTables(stdout) # print partitions tablet_cmd = [options.openmldb_bin_path, "--role=client", "--interactive=false"] for endpoint in partitions: cmd_gettablestatus = "--cmd=gettablestatus" gettablestatus = list(tablet_cmd) gettablestatus.append("--endpoint=" + endpoint) gettablestatus.append(cmd_gettablestatus) code, stdout,stderr = RunWithRetuncode(gettablestatus) table_status = GetTablesStatus(stdout) if len(table_status) == 0: continue else: print "endpoint {} has table partitions".format(endpoint) return conget_auto = list(common_cmd) conget_auto.append("--cmd=confget auto_failover") code, stdout,stderr = RunWithRetuncode(conget_auto) auto_failover_flag = stdout.find("true") if auto_failover_flag != -1: # set auto failove is no confset_no = list(common_cmd) confset_no.append("--cmd=confset auto_failover false") code, stdout,stderr = RunWithRetuncode(confset_no) # print stdout if code != 0: print "set auto_failover is failed" return print "confset auto_failover false" # updatetablealive $TABLE 1 172.27.128.37:9797 yes # ./build/bin/openmldb --cmd="updatetablealive $TABLE 1 172.27.128.37:9797 yes" --role=ns_client --endpoint=172.27.128.37:6527 --interactive=false # updatetablealive all of tables no leader_table = {} follower_table = [] for key in partitions: tables = partitions[key] for p in tables: cmd_no = "--cmd=updatetablealive " + p[0] + " " + p[2] + " " + p[3] + " no" update_alive_no = list(common_cmd) update_alive_no.append(cmd_no) code, stdout,stderr = RunWithRetuncode(update_alive_no) if stdout.find("update ok") == -1: print stdout print "update table alive is failed" return # dont use code to determine result if p[4] == "leader": key = "{}_{}".format(p[1], p[2]) if leader_table.has_key(key): tmp = leader_table[key] if (tmp[8] < p[8]): leader_table[key] = p follower_table.append(tmp) else: follower_table.append(p) else: leader_table[key] = p else: follower_table.append(p) print "updatetablealive tid[{}] pid[{}] endpoint[{}] no".format(p[1], p[2], p[3]) # ./build/bin/openmldb --cmd="loadtable $TABLE $TID $PID 144000 3 true" --role=client --endpoint=$TABLET_ENDPOINT --interactive=false for key in leader_table: # get table info table = leader_table[key] print "table leader: {}".format(table) cmd_info = list(common_cmd) cmd_info.append("--cmd=info " + table[0]) while True: code, stdout,stderr = RunWithRetuncode(cmd_info) if code != 0: print "fail to get table info" return lines = stdout.split('\n') if len(lines) >= 12: storage_mode = lines[11].split()[1] break else: print "get info connect error, retry in 1 second" time.sleep(1) # print key cmd_loadtable = "--cmd=loadtable " + table[0] + " " + table[1] + " " + table[2] + " " + table[5].split("min")[0] + " 8" + " true " + storage_mode # print cmd_loadtable loadtable = list(tablet_cmd) loadtable.append(cmd_loadtable) loadtable.append("--endpoint=" + table[3]) # print loadtable code, stdout,stderr = RunWithRetuncode(loadtable) if stdout.find("LoadTable ok") == -1: print stdout print "load table is failed" return print "loadtable tid[{}] pid[{}]".format(table[1], table[2]) # check table status count = 0 time.sleep(3) while True: flag = True if count % 12 == 0: print "loop check NO.{}".format(count) for key in leader_table: table = leader_table[key] cmd_gettablestatus = "--cmd=gettablestatus" gettablestatus = list(tablet_cmd) gettablestatus.append("--endpoint=" + table[3]) gettablestatus.append(cmd_gettablestatus) while True: code, stdout,stderr = RunWithRetuncode(gettablestatus) table_status = GetTablesStatus(stdout) if table_status.has_key(key): status = table_status[key] break else: print "gettablestatus error, retry in 2 seconds" time.sleep(2) if status[3] == "kTableLeader": if count % 12 == 0: print "{} status: {}".format(key, status[4]) if status[4] != "kTableNormal": flag = False else: # update table is alive cmd_yes = "--cmd=updatetablealive " + table[0] + " " + table[2] + " " + table[3] + " yes" update_alive_yes = list(common_cmd) update_alive_yes.append(cmd_yes) code, stdout,stderr = RunWithRetuncode(update_alive_yes) if stdout.find("update ok") == -1: print stdout print "update table alive is failed" return break if flag == True: print "Load table is ok" break if count % 12 == 0: print "loading table, please wait a moment" count = count + 1 time.sleep(5) # recovertable table_name pid endpoint for table in follower_table: # print table cmd_recovertable = "--cmd=recovertable " + table[0] + " " + table[2] + " " + table[3] recovertable = list(common_cmd) recovertable.append(cmd_recovertable) code, stdout,stderr = RunWithRetuncode(recovertable) if stdout.find("recover table ok") == -1: print stdout print "recover is failed" return print "recovertable tid[{}] pid[{}] endpoint[{}]".format(table[1], table[2], table[3]) # print stdout if auto_failover_flag != -1: # set auto failove is no confset_no = list(common_cmd) confset_no.append("--cmd=confset auto_failover true") code, stdout,stderr = RunWithRetuncode(confset_no) # print stdout if code != 0: print "set auto_failover true is failed" return print "confset auto_failover true" def PrintLog(log_cmd, ret_code, ret_stdout, ret_stderr): print log_cmd if ret_code != 0: print ret_stdout print ret_stderr raise Exception, "FAIL !!!" else: print ret_stdout def GetTablesDic(output): lines = output.split("\n") content_is_started = False partition_on_tablet = {} for line in lines: if line.startswith("---------"): content_is_started = True continue if not content_is_started: continue partition = line.split() if len(partition) < 4: continue partitions = partition_on_tablet.get(partition[2], {}) partitions[partition[3]] = partition partition_on_tablet[partition[2]] = partitions return partition_on_tablet def BalanceLeader(): auto_failover_flag = -1 try: # get log conget_auto = list(common_cmd) conget_auto.append("--cmd=confget auto_failover") code, stdout,stderr = RunWithRetuncode(conget_auto) auto_failover_flag = stdout.find("true") if auto_failover_flag != -1: # set auto failove is no confset_no = list(common_cmd) confset_no.append("--cmd=confset auto_failover false") code, stdout,stderr = RunWithRetuncode(confset_no) # print stdout PrintLog("set auto_failover false", code, stdout, stderr) # get table info from file with open(options.showtable_path, "r") as f: tables = f.read() partitions = GetTables(tables) ori_leader_partitions = [] for endpoint in partitions: for p in partitions[endpoint]: if p[4] == "leader" and p[6] == "yes": ori_leader_partitions.append(p) if not ori_leader_partitions: print "no leader" return # get current table info show_table = list(common_cmd) show_table.append("--cmd=showtable") code, stdout,stderr = RunWithRetuncode(show_table) PrintLog("showtable", code, stdout, stderr) partitions = GetTablesDic(stdout) time.sleep(1) not_alive_partitions = [] for pid in partitions.keys(): for endpoint in partitions[pid]: if partitions[pid][endpoint][6] == "no": not_alive_partitions.append(partitions[pid][endpoint]) for p in not_alive_partitions: recover_cmd = list(common_cmd) recover_cmd.append("--cmd=recovertable %s %s %s"%(p[0], p[2], p[3])) code, stdout, stderr = RunWithRetuncode(recover_cmd) PrintLog("recovertable %s %s %s"%(p[0], p[2], p[3]), code, stdout, stderr) time.sleep(1) # balance leader print "start to balance leader" for p in ori_leader_partitions: if partitions[p[2]][p[3]][4]=="leader" and partitions[p[2]][p[3]][6]=="yes": continue changeleader = list(common_cmd) changeleader.append("--cmd=changeleader %s %s %s"%(p[0], p[2], p[3])) code, stdout, stderr = RunWithRetuncode(changeleader) PrintLog("changeleader %s %s %s"%(p[0], p[2], p[3]), code, stdout, stderr) time.sleep(1) # find not_alive_partition show_table = list(common_cmd) show_table.append("--cmd=showtable") code, stdout,stderr = RunWithRetuncode(show_table) partitions = GetTables(stdout) not_alive_partitions = [] for endpoint in partitions.keys(): for p in partitions[endpoint]: if p[6] == "no": not_alive_partitions.append(p) for p in not_alive_partitions: print "not alive partition information" print " ".join(p) recover_cmd = list(common_cmd) recover_cmd.append("--cmd=recovertable %s %s %s"%(p[0], p[2], p[3])) code, stdout, stderr = RunWithRetuncode(recover_cmd) if code != 0: print "fail to recover partiton for %s %s on %s"%(p[0], p[2], p[3]) print stdout print stderr else: print stdout print "balance leader success!" except Exception,ex: print "balance leader fail!" return -1 finally: if auto_failover_flag != -1: # recover auto failover confset_no = list(common_cmd) confset_no.append("--cmd=confset auto_failover true") print "confset auto_failover true" code, stdout,stderr = RunWithRetuncode(confset_no) if code != 0: print "set auto_failover failed" def Main(): if options.cmd == "analysis": Analysis() elif options.cmd == "changeleader": ChangeLeader() elif options.cmd == "recovertable": RecoverEndpoint() elif options.cmd == "recoverdata": RecoverData() elif options.cmd == "balanceleader": BalanceLeader() if __name__ == "__main__": Main()
.modules/.recon-ng/modules/recon/locations-locations/reverse_geocode.py
termux-one/EasY_HaCk
1,103
12711957
from recon.core.module import BaseModule class Module(BaseModule): meta = { 'name': 'Reverse Geocoder', 'author': '<NAME> (<EMAIL>)', 'description': 'Queries the Google Maps API to obtain an address from coordinates.', 'query': 'SELECT DISTINCT latitude || \',\' || longitude FROM locations WHERE latitude IS NOT NULL AND longitude IS NOT NULL', } def module_run(self, points): for point in points: self.verbose("Reverse geocoding (%s)..." % (point)) payload = {'latlng' : point, 'sensor' : 'false'} url = 'https://maps.googleapis.com/maps/api/geocode/json' resp = self.request(url, payload=payload) # kill the module if nothing is returned if len(resp.json['results']) == 0: self.output('Unable to resolve an address for (%s).' % (point)) return # loop through the results found = False for result in resp.json['results']: if result['geometry']['location_type'] == 'ROOFTOP': found = True lat = point.split(',')[0] lon = point.split(',')[1] address = result['formatted_address'] # store the result self.add_locations(lat, lon, address) if found: self.query('DELETE FROM locations WHERE latitude=? AND longitude=? AND street_address IS NULL', (lat, lon))
server/apps/recommendation/apps.py
Mayandev/django_morec
129
12711988
from django.apps import AppConfig class RecommendationConfig(AppConfig): name = 'recommendation' # app名字后台显示中文 verbose_name = "推荐管理"
pybo/policies/__init__.py
hfukada/pybo
115
12711993
""" Acquisition functions. """ # pylint: disable=wildcard-import from .simple import * from . import simple __all__ = [] __all__ += simple.__all__
shim/opentelemetry-opentracing-shim/tests/testbed/test_subtask_span_propagation/test_asyncio.py
oxeye-nikolay/opentelemetry-python
868
12712008
from __future__ import absolute_import, print_function import asyncio from ..otel_ot_shim_tracer import MockTracer from ..testcase import OpenTelemetryTestCase class TestAsyncio(OpenTelemetryTestCase): def setUp(self): self.tracer = MockTracer() self.loop = asyncio.get_event_loop() def test_main(self): res = self.loop.run_until_complete(self.parent_task("message")) self.assertEqual(res, "message::response") spans = self.tracer.finished_spans() self.assertEqual(len(spans), 2) self.assertNamesEqual(spans, ["child", "parent"]) self.assertIsChildOf(spans[0], spans[1]) async def parent_task(self, message): # noqa with self.tracer.start_active_span("parent"): res = await self.child_task(message) return res async def child_task(self, message): # No need to pass/activate the parent Span, as it stays in the context. with self.tracer.start_active_span("child"): return f"{message}::response"
chapter11/observer.py
JoeanAmiee/Mastering-Python-Design-Patterns-Second-Edition
278
12712032
<gh_stars>100-1000 class Publisher: def __init__(self): self.observers = [] def add(self, observer): if observer not in self.observers: self.observers.append(observer) else: print(f'Failed to add: {observer}') def remove(self, observer): try: self.observers.remove(observer) except ValueError: print(f'Failed to remove: {observer}') def notify(self): [o.notify(self) for o in self.observers] class DefaultFormatter(Publisher): def __init__(self, name): Publisher.__init__(self) self.name = name self._data = 0 def __str__(self): return f"{type(self).__name__}: '{self.name}' has data = {self._data}" @property def data(self): return self._data @data.setter def data(self, new_value): try: self._data = int(new_value) except ValueError as e: print(f'Error: {e}') else: self.notify() class HexFormatterObs: def notify(self, publisher): value = hex(publisher.data) print(f"{type(self).__name__}: '{publisher.name}' has now hex data = {value}") class BinaryFormatterObs: def notify(self, publisher): value = bin(publisher.data) print(f"{type(self).__name__}: '{publisher.name}' has now bin data = {value}") def main(): df = DefaultFormatter('test1') print(df) print() hf = HexFormatterObs() df.add(hf) df.data = 3 print(df) print() bf = BinaryFormatterObs() df.add(bf) df.data = 21 print(df) print() df.remove(hf) df.data = 40 print(df) print() df.remove(hf) df.add(bf) df.data = 'hello' print(df) print() df.data = 15.8 print(df) if __name__ == '__main__': main()
env/Lib/site-packages/OpenGL/GLES1/OES/required_internalformat.py
5gconnectedbike/Navio2
210
12712034
'''OpenGL extension OES.required_internalformat This module customises the behaviour of the OpenGL.raw.GLES1.OES.required_internalformat to provide a more Python-friendly API Overview (from the spec) The ES 1.1 API allows an implementation to store texture data internally with arbitrary precision, regardless of the format and type of the data supplied by the application. Similarly, ES allows an implementation to choose an arbitrary precision for the internal storage of image data allocated by glRenderbufferStorageOES. While this allows flexibility for implementations, it does mean that an application does not have a reliable means to request the implementation maintain a specific precision or to find out what precision the implementation will maintain for a given texture or renderbuffer image. For reference, "Desktop" OpenGL uses the <internalformat> argument to glTexImage*, glCopyTexImage* and glRenderbufferStorageEXT as a hint, defining the particular base format and precision that the application wants the implementation to maintain when storing the image data. Further, the application can choose an <internalformat> with a different base internal format than the source format specified by <format>. The implementation is not required to exactly match the precision specified by <internalformat> when choosing an internal storage precision, but it is required to match the base internal format of <internalformat>. In addition, ES 1.1 does not allow an implementation to fail a request to glTexImage2D for any of the legal <format> and <type> combinations listed in Table 3.4, even if the implementation does not natively support data stored in that external <format> and <type>. However, there are no additional requirements placed on the implementation. The ES implementation is free to store the texture data with lower precision than originally specified, for instance. Further, since ES removes the ability to query the texture object to find out what internal format it chose, there is no way for the application to find out that this has happened. This extension addresses the situation in two ways: 1) This extension introduces the ability for an application to specify the desired "sized" internal formats for texture image allocation. 2) This extension guarantees to maintain at least the specified precision of all available sized internal formats. An implementation that exports this extension is committing to support all of the legal values for <internalformat> in Tables 3.4, 3.4.x, and 3.4.y, subject to the extension dependencies described herein. That is to say, the implementation is guaranteeing that choosing an <internalformat> argument with a value from these tables will not cause an image allocation request to fail. Furthermore, it is guaranteeing that for any sized internal format, the renderbuffer or texture data will be stored with at least the precision prescribed by the sized internal format. The official definition of this extension is available here: http://www.opengl.org/registry/specs/OES/required_internalformat.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GLES1 import _types, _glgets from OpenGL.raw.GLES1.OES.required_internalformat import * from OpenGL.raw.GLES1.OES.required_internalformat import _EXTENSION_NAME def glInitRequiredInternalformatOES(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) ### END AUTOGENERATED SECTION
xfel/lcls_api/exercise_api.py
dperl-sol/cctbx_project
155
12712100
<gh_stars>100-1000 from __future__ import absolute_import, division, print_function import psana from xfel.lcls_api.psana_cctbx import CctbxPsanaEventProcessor def simple_example(experiment, run_number, detector_address, params_file, event_num): """ Demo using the cctbx/lcls api @param experiment LCLS experiment string @param run_number Run number @param params_file cctbx/DIALS parameter file for processing @param event_num Index for specific event to process """ output_tag = '%s_run%d'%(experiment, run_number) print("Getting datasource") ds = psana.DataSource('exp=%s:run=%d'%(experiment, run_number)) processor = CctbxPsanaEventProcessor(params_file, output_tag, logfile = output_tag + ".log") for run in ds.runs(): print("Getting detector") det = psana.Detector(detector_address) processor.setup_run(run, det) for event_id, event in enumerate(ds.events()): print(event_id) if event_num is not None and event_id != event_num: continue processor.process_event(event, str(event_id)) break break processor.finalize() def full_api_example(experiment, run_number, detector_address, params_file, event_num): """ Demo using the cctbx/lcls api @param experiment LCLS experiment string @param run_number Run number @param params_file cctbx/DIALS parameter file for processing @param event_num Index for specific event to process """ output_tag = '%s_run%d'%(experiment, run_number) print("Getting datasource") ds = psana.DataSource('exp=%s:run=%d'%(experiment, run_number)) processor = CctbxPsanaEventProcessor(params_file, output_tag) # note, logfile already initialized in this demo, so don't do it twice for run in ds.runs(): print("Getting detector") det = psana.Detector(detector_address) processor.setup_run(run, det) for event_id, event in enumerate(ds.events()): print(event_id) if event_num is not None and event_id != event_num: continue tag = '%s_%s'%(output_tag, str(event_id)) experiments = processor.experiments_from_event(event) processor.tag = tag processor.setup_filenames(tag) try: processor.pre_process(experiments) observed = processor.find_spots(experiments) experiments, indexed = processor.index(experiments, observed) experiments, indexed = processor.refine(experiments, indexed) integrated = processor.integrate(experiments, indexed) print("Integrated %d spots on %d lattices"%(len(integrated), len(experiments))) except Exception as e: print("Couldn't process event %d"%event_id, str(e)) break break processor.finalize() if __name__ == '__main__': import sys experiment, run_number, detector_address, params_file, event_num = sys.argv[1:6] simple_example(experiment, int(run_number), detector_address, params_file, int(event_num)) full_api_example(experiment, int(run_number), detector_address, params_file, int(event_num))
care/facility/migrations/0254_patientnotes.py
gigincg/care
189
12712121
# Generated by Django 2.2.11 on 2021-06-12 14:33 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import uuid class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('facility', '0253_auto_20210612_1256'), ] operations = [ migrations.CreateModel( name='PatientNotes', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('external_id', models.UUIDField(db_index=True, default=uuid.uuid4, unique=True)), ('created_date', models.DateTimeField(auto_now_add=True, db_index=True, null=True)), ('modified_date', models.DateTimeField(auto_now=True, db_index=True, null=True)), ('deleted', models.BooleanField(db_index=True, default=False)), ('note', models.TextField(blank=True, default='')), ('created_by', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), ('facility', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='facility.Facility')), ('patient', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='facility.PatientRegistration')), ], options={ 'abstract': False, }, ), ]
alg/compartmental_gp/data_loader.py
loramf/mlforhealthlabpub
171
12712125
<gh_stars>100-1000 import pandas as pds import numpy as np from datetime import datetime import torch def numpy_fill(arr): mask = np.isnan(arr) idx = np.where(~mask,np.arange(mask.shape[1]),0) np.maximum.accumulate(idx,axis=1, out=idx) out = arr[np.arange(idx.shape[0])[:,None], idx] return out def get_intervention(country, standarize=False, smooth=True, legacy=False): csvs = [ 'c1_schoolclosing.csv', 'c2_workplaceclosing.csv', 'c3_cancelpublicevents.csv', 'c4_restrictionsongatherings.csv', 'c5_closepublictransport.csv', 'c6_stayathomerequirements.csv', 'c7_domestictravel.csv', 'c8_internationaltravel.csv', 'e1_incomesupport.csv', 'e2_debtcontractrelief.csv', 'h1_publicinfocampaign.csv', 'h2_testingpolicy.csv' ] + ['c{}_flag.csv'.format(x) for x in range(1, 8)] + ['e1_flag.csv', 'h1_flag.csv'] if not legacy: files = ['ox-policy-tracker/data/timeseries/{}'.format(i) for i in csvs] else: files = ['covid-policy-tracker-legacy/data/timeseries/{}'.format(i) for i in csvs] idx_list = [] for f in files: dat_ox = pds.read_csv(f) dat_ox.rename(columns={'Unnamed: 0': 'country', 'Unnamed: 1': 'country_code'}, inplace=True) dat_ox[dat_ox == '.'] = 'NaN' dt_list = [datetime.strptime(x, '%d%b%Y').date() for x in dat_ox.columns[2:]] dat_country = dat_ox[dat_ox['country'] == country] index_country = dat_country.iloc[0, 2:].values.astype(np.float) # fill na with previous value index_country = numpy_fill(index_country[None, :]) # handle the case of initial zeros index_country[np.isnan(index_country)] = 0 idx_list.append(index_country[0, :]) idx = np.stack(idx_list, -1) if standarize: idx = (idx - np.mean(idx, axis=0)) / np.std(idx, axis=0) idx[np.isnan(idx)] = 0 if smooth: dy_list = list() for i in range(idx.shape[1]): ds = idx[:, i] dy = smooth_curve_1d(ds) dy_list.append(dy) idx = np.stack(dy_list, axis=-1) return idx def smooth_curve_1d(x): w = np.ones(7, 'd') y = np.convolve(w / w.sum(), x, mode='valid') y = np.concatenate([np.zeros(3), y]) return y def get_deaths(country, to_torch=False, legacy=False, smart_start=True, pad=0, rebuttal=False): # get time series if not legacy: file = 'ts-data/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv' else: file = 'COVID-19-legacy/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv' if rebuttal: file = 'COVID-19-rebuttal-08-10/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv' dat = pds.read_csv(file) dt_list = [datetime.strptime(x, '%m/%d/%y').date() for x in dat.columns[4:]] if country not in ['China', 'Canada']: country_data = dat[(dat['Country/Region'] == country) & (dat['Province/State'].isnull())].iloc[0, 4:].values else: country_data = np.sum(dat[(dat['Country/Region'] == country)].iloc[:, 4:].values, axis=0) ind = (country_data != 0).argmax() - pad if ind < 0: print(country) ind = 0 # assert ind >= 0 cum_deaths = country_data[ind:].astype(np.float64) dt_list = dt_list[ind:] daily_deaths = np.diff(np.append(np.zeros(1), cum_deaths)) if country == 'Philippines': cum_deaths = cum_deaths[39:] dt_list = dt_list[39:] daily_deaths = daily_deaths[39:] if country == 'France': cum_deaths = cum_deaths[17:] dt_list = dt_list[17:] daily_deaths = daily_deaths[17:] # get population dat_feat = pds.read_csv('country_feature/country_feats.csv') if country == 'US': p_country = 'United States' elif country == 'Korea, South': p_country = 'Korea, Rep.' elif country == 'Iran': p_country = 'Iran, Islamic Rep.' elif country == 'Russia': p_country = 'Russian Federation' elif country == 'Egypt': p_country = 'Egypt, Arab Rep.' else: p_country = country population = dat_feat[(dat_feat['Country.Name'] == p_country) & (dat_feat['metric'] == 'Population, total')] population = population['value'].values[0] # define the starting point if smart_start: rate = 3.061029261722505e-08 daily_death_min = rate * population ind_death = ((daily_deaths >= daily_death_min) * .1).argmax() cum_deaths = cum_deaths[ind_death:] dt_list = dt_list[ind_death:] daily_deaths = daily_deaths[ind_death:] # get oxford index if not legacy: dat_ox = pds.read_csv('ox-policy-tracker/data/timeseries/stringencyindex_legacy.csv') else: dat_ox = pds.read_csv('covid-policy-tracker-legacy/data/timeseries/stringencyindex_legacy.csv') dat_ox.rename(columns={'Unnamed: 0': 'country', 'Unnamed: 1': 'country_code'}, inplace=True) dt_list_ind = [datetime.strptime(x, '%d%b%Y').date() for x in dat_ox.columns[2:]] dat_ox[dat_ox == '.'] = 'NaN' if country == 'US': o_country = 'United States' elif country == 'Korea, South': o_country = 'South Korea' else: o_country = country dat_country = dat_ox[dat_ox['country'] == o_country] # 7d mv smooth index_country = dat_country.iloc[0, 2:].values.astype(np.float) ind_len = len(index_country) index_country = smooth_curve_1d(index_country)[:ind_len] index_country[np.isnan(index_country)] = np.nanmean(index_country) intervention = get_intervention(o_country, legacy) if not to_torch: return { 'dt': dt_list, 'cum_death': cum_deaths, 'daily_death': daily_deaths, 'population': population, 's_index_dt': dt_list_ind, 's_index': index_country, 'intervention': intervention } else: return { 'dt': dt_list, 'cum_death': torch.tensor(cum_deaths), 'daily_death': torch.tensor(daily_deaths), 'population': population, 's_index_dt': dt_list_ind, 's_index': torch.tensor(index_country), 'intervention': torch.tensor(intervention) } def pad_sequence_trailing(sequences, padding_value=0): # assuming trailing dimensions and type of all the Tensors # in sequences are same and fetching those from sequences[0] max_size = sequences[0].size() trailing_dims = max_size[1:] max_len = max([s.size(0) for s in sequences]) out_dims = (max_len, len(sequences)) + trailing_dims out_tensor = sequences[0].data.new(*out_dims).fill_(padding_value) for i, tensor in enumerate(sequences): length = tensor.size(0) # use index notation to prevent duplicate references to the tensor out_tensor[-length:, i, ...] = tensor return out_tensor def cut_s_index(data_dict): ind = data_dict['s_index_dt'].index(data_dict['dt'][0]) s_len = len(data_dict['cum_death']) s_index = data_dict['s_index'][ind:ind + s_len] intervention = data_dict['intervention'][ind:ind + s_len] return s_index, intervention def get_data_pyro(countries, legacy=False, smart_start=True, pad=0, rebuttal=False): data_list = [get_deaths(x, True, legacy, smart_start, pad, rebuttal) for x in countries] init_days = [x['dt'][0] for x in data_list] init_day = min(init_days) t_first_blood = [(x - init_day).days for x in init_days] cum_death = pad_sequence_trailing([x['cum_death'] for x in data_list]) daily_death = pad_sequence_trailing([x['daily_death'] for x in data_list]) si_cut = [cut_s_index(x) for x in data_list] s_index = pad_sequence_trailing([x[0] for x in si_cut]) / 100 i_index = pad_sequence_trailing([x[1] for x in si_cut]) N_list = [x['population'] for x in data_list] date_list = pds.date_range(init_day, periods=cum_death.size(0)) country_feat = get_country_feature(countries) feat_list = [ 'Mortality from CVD, cancer, diabetes or CRD between exact ages 30 and 70 (%)', 'Mortality rate, adult, male (per 1,000 male adults)', 'Mortality rate attributed to household and ambient air pollution, age-standardized (per 100,000 population)', 'Incidence of tuberculosis (per 100,000 people)', 'Immunization, measles (% of children ages 12-23 months)', 'Immunization, DPT (% of children ages 12-23 months)', 'Immunization, HepB3 (% of one-year-old children)', 'Cause of death, by communicable diseases and maternal, prenatal and nutrition conditions (% of total)', 'Prevalence of overweight (% of adults)' ] country_feat = country_feat[country_feat.metric.isin(feat_list)] dat_feat = country_feat.pivot('country', 'metric', 'value') feat = np.zeros_like(dat_feat.values) for i in range(len(countries)): feat[i] = dat_feat.loc[countries[i]].values feat = (feat - np.nanmean(feat, axis=0)) / np.nanstd(feat, axis=0) feat[np.isnan(feat)] = 0. return { 'cum_death': cum_death, 'daily_death': daily_death, 's_index': s_index, 'i_index': i_index, 'population': N_list, 't_init': torch.tensor(t_first_blood).unsqueeze(-1), 'date_list': date_list, 'countries': countries, 'country_feat': torch.tensor(feat).to(i_index) } def get_country_feature(country_list): dat_feat = pds.read_csv('country_feature/country_feats.csv') p_country_list = [] for country in country_list: if country == 'US': p_country = 'United States' elif country == 'Korea, South': p_country = 'Korea, Rep.' elif country == 'Iran': p_country = 'Iran, Islamic Rep.' elif country == 'Russia': p_country = 'Russian Federation' elif country == 'Egypt': p_country = 'Egypt, Arab Rep.' else: p_country = country p_country_list.append(p_country) dat_feat = dat_feat[(dat_feat['Country.Name'].isin(p_country_list))] del dat_feat['Country.Code'] dat_feat['country'] = dat_feat['Country.Name'] del dat_feat['Country.Name'] countries = dat_feat['country'].values countries[countries == 'United States'] = 'US' countries[countries == 'Korea, Rep.'] = 'Korea, South' countries[countries == 'Iran, Islamic Rep.'] = 'Iran' countries[countries == 'Russian Federation'] = 'Russia' countries[countries == 'Egypt, Arab Rep.'] = 'Egypt' dat_feat['country'] = list(countries) return dat_feat
tensorflow_graphics/projects/gan/exponential_moving_average_test.py
sarvex/graphics
2,759
12712142
# Copyright 2020 The TensorFlow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for gan.exponential_moving_average.""" import tensorflow as tf from tensorflow_graphics.projects.gan import exponential_moving_average class ExponentialMovingAverageTest(tf.test.TestCase): def test_decay_one_values_are_from_initialization(self): ema = exponential_moving_average.ExponentialMovingAverage(decay=1.0) initial_value = 2.0 variable = tf.Variable(initial_value) ema.apply((variable,)) variable.assign(3.0) ema.apply((variable,)) self.assertAllClose(ema.averaged_variables[0], initial_value) def test_decay_zero_returns_last_value(self): ema = exponential_moving_average.ExponentialMovingAverage(decay=0.0) final_value = 3.0 variable = tf.Variable(2.0) ema.apply((variable,)) variable.assign(final_value) ema.apply((variable,)) self.assertAllClose(ema.averaged_variables[0], final_value) def test_cross_replica_context_raises_error(self): ema = exponential_moving_average.ExponentialMovingAverage(decay=0.0) with self.assertRaisesRegex( NotImplementedError, 'Cross-replica context version not implemented.'): with tf.distribute.MirroredStrategy().scope(): variable = tf.Variable(2.0) ema.apply((variable,)) def test_mirrored_strategy_replica_context_runs(self): ema = exponential_moving_average.ExponentialMovingAverage(decay=0.5) strategy = tf.distribute.MirroredStrategy() def apply_to_ema(variable): ema.apply((variable,)) with strategy.scope(): variable = tf.Variable(2.0) strategy.run(apply_to_ema, (variable,)) self.assertAllClose(ema.averaged_variables[0], variable.read_value()) if __name__ == '__main__': tf.test.main()
cacreader/swig-4.0.2/Examples/contract/simple_cxx/runme3.py
kyletanyag/LL-Smartcard
1,031
12712153
import example # Create the Circle object r = 2; print " Creating circle (radium: %d) :" % r c = example.Circle(r) # Set the location of the object c.x = 20 c.y = 30 print " Here is its current position:" print " Circle = (%f, %f)" % (c.x,c.y) # ----- Call some methods ----- print "\n Here are some properties of the Circle:" print " area = ", c.area() print " perimeter = ", c.perimeter() dx = 1; dy = 1; print " Moving with (%d, %d)..." % (dx, dy) c.move(dx, dy) del c print "===================================" # test move function */ r = 2; print " Creating circle (radium: %d) :" % r c = example.Circle(r) # Set the location of the object c.x = 20 c.y = 30 print " Here is its current position:" print " Circle = (%f, %f)" % (c.x,c.y) # ----- Call some methods ----- print "\n Here are some properties of the Circle:" print " area = ", c.area() print " perimeter = ", c.perimeter() # no error for Circle's pre-assertion dx = 1; dy = -1; print " Moving with (%d, %d)..." % (dx, dy) c.move(dx, dy) # error with Shape's pre-assertion dx = -1; dy = 1; print " Moving with (%d, %d)..." % (dx, dy) c.move(dx, dy)
nodemcu/nodemcu-uploader/nodemcu-uploader.py
kvderevyanko/price
324
12712156
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (C) 2015-2019 <NAME> <<EMAIL>> # pylint: disable=C0103 """makes it easier to run nodemcu-uploader from command line""" from nodemcu_uploader import main if __name__ == '__main__': main.main_func()
vision3d/detector/proposal.py
jhultman/PV-RCNN
131
12712172
<reponame>jhultman/PV-RCNN import torch import math from torch import nn import torch.nn.functional as F from vision3d.ops import sigmoid_focal_loss, batched_nms_rotated from vision3d.core.box_encode import decode class ProposalLayer(nn.Module): """ Use BEV feature map to generate 3D box proposals. TODO: Fix long variable names, ugly line wraps. """ def __init__(self, cfg): super(ProposalLayer, self).__init__() self.cfg = cfg self.conv_cls = nn.Conv2d( cfg.PROPOSAL.C_IN, cfg.NUM_CLASSES * cfg.NUM_YAW, 1) self.conv_reg = nn.Conv2d( cfg.PROPOSAL.C_IN, cfg.NUM_CLASSES * cfg.NUM_YAW * cfg.BOX_DOF, 1) self.TOPK, self.DOF = cfg.PROPOSAL.TOPK, cfg.BOX_DOF self._init_weights() def _init_weights(self): nn.init.constant_(self.conv_cls.bias, (-math.log(1 - .01) / .01)) nn.init.constant_(self.conv_reg.bias, 0) for m in (self.conv_cls.weight, self.conv_reg.weight): nn.init.normal_(m, std=0.01) def _generate_group_idx(self, B, n_cls): """Compute unique group_idx based on (batch_idx, class_idx) tuples.""" batch_idx = torch.arange(B)[:, None].expand(-1, n_cls) class_idx = torch.arange(n_cls)[None, :].expand(B, -1) group_idx = class_idx + n_cls * batch_idx b, c, g = [x[..., None].expand(-1, -1, self.TOPK).reshape(-1) for x in (batch_idx, class_idx, group_idx)] return b, c, g def _above_score_thresh(self, scores, class_idx): """Classes may have different score thresholds.""" thresh = scores.new_tensor([a['score_thresh'] for a in self.cfg.ANCHORS]) mask = scores > thresh[class_idx] return mask def _multiclass_batch_nms(self, boxes, scores): """Only boxes with same group_idx are jointly considered in nms""" B, n_cls = scores.shape[:2] scores = scores.view(-1) boxes = boxes.view(-1, self.DOF) bev_boxes = boxes[:, [0, 1, 3, 4, 6]] batch_idx, class_idx, group_idx = self._generate_group_idx(B, n_cls) idx = batched_nms_rotated(bev_boxes, scores, group_idx, iou_threshold=0.01) boxes, batch_idx, class_idx, scores = \ [x[idx] for x in (boxes, batch_idx, class_idx, scores)] mask = self._above_score_thresh(scores, class_idx) out = [x[mask] for x in (boxes, batch_idx, class_idx, scores)] return out def _decode(self, reg_map, anchors, anchor_idx): """Expands anchors in batch dimension and calls decode.""" B, n_cls = reg_map.shape[:2] anchor_idx = anchor_idx[..., None].expand(-1, -1, -1, self.DOF) deltas = reg_map.reshape(B, n_cls, -1, self.cfg.BOX_DOF) \ .gather(2, anchor_idx) anchors = anchors.view(1, n_cls, -1, self.cfg.BOX_DOF) \ .expand(B, -1, -1, -1).gather(2, anchor_idx) boxes = decode(deltas, anchors) return boxes def inference(self, feature_map, anchors): """:return (boxes, batch_idx, class_idx, scores)""" cls_map, reg_map = self(feature_map) score_map = cls_map.sigmoid_() B, n_cls = score_map.shape[:2] scores, anchor_idx = score_map.view(B, n_cls, -1).topk(self.TOPK, -1) boxes = self._decode(reg_map, anchors, anchor_idx) out = self._multiclass_batch_nms(boxes, scores) return out def reshape_cls(self, cls_map): B, _, ny, nx = cls_map.shape shape = (B, self.cfg.NUM_CLASSES, self.cfg.NUM_YAW, ny, nx) cls_map = cls_map.view(shape) return cls_map def reshape_reg(self, reg_map): B, _, ny, nx = reg_map.shape shape = (B, self.cfg.NUM_CLASSES, self.cfg.BOX_DOF, -1, ny, nx) reg_map = reg_map.view(shape).permute(0, 1, 3, 4, 5, 2) return reg_map def forward(self, feature_map): cls_map = self.reshape_cls(self.conv_cls(feature_map)) reg_map = self.reshape_reg(self.conv_reg(feature_map)) return cls_map, reg_map class ProposalLoss(nn.Module): """ Notation: (P_i, G_i, M_i) ~ (predicted, ground truth, mask). Loss is averaged by number of positive examples. TODO: Replace with compiled cuda focal loss. """ def __init__(self, cfg): super(ProposalLoss, self).__init__() self.cfg = cfg def masked_sum(self, loss, mask): """Mask assumed to be binary.""" mask = mask.type_as(loss) loss = (loss * mask).sum() return loss def reg_loss(self, P_reg, G_reg, M_reg): """Loss applied at all positive sites.""" P_xyz, P_wlh, P_yaw = P_reg.split([3, 3, 1], dim=-1) G_xyz, G_wlh, G_yaw = G_reg.split([3, 3, 1], dim=-1) loss_xyz = F.smooth_l1_loss(P_xyz, G_xyz, reduction='none') loss_wlh = F.smooth_l1_loss(P_wlh, G_wlh, reduction='none') loss_yaw = F.smooth_l1_loss(P_yaw, G_yaw, reduction='none') / math.pi loss = self.masked_sum(loss_xyz + loss_wlh + loss_yaw, M_reg) return loss def cls_loss(self, P_cls, G_cls, M_cls): """Loss is applied at all non-ignore sites. Assumes logit scores.""" loss = sigmoid_focal_loss(P_cls, G_cls.float(), reduction='none') loss = self.masked_sum(loss, M_cls) return loss def forward(self, item): keys = ['G_cls', 'M_cls', 'P_cls', 'G_reg', 'M_reg', 'P_reg'] G_cls, M_cls, P_cls, G_reg, M_reg, P_reg = map(item.get, keys) normalizer = M_reg.type_as(P_reg).sum().clamp_(min=1) cls_loss = self.cls_loss(P_cls, G_cls, M_cls) / normalizer reg_loss = self.reg_loss(P_reg, G_reg, M_reg) / normalizer loss = cls_loss + self.cfg.TRAIN.LAMBDA * reg_loss losses = dict(cls_loss=cls_loss, reg_loss=reg_loss, loss=loss) return losses
fiftyone/types/__init__.py
FLIR/fiftyone
1,130
12712192
<reponame>FLIR/fiftyone<filename>fiftyone/types/__init__.py """ FiftyOne types. | Copyright 2017-2021, Voxel51, Inc. | `voxel51.com <https://voxel51.com/>`_ | """ # pylint: disable=wildcard-import,unused-wildcard-import from .dataset_types import *
plenum/test/audit_ledger/test_first_audit_catchup_during_ordering.py
andkononykhin/plenum
148
12712252
import pytest from plenum.test import waits from plenum.common.constants import LEDGER_STATUS, DOMAIN_LEDGER_ID from plenum.common.messages.node_messages import MessageReq, CatchupReq from plenum.server.catchup.node_leecher_service import NodeLeecherService from plenum.test.delayers import ppDelay, pDelay, cDelay, DEFAULT_DELAY from plenum.test.helper import sdk_send_random_and_check from plenum.test.node_request.test_timestamp.helper import get_timestamp_suspicion_count from plenum.test.node_catchup.helper import ensure_all_nodes_have_same_data from plenum.test.stasher import delay_rules, start_delaying, stop_delaying_and_process from stp_core.loop.eventually import eventually def delay_domain_ledger_catchup(): def delay(msg): msg = msg[0] if isinstance(msg, MessageReq) and \ msg.msg_type == LEDGER_STATUS and \ msg.params.get('ledgerId') == DOMAIN_LEDGER_ID: return DEFAULT_DELAY if isinstance(msg, CatchupReq) and \ msg.ledgerId == DOMAIN_LEDGER_ID: return DEFAULT_DELAY return delay def test_first_audit_catchup_during_ordering(tdir, tconf, looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_client): lagging_node = txnPoolNodeSet[-1] other_nodes = txnPoolNodeSet[:-1] other_stashers = [node.nodeIbStasher for node in other_nodes] def lagging_node_state() -> NodeLeecherService.State: return lagging_node.ledgerManager._node_leecher._state def check_lagging_node_is_not_syncing_audit(): assert lagging_node_state() != NodeLeecherService.State.SyncingAudit # Prevent lagging node from catching up domain ledger (and finishing catchup) with delay_rules(other_stashers, delay_domain_ledger_catchup()): # Start catchup on lagging node lagging_node.start_catchup() assert lagging_node_state() == NodeLeecherService.State.SyncingAudit # Ensure that audit ledger is caught up by lagging node looper.run(eventually(check_lagging_node_is_not_syncing_audit)) assert lagging_node_state() != NodeLeecherService.State.Idle # Order request on all nodes except lagging one where they goes to stashed state sdk_send_random_and_check(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_client, 1) # Now catchup should end and lagging node starts processing stashed PPs # and resumes ordering # ensure that all nodes will have same data after that ensure_all_nodes_have_same_data(looper, txnPoolNodeSet) # ensure that no suspicions about obsolete PP have been raised assert get_timestamp_suspicion_count(lagging_node) == 0
cherry/envs/action_space_scaler_wrapper.py
acse-yl27218/cherry
160
12712291
<gh_stars>100-1000 #!/usr/bin/env python3 import gym import numpy as np from .base import Wrapper class ActionSpaceScaler(Wrapper): """ Scales the action space to be in the range (-clip, clip). Adapted from Vitchyr Pong's RLkit: https://github.com/vitchyr/rlkit/blob/master/rlkit/envs/wrappers.py#L41 """ def __init__(self, env, clip=1.0): super(ActionSpaceScaler, self).__init__(env) self.env = env self.clip = clip ub = np.ones(self.env.action_space.shape) * clip self.action_space = gym.spaces.Box(-1 * ub, ub, dtype=np.float32) def reset(self, *args, **kwargs): return self.env.reset(*args, **kwargs) def _normalize(self, action): lb = self.env.action_space.low ub = self.env.action_space.high scaled_action = lb + (action + self.clip) * 0.5 * (ub - lb) scaled_action = np.clip(scaled_action, lb, ub) return scaled_action def step(self, action): if self.is_vectorized: action = [self._normalize(a) for a in action] else: action = self._normalize(action) return self.env.step(action)
egs/ifnenit/v1/local/transcript_to_latin.py
shuipi100/kaldi
805
12712326
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # This script is originally from qatip project (http://qatsdemo.cloudapp.net/qatip/demo/) # of Qatar Computing Research Institute (http://qcri.qa/) # Convert every utterance transcript to position dependent latin format using "data/train/words2latin" as dictionary. import os, sys, re, io with open(sys.argv[1], encoding="utf-8") as f: d = dict(x.rstrip().split(None, 1) for x in f) in_stream = io.TextIOWrapper(sys.stdin.buffer, encoding='utf-8') for line in in_stream: mappedWords = [] for word in line.split(): mappedWords.append(d[word]) sys.stdout.write(re.sub(" +", " ", " ~A ".join(mappedWords).strip()) + "\n")
Beginers/ExampleExceptions/C_finally_.py
arunkgupta/PythonTrainingExercises
150
12712363
<gh_stars>100-1000 #!/usr/bin/env python """Example of raising an exception where b() has a finally clause and a() catches the exception. Created on Aug 19, 2011 @author: paulross """ class ExceptionNormal(Exception): pass class ExceptionCleanUp(Exception): pass def a(): try: b() except ExceptionNormal as err: print(' a(): CAUGHT "%s"' % err) def b(): try: c() finally: print(' b(): finally: This code is always executed.') def c(): print('Raising "ExceptionNormal" from c()') raise ExceptionNormal('ExceptionNormal raised from function c()') def main(): a() return 0 if __name__ == '__main__': main()
console/scan_retention.py
RishiKumarRay/scantron
684
12712370
<reponame>RishiKumarRay/scantron<gh_stars>100-1000 #!/usr/bin/env python # Standard Python libraries. import argparse import datetime import glob import logging import os import sys # Third party Python libraries. import django # Custom Python libraries. import django_connector # Setup logging. ROOT_LOGGER = logging.getLogger() LOG_FORMATTER = logging.Formatter("%(asctime)s [%(levelname)s] %(message)s") def delete_files_in_dir(folder): """Delete all the files in a directory.""" logging.info("Deleting files in folder: {}".format(folder)) file_list = os.listdir(folder) for f in file_list: os.remove(os.path.join(folder, f)) def main( database_remove, file_remove, scan_retention_in_minutes, max_queryset_size_to_delete, disable_dryrun, verbosity, ): """Execute main function.""" # Assign log level. ROOT_LOGGER.setLevel((6 - verbosity) * 10) # Setup file logging. script_name = os.path.basename(os.path.abspath(__file__)) log_file_handler = logging.FileHandler(f"{script_name.split('.py')[0]}.log") log_file_handler.setFormatter(LOG_FORMATTER) ROOT_LOGGER.addHandler(log_file_handler) # Setup console logging. console_handler = logging.StreamHandler() console_handler.setFormatter(LOG_FORMATTER) ROOT_LOGGER.addHandler(console_handler) ROOT_LOGGER.info(f"Starting {script_name} script.") if not django_connector.Configuration.objects.filter(id=1)[0].enable_scan_retention: ROOT_LOGGER.info("Scan retention is disabled. Exiting...") return ROOT_LOGGER.info(f"Disable dryrun setting: {disable_dryrun}") # Utilize Django's timezone aware setting to return a datetime object. now = django.utils.timezone.now() # Retrieve scan retention value from Configuration if it is not specified. # 60 * 24 = 1440 minutes in a day. if not scan_retention_in_minutes: scan_retention_in_minutes = (60 * 24) * (django_connector.Configuration.objects.all()[0].scan_retention_in_days) ROOT_LOGGER.info(f"Removing scans older than {scan_retention_in_minutes} minutes.") # Calculate the datetime "scan_retention_in_minutes" ago in the past. datetime_retention_in_minutes = now - datetime.timedelta(minutes=scan_retention_in_minutes) # Initialize scan_retention_dict as empty dictionary. scan_retention_dict = {} # Filter for scans that meet the retention criteria. scans_older_than_retention_date = django_connector.ScheduledScan.objects.filter( scan_status__in=["cancelled", "completed", "error"] ).filter(completed_time__lt=datetime_retention_in_minutes) # Remove the files first, since they depend on the scans "result_file_base_name" attribute existing. if file_remove: # Build directory paths. root_dir = "/home/scantron/console" target_files_dir = os.path.join(root_dir, "target_files") complete_dir = os.path.join(root_dir, "scan_results", "complete") processed_dir = os.path.join(root_dir, "scan_results", "processed") cancelled_dir = os.path.join(root_dir, "scan_results", "cancelled") bigdata_analytics_dir = os.path.join(root_dir, "for_bigdata_analytics") # Loop through each scan. for scan in scans_older_than_retention_date: result_file_base_name = scan.result_file_base_name # Grab a list of files from the "target_files" directory. Will capture any .excluded_targets as well. target_files = glob.glob(os.path.join(target_files_dir, f"{result_file_base_name}.*targets")) # Grab a list of files from the "complete" directory. complete_dir_scans = glob.glob(os.path.join(complete_dir, f"{result_file_base_name}*")) # Grab a list of files from the "processed" directory. processed_dir_scans = glob.glob(os.path.join(processed_dir, f"{result_file_base_name}*")) # Grab a list of files from the "cancelled" directory. cancelled_dir_scans = glob.glob(os.path.join(cancelled_dir, f"{result_file_base_name}*")) # Grab a list of .csv files from the "for_bigdata_analytics" directory. bigdata_analytics_dir_csv_files = glob.glob( os.path.join(bigdata_analytics_dir, f"{result_file_base_name}.csv") ) for file_to_delete in ( target_files + complete_dir_scans + processed_dir_scans + cancelled_dir_scans + bigdata_analytics_dir_csv_files ): ROOT_LOGGER.debug(f"Deleting file: {file_to_delete}") if disable_dryrun: try: os.remove(file_to_delete) ROOT_LOGGER.debug(f"Deleted file: {file_to_delete}") except OSError: ROOT_LOGGER.error(f"Could not delete file: {file_to_delete}") if database_remove: # Determine the total number of scans to delete. scans_older_than_retention_date_size = scans_older_than_retention_date.count() ROOT_LOGGER.info(f"{scans_older_than_retention_date_size} scans will be removed from the database.") if disable_dryrun: if scans_older_than_retention_date_size < (max_queryset_size_to_delete + 1): scan_retention_dict["database"] = () try: database_result = scans_older_than_retention_date.delete() scan_retention_dict["database"] = database_result ROOT_LOGGER.info( f"Successfully deleted {scans_older_than_retention_date_size} scans from the database." ) except Exception as e: ROOT_LOGGER.exception(f"Problem deleting scans from database using .delete(). Exception: {e}") else: ROOT_LOGGER.warning( f"The number of scans to delete ({scans_older_than_retention_date_size}) is greater than the " f"specified max_queryset_size_to_delete ({max_queryset_size_to_delete}). Using an iterator for " "better memory management." ) # Utilize an iterator for better memory management. # https://medium.com/@hansonkd/performance-problems-in-the-django-orm-1f62b3d04785 total_iterator_scans_deleted = 0 for scan in scans_older_than_retention_date.iterator(): try: # Capture scan ID. scan_id = scan.id scan.delete() ROOT_LOGGER.debug(f"Scan ID successfully deleted: {scan_id}") total_iterator_scans_deleted += 1 except Exception as e: ROOT_LOGGER.exception(f"Problem deleting scan from database using iterator(). Exception: {e}") ROOT_LOGGER.info(f"Successfully deleted {total_iterator_scans_deleted} scans from the database.") ROOT_LOGGER.info(f"scan_retention_dict: {scan_retention_dict}") ROOT_LOGGER.info(f"{script_name} is done!") return scan_retention_dict if __name__ == "__main__": parser = argparse.ArgumentParser(description="Remove scan data, targets, and results older than a specified date.") parser.add_argument( "-b", dest="database_remove", action="store_true", required=False, default=False, help="Remove scan database entries.", ) parser.add_argument( "-c", dest="file_remove", action="store_true", required=False, default=False, help=( "Remove target_files/*.targets, target_files/*.excluded_targets, scan_results/*, and " "for_bigdata_analytics/*.csv files" ), ) parser.add_argument( "-o", dest="scan_retention_in_minutes", action="store", required=False, type=int, help="Delete emails older than X minutes. WARNING: Overrides the configuration setting.", ) parser.add_argument( "-m", dest="max_queryset_size_to_delete", action="store", required=False, type=int, default=500, help=( "Max number of records to try and delete through Django's ORM .delete() function, otherwise a memory " "efficient iterator must be used." ), ) parser.add_argument( "-r", dest="disable_dryrun", action="store_true", required=False, default=False, help="Disable dryrun option." ) parser.add_argument( "-v", dest="verbosity", action="store", type=int, default=4, help="Verbosity level (0=NOTSET, 1=CRITICAL, 2=ERROR, 3=WARNING, 4=INFO, 5=DEBUG,). Default: 4", ) args = parser.parse_args() if (args.scan_retention_in_minutes is not None) and (args.scan_retention_in_minutes <= 0): print("Scan retention in days must be greater than 0...exiting.") sys.exit(0) main(**vars(args))
tests/components/media_player/__init__.py
MrDelik/core
30,023
12712390
<filename>tests/components/media_player/__init__.py """The tests for Media player platforms."""
h2o-py/tests/testdir_algos/gbm/pyunit_ecology_gbm.py
ahmedengu/h2o-3
6,098
12712433
<filename>h2o-py/tests/testdir_algos/gbm/pyunit_ecology_gbm.py from builtins import range import sys sys.path.insert(1,"../../../") import h2o from tests import pyunit_utils import pandas from sklearn import ensemble from sklearn import preprocessing from sklearn.metrics import roc_auc_score from h2o.estimators.gbm import H2OGradientBoostingEstimator def ecologyGBM(): ecology_train = h2o.import_file(path=pyunit_utils.locate("smalldata/gbm_test/ecology_model.csv")) ntrees = 100 max_depth = 5 min_rows = 10 learn_rate = 0.1 # Prepare data for scikit use trainData = pandas.read_csv(pyunit_utils.locate("smalldata/gbm_test/ecology_model.csv")) trainData.dropna(inplace=True) le = preprocessing.LabelEncoder() le.fit(trainData['Method']) trainData['Method'] = le.transform(trainData['Method']) trainDataResponse = trainData["Angaus"] trainDataFeatures = trainData[["SegSumT","SegTSeas","SegLowFlow","DSDist","DSMaxSlope","USAvgT", "USRainDays","USSlope","USNative","DSDam","Method","LocSed"]] ecology_train["Angaus"] = ecology_train["Angaus"].asfactor() # Train H2O GBM Model: gbm_h2o = H2OGradientBoostingEstimator(ntrees=ntrees, learn_rate=learn_rate, distribution="bernoulli", min_rows=min_rows, max_depth=max_depth, categorical_encoding='label_encoder') gbm_h2o.train(x=list(range(2,ecology_train.ncol)), y="Angaus", training_frame=ecology_train) # Train scikit GBM Model: gbm_sci = ensemble.GradientBoostingClassifier(learning_rate=learn_rate, n_estimators=ntrees, max_depth=max_depth, min_samples_leaf=min_rows, max_features=None) gbm_sci.fit(trainDataFeatures,trainDataResponse) # Evaluate the trained models on test data # Load the test data (h2o) ecology_test = h2o.import_file(path=pyunit_utils.locate("smalldata/gbm_test/ecology_eval.csv")) # Load the test data (scikit) testData = pandas.read_csv(pyunit_utils.locate("smalldata/gbm_test/ecology_eval.csv")) testData.dropna(inplace=True) testData['Method'] = le.transform(testData['Method']) testDataResponse = testData["Angaus"] testDataFeatures = testData[["SegSumT","SegTSeas","SegLowFlow","DSDist","DSMaxSlope","USAvgT", "USRainDays","USSlope","USNative","DSDam","Method","LocSed"]] # Score on the test data and compare results # scikit auc_sci = roc_auc_score(testDataResponse, gbm_sci.predict_proba(testDataFeatures)[:,1]) # h2o gbm_perf = gbm_h2o.model_performance(ecology_test) auc_h2o = gbm_perf.auc() assert auc_h2o >= auc_sci, "h2o (auc) performance degradation, with respect to scikit" if __name__ == "__main__": pyunit_utils.standalone_test(ecologyGBM) else: ecologyGBM()
libs/models.py
mehrdad-shokri/lightbulb-framework
497
12712453
<gh_stars>100-1000 """ This file contains all the in-memory Database implementation of the Burp Extension. The contained models are used for maintaining the Burp Proxy requests and responses, the lightbulb's filters (regexes, grammars), the lightbulb's trees, the user's campaigns, and other info. The models also include all the necessary functionality for representing the data to the end user through Jython swing framework. """ from java.util import ArrayList from java.lang import Boolean from javax.swing import JTabbedPane from javax.swing import JTable from javax.swing import JCheckBox from javax.swing import JLabel from javax.swing.table import AbstractTableModel from javax.swing.table import TableCellRenderer from threading import Lock from threading import Thread import sys class BurpDatabaseModels(): """ The in-memory Database implementation of the Burp Extension. """ def __init__(self): """ The constructor of BurpDatabaseModels object defines a number of class variables tracking the number of deleted records, and maintaining the references to the arrays of records. Args: None Returns: None """ self.STATIC_MESSAGE_TABLE_COLUMN_COUNT = 6 self.lock = Lock() self.arrayOfMessages = ArrayList() self.arrayOfCampaigns = ArrayList() self.arrayOfSettings = ArrayList() self.deletedCampaignCount = 0 self.deletedRoleCount = 0 self.deletedMessageCount = 0 self.deletedSettingCount = 0 self.selfExtender = None def addCampaign(self, name): """ Adds a new record in the Campaigns array, and returns the index of the campaign. Args: name (str): The name of the campaign Returns: int: The index of the inserted campaign """ campaign_index = -1 try: self.lock.acquire() campaign_index = self.arrayOfCampaigns.size() self.arrayOfCampaigns.append( CampaignEntry( campaign_index, campaign_index - self.deletedCampaignCount, name)) finally: self.lock.release() return campaign_index def updateCampaign(self, campaign_index, id, val): """ Adds a new record in the Campaigns array, and returns the index of the campaign. Args: name (str): The name of the campaign Returns: int: The index of the inserted campaign """ try: self.lock.acquire() campaign_entry = self.arrayOfCampaigns[campaign_index] if campaign_entry: if id == 1: campaign_entry._Membership = val if id == 2: campaign_entry._MembershipB = val except: print 'Error when inserting campaings. Wanted to insert campaign with id ',campaign_index size = self.arrayOfCampaigns.size() print 'Current campaigns:',size for i in self.arrayOfCampaigns: print 'Campaign with id ',i._index print sys.exc_info() finally: self.lock.release() def delete_campaign(self, campaignIndex): """ Delete the selected row of the campaigns Args: row (str): The row of the table that the campaign appears Returns: None """ try: self.lock.acquire() print 'Terminating Campaign' campaign_entry = self.arrayOfCampaigns[campaignIndex] if campaign_entry: campaign_entry._deleted = True campaign_entry._Result = "Terminated" self.deletedCampaignCount += 1 if len(self.arrayOfCampaigns) > campaignIndex + 1: for i in self.arrayOfCampaigns[campaignIndex + 1:]: i._tableRow -= 1 print 'Campaign was Terminated' finally: self.lock.release() def addSetting(self, name, value, domain=None, description=None, path=None): """ Adds a new record in the settings array, and returns the index of the setting. Args: name (str): The name of the setting value (str): The value of the setting domain (str): The category of the setting (optional) description (str): A small description of the setting (optional) path (str): The location of the described resource (optional) Returns: int: The index of the inserted setting """ self.lock.acquire() settingIndex = -1 for i in self.getActiveSettingIndexes(domain): if self.arrayOfSettings[i]._name == name: settingIndex = i if settingIndex < 0: settingIndex = self.arrayOfSettings.size() self.arrayOfSettings.append( SettingEntry( settingIndex, len( self.getActiveSettingIndexes(domain)), name, value, domain, description, path)) self.lock.release() return settingIndex def createNewMessage( self, messagebuffer, host, method, path, selectedparameter, totest=False, regex="HTTP/1.1 200 OK", failRegex="(HTTP/1.1 403|block|impact)"): """ Adds a new record in the messages array, and returns the index of the message. Args: messagebuffer (str): The saved buffer of the burp request-response host (str): The targetted host method (str): The used HTTP method path (str): The HTTP URL path selectedparameter (str): The parameter of the HTTP request totest (bool): A boolean vaule indicating weather to test with the regex the response or not regex (str): A regex that if matches the response indicates a success failRegex (str): A regex that if matches the response indicates a failure Returns: int: The index of the inserted message """ self.lock.acquire() messageIndex = self.arrayOfMessages.size() self.arrayOfMessages.add( MessageEntry( messageIndex, messageIndex - self.deletedMessageCount, messagebuffer, host, method, path, selectedparameter, regex, failRegex)) self.lock.release() if totest: t = Thread( target=self.selfExtender.runMessagesThread, args=[messageIndex]) t.start() return messageIndex def clear(self): """ Clears all arrays and all counters Args: None Returns: None """ self.lock.acquire() self.arrayOfMessages = ArrayList() self.arrayOfCampaigns = ArrayList() self.deletedCampaignCount = 0 self.deletedRoleCount = 0 self.deletedMessageCount = 0 self.lock.release() def getActiveCampaignIndexes(self): """ Gets all campaigns that are not deleted Args: None Returns: array: The active campaigns """ return [x._index for x in self.arrayOfCampaigns if not x.isDeleted()] def getActiveMessageIndexes(self): """ Gets all messages that are not deleted Args: None Returns: array: The active messages """ return [x._index for x in self.arrayOfMessages if not x.isDeleted()] def getActiveSettingIndexes(self, domain=None): """ Gets all settings that are not deleted and belong to the input category Args: domain (str): The category of the requested settings (optional) Returns: array: The returned settings """ return [ x._index for x in self.arrayOfSettings if not x.isDeleted() and ( not domain or x._domain == domain)] def getMessageByRow(self, row): """ Gets a selected row of the messages, as long as it is not deleted. Args: row (str): The row of the table that the message appears Returns: array: The returned row with the message details """ for m in self.arrayOfMessages: if not m.isDeleted() and m.getTableRow() == row: return m def getSettingByRow(self, row, domain=None): """ Gets the a selected row of the settings, as long as it is not deleted. Args: row (str): The row of the table that the message appears Returns: array: The returned row with the setting details """ for m in [ x for x in self.arrayOfSettings if ( not domain or x._domain == domain)]: if not m.isDeleted() and m.getTableRow() == row and ( not domain or m._domain == domain): return m def getCampaignByRow(self, row): """ Gets the a selected row of the campaigns, as long as it is not deleted. Args: row (str): The row of the table that the message appears Returns: array: The returned row with the campaign details """ for u in self.arrayOfCampaigns: if not u.isDeleted() and u.getTableRow() == row: return u def delete_message(self, messageIndex): """ Delete the selected row of the messages Args: row (str): The row of the table that the message appears Returns: None """ self.lock.acquire() messageEntry = self.arrayOfMessages[messageIndex] if messageEntry: messageEntry._deleted = True self.deletedMessageCount += 1 if len(self.arrayOfMessages) > messageIndex + 1: for i in self.arrayOfMessages[messageIndex + 1:]: i._tableRow -= 1 self.lock.release() """ Swing Table Modles """ class CampaignTableModel(AbstractTableModel): """ The table model for the campaings, with the getters and the setters. """ def __init__(self, db): """ The constructor of the model Args: db (object): The reference to the database instance. Returns: None """ self._db = db def getRowCount(self): """ Returns the total number of table records that are not deleted. Args: None Returns: int: The total number of table records that are not deleted. """ try: return len(self._db.getActiveCampaignIndexes()) except: print 'error in campaign table model' return 0 def getColumnCount(self): """ Returns the total number of table columns. Args: None Returns: int: The total number of table columns. """ return 4 def getColumnName(self, columnIndex): """ Returns the name of a selected column Args: columnIndex (int): The index of the column. Returns: str: The name of the column. """ if columnIndex == 0: return "Campaigns" elif columnIndex == 1: return "Queries A" elif columnIndex == 2: return "Queries B" elif columnIndex == 3: return "Results" return "" def getValueAt(self, rowIndex, columnIndex): """ Returns the value of a selected row and a selected column Args: rowIndex (int): The index of the row. columnIndex (int): The index of the column. Returns: str: The value of the record """ CampaignEntry = self._db.getCampaignByRow(rowIndex) if CampaignEntry: if columnIndex == 0: return str(CampaignEntry._name) elif columnIndex == 1: return CampaignEntry._Membership elif columnIndex == 2: return CampaignEntry._MembershipB elif columnIndex == 3: return CampaignEntry._Result return "" def addRow(self, row): """ Notifies all listeners that the row was inserted. Args: row (int): The index of the inserted row Returns: None """ self.fireTableRowsInserted(row, row) def setValueAt(self, val, row, col): """ Sets the selected value in a selected row and a selected column record and notifies the listeners for the change. Args: val (depends on the class type of the record): The selected value row (int): The index of the row. col (int): The index of the column. Returns: None """ CampaignEntry = self._db.getCampaignByRow(row) if CampaignEntry: if col == 0: CampaignEntry._name = val elif col == 1: CampaignEntry._Membership = val elif col == 2: CampaignEntry._MembershipB = val elif col == 3: CampaignEntry._Result = val self.fireTableCellUpdated(row, col) def isCellEditable(self, row, col): """ Checks whether the value can be edited. Args: row (int): The index of the selected row col (int): The index of the selected column Returns: bool: A boolean value indicating whether the value is editable """ return False def getColumnClass(self, columnIndex): """ Returns the class type of the record of a selected column. Args: columnIndex (int): The index of the selected column Returns: str: The class type of the column's records """ if columnIndex == 1: return int if columnIndex == 2: return int return str class CampaignTable(JTable): """ The table for the campaigns, with functions for its constructor and redrawing. """ def __init__(self, extender, model): """ The constructor of the table initiates the extender and model class variables. Args: extender (burp extension): A self reference to the extension model (abstract table class): The CampaignTableModel class """ self._extender = extender self.setModel(model) return def redrawTable(self): """ This function configures the columns width. """ try: self.getModel().fireTableStructureChanged() self.getModel().fireTableDataChanged() self.getColumnModel().getColumn(0).setMinWidth(220) self.getColumnModel().getColumn(0).setMaxWidth(220) self.getColumnModel().getColumn(1).setMinWidth(125) self.getColumnModel().getColumn(1).setMaxWidth(125) self.getColumnModel().getColumn(2).setMinWidth(125) self.getColumnModel().getColumn(2).setMaxWidth(125) self.getColumnModel().getColumn(3).setMinWidth(150) self.getColumnModel().getColumn(3).setMaxWidth(150) self.getTableHeader().getDefaultRenderer().setHorizontalAlignment(JLabel.CENTER) except: pass class LibraryTableModel(AbstractTableModel): """ The table model for the library, with the getters and the setters. """ def __init__(self, db, domain, category=None): """ The constructor of the model Args: db (object): The reference to the database instance. domain (str): The category of the related data. category (str) The subcategory of the related data Returns: None """ self._db = db self._domain = domain self._category = category def getRowCount(self): """ Returns the total number of table records that are not deleted. Args: None Returns: int: The total number of table records that are not deleted. """ try: return len(self._db.getActiveSettingIndexes(self._domain)) except: print 'error in LibraryTableModel' return 0 def getColumnCount(self): """ Returns the total number of table columns. Args: None Returns: int: The total number of table columns. """ return 3 def getColumnName(self, columnIndex): """ Returns the name of a selected column Args: columnIndex (int): The index of the column. Returns: str: The name of the column. """ if columnIndex == 0: return "Name" elif columnIndex == 1: return "description" elif columnIndex == 2: return "Value" else: return "" return "" def getValueAt(self, rowIndex, columnIndex): """ Returns the value of a selected row and a selected column Args: rowIndex (int): The index of the row. columnIndex (int): The index of the column. Returns: str: The value of the record """ messageEntry = self._db.getSettingByRow(rowIndex, self._domain) if messageEntry: if columnIndex == 0: return messageEntry._name elif columnIndex == 1: return messageEntry._description elif columnIndex == 2: if self._category == 1: return messageEntry._val1 elif self._category == 2: return messageEntry._val2 elif self._category == 3: return messageEntry._val3 elif self._category == 4: return messageEntry._val4 elif self._category == 5: return messageEntry._val5 elif self._category == 6: return messageEntry._val6 elif self._category == 7: return messageEntry._val7 elif self._category == 8: return messageEntry._val8 else: return messageEntry._value else: return "" return "" def addRow(self, row): """ Notifies all listeners that the row was inserted. Args: row (int): The index of the inserted row Returns: None """ self.fireTableRowsInserted(row, row) def setValueAt(self, val, row, col): """ Sets the selected value in a selected row and a selected column record and notifies the listeners for the change. Args: val (depends on the class type of the record): The selected value row (int): The index of the row. col (int): The index of the column. Returns: None """ messageEntry = self._db.getSettingByRow(row, self._domain) if col == 0: messageEntry._name = val elif col == 1: messageEntry._description = val elif col == 2: if self._category == 1: messageEntry._val1 = val elif self._category == 2: messageEntry._val2 = val elif self._category == 3: messageEntry._val3 = val elif self._category == 4: messageEntry._val4 = val elif self._category == 5: messageEntry._val5 = val elif self._category == 6: messageEntry._val6 = val elif self._category == 7: messageEntry._val7 = val elif self._category == 8: messageEntry._val8 = val else: messageEntry._value = val self.fireTableCellUpdated(row, col) def isCellEditable(self, row, col): """ Checks whether the value can be edited. Args: row (int): The index of the selected row col (int): The index of the selected column Returns: bool: A boolean value indicating whether the value is editable """ if col == 2: return True return False def getColumnClass(self, columnIndex): """ Returns the class type of the record of a selected column. Args: columnIndex (int): The index of the selected column Returns: str: The class type of the column's records """ if columnIndex == 2: return Boolean return str class LibraryTable(JTable): """ The table for the library, with functions for its constructor and redrawing. """ def __init__(self, extender, model): """ The constructor of the table Args: extender (burp extension): A self reference to the extension model (abstract table class): The LibraryTableModel class Returns: None """ self._extender = extender self.setModel(model) return def redrawTable(self): """ This function configures the columns width. """ self.getModel().fireTableStructureChanged() self.getModel().fireTableDataChanged() self.getColumnModel().getColumn(0).setMinWidth(300) self.getColumnModel().getColumn(0).setMaxWidth(300) self.getColumnModel().getColumn(1).setMinWidth(400) self.getColumnModel().getColumn(1).setMaxWidth(400) self.getColumnModel().getColumn(2).setMinWidth(100) self.getColumnModel().getColumn(2).setMaxWidth(100) self.getTableHeader().getDefaultRenderer().setHorizontalAlignment(JLabel.CENTER) class SettingsTableModel(AbstractTableModel): """ The table model for the settings, with the getters and the setters. """ def __init__(self, db, domain): """ The constructor of the table Args: db (object): The reference to the database instance. domain (str): The category of the related data. Returns: None """ self._db = db self._domain = domain def getRowCount(self): """ Returns the total number of table records that are not deleted. Args: None Returns: int: The total number of table records that are not deleted. """ try: return len(self._db.getActiveSettingIndexes(self._domain)) except: return 0 def getColumnCount(self): """ Returns the total number of table columns. Args: None Returns: int: The total number of table columns. """ return 2 def getColumnName(self, columnIndex): """ Returns the name of a selected column Args: columnIndex (int): The index of the column. Returns: str: The name of the column. """ if columnIndex == 0: return "Name" elif columnIndex == 1: return "Value" else: return "" return "" def getValueAt(self, rowIndex, columnIndex): """ Returns the value of a selected row and a selected column Args: rowIndex (int): The index of the row. columnIndex (int): The index of the column. Returns: str: The value of the record """ messageEntry = self._db.getSettingByRow(rowIndex, self._domain) if messageEntry: if columnIndex == 0: return messageEntry._name elif columnIndex == 1: return messageEntry._value else: return "" return "" def addRow(self, row): """ Notifies all listeners that the row was inserted. Args: row (int): The index of the inserted row Returns: None """ self.fireTableRowsInserted(row, row) def setValueAt(self, val, row, col): """ Sets the selected value in a selected row and a selected column record and notifies the listeners for the change. Args: val (depends on the class type of the record): The selected value row (int): The index of the row. col (int): The index of the column. Returns: None """ messageEntry = self._db.getSettingByRow(row, self._domain) if col == 0: messageEntry._name = val elif col == 1: messageEntry._value = val self.fireTableCellUpdated(row, col) def isCellEditable(self, row, col): """ Checks whether the value can be edited. Args: row (int): The index of the selected row col (int): The index of the selected column Returns: bool: A boolean value indicating whether the value is editable """ if col == 1: return True return False def getColumnClass(self, columnIndex): """ Returns the class type of the record of a selected column. Args: columnIndex (int): The index of the selected column Returns: str: The class type of the column's records """ return str class SettingsTable(JTable): """ The table for the settings, with functions for its constructor and redrawing. """ def __init__(self, extender, model): """ The constructor of the table Args: extender (burp extension): A self reference to the extension model (abstract table class): The SettingsTableModel class Returns: None """ self._extender = extender self.setModel(model) return def redrawTable(self): """ This function configures the columns width. """ self.getModel().fireTableStructureChanged() self.getModel().fireTableDataChanged() self.getColumnModel().getColumn(0).setMinWidth(200) self.getColumnModel().getColumn(0).setMaxWidth(200) self.getColumnModel().getColumn(1).setMinWidth(200) self.getColumnModel().getColumn(1).setMaxWidth(200) self.getTableHeader().getDefaultRenderer().setHorizontalAlignment(JLabel.CENTER) class MessageTableModel(AbstractTableModel): """ The table model for the messages, with the getters and the setters. """ def __init__(self, db): """ The constructor of the table Args: db (object): The reference to the database instance. Returns: None """ self._db = db def getRowCount(self): """ Returns the total number of table records that are not deleted. Args: None Returns: int: The total number of table records that are not deleted. """ try: return len(self._db.getActiveMessageIndexes()) except: return 0 def getColumnCount(self): """ Returns the total number of table columns. Args: None Returns: int: The total number of table columns. """ return 7 def getColumnName(self, columnIndex): """ Returns the name of a selected column Args: columnIndex (int): The index of the column. Returns: str: The name of the column. """ if columnIndex == 0: return "ID" elif columnIndex == 1: return "Host" elif columnIndex == 2: return "Method" elif columnIndex == 3: return "URL" elif columnIndex == 4: return "Success Regex" elif columnIndex == 5: return "Fail Regex" elif columnIndex == 6: return "Success Status" return "" def getValueAt(self, rowIndex, columnIndex): """ Returns the value of a selected row and a selected column Args: rowIndex (int): The index of the row. columnIndex (int): The index of the column. Returns: str: The value of the record """ messageEntry = self._db.getMessageByRow(rowIndex) if messageEntry: if columnIndex == 0: return str(messageEntry.getTableRow()) elif columnIndex == 1: return messageEntry._host elif columnIndex == 2: return messageEntry._method elif columnIndex == 3: return messageEntry._name elif columnIndex == 4: return messageEntry._successRegex elif columnIndex == 5: return messageEntry._failRegex elif columnIndex == 6: return messageEntry._successStatus return "" def addRow(self, row): """ Notifies all listeners that the row was inserted. Args: row (int): The index of the inserted row Returns: None """ self.fireTableRowsInserted(row, row) def setValueAt(self, val, row, col): """ Sets the selected value in a selected row and a selected column record and notifies the listeners for the change. Args: val (depends on the class type of the record): The selected value row (int): The index of the row. col (int): The index of the column. Returns: None """ messageEntry = self._db.getMessageByRow(row) if col == 1: messageEntry._host = val elif col == 2: messageEntry._method = val elif col == 3: messageEntry._name = val elif col == 4: messageEntry._successRegex = val elif col == 5: messageEntry._failRegex = val elif col == 6: messageEntry._successStatus = val else: roleIndex = self._db.getRoleByMColumn(col)._index messageEntry.addRoleByIndex(roleIndex, val) self.fireTableCellUpdated(row, col) def isCellEditable(self, row, col): """ Checks whether the value can be edited. Args: row (int): The index of the selected row col (int): The index of the selected column Returns: bool: A boolean value indicating whether the value is editable """ if col == 5: return True if col == 4: return True return False def getColumnClass(self, columnIndex): """ Returns the class type of the record of a selected column. Args: columnIndex (int): The index of the selected column Returns: str: The class type of the column's records """ if columnIndex < 6: return str else: return Boolean class MessageTable(JTable): """ The table for the messages, with functions for its constructor and redrawing. """ def __init__(self, extender, model): """ The constructor of the table Args: extender (burp extension): A self reference to the extension model (abstract table class): The MessagesTableModel class Returns: None """ self._extender = extender self.setModel(model) return def changeSelection(self, row, col, toggle, extend): # show the message entry for the selected row selectedMessage = self.getModel()._db.getMessageByRow(row) self._extender._tabs.removeAll() # NOTE: testing if .locked is ok here since its a manual operation if self.getModel()._db.lock.locked(): # Provide some feedback on a click self.redrawTable() return # Create original Request tab and set default tab to Request # Then Create test tabs and set the default tab to Response for easy # analysis originalTab = self.createRequestTabs(selectedMessage._requestResponse) originalTab.setSelectedIndex(0) self._extender._tabs.addTab("Original", originalTab) for campaignIndex in selectedMessage._campaignRuns.keys(): if not self.getModel()._db.arrayOfCampaigns[ campaignIndex].isDeleted(): tabname = str( self.getModel()._db.arrayOfCampaigns[campaignIndex]._name) self._extender._tabs.addTab( tabname, self.createRequestTabs( selectedMessage._campaignRuns[campaignIndex])) self._extender._currentlyDisplayedItem = selectedMessage._requestResponse JTable.changeSelection(self, row, col, toggle, extend) return def createRequestTabs(self, requestResponse): requestTabs = JTabbedPane() requestViewer = self._extender._callbacks.createMessageEditor( self._extender, False) responseViewer = self._extender._callbacks.createMessageEditor( self._extender, False) requestTabs.addTab("Request", requestViewer.getComponent()) requestTabs.addTab("Response", responseViewer.getComponent()) self._extender._callbacks.customizeUiComponent(requestTabs) requestViewer.setMessage(requestResponse.getRequest(), True) if requestResponse.getResponse(): responseViewer.setMessage(requestResponse.getResponse(), False) requestTabs.setSelectedIndex(1) return requestTabs def redrawTable(self): """ This function configures the columns width. """ self.getModel().fireTableStructureChanged() self.getModel().fireTableDataChanged() self.getColumnModel().getColumn(0).setMinWidth(30) self.getColumnModel().getColumn(0).setMaxWidth(30) self.getColumnModel().getColumn(1).setMinWidth(150) self.getColumnModel().getColumn(1).setMaxWidth(150) self.getColumnModel().getColumn(2).setMinWidth(60) self.getColumnModel().getColumn(2).setMaxWidth(60) self.getColumnModel().getColumn(3).setMinWidth(150) self.getColumnModel().getColumn(3).setMaxWidth(150) self.getColumnModel().getColumn(4).setMinWidth(150) self.getColumnModel().getColumn(4).setMaxWidth(150) self.getColumnModel().getColumn(5).setMinWidth(150) self.getColumnModel().getColumn(5).setMaxWidth(150) self.getColumnModel().getColumn(6).setMinWidth(100) self.getColumnModel().getColumn(6).setMaxWidth(100) class SuccessBooleanRenderer(JCheckBox, TableCellRenderer): def __init__(self, db): """ The constructor of the renderer Args: db (object): The reference to the database instance. Returns: None """ self.setOpaque(True) self.setHorizontalAlignment(JLabel.CENTER) self._db = db def getTableCellRendererComponent( self, table, value, isSelected, hasFocus, row, column): if value: self.setSelected(True) else: self.setSelected(False) if isSelected: self.setForeground(table.getSelectionForeground()) self.setBackground(table.getSelectionBackground()) else: self.setForeground(table.getForeground()) self.setBackground(table.getBackground()) return self class MessageEntry: """ The schema for the row of messages table """ def __init__( self, index, tableRow, requestResponse, host="", method="", name="", selectedparameter="", regex="^HTTP/1.1 200 OK", failRegex="(^HTTP/1.1 403|block|impact)", deleted=False, status=True): """ The constructor for the MessageEntry record. Args: index (int): The index of the messages array for this record tableRow (int): The index of the messages tables for this record requestResponse (str): The saved buffer of the burp request-response host (str): The targetted host method (str): The used HTTP method name (str): The HTTP URL path selectedparameter (str): The parameter of the HTTP request regex (str): A regex that if matches the response indicates a success failRegex (str): A regex that if matches the response indicates a failure deleted (bool): A boolean value indicating whether the record is deleted. status (bool): A boolean value indicating whether the record is selected. Returns: None """ self._index = index self._tableRow = tableRow self._requestResponse = requestResponse self._host = host self._method = method self._name = name self._selectedparameter = selectedparameter self._successRegex = regex self._failRegex = failRegex self._successStatus = status self._deleted = deleted self._campaignRuns = {} self._roleResults = {} return def isDeleted(self): """ Returns a boolean value indicating if record is deleted. Args: None Returns: Bool: Valude indicating if record is deleted. """ return self._deleted def updateTableRow(self, row): """ Changes the content of the row with the input Args: row (int): A new table index Returns: None """ self._tableRow = row def getTableRow(self): """ Returns the current table index of the record Args: None Returns: int: Table index """ return self._tableRow class SettingEntry: """ The schema for the row of settings table """ def __init__( self, index, rowIndex, name, value="", domain=None, description=None, path=None): """ The constructor for the MessageEntry record. Args: index (int): The index of the messages array for this record rowIndex (int): The index of the messages tables for this record requestResponse (str): The saved buffer of the burp request-response name (str): The HTTP URL path Returns: None """ self._index = index self._name = name self._deleted = False self._tableRow = rowIndex self._value = value self._val1 = value self._val2 = value self._val3 = value self._val4 = value self._val5 = value self._val6 = value self._val7 = value self._val8 = value self._path = path self._domain = domain self._description = description return def isDeleted(self): """ Returns a boolean value indicating if record is deleted. Args: None Returns: Bool: Valude indicating if record is deleted. """ return self._deleted def updateTableRow(self, row): """ Changes the content of the row with the input Args: row (int): A new table index Returns: None """ self._tableRow = row def getTableRow(self): """ Returns the current table index of the record Args: None Returns: int: Table index """ return self._tableRow class CampaignEntry: """ The schema for the row of campaigns table """ def __init__( self, index, rowIndex, name, Membership="0", MembershipB="0", Result="Running", Stats="Campaing is still running..."): self._index = index self._name = name self._Membership = Membership self._MembershipB = MembershipB self._Result = Result self._Stats = Stats self._deleted = False self._tableRow = rowIndex self.thread = None self._inputlist = None return def isDeleted(self): """ Returns a boolean value indicating if record is deleted. Args: None Returns: Bool: Valude """ return self._deleted def updateTableRow(self, row): """ Changes the content of the row with the input Args: row (int): A new table index Returns: None """ self._tableRow = row def getTableRow(self): """ Returns the current table index of the record Args: None Returns: int: Table index """ return self._tableRow
src/betamax/serializers/base.py
santosh653/betamax
226
12712464
<gh_stars>100-1000 # -*- coding: utf-8 -*- NOT_IMPLEMENTED_ERROR_MSG = ('This method must be implemented by classes' ' inheriting from BaseSerializer.') class BaseSerializer(object): """ Base Serializer class that provides an interface for other serializers. Usage: .. code-block:: python from betamax import Betamax, BaseSerializer class MySerializer(BaseSerializer): name = 'my' @staticmethod def generate_cassette_name(cassette_library_dir, cassette_name): # Generate a string that will give the relative path of a # cassette def serialize(self, cassette_data): # Take a dictionary and convert it to whatever def deserialize(self, cassette_data): # Uses a cassette file to return a dictionary with the # cassette information Betamax.register_serializer(MySerializer) The last line is absolutely necessary. """ name = None stored_as_binary = False @staticmethod def generate_cassette_name(cassette_library_dir, cassette_name): raise NotImplementedError(NOT_IMPLEMENTED_ERROR_MSG) def __init__(self): if not self.name: raise ValueError("Serializer's name attribute must be a string" " value, not None.") self.on_init() def on_init(self): """Method to implement if you wish something to happen in ``__init__``. The return value is not checked and this is called at the end of ``__init__``. It is meant to provide the matcher author a way to perform things during initialization of the instance that would otherwise require them to override ``BaseSerializer.__init__``. """ return None def serialize(self, cassette_data): """A method that must be implemented by the Serializer author. :param dict cassette_data: A dictionary with two keys: ``http_interactions``, ``recorded_with``. :returns: Serialized data as a string. """ raise NotImplementedError(NOT_IMPLEMENTED_ERROR_MSG) def deserialize(self, cassette_data): """A method that must be implemented by the Serializer author. The return value is extremely important. If it is not empty, the dictionary returned must have the following structure:: { 'http_interactions': [{ # Interaction }, { # Interaction }], 'recorded_with': 'name of recorder' } :params str cassette_data: The data serialized as a string which needs to be deserialized. :returns: dictionary """ raise NotImplementedError(NOT_IMPLEMENTED_ERROR_MSG)
google/cloud/aiplatform/training_utils/cloud_profiler/initializer.py
sakagarwal/python-aiplatform
180
12712487
# -*- coding: utf-8 -*- # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging import threading from typing import Optional, Type from google.cloud.aiplatform.training_utils.cloud_profiler import cloud_profiler_utils try: from werkzeug import serving except ImportError as err: raise ImportError(cloud_profiler_utils.import_error_msg) from err from google.cloud.aiplatform.training_utils import environment_variables from google.cloud.aiplatform.training_utils.cloud_profiler import webserver from google.cloud.aiplatform.training_utils.cloud_profiler.plugins import base_plugin from google.cloud.aiplatform.training_utils.cloud_profiler.plugins.tensorflow import ( tf_profiler, ) # Mapping of available plugins to use _AVAILABLE_PLUGINS = {"tensorflow": tf_profiler.TFProfiler} class MissingEnvironmentVariableException(Exception): pass def _build_plugin( plugin: Type[base_plugin.BasePlugin], ) -> Optional[base_plugin.BasePlugin]: """Builds the plugin given the object. Args: plugin (Type[base_plugin]): Required. An uninitialized plugin class. Returns: An initialized plugin, or None if plugin cannot be initialized. """ if not plugin.can_initialize(): logging.warning("Cannot initialize the plugin") return plugin.setup() if not plugin.post_setup_check(): return return plugin() def _run_app_thread(server: webserver.WebServer, port: int): """Run the webserver in a separate thread. Args: server (webserver.WebServer): Required. A webserver to accept requests. port (int): Required. The port to run the webserver on. """ daemon = threading.Thread( name="profile_server", target=serving.run_simple, args=("0.0.0.0", port, server,), ) daemon.setDaemon(True) daemon.start() def initialize(plugin: str = "tensorflow"): """Initializes the profiling SDK. Args: plugin (str): Required. Name of the plugin to initialize. Current options are ["tensorflow"] Raises: ValueError: The plugin does not exist. MissingEnvironmentVariableException: An environment variable that is needed is not set. """ plugin_obj = _AVAILABLE_PLUGINS.get(plugin) if not plugin_obj: raise ValueError( "Plugin {} not available, must choose from {}".format( plugin, _AVAILABLE_PLUGINS.keys() ) ) prof_plugin = _build_plugin(plugin_obj) if prof_plugin is None: return server = webserver.WebServer([prof_plugin]) if not environment_variables.http_handler_port: raise MissingEnvironmentVariableException( "'AIP_HTTP_HANDLER_PORT' must be set." ) port = int(environment_variables.http_handler_port) _run_app_thread(server, port)
astroNN/models/misc_models.py
igomezv/astroNN
156
12712505
<reponame>igomezv/astroNN # ---------------------------------------------------------# # astroNN.models.misc_models: Contain Misc. Models # ---------------------------------------------------------# import tensorflow.keras as tfk from astroNN.models.base_bayesian_cnn import BayesianCNNBase from astroNN.models.base_cnn import CNNBase from astroNN.nn.layers import MCDropout, PolyFit from astroNN.nn.losses import bayesian_binary_crossentropy_wrapper, bayesian_binary_crossentropy_var_wrapper from astroNN.nn.losses import bayesian_categorical_crossentropy_wrapper, bayesian_categorical_crossentropy_var_wrapper regularizers = tfk.regularizers Dense = tfk.layers.Dense Input = tfk.layers.Input Conv2D = tfk.layers.Conv2D Dropout = tfk.layers.Dropout Flatten = tfk.layers.Flatten Activation = tfk.layers.Activation concatenate = tfk.layers.concatenate MaxPooling2D = tfk.layers.MaxPooling2D Model = tfk.models.Model MaxNorm = tfk.constraints.MaxNorm class Cifar10CNN(CNNBase): """ NAME: Cifar10CNN PURPOSE: To create Convolutional Neural Network model for Cifar10 for the purpose of demo HISTORY: 2018-Jan-11 - Written - <NAME> (University of Toronto) """ def __init__(self, lr=0.005): """ NAME: model PURPOSE: To create Convolutional Neural Network model INPUT: OUTPUT: HISTORY: 2018-Jan-11 - Written - <NAME> (University of Toronto) """ super().__init__() self._implementation_version = '1.0' self.initializer = 'he_normal' self.activation = 'relu' self.num_filters = [8, 16] self.filter_len = (3, 3) self.pool_length = (4, 4) self.num_hidden = [256, 128] self.max_epochs = 30 self.lr = lr self.reduce_lr_epsilon = 0.00005 self.reduce_lr_min = 1e-8 self.reduce_lr_patience = 1 self.l2 = 1e-4 self.dropout_rate = 0.1 self.task = 'classification' self.targetname = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] self.input_norm_mode = 255 self.labels_norm_mode = 0 def model(self): input_tensor = Input(shape=self._input_shape['input'], name='input') cnn_layer_1 = Conv2D(kernel_initializer=self.initializer, padding="same", filters=self.num_filters[0], kernel_size=self.filter_len, kernel_regularizer=regularizers.l2(self.l2))(input_tensor) activation_1 = Activation(activation=self.activation)(cnn_layer_1) cnn_layer_2 = Conv2D(kernel_initializer=self.initializer, padding="same", filters=self.num_filters[1], kernel_size=self.filter_len, kernel_regularizer=regularizers.l2(self.l2))(activation_1) activation_2 = Activation(activation=self.activation)(cnn_layer_2) maxpool_1 = MaxPooling2D(pool_size=self.pool_length)(activation_2) flattener = Flatten()(maxpool_1) dropout_1 = Dropout(self.dropout_rate)(flattener) layer_3 = Dense(units=self.num_hidden[0], kernel_regularizer=regularizers.l2(self.l2), kernel_initializer=self.initializer)(dropout_1) activation_3 = Activation(activation=self.activation)(layer_3) dropout_2 = Dropout(self.dropout_rate)(activation_3) layer_4 = Dense(units=self.num_hidden[1], kernel_regularizer=regularizers.l2(self.l2), kernel_initializer=self.initializer, kernel_constraint=MaxNorm(2))(dropout_2) activation_4 = Activation(activation=self.activation)(layer_4) layer_5 = Dense(units=self._labels_shape['output'])(activation_4) output = Activation(activation=self._last_layer_activation, name='output')(layer_5) model = Model(inputs=input_tensor, outputs=output) return model # noinspection PyCallingNonCallable class MNIST_BCNN(BayesianCNNBase): """ NAME: MNIST_BCNN PURPOSE: To create Convolutional Neural Network model for Cifar10 for the purpose of demo HISTORY: 2018-Jan-11 - Written - <NAME> (University of Toronto) """ def __init__(self, lr=0.005): """ NAME: model PURPOSE: To create Convolutional Neural Network model INPUT: OUTPUT: HISTORY: 2018-Jan-11 - Written - <NAME> (University of Toronto) """ super().__init__() self._implementation_version = '1.0' self.initializer = 'he_normal' self.activation = 'relu' self.num_filters = [8, 16] self.filter_len = (3, 3) self.pool_length = (4, 4) self.num_hidden = [256, 128] self.max_epochs = 30 self.lr = lr self.reduce_lr_epsilon = 0.00005 self.reduce_lr_min = 1e-8 self.reduce_lr_patience = 1 self.l2 = 1e-4 self.dropout_rate = 0.1 self.task = 'classification' self.targetname = ['Zero', 'One', 'Two', 'Three', 'Four', 'Five', 'Six', 'Seven', 'Eight', 'Nine'] self.input_norm_mode = 255 self.labels_norm_mode = 0 def model(self): input_tensor = Input(shape=self._input_shape['input'], name='input') cnn_layer_1 = Conv2D(kernel_initializer=self.initializer, padding="same", filters=self.num_filters[0], kernel_size=self.filter_len, kernel_regularizer=regularizers.l2(self.l2))(input_tensor) activation_1 = Activation(activation=self.activation)(cnn_layer_1) dropout_1 = MCDropout(self.dropout_rate, disable=self.disable_dropout)(activation_1) cnn_layer_2 = Conv2D(kernel_initializer=self.initializer, padding="same", filters=self.num_filters[1], kernel_size=self.filter_len, kernel_regularizer=regularizers.l2(self.l2))(dropout_1) activation_2 = Activation(activation=self.activation)(cnn_layer_2) dropout_2 = MCDropout(self.dropout_rate, disable=self.disable_dropout)(activation_2) maxpool_1 = MaxPooling2D(pool_size=self.pool_length)(dropout_2) flattener = Flatten()(maxpool_1) layer_3 = Dense(units=self.num_hidden[0], kernel_regularizer=regularizers.l2(self.l2), kernel_initializer=self.initializer)(flattener) activation_3 = Activation(activation=self.activation)(layer_3) dropout_4 = MCDropout(self.dropout_rate, disable=self.disable_dropout)(activation_3) layer_4 = Dense(units=self.num_hidden[1], kernel_regularizer=regularizers.l2(self.l2), kernel_initializer=self.initializer, kernel_constraint=MaxNorm(2))(dropout_4) activation_4 = Activation(activation=self.activation)(layer_4) output = Dense(units=self._labels_shape['output'], activation='linear', name='output')(activation_4) output_activated = Activation(self._last_layer_activation)(output) variance_output = Dense(units=self._labels_shape['output'], activation='softplus', name='variance_output')(activation_4) model = Model(inputs=[input_tensor], outputs=[output, variance_output]) # new astroNN high performance dropout variational inference on GPU expects single output model_prediction = Model(inputs=[input_tensor], outputs=concatenate([output_activated, variance_output])) if self.task == 'classification': output_loss = bayesian_categorical_crossentropy_wrapper(variance_output) variance_loss = bayesian_categorical_crossentropy_var_wrapper(output) elif self.task == 'binary_classification': output_loss = bayesian_binary_crossentropy_wrapper(variance_output) variance_loss = bayesian_binary_crossentropy_var_wrapper(output) else: raise RuntimeError('Only "regression", "classification" and "binary_classification" are supported') return model, model_prediction, output_loss, variance_loss # noinspection PyCallingNonCallable class SimplePolyNN(CNNBase): """ Class for Neural Network for Gaia Polynomial fitting :History: 2018-Jul-23 - Written - <NAME> (University of Toronto) """ def __init__(self, lr=0.005, init_w=None, use_xbias=False): super().__init__() self._implementation_version = '1.0' self.max_epochs = 40 self.lr = lr self.reduce_lr_epsilon = 0.00005 self.num_hidden = 3 # equals degree of polynomial to fit self.reduce_lr_min = 1e-8 self.reduce_lr_patience = 2 self.input_norm_mode = 0 self.labels_norm_mode = 0 self.init_w = init_w self.use_xbias = use_xbias self.task = 'regression' self.targetname = ['unbiased_parallax'] def model(self): input_tensor = Input(shape=self._input_shape, name='input') flattener = Flatten()(input_tensor) output = PolyFit(deg=self.num_hidden, output_units=self._labels_shape, use_xbias=self.use_xbias, name='output', init_w=self.init_w, kernel_regularizer=regularizers.l2(self.l2))(flattener) model = Model(inputs=input_tensor, outputs=output) return model
exercises/concept/restaurant-rozalynn/.meta/exemplar.py
tamireinhorn/python
1,177
12712510
def new_seating_chart(size=22): """Create a new seating chart. :param size: int - number if seats in the seating chart. :return: dict - with number of seats specified, and placeholder values. """ return {number: None for number in range(1, size + 1)} def arrange_reservations(guests=None): """Assign guests to seats. :param guest_list: list - list of guest names for reservations. :return: dict - Default sized dictionary with guests assigned seats, and placeholders for empty seats. """ seats = new_seating_chart() if guests: for seat_number in range(1, len(guests)): seats[seat_number] = guests[seat_number] return seats def find_all_available_seats(seats): """Find and return seat numbers that are unassigned. :param seats: dict - seating chart. :return: list - list of seat numbers available for reserving.. """ available = [] for seat_num, value in seats.items(): if value is None: available.append(seat_num) return available def current_empty_seat_capacity(seats): """Find the number of seats that are currently empty. :param seats: dict - dictionary of reserved seats. :return: int - number of seats empty. """ count = 0 for value in seats.values(): if value is None: count += 1 return count def accommodate_waiting_guests(seats, guests): """Asses if guest can be accommodated. Update seating if they can be. :param seats: dict - seating chart dictionary. :param guests: list - walk-in guests :return: dict - updated seating chart with available spaces filled. """ curr_empty_seats = current_empty_seat_capacity(seats) empty_seat_list = find_all_available_seats(seats) if len(guests) <= curr_empty_seats: for index, _ in enumerate(guests): seats[empty_seat_list[index]] = guests[index] return seats def empty_seats(seats, seat_numbers): """Empty listed seats of their previous reservations. :param seats: dict - seating chart dictionary. :param seat_numbers: list - list of seat numbers to free up or empty. :return: updated seating chart dictionary. """ for seat in seat_numbers: seats[seat] = None return seats
pyod/__init__.py
GBR-613/pyod
5,126
12712536
<gh_stars>1000+ # -*- coding: utf-8 -*- from . import models from . import utils # TODO: add version information here __all__ = ['models', 'utils']
unfurl/parsers/parse_hash.py
jakuta-tech/unfurl
449
12712575
<reponame>jakuta-tech/unfurl # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import requests from unfurl import utils hash_edge = { 'color': { 'color': '#4A93AE' }, 'title': 'Hash Identification Functions', 'label': '#' } hash_lookup_edge = { 'color': { 'color': '#4A93AE' }, 'title': 'Hash Lookup Functions', 'label': '#' } def nitrxgen_md5_lookup(value): response = requests.get(f'https://www.nitrxgen.net/md5db/{value}', verify=False).text if response: return response else: return False def virustotal_lookup(unfurl, hash_value): response = requests.get(f'https://www.virustotal.com/api/v3/files/{hash_value}', headers={'x-apikey': unfurl.api_keys.get('virustotal')}) if response.status_code == 200: try: result = response.json() return result['data']['attributes'] except: return False def decode_cisco_type_7(encoded_text): cisco_constant = b"dsfd;kfoA,.iyewrkldJKDHSUBsgvca69834ncxv9873254k;fg87" try: salt = int(encoded_text[0:2]) except ValueError: # Valid salts should be ints; if not, move on. return try: encoded = bytearray.fromhex(encoded_text[2:]) except ValueError: # Not valid Type 7 encoded then; exit return plaintext = '' for i in range(0, len(encoded)): j = (i + salt) % 53 p = encoded[i] ^ cisco_constant[j] plaintext += chr(p) # If the result isn't readable as ASCII, call it a false positive and move on without adding a node. try: _ = plaintext.encode('ascii', errors='strict') except UnicodeEncodeError: return return plaintext def run(unfurl, node): if node.data_type.startswith('uuid'): return if node.data_type.startswith('hash'): if node.data_type == 'hash.md5' and unfurl.remote_lookups: hash_plaintext = nitrxgen_md5_lookup(node.value) if hash_plaintext: unfurl.add_to_queue( data_type=f'text', key='Plaintext', value=hash_plaintext, hover='Queried Nitrxgen database of MD5 hashes and found a matching plaintext value', parent_id=node.node_id, incoming_edge_config=hash_lookup_edge) if node.data_type in ('hash.md5', 'hash.sha-1', 'hash.sha-256') and unfurl.remote_lookups: vt_results = virustotal_lookup(unfurl, node.value) if vt_results: label_text = 'Hash found on VirusTotal' if vt_results.get("type_description"): label_text += f'\nFile Type: {vt_results.get("type_description")};' if vt_results.get("meaningful_name"): label_text += f'\nName: {vt_results.get("meaningful_name")};' if vt_results.get("reputation"): label_text += f'\nReputation: {vt_results.get("reputation")};' unfurl.add_to_queue( data_type=f'text', key='Hash found on VirusTotal', value=None, label=label_text, hover='Queried VirusTotal with the hash value and found a match.', parent_id=node.node_id, incoming_edge_config=hash_lookup_edge) else: if not isinstance(node.value, str): return # Filter for values that are only hex chars (A-F,0-9) and contains both a letter and number. # This could conceivably filter out valid hashes, but will filter out many more invalid values. if not (utils.hex_re.fullmatch(node.value) and utils.digits_re.search(node.value) and utils.letters_re.search(node.value)): return # Cisco "Type 7" password encoding is very flexible, so detecting it is very false positive prone # as it isn't a fixed length. However, decoding it is easy, so Unfurl will only "detect" something as # using this encoding type if it can also decode it (as a method of verifying it). # Ref: https://passlib.readthedocs.io/en/stable/lib/passlib.hash.cisco_type7.html cisco_type_7_m = utils.cisco_7_re.fullmatch(node.value) if cisco_type_7_m: cisco_type_7_plaintext = decode_cisco_type_7(node.value) if cisco_type_7_plaintext: unfurl.add_to_queue( data_type=f'text', key=f'Cisco "Type 7" encoding', value=cisco_type_7_plaintext, label=f'Cisco "Type 7" encoding; plaintext is "{cisco_type_7_plaintext}"', hover='Cisco "Type 7" password encoding is based<br> on XOR and is easily reversible ' '[<a hre="https://passlib.readthedocs.io/en/stable/lib/passlib.hash.cisco_type7.html">' 'ref</a>].', parent_id=node.node_id, incoming_edge_config=hash_edge) return if len(node.value) == 32 and node.value[12] == '4': # UUIDv4 is very common and it's the same length as an MD5 hash. This might filter out some legitimate # MD5 hashes, but it will filter out many more UUIDs. I think the tradeoff is worth it for Unfurl. return hash_name, hash_hover, new_node_value = None, None, None if len(node.value) == 32: hash_name = 'MD5' hash_hover = f'This is potentially a <b>{hash_name}</b> hash <br>(based on length and character set).' if len(node.value) == 40: hash_name = 'SHA-1' hash_hover = f'This is potentially a <b>{hash_name}</b> hash <br>(based on length and character set).' if len(node.value) == 64: hash_name = 'SHA-256' hash_hover = f'This is potentially a <b>{hash_name}</b> hash <br>(based on length and character set).' if len(node.value) == 128: hash_name = 'SHA-512' hash_hover = f'This is potentially a <b>{hash_name}</b> hash <br>(based on length and character set).' if hash_name in ('MD5', 'SHA-1', 'SHA-256'): # Pass through the values of three common file hashes for further analysis; don't send on the # other types to avoid duplicate processing. new_node_value = node.value if hash_name: unfurl.add_to_queue( data_type=f'hash.{hash_name.lower()}', key=f'{hash_name} Hash', value=new_node_value, label=f'Potential {hash_name} hash', hover=hash_hover, parent_id=node.node_id, incoming_edge_config=hash_edge)
tests/testUtils.py
pir2/python-omniture
105
12712615
import datetime import unittest import omniture class UtilsTest(unittest.TestCase): def setUp(self): fakelist = [{"id":"123", "title":"abc"},{"id":"456","title":"abc"}] self.alist = omniture.Value.list("segemnts",fakelist,{}) def tearDown(self): del self.alist def test_addressable_list_repr_html_(self): """Test the _repr_html_ for AddressableList this is used in ipython """ outlist = '<table><tr><td><b>ID</b></td><td><b>Title</b></td></tr><tr><td><b>123</b></td><td>abc</td></tr><tr><td><b>456</b></td><td>abc</td></tr></table>' self.assertEqual(self.alist._repr_html_(),outlist,\ "The _repr_html_ isn't working: {}"\ .format(self.alist._repr_html_())) def test_addressable_list_str_(self): """Test _str_ method """ outstring = 'ID 123 | Name: abc \nID 456 | Name: abc \n' self.assertEqual(self.alist.__str__(),outstring,\ "The __str__ isn't working: {}"\ .format(self.alist.__str__())) def test_addressable_list_get_time(self): """ Test the custom get item raises a problem when there are duplicate names """ with self.assertRaises(KeyError): self.alist['abc'] def test_wrap(self): """Test the wrap method """ self.assertIsInstance(omniture.utils.wrap("test"),list) self.assertIsInstance(omniture.utils.wrap(["test"]),list) self.assertEqual(omniture.utils.wrap("test"),["test"]) self.assertEqual(omniture.utils.wrap(["test"]),["test"]) def test_date(self): """Test the Date Method""" test_date = "2016-09-01" self.assertEqual(omniture.utils.date(None), None) self.assertEqual(omniture.utils.date(test_date).strftime("%Y-%m-%d"), test_date) d = datetime.date(2016,9,1) self.assertEqual(omniture.utils.date(d).strftime("%Y-%m-%d"), test_date) t = datetime.datetime(2016,9,1) self.assertEqual(omniture.utils.date(t).strftime("%Y-%m-%d"), test_date) self.assertEqual(omniture.utils.date(u"2016-09-01").strftime("%Y-%m-%d"), test_date) with self.assertRaises(ValueError): omniture.utils.date({}) def test_affix(self): """Test the Affix method to make sure it handles things correctly""" p = "pre" s = "suf" v = "val" con = "+" self.assertEqual(omniture.utils.affix(p,v,connector=con), con.join([p,v])) self.assertEqual(omniture.utils.affix(base=v,suffix=s,connector=con), con.join([v,s])) self.assertEqual(omniture.utils.affix(p,v,s,connector=con), con.join([p,v,s])) self.assertEqual(omniture.utils.affix(base=v,connector=con), con.join([v])) def test_translate(self): """Test the translate method """ t = {"product":"cat_collar", "price":100, "location":"no where"} m = {"product":"Product_Name","price":"Cost","date":"Date"} s = {"Product_Name":"cat_collar", "Cost":100, "location":"no where"} self.assertEqual(omniture.utils.translate(t,m),s)
tests/http_schemas/test_base_schema.py
NickMitin/pyhttptest
142
12712616
import pytest from jsonschema import validate from jsonschema.exceptions import ValidationError from pyhttptest.http_schemas.base_schema import base_schema def test_schema_with_valid_data(): data = { 'name': 'Test', 'verb': 'GET', 'endpoint': 'users', 'host': 'http://test.com', } result = validate(instance=data, schema=base_schema) assert result is None def test_schema_with_invalid_data(): with pytest.raises(ValidationError) as exc: # Not including a required property 'endpoint' # from the schema into the ``dict`` below data = { 'name': 'Test', 'verb': 'GET', 'host': 'http://test.com', } validate(instance=data, schema=base_schema) assert 'required property' in str(exc.value)
backend/src/baserow/core/tasks.py
cjh0613/baserow
839
12712646
from .trash.tasks import ( permanently_delete_marked_trash, mark_old_trash_for_permanent_deletion, setup_period_trash_tasks, ) __all__ = [ "permanently_delete_marked_trash", "mark_old_trash_for_permanent_deletion", "setup_period_trash_tasks", ]
tests/assets/projekt/projekt.py
Lufedi/reaper
106
12712647
def projekt(): # Single line comment print('RepoReapers')
torchtoolbox/data/__init__.py
deeplearningforfun/torch-tools
353
12712680
<reponame>deeplearningforfun/torch-tools<filename>torchtoolbox/data/__init__.py<gh_stars>100-1000 # -*- coding: utf-8 -*- # @Author : DevinYang(<EMAIL>) from .utils import * from .lmdb_dataset import * from .datasets import * from .dataprefetcher import DataPreFetcher from .dynamic_data_provider import * from .sampler import *
assistive_gym/envs/agents/pr2.py
chstetco/assistive-gym
216
12712695
<gh_stars>100-1000 import os import numpy as np import pybullet as p from .robot import Robot class PR2(Robot): def __init__(self, controllable_joints='right'): right_arm_joint_indices = [42, 43, 44, 46, 47, 49, 50] # Controllable arm joints left_arm_joint_indices = [64, 65, 66, 68, 69, 71, 72] # Controllable arm joints wheel_joint_indices = [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] # Controllable wheel joints right_end_effector = 54 # Used to get the pose of the end effector left_end_effector = 76 # Used to get the pose of the end effector right_gripper_indices = [57, 58, 59, 60] # Gripper actuated joints left_gripper_indices = [79, 80, 81, 82] # Gripper actuated joints right_tool_joint = 54 # Joint that tools are attached to left_tool_joint = 76 # Joint that tools are attached to right_gripper_collision_indices = list(range(49, 64)) # Used to disable collision between gripper and tools left_gripper_collision_indices = list(range(71, 86)) # Used to disable collision between gripper and tools gripper_pos = {'scratch_itch': [0.25]*4, # Gripper open position for holding tools 'feeding': [0.03]*4, 'drinking': [0.45]*4, 'bed_bathing': [0.2]*4, 'dressing': [0]*4, 'arm_manipulation': [0.15]*4} tool_pos_offset = {'scratch_itch': [0, 0, 0], # Position offset between tool and robot tool joint 'feeding': [0, -0.03, -0.11], 'drinking': [-0.01, 0, -0.05], 'bed_bathing': [0, 0, 0], 'arm_manipulation': [0.125, 0, -0.075]} tool_orient_offset = {'scratch_itch': [0, 0, 0], # RPY orientation offset between tool and robot tool joint 'feeding': [-0.2, 0, 0], 'drinking': [np.pi/2.0, 0, 0], 'bed_bathing': [0, 0, 0], 'arm_manipulation': [np.pi/2.0, 0, 0]} toc_base_pos_offset = {'scratch_itch': [0.1, 0, 0], # Robot base offset before TOC base pose optimization 'feeding': [0.1, 0.2, 0], 'drinking': [0.2, 0.2, 0], 'bed_bathing': [-0.1, 0, 0], 'dressing': [1.7, 0.7, 0], 'arm_manipulation': [-0.3, 0.7, 0]} toc_ee_orient_rpy = {'scratch_itch': [0, 0, 0], # Initial end effector orientation 'feeding': [np.pi/2.0, 0, 0], 'drinking': [0, 0, 0], 'bed_bathing': [0, 0, 0], 'dressing': [[0, 0, np.pi], [0, 0, np.pi*3/2.0]], 'arm_manipulation': [0, 0, 0]} wheelchair_mounted = False super(PR2, self).__init__(controllable_joints, right_arm_joint_indices, left_arm_joint_indices, wheel_joint_indices, right_end_effector, left_end_effector, right_gripper_indices, left_gripper_indices, gripper_pos, right_tool_joint, left_tool_joint, tool_pos_offset, tool_orient_offset, right_gripper_collision_indices, left_gripper_collision_indices, toc_base_pos_offset, toc_ee_orient_rpy, wheelchair_mounted, half_range=False) def init(self, directory, id, np_random, fixed_base=True): self.body = p.loadURDF(os.path.join(directory, 'PR2', 'pr2_no_torso_lift_tall.urdf'), useFixedBase=fixed_base, basePosition=[-1, -1, 0], flags=p.URDF_USE_INERTIA_FROM_FILE, physicsClientId=id) super(PR2, self).init(self.body, id, np_random) # Recolor robot for i in [19, 42, 64]: p.changeVisualShape(self.body, i, rgbaColor=[1.0, 1.0, 1.0, 1.0], physicsClientId=id) for i in [43, 46, 49, 58, 60, 65, 68, 71, 80, 82]: p.changeVisualShape(self.body, i, rgbaColor=[0.4, 0.4, 0.4, 1.0], physicsClientId=id) for i in [45, 51, 67, 73]: p.changeVisualShape(self.body, i, rgbaColor=[0.7, 0.7, 0.7, 1.0], physicsClientId=id) p.changeVisualShape(self.body, 20, rgbaColor=[0.8, 0.8, 0.8, 1.0], physicsClientId=id) p.changeVisualShape(self.body, 40, rgbaColor=[0.6, 0.6, 0.6, 1.0], physicsClientId=id) def reset_joints(self): super(PR2, self).reset_joints() # Position end effectors whith dual arm robots self.set_joint_angles(self.right_arm_joint_indices, [-1.75, 1.25, -1.5, -0.5, -1, 0, -1]) self.set_joint_angles(self.left_arm_joint_indices, [1.75, 1.25, 1.5, -0.5, 1, 0, 1])
cacreader/swig-4.0.2/Examples/test-suite/python/director_default_runme.py
kyletanyag/LL-Smartcard
1,031
12712775
<gh_stars>1000+ from director_default import * f = Foo() f = Foo(1) f = Bar() f = Bar(1)
gobbli/test/test_util.py
RTIInternational/gobbli
276
12712829
<filename>gobbli/test/test_util.py import gzip import io import tarfile import zipfile from pathlib import Path from typing import List import pytest from gobbli.util import ( TokenizeMethod, blob_to_dir, detokenize, dir_to_blob, extract_archive, is_archive, shuffle_together, tokenize, ) def make_zip(tmpdir: Path, relative_paths: List[Path]) -> Path: """ Make a zip archive from a list of relative paths. Create empty files at each path and add them to the archive. """ zip_path = tmpdir / "test.zip" with zipfile.ZipFile(zip_path, "w") as z: for relative_path in relative_paths: full_path = tmpdir / relative_path full_path.parent.mkdir(exist_ok=True, parents=True) full_path.touch() z.write(full_path, arcname=relative_path) return zip_path def make_tar_gz(tmpdir: Path, relative_paths: List[Path]) -> Path: """ Make a .tar.gz archive from a list of relative paths. Create empty files at each path and add them to the archive. """ tar_path = tmpdir / "test.tar.gz" with tarfile.open(tar_path, "w:gz") as z: for relative_path in relative_paths: full_path = tmpdir / relative_path full_path.parent.mkdir(exist_ok=True, parents=True) full_path.touch() z.add(str(full_path), arcname=str(relative_path), recursive=False) return tar_path def make_gz(tmpdir: Path, name: str) -> Path: """ Create a gzip-compressed file with the given name under the given temp directory. Return the path to the compressed file. """ gzip_path = tmpdir / f"{name}.gz" with gzip.open(gzip_path, "wb") as z: z.write(b"Test") return gzip_path TEST_ARCHIVE_DATA = ["./a", "./b/c"] @pytest.mark.parametrize( "archive_func,junk,expected_paths", [ (make_zip, False, [Path("a"), Path("b") / "c"]), (make_zip, True, [Path("a"), Path("c")]), (make_tar_gz, False, [Path("a"), Path("b") / "c"]), (make_tar_gz, True, [Path("a"), Path("c")]), ], ) def test_extract_archive(tmpdir, archive_func, junk, expected_paths): tmpdir_path = Path(tmpdir) archive_path = archive_func(tmpdir_path, TEST_ARCHIVE_DATA) archive_extract_dir = tmpdir_path / "extract" extract_archive(archive_path, archive_extract_dir, junk_paths=junk) for relative_path in expected_paths: assert (archive_extract_dir / relative_path).exists() def test_extract_gz(tmpdir): tmpdir_path = Path(tmpdir) filename = "test.txt" archive_path = make_gz(tmpdir_path, "test.txt") archive_extract_dir = tmpdir_path / "extract" extract_archive(archive_path, archive_extract_dir) assert (archive_extract_dir / filename).exists() @pytest.mark.parametrize( "name,expected_is_archive", [ ("test.tar.gz", True), ("test.gz", True), ("test.txt.gz", True), ("test.zip", True), ("test.xz", False), ("test.txt", False), ("test.vec", False), ("test.bin", False), ], ) def test_is_archive(name, expected_is_archive): assert is_archive(Path(name)) == expected_is_archive def test_dir_to_blob(tmpdir): test_dir = Path(tmpdir) / "test" test_dir.mkdir() test_file_name = "test.txt" test_file = test_dir / test_file_name file_contents = "test" test_file.write_text(file_contents) blob = dir_to_blob(test_dir) fileobj = io.BytesIO(blob) fileobj.seek(0) extract_path = test_dir / "test2" with tarfile.open(fileobj=fileobj, mode="r:gz") as archive: archive.extractall(extract_path) extracted_file = extract_path / test_file_name assert extracted_file.exists() assert extracted_file.read_text() == file_contents def test_blob_to_dir(tmpdir): test_dir = Path(tmpdir) / "test" test_dir.mkdir() test_file_name = "test.txt" test_file = test_dir / test_file_name file_contents = "test" test_file.write_text(file_contents) blob = dir_to_blob(test_dir) extract_path = test_dir / "test2" blob_to_dir(blob, extract_path) extracted_file = extract_path / test_file_name assert extracted_file.exists() assert extracted_file.read_text() == file_contents @pytest.mark.parametrize( "l1,l2,err", [ ([], [], None), (["a"], [1], None), (["a", "b"], [1], ValueError), (["a", "b"], [1, 2], None), (["a", "b", "c"], [1, 2, 3], None), (["a", "b", "c", "d"], [1, 2, 3, 4], None), ], ) def test_shuffle_together(l1, l2, err): seed = 1 if err is not None: with pytest.raises(err): shuffle_together(l1, l2, seed=seed) else: original_rows = set(zip(l1, l2)) shuffle_together(l1, l2, seed=seed) for row in zip(l1, l2): assert tuple(row) in original_rows @pytest.mark.parametrize( "text,tokens", [ ("This is a test.", ["this", "is", "a", "test."]), ("Two spaces", ["two", "spaces"]), ("Hyphenated-word", ["hyphenated-word"]), ("Numbers 1 and 2", ["numbers", "1", "and", "2"]), ], ) def test_tokenize_split(text, tokens): # Whitespace tokenization just splits on whitespace assert tokenize(TokenizeMethod.SPLIT, [text]) == [tokens] @pytest.mark.parametrize( "text,tokens", [ ("This is a test.", ["this", "is", "a", "test"]), ("Two spaces", ["two", "spaces"]), ("Hyphenated-word", ["hyphenated", "word"]), ("Numbers 1 and 2", ["numbers", "and"]), ], ) def test_tokenize_spacy(text, tokens): # Spacy tokenization lowercases and removes non-alphabetic tokens assert tokenize(TokenizeMethod.SPACY, [text]) == [tokens] @pytest.mark.parametrize( "tokenize_method", [TokenizeMethod.SPLIT, TokenizeMethod.SPACY] ) @pytest.mark.parametrize( "tokens,text", [ (["this", "is", "a", "test"], "this is a test"), (["hyphenated-word"], "hyphenated-word"), (["try", ",", "punctuation", "."], "try , punctuation ."), ], ) def test_detokenize_split_spacy(text, tokens, tokenize_method): assert detokenize(tokenize_method, [tokens]) == [text] @pytest.mark.parametrize("model_path", [Path("spm"), None]) def test_tokenize_detokenize_sentencepiece(tmpdir, model_path): texts = ["a b c", "a ab c", "a b ac"] # Model should be trained if model_path is not None: model_path = Path(tmpdir) / model_path tokens = tokenize( TokenizeMethod.SENTENCEPIECE, texts, model_path=model_path, vocab_size=7 ) # Control sequence indicating whitespace _ = "▁" expected_tokens = [ [_, "a", _, "b", _, "c"], [_, "a", _, "a", "b", _, "c"], [_, "a", _, "b", _, "a", "c"], ] assert tokens == expected_tokens # Can't detokenize if we didn't give a persistent model path to the tokenize # function if model_path is not None: assert detokenize(TokenizeMethod.SENTENCEPIECE, tokens, model_path) == texts # Previously should be reused with the old vocab size, and a new model # shouldn't be trained tokens = tokenize(TokenizeMethod.SENTENCEPIECE, texts, model_path=model_path) assert tokens == expected_tokens
applications/pytorch/miniDALL-E/log.py
payoto/graphcore_examples
260
12712887
# Copyright (c) 2021 Graphcore Ltd. All rights reserved. import logging import sys from logging import handlers class Singleton(type): _instances = {} def __call__(cls, *args, **kwargs): if cls not in cls._instances: cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs) return cls._instances[cls] class Logger(metaclass=Singleton): # Predefined log level includes, from highest to lowest severity: # CRITICAL, ERROR, WARNING, INFO, DEBUG def __init__(self, filename=None, level='INFO', when='D', backCount=3, fmt='[%(asctime)s] %(message)s'): assert filename is not None self.filename = filename self.logger = logging.getLogger(filename) format_str = logging.Formatter(fmt) self.logger.setLevel(logging.getLevelName(level)) sh = logging.StreamHandler(sys.stdout) sh.setFormatter(format_str) th = handlers.TimedRotatingFileHandler(filename=filename, when=when, backupCount=backCount, encoding='utf-8') th.setFormatter(format_str) self.logger.addHandler(sh) self.logger.addHandler(th) if __name__ == '__main__': log = Logger('all.log', level='ERROR') log.logger.debug('debug') log.logger.info('info') log.logger.warning('warning') log.logger.error('error') log.logger.critical('critical')
up/tasks/det/plugins/condinst/models/postprocess/condinst_predictor.py
ModelTC/EOD
196
12712897
<reponame>ModelTC/EOD import torch from torch.nn import functional as F from up.utils.general.registry_factory import MASK_PREDICTOR_REGISTRY from up.utils.general.fp16_helper import to_float32 from up.tasks.det.plugins.condinst.models.head.condinst_head import aligned_bilinear @MASK_PREDICTOR_REGISTRY.register('condinst') class MaskPredictorCondinst(object): def __init__(self,): pass @torch.no_grad() @to_float32 def predict(self, mask_head, input, locations, controller, mask_gen_params): mask_feats = input['mask_feats'] image_info = input['image_info'] image = input['image'] bboxes = input['dt_bboxes'] mask_head_params, fpn_levels, instance_locations, im_inds, pred_boxes = self.get_pred_instances( input, controller, mask_gen_params) mask_logits = mask_head.mask_heads_forward_with_coords( mask_feats, locations, mask_head_params, fpn_levels, instance_locations, im_inds) pred_global_masks = mask_logits.sigmoid() dt_bboxes = [] dt_masks = [] for im_id, (image_size,) in enumerate(zip(image_info)): ind_per_im = torch.nonzero(im_inds == im_id)[:, 0] pred_masks, ind_per_im_keep = self.postprocess( image, ind_per_im, image_size, pred_boxes, pred_global_masks ) dt_bboxes.append(bboxes[ind_per_im_keep]) for idx in range(len(ind_per_im_keep)): dt_masks.append(pred_masks[idx].detach().cpu().numpy()) dt_bboxes = torch.cat(dt_bboxes, dim=0) return {'dt_masks': dt_masks, 'dt_bboxes': dt_bboxes} def get_pred_instances(self, input, controller, mask_gen_params): B = controller[0].shape[0] K = sum([x.shape[1] for x in controller]) bboxes = input['dt_bboxes'] pos_inds = input['pos_inds'] im_inds, cls_rois, scores, cls = torch.split(bboxes, [1, 4, 1, 1], dim=1) im_inds = im_inds.squeeze().type(torch.LongTensor).to(pos_inds.device) pos_inds = pos_inds.squeeze().add(im_inds * K).type(torch.LongTensor) mask_head_params = torch.cat(controller, dim=1).reshape(-1, mask_gen_params)[pos_inds] mlvl_locations = input['mlvl_locations'] instance_locations = torch.cat(mlvl_locations).repeat(B, 1)[pos_inds] fpn_levels = torch.cat([mlvl_locations[lvl_num].new_ones(len(mlvl_locations[lvl_num]), dtype=torch.long) * lvl_num for lvl_num in range(len(mlvl_locations))]) fpn_levels = fpn_levels.repeat(B)[pos_inds].type(torch.LongTensor) return mask_head_params, fpn_levels, instance_locations, im_inds, cls_rois def postprocess(self, image, ind_per_im, image_size, pred_boxes, pred_global_masks=None, mask_threshold=0.5): padded_im_h, padded_im_w = (image.shape[-2], image.shape[-1]) resized_im_h, resized_im_w = (image_size[0], image_size[1]) output_height, output_width = (image_size[3], image_size[4]) scale_x, scale_y = (output_width / resized_im_w, output_height / resized_im_h) output_boxes = pred_boxes[ind_per_im] output_boxes[:, 0::2] *= scale_x output_boxes[:, 1::2] *= scale_y output_boxes[:, 0] = torch.clamp(output_boxes[:, 0], min=0, max=output_width) output_boxes[:, 1] = torch.clamp(output_boxes[:, 1], min=0, max=output_height) output_boxes[:, 2] = torch.clamp(output_boxes[:, 2], min=0, max=output_width) output_boxes[:, 3] = torch.clamp(output_boxes[:, 3], min=0, max=output_height) keep_inds = ((output_boxes[:, 2] - output_boxes[:, 0]) > 0.0) & ((output_boxes[:, 3] - output_boxes[:, 1]) > 0.0) ind_per_im = ind_per_im[keep_inds] if pred_global_masks is not None: pred_global_masks = pred_global_masks[ind_per_im] mask_h, mask_w = pred_global_masks.size()[-2:] factor_h = padded_im_h // mask_h factor_w = padded_im_w // mask_w assert factor_h == factor_w factor = factor_h pred_global_masks = aligned_bilinear( pred_global_masks, factor ) pred_global_masks = pred_global_masks[:, :, :resized_im_h, :resized_im_w] pred_global_masks = F.interpolate( pred_global_masks, size=(output_height, output_width), mode="bilinear", align_corners=False ) pred_global_masks = pred_global_masks[:, 0, :, :] pred_masks = (pred_global_masks > mask_threshold).float() return pred_masks, ind_per_im def build_mask_predictor(predictor_cfg): return MASK_PREDICTOR_REGISTRY.build(predictor_cfg)
PyPtt/screens.py
Truth0906/PTTLibrary
260
12712898
import re import sys try: from . import lib_util from . import log except ModuleNotFoundError: import lib_util import log class Target(object): MainMenu = [ '離開,再見…', '人, 我是', '[呼叫器]', ] MainMenu_Exiting = [ '【主功能表】', '您確定要離開', ] QueryPost = [ '請按任意鍵繼續', '───────┘', ] InBoard = [ '看板資訊/設定', '文章選讀', '相關主題' ] InBoardWithCursor = [ '【', '看板資訊/設定', ] # (h)說明 (←/q)離開 # (y)回應(X%)推文(h)說明(←)離開 # (y)回應(X/%)推文 (←)離開 InPost = [ '瀏覽', '頁', ')離開' ] PostEnd = [ '瀏覽', '頁 (100%)', ')離開' ] InWaterBallList = [ '瀏覽', '頁', '說明', ] WaterBallListEnd = [ '瀏覽', '頁 (100%)', '說明' ] PostIP_New = [ '※ 發信站: 批踢踢實業坊(ptt.cc), 來自:' ] PostIP_Old = [ '◆ From:' ] Edit = [ '※ 編輯' ] PostURL = [ '※ 文章網址' ] Vote_Type1 = [ '◆ 投票名稱', '◆ 投票中止於', '◆ 票選題目描述' ] Vote_Type2 = [ '投票名稱', '◆ 預知投票紀事', ] AnyKey = '任意鍵' InTalk = [ '【聊天說話】', '線上使用者列表', '查詢網友', '顯示上幾次熱訊' ] InUserList = [ '休閒聊天', '聊天/寫信', '說明', ] InMailBox = [ '【郵件選單】', '鴻雁往返' ] InMailMenu = [ '【電子郵件】', '我的信箱', '把所有私人資料打包回去', '寄信給帳號站長', ] PostNoContent = [ '◆ 此文章無內容', AnyKey ] InBoardList = [ '【看板列表】', '選擇看板', '只列最愛', '已讀/未讀' ] UseTooManyResources = [ '程式耗用過多計算資源' ] Animation = [ '★ 這份文件是可播放的文字動畫,要開始播放嗎?' ] CursorToGoodbye = MainMenu.copy() def show(config, screen_queue, function_name=None): if config.log_level != log.level.TRACE: return if isinstance(screen_queue, list): for Screen in screen_queue: print('-' * 50) try: print( Screen.encode( sys.stdin.encoding, "replace").decode( sys.stdin.encoding)) except Exception: print(Screen.encode('utf-8', "replace").decode('utf-8')) else: print('-' * 50) try: print(screen_queue.encode( sys.stdin.encoding, "replace").decode( sys.stdin.encoding)) except Exception: print(screen_queue.encode('utf-8', "replace").decode('utf-8')) print('len:' + str(len(screen_queue))) if function_name is not None: print('錯誤在 ' + function_name + ' 函式發生') print('-' * 50) displayed = False def vt100(ori_screen: str, no_color: bool = True) -> str: result = ori_screen if no_color: result = re.sub('\x1B\[[\d+;]*m', '', result) result = re.sub(r'[\x1B]', '=PTT=', result) # global displayed # if not displayed: # display = ('★' in result) # if display: # displayed = True # else: # display = False # # if display: # print('=1=' * 10) # print(result) # print('=2=' * 10) # result = '\n'.join( # [x.rstrip() for x in result.split('\n')] # ) # 編輯文章時可能會有莫名的清空問題,需再注意 # if result.endswith('=PTT=[H'): # print('!!!!!!!!=PTT=[H=PTT=[H=PTT=!!!!!!!!!!!!!!!') while '=PTT=[H' in result: if result.count('=PTT=[H') == 1 and result.endswith('=PTT=[H'): break result = result[result.find('=PTT=[H') + len('=PTT=[H'):] while '=PTT=[2J' in result: result = result[result.find('=PTT=[2J') + len('=PTT=[2J'):] pattern_result = re.compile('=PTT=\[(\d+);(\d+)H$').search(result) last_position = None if pattern_result is not None: # print(f'Before [{pattern_result.group(0)}]') last_position = pattern_result.group(0) # 進入 PTT 時,有時候會連分類看版一起傳過來然後再用主功能表畫面直接繪製畫面 # 沒有[H 或者 [2J 導致後面的繪製行數錯誤 if '=PTT=[1;3H主功能表' in result: result = result[result.find('=PTT=[1;3H主功能表') + len('=PTT=[1;3H主功能表'):] # if '=PTT=[1;' in result: # if last_position is None: # result = result[result.rfind('=PTT=[1;'):] # elif not last_position.startswith('=PTT=[1;'): # result = result[result.rfind('=PTT=[1;'):] # print('-'*50) # print(result) result_list = re.findall('=PTT=\[(\d+);(\d+)H', result) for (line_count, space_count) in result_list: line_count = int(line_count) space_count = int(space_count) current_line = result[ :result.find( f'[{line_count};{space_count}H' )].count('\n') + 1 # if display: # print(f'>{line_count}={space_count}<') # print(f'>{current_line}<') if current_line > line_count: # if LastPosition is None: # pass # elif LastPosition != f'=PTT=[{line_count};{space_count}H': # print(f'current_line [{current_line}]') # print(f'line_count [{line_count}]') # print('Clear !!!') # print(f'!!!!!!!!=PTT=[{line_count};{space_count}H') result_lines = result.split('\n') target_line = result_lines[line_count - 1] if f'=PTT=[{line_count};{space_count}H=PTT=[K' in result: # 如果有 K 則把該行座標之後,全部抹除 target_line = target_line[:space_count - 1] # OriginIndex = -1 origin_line = None # for i, line in enumerate(result_lines): for line in result_lines: if f'=PTT=[{line_count};{space_count}H=PTT=[K' in line: # OriginIndex = i origin_line = line break if origin_line.count('=PTT=') > 2: origin_line = origin_line[ :lib_util.findnth(origin_line, '=PTT=', 3) ] # result_lines[OriginIndex] = result_lines[OriginIndex].replace( # origin_line, # '' # ) origin_line = origin_line[ len(f'=PTT=[{line_count};{space_count}H=PTT=[K'): ] # log.showValue( # log.level.INFO, # 'origin_line', # origin_line # ) new_target_line = f'{target_line}{origin_line}' result_lines[line_count - 1] = new_target_line result = '\n'.join(result_lines) elif current_line == line_count: # print(f'!!!!!=PTT=[{line_count};{space_count}H') current_space = result[ :result.find( f'=PTT=[{line_count};{space_count}H' )] current_space = current_space[ current_space.rfind('\n') + 1: ] # if display: # print(f'>>{current_space}<<') # print(f'ori length>>{len(current_space)}<<') # newversion_length = len(current_space.encode('big5uao', 'ignore')) # print(f'newversion_length >>{newversion_length}<<') # current_space = len(current_space.encode('big5', 'replace')) current_space = len(current_space) # if display: # print(f'!!!!!{current_space}') if current_space > space_count: # if display: # print('1') result = result.replace( f'=PTT=[{line_count};{space_count}H', (line_count - current_line) * '\n' + space_count * ' ' ) else: # if display: # print('2') result = result.replace( f'=PTT=[{line_count};{space_count}H', (line_count - current_line) * '\n' + (space_count - current_space) * ' ' ) else: result = result.replace( f'=PTT=[{line_count};{space_count}H', (line_count - current_line) * '\n' + space_count * ' ' ) # while '=PTT=[K' in result: # Target = result[result.find('=PTT=[K'):] # print(f'Target[{Target}]') # index1 = Target.find('\n') # index2 = Target.find('=PTT=') # if index2 == 0: # index = index1 # else: # index = min(index1, index2) # break # Target = Target[:index] # print('===' * 20) # print(result) # print('-=-' * 20) # print(Target) # print('===' * 20) # result = result.replace(Target, '') # print(Target) # print('===' * 20) if last_position is not None: result = result.replace(last_position, '') # if display: # print('-Final-' * 10) # print(result) # print('-Final-' * 10) return result
docs/generate.py
tenjupaul/pocketlang
1,323
12712902
<filename>docs/generate.py<gh_stars>1000+ #!python ## Copyright (c) 2021 <NAME> ## Licensed under: MIT License from markdown import markdown from os.path import join import os, sys, shutil, re ## TODO: This is a quick and dirty script to generate html ## from markdown. Refactor this file in the future. ## Usage: ## to generate pages : python generate.py ## to clean pages : python generate.py (-c, --clean) TEMPLATE_PATH = 'static/template.html' ROOT_URL = 'https://thakeenathees.github.io/pocketlang/' ## Home page should be in the SOURCE_DIR. HOME_PAGE = 'home.md' TRY_PAGE = 'try-it-now.html' SOURCE_DIR = 'pages/' TARGET_DIR = 'build/' STATIC_DIR = 'static/' ## Additional source files of wasm try online page. WASM_SOURCE_FILES = '''\ <script type="text/javascript" src="{{ STATIC_DIR }}codejar/codejar.js"></script> <script type="text/javascript" src="{{ STATIC_DIR }}codejar/linenumbers.js"></script> <link rel="stylesheet" type="text/css" href="{{ STATIC_DIR }}codejar/style.css" /> <script type="text/javascript" src="{{ STATIC_DIR }}prism/prism.js"></script> <link rel="stylesheet" type="text/css" href="{{ STATIC_DIR }}prism/prism.css" /> <script type="text/javascript" src="{{ STATIC_DIR }}try_now.js"></script> ''' ## Navigation pages in order. Should match the path names. ## Any file/folder name shouldn't contain white space. PAGES = [ ('Getting-Started', [ TRY_PAGE, 'learn-in-15-minutes.md', 'build-from-source.md', 'contributing.md', ]), ('Language-API', [ 'variables.md', 'functions.md', 'fibers.md', 'modules.md', ]), ] def new_context(): return { '{{ TITLE }}' : '', '{{ NAVIGATION }}' : '', '{{ CONTENT }}' : '', '{{ HOME_URL }}' : '', '{{ STATIC_DIR }}' : '', } def main(): ## Remove generated files and create empty target dir with static files. if os.path.exists(TARGET_DIR): remove_ignore = ( '.git', ) for _dir in os.listdir(TARGET_DIR): if _dir in remove_ignore: continue if os.path.isdir(join(TARGET_DIR,_dir)): shutil.rmtree(join(TARGET_DIR, _dir)) else: os.remove(join(TARGET_DIR, _dir)) shutil.copytree(STATIC_DIR, join(TARGET_DIR, STATIC_DIR)) open(join(TARGET_DIR, '.nojekyll'), 'w').close() ## Initialize the template and navigation. template = '' navigation = generate_navigation() with open(TEMPLATE_PATH, 'r') as f: template = f.read() ## Generate the home page. index_html = join(TARGET_DIR, 'index.html') ctx = generate_page_context(join(SOURCE_DIR, HOME_PAGE), index_html, navigation) write_page(ctx, template, index_html) for entry in PAGES: ## entry = ('dirname', [files...]) _dir = entry[0] for file in entry[1]: ext = get_validated_ext(file) path = join(SOURCE_DIR, _dir, file) dst = ''; path_prefix = _dir.lower().replace(' ', '-') + '-' if ext == '.md': dst = join(TARGET_DIR, path_prefix + file.replace('.md', '.html')) else: dst = join(TARGET_DIR, path_prefix + file) ctx = generate_page_context(path, dst, navigation) _template = template if file == TRY_PAGE: _template = template.replace('{{ WASM_SOURCE_FILES }}', WASM_SOURCE_FILES) write_page(ctx, _template, dst) pass def generate_navigation(): navigation = '' for entry in PAGES: _dir = entry[0] title = _dir.replace('-', ' ').title() navigation += '<div class="navigation">\n' navigation += '<h3><strong>%s</strong></h3>\n' % (title) navigation += '<ul class="menu">\n' for file in entry[1]: ext = get_validated_ext(file) link = '' ## Assuming that file name don't contain '.md' at the middle. path_prefix = _dir.lower().replace(' ', '-') + '-' if ext == '.md': link = join(ROOT_URL, path_prefix + file.replace('.md', '.html')) else: link = join(ROOT_URL, path_prefix + file) link = link.replace('\\', '/') title = file.replace(ext, '').replace('-', ' ').title() navigation += '<li><a href="%s">%s</a></li>\n' % (link, title) navigation += '</ul>\n' navigation += '</div>\n' return navigation def generate_page_context(src, dst, navigation): title = path_to_title(src) content = path_to_content(src) ctx = new_context() ctx[ '{{ TITLE }}' ] = title ctx[ '{{ NAVIGATION }}' ] = navigation ctx[ '{{ CONTENT }}' ] = content ctx[ '{{ HOME_URL }}' ] = ROOT_URL + 'index.html' ctx[ '{{ STATIC_DIR }}' ] = STATIC_DIR return ctx; def get_validated_ext(path): ext = '' if path.endswith('.md'): ext = '.md' elif path.endswith('.html'): ext = '.html' else: raise Exception('Expected .md / .html file.') return ext ## Get the title from the src path. def path_to_title(path): ext = get_validated_ext(path) title = os.path.basename(path).replace(ext, '').title() title += ' - PocketLang' return title ## Generate html content from the markdown source path. ## If the path is an .html file return it's content. def path_to_content(src): text = '' with open(src, 'r') as f: text = f.read() ## If html file we're done. if get_validated_ext(src) == '.html': return text assert(src.endswith('.md')) text = custom_md_override(text) content = markdown(text, extensions=['codehilite', 'fenced_code']) ## A wakey way to inject html overrides to highlight out language ## I'm not focusing on generating the pages and this is a wakey way to ## do so. This should be done with a good static page generater instead ## of this script. return custom_html_override(src, content) ## Inject our custom markdown text override. def custom_md_override(text): ## Add html anchor. for pre in ('#', '##', '###'): pattern = '(^' + pre + r' \s*%%(.*)%%\n)' for match, title in re.findall(pattern, text, flags=re.MULTILINE): link = title.strip().lower().replace(' ', '-') text = text.replace(match, f'{pre} {title} <a href="#{link}" name="{link}" class="anchor">#</a>') return text ## Inject our custom html overrides. def custom_html_override(src, content): ## FIXME: I should create a pygment lexer. ## A dirty way to inject our keyword (to ruby's). addnl_keywords = [ 'null', 'from', 'import', 'as', 'func', 'native', 'continue' ] not_keyword = [ 'alias', 'begin', 'case', 'next', 'nil', 'redo', 'rescue', 'retry', 'ensure', 'undef', 'unless', 'super', 'until', 'when', 'defined', ] for kw in addnl_keywords: content = content.replace('<span class="n">%s</span>' % kw, '<span class="k">%s</span>' % kw) for nk in not_keyword: content = content.replace('<span class="k">%s</span>' % nk, '<span class="n">%s</span>' % nk) ## codehilite mark the compilation command as error. content = content.replace('<span class="err">', '<span>') return content def write_page(ctx, template, dst): _dir = os.path.dirname(dst) if _dir not in ('.', './', '') and not os.path.exists(_dir): os.makedirs(os.path.dirname(dst)) page = template for key, value in ctx.items(): page = page.replace(key, value) page = page.replace('{{ WASM_SOURCE_FILES }}', '') with open(dst, 'w') as f: f.write(page) if __name__ == '__main__': _local = False if len(sys.argv) >= 2: if sys.argv[1] == 'local': _local = True #ROOT_URL = 'http://localhost:8000/' ROOT_URL = '' ## No more nested directory pages. main() ## Write a batch file to start the server in windows. if _local and os.name == 'nt': with open(join(TARGET_DIR, 'server.bat'), 'w') as f: f.write('python -m http.server 8000') print('Static pages generated' +\ ('for localhost:8000.' if _local else '.'))
tests/test_losses.py
bendavidsteel/neuroptica
161
12712922
import unittest from neuroptica.layers import Activation, ClementsLayer from neuroptica.losses import CategoricalCrossEntropy, MeanSquaredError from neuroptica.models import Sequential from neuroptica.nonlinearities import * from neuroptica.optimizers import Optimizer from tests.base import NeuropticaTest from tests.test_models import TestModels class TestLosses(NeuropticaTest): '''Tests for model losses''' def test_loss_gradients(self): N = 7 losses = [MeanSquaredError, CategoricalCrossEntropy] for loss in losses: print("Testing loss {}".format(loss)) batch_size = 6 n_samples = batch_size * 4 # Generate random points and label them (one-hot) according to index of max element X_all = (2 * np.random.rand(N * n_samples) - 1).reshape((N, n_samples)) # random N-D points X_max = np.argmax(X_all, axis=0) Y_all = np.zeros((N, n_samples)) Y_all[X_max, np.arange(n_samples)] = 1.0 # Make a single-layer model model = Sequential([ ClementsLayer(N), Activation(AbsSquared(N)) ]) for X, Y in Optimizer.make_batches(X_all, Y_all, batch_size): # Propagate the data forward Y_hat = model.forward_pass(X) d_loss = loss.dL(Y_hat, Y) # Compute the backpropagated signals for the model gradients = model.backward_pass(d_loss) TestModels.verify_model_gradients(model, X, Y, loss.L, gradients, epsilon=1e-6) if __name__ == "__main__": unittest.main()
tests/fixtures/builtin.py
WillDaSilva/mkdocstrings
354
12712951
def func(foo=print): """test"""
attendance/serializers.py
akshaya9/fosswebsite
369
12712957
<reponame>akshaya9/fosswebsite<filename>attendance/serializers.py from rest_framework import serializers from attendance.models import SSIDName class SSIDNameSerializer(serializers.ModelSerializer): class Meta: model = SSIDName fields = ['name'] read_only_fields = ['name']
recipes/tests.py
TechNic11/Try-Django-3.2
136
12713004
<gh_stars>100-1000 from django.core.exceptions import ValidationError from django.contrib.auth import get_user_model from django.test import TestCase from .models import RecipeIngredient, Recipe User = get_user_model() class UserTestCase(TestCase): def setUp(self): self.user_a = User.objects.create_user('cfe', password='<PASSWORD>') def test_user_pw(self): checked = self.user_a.check_password("<PASSWORD>") self.assertTrue(checked) class RecipeTestCase(TestCase): def setUp(self): self.user_a = User.objects.create_user('cfe', password='<PASSWORD>') self.recipe_a = Recipe.objects.create( name='Grilled Chicken', user = self.user_a ) self.recipe_b = Recipe.objects.create( name='Grilled Chicken Tacos', user = self.user_a ) self.recipe_ingredient_a = RecipeIngredient.objects.create( recipe=self.recipe_a, name='Chicken', quantity='1/2', unit='pound' ) self.recipe_ingredient_b = RecipeIngredient.objects.create( recipe=self.recipe_a, name='Chicken', quantity='asdfasd', unit='pound' ) def test_user_count(self): qs = User.objects.all() self.assertEqual(qs.count(), 1) def test_user_recipe_reverse_count(self): user = self.user_a qs = user.recipe_set.all() self.assertEqual(qs.count(), 2) def test_user_recipe_forward_count(self): user = self.user_a qs = Recipe.objects.filter(user=user) self.assertEqual(qs.count(), 2) def test_recipe_ingredient_reverse_count(self): recipe = self.recipe_a qs = recipe.recipeingredient_set.all() self.assertEqual(qs.count(), 2) def test_recipe_ingredientcount(self): recipe = self.recipe_a qs = RecipeIngredient.objects.filter(recipe=recipe) self.assertEqual(qs.count(), 2) def test_user_two_level_relation(self): user = self.user_a qs = RecipeIngredient.objects.filter(recipe__user=user) self.assertEqual(qs.count(), 2) def test_user_two_level_relation_reverse(self): user = self.user_a recipeingredient_ids = list(user.recipe_set.all().values_list('recipeingredient__id', flat=True)) qs = RecipeIngredient.objects.filter(id__in=recipeingredient_ids) self.assertEqual(qs.count(), 2) def test_user_two_level_relation_via_recipes(self): user = self.user_a ids = user.recipe_set.all().values_list("id", flat=True) qs = RecipeIngredient.objects.filter(recipe__id__in=ids) self.assertEqual(qs.count(), 2) def test_unit_measure_validation(self): invalid_unit = 'ounce' ingredient = RecipeIngredient( name='New', quantity=10, recipe=self.recipe_a, unit=invalid_unit ) ingredient.full_clean() def test_unit_measure_validation_error(self): invalid_units = ['nada', 'asdfadsf'] with self.assertRaises(ValidationError): for unit in invalid_units: ingredient = RecipeIngredient( name='New', quantity=10, recipe=self.recipe_a, unit=unit ) ingredient.full_clean() def test_quantity_as_float(self): self.assertIsNotNone(self.recipe_ingredient_a.quantity_as_float) self.assertIsNone(self.recipe_ingredient_b.quantity_as_float)
perf_dashboard/python_clientlibs_download.py
harshb36/python-runtime
207
12713005
<reponame>harshb36/python-runtime # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import os import sys import time import uuid from google.cloud import bigquery import bq_utils GCLOUD_PROJECT_ENV = 'GCLOUD_PROJECT' DATETIME_FORMAT = '%Y%m%d' DATASET_NAME = 'python_clientlibs_download_by_week' VENEER_TABLE_NAME = 'veneer_client_libs' STACKDRIVER_TABLE_NAME = 'stackdriver_client_libs' GRPC_TABLE_NAME = 'grpc_lib' THIRD_PARTY_TABLE_NAME = 'third_party_client_libs' TABLES = [ VENEER_TABLE_NAME, GRPC_TABLE_NAME, STACKDRIVER_TABLE_NAME, THIRD_PARTY_TABLE_NAME, ] CLIENTLIBS = { VENEER_TABLE_NAME: [ 'google-cloud-core', 'google-cloud-speech', 'google-cloud-language', 'google-cloud-pubsub', 'google-cloud-bigquery', 'google-cloud-bigtable', 'google-cloud-datastore', 'google-cloud-spanner', 'google-cloud-storage', 'google-cloud-vision', 'google-cloud-translate', 'google-cloud-dns', 'google-cloud-videointelligence', ], STACKDRIVER_TABLE_NAME: [ 'google-cloud-logging', 'google-cloud-monitoring', 'google-cloud-error_reporting', 'google-cloud-trace', ], GRPC_TABLE_NAME: [ 'grpcio', ], THIRD_PARTY_TABLE_NAME: [ 'pandas-gbq', ] } def get_weekly_clientlibs_downloads(clientlibs_table_name, date_str): """Use a SQL query to collect the weekly download data of the client libraries. Args: clientlibs_table_name (str): Table name, which is the key in the CLIENTLIBS dict. date_str (str): A date string in "YYYYMMDD" format. Returns: list: rows of the query result. """ client_libs = CLIENTLIBS[clientlibs_table_name] date_time = datetime.datetime.strptime(date_str, DATETIME_FORMAT) week_dates = [(date_time + datetime.timedelta(days=-i)) .strftime(DATETIME_FORMAT) for i in range(7)] query = """ SELECT file.project as client_library_name, COUNT(*) as download_count FROM `the-psf.pypi.downloads*` WHERE file.project IN UNNEST(@client_libs) AND _TABLE_SUFFIX IN UNNEST(@week_dates) GROUP BY client_library_name """ client = bigquery.Client() query_parameters=[ bigquery.ArrayQueryParameter( 'client_libs', 'STRING', client_libs), bigquery.ArrayQueryParameter( 'week_dates', 'STRING', week_dates) ] job_config = bigquery.QueryJobConfig() job_config.query_parameters = query_parameters query_job = client.query(query, job_config=job_config) # Wait for the job to complete and get the results results = [row.values() for row in query_job.result()] rows = [(date_time,) + row for row in results] return rows def main(): for table_name in CLIENTLIBS.keys(): rows = get_weekly_clientlibs_downloads( clientlibs_table_name=table_name, date_str=datetime.datetime.now().strftime("%Y%m%d")) bq_utils.insert_rows( project=os.environ.get(GCLOUD_PROJECT_ENV), dataset_name=DATASET_NAME, table_name=table_name, rows=rows) if __name__ == '__main__': main()
python/KerasModelRestoration.py
GangababuManam/tensorflow-101
832
12713013
<reponame>GangababuManam/tensorflow-101 import tensorflow as tf import numpy as np from keras.models import Sequential from keras.models import load_model from keras.models import model_from_json from keras.layers.core import Dense, Activation from keras.utils import np_utils #---------------------------- train = False load_all_model = True #if train is False #---------------------------- #preparing data for Exclusive OR (XOR) attributes = [ #x1, x2 [0 ,0] , [0, 1] , [1, 0] , [1, 1] ] labels = [ #is_0, is_1 -> only a column can be 1 in labels variable [1, 0] , [0, 1] , [0, 1] , [1, 0] ] #transforming attributes and labels matrixes to numpy data = np.array(attributes, 'int64') target = np.array(labels, 'int64') #---------------------------- #creating model if train == True: model = Sequential() model.add(Dense(3 #num of hidden units , input_shape=(len(attributes[0]),))) #num of features in input layer model.add(Activation('sigmoid')) #activation function from input layer to 1st hidden layer model.add(Dense(len(labels[0]))) #num of classes in output layer model.add(Activation('softmax')) #activation function from 1st hidden layer to output layer model_config = model.to_json() open("model_structure.json", "w").write(model_config) #compile model.compile(loss='categorical_crossentropy', optimizer='adam') #training model.fit(data, target, epochs=2000, verbose=0) model.save("model.hdf5") model.save_weights('model_weights.h5') else: if load_all_model == True: model = load_model("model.hdf5") #model structure, weights print("network structure and weights loaded") else: model = model_from_json(open("model_structure.json", "r").read()) #load structure print("network structure loaded") model.compile(loss='categorical_crossentropy', optimizer='adam') model.load_weights('model_weights.h5') #load weights print("weights loaded") score = model.evaluate(data, target) print(score)
src/utils/lastfm_etl/lastfm.py
LaudateCorpus1/hermes-5
135
12713050
#!/usr/bin/env python """Translate the Last.fm data files to JSON. This script takes the various Last.fm data files and write them out as JSON. It removes the Last.fm artist URLs. Attributes: ARTISTS (dict): A dictionary that stores information about the artists. The variables are as follows: - artist_id (int): A unique identifier for each artist. - name (str): The name of the artist. FRIENDS (dict): A dictionary that stores information about the friends graph. The variables are as follows: - user_id (int): A unique identifier for each user. - friend_user_id (int): A unique identifier of a user on the friends list. TAGS (dict): A dictionary that stores information about the tags. The variables are as follows: - tag_id (int): A unique identifier for each tag. - name (int): The name of the tag. PLAYS (dict): A dictionary that stores information about the number of plays by each user. The variables are as follows: - user_id (int): A unique identifier for each user. - artist_id (int): A unique identifier for each artist. - plays (int): The number of plays by the user of the artist. APPLIED_TAGS (dict): A dictionary that stores information about the tags various users applied to various artists. The variables are as follows: - user_id (int): A unique identifier for each user. - artist_id (int): A unique identifier for each artist. - tag_id (int): A unique identifier for each tag. - day (int): The day the tag was added. - month (int): The month the tag was added. - year (int): The year the tag was added. """ from copy import deepcopy import json import csv # JSON objects ARTISTS = { "artist_id": None, "name": None, } FRIENDS = { "user_id": None, "friend_user_id": None, } TAGS = { "tag_id": None, "name": None, } PLAYS = { "user_id": None, "artist_id": None, "plays": None, } APPLIED_TAGS = { "user_id": None, "artist_id": None, "tag_id": None, "day": None, "month": None, "year": None, } def convert_str(string): """Convert a string from 'iso-8859-1' to 'utf8'.""" return string.decode('iso-8859-1').encode('utf8') def iter_lines(open_file): """Open the Last.fm CSVs and return an iterator over the lines. Args: open_file: A file handle object from open(). Retunrs: iterator: An iterator over each line in the file. Each line is a list, with string elements for each column value. """ reader = csv.reader( open_file, delimiter='\t', ) next(reader) # Skip the header return reader def parse_artist_line(line): """Parse a line from the Artist CSV file. A line is a list of strings as follows: line = [ artist_id, name, band_url, band_photo_url, ] Args: lines (list): A list of strings as described above. Returns: dict: A dictionary containing the keys "artist_id" and "name". """ (artist_id, name, _, _) = line current_artist = deepcopy(ARTISTS) current_artist["artist_id"] = int(artist_id) current_artist["name"] = name return current_artist def parse_friends_line(line): """Parse a line from the Friends CSV file. A line is a list of strings as follows: line = [ user_id, user_id_of_friend, ] Args: lines (list): A list of strings as described above. Returns: dict: A dictionary containing the keys "user_id" and "friend_user_id". """ (user_id, friend_id) = line current_friend = deepcopy(FRIENDS) current_friend["user_id"] = int(user_id) current_friend["friend_user_id"] = int(friend_id) return current_friend def parse_tag_line(line): """Parse a line from the Tag CSV file. A line is a list of strings as follows: line = [ tag_id, tag, ] Args: lines (list): A list of strings as described above. Returns: dict: A dictionary containing the keys "tag_id" and "tag". """ (tag_id, tag) = line current_tag = deepcopy(TAGS) current_tag["tag_id"] = int(tag_id) current_tag["name"] = convert_str(tag) return current_tag def parse_applied_tag_line(line): """Parse a line from the Applied Tags CSV file. A line is a list of strings as follows: line = [ user_id, artist_id, tag_id, day, month, year, ] Args: lines (list): A list of strings as described above. Returns: dict: A dictionary containing the keys "user_id", "artist_id", "tag_id", "day", "month", and "year". """ (user_id, artist_id, tag_id, day, month, year) = line current_tag = deepcopy(APPLIED_TAGS) current_tag["user_id"] = int(user_id) current_tag["artist_id"] = int(artist_id) current_tag["tag_id"] = int(tag_id) current_tag["day"] = int(day) current_tag["month"] = int(month) current_tag["year"] = int(year) return current_tag def parse_plays_line(line): """Parse a line from the Played Artists CSV file. A line is a list of strings as follows: line = [ user_id, artist_id, play_count, ] Args: lines (list): A list of strings as described above. Returns: dict: A dictionary containing the keys "user_id", "artist_id", and "plays". """ (user_id, artist_id, plays) = line current_plays = deepcopy(PLAYS) current_plays["user_id"] = int(user_id) current_plays["artist_id"] = int(artist_id) current_plays["plays"] = int(plays) return current_plays if __name__ == "__main__": import argparse # Set up command line flag handling parser = argparse.ArgumentParser( description="Transform the Last.FM datasets to JSON", ) parser.add_argument( 'artists', type=str, help="the file containing the artists, normally 'artists.dat'", ) parser.add_argument( 'tags', type=str, help="the file containing the tags, normally 'tags.dat'", ) parser.add_argument( 'friends', type=str, help="the file containing the friends graph, normally 'user_friends.dat'", ) parser.add_argument( 'applied_tags', type=str, help="the file containing the applied tags, normally 'user_taggedartists.dat'", ) parser.add_argument( 'plays', type=str, help="the file containing the play counts, normally 'user_artists.dat'", ) parser.add_argument( '-o', '--output-directory', type=str, action="store", help="the directory to save the output JSON files, by default the current directory", default="./", ) args = parser.parse_args() # Parse the files processing_queue = ( (args.artists, args.output_directory + "/lastfm_artists.json", parse_artist_line), (args.tags, args.output_directory + "/lastfm_tags.json", parse_tag_line), (args.friends, args.output_directory + "/lastfm_friends.json", parse_friends_line), (args.applied_tags, args.output_directory + "/lastfm_applied_tags.json", parse_applied_tag_line), (args.plays, args.output_directory + "/lastfm_plays.json", parse_plays_line), ) for input_file, output_file, function in processing_queue: with open(input_file, 'rb') as csv_file, open(output_file, 'w') as json_file: for row in iter_lines(csv_file): json_file.write(json.dumps(function(row)) + '\n')
kmip/core/secrets.py
ondrap/PyKMIP
179
12713051
<reponame>ondrap/PyKMIP # Copyright (c) 2014 The Johns Hopkins University/Applied Physics Laboratory # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import six from kmip.core.attributes import CertificateType from kmip.core import enums from kmip.core.enums import Tags from kmip.core import exceptions from kmip.core.misc import CertificateValue from kmip.core import objects from kmip.core.objects import Attribute from kmip.core.objects import KeyBlock from kmip.core import primitives from kmip.core.primitives import Struct from kmip.core.primitives import Enumeration from kmip.core.primitives import ByteString from kmip.core import utils from kmip.core.utils import BytearrayStream # 2.2 # 2.2.1 class Certificate(Struct): """ A structure representing a DER-encoded X.509 public key certificate. See Section 2.2.1 of the KMIP 1.1 specification for more information. Attributes: certificate_type: The type of the certificate. certificate_value: The bytes of the certificate. """ def __init__(self, certificate_type=None, certificate_value=None): """ Construct a Certificate object. Args: certificate_type (CertificateType): The type of the certificate. Optional, defaults to None. certificate_value (bytes): The bytes of the certificate. Optional, defaults to None. """ super(Certificate, self).__init__(Tags.CERTIFICATE) if certificate_type is None: self.certificate_type = CertificateType() else: self.certificate_type = CertificateType(certificate_type) if certificate_value is None: self.certificate_value = CertificateValue() else: self.certificate_value = CertificateValue(certificate_value) def read(self, istream, kmip_version=enums.KMIPVersion.KMIP_1_0): """ Read the data encoding the Certificate object and decode it into its constituent parts. Args: istream (Stream): A data stream containing encoded object data, supporting a read method; usually a BytearrayStream object. kmip_version (KMIPVersion): An enumeration defining the KMIP version with which the object will be decoded. Optional, defaults to KMIP 1.0. """ super(Certificate, self).read(istream, kmip_version=kmip_version) tstream = BytearrayStream(istream.read(self.length)) self.certificate_type = CertificateType() self.certificate_value = CertificateValue() self.certificate_type.read(tstream, kmip_version=kmip_version) self.certificate_value.read(tstream, kmip_version=kmip_version) self.is_oversized(tstream) def write(self, ostream, kmip_version=enums.KMIPVersion.KMIP_1_0): """ Write the data encoding the Certificate object to a stream. Args: ostream (Stream): A data stream in which to encode object data, supporting a write method; usually a BytearrayStream object. kmip_version (KMIPVersion): An enumeration defining the KMIP version with which the object will be encoded. Optional, defaults to KMIP 1.0. """ tstream = BytearrayStream() self.certificate_type.write(tstream, kmip_version=kmip_version) self.certificate_value.write(tstream, kmip_version=kmip_version) self.length = tstream.length() super(Certificate, self).write(ostream, kmip_version=kmip_version) ostream.write(tstream.buffer) def __eq__(self, other): if isinstance(other, Certificate): if self.certificate_type != other.certificate_type: return False elif self.certificate_value != other.certificate_value: return False else: return True else: return NotImplemented def __ne__(self, other): if isinstance(other, Certificate): return not (self == other) else: return NotImplemented def __repr__(self): return "{0}(certificate_type={1}, certificate_value=b'{2}')".format( type(self).__name__, str(self.certificate_type), str(self.certificate_value)) def __str__(self): return "{0}".format(str(self.certificate_value)) # 2.2.2 class KeyBlockKey(Struct): def __init__(self, key_block=None, tag=Tags.DEFAULT): super(KeyBlockKey, self).__init__(tag) self.key_block = key_block self.validate() def read(self, istream, kmip_version=enums.KMIPVersion.KMIP_1_0): super(KeyBlockKey, self).read(istream, kmip_version=kmip_version) tstream = BytearrayStream(istream.read(self.length)) self.key_block = KeyBlock() self.key_block.read(tstream, kmip_version=kmip_version) self.is_oversized(tstream) self.validate() def write(self, ostream, kmip_version=enums.KMIPVersion.KMIP_1_0): tstream = BytearrayStream() self.key_block.write(tstream, kmip_version=kmip_version) # Write the length and value of the template attribute self.length = tstream.length() super(KeyBlockKey, self).write(ostream, kmip_version=kmip_version) ostream.write(tstream.buffer) def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass class SymmetricKey(KeyBlockKey): def __init__(self, key_block=None): super(SymmetricKey, self).__init__(key_block, Tags.SYMMETRIC_KEY) self.validate() def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass # 2.2.3 class PublicKey(KeyBlockKey): def __init__(self, key_block=None): super(PublicKey, self).__init__(key_block, Tags.PUBLIC_KEY) self.validate() def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass # 2.2.4 class PrivateKey(KeyBlockKey): def __init__(self, key_block=None): super(PrivateKey, self).__init__(key_block, Tags.PRIVATE_KEY) self.validate() def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass class SplitKey(primitives.Struct): """ A split key cryptographic object. This object represents a symmetric or private key that has been split into multiple parts. The fields of this object specify how the key was split and how it can be reassembled. Attributes: split_key_parts: The total number of parts of the split key. key_part_identifier: The ID specifying the part of the key in the key block. split_key_threshold: The minimum number of parts needed to reconstruct the key. split_key_method: The method by which the key was split. prime_field_size: The prime field size used for the Polynomial Sharing Prime Field split key method. key_block: The split key part held by this object. """ def __init__(self, split_key_parts=None, key_part_identifier=None, split_key_threshold=None, split_key_method=None, prime_field_size=None, key_block=None): """ Construct a SplitKey object. Args: split_key_parts (int): An integer specifying the total number of parts of the split key. Optional, defaults to None. Required for read/write. key_part_identifier (int): An integer specifying which key part is contained in the key block. Optional, defaults to None. Required for read/write. split_key_threshold (int): An integer specifying the minimum number of key parts required to reconstruct the split key. Optional, defaults to None. Required for read/write. split_key_method (enum): A SplitKeyMethod enumeration specifying the method by which the key was split. Optional, defaults to None. Required for read/write. prime_field_size (int): A big integer specifying the prime field size used for the Polynomial Sharing Prime Field split key method. Optional, defaults to None. Required for read/write only if the split key method is Polynomial Sharing Prime Field. key_block (struct): A KeyBlock structure containing the split key part identified by the key part identifier. Optional, defaults to None. Required for read/write. """ super(SplitKey, self).__init__(enums.Tags.SPLIT_KEY) self._split_key_parts = None self._key_part_identifier = None self._split_key_threshold = None self._split_key_method = None self._prime_field_size = None self._key_block = None self.split_key_parts = split_key_parts self.key_part_identifier = key_part_identifier self.split_key_threshold = split_key_threshold self.split_key_method = split_key_method self.prime_field_size = prime_field_size self.key_block = key_block @property def split_key_parts(self): if self._split_key_parts is not None: return self._split_key_parts.value return None @split_key_parts.setter def split_key_parts(self, value): if value is None: self._split_key_parts = None elif isinstance(value, six.integer_types): self._split_key_parts = primitives.Integer( value=value, tag=enums.Tags.SPLIT_KEY_PARTS ) else: raise TypeError("The split key parts must be an integer.") @property def key_part_identifier(self): if self._key_part_identifier is not None: return self._key_part_identifier.value return None @key_part_identifier.setter def key_part_identifier(self, value): if value is None: self._key_part_identifier = None elif isinstance(value, six.integer_types): self._key_part_identifier = primitives.Integer( value=value, tag=enums.Tags.KEY_PART_IDENTIFIER ) else: raise TypeError("The key part identifier must be an integer.") @property def split_key_threshold(self): if self._split_key_threshold is not None: return self._split_key_threshold.value return None @split_key_threshold.setter def split_key_threshold(self, value): if value is None: self._split_key_threshold = None elif isinstance(value, six.integer_types): self._split_key_threshold = primitives.Integer( value=value, tag=enums.Tags.SPLIT_KEY_THRESHOLD ) else: raise TypeError("The split key threshold must be an integer.") @property def split_key_method(self): if self._split_key_method is not None: return self._split_key_method.value return None @split_key_method.setter def split_key_method(self, value): if value is None: self._split_key_method = None elif isinstance(value, enums.SplitKeyMethod): self._split_key_method = primitives.Enumeration( enums.SplitKeyMethod, value=value, tag=enums.Tags.SPLIT_KEY_METHOD ) else: raise TypeError( "The split key method must be a SplitKeyMethod enumeration." ) @property def prime_field_size(self): if self._prime_field_size is not None: return self._prime_field_size.value return None @prime_field_size.setter def prime_field_size(self, value): if value is None: self._prime_field_size = None elif isinstance(value, six.integer_types): self._prime_field_size = primitives.BigInteger( value=value, tag=enums.Tags.PRIME_FIELD_SIZE ) else: raise TypeError("The prime field size must be an integer.") @property def key_block(self): if self._key_block is not None: return self._key_block return None @key_block.setter def key_block(self, value): if value is None: self._key_block = None elif isinstance(value, objects.KeyBlock): self._key_block = value else: raise TypeError("The key block must be a KeyBlock structure.") def read(self, input_buffer, kmip_version=enums.KMIPVersion.KMIP_1_0): """ Read the data encoding the SplitKey object and decode it. Args: input_buffer (stream): A data stream containing the encoded object data, supporting a read method; usually a BytearrayStream object. kmip_version (KMIPVersion): An enumeration defining the KMIP version with which the object will be decoded. Optional, defaults to KMIP 1.0. """ super(SplitKey, self).read(input_buffer, kmip_version=kmip_version) local_buffer = utils.BytearrayStream(input_buffer.read(self.length)) if self.is_tag_next(enums.Tags.SPLIT_KEY_PARTS, local_buffer): self._split_key_parts = primitives.Integer( tag=enums.Tags.SPLIT_KEY_PARTS ) self._split_key_parts.read(local_buffer, kmip_version=kmip_version) else: raise exceptions.InvalidKmipEncoding( "The SplitKey encoding is missing the SplitKeyParts field." ) if self.is_tag_next(enums.Tags.KEY_PART_IDENTIFIER, local_buffer): self._key_part_identifier = primitives.Integer( tag=enums.Tags.KEY_PART_IDENTIFIER ) self._key_part_identifier.read( local_buffer, kmip_version=kmip_version ) else: raise exceptions.InvalidKmipEncoding( "The SplitKey encoding is missing the KeyPartIdentifier field." ) if self.is_tag_next(enums.Tags.SPLIT_KEY_THRESHOLD, local_buffer): self._split_key_threshold = primitives.Integer( tag=enums.Tags.SPLIT_KEY_THRESHOLD ) self._split_key_threshold.read( local_buffer, kmip_version=kmip_version ) else: raise exceptions.InvalidKmipEncoding( "The SplitKey encoding is missing the SplitKeyThreshold field." ) if self.is_tag_next(enums.Tags.SPLIT_KEY_METHOD, local_buffer): self._split_key_method = primitives.Enumeration( enums.SplitKeyMethod, tag=enums.Tags.SPLIT_KEY_METHOD ) self._split_key_method.read( local_buffer, kmip_version=kmip_version ) else: raise exceptions.InvalidKmipEncoding( "The SplitKey encoding is missing the SplitKeyMethod field." ) if self.is_tag_next(enums.Tags.PRIME_FIELD_SIZE, local_buffer): self._prime_field_size = primitives.BigInteger( tag=enums.Tags.PRIME_FIELD_SIZE ) self._prime_field_size.read( local_buffer, kmip_version=kmip_version ) else: corner_case = enums.SplitKeyMethod.POLYNOMIAL_SHARING_PRIME_FIELD if self.split_key_method == corner_case: raise exceptions.InvalidKmipEncoding( "The SplitKey encoding is missing the PrimeFieldSize " "field. This field is required when the SplitKeyMethod is " "PolynomialSharingPrimeField." ) if self.is_tag_next(enums.Tags.KEY_BLOCK, local_buffer): self._key_block = objects.KeyBlock() self._key_block.read(local_buffer, kmip_version=kmip_version) else: raise exceptions.InvalidKmipEncoding( "The SplitKey encoding is missing the KeyBlock field." ) self.is_oversized(local_buffer) def write(self, output_buffer, kmip_version=enums.KMIPVersion.KMIP_1_0): """ Write the data encoding the SplitKey object to a buffer. Args: output_buffer (stream): A data stream in which to encode object data, supporting a write method; usually a BytearrayStream object. kmip_version (KMIPVersion): An enumeration defining the KMIP version with which the object will be encoded. Optional, defaults to KMIP 1.0. """ local_buffer = utils.BytearrayStream() if self._split_key_parts: self._split_key_parts.write( local_buffer, kmip_version=kmip_version ) else: raise exceptions.InvalidField( "The SplitKey object is missing the SplitKeyParts field." ) if self._key_part_identifier: self._key_part_identifier.write( local_buffer, kmip_version=kmip_version ) else: raise exceptions.InvalidField( "The SplitKey object is missing the KeyPartIdentifier field." ) if self._split_key_threshold: self._split_key_threshold.write( local_buffer, kmip_version=kmip_version ) else: raise exceptions.InvalidField( "The SplitKey object is missing the SplitKeyThreshold field." ) if self._split_key_method: self._split_key_method.write( local_buffer, kmip_version=kmip_version ) else: raise exceptions.InvalidField( "The SplitKey object is missing the SplitKeyMethod field." ) if self._prime_field_size: self._prime_field_size.write( local_buffer, kmip_version=kmip_version ) else: corner_case = enums.SplitKeyMethod.POLYNOMIAL_SHARING_PRIME_FIELD if self.split_key_method == corner_case: raise exceptions.InvalidField( "The SplitKey object is missing the PrimeFieldSize field. " "This field is required when the SplitKeyMethod is " "PolynomialSharingPrimeField." ) if self._key_block: self._key_block.write(local_buffer, kmip_version=kmip_version) else: raise exceptions.InvalidField( "The SplitKey object is missing the KeyBlock field." ) self.length = local_buffer.length() super(SplitKey, self).write(output_buffer, kmip_version=kmip_version) output_buffer.write(local_buffer.buffer) def __repr__(self): args = [ "split_key_parts={}".format(repr(self.split_key_parts)), "key_part_identifier={}".format(repr(self.key_part_identifier)), "split_key_threshold={}".format(repr(self.split_key_threshold)), "split_key_method={}".format(self.split_key_method), "prime_field_size={}".format(repr(self.prime_field_size)), "key_block={}".format(repr(self.key_block)) ] return "SplitKey({})".format(", ".join(args)) def __str__(self): # TODO (peter-hamilton) Replace str() call below with a dict() call. value = ", ".join( [ '"split_key_parts": {}'.format(self.split_key_parts), '"key_part_identifier": {}'.format(self.key_part_identifier), '"split_key_threshold": {}'.format(self.split_key_threshold), '"split_key_method": {}'.format(self.split_key_method), '"prime_field_size": {}'.format(self.prime_field_size), '"key_block": {}'.format(str(self.key_block)) ] ) return "{" + value + "}" def __eq__(self, other): if isinstance(other, SplitKey): if self.split_key_parts != other.split_key_parts: return False elif self.key_part_identifier != other.key_part_identifier: return False elif self.split_key_threshold != other.split_key_threshold: return False elif self.split_key_method != other.split_key_method: return False elif self.prime_field_size != other.prime_field_size: return False # elif self.key_block != other.key_block: # return False return True else: return NotImplemented def __ne__(self, other): if isinstance(other, SplitKey): return not self.__eq__(other) else: return NotImplemented # 2.2.6 class Template(Struct): def __init__(self, attributes=None): super(Template, self).__init__(Tags.TEMPLATE) self.attributes = attributes self.validate() def read(self, istream, kmip_version=enums.KMIPVersion.KMIP_1_0): super(Template, self).read(istream, kmip_version=kmip_version) tstream = BytearrayStream(istream.read(self.length)) self.attributes = list() attribute = Attribute() attribute.read(tstream, kmip_version=kmip_version) self.attributes.append(attribute) while self.is_tag_next(Tags.ATTRIBUTE, tstream): attribute = Attribute() attribute.read(tstream, kmip_version=kmip_version) self.attributes.append(attribute) self.is_oversized(tstream) self.validate() def write(self, ostream, kmip_version=enums.KMIPVersion.KMIP_1_0): tstream = BytearrayStream() for attribute in self.attributes: attribute.write(tstream, kmip_version=kmip_version) # Write the length and value of the template attribute self.length = tstream.length() super(Template, self).write(ostream, kmip_version=kmip_version) ostream.write(tstream.buffer) def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass # 2.2.7 class SecretData(Struct): class SecretDataType(Enumeration): def __init__(self, value=None): super(SecretData.SecretDataType, self).__init__( enums.SecretDataType, value, Tags.SECRET_DATA_TYPE) def __init__(self, secret_data_type=None, key_block=None): super(SecretData, self).__init__(Tags.SECRET_DATA) self.secret_data_type = secret_data_type self.key_block = key_block self.validate() def read(self, istream, kmip_version=enums.KMIPVersion.KMIP_1_0): super(SecretData, self).read(istream, kmip_version=kmip_version) tstream = BytearrayStream(istream.read(self.length)) self.secret_data_type = SecretData.SecretDataType() self.key_block = KeyBlock() self.secret_data_type.read(tstream, kmip_version=kmip_version) self.key_block.read(tstream, kmip_version=kmip_version) self.is_oversized(tstream) self.validate() def write(self, ostream, kmip_version=enums.KMIPVersion.KMIP_1_0): tstream = BytearrayStream() self.secret_data_type.write(tstream, kmip_version=kmip_version) self.key_block.write(tstream, kmip_version=kmip_version) # Write the length and value of the template attribute self.length = tstream.length() super(SecretData, self).write(ostream, kmip_version=kmip_version) ostream.write(tstream.buffer) def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass # 2.2.8 class OpaqueObject(Struct): class OpaqueDataType(Enumeration): def __init__(self, value=None): super(OpaqueObject.OpaqueDataType, self).__init__( enums.OpaqueDataType, value, Tags.OPAQUE_DATA_TYPE) class OpaqueDataValue(ByteString): def __init__(self, value=None): super(OpaqueObject.OpaqueDataValue, self).__init__( value, Tags.OPAQUE_DATA_VALUE) def __init__(self, opaque_data_type=None, opaque_data_value=None): super(OpaqueObject, self).__init__(Tags.OPAQUE_OBJECT) self.opaque_data_type = opaque_data_type self.opaque_data_value = opaque_data_value self.validate() def read(self, istream, kmip_version=enums.KMIPVersion.KMIP_1_0): super(OpaqueObject, self).read(istream, kmip_version=kmip_version) tstream = BytearrayStream(istream.read(self.length)) self.opaque_data_type = OpaqueObject.OpaqueDataType() self.opaque_data_value = OpaqueObject.OpaqueDataValue() self.opaque_data_type.read(tstream, kmip_version=kmip_version) self.opaque_data_value.read(tstream, kmip_version=kmip_version) self.is_oversized(tstream) self.validate() def write(self, ostream, kmip_version=enums.KMIPVersion.KMIP_1_0): tstream = BytearrayStream() self.opaque_data_type.write(tstream, kmip_version=kmip_version) self.opaque_data_value.write(tstream, kmip_version=kmip_version) # Write the length and value of the template attribute self.length = tstream.length() super(OpaqueObject, self).write(ostream, kmip_version=kmip_version) ostream.write(tstream.buffer) def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass
946 Validate Stack Sequences.py
krishna13052001/LeetCode
872
12713061
#!/usr/bin/python3 """ Given two sequences pushed and popped with distinct values, return true if and only if this could have been the result of a sequence of push and pop operations on an initially empty stack. Example 1: Input: pushed = [1,2,3,4,5], popped = [4,5,3,2,1] Output: true Explanation: We might do the following sequence: push(1), push(2), push(3), push(4), pop() -> 4, push(5), pop() -> 5, pop() -> 3, pop() -> 2, pop() -> 1 Example 2: Input: pushed = [1,2,3,4,5], popped = [4,3,5,1,2] Output: false Explanation: 1 cannot be popped before 2. Note: 0 <= pushed.length == popped.length <= 1000 0 <= pushed[i], popped[i] < 1000 pushed is a permutation of popped. pushed and popped have distinct values. """ from typing import List class Solution: def validateStackSequences(self, pushed: List[int], popped: List[int]) -> bool: """ maintain a stack and iterate through pushed """ j = 0 n = len(pushed) stk = [] for i in range(n): stk.append(pushed[i]) while j < n and stk and stk[-1] == popped[j]: stk.pop() j += 1 return j == n def validateStackSequences(self, pushed: List[int], popped: List[int]) -> bool: """ maintain a stack """ i = 0 j = 0 stk = [] n = len(pushed) while i < n and j < n: while i < n and (not stk or stk[-1] != popped[j]): stk.append(pushed[i]) i += 1 stk.pop() j += 1 while j < n and stk and stk[-1] == popped[j]: stk.pop() j += 1 return not stk
dizoo/gfootball/model/conv1d/conv1d_default_config.py
LuciusMos/DI-engine
464
12713077
from easydict import EasyDict conv1d_config = dict( feature_embedding=dict( player=dict( input_dim=36, output_dim=64, ), ball=dict( input_dim=18, output_dim=64, ), left_team=dict( input_dim=7, output_dim=48, conv1d_output_channel=36, fc_output_dim=96, ), right_team=dict( input_dim=7, output_dim=48, conv1d_output_channel=36, fc_output_dim=96, ), left_closest=dict( input_dim=7, output_dim=48, ), right_closest=dict( input_dim=7, output_dim=48, ) ), fc_cat=dict(input_dim=416, ), lstm_size=256, policy_head=dict( input_dim=256, hidden_dim=164, act_shape=19, ), value_head=dict(input_dim=256, hidden_dim=164, output_dim=1), ) conv1d_default_config = EasyDict(conv1d_config)
examples/arkane/species/CH2CHOOH/input.py
tza0035/RMG-Py
250
12713084
#!/usr/bin/env python # -*- coding: utf-8 -*- modelChemistry = "CBS-QB3" useHinderedRotors = True useBondCorrections = False species('CH2CHOOH', 'CH2CHOOH.py') statmech('CH2CHOOH') thermo('CH2CHOOH', 'Wilhoit')
tests/version_consistency/dummy_test.py
ldelebec/asteroid
722
12713116
<reponame>ldelebec/asteroid<filename>tests/version_consistency/dummy_test.py def dummy_test(): pass
census_extractomatic/user_geo.py
censusreporter/census-api
135
12713117
<reponame>censusreporter/census-api """Centralize non-Flask code for 2020 User Geography data aggregation here. This file serves both as a library for the Flask app as well as a bootstrap for Celery tasks, which could be run with something like celery -A census_extractomatic.user_geo:celery_app worker """ from datetime import timedelta from sqlalchemy.sql import text import json from collections import OrderedDict from copy import deepcopy from tempfile import NamedTemporaryFile import zipfile import pandas as pd import numpy as np import ogr from celery import Celery import os from sqlalchemy import create_engine import boto3 from botocore.exceptions import ClientError import logging logger = logging.getLogger('gunicorn.error') from timeit import default_timer as timer SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL') CELERY_BROKER = os.environ['REDIS_URL'] celery_app = Celery(__name__, broker=CELERY_BROKER) celery_db = create_engine(SQLALCHEMY_DATABASE_URI) @celery_app.task def join_user_geo_to_blocks_task(user_geodata_id): join_user_to_census(celery_db, user_geodata_id) COMPARISON_RELEASE_CODE = 'dec_pl94_compare_2020_2010' USER_GEODATA_INSERT_SQL = text(""" INSERT INTO aggregation.user_geodata (name, hash_digest, source_url, public, fields, bbox) VALUES (:name, :hash_digest, :source_url, :public, :fields, ST_MakeEnvelope(:xmin, :ymin, :xmax, :ymax, 4326)) RETURNING * """) USER_GEODATA_GEOMETRY_INSERT_SQL = text(""" INSERT INTO aggregation.user_geodata_geometry (user_geodata_id, geom, name, original_id, properties) VALUES (:user_geodata_id, ST_Transform( ST_GeomFromText(:geom_wkt,:epsg), 4326), :name, :original_id, :properties ) """) USER_GEODATA_SELECT_BY_HASH_DIGEST = text(''' SELECT user_geodata_id, EXTRACT(EPOCH from created_at) unix_timestamp, name, bbox, fields, source_url, status, notes_html, public FROM aggregation.user_geodata WHERE hash_digest=:hash_digest ''') AGGREGATE_BLOCKS_2010_SQL = text(""" INSERT INTO aggregation.user_geodata_blocks_2010 (user_geodata_geometry_id, geoid) SELECT ugg.user_geodata_geometry_id, b.geoid10 FROM aggregation.user_geodata ug, aggregation.user_geodata_geometry ugg, blocks.tabblock10 b WHERE ug.user_geodata_id = :geodata_id AND ug.user_geodata_id = ugg.user_geodata_id AND ST_Intersects(ug.bbox, b.geom) AND ST_Contains(ugg.geom, ST_SetSRID(ST_MakePoint(b.intptlon10::double precision, b.intptlat10::double precision), 4326)) """) AGGREGATE_BLOCKS_2020_SQL = text(""" INSERT INTO aggregation.user_geodata_blocks_2020 (user_geodata_geometry_id, geoid) SELECT ugg.user_geodata_geometry_id, b.geoid20 FROM aggregation.user_geodata ug, aggregation.user_geodata_geometry ugg, blocks.tabblock20 b WHERE ug.user_geodata_id = :geodata_id AND ug.user_geodata_id = ugg.user_geodata_id AND ST_Intersects(ug.bbox, b.geom) AND ST_Contains(ugg.geom, ST_SetSRID(ST_MakePoint(b.intptlon20::double precision, b.intptlat20::double precision), 4326)) """) USER_GEOMETRY_SELECT_WITH_GEOM_BY_HASH_DIGEST = text(''' SELECT ugg.user_geodata_geometry_id, ugg.name, ugg.original_id, ST_asGeoJSON(ST_ForcePolygonCCW(ugg.geom)) FROM aggregation.user_geodata ug, aggregation.user_geodata_geometry ugg WHERE ug.hash_digest=:hash_digest AND ug.user_geodata_id = ugg.user_geodata_id ''') USER_GEOMETRY_SELECT_2020_BLOCKS_WITH_GEOM_BY_HASH_DIGEST = text(''' SELECT ug.name upload_name, ugb.geoid, ugg.user_geodata_geometry_id cr_geoid, ugg.name, ugg.original_id, g.pop100, g.hu100, g.state || g.place as state_place_fips, ST_asGeoJSON(ST_ForcePolygonCCW(b.geom)) geom FROM aggregation.user_geodata ug, aggregation.user_geodata_geometry ugg, aggregation.user_geodata_blocks_2020 ugb, dec2020_pl94.geoheader g, blocks.tabblock20 b WHERE ug.hash_digest=:hash_digest AND ug.user_geodata_id = ugg.user_geodata_id AND ugg.user_geodata_geometry_id = ugb.user_geodata_geometry_id AND ugb.geoid = b.geoid20 AND b.geoid20 = g.geoid ''') USER_GEOMETRY_SELECT_2010_BLOCKS_WITH_GEOM_BY_HASH_DIGEST = text(''' SELECT ug.name upload_name, ugb.geoid, ugg.user_geodata_geometry_id cr_geoid, ugg.name, ugg.original_id, g.pop100, g.hu100, g.state || g.place as state_place_fips, ST_asGeoJSON(ST_ForcePolygonCCW(b.geom)) geom FROM aggregation.user_geodata ug, aggregation.user_geodata_geometry ugg, aggregation.user_geodata_blocks_2010 ugb, dec2010_pl94.geoheader g, blocks.tabblock10 b WHERE ug.hash_digest=:hash_digest AND ug.user_geodata_id = ugg.user_geodata_id AND ugg.user_geodata_geometry_id = ugb.user_geodata_geometry_id AND ugb.geoid = b.geoid10 AND b.geoid10 = g.geoid ''') BLOCK_VINTAGE_TABLES = { 'dec2010_pl94': 'user_geodata_blocks_2010', 'dec2020_pl94': 'user_geodata_blocks_2020' } SELECT_BY_USER_GEOGRAPHY_SQL_TEMPLATE = """ SELECT ugg.user_geodata_geometry_id, ugg.name, ugg.original_id, ST_asGeoJSON(ST_ForcePolygonCCW(ugg.geom)) geom, d.* FROM aggregation.user_geodata ug, aggregation.user_geodata_geometry ugg, aggregation.{blocks_vintage_table} ugb, {schema}.{table_code} d WHERE ug.hash_digest = :hash_digest AND ug.user_geodata_id = ugg.user_geodata_id AND ugg.user_geodata_geometry_id = ugb.user_geodata_geometry_id AND ugb.geoid = d.geoid """ def fetch_user_geodata(db, hash_digest): with db.engine.begin() as con: cur = con.execute(USER_GEODATA_SELECT_BY_HASH_DIGEST,hash_digest=hash_digest) keys = list(cur._metadata.keys) row = cur.first() if row: return dict(zip(keys,row)) return None def _fieldsFromOGRLayer(layer): fields = [] ldefn = layer.GetLayerDefn() for n in range(ldefn.GetFieldCount()): fdefn = ldefn.GetFieldDefn(n) fields.append(fdefn.name) return fields def save_user_geojson(db, geojson_str, hash_digest, dataset_name, name_field, id_field, source_url, share_checked): tmp = NamedTemporaryFile('w',suffix='.json',delete=False) tmp.write(geojson_str) tmp.close() ogr_file = ogr.Open(tmp.name) if ogr_file is None: raise ValueError(f"ogr.Open failed for {tmp.name}") # assume geojson always has one layer, right? l = ogr_file.GetLayer(0) epsg = l.GetSpatialRef().GetAuthorityCode(None) (xmin, xmax, ymin, ymax) = l.GetExtent() dataset_id = None fields = _fieldsFromOGRLayer(l) with db.engine.begin() as con: cur = con.execute(USER_GEODATA_INSERT_SQL, name=dataset_name, hash_digest=hash_digest, source_url=source_url, public=share_checked, fields=json.dumps(fields), xmin=xmin, ymin=ymin, xmax=xmax, ymax=ymax) dataset_id = cur.fetchall()[0][0] for i in range(0,l.GetFeatureCount()): f = l.GetFeature(i) mp = ogr.ForceToMultiPolygon(f.GetGeometryRef()) properties = dict((fld, f.GetField(i)) for i,fld in enumerate(fields)) con.execute(USER_GEODATA_GEOMETRY_INSERT_SQL, user_geodata_id=dataset_id, geom_wkt=mp.ExportToWkt(), epsg=epsg, name=properties.get(name_field), original_id=properties.get(id_field), properties=json.dumps(properties)) if dataset_id is not None: join_user_geo_to_blocks_task.delay(dataset_id) return dataset_id def list_user_geographies(db): cur = db.engine.execute('select *, st_asGeoJSON(bbox) bbox_json from aggregation.user_geodata where public = true order by name') results = [] for row in cur: d = dict(row) bbox_json = d.pop('bbox_json') # parse JSON string and get rid of binary bbox if bbox_json: d['bbox'] = json.loads(bbox_json) else: del d['bbox'] results.append(d) return results def join_user_to_census(db, user_geodata_id): """Waffling a little on structure but this provides a single transaction-protected function which computes block joins for all user geographies associated with a specified user geo dataset, including clearing out anything which might have been there (shouldn't really be) and managing the status. """ # first set the status in its own transaction so that it serves as a sign that the work is happening. # we may want to check the status to make sure it isn't already processing to avoid overlapping jobs # although the delete statements should mean that isn't a terrible problem, just a longer CPU load db.engine.execute(text("UPDATE aggregation.user_geodata SET status = 'PROCESSING' where user_geodata_id = :geodata_id"),geodata_id=user_geodata_id) with db.engine.begin() as con: con.execute(text(""" DELETE FROM aggregation.user_geodata_blocks_2010 WHERE user_geodata_geometry_id in (SELECT user_geodata_geometry_id FROM aggregation.user_geodata_geometry WHERE user_geodata_id=:geodata_id)"""),geodata_id=user_geodata_id) con.execute(text(""" DELETE FROM aggregation.user_geodata_blocks_2020 WHERE user_geodata_geometry_id in (SELECT user_geodata_geometry_id FROM aggregation.user_geodata_geometry WHERE user_geodata_id=:geodata_id)"""),geodata_id=user_geodata_id) con.execute(AGGREGATE_BLOCKS_2010_SQL,geodata_id=user_geodata_id) con.execute(AGGREGATE_BLOCKS_2020_SQL,geodata_id=user_geodata_id) db.engine.execute(text("UPDATE aggregation.user_geodata SET status = 'READY' where user_geodata_id = :geodata_id"),geodata_id=user_geodata_id) def _blankFeatureCollection(): return { "type": "FeatureCollection", "features": [] } def fetch_user_geog_as_geojson(db, hash_digest): geojson = _blankFeatureCollection() cur = db.engine.execute(USER_GEOMETRY_SELECT_WITH_GEOM_BY_HASH_DIGEST,hash_digest=hash_digest) if cur.rowcount == 0: raise ValueError(f"Invalid geography ID {hash_digest}") for cr_geoid, name, original_id, geojson_str in cur: base = { 'type': 'Feature' } base['geometry'] = json.loads(geojson_str) base['properties'] = { 'cr_geoid': cr_geoid } if name is not None: base['properties']['name'] = name if original_id is not None: base['properties']['original_id'] = original_id base['id'] = original_id geojson['features'].append(base) return geojson USER_BLOCKS_BY_HASH_DIGEST_SQL = { '2020': USER_GEOMETRY_SELECT_2020_BLOCKS_WITH_GEOM_BY_HASH_DIGEST, '2010': USER_GEOMETRY_SELECT_2010_BLOCKS_WITH_GEOM_BY_HASH_DIGEST } def fetch_metadata(release=None, table_code=None): # for now we'll just do it from literal objects here but deepcopy them so we don't get messed up # maybe later we'll make a metadata schema in the database if table_code is None: raise Exception('Table code must be specified for metadata fetch') md = METADATA.get(table_code.lower()) if md: if release is None or release in md['releases']: return deepcopy(md) if release == COMPARISON_RELEASE_CODE: c_10 = [] c_20 = [] c_change = [] base = deepcopy(md) for col,label in md['columns'].items(): c_10.append((f"{col}_2010", f"{label} (2010)")) c_20.append((f"{col}_2020", f"{label} (2020)")) c_change.append((f"{col}_pct_chg", f"{label} (% change)")) base['columns'] = OrderedDict(c_20 + c_10 + c_change) return base return None def evaluateUserGeographySQLTemplate(schema, table_code): """Schemas and table names can't be handled as bindparams with SQLAlchemy, so this allows us to use a 'select *' syntax for multiple tables. """ try: blocks_vintage_table = BLOCK_VINTAGE_TABLES[schema] except KeyError: raise ValueError(f"No blocks vintage identified for given schema {schema}") return SELECT_BY_USER_GEOGRAPHY_SQL_TEMPLATE.format(schema=schema, table_code=table_code, blocks_vintage_table=blocks_vintage_table) def aggregate_decennial(db, hash_digest, release, table_code): """For the given user geography, identified by hash_digest, aggregate the given table for the given decennial census release, and return a Pandas dataframe with the results. In addition to the data columns for the given table, the dataframe may include columns 'name' and/or 'original_id', if the user geography identified sources for those in their upload. """ if fetch_metadata(release=release, table_code=table_code): sql = evaluateUserGeographySQLTemplate(release, table_code) query = text(sql).bindparams(hash_digest=hash_digest) logger.info(f'aggregate_decennial: starting timer {hash_digest} {release} {table_code}') start = timer() df = pd.read_sql(query, db.engine) end = timer() logger.info(f"pd.read_sql {hash_digest} {release} {table_code} elapsed time {timedelta(seconds=end-start)}") df = df.drop('geoid',axis=1) # we don't care about the original blocks after we groupby agg_funcs = dict((c,'sum') for c in df.columns[1:]) agg_funcs['name'] = 'first' # these string values are agg_funcs['original_id'] = 'first' # the same for each row aggregated agg_funcs['geom'] = 'first' # by 'user_geodata_geometry_id' aggd = df.groupby('user_geodata_geometry_id').agg(agg_funcs) for c in ['name', 'original_id']: if aggd[c].isnull().all(): aggd = aggd.drop(c,axis=1) aggd = aggd.reset_index() end = timer() logger.info(f"all processing {hash_digest} {release} {table_code} total elapsed time {timedelta(seconds=end-start)}") return aggd raise ValueError('Invalid release or table code') def aggregate_decennial_comparison(db, hash_digest, table_code): agg_2020 = aggregate_decennial(db, hash_digest, 'dec2020_pl94', table_code).set_index('user_geodata_geometry_id') agg_2010 = aggregate_decennial(db, hash_digest, 'dec2010_pl94', table_code).set_index('user_geodata_geometry_id') # not all uploads have all columns, so be responsive to the data label_cols = [] for c in ['name', 'original_id', 'geom']: if c in agg_2020: label_cols.append(c) label_df = agg_2020[label_cols] agg_2020 = agg_2020.drop(label_cols,axis=1) agg_2010 = agg_2010.drop(label_cols,axis=1) pct_chg = (agg_2020-agg_2010)/agg_2010 joined = agg_2020.join(agg_2010,lsuffix='_2020',rsuffix='_2010') joined = joined.join(pct_chg.rename(columns=lambda x: f"{x}_change")) return label_df.join(joined).reset_index() def dataframe_to_feature_collection(df: pd.DataFrame, geom_col): """Given a Pandas dataframe with one column stringified GeoJSON, return a dict representing a GeoJSON FeatureCollection, where `geom_col` is parsed and used for the 'geometry' and the rest of the row is converted to a 'properties' dict.""" geojson = { "type": "FeatureCollection", "features": [] } for _, row in df.iterrows(): row = row.to_dict() geom = row.pop(geom_col) f = { 'type': 'Feature', 'geometry': json.loads(geom), 'properties': row } if 'original_id' in row: f['id'] = row['original_id'] geojson['features'].append(f) return geojson def create_block_xref_download(db, hash_digest, year): try: sql = USER_BLOCKS_BY_HASH_DIGEST_SQL[str(year)] except KeyError: raise ValueError(f"Invalid year {year}") df = pd.read_sql(sql.bindparams(hash_digest=hash_digest),db.engine) user_geo_name = str(df['upload_name'].unique().squeeze()) df = df.drop('upload_name', axis=1) metadata = { 'title': f"Census Reporter {year} Block Assignments for {user_geo_name}", 'columns': OrderedDict(( ('geoid', f'15-character unique block identifier'), ('cr_geoid', '''An arbitrary unique identifier for a specific geography (e.g. neighborhood) included in a user uploaded map'''), ('name', 'A name for a specific geography included in a user uploaded map, if available'), ('original_id', 'A unique identifier for a specific geography included in a user uploaded map, from the original source, if available'), ('pop100', f'The total population for the given block (Decennial Census {year})'), ('hu100', f'The total housing units (occupied or vacant) for the given block (Decennial Census {year})'), ('state_place_fips', f'The combined State/Place FIPS code for the given block (Decennial Census {year})'), )) } release = f'tiger{year}' table_code = 'block_assignments' tmp = write_compound_zipfile(hash_digest, release, table_code, df, metadata) remote_filename = build_filename(hash_digest, year, 'block_assignments', 'zip') move_file_to_s3(tmp.name,hash_digest,remote_filename) return tmp def create_aggregate_download(db, hash_digest, release, table_code): if release == COMPARISON_RELEASE_CODE: aggregated = aggregate_decennial_comparison(db, hash_digest, table_code) else: aggregated = aggregate_decennial(db, hash_digest, release, table_code) metadata = fetch_metadata(release=release, table_code=table_code) if 'original_id' in aggregated: # original id is second if its there so insert it first metadata['columns']['original_id'] = 'Geographic Identifier' metadata['columns'].move_to_end('original_id', last=False) if 'name' in aggregated: # name is first if its there metadata['columns']['name'] = 'Geography Name' metadata['columns'].move_to_end('name', last=False) # only need it if there's no name or ID. will we even tolerate that? if 'name' in aggregated or 'original_id' in aggregated: aggregated = aggregated.drop('user_geodata_geometry_id', axis=1) else: aggregated = aggregated.rename(columns={'user_geodata_geometry_id': 'cr_geoid'}) metadata['columns']['cr_geoid'] = 'Census Reporter Geography ID' metadata['columns'].move_to_end('cr_geoid', last=False) # NaN and inf bork JSON and inf looks bad in CSV too. # Any columns could have NaN, not just pct_chg -- e.g. Atlanta has n'hoods which get no 2010 blocks aggregated = aggregated.replace([np.inf, -np.inf, np.nan],'') tmp = write_compound_zipfile(hash_digest, release, table_code, aggregated, metadata) remote_filename = build_filename(hash_digest, release, table_code, 'zip') move_file_to_s3(tmp.name,hash_digest,remote_filename) return tmp def write_compound_zipfile(hash_digest, release, table_code, df, metadata): """Given a dataframe with a 'geom' column, create a ZipFile with the data from that dataframe in both CSV and GeoJSON, returning a semi-persistent temporary file. """ with NamedTemporaryFile('wb',suffix='.zip',delete=False) as tmp: with zipfile.ZipFile(tmp, 'w', zipfile.ZIP_DEFLATED) as zf: zf.writestr(build_filename(hash_digest, release, table_code, 'csv'), df.drop('geom', axis=1).to_csv(index=False)) zf.writestr(build_filename(hash_digest, release, table_code, 'geojson'), json.dumps(dataframe_to_feature_collection(df, 'geom'))) zf.writestr(f'metadata.json', json.dumps(metadata,indent=2)) zf.close() return tmp def move_file_to_s3(local_filename, hash_digest, destination_filename): """Considered making this a celery task, but don't think the file created on `web` is available on `worker` so lets wait to see if we even need the async. """ s3_client = boto3.client('s3') try: response = s3_client.upload_file(local_filename, "files.censusreporter.org", f"aggregation/{hash_digest}/{destination_filename}", ExtraArgs={'ACL': 'public-read'}) except ClientError as e: logger.error(e) return False return True def build_filename(hash_digest, release, table_code, extension): return f'{release}_{hash_digest}_{table_code}.{extension}' METADATA = { 'p1': { 'title': 'Race', 'releases': ['dec2010_pl94', 'dec2020_pl94'], 'columns': OrderedDict(( ('P0010001', 'P1-1: Total'), ('P0010002', 'P1-2: Population of one race'), ('P0010003', 'P1-3: White alone'), ('P0010004', 'P1-4: Black or African American alone'), ('P0010005', 'P1-5: American Indian and Alaska Native alone'), ('P0010006', 'P1-6: Asian alone'), ('P0010007', 'P1-7: Native Hawaiian and Other Pacific Islander alone'), ('P0010008', 'P1-8: Some other race alone'), ('P0010009', 'P1-9: Population of two or more races'), ('P0010010', 'P1-10: Population of two races'), ('P0010011', 'P1-11: White; Black or African American'), ('P0010012', 'P1-12: White; American Indian and Alaska Native'), ('P0010013', 'P1-13: White; Asian'), ('P0010014', 'P1-14: White; Native Hawaiian and Other Pacific Islander'), ('P0010015', 'P1-15: White; Some other race'), ('P0010016', 'P1-16: Black or African American; American Indian and Alaska Native'), ('P0010017', 'P1-17: Black or African American; Asian'), ('P0010018', 'P1-18: Black or African American; Native Hawaiian and Other Pacific Islander'), ('P0010019', 'P1-19: Black or African American; Some other race'), ('P0010020', 'P1-20: American Indian and Alaska Native; Asian'), ('P0010021', 'P1-21: American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander'), ('P0010022', 'P1-22: American Indian and Alaska Native; Some other race'), ('P0010023', 'P1-23: Asian; Native Hawaiian and Other Pacific Islander'), ('P0010024', 'P1-24: Asian; Some other race'), ('P0010025', 'P1-25: Native Hawaiian and Other Pacific Islander; Some other race'), ('P0010026', 'P1-26: Population of three races'), ('P0010027', 'P1-27: White; Black or African American; American Indian and Alaska Native'), ('P0010028', 'P1-28: White; Black or African American; Asian'), ('P0010029', 'P1-29: White; Black or African American; Native Hawaiian and Other Pacific Islander'), ('P0010030', 'P1-30: White; Black or African American; Some other race'), ('P0010031', 'P1-31: White; American Indian and Alaska Native; Asian'), ('P0010032', 'P1-32: White; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander'), ('P0010033', 'P1-33: White; American Indian and Alaska Native; Some other race'), ('P0010034', 'P1-34: White; Asian; Native Hawaiian and Other Pacific Islander'), ('P0010035', 'P1-35: White; Asian; Some other race'), ('P0010036', 'P1-36: White; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0010037', 'P1-37: Black or African American; American Indian and Alaska Native; Asian'), ('P0010038', 'P1-38: Black or African American; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander'), ('P0010039', 'P1-39: Black or African American; American Indian and Alaska Native; Some other race'), ('P0010040', 'P1-40: Black or African American; Asian; Native Hawaiian and Other Pacific Islander'), ('P0010041', 'P1-41: Black or African American; Asian; Some other race'), ('P0010042', 'P1-42: Black or African American; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0010043', 'P1-43: American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander'), ('P0010044', 'P1-44: American Indian and Alaska Native; Asian; Some other race'), ('P0010045', 'P1-45: American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0010046', 'P1-46: Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0010047', 'P1-47: Population of four races'), ('P0010048', 'P1-48: White; Black or African American; American Indian and Alaska Native; Asian'), ('P0010049', 'P1-49: White; Black or African American; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander'), ('P0010050', 'P1-50: White; Black or African American; American Indian and Alaska Native; Some other race'), ('P0010051', 'P1-51: White; Black or African American; Asian; Native Hawaiian and Other Pacific Islander'), ('P0010052', 'P1-52: White; Black or African American; Asian; Some other race'), ('P0010053', 'P1-53: White; Black or African American; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0010054', 'P1-54: White; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander'), ('P0010055', 'P1-55: White; American Indian and Alaska Native; Asian; Some other race'), ('P0010056', 'P1-56: White; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0010057', 'P1-57: White; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0010058', 'P1-58: Black or African American; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander'), ('P0010059', 'P1-59: Black or African American; American Indian and Alaska Native; Asian; Some other race'), ('P0010060', 'P1-60: Black or African American; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0010061', 'P1-61: Black or African American; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0010062', 'P1-62: American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0010063', 'P1-63: Population of five races'), ('P0010064', 'P1-64: White; Black or African American; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander'), ('P0010065', 'P1-65: White; Black or African American; American Indian and Alaska Native; Asian; Some other race'), ('P0010066', 'P1-66: White; Black or African American; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0010067', 'P1-67: White; Black or African American; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0010068', 'P1-68: White; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0010069', 'P1-69: Black or African American; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0010070', 'P1-70: Population of six races'), ('P0010071', 'P1-71: White; Black or African American; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander; Some other race'))) }, 'p2': { 'title': 'Hispanic or Latino, and not Hispanic or Latino by Race', 'releases': ['dec2010_pl94', 'dec2020_pl94'], 'columns': OrderedDict(( ('P0020001', 'P2-1: Total'), ('P0020002', 'P2-2: Hispanic or Latino'), ('P0020003', 'P2-3: Not Hispanic or Latino'), ('P0020004', 'P2-4: Population of one race'), ('P0020005', 'P2-5: White alone'), ('P0020006', 'P2-6: Black or African American alone'), ('P0020007', 'P2-7: American Indian and Alaska Native alone'), ('P0020008', 'P2-8: Asian alone'), ('P0020009', 'P2-9: Native Hawaiian and Other Pacific Islander alone'), ('P0020010', 'P2-10: Some other race alone'), ('P0020011', 'P2-11: Population of two or more races'), ('P0020012', 'P2-12: Population of two races'), ('P0020013', 'P2-13: White; Black or African American'), ('P0020014', 'P2-14: White; American Indian and Alaska Native'), ('P0020015', 'P2-15: White; Asian'), ('P0020016', 'P2-16: White; Native Hawaiian and Other Pacific Islander'), ('P0020017', 'P2-17: White; Some other race'), ('P0020018', 'P2-18: Black or African American; American Indian and Alaska Native'), ('P0020019', 'P2-19: Black or African American; Asian'), ('P0020020', 'P2-20: Black or African American; Native Hawaiian and Other Pacific Islander'), ('P0020021', 'P2-21: Black or African American; Some other race'), ('P0020022', 'P2-22: American Indian and Alaska Native; Asian'), ('P0020023', 'P2-23: American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander'), ('P0020024', 'P2-24: American Indian and Alaska Native; Some other race'), ('P0020025', 'P2-25: Asian; Native Hawaiian and Other Pacific Islander'), ('P0020026', 'P2-26: Asian; Some other race'), ('P0020027', 'P2-27: Native Hawaiian and Other Pacific Islander; Some other race'), ('P0020028', 'P2-28: Population of three races'), ('P0020029', 'P2-29: White; Black or African American; American Indian and Alaska Native'), ('P0020030', 'P2-30: White; Black or African American; Asian'), ('P0020031', 'P2-31: White; Black or African American; Native Hawaiian and Other Pacific Islander'), ('P0020032', 'P2-32: White; Black or African American; Some other race'), ('P0020033', 'P2-33: White; American Indian and Alaska Native; Asian'), ('P0020034', 'P2-34: White; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander'), ('P0020035', 'P2-35: White; American Indian and Alaska Native; Some other race'), ('P0020036', 'P2-36: White; Asian; Native Hawaiian and Other Pacific Islander'), ('P0020037', 'P2-37: White; Asian; Some other race'), ('P0020038', 'P2-38: White; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0020039', 'P2-39: Black or African American; American Indian and Alaska Native; Asian'), ('P0020040', 'P2-40: Black or African American; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander'), ('P0020041', 'P2-41: Black or African American; American Indian and Alaska Native; Some other race'), ('P0020042', 'P2-42: Black or African American; Asian; Native Hawaiian and Other Pacific Islander'), ('P0020043', 'P2-43: Black or African American; Asian; Some other race'), ('P0020044', 'P2-44: Black or African American; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0020045', 'P2-45: American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander'), ('P0020046', 'P2-46: American Indian and Alaska Native; Asian; Some other race'), ('P0020047', 'P2-47: American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0020048', 'P2-48: Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0020049', 'P2-49: Population of four races'), ('P0020050', 'P2-50: White; Black or African American; American Indian and Alaska Native; Asian'), ('P0020051', 'P2-51: White; Black or African American; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander'), ('P0020052', 'P2-52: White; Black or African American; American Indian and Alaska Native; Some other race'), ('P0020053', 'P2-53: White; Black or African American; Asian; Native Hawaiian and Other Pacific Islander'), ('P0020054', 'P2-54: White; Black or African American; Asian; Some other race'), ('P0020055', 'P2-55: White; Black or African American; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0020056', 'P2-56: White; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander'), ('P0020057', 'P2-57: White; American Indian and Alaska Native; Asian; Some other race'), ('P0020058', 'P2-58: White; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0020059', 'P2-59: White; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0020060', 'P2-60: Black or African American; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander'), ('P0020061', 'P2-61: Black or African American; American Indian and Alaska Native; Asian; Some other race'), ('P0020062', 'P2-62: Black or African American; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0020063', 'P2-63: Black or African American; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0020064', 'P2-64: American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0020065', 'P2-65: Population of five races'), ('P0020066', 'P2-66: White; Black or African American; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander'), ('P0020067', 'P2-67: White; Black or African American; American Indian and Alaska Native; Asian; Some other race'), ('P0020068', 'P2-68: White; Black or African American; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0020069', 'P2-69: White; Black or African American; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0020070', 'P2-70: White; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0020071', 'P2-71: Black or African American; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0020072', 'P2-72: Population of six races'), ('P0020073', 'P2-73: White; Black or African American; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander; Some other race'))) }, 'p3': { 'title': 'Race for the Population 18 Years and Over', 'releases': ['dec2010_pl94', 'dec2020_pl94'], 'columns': OrderedDict(( ('P0030001', 'P3-1: Total'), ('P0030002', 'P3-2: Population of one race'), ('P0030003', 'P3-3: White alone'), ('P0030004', 'P3-4: Black or African American alone'), ('P0030005', 'P3-5: American Indian and Alaska Native alone'), ('P0030006', 'P3-6: Asian alone'), ('P0030007', 'P3-7: Native Hawaiian and Other Pacific Islander alone'), ('P0030008', 'P3-8: Some other race alone'), ('P0030009', 'P3-9: Population of two or more races'), ('P0030010', 'P3-10: Population of two races'), ('P0030011', 'P3-11: White; Black or African American'), ('P0030012', 'P3-12: White; American Indian and Alaska Native'), ('P0030013', 'P3-13: White; Asian'), ('P0030014', 'P3-14: White; Native Hawaiian and Other Pacific Islander'), ('P0030015', 'P3-15: White; Some other race'), ('P0030016', 'P3-16: Black or African American; American Indian and Alaska Native'), ('P0030017', 'P3-17: Black or African American; Asian'), ('P0030018', 'P3-18: Black or African American; Native Hawaiian and Other Pacific Islander'), ('P0030019', 'P3-19: Black or African American; Some other race'), ('P0030020', 'P3-20: American Indian and Alaska Native; Asian'), ('P0030021', 'P3-21: American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander'), ('P0030022', 'P3-22: American Indian and Alaska Native; Some other race'), ('P0030023', 'P3-23: Asian; Native Hawaiian and Other Pacific Islander'), ('P0030024', 'P3-24: Asian; Some other race'), ('P0030025', 'P3-25: Native Hawaiian and Other Pacific Islander; Some other race'), ('P0030026', 'P3-26: Population of three races'), ('P0030027', 'P3-27: White; Black or African American; American Indian and Alaska Native'), ('P0030028', 'P3-28: White; Black or African American; Asian'), ('P0030029', 'P3-29: White; Black or African American; Native Hawaiian and Other Pacific Islander'), ('P0030030', 'P3-30: White; Black or African American; Some other race'), ('P0030031', 'P3-31: White; American Indian and Alaska Native; Asian'), ('P0030032', 'P3-32: White; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander'), ('P0030033', 'P3-33: White; American Indian and Alaska Native; Some other race'), ('P0030034', 'P3-34: White; Asian; Native Hawaiian and Other Pacific Islander'), ('P0030035', 'P3-35: White; Asian; Some other race'), ('P0030036', 'P3-36: White; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0030037', 'P3-37: Black or African American; American Indian and Alaska Native; Asian'), ('P0030038', 'P3-38: Black or African American; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander'), ('P0030039', 'P3-39: Black or African American; American Indian and Alaska Native; Some other race'), ('P0030040', 'P3-40: Black or African American; Asian; Native Hawaiian and Other Pacific Islander'), ('P0030041', 'P3-41: Black or African American; Asian; Some other race'), ('P0030042', 'P3-42: Black or African American; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0030043', 'P3-43: American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander'), ('P0030044', 'P3-44: American Indian and Alaska Native; Asian; Some other race'), ('P0030045', 'P3-45: American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0030046', 'P3-46: Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0030047', 'P3-47: Population of four races'), ('P0030048', 'P3-48: White; Black or African American; American Indian and Alaska Native; Asian'), ('P0030049', 'P3-49: White; Black or African American; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander'), ('P0030050', 'P3-50: White; Black or African American; American Indian and Alaska Native; Some other race'), ('P0030051', 'P3-51: White; Black or African American; Asian; Native Hawaiian and Other Pacific Islander'), ('P0030052', 'P3-52: White; Black or African American; Asian; Some other race'), ('P0030053', 'P3-53: White; Black or African American; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0030054', 'P3-54: White; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander'), ('P0030055', 'P3-55: White; American Indian and Alaska Native; Asian; Some other race'), ('P0030056', 'P3-56: White; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0030057', 'P3-57: White; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0030058', 'P3-58: Black or African American; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander'), ('P0030059', 'P3-59: Black or African American; American Indian and Alaska Native; Asian; Some other race'), ('P0030060', 'P3-60: Black or African American; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0030061', 'P3-61: Black or African American; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0030062', 'P3-62: American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0030063', 'P3-63: Population of five races'), ('P0030064', 'P3-64: White; Black or African American; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander'), ('P0030065', 'P3-65: White; Black or African American; American Indian and Alaska Native; Asian; Some other race'), ('P0030066', 'P3-66: White; Black or African American; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0030067', 'P3-67: White; Black or African American; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0030068', 'P3-68: White; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0030069', 'P3-69: Black or African American; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0030070', 'P3-70: Population of six races'), ('P0030071', 'P3-71: White; Black or African American; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander; Some other race'))) }, 'p4': { 'title': 'Hispanic or Latino, and not Hispanic or Latino by Race for the Population 18 Years and Over', 'releases': ['dec2010_pl94', 'dec2020_pl94'], 'columns': OrderedDict(( ('P0040001', 'P4-1: Total'), ('P0040002', 'P4-2: Hispanic or Latino'), ('P0040003', 'P4-3: Not Hispanic or Latino'), ('P0040004', 'P4-4: Population of one race'), ('P0040005', 'P4-5: White alone'), ('P0040006', 'P4-6: Black or African American alone'), ('P0040007', 'P4-7: American Indian and Alaska Native alone'), ('P0040008', 'P4-8: Asian alone'), ('P0040009', 'P4-9: Native Hawaiian and Other Pacific Islander alone'), ('P0040010', 'P4-10: Some other race alone'), ('P0040011', 'P4-11: Population of two or more races'), ('P0040012', 'P4-12: Population of two races'), ('P0040013', 'P4-13: White; Black or African American'), ('P0040014', 'P4-14: White; American Indian and Alaska Native'), ('P0040015', 'P4-15: White; Asian'), ('P0040016', 'P4-16: White; Native Hawaiian and Other Pacific Islander'), ('P0040017', 'P4-17: White; Some other race'), ('P0040018', 'P4-18: Black or African American; American Indian and Alaska Native'), ('P0040019', 'P4-19: Black or African American; Asian'), ('P0040020', 'P4-20: Black or African American; Native Hawaiian and Other Pacific Islander'), ('P0040021', 'P4-21: Black or African American; Some other race'), ('P0040022', 'P4-22: American Indian and Alaska Native; Asian'), ('P0040023', 'P4-23: American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander'), ('P0040024', 'P4-24: American Indian and Alaska Native; Some other race'), ('P0040025', 'P4-25: Asian; Native Hawaiian and Other Pacific Islander'), ('P0040026', 'P4-26: Asian; Some other race'), ('P0040027', 'P4-27: Native Hawaiian and Other Pacific Islander; Some other race'), ('P0040028', 'P4-28: Population of three races'), ('P0040029', 'P4-29: White; Black or African American; American Indian and Alaska Native'), ('P0040030', 'P4-30: White; Black or African American; Asian'), ('P0040031', 'P4-31: White; Black or African American; Native Hawaiian and Other Pacific Islander'), ('P0040032', 'P4-32: White; Black or African American; Some other race'), ('P0040033', 'P4-33: White; American Indian and Alaska Native; Asian'), ('P0040034', 'P4-34: White; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander'), ('P0040035', 'P4-35: White; American Indian and Alaska Native; Some other race'), ('P0040036', 'P4-36: White; Asian; Native Hawaiian and Other Pacific Islander'), ('P0040037', 'P4-37: White; Asian; Some other race'), ('P0040038', 'P4-38: White; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0040039', 'P4-39: Black or African American; American Indian and Alaska Native; Asian'), ('P0040040', 'P4-40: Black or African American; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander'), ('P0040041', 'P4-41: Black or African American; American Indian and Alaska Native; Some other race'), ('P0040042', 'P4-42: Black or African American; Asian; Native Hawaiian and Other Pacific Islander'), ('P0040043', 'P4-43: Black or African American; Asian; Some other race'), ('P0040044', 'P4-44: Black or African American; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0040045', 'P4-45: American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander'), ('P0040046', 'P4-46: American Indian and Alaska Native; Asian; Some other race'), ('P0040047', 'P4-47: American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0040048', 'P4-48: Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0040049', 'P4-49: Population of four races'), ('P0040050', 'P4-50: White; Black or African American; American Indian and Alaska Native; Asian'), ('P0040051', 'P4-51: White; Black or African American; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander'), ('P0040052', 'P4-52: White; Black or African American; American Indian and Alaska Native; Some other race'), ('P0040053', 'P4-53: White; Black or African American; Asian; Native Hawaiian and Other Pacific Islander'), ('P0040054', 'P4-54: White; Black or African American; Asian; Some other race'), ('P0040055', 'P4-55: White; Black or African American; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0040056', 'P4-56: White; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander'), ('P0040057', 'P4-57: White; American Indian and Alaska Native; Asian; Some other race'), ('P0040058', 'P4-58: White; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0040059', 'P4-59: White; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0040060', 'P4-60: Black or African American; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander'), ('P0040061', 'P4-61: Black or African American; American Indian and Alaska Native; Asian; Some other race'), ('P0040062', 'P4-62: Black or African American; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0040063', 'P4-63: Black or African American; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0040064', 'P4-64: American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0040065', 'P4-65: Population of five races'), ('P0040066', 'P4-66: White; Black or African American; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander'), ('P0040067', 'P4-67: White; Black or African American; American Indian and Alaska Native; Asian; Some other race'), ('P0040068', 'P4-68: White; Black or African American; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0040069', 'P4-69: White; Black or African American; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0040070', 'P4-70: White; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0040071', 'P4-71: Black or African American; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander; Some other race'), ('P0040072', 'P4-72: Population of six races'), ('P0040073', 'P4-73: White; Black or African American; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander; Some other race'))), }, 'p5': { 'title': 'Group Quarters Population by Major Group Quarters Type', 'releases': ['dec2020_pl94'], 'columns': OrderedDict(( ('P0050001', 'Total:'), ('P0050002', 'Institutionalized population:'), ('P0050003', 'Correctional facilities for adults'), ('P0050004', 'Juvenile facilities'), ('P0050005', 'Nursing facilities/Skilled-nursing facilities'), ('P0050006', 'Other institutional facilities'), ('P0050007', 'Noninstitutionalized population:'), ('P0050008', 'College/University student housing'), ('P0050009', 'Military quarters'), ('P0050010', 'Other noninstitutional facilities'), )) }, 'h1': { 'title': 'Occupancy Status', 'releases': ['dec2010_pl94', 'dec2020_pl94'], 'columns': OrderedDict(( ('H0010001', 'H1-1: Total'), ('H0010002', 'H1-2: Occupied'), ('H0010003', 'H1-3: Vacant'))), } }
mccolors/getcolors.py
wangtt03/raspberryjammod
338
12713179
<reponame>wangtt03/raspberryjammod from PIL import Image from os import listdir def averageColor(filename): image = Image.open(filename).convert('RGB') r,g,b = 0.,0.,0. pixels = image.size[0] * image.size[1] for x in range(image.size[0]): for y in range(image.size[1]): rgb = image.getpixel((x,y)) r += rgb[0] g += rgb[1] b += rgb[2] image.close() return int(round(r/pixels)), int(round(g/pixels)), int(round(b/pixels)) print("colorDictionary={") for f in listdir('assets/minecraft/textures/blocks'): if f.lower().endswith(".png"): print(" '"+f[:-4]+"': "+str(averageColor('assets/minecraft/textures/blocks/'+f))+",") print("}");
Pyto/Samples/Matplotlib/polar_demo.py
snazari/Pyto
701
12713182
<filename>Pyto/Samples/Matplotlib/polar_demo.py<gh_stars>100-1000 """ ========== Polar Demo ========== Demo of a line plot on a polar axis. """ import numpy as np import matplotlib.pyplot as plt r = np.arange(0, 2, 0.01) theta = 2 * np.pi * r ax = plt.subplot(111, projection='polar') ax.plot(theta, r) ax.set_rmax(2) ax.set_rticks([0.5, 1, 1.5, 2]) # Less radial ticks ax.set_rlabel_position(-22.5) # Move radial labels away from plotted line ax.grid(True) ax.set_title("A line plot on a polar axis", va='bottom') plt.show() ############################################################################# # # ------------ # # References # """""""""" # # The use of the following functions, methods, classes and modules is shown # in this example: import matplotlib matplotlib.axes.Axes.plot matplotlib.projections.polar matplotlib.projections.polar.PolarAxes matplotlib.projections.polar.PolarAxes.set_rticks matplotlib.projections.polar.PolarAxes.set_rmax matplotlib.projections.polar.PolarAxes.set_rlabel_position
src/oci/key_management/models/vault_usage.py
Manny27nyc/oci-python-sdk
249
12713194
# coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class VaultUsage(object): """ VaultUsage model. """ def __init__(self, **kwargs): """ Initializes a new VaultUsage object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param key_count: The value to assign to the key_count property of this VaultUsage. :type key_count: int :param key_version_count: The value to assign to the key_version_count property of this VaultUsage. :type key_version_count: int :param software_key_count: The value to assign to the software_key_count property of this VaultUsage. :type software_key_count: int :param software_key_version_count: The value to assign to the software_key_version_count property of this VaultUsage. :type software_key_version_count: int """ self.swagger_types = { 'key_count': 'int', 'key_version_count': 'int', 'software_key_count': 'int', 'software_key_version_count': 'int' } self.attribute_map = { 'key_count': 'keyCount', 'key_version_count': 'keyVersionCount', 'software_key_count': 'softwareKeyCount', 'software_key_version_count': 'softwareKeyVersionCount' } self._key_count = None self._key_version_count = None self._software_key_count = None self._software_key_version_count = None @property def key_count(self): """ **[Required]** Gets the key_count of this VaultUsage. The number of keys in this vault that persist on a hardware security module (HSM), across all compartments, excluding keys in a `DELETED` state. :return: The key_count of this VaultUsage. :rtype: int """ return self._key_count @key_count.setter def key_count(self, key_count): """ Sets the key_count of this VaultUsage. The number of keys in this vault that persist on a hardware security module (HSM), across all compartments, excluding keys in a `DELETED` state. :param key_count: The key_count of this VaultUsage. :type: int """ self._key_count = key_count @property def key_version_count(self): """ **[Required]** Gets the key_version_count of this VaultUsage. The number of key versions in this vault that persist on a hardware security module (HSM), across all compartments, excluding key versions in a `DELETED` state. :return: The key_version_count of this VaultUsage. :rtype: int """ return self._key_version_count @key_version_count.setter def key_version_count(self, key_version_count): """ Sets the key_version_count of this VaultUsage. The number of key versions in this vault that persist on a hardware security module (HSM), across all compartments, excluding key versions in a `DELETED` state. :param key_version_count: The key_version_count of this VaultUsage. :type: int """ self._key_version_count = key_version_count @property def software_key_count(self): """ Gets the software_key_count of this VaultUsage. The number of keys in this vault that persist on the server, across all compartments, excluding keys in a `DELETED` state. :return: The software_key_count of this VaultUsage. :rtype: int """ return self._software_key_count @software_key_count.setter def software_key_count(self, software_key_count): """ Sets the software_key_count of this VaultUsage. The number of keys in this vault that persist on the server, across all compartments, excluding keys in a `DELETED` state. :param software_key_count: The software_key_count of this VaultUsage. :type: int """ self._software_key_count = software_key_count @property def software_key_version_count(self): """ Gets the software_key_version_count of this VaultUsage. The number of key versions in this vault that persist on the server, across all compartments, excluding key versions in a `DELETED` state. :return: The software_key_version_count of this VaultUsage. :rtype: int """ return self._software_key_version_count @software_key_version_count.setter def software_key_version_count(self, software_key_version_count): """ Sets the software_key_version_count of this VaultUsage. The number of key versions in this vault that persist on the server, across all compartments, excluding key versions in a `DELETED` state. :param software_key_version_count: The software_key_version_count of this VaultUsage. :type: int """ self._software_key_version_count = software_key_version_count def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
tests/integration-v1/cattletest/core/test_ha_config.py
lifecontrol/cattle
482
12713205
from common import * # NOQA import json @pytest.mark.nonparallel def test_ha_config(admin_user_client): ha_config = find_one(admin_user_client.list_ha_config) admin_user_client.update(ha_config, enabled=False) ha_config = find_one(admin_user_client.list_ha_config) assert not ha_config.enabled admin_user_client.update(ha_config, enabled=True) ha_config = find_one(admin_user_client.list_ha_config) assert ha_config.enabled admin_user_client.update(ha_config, enabled=False) ha_config = find_one(admin_user_client.list_ha_config) assert not ha_config.enabled assert ha_config.dbHost in ['localhost', '127.0.0.1'] assert ha_config.dbSize > 0 def test_ha_config_script(admin_user_client): ha_config = find_one(admin_user_client.list_ha_config) create_url = ha_config.actions['createscript'] r = requests.post(create_url, data=json.dumps({ 'clusterSize': 5, 'httpPort': 1234, 'httpsPort': 1235, 'redisPort': 6375, 'zookeeperQuorumPort': 6375, 'zookeeperLeaderPort': 6375, 'zookeeperClientPort': 6375, 'cert': 'cert', 'certChain': 'certChain', 'key': 'key', 'hostRegistrationUrl': 'https://....', 'swarmEnabled': False, 'httpEnabled': False, })) assert r.text is not None assert r.status_code == 200 def check(): ha_config = find_one(admin_user_client.list_ha_config) return ha_config.clusterSize == 5 wait_for(check) @pytest.mark.nonparallel def test_ha_config_dbdump(admin_user_client): ha_config = find_one(admin_user_client.list_ha_config) dump = ha_config.links['dbdump'] r = requests.get(dump) assert r.text is not None assert r.status_code == 200
ci/docker/docker-in-docker-image/_conftest.py
bugtsa/avito-android
347
12713273
import pytest import testinfra check_output = testinfra.get_host( 'local://' ).check_output class CommandLineArguments: def __init__(self, docker_image): self.docker_image = docker_image @pytest.fixture() def host(request): arguments = _parse_command_line_arguments(request) image_id = arguments.docker_image or check_output('docker build -q %s', request.param) container_id = check_output( 'docker run -d --entrypoint tail %s -f /dev/null', image_id ) def teardown(): check_output('docker rm -f %s', container_id) request.addfinalizer(teardown) return testinfra.get_host('docker://' + container_id) def _parse_command_line_arguments(request): option_docker_image = request.config.getoption('--docker-image') return CommandLineArguments( docker_image=option_docker_image ) def pytest_addoption(parser): parser.addoption( '--docker-image', action='store', type='string', help='Login for admin bitbucket user', required=False ) def pytest_generate_tests(metafunc): if 'host' in metafunc.fixturenames: marker = metafunc.definition.get_closest_marker('docker') if marker is None: raise Exception('docker marker is required for infrastructure tests') path = marker.kwargs.get('path') if path is None: path = '.' metafunc.parametrize( 'host', [path], indirect=True, scope='module' )
tests/kibana_test.py
perceptron01/elastalert2
250
12713282
<gh_stars>100-1000 import copy import json from elastalert.kibana import add_filter from elastalert.kibana import dashboard_temp from elastalert.kibana import filters_from_dashboard from elastalert.kibana import kibana4_dashboard_link from elastalert.util import EAException # Dashboard schema with only filters section test_dashboard = '''{ "title": "AD Lock Outs", "services": { "filter": { "list": { "0": { "type": "time", "field": "@timestamp", "from": "now-7d", "to": "now", "mandate": "must", "active": true, "alias": "", "id": 0 }, "1": { "type": "field", "field": "_log_type", "query": "\\"active_directory\\"", "mandate": "must", "active": true, "alias": "", "id": 1 }, "2": { "type": "querystring", "query": "ad.security_auditing_code:4740", "mandate": "must", "active": true, "alias": "", "id": 2 }, "3": { "type": "range", "field": "@timestamp", "mandate": "must", "active": true, "alias": "", "from": "2014-09-27T12:34:45Z", "to": "2014-09-26T12:34:45Z", "id": 3 }, "4": { "field": "@timestamp", "alias": "", "mandate": "mustNot", "active": true, "query": "that", "type": "field", "id": 4 }, "5": { "field": "@timestamp", "alias": "", "mandate": "either", "active": true, "query": "that", "type": "field", "id": 5 } }, "ids": [ 0, 1, 2, 3, 4, 5 ] } } }''' test_dashboard = json.loads(test_dashboard) test_dashboard2 = '''{ "title": "AD Lock Outs", "services": { "filter": { "list": { "0": { "type": "time", "field": "@timestamp", "from": "now-7d", "to": "now", "mandate": "must", "active": true, "alias": "", "id": 0 }, "1": { "type": "field", "field": "_log_type", "query": "\\"active_directory\\"", "mandate": "must", "active": true, "alias": "", "id": 1 } }, "ids": [ 0, 1 ] } } }''' test_dashboard2 = json.loads(test_dashboard2) def test_filters_from_dashboard(): filters = filters_from_dashboard(test_dashboard) assert {'term': {'_log_type': '"active_directory"'}} in filters assert {'query': {'query_string': {'query': 'ad.security_auditing_code:4740'}}} in filters assert {'range': {'@timestamp': {'from': '2014-09-27T12:34:45Z', 'to': '2014-09-26T12:34:45Z'}}} in filters assert {'not': {'term': {'@timestamp': 'that'}}} in filters assert {'or': [{'term': {'@timestamp': 'that'}}]} in filters def test_filters_from_dashboard2(): filters = filters_from_dashboard(test_dashboard2) assert {'term': {'_log_type': '"active_directory"'}} in filters def test_add_filter(): basic_filter = {"term": {"this": "that"}} db = copy.deepcopy(dashboard_temp) add_filter(db, basic_filter) assert db['services']['filter']['list']['1'] == { 'field': 'this', 'alias': '', 'mandate': 'must', 'active': True, 'query': '"that"', 'type': 'field', 'id': 1 } list_filter = {"term": {"this": ["that", "those"]}} db = copy.deepcopy(dashboard_temp) add_filter(db, list_filter) assert db['services']['filter']['list']['1'] == { 'field': 'this', 'alias': '', 'mandate': 'must', 'active': True, 'query': '("that" AND "those")', 'type': 'field', 'id': 1 } not_filter = {'not': {'term': {'this': 'that'}}} db = copy.deepcopy(dashboard_temp) add_filter(db, not_filter) assert db['services']['filter']['list']['1'] == { 'field': 'this', 'alias': '', 'mandate': 'mustNot', 'active': True, 'query': '"that"', 'type': 'field', 'id': 1 } START_TIMESTAMP = '2014-09-26T12:34:45Z' END_TIMESTAMP = '2014-09-27T12:34:45Z' range_filter = {'range': {'@timestamp': {'lte': END_TIMESTAMP, 'gt': START_TIMESTAMP}}} db = copy.deepcopy(dashboard_temp) add_filter(db, range_filter) assert db['services']['filter']['list']['1'] == { 'field': '@timestamp', 'alias': '', 'mandate': 'must', 'active': True, 'lte': '2014-09-27T12:34:45Z', 'gt': '2014-09-26T12:34:45Z', 'type': 'range', 'id': 1 } query_filter = {'query': {'wildcard': 'this*that'}} db = copy.deepcopy(dashboard_temp) add_filter(db, query_filter) assert db['services']['filter']['list']['1'] == { 'alias': '', 'mandate': 'must', 'active': True, 'id': 1 } query_string_filter = {'query': {'query_string': {'query': 'ad.security_auditing_code:4740'}}} db = copy.deepcopy(dashboard_temp) add_filter(db, query_string_filter) assert db['services']['filter']['list']['1'] == { 'alias': '', 'mandate': 'must', 'active': True, 'query': 'ad.security_auditing_code:4740', 'type': 'querystring', 'id': 1 } try: error_filter = {'bool': {'must': [{'range': {'@timestamp': {'lte': END_TIMESTAMP, 'gt': START_TIMESTAMP}}}]}} db = copy.deepcopy(dashboard_temp) add_filter(db, error_filter) except EAException as ea: excepted = "Could not parse filter {'bool': {'must': [{'range': {'@timestamp': " excepted += "{'lte': '2014-09-27T12:34:45Z', 'gt': '2014-09-26T12:34:45Z'}}}]}} for Kibana" assert excepted == str(ea) def test_url_encoded(): url = kibana4_dashboard_link('example.com/#/Dashboard', '2015-01-01T00:00:00Z', '2017-01-01T00:00:00Z') assert not any([special_char in url for special_char in ["',\":;?&=()"]]) def test_url_env_substitution(environ): environ.update({ 'KIBANA_HOST': 'kibana', 'KIBANA_PORT': '5601', }) url = kibana4_dashboard_link( 'http://$KIBANA_HOST:$KIBANA_PORT/#/Dashboard', '2015-01-01T00:00:00Z', '2017-01-01T00:00:00Z', ) assert url.startswith('http://kibana:5601/#/Dashboard')
src/tests/test_log.py
cclauss/happymac
244
12713340
from collections import defaultdict import datetime import log from mock import patch import os import os.path import preferences import process import psutil # # TODO: Fix tests, needs work on Auger's automatic test generator # from psutil import Popen import sys import unittest import utils import versions.v00001.process import versions.v00001.suspender from versions.v00001.suspender import defaultdict import versions.v00001.utils from versions.v00001.utils import OnMainThread class LogTest(unittest.TestCase): @patch.object(os.path, 'join') @patch.object(os.path, 'exists') def test_get_log_path(self, mock_exists, mock_join): mock_exists.return_value = True mock_join.return_value = '/Users/chris/HappyMacApp/downloads/v00001' self.assertEqual( log.get_log_path(), '/Users/chris/HappyMacApp/happymac_log.txt' ) def test_log(self): self.assertEqual( log.log(message='Google process 44784 ()',error=None), None ) if __name__ == "__main__": unittest.main()