max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
tests/functional/basic/test_basic.py
tomasfarias/dbt-core
799
12752529
import pytest from dbt.tests.util import run_dbt, get_manifest my_model_sql = """ select 1 as fun """ @pytest.fixture(scope="class") def models(): return {"my_model.sql": my_model_sql} def test_basic(project): # Tests that a project with a single model works results = run_dbt(["run"]) assert len(results) == 1 manifest = get_manifest(project.project_root) assert "model.test.my_model" in manifest.nodes
test/nn/test_reshape.py
mrmotallebi/pytorch_geometric
12,651
12752532
import torch from torch_geometric.nn.reshape import Reshape def test_reshape(): x = torch.randn(10, 4) op = Reshape(5, 2, 4) assert op.__repr__() == 'Reshape(5, 2, 4)' assert op(x).size() == (5, 2, 4) assert op(x).view(10, 4).tolist() == x.tolist()
src/genie/libs/parser/nxos/show_system.py
balmasea/genieparser
204
12752559
<filename>src/genie/libs/parser/nxos/show_system.py """show_system.py NXOS parsers for the following show commands: * 'show system internal sysmgr service name <WORD>' * 'show system internal l2fwder Mac' * 'show system internal processes memory' """ # Python import re # Metaparser from genie.metaparser import MetaParser from genie.metaparser.util.schemaengine import Schema, Any, Optional, Or, And,\ Default, Use # ==================================================================== # Schema for 'show system internal sysmgr service name <process>' # ==================================================================== class ShowSystemInternalSysmgrServiceNameSchema(MetaParser): """Schema for show system internal sysmgr service name <process>""" schema = {'instance': {Any(): {'tag': {Any(): {'process_name': str, 'internal_id': int, 'uuid': str, 'state': str, 'plugin_id': str, 'state_start_date': str, Optional('last_restart_date'): str, Optional('pid'): int, Optional('previous_pid'): int, Optional('sap'): int, Optional('restart_count'): int, Optional('reboot_state'): str, Optional('last_terminate_reason'): str} }, } }, } class ShowSystemInternalSysmgrServiceName( ShowSystemInternalSysmgrServiceNameSchema): """Parser for show system internal sysmgr service name <process>""" cli_command = 'show system internal sysmgr service name {process}' def cli(self, process,output=None): if process: cmd = self.cli_command.format(process=process) else: cmd = "" if output is None: out = self.device.execute(cmd) else: out = output ret_dict = {} for line in out.splitlines(): line = line.strip() # Service "bfdc" ("bfdc", 3): # Service "__inst_012__isis" ("isis", 61): # Service "feature-mgr" ("feature-mgr", 135): p1 = re.compile(r'^Service +\"(?P<inst>[\w\-]+)\" *' '\(\"(?P<process_name>[\w\-]+)\", *' '(?P<internal_id>\d+)\):$') m = p1.match(line) if m: if 'instance' not in ret_dict: ret_dict['instance'] = {} inst = m.groupdict()['inst'] if inst not in ret_dict['instance']: ret_dict['instance'][inst] = {} process_name = m.groupdict()['process_name'] internal_id = int(m.groupdict()['internal_id']) # initial for each process pid = sap = restart_count = previous_pid = None last_restart_date = reboot_state = last_terminate_reason = None continue # UUID = 0x2C7, PID = 6547, SAP = 1008 # UUID = 0x42000118, -- Currently not running -- p2 = re.compile(r'^UUID *= *(?P<uuid>\w+), *' '((PID *= *(?P<pid>\d+), *' 'SAP *= *(?P<sap>\d+))' '|(-- Currently not running --))$') m = p2.match(line) if m: uuid = m.groupdict()['uuid'] if m.groupdict()['pid']: pid = int(m.groupdict()['pid']) else: pid = None if m.groupdict()['sap']: sap = int(m.groupdict()['sap']) else: sap = None continue # State: SRV_STATE_WAIT_SPAWN_CONDITION (entered at time Tue Mar 26 17:31:06 2013). # State: SRV_STATE_HAP_FAILED [unstable] (entered at time Thu Oct 26 13:46:32 2017). p3 = re.compile(r'^State: *(?P<state>[\w\s\[\]]+) *' '\(entered +at +time +' '(?P<state_start_date>[\w\s\:]+)\).$') m = p3.match(line) if m: state = m.groupdict()['state'].strip() state_start_date = m.groupdict()['state_start_date'] continue # Restart count: 1 p4 = re.compile(r'^Restart +count: +(?P<restart_count>\d+)$') m = p4.match(line) if m: if m.groupdict()['restart_count']: restart_count = int(m.groupdict()['restart_count']) else: restart_count = None continue # Time of last restart: Sat Jul 1 14:49:10 2017. p5 = re.compile(r'^Time +of +last +restart: +' '(?P<last_restart_date>[\w\s\:]+).$') m = p5.match(line) if m: last_restart_date = m.groupdict()['last_restart_date'] continue # The service never crashed since the last reboot. # The service has never been started since the last reboot. p6 = re.compile(r'The service never crashed since the last reboot.') m = p6.match(line) if m: reboot_state = 'never_crashed' continue p6_1 = re.compile(r'The service has never been started since the last reboot.') m = p6_1.match(line) if m: reboot_state = 'never_started' continue # Previous PID: 2176 p7 = re.compile(r'^Previous +PID: +(?P<previous_pid>\d+)$') m = p7.match(line) if m: previous_pid = int(m.groupdict()['previous_pid']) continue # Reason of last termination: SYSMGR_DEATH_REASON_FAILURE_SIGNAL p8 = re.compile(r'^Reason +of +last +termination: +' '(?P<last_terminate_reason>\w+)$') m = p8.match(line) if m: last_terminate_reason = m.groupdict()['last_terminate_reason'] continue # Plugin ID: 0 p9 = re.compile(r'^Plugin +ID: +(?P<plugin_id>\d+)$') m = p9.match(line) if m: plugin_id = m.groupdict()['plugin_id'] ret_dict['instance'][inst]['tag'][tag]['plugin_id'] = plugin_id continue # Tag = N/A # Tag = 100 # Tag = l3vpn p10 = re.compile(r'^Tag *= *(?P<tag>(N\/A)|(\S+))$') m = p10.match(line) if m: tag = m.groupdict()['tag'] if 'tag' not in ret_dict['instance'][inst]: ret_dict['instance'][inst]['tag'] = {} if tag not in ret_dict['instance'][inst]['tag']: ret_dict['instance'][inst]['tag'][tag] = {} if 'process_name': ret_dict['instance'][inst]['tag'][tag]['process_name'] = process_name if 'internal_id': ret_dict['instance'][inst]['tag'][tag]['internal_id'] = internal_id if 'uuid': ret_dict['instance'][inst]['tag'][tag]['uuid'] = uuid if 'state': ret_dict['instance'][inst]['tag'][tag]['state'] = state if 'state_start_date': ret_dict['instance'][inst]['tag'][tag]['state_start_date'] = state_start_date if last_restart_date: ret_dict['instance'][inst]['tag'][tag]\ ['last_restart_date'] = last_restart_date if pid: ret_dict['instance'][inst]['tag'][tag]['pid'] = pid if previous_pid: ret_dict['instance'][inst]['tag'][tag]\ ['previous_pid'] = previous_pid if sap: ret_dict['instance'][inst]['tag'][tag]['sap'] = sap if restart_count: ret_dict['instance'][inst]['tag'][tag]\ ['restart_count'] = restart_count if reboot_state: ret_dict['instance'][inst]['tag'][tag]\ ['reboot_state'] = reboot_state if last_terminate_reason: ret_dict['instance'][inst]['tag'][tag]\ ['last_terminate_reason'] = last_terminate_reason continue return ret_dict # ==================================================================== # Schema for 'show system internal l2fwder Mac' # ==================================================================== class ShowSystemInternalL2fwderMacSchema(MetaParser): """Schema for show system internal l2fwder Mac""" schema = {'vlans': {Any(): {'mac_addresses': {Any(): {'mac_type': str, 'mac_aging_time': str, 'entry': str, 'secure': str, 'ntfy': str, 'ports': str, } }, } }, } # ==================================================================== # Parser for 'show system internal l2fwder Mac' # ==================================================================== class ShowSystemInternalL2fwderMac(ShowSystemInternalL2fwderMacSchema): """Parser for show system internal l2fwder Mac""" cli_command = 'show system internal l2fwder Mac' def cli(self,output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output ret_dict = {} for line in out.splitlines(): line = line.strip() # G 1008 5e01.80ff.0007 static - F F sup-eth1(R) p1 = re.compile(r'^\s*(?P<entry>[A-Z\*\(\+\)]+) +(?P<vlan>[0-9]+) ' '+(?P<mac_address>[0-9a-z\.]+) +(?P<mac_type>[a-z]+) ' '+(?P<age>[0-9\-\:]+) +(?P<secure>[A-Z]+) +(?P<ntfy>[A-Z]+) ' '+(?P<ports>[a-zA-Z0-9\-\(\)\s\.\/]+)$') m = p1.match(line) if m: vlan = str(m.groupdict()['vlan']) mac_address = str(m.groupdict()['mac_address']) if 'vlans' not in ret_dict: ret_dict['vlans'] = {} if vlan not in ret_dict['vlans']: ret_dict['vlans'][vlan] = {} if 'mac_addresses' not in ret_dict['vlans'][vlan]: ret_dict['vlans'][vlan]['mac_addresses'] = {} ret_dict['vlans'][vlan]['mac_addresses'][mac_address] = {} ret_dict['vlans'][vlan]['mac_addresses'][mac_address]['mac_type'] = \ str(m.groupdict()['mac_type']) ret_dict['vlans'][vlan]['mac_addresses'][mac_address]['mac_aging_time'] = \ str(m.groupdict()['age']) ret_dict['vlans'][vlan]['mac_addresses'][mac_address]['entry'] = \ str(m.groupdict()['entry']) ret_dict['vlans'][vlan]['mac_addresses'][mac_address]['secure'] = \ str(m.groupdict()['secure']) ret_dict['vlans'][vlan]['mac_addresses'][mac_address]['ntfy'] = \ str(m.groupdict()['ntfy']) ret_dict['vlans'][vlan]['mac_addresses'][mac_address]['ports'] = \ str(m.groupdict()['ports']) continue return ret_dict class ShowSystemInternalKernelMeminfoSchema(MetaParser): """ Schema for show system internal kernel meminfo """ schema = { 'mem': { 'memtotal_kb': int, 'memfree_kb': int, 'memavailable_kb': int, }, 'buffers_kb': int, 'cached_kb': int, 'active': { 'active_kb': int, 'inactive_kb': int, 'active(anon)_kb': int, 'inactive(anon)_kb': int, 'active(file)_kb': int, 'inactive(file)_kb': int, }, 'unevictable_kb': int, 'mlocked_kb': int, 'swap': { 'swapcached_kb': int, 'swaptotal_kb': int, 'swapfree_kb': int, }, 'dirty_kb': int, 'writeback_kb': int, 'anonpages_kb': int, 'mapped_kb': int, 'shmem_kb': int, 'slab_kb': int, 'sreclaimable_kb': int, 'sunreclaim_kb': int, 'kernelstack_kb': int, 'pagetables_kb': int, 'nfs_unstable_kb': int, 'bounce_kb': int, 'writebacktmp_kb': int, 'commitlimit_kb': int, 'committed_as_kb': int, 'vmalloc': { 'vmalloctotal_kb': int, 'vmallocused_kb': int, 'vmallocchunk_kb': int, }, 'hardwarecorrupted_kb': int, 'hugepages': { 'hugepages_total': int, 'hugepages_free': int, 'hugepages_rsvd': int, 'hugepages_surp': int, 'hugepagesize_kb': int, }, 'directmap4k_kb': int, 'directmap2m_kb': int, } class ShowSystemInternalKernelMeminfo(ShowSystemInternalKernelMeminfoSchema): """ Parser for show system internal kernel meminfo """ cli_command = 'show system internal system internal kernel meminfo' def cli(self, output=None): if not output: out = self.device.execute(self.cli_command) else: out = output # MemTotal: 5873172 kB p1 = re.compile(r'(?P<mem_type>Mem.+):\s+(?P<amount>\d+)\skB$') # Active(file): 236740 kB p2 = re.compile(r'(?i)(?P<active_state>[in]*active.*):\s+(?P<amount>\d+)\skB$') # SwapTotal: 0 kB p3 = re.compile(r'(?P<swap_type>Swap.+):\s+(?P<amount>\d+)\skB$') # VmallocChunk: 34359477316 kB p4 = re.compile(r'(?P<vmalloc_type>Vmalloc.+):\s+(?P<amount>\d+)\skB$') # HugePages_Surp: 0 p5 = re.compile(r'(?P<hugepages_type>Huge.+):\s+(?P<amount>\d+)$') # Hugepagesize: 2048 kB p6 = re.compile(r'(?P<hugepages_type>Huge.+):\s+(?P<amount>\d+)\s+kB$') # Buffers: 38212 kB p7 = re.compile(r'(?P<key>.+):\s+(?P<amount>\d+)(\skB)?$') ret_dict = {} for line in out.splitlines(): line = line.strip() # MemTotal: 5873172 kB m = p1.match(line) if m: group = m.groupdict() mem_dict = ret_dict.setdefault('mem', {}) key = group['mem_type'].lower() + '_kb' mem_dict[key] = int(group['amount']) continue # Active(file): 236740 kB m = p2.match(line) if m: group = m.groupdict() active_dict = ret_dict.setdefault('active', {}) key = group['active_state'].lower() + '_kb' active_dict[key] = int(group['amount']) continue # SwapTotal: 0 kB m = p3.match(line) if m: group = m.groupdict() swap_dict = ret_dict.setdefault('swap', {}) key = group['swap_type'].lower() + '_kb' swap_dict[key] = int(group['amount']) continue # VmallocChunk: 34359477316 kB m = p4.match(line) if m: group = m.groupdict() vmalloc_dict = ret_dict.setdefault('vmalloc', {}) key = group['vmalloc_type'].lower() + '_kb' vmalloc_dict[key] = int(group['amount']) continue # HugePages_Surp: 0 m = p5.match(line) if m: group = m.groupdict() hugepages_dict = ret_dict.setdefault('hugepages', {}) key = group['hugepages_type'].lower() hugepages_dict[key] = int(group['amount']) continue # Hugepagesize: 2048 kB m = p6.match(line) if m: group = m.groupdict() hugepages_dict = ret_dict.setdefault('hugepages', {}) key = group['hugepages_type'].lower() + '_kb' hugepages_dict[key] = int(group['amount']) continue # Buffers: 38212 kB m = p7.match(line) if m: group = m.groupdict() key = group['key'].lower() + '_kb' ret_dict[key] = int(group['amount']) continue return ret_dict class ShowSystemResourcesSchema(MetaParser): """ Schema for show system resources """ schema = { 'load_avg': { 'load_avg_1min': float, 'load_avg_5min': float, 'load_avg_15min': float, }, 'processes': { 'processes_total': int, 'processes_running': int, }, 'cpu_state': { 'cpu_state_user': float, 'cpu_state_kernel': float, 'cpu_state_idle': float, 'cpus': { Any(): { 'cpu_state_user': float, 'cpu_state_kernel': float, 'cpu_state_idle': float, } } }, 'memory_usage': { 'memory_usage_total_kb': int, 'memory_usage_used_kb': int, 'memory_usage_free_kb': int, }, 'kernel': { 'kernel_vmalloc_total_kb': int, 'kernel_vmalloc_free_kb': int, 'kernel_buffers_kb': int, 'kernel_cached_kb': int, }, 'current_memory_status': str, } class ShowSystemResources(ShowSystemResourcesSchema): """ Parser for show system resources """ cli_command = 'show system resources' def cli(self, output=None): # execute command to get output if output is None: out = self.device.execute(self.cli_command) else: out = output # Load average: 1 minute: 0.34 5 minutes: 0.40 15 minutes: 0.66 p1 = re.compile(r'^Load average\s*:\s+1 minute:\s+(?P<minute_one>[\d\.]+)\s+5 minutes:\s+' r'(?P<minute_five>\d+\.\d+)\s+15 minutes:\s+(?P<minute_fifteen>\d+\.\d+)$') # Processes : 901 total, 2 running p2 = re.compile(r'^Processes\s*:\s+(?P<processes_total>\d+)\s+total,\s+' r'(?P<processes_running>\d+)\s+running$') # CPU states : 2.11% user, 11.64% kernel, 86.24% idle # CPU0 states : 3.33% user, 12.22% kernel, 84.44% idle p3 = re.compile(r'^CPU(?P<cpu_num>\d*)\s+states\s+:\s+(?P<user>\d+\.\d+)%\s+user,\s+' r'(?P<kernel>[\d+\.]+)%\s+kernel,\s+(?P<idle>\d+\.\d+)%\s+idle$') # Memory usage: 5873172K total, 4189652K used, 1683520K free p4 = re.compile(r'^Memory usage\s*:\s+(?P<total>\d+)K total,\s+' r'(?P<used>\d+)K used,\s+(?P<free>\d+)K free$') # Kernel vmalloc: 0K total, 0K free p5 = re.compile(r'^Kernel vmalloc\s*:\s+(?P<total>\d+)' r'K total,\s+(?P<free>\d+)K free$') # Kernel buffers: 144876K Used p6 = re.compile(r'^Kernel buffers\s*:\s+(?P<buffers>\d+)K Used$') # Kernel cached : 2296916K Used p7 = re.compile(r'^Kernel cached\s*:\s+(?P<cached>\d+)K Used$') # Current memory status: OK p8 = re.compile(r'^Current memory status\s*:\s+(?P<status>\w+)$') ret_dict = {} for line in out.splitlines(): if line: line = line.strip() else: continue # Load average: 1 minute: 0.34 5 minutes: 0.40 15 minutes: 0.66 m = p1.match(line) if m: group = m.groupdict() load_avg_dict = ret_dict.setdefault('load_avg', {}) load_avg_dict["load_avg_1min"] = float(group['minute_one']) load_avg_dict["load_avg_5min"] = float(group['minute_five']) load_avg_dict["load_avg_15min"] = float(group['minute_five']) continue # Processes : 901 total, 2 running m = p2.match(line) if m: group = m.groupdict() processes_dict = ret_dict.setdefault('processes', {}) processes_dict["processes_total"] = int(group['processes_total']) processes_dict["processes_running"] = int(group['processes_running']) continue # CPU states : 2.11% user, 11.64% kernel, 86.24% idle # CPU0 states : 3.33% user, 12.22% kernel, 84.44% idle m = p3.match(line) if m: group = m.groupdict() cpu_state_dict = ret_dict.setdefault('cpu_state', {}) if group['cpu_num']: cpu_id_dict = cpu_state_dict.setdefault( 'cpus', {}).setdefault(int(group['cpu_num']), {}) cpu_id_dict['cpu_state_user'] = float(group['user']) cpu_id_dict['cpu_state_kernel'] = float(group['kernel']) cpu_id_dict['cpu_state_idle'] = float(group['idle']) continue cpu_state_dict['cpu_state_user'] = float(group['user']) cpu_state_dict['cpu_state_kernel'] = float(group['kernel']) cpu_state_dict['cpu_state_idle'] = float(group['idle']) continue # Memory usage: 5873172K total, 4189652K used, 1683520K free m = p4.match(line) if m: group = m.groupdict() memory_usage_dict = ret_dict.setdefault('memory_usage', {}) memory_usage_dict['memory_usage_total_kb'] = int(group['total']) memory_usage_dict['memory_usage_used_kb'] = int(group['used']) memory_usage_dict['memory_usage_free_kb'] = int(group['free']) continue # Kernel vmalloc: 0K total, 0K free m = p5.match(line) if m: group = m.groupdict() kernel_dict = ret_dict.setdefault('kernel', {}) kernel_dict['kernel_vmalloc_total_kb'] = int(group['total']) kernel_dict['kernel_vmalloc_free_kb'] = int(group['free']) continue # Kernel buffers: 144876K Used m = p6.match(line) if m: group = m.groupdict() kernel_dict = ret_dict.setdefault('kernel', {}) kernel_dict['kernel_buffers_kb'] = int(group['buffers']) continue # Kernel cached : 2296916K Used m = p7.match(line) if m: group = m.groupdict() kernel_dict = ret_dict.setdefault('kernel', {}) kernel_dict['kernel_cached_kb'] = int(group['cached']) continue # Current memory status: OK m = p8.match(line) if m: ret_dict["current_memory_status"] = m.groupdict()['status'] continue return ret_dict class ShowSystemInternalProcessesMemorySchema(MetaParser): """ Schema for show system internal processes memory """ schema = { 'pid': { Any(): { 'stat': str, 'time': str, 'majflt': int, 'trs': int, 'rss': int, 'vsz': int, 'mem_percent': float, 'command': str, 'tty': str } } } class ShowSystemInternalProcessesMemory(ShowSystemInternalProcessesMemorySchema): """ Parser for show system internal processes memory """ cli_command = "show system internal processes memory" def cli(self, output=None): if not output: out = self.device.execute(self.cli_command) else: out = output # 7482 ? Ssl 00:05:05 158 0 219576 1053628 3.7 /opt/mtx/bin/grpc -i 2626 -I # 27344 pts/0 Sl+ 00:00:20 0 63 117180 709928 1.9 /isan/bin/vsh.bin p1 = re.compile( r'^(?P<pid>\d+)\s+(?P<tty>\S+)\s+(?P<stat>\S+)\s+(?P<time>[\d:]+)\s+(?P<majflt>\d+)\s+(?P<trs>\d+)\s+' r'(?P<rss>\d+)\s+(?P<vsz>\d+)\s+(?P<mem_percent>[\d.]+)\s+(?P<command>.+$)') ret_dict = {} for line in out.splitlines(): stripped_line = line.strip() # 27344 pts/0 Sl+ 00:00:20 0 63 117180 709928 1.9 /isan/bin/vsh.bin # 7482 ? Ssl 00:05:05 158 0 219576 1053628 3.7 /opt/mtx/bin/grpc -i 2626 -I m = p1.match(stripped_line) if m: group = m.groupdict() pid = int(group['pid']) pid_dict = ret_dict.setdefault('pid', {}).setdefault(pid, {}) pid_dict['stat'] = group['stat'] pid_dict['majflt'] = int(group['majflt']) pid_dict['trs'] = int(group['trs']) pid_dict['rss'] = int(group['rss']) pid_dict['vsz'] = int(group['vsz']) pid_dict['mem_percent'] = float(group['mem_percent']) pid_dict['command'] = group['command'] pid_dict['tty'] = group['tty'] pid_dict['time'] = group['time'] return ret_dict
ib/ext/EWrapperMsgGenerator.py
LewisW/IbPy
1,260
12752574
<filename>ib/ext/EWrapperMsgGenerator.py #!/usr/bin/env python """ generated source for module EWrapperMsgGenerator """ # # Original file copyright original author(s). # This file copyright <NAME>, <EMAIL>. # # WARNING: all changes to this file will be lost. from ib.ext.AnyWrapperMsgGenerator import AnyWrapperMsgGenerator from ib.ext.EClientSocket import EClientSocket from ib.ext.MarketDataType import MarketDataType from ib.ext.TickType import TickType from ib.ext.Util import Util from ib.lib import Double # package: com.ib.client class EWrapperMsgGenerator(AnyWrapperMsgGenerator): """ generated source for class EWrapperMsgGenerator """ SCANNER_PARAMETERS = "SCANNER PARAMETERS:" FINANCIAL_ADVISOR = "FA:" @classmethod def tickPrice(cls, tickerId, field, price, canAutoExecute): """ generated source for method tickPrice """ return "id=" + str(tickerId) + " " + TickType.getField(field) + "=" + str(price) + " " + (" canAutoExecute" if (canAutoExecute != 0) else " noAutoExecute") @classmethod def tickSize(cls, tickerId, field, size): """ generated source for method tickSize """ return "id=" + str(tickerId) + " " + TickType.getField(field) + "=" + str(size) @classmethod def tickOptionComputation(cls, tickerId, field, impliedVol, delta, optPrice, pvDividend, gamma, vega, theta, undPrice): """ generated source for method tickOptionComputation """ toAdd = "id=" + str(tickerId) + " " + TickType.getField(field) \ + ": vol = " + (str(impliedVol) if (impliedVol >= 0 and impliedVol != Double.MAX_VALUE) else "N/A") \ + " delta = " + (str(delta) if (abs(delta) <= 1) else "N/A") \ + " gamma = " + (str(gamma) if (abs(gamma) <= 1) else "N/A") \ + " vega = " + (str(vega) if (abs(vega) <= 1) else "N/A") \ + " theta = " + (str(theta) if (abs(theta) <= 1) else "N/A") \ + " optPrice = " + (str(optPrice) if (optPrice >= 0 and optPrice != Double.MAX_VALUE) else "N/A") \ + " pvDividend = " + (str(pvDividend) if (pvDividend >= 0 and pvDividend != Double.MAX_VALUE) else "N/A") \ + " undPrice = " + (str(undPrice) if (undPrice >= 0 and undPrice != Double.MAX_VALUE) else "N/A") return toAdd @classmethod def tickGeneric(cls, tickerId, tickType, value): """ generated source for method tickGeneric """ return "id=" + str(tickerId) + " " + TickType.getField(tickType) + "=" + str(value) @classmethod def tickString(cls, tickerId, tickType, value): """ generated source for method tickString """ return "id=" + str(tickerId) + " " + TickType.getField(tickType) + "=" + str(value) @classmethod def tickEFP(cls, tickerId, tickType, basisPoints, formattedBasisPoints, impliedFuture, holdDays, futureExpiry, dividendImpact, dividendsToExpiry): """ generated source for method tickEFP """ return "id=" + str(tickerId) + " " + TickType.getField(tickType) \ + ": basisPoints = " + str(basisPoints) + "/" + formattedBasisPoints \ + " impliedFuture = " + str(impliedFuture) + " holdDays = " + str(holdDays) \ + " futureExpiry = " + futureExpiry + " dividendImpact = " + str(dividendImpact) \ + " dividends to expiry = " + str(dividendsToExpiry) @classmethod def orderStatus(cls, orderId, status, filled, remaining, avgFillPrice, permId, parentId, lastFillPrice, clientId, whyHeld): """ generated source for method orderStatus """ return "order status: orderId=" + str(orderId) + " clientId=" + str(clientId) \ + " permId=" + str(permId) + " status=" + status + " filled=" + str(filled) \ + " remaining=" + str(remaining) + " avgFillPrice=" + str(avgFillPrice) \ + " lastFillPrice=" + str(lastFillPrice) + " parent Id=" + str(parentId) \ + " whyHeld=" + whyHeld @classmethod def openOrder(cls, orderId, contract, order, orderState): """ generated source for method openOrder """ msg = "open order: orderId=" + str(orderId) \ + " action=" + str(order.m_action) \ + " quantity=" + str(order.m_totalQuantity) \ + " conid=" + str(contract.m_conId) \ + " symbol=" + str(contract.m_symbol) \ + " secType=" + str(contract.m_secType) \ + " expiry=" + str(contract.m_expiry) \ + " strike=" + str(contract.m_strike) \ + " right=" + str(contract.m_right) \ + " multiplier=" + str(contract.m_multiplier) \ + " exchange=" + str(contract.m_exchange) \ + " primaryExch=" + str(contract.m_primaryExch) \ + " currency=" + str(contract.m_currency) \ + " localSymbol=" + str(contract.m_localSymbol) \ + " tradingClass=" + str(contract.m_tradingClass) \ + " type=" + str(order.m_orderType) \ + " lmtPrice=" + Util.DoubleMaxString(order.m_lmtPrice) \ + " auxPrice=" + Util.DoubleMaxString(order.m_auxPrice) \ + " TIF=" + str(order.m_tif) \ + " localSymbol=" + str(contract.m_localSymbol) \ + " client Id=" + str(order.m_clientId) \ + " parent Id=" + str(order.m_parentId) \ + " permId=" + str(order.m_permId) \ + " outsideRth=" + str(order.m_outsideRth) \ + " hidden=" + str(order.m_hidden) \ + " discretionaryAmt=" + str(order.m_discretionaryAmt) \ + " displaySize=" + str(order.m_displaySize) \ + " triggerMethod=" + str(order.m_triggerMethod) \ + " goodAfterTime=" + str(order.m_goodAfterTime) \ + " goodTillDate=" + str(order.m_goodTillDate) \ + " faGroup=" + str(order.m_faGroup) \ + " faMethod=" + str(order.m_faMethod) \ + " faPercentage=" + str(order.m_faPercentage) \ + " faProfile=" + str(order.m_faProfile) \ + " shortSaleSlot=" + str(order.m_shortSaleSlot) \ + " designatedLocation=" + str(order.m_designatedLocation) \ + " exemptCode=" + str(order.m_exemptCode) \ + " ocaGroup=" + str(order.m_ocaGroup) \ + " ocaType=" + str(order.m_ocaType) \ + " rule80A=" + str(order.m_rule80A) \ + " allOrNone=" + str(order.m_allOrNone) \ + " minQty=" + Util.IntMaxString(order.m_minQty) \ + " percentOffset=" + Util.DoubleMaxString(order.m_percentOffset) \ + " eTradeOnly=" + order.m_eTradeOnly \ + " firmQuoteOnly=" + str(order.m_firmQuoteOnly) \ + " nbboPriceCap=" + Util.DoubleMaxString(order.m_nbboPriceCap) \ + " optOutSmartRouting=" + str(order.m_optOutSmartRouting) \ + " auctionStrategy=" + str(order.m_auctionStrategy) \ + " startingPrice=" + Util.DoubleMaxString(order.m_startingPrice) \ + " stockRefPrice=" + Util.DoubleMaxString(order.m_stockRefPrice) \ + " delta=" + Util.DoubleMaxString(order.m_delta) \ + " stockRangeLower=" + Util.DoubleMaxString(order.m_stockRangeLower) \ + " stockRangeUpper=" + Util.DoubleMaxString(order.m_stockRangeUpper) \ + " volatility=" + Util.DoubleMaxString(order.m_volatility) \ + " volatilityType=" + str(order.m_volatilityType) \ + " deltaNeutralOrderType=" + str(order.m_deltaNeutralOrderType) \ + " deltaNeutralAuxPrice=" + Util.DoubleMaxString(order.m_deltaNeutralAuxPrice) \ + " deltaNeutralConId=" + str(order.m_deltaNeutralConId) \ + " deltaNeutralSettlingFirm=" + str(order.m_deltaNeutralSettlingFirm) \ + " deltaNeutralClearingAccount=" + str(order.m_deltaNeutralClearingAccount) \ + " deltaNeutralClearingIntent=" + str(order.m_deltaNeutralClearingIntent) \ + " deltaNeutralOpenClose=" + str(order.m_deltaNeutralOpenClose) \ + " deltaNeutralShortSale=" + str(order.m_deltaNeutralShortSale) \ + " deltaNeutralShortSaleSlot=" + str(order.m_deltaNeutralShortSaleSlot) \ + " deltaNeutralDesignatedLocation=" + str(order.m_deltaNeutralDesignatedLocation) \ + " continuousUpdate=" + str(order.m_continuousUpdate) \ + " referencePriceType=" + str(order.m_referencePriceType) \ + " trailStopPrice=" + Util.DoubleMaxString(order.m_trailStopPrice) \ + " trailingPercent=" + Util.DoubleMaxString(order.m_trailingPercent) \ + " scaleInitLevelSize=" + Util.IntMaxString(order.m_scaleInitLevelSize) \ + " scaleSubsLevelSize=" + Util.IntMaxString(order.m_scaleSubsLevelSize) \ + " scalePriceIncrement=" + Util.DoubleMaxString(order.m_scalePriceIncrement) \ + " scalePriceAdjustValue=" + Util.DoubleMaxString(order.m_scalePriceAdjustValue) \ + " scalePriceAdjustInterval=" + Util.IntMaxString(order.m_scalePriceAdjustInterval) \ + " scaleProfitOffset=" + Util.DoubleMaxString(order.m_scaleProfitOffset) \ + " scaleAutoReset=" + str(order.m_scaleAutoReset) \ + " scaleInitPosition=" + Util.IntMaxString(order.m_scaleInitPosition) \ + " scaleInitFillQty=" + Util.IntMaxString(order.m_scaleInitFillQty) \ + " scaleRandomPercent=" + str(order.m_scaleRandomPercent) \ + " hedgeType=" + str(order.m_hedgeType) \ + " hedgeParam=" + str(order.m_hedgeParam) \ + " account=" + str(order.m_account) \ + " settlingFirm=" + str(order.m_settlingFirm) \ + " clearingAccount=" + str(order.m_clearingAccount) \ + " clearingIntent=" + str(order.m_clearingIntent) \ + " notHeld=" + str(order.m_notHeld) \ + " whatIf=" + str(order.m_whatIf) if "BAG" == contract.m_secType: if contract.m_comboLegsDescrip is not None: msg += " comboLegsDescrip=" + str(contract.m_comboLegsDescrip) msg += " comboLegs={" if contract.m_comboLegs is not None: i = 0 while i < len(contract.m_comboLegs): comboLeg = contract.m_comboLegs[i] msg += " leg " + str(i + 1) + ": " msg += "conId=" + str(comboLeg.m_conId) msg += " ratio=" + str(comboLeg.m_ratio) msg += " action=" + str(comboLeg.m_action) msg += " exchange=" + str(comboLeg.m_exchange) msg += " openClose=" + str(comboLeg.m_openClose) msg += " shortSaleSlot=" + str(comboLeg.m_shortSaleSlot) msg += " designatedLocation=" + str(comboLeg.m_designatedLocation) msg += " exemptCode=" + str(comboLeg.m_exemptCode) if order.m_orderComboLegs is not None and len(contract.m_comboLegs) == len(order.m_orderComboLegs): orderComboLeg = order.m_orderComboLegs[i] msg += " price=" + Util.DoubleMaxString(orderComboLeg.m_price) msg += ";" i += 1 msg += "}" if order.m_basisPoints != Double.MAX_VALUE: msg += " basisPoints=" + Util.DoubleMaxString(order.m_basisPoints) msg += " basisPointsType=" + Util.IntMaxString(order.m_basisPointsType) if contract.m_underComp is not None: underComp = contract.m_underComp msg += " underComp.conId =" + str(underComp.m_conId) + " underComp.delta =" + str(underComp.m_delta) + " underComp.price =" + str(underComp.m_price) if not Util.StringIsEmpty(order.m_algoStrategy): msg += " algoStrategy=" + str(order.m_algoStrategy) msg += " algoParams={" if order.m_algoParams is not None: algoParams = order.m_algoParams i = 0 while i < len(algoParams): param = algoParams[i] if i > 0: msg += "," msg += str(param.m_tag) + "=" + str(param.m_value) i += 1 msg += "}" if "BAG" == contract.m_secType: msg += " smartComboRoutingParams={" if order.m_smartComboRoutingParams is not None: smartComboRoutingParams = order.m_smartComboRoutingParams i = 0 while i < len(smartComboRoutingParams): param = smartComboRoutingParams[i] if i > 0: msg += "," msg += str(param.m_tag) + "=" + str(param.m_value) i += 1 msg += "}" orderStateMsg = " status=" + str(orderState.m_status) \ + " initMargin=" + str(orderState.m_initMargin) \ + " maintMargin=" + str(orderState.m_maintMargin) \ + " equityWithLoan=" + str(orderState.m_equityWithLoan) \ + " commission=" + Util.DoubleMaxString(orderState.m_commission) \ + " minCommission=" + Util.DoubleMaxString(orderState.m_minCommission) \ + " maxCommission=" + Util.DoubleMaxString(orderState.m_maxCommission) \ + " commissionCurrency=" + str(orderState.m_commissionCurrency) \ + " warningText=" + str(orderState.m_warningText) return msg + orderStateMsg @classmethod def openOrderEnd(cls): """ generated source for method openOrderEnd """ return " =============== end ===============" @classmethod def updateAccountValue(cls, key, value, currency, accountName): """ generated source for method updateAccountValue """ return "updateAccountValue: " + key + " " + value + " " + currency + " " + accountName @classmethod def updatePortfolio(cls, contract, position, marketPrice, marketValue, averageCost, unrealizedPNL, realizedPNL, accountName): """ generated source for method updatePortfolio """ msg = "updatePortfolio: " + cls.contractMsg(contract) + \ str(position) + " " + str(marketPrice) + " " + str(marketValue) + \ " " + str(averageCost) + " " + str(unrealizedPNL) + " " + \ str(realizedPNL) + " " + accountName return msg @classmethod def updateAccountTime(cls, timeStamp): """ generated source for method updateAccountTime """ return "updateAccountTime: " + timeStamp @classmethod def accountDownloadEnd(cls, accountName): """ generated source for method accountDownloadEnd """ return "accountDownloadEnd: " + accountName @classmethod def nextValidId(cls, orderId): """ generated source for method nextValidId """ return "Next Valid Order ID: " + orderId @classmethod def contractDetails(cls, reqId, contractDetails): """ generated source for method contractDetails """ contract = contractDetails.m_summary msg = "reqId = " + reqId + " ===================================\n" + \ " ---- Contract Details begin ----\n" + \ cls.contractMsg(contract) + cls.contractDetailsMsg(contractDetails) + \ " ---- Contract Details End ----\n" return msg @classmethod def contractDetailsMsg(cls, contractDetails): """ generated source for method contractDetailsMsg """ msg = "marketName = " + str(contractDetails.m_marketName) + "\n" \ + "minTick = " + str(contractDetails.m_minTick) + "\n" \ + "price magnifier = " + str(contractDetails.m_priceMagnifier) + "\n" \ + "orderTypes = " + str(contractDetails.m_orderTypes) + "\n" \ + "validExchanges = " + str(contractDetails.m_validExchanges) + "\n" \ + "underConId = " + str(contractDetails.m_underConId) + "\n" \ + "longName = " + str(contractDetails.m_longName) + "\n" \ + "contractMonth = " + str(contractDetails.m_contractMonth) + "\n" \ + "industry = " + str(contractDetails.m_industry) + "\n" \ + "category = " + str(contractDetails.m_category) + "\n" \ + "subcategory = " + str(contractDetails.m_subcategory) + "\n" \ + "timeZoneId = " + str(contractDetails.m_timeZoneId) + "\n" \ + "tradingHours = " + str(contractDetails.m_tradingHours) + "\n" \ + "liquidHours = " + str(contractDetails.m_liquidHours) + "\n" \ + "evRule = " + str(contractDetails.m_evRule) + "\n" \ + "evMultiplier = " + str(contractDetails.m_evMultiplier) + "\n" \ + cls.contractDetailsSecIdList(contractDetails) return msg @classmethod def contractMsg(cls, contract): """ generated source for method contractMsg """ msg = "conid = " + str(contract.m_conId) + "\n" \ + "symbol = " + str(contract.m_symbol) + "\n" \ + "secType = " + str(contract.m_secType) + "\n" \ + "expiry = " + str(contract.m_expiry) + "\n" \ + "strike = " + str(contract.m_strike) + "\n" \ + "right = " + str(contract.m_right) + "\n" \ + "multiplier = " + str(contract.m_multiplier) + "\n" \ + "exchange = " + str(contract.m_exchange) + "\n" \ + "primaryExch = " + str(contract.m_primaryExch) + "\n" \ + "currency = " + str(contract.m_currency) + "\n" \ + "localSymbol = " + str(contract.m_localSymbol) + "\n" \ + "tradingClass = " + str(contract.m_tradingClass) + "\n" return msg @classmethod def bondContractDetails(cls, reqId, contractDetails): """ generated source for method bondContractDetails """ contract = contractDetails.m_summary msg = "reqId = " + str(reqId) + " ===================================\n" \ + " ---- Bond Contract Details begin ----\n" \ + "symbol = " + str(contract.m_symbol) + "\n" \ + "secType = " + str(contract.m_secType) + "\n" \ + "cusip = " + str(contractDetails.m_cusip) + "\n" \ + "coupon = " + str(contractDetails.m_coupon) + "\n" \ + "maturity = " + str(contractDetails.m_maturity) + "\n" \ + "issueDate = " + str(contractDetails.m_issueDate) + "\n" \ + "ratings = " + str(contractDetails.m_ratings) + "\n" \ + "bondType = " + str(contractDetails.m_bondType) + "\n" \ + "couponType = " + str(contractDetails.m_couponType) + "\n" \ + "convertible = " + str(contractDetails.m_convertible) + "\n" \ + "callable = " + str(contractDetails.m_callable) + "\n" \ + "putable = " + str(contractDetails.m_putable) + "\n" \ + "descAppend = " + str(contractDetails.m_descAppend) + "\n" \ + "exchange = " + str(contract.m_exchange) + "\n" \ + "currency = " + str(contract.m_currency) + "\n" \ + "marketName = " + str(contractDetails.m_marketName) + "\n" \ + "tradingClass = " + str(contract.m_tradingClass) + "\n" \ + "conid = " + str(contract.m_conId) + "\n" \ + "minTick = " + str(contractDetails.m_minTick) + "\n" \ + "orderTypes = " + str(contractDetails.m_orderTypes) + "\n" \ + "validExchanges = " + str(contractDetails.m_validExchanges) + "\n" \ + "nextOptionDate = " + str(contractDetails.m_nextOptionDate) + "\n" \ + "nextOptionType = " + str(contractDetails.m_nextOptionType) + "\n" \ + "nextOptionPartial = " + str(contractDetails.m_nextOptionPartial) + "\n" \ + "notes = " + str(contractDetails.m_notes) + "\n" \ + "longName = " + str(contractDetails.m_longName) + "\n" \ + "evRule = " + str(contractDetails.m_evRule) + "\n" \ + "evMultiplier = " + str(contractDetails.m_evMultiplier) + "\n" \ + cls.contractDetailsSecIdList(contractDetails) \ + " ---- Bond Contract Details End ----\n" return msg @classmethod def contractDetailsSecIdList(cls, contractDetails): """ generated source for method contractDetailsSecIdList """ msg = "secIdList={" if contractDetails.m_secIdList is not None: secIdList = contractDetails.m_secIdList i = 0 while i < len(secIdList): param = secIdList[i] if i > 0: msg += "," msg += str(param.m_tag) + "=" + str(param.m_value) i += 1 msg += "}\n" return msg @classmethod def contractDetailsEnd(cls, reqId): """ generated source for method contractDetailsEnd """ return "reqId = " + str(reqId) + " =============== end ===============" @classmethod def execDetails(cls, reqId, contract, execution): """ generated source for method execDetails """ msg = " ---- Execution Details begin ----\n" \ + "reqId = " + str(reqId) + "\n" \ + "orderId = " + str(execution.m_orderId) + "\n" \ + "clientId = " + str(execution.m_clientId) + "\n" \ + cls.contractMsg(contract) \ + "execId = " + str(execution.m_execId) + "\n" \ + "time = " + str(execution.m_time) + "\n" \ + "acctNumber = " + str(execution.m_acctNumber) + "\n" \ + "executionExchange = " + str(execution.m_exchange) + "\n" \ + "side = " + str(execution.m_side) + "\n" \ + "shares = " + str(execution.m_shares) + "\n" \ + "price = " + str(execution.m_price) + "\n" \ + "permId = " + str(execution.m_permId) + "\n" \ + "liquidation = " + str(execution.m_liquidation) + "\n" \ + "cumQty = " + str(execution.m_cumQty) + "\n" \ + "avgPrice = " + str(execution.m_avgPrice) + "\n" \ + "orderRef = " + str(execution.m_orderRef) + "\n" \ + "evRule = " + str(execution.m_evRule) + "\n" \ + "evMultiplier = " + str(execution.m_evMultiplier) + "\n" \ " ---- Execution Details end ----\n" return msg @classmethod def execDetailsEnd(cls, reqId): """ generated source for method execDetailsEnd """ return "reqId = " + str(reqId) + " =============== end ===============" @classmethod def updateMktDepth(cls, tickerId, position, operation, side, price, size): """ generated source for method updateMktDepth """ return "updateMktDepth: " + str(tickerId) + " " + str(position) + " " + str(operation) + " " + str(side) + " " + str(price) + " " + str(size) @classmethod def updateMktDepthL2(cls, tickerId, position, marketMaker, operation, side, price, size): """ generated source for method updateMktDepthL2 """ return "updateMktDepth: " + str(tickerId) + " " + str(position) + " " + marketMaker + " " + str(operation) + " " + str(side) + " " + str(price) + " " + str(size) @classmethod def updateNewsBulletin(cls, msgId, msgType, message, origExchange): """ generated source for method updateNewsBulletin """ return "MsgId=" + str(msgId) + " :: MsgType=" + str(msgType) + " :: Origin=" + origExchange + " :: Message=" + message @classmethod def managedAccounts(cls, accountsList): """ generated source for method managedAccounts """ return "Connected : The list of managed accounts are : [" + accountsList + "]" @classmethod def receiveFA(cls, faDataType, xml): """ generated source for method receiveFA """ return cls.FINANCIAL_ADVISOR + " " + EClientSocket.faMsgTypeName(faDataType) + " " + xml @classmethod def historicalData(cls, reqId, date, open, high, low, close, volume, count, WAP, hasGaps): """ generated source for method historicalData """ return "id=" + str(reqId) \ + " date = " + date \ + " open=" + str(open) \ + " high=" + str(high) \ + " low=" + str(low) \ + " close=" + str(close) \ + " volume=" + str(volume) \ + " count=" + str(count) \ + " WAP=" + str(WAP) \ + " hasGaps=" + str(hasGaps) @classmethod def realtimeBar(cls, reqId, time, open, high, low, close, volume, wap, count): """ generated source for method realtimeBar """ return "id=" + str(reqId) \ + " time = " + str(time) \ + " open=" + str(open) \ + " high=" + str(high) \ + " low=" + str(low) \ + " close=" + str(close) \ + " volume=" + str(volume) \ + " count=" + str(count) \ + " WAP=" + str(wap) @classmethod def scannerParameters(cls, xml): """ generated source for method scannerParameters """ return cls.SCANNER_PARAMETERS + "\n" + xml @classmethod def scannerData(cls, reqId, rank, contractDetails, distance, benchmark, projection, legsStr): """ generated source for method scannerData """ contract = contractDetails.m_summary return "id = " + str(reqId) \ + " rank=" + str(rank) \ + " symbol=" + str(contract.m_symbol) \ + " secType=" + str(contract.m_secType) \ + " expiry=" + str(contract.m_expiry) \ + " strike=" + str(contract.m_strike) \ + " right=" + str(contract.m_right) \ + " exchange=" + str(contract.m_exchange) \ + " currency=" + str(contract.m_currency) \ + " localSymbol=" + str(contract.m_localSymbol) \ + " marketName=" + str(contractDetails.m_marketName) \ + " tradingClass=" + str(contract.m_tradingClass) \ + " distance=" + distance \ + " benchmark=" + benchmark \ + " projection=" + projection \ + " legsStr=" + legsStr @classmethod def scannerDataEnd(cls, reqId): """ generated source for method scannerDataEnd """ return "id = " + str(reqId) + " =============== end ===============" @classmethod def currentTime(cls, time): """ generated source for method currentTime """ return "current time = " + str(time) @classmethod def fundamentalData(cls, reqId, data): """ generated source for method fundamentalData """ return "id = " + str(reqId) + " len = " + str(len(data)) + '\n' + data @classmethod def deltaNeutralValidation(cls, reqId, underComp): """ generated source for method deltaNeutralValidation """ return "id = " + str(reqId) + " underComp.conId =" + str(underComp.m_conId) + " underComp.delta =" + str(underComp.m_delta) + " underComp.price =" + str(underComp.m_price) @classmethod def tickSnapshotEnd(cls, tickerId): """ generated source for method tickSnapshotEnd """ return "id=" + str(tickerId) + " =============== end ===============" @classmethod def marketDataType(cls, reqId, marketDataType): """ generated source for method marketDataType """ return "id=" + str(reqId) + " marketDataType = " + MarketDataType.getField(marketDataType) @classmethod def commissionReport(cls, commissionReport): """ generated source for method commissionReport """ msg = "commission report:" \ + " execId=" + str(commissionReport.m_execId) \ + " commission=" + Util.DoubleMaxString(commissionReport.m_commission) \ + " currency=" + str(commissionReport.m_currency) \ + " realizedPNL=" + Util.DoubleMaxString(commissionReport.m_realizedPNL) \ + " yield=" + Util.DoubleMaxString(commissionReport.m_yield) \ + " yieldRedemptionDate=" \ + Util.IntMaxString(commissionReport.m_yieldRedemptionDate) return msg @classmethod def position(cls, account, contract, position, avgCost): """ generated source for method position """ msg = " ---- Position begin ----\n" \ + "account = " + str(account) + "\n" \ + cls.contractMsg(contract) \ + "position = " + Util.IntMaxString(position) + "\n" \ + "avgCost = " + Util.DoubleMaxString(avgCost) + "\n" + \ " ---- Position end ----\n" return msg @classmethod def positionEnd(cls): """ generated source for method positionEnd """ return " =============== end ===============" @classmethod def accountSummary(cls, reqId, account, tag, value, currency): """ generated source for method accountSummary """ msg = " ---- Account Summary begin ----\n" \ + "reqId = " + str(reqId) + "\n" \ + "account = " + str(account) + "\n" \ + "tag = " + str(tag) + "\n" \ + "value = " + str(value) + "\n" \ + "currency = " + str(currency) + "\n" \ + " ---- Account Summary end ----\n" return msg @classmethod def accountSummaryEnd(cls, reqId): """ generated source for method accountSummaryEnd """ return "id=" + str(reqId) + " =============== end ==============="
model-optimizer/extensions/front/onnx/cast_ext.py
monroid/openvino
2,406
12752579
<filename>model-optimizer/extensions/front/onnx/cast_ext.py # Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 from extensions.ops.Cast import Cast from mo.front.extractor import FrontExtractorOp from mo.front.onnx.extractors.utils import get_onnx_datatype_as_numpy, onnx_attr class CastFrontExtractor(FrontExtractorOp): op = 'Cast' enabled = True @classmethod def extract(cls, node): to = onnx_attr(node, 'to', 'i', default=None) Cast.update_node_stat(node, {'dst_type': get_onnx_datatype_as_numpy(to)}) return cls.enabled
src/genie/libs/parser/ios/show_prefix_list.py
nujo/genieparser
204
12752581
"""show_prefix_list.py IOS parsers for the following show commands: * show ip prefix-list detail * show ipv6 prefix-list detail """ from genie.libs.parser.iosxe.show_prefix_list import ShowIpPrefixListDetail as ShowIpPrefixListDetail_iosxe,\ ShowIpv6PrefixListDetail as ShowIpv6PrefixListDetail_iosxe class ShowIpPrefixListDetail(ShowIpPrefixListDetail_iosxe): """Parser for: show ip prefix-list detail show ipv6 prefix-list detail""" pass class ShowIpv6PrefixListDetail(ShowIpv6PrefixListDetail_iosxe): """Parser for show ipv6 prefix-list detail""" pass
samples/keras/mnist.py
elgalu/labml
463
12752589
<reponame>elgalu/labml<gh_stars>100-1000 # This example is based on the following examples # https://www.tensorflow.org/tutorials/quickstart/beginner import tensorflow as tf from labml import experiment from labml.utils.keras import LabMLKerasCallback def main(): experiment.create(name='MNIST Keras') (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10) ]) loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) model.compile(optimizer='adam', loss=loss_fn, metrics=['accuracy']) with experiment.start(): model.fit(x_train, y_train, epochs=5, validation_data=(x_test, y_test), callbacks=[LabMLKerasCallback()], verbose=None) if __name__ == '__main__': main()
src/azure-cli/azure/cli/command_modules/eventgrid/commands.py
YuanyuanNi/azure-cli
3,287
12752594
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # pylint: disable=line-too-long # pylint: disable=too-many-statements from azure.cli.core.commands import CliCommandType from ._client_factory import ( topics_factory, domains_factory, domain_topics_factory, system_topics_factory, system_topic_event_subscriptions_factory, event_subscriptions_factory, topic_types_factory, extension_topics_factory, partner_registrations_factory, partner_namespaces_factory, event_channels_factory, partner_topics_factory, partner_topic_event_subscriptions_factory ) def load_command_table(self, _): topics_mgmt_util = CliCommandType( operations_tmpl='azure.mgmt.eventgrid.operations#TopicsOperations.{}', client_factory=topics_factory, client_arg_name='self' ) extension_topics_mgmt_util = CliCommandType( operations_tmpl='azure.mgmt.eventgrid.operations#ExtensionTopicsOperations.{}', client_factory=extension_topics_factory, client_arg_name='self' ) domains_mgmt_util = CliCommandType( operations_tmpl='azure.mgmt.eventgrid.operations#DomainsOperations.{}', client_factory=domains_factory, client_arg_name='self' ) domain_topics_mgmt_util = CliCommandType( operations_tmpl='azure.mgmt.eventgrid.operations#DomainTopicsOperations.{}', client_factory=domain_topics_factory, client_arg_name='self' ) system_topics_mgmt_util = CliCommandType( operations_tmpl='azure.mgmt.eventgrid.operations#SystemTopicsOperations.{}', client_factory=system_topics_factory, client_arg_name='self' ) system_topic_event_subscriptions_mgmt_util = CliCommandType( operations_tmpl='azure.mgmt.eventgrid.operations#SystemTopicEventSubscriptionsOperations.{}', client_factory=system_topic_event_subscriptions_factory, client_arg_name='self' ) partner_registrations_mgmt_util = CliCommandType( operations_tmpl='azure.mgmt.eventgrid.operations#PartnerRegistrationsOperations.{}', client_factory=partner_registrations_factory, client_arg_name='self' ) partner_namespaces_mgmt_util = CliCommandType( operations_tmpl='azure.mgmt.eventgrid.operations#PartnerNamespacesOperations.{}', client_factory=partner_namespaces_factory, client_arg_name='self' ) event_channels_mgmt_util = CliCommandType( operations_tmpl='azure.mgmt.eventgrid.operations#EventChannelsOperations.{}', client_factory=event_channels_factory, client_arg_name='self' ) partner_topics_mgmt_util = CliCommandType( operations_tmpl='azure.mgmt.eventgrid.operations#PartnerTopicsOperations.{}', client_factory=partner_topics_factory, client_arg_name='self' ) partner_topic_event_subscriptions_mgmt_util = CliCommandType( operations_tmpl='azure.mgmt.eventgrid.operations#PartnerTopicEventSubscriptionsOperations.{}', client_factory=partner_topic_event_subscriptions_factory, client_arg_name='self' ) topic_type_mgmt_util = CliCommandType( operations_tmpl='azure.mgmt.eventgrid.operations#TopicTypesOperations.{}', client_factory=topic_types_factory, client_arg_name='self' ) with self.command_group('eventgrid topic', topics_mgmt_util, client_factory=topics_factory) as g: g.show_command('show', 'get') g.command('key list', 'list_shared_access_keys') g.command('delete', 'begin_delete') g.custom_command('key regenerate', 'cli_topic_regenerate_key') g.custom_command('list', 'cli_topic_list') g.custom_command('create', 'cli_topic_create_or_update') g.custom_command('update', 'cli_topic_update') with self.command_group('eventgrid extension-topic', extension_topics_mgmt_util, client_factory=extension_topics_factory) as g: g.show_command('show', 'get') with self.command_group('eventgrid domain topic', domain_topics_mgmt_util, client_factory=domain_topics_factory) as g: g.show_command('show', 'get') g.custom_command('list', 'cli_domain_topic_list') g.custom_command('delete', 'cli_domain_topic_delete') g.custom_command('create', 'cli_domain_topic_create_or_update') with self.command_group('eventgrid domain', domains_mgmt_util, client_factory=domains_factory) as g: g.show_command('show', 'get') g.command('key list', 'list_shared_access_keys') g.custom_command('key regenerate', 'cli_domain_regenerate_key') g.custom_command('list', 'cli_domain_list') g.custom_command('create', 'cli_domain_create_or_update') g.command('delete', 'begin_delete') g.custom_command('update', 'cli_domain_update') with self.command_group('eventgrid system-topic', system_topics_mgmt_util, client_factory=system_topics_factory) as g: g.show_command('show', 'get') g.command('delete', 'begin_delete', confirmation=True) g.custom_command('list', 'cli_system_topic_list') g.custom_command('create', 'cli_system_topic_create_or_update') g.custom_command('update', 'cli_system_topic_update') with self.command_group('eventgrid system-topic event-subscription', system_topic_event_subscriptions_mgmt_util, client_factory=system_topic_event_subscriptions_factory) as g: g.custom_show_command('show', 'cli_system_topic_event_subscription_get') g.command('delete', 'begin_delete', confirmation=True) g.custom_command('list', 'cli_system_topic_event_subscription_list') g.custom_command('create', 'cli_system_topic_event_subscription_create_or_update') g.custom_command('update', 'cli_system_topic_event_subscription_update') with self.command_group('eventgrid partner registration', partner_registrations_mgmt_util, client_factory=partner_registrations_factory, is_preview=True) as g: g.show_command('show', 'get') g.command('delete', 'delete', confirmation=True) g.custom_command('list', 'cli_partner_registration_list') g.custom_command('create', 'cli_partner_registration_create_or_update') # g.custom_command('update', 'cli_partner_registration_update') with self.command_group('eventgrid partner namespace', partner_namespaces_mgmt_util, client_factory=partner_namespaces_factory, is_preview=True) as g: g.show_command('show', 'get') g.command('delete', 'begin_delete', confirmation=True) g.custom_command('list', 'cli_partner_namespace_list') g.custom_command('create', 'cli_partner_namespace_create_or_update') g.command('key list', 'list_shared_access_keys') g.custom_command('key regenerate', 'cli_partner_namespace_regenerate_key') # g.custom_command('update', 'cli_partner_namespace_update') with self.command_group('eventgrid partner namespace event-channel', event_channels_mgmt_util, client_factory=event_channels_factory, is_preview=True) as g: g.show_command('show', 'get') g.command('delete', 'begin_delete', confirmation=True) g.custom_command('list', 'cli_event_channel_list') # g.custom_command('update', 'cli_event_channel_update') g.custom_command('create', 'cli_event_channel_create_or_update') with self.command_group('eventgrid partner topic', partner_topics_mgmt_util, client_factory=partner_topics_factory, is_preview=True) as g: g.show_command('show', 'get') g.command('delete', 'begin_delete', confirmation=True) g.command('activate', 'activate') g.command('deactivate', 'deactivate') g.custom_command('list', 'cli_partner_topic_list') # g.custom_command('create', 'cli_partner_topic_create_or_update') # g.custom_command('update', 'cli_partner_topic_update') with self.command_group('eventgrid partner topic event-subscription', partner_topic_event_subscriptions_mgmt_util, client_factory=partner_topic_event_subscriptions_factory, is_preview=True) as g: g.custom_show_command('show', 'cli_partner_topic_event_subscription_get') g.command('delete', 'begin_delete', confirmation=True) g.custom_command('list', 'cli_partner_topic_event_subscription_list') g.custom_command('create', 'cli_partner_topic_event_subscription_create_or_update') g.custom_command('update', 'cli_partner_topic_event_subscription_update') custom_tmpl = 'azure.cli.command_modules.eventgrid.custom#{}' eventgrid_custom = CliCommandType(operations_tmpl=custom_tmpl) with self.command_group('eventgrid event-subscription', client_factory=event_subscriptions_factory) as g: g.custom_command('create', 'cli_eventgrid_event_subscription_create') g.custom_show_command('show', 'cli_eventgrid_event_subscription_get') g.custom_command('delete', 'cli_eventgrid_event_subscription_delete') g.custom_command('list', 'cli_event_subscription_list') g.generic_update_command('update', getter_type=eventgrid_custom, setter_type=eventgrid_custom, getter_name='event_subscription_getter', setter_name='event_subscription_setter', custom_func_name='update_event_subscription') with self.command_group('eventgrid topic-type', topic_type_mgmt_util) as g: g.command('list', 'list') g.show_command('show', 'get') g.command('list-event-types', 'list_event_types')
tests/metrics/test_token_classification.py
techthiyanes/rubrix
888
12752609
<reponame>techthiyanes/rubrix import httpx import pytest import rubrix import rubrix as rb from rubrix.metrics.token_classification import ( Annotations, entity_capitalness, entity_consistency, entity_density, entity_labels, f1, mention_length, tokens_length, token_length, token_frequency, token_capitalness, ) from tests.server.test_helpers import client def mocking_client(monkeypatch): monkeypatch.setattr(httpx, "post", client.post) monkeypatch.setattr(httpx, "get", client.get) monkeypatch.setattr(httpx, "delete", client.delete) monkeypatch.setattr(httpx, "put", client.put) monkeypatch.setattr(httpx, "stream", client.stream) def log_some_data(dataset: str): rubrix.delete(dataset) text = "My first rubrix example" tokens = text.split(" ") rb.log( [ rb.TokenClassificationRecord( id=1, text=text, tokens=tokens, prediction=[("CARDINAL", 3, 8)], annotation=[("CARDINAL", 3, 8)], ), rb.TokenClassificationRecord( id=2, text=text, tokens=tokens, prediction=[("CARDINAL", 3, 8)], annotation=[("CARDINAL", 3, 8)], ), rb.TokenClassificationRecord( id=3, text=text, tokens=tokens, prediction=[("NUMBER", 3, 8)], annotation=[("NUMBER", 3, 8)], ), rb.TokenClassificationRecord( id=4, text=text, tokens=tokens, prediction=[("PERSON", 3, 8)], annotation=[("PERSON", 3, 8)], ), ], name=dataset, ) def test_search_by_nested_metric(monkeypatch): mocking_client(monkeypatch) dataset = "test_search_by_nested_metric" rb.delete(dataset) log_some_data(dataset) df = rb.load(dataset, query="metrics.predicted.mentions.capitalness: LOWER") assert len(df) > 0 def test_tokens_length(monkeypatch): mocking_client(monkeypatch) dataset = "test_tokens_length" log_some_data(dataset) results = tokens_length(dataset) assert results assert results.data == {"4.0": 4} results.visualize() def test_token_length(monkeypatch): mocking_client(monkeypatch) dataset = "test_token_length" log_some_data(dataset) results = token_length(dataset) assert results assert results.data == {"2.0": 4, "3.0": 0, "4.0": 0, "5.0": 4, "6.0": 4, "7.0": 4} results.visualize() def test_token_frequency(monkeypatch): mocking_client(monkeypatch) dataset = "test_token_frequency" log_some_data(dataset) results = token_frequency(dataset) assert results assert results.data == {"My": 4, "example": 4, "first": 4, "rubrix": 4} results.visualize() def test_token_capitalness(monkeypatch): mocking_client(monkeypatch) dataset = "test_token_capitalness" log_some_data(dataset) results = token_capitalness(dataset) assert results assert results.data == {"LOWER": 12, "FIRST": 4} results.visualize() def test_mentions_length(monkeypatch): mocking_client(monkeypatch) dataset = "test_mentions_length" log_some_data(dataset) results = mention_length(dataset) assert results assert results.data == {"1.0": 4} results.visualize() results = mention_length(dataset, level="char") assert results assert results.data == {"5.0": 4} results.visualize() results = mention_length(dataset, compute_for=Annotations) assert results assert results.data == {"1.0": 4} results.visualize() results = mention_length(dataset, compute_for=Annotations, level="char") assert results assert results.data == {"5.0": 4} results.visualize() def test_compute_for_as_string(monkeypatch): mocking_client(monkeypatch) dataset = "test_compute_for_as_string" log_some_data(dataset) results = entity_density(dataset, compute_for="Predictions") assert results assert results.data == {"0.25": 4} results.visualize() with pytest.raises( ValueError, match="not-found is not a valid ComputeFor, please select one of \['annotations', 'predictions'\]", ): entity_density(dataset, compute_for="not-found") def test_entity_density(monkeypatch): mocking_client(monkeypatch) dataset = "test_entity_density" log_some_data(dataset) results = entity_density(dataset) assert results assert results.data == {"0.25": 4} results.visualize() results = entity_density(dataset, compute_for=Annotations) assert results assert results.data == {"0.25": 4} results.visualize() def test_entity_labels(monkeypatch): mocking_client(monkeypatch) dataset = "test_entity_labels" log_some_data(dataset) results = entity_labels(dataset) assert results assert results.data == {"CARDINAL": 2, "NUMBER": 1, "PERSON": 1} results.visualize() results = entity_labels(dataset, compute_for=Annotations) assert results assert results.data == {"CARDINAL": 2, "NUMBER": 1, "PERSON": 1} results.visualize() def test_entity_capitalness(monkeypatch): mocking_client(monkeypatch) dataset = "test_entity_capitalness" rubrix.delete(dataset) log_some_data(dataset) results = entity_capitalness(dataset) assert results assert results.data == {"LOWER": 4} results.visualize() results = entity_capitalness(dataset, compute_for=Annotations) assert results assert results.data == {"LOWER": 4} results.visualize() def test_entity_consistency(monkeypatch): mocking_client(monkeypatch) dataset = "test_entity_consistency" rubrix.delete(dataset) log_some_data(dataset) results = entity_consistency(dataset, threshold=2) assert results assert results.data == { "mentions": [ { "mention": "first", "entities": [ {"count": 2, "label": "CARDINAL"}, {"count": 1, "label": "NUMBER"}, {"count": 1, "label": "PERSON"}, ], } ] } results.visualize() results = entity_consistency(dataset, compute_for=Annotations, threshold=2) assert results assert results.data == { "mentions": [ { "mention": "first", "entities": [ {"count": 2, "label": "CARDINAL"}, {"count": 1, "label": "NUMBER"}, {"count": 1, "label": "PERSON"}, ], } ] } results.visualize() @pytest.mark.parametrize( ("metric", "expected_results"), [ (entity_consistency, {"mentions": []}), (mention_length, {}), (entity_density, {}), (entity_capitalness, {}), (entity_labels, {}), ], ) def test_metrics_without_data(metric, expected_results, monkeypatch): mocking_client(monkeypatch) dataset = "test_metrics_without_data" rb.delete(dataset) text = "M" tokens = text.split(" ") rb.log( rb.TokenClassificationRecord( id=1, text=text, tokens=tokens, ), name=dataset, ) results = metric(dataset) assert results assert results.data == expected_results results.visualize() def test_metrics_for_text_classification(monkeypatch): mocking_client(monkeypatch) dataset = "test_metrics_for_token_classification" text = "test the f1 metric of the token classification task" rb.log( rb.TokenClassificationRecord( id=1, text=text, tokens=text.split(), prediction=[("a", 0, 4), ("b", 5, 8), ("b", 9, 11)], annotation=[("a", 0, 4), ("b", 5, 8), ("a", 9, 11)], ), name=dataset, ) results = f1(dataset) assert results assert results.data == { "f1_macro": pytest.approx(0.75), "f1_micro": pytest.approx(0.6666666666666666), "a_f1": pytest.approx(0.6666666666666666), "a_precision": pytest.approx(1.0), "a_recall": pytest.approx(0.5), "b_f1": pytest.approx(0.6666666666666666), "b_precision": pytest.approx(0.5), "b_recall": pytest.approx(1.0), "precision_macro": pytest.approx(0.75), "precision_micro": pytest.approx(0.6666666666666666), "recall_macro": pytest.approx(0.75), "recall_micro": pytest.approx(0.6666666666666666), } results.visualize()
tests/test_termcounts_asscs.py
flying-sheep/goatools
477
12752622
#!/usr/bin/env python """Test TermCounts object used in Resnik and Lin similarity calculations.""" from __future__ import print_function import os import sys import timeit import datetime from goatools.base import get_godag from goatools.semantic import TermCounts from goatools.semantic import get_info_content from goatools.test_data.gafs import ASSOCIATIONS from goatools.associations import dnld_annotation from goatools.anno.gaf_reader import GafReader from goatools.godag.consts import NS2NAMESPACE TIC = timeit.default_timer() REPO = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..") def test_semantic_similarity(usr_assc=None): """Computing basic semantic similarities between GO terms.""" not_these = {'goa_uniprot_all.gaf', 'goa_uniprot_all_noiea.gaf'} associations = sorted(ASSOCIATIONS.difference(not_these)) go2obj = get_go2obj() # goids = go2obj.keys() # http://current.geneontology.org/annotations/ if usr_assc is not None: associations = [usr_assc] not_found = set() errs = [] for assc_name in associations: # Limit test numbers for speed tic = timeit.default_timer() # Get all the annotations from arabidopsis. fin_gaf = os.path.join(REPO, assc_name) if not os.path.exists(fin_gaf): dnld_annotation(fin_gaf) annoobj = GafReader(fin_gaf) #### for nspc in ['BP', 'MF', 'CC']: assc_gene2gos = annoobj.get_id2gos('all') if not assc_gene2gos: not_found.add(assc_name) continue # Calculate the information content of the single term, GO:0048364 # "Information content (GO:0048364) = 7.75481392334 # Initialize the counts of each GO term. tcntobj = TermCounts(go2obj, assc_gene2gos) go_cnt = tcntobj.gocnts.most_common() #print tcntobj.gocnts.most_common() if go_cnt: print("{ASSC}".format(ASSC=assc_name)) print(tcntobj.aspect_counts) gocnt_max = go_cnt[0][1] prt_info(tcntobj, go_cnt, None) prt_info(tcntobj, go_cnt, gocnt_max/2.0) prt_info(tcntobj, go_cnt, gocnt_max/10.0) print("{HMS} {hms} {ASSC}\n".format(ASSC=assc_name, HMS=_hms(TIC), hms=_hms(tic))) print('{HMS} {N} Associations'.format(HMS=_hms(TIC), N=len(associations))) if not_found: _prt_not_found(not_found) if errs: fout_err = 'namespace_errors.txt' with open(fout_err, 'w') as prt: for err in errs: prt.write(err) print(' {N} ERRORS WROTE: {TXT}'.format(N=len(errs), TXT=fout_err)) def _prt_not_found(not_found): print('**WARNING: {N} EMPTY ASSOCIATIONS:'.format(N=len(not_found))) for idx, assc in enumerate(not_found): print(' {I}) {ASSC}'.format(I=idx, ASSC=assc)) def _hms(tic): """Get Timing.""" return '{HMS}'.format(HMS=str(datetime.timedelta(seconds=(timeit.default_timer()-tic)))) def prt_info(tcntobj, go_cnt, max_val): """Print the information content of a frequently used GO ID.""" go_id, cnt = get_goid(go_cnt, max_val) infocontent = get_info_content(go_id, tcntobj) msg = 'Information content ({GO} {CNT:7,}) = {INFO:8.6f} {NAME}' print(msg.format(GO=go_id, CNT=cnt, INFO=infocontent, NAME=tcntobj.go2obj[go_id].name)) def get_goid(go_cnt, max_val): """Get frequently used GO ID.""" if max_val is not None: for goid, cnt in go_cnt: if cnt < max_val: return goid, cnt return go_cnt[-1][0], go_cnt[-1][1] return go_cnt[0][0], go_cnt[0][1] def get_go2obj(): """Read GODag and return go2obj.""" godag = get_godag(os.path.join(REPO, "go-basic.obo"), loading_bar=None) return {go:o for go, o in godag.items() if not o.is_obsolete} if __name__ == '__main__': ASSC_NAME = None if len(sys.argv) == 1 else sys.argv[1] test_semantic_similarity(ASSC_NAME)
tests/test_level4/test_playing.py
kianmeng/soupsieve
130
12752633
"""Test playing selectors.""" from .. import util class TestPlaying(util.TestCase): """Test playing selectors.""" MARKUP = """ <!DOCTYPE html> <html> <body> <video id="vid" width="320" height="240" controls> <source src="movie.mp4" type="video/mp4"> <source src="movie.ogg" type="video/ogg"> Your browser does not support the video tag. </video> </body> </html> """ def test_playing(self): """Test playing (matches nothing).""" # Not actually sure how this is used, but it won't match anything anyways self.assert_selector( self.MARKUP, "video:playing", [], flags=util.HTML ) def test_not_playing(self): """Test not playing.""" self.assert_selector( self.MARKUP, "video:not(:playing)", ["vid"], flags=util.HTML )
redbot/message/headers/tcn.py
kinow/redbot
167
12752634
<reponame>kinow/redbot #!/usr/bin/env python from redbot.message import headers class tcn(headers.HttpHeader): canonical_name = "TCN" description = """\ The `TCN` header field is part of an experimental transparent content negotiation scheme. It is not widely supported in clients. """ reference = "https://tools.ietf.org/html/rfc2295" list_header = True deprecated = False valid_in_requests = False valid_in_responses = True no_coverage = True
skater/core/local_interpretation/lime/lime_tabular.py
RPUTHUMA/Skater
718
12752653
""" Making LimeTabularExplainer Accessible """ from lime.lime_tabular import LimeTabularExplainer
sktime/forecasting/croston.py
marcio55afr/sktime
5,349
12752664
<reponame>marcio55afr/sktime # -*- coding: utf-8 -*- # !/usr/bin/env python3 -u # copyright: sktime developers, BSD-3-Clause License (see LICENSE file) """Croston's Forecasting Method.""" import numpy as np import pandas as pd from sktime.forecasting.base import BaseForecaster from sktime.forecasting.base._base import DEFAULT_ALPHA class Croston(BaseForecaster): r"""Croston's method for forecasting intermittent time series. Implements the method proposed by Croston in [1]_ and described in [2]_. Croston's method is a modification of (vanilla) exponential smoothing to handle intermittent time series. A time series is considered intermittent if many of its values are zero and the gaps between non-zero entries are not periodic. Croston's method will predict a constant value for all future times, so Croston's method essentially provides another notion for the average value of a time series. The method is (equivalent to) the following: - Let :math:`v_0,\ldots,v_n` be the non-zero values of the time series - Let :math:`v` be the exponentially smoothed average of :math:`v_0,\ldots,v_n` - Let :math:`z_0,\ldots,z_n` be the number of consecutive zeros plus 1 between the :math:`v_i` in the original time series. - Let :math:`z` be the exponentially smoothed average of :math:`z_0,\ldots,z_n` - Then the forecast is :math:`\frac{v}{z}` The intuition is that :math:`v` is a weighted average of the non-zero time series values and :math:`\frac{1}{z}` estimates the probability of getting a non-zero value. Example to illustrate the :math:`v` and :math:`z` notation. - If the original time series is :math:`0,0,2,7,0,0,0,-5` then: - The :math:`v`'s are :math:`2,7,-5` - The :math:`z`'s are :math:`3,1,4` Parameters ---------- smoothing : float, default = 0.1 Smoothing parameter in exponential smoothing Examples -------- >>> from sktime.forecasting.croston import Croston >>> from sktime.datasets import load_PBS_dataset >>> y = load_PBS_dataset() >>> forecaster = Croston(smoothing=0.1) >>> forecaster.fit(y) Croston(...) >>> y_pred = forecaster.predict(fh=[1,2,3]) See Also -------- ExponentialSmoothing References ---------- .. [1] <NAME>. Forecasting and stock control for intermittent demands. Operational Research Quarterly (1970-1977), 23(3):pp. 289–303, 1972. .. [2] <NAME>. Forecasting Intermittent Demand with the Croston Model. https://towardsdatascience.com/croston-forecast-model-for-intermittent-demand-360287a17f5f """ _tags = { "requires-fh-in-fit": False, # is forecasting horizon already required in fit? } def __init__(self, smoothing=0.1): # hyperparameter self.smoothing = smoothing self._f = None super(Croston, self).__init__() def _fit(self, y, X=None, fh=None): """Fit to training data. Parameters ---------- y : pd.Series Target time series to which to fit the forecaster. fh : int, list or np.array, optional (default=None) The forecasters horizon with the steps ahead to to predict. X : pd.DataFrame, optional (default=None) Exogenous variables are ignored. Returns ------- self : returns an instance of self. """ n_timepoints = len(y) # Historical period: i.e the input array's length smoothing = self.smoothing y = y.to_numpy() # Transform the input into a numpy array # Fit the parameters: level(q), periodicity(a) and forecast(f) q, a, f = np.full((3, n_timepoints + 1), np.nan) p = 1 # periods since last demand observation # Initialization: first_occurrence = np.argmax(y[:n_timepoints] > 0) q[0] = y[first_occurrence] a[0] = 1 + first_occurrence f[0] = q[0] / a[0] # Create t+1 forecasts: for t in range(0, n_timepoints): if y[t] > 0: q[t + 1] = smoothing * y[t] + (1 - smoothing) * q[t] a[t + 1] = smoothing * p + (1 - smoothing) * a[t] f[t + 1] = q[t + 1] / a[t + 1] p = 1 else: q[t + 1] = q[t] a[t + 1] = a[t] f[t + 1] = f[t] p += 1 self._f = f return self def _predict( self, fh=None, X=None, return_pred_int=False, alpha=DEFAULT_ALPHA, ): """Predict forecast. Parameters ---------- fh : int, list or np.array, optional (default=None) The forecasters horizon with the steps ahead to to predict. X : pd.DataFrame, optional (default=None) Exogenous variables are ignored. Returns ------- forecast : pd.series Predicted forecasts. """ len_fh = len(self.fh) f = self._f # Predicting future forecasts:to_numpy() y_pred = np.full(len_fh, f[-1]) index = self.fh.to_absolute(self.cutoff) return pd.Series(y_pred, index=index)
cisco-ios-xr/ydk/models/cisco_ios_xr/Cisco_IOS_XR_shellutil_cfg.py
CiscoDevNet/ydk-py
177
12752669
""" Cisco_IOS_XR_shellutil_cfg This module contains a collection of YANG definitions for Cisco IOS\-XR shellutil package configuration. This module contains definitions for the following management objects\: host\-names\: Container Schema for hostname configuration Copyright (c) 2013\-2018 by Cisco Systems, Inc. All rights reserved. """ import sys from collections import OrderedDict from ydk.types import Entity as _Entity_ from ydk.types import EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64 from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64 from ydk.filters import YFilter from ydk.errors import YError, YModelError from ydk.errors.error_handler import handle_type_error as _handle_type_error class HostNames(_Entity_): """ Container Schema for hostname configuration .. attribute:: host_name Configure system's hostname **type**\: str """ _prefix = 'shellutil-cfg' _revision = '2015-10-12' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(HostNames, self).__init__() self._top_entity = None self.yang_name = "host-names" self.yang_parent_name = "Cisco-IOS-XR-shellutil-cfg" self.is_top_level_class = True self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('host_name', (YLeaf(YType.str, 'host-name'), ['str'])), ]) self.host_name = None self._segment_path = lambda: "Cisco-IOS-XR-shellutil-cfg:host-names" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(HostNames, ['host_name'], name, value) def clone_ptr(self): self._top_entity = HostNames() return self._top_entity @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_shellutil_cfg as meta return meta._meta_table['HostNames']['meta_info']
rtools/install_package.py
scw/r-tools-install
193
12752691
# Py3 compat layer from __future__ import unicode_literals from __future__ import print_function from __future__ import absolute_import import arcpy import glob import os import shutil import sys # create a handle to the windows kernel; want to make Win API calls try: import ctypes from ctypes import wintypes # pass str() to avoid bpo29082 in Python 2.7.13 kdll = ctypes.windll.LoadLibrary(str("kernel32.dll")) except (ImportError, TypeError): kdll = None from .bootstrap_r import execute_r from .github_release import save_url, release_info from .rpath import ( r_lib_path, r_path, r_pkg_path, r_pkg_version, r_user_lib_path, r_version, arcmap_exists, arcmap_path, fnf_exception, handle_fnf, ) from .utils import mkdtemp, set_env_tmpdir from .fs import getvolumeinfo, hardlinks_supported, junctions_supported try: import winreg except ImportError: # py 2 import _winreg as winreg PACKAGE_NAME = 'arcgisbinding' PACKAGE_VERSION = r_pkg_version() def bridge_running(product): """ Check if the R ArcGIS bridge is running. Installation wil fail if the DLL is currently loaded.""" running = False # check for the correct DLL if product == 'Pro': proxy_name = "rarcproxy_pro.dll" else: proxy_name = "rarcproxy.dll" kdll.GetModuleHandleW.restype = wintypes.HMODULE kdll.GetModuleHandleW.argtypes = [wintypes.LPCWSTR] dll_handle = kdll.GetModuleHandleW(proxy_name) # memory address of DLL if dll_handle is not None: running = True return running def arcgis_platform(): """ ArcGIS platform details used internally.""" info = arcpy.GetInstallInfo() install_dir = info['InstallDir'] arc_version = info['Version'] if info['ProductName'] == 'ArcGISPro': product = 'Pro' else: # there are other levels, but this is a PYT run from toolbox, # so unlikely to be a non-ArcMap context product = 'ArcMap' return (install_dir, arc_version, product) def validate_environment(overwrite=None): """Make sure we have a version of the product that works, and that the library isn't already loaded.""" (install_dir, arc_version, product) = arcgis_platform() # earlier versions excluded by virtue of not having Python toolbox support no_hook_versions = ('10.1', '10.2', '10.2.1', '10.2.2', '10.3') valid_env = True msg = [] if arc_version in no_hook_versions and product is not 'Pro': msg.append("The ArcGIS R bridge requires ArcGIS 10.3.1 or later.") valid_env = False if arc_version in ('1.0', '1.0.2') and product == 'Pro': msg.append("The ArcGIS R bridge requires ArcGIS Pro 1.1 or later.") valid_env = False if not overwrite and PACKAGE_VERSION: msg.append("The ArcGIS R bridge is already installed, and " "overwrite is disabled.") valid_env = False if kdll is None: msg.append("Unable to connect to your Windows configuration, " "this is likely due to an incorrect Python installation. " "Try repairing your ArcGIS installation.") valid_env = False # check the library isn't loaded if kdll is not None and bridge_running(product): msg.append("The ArcGIS R bridge is currently in-use, restart the " "application and try again.") valid_env = False if r_version() is None: msg.append("It doesn't look like R is installed. Install R prior " "to running this tool.") valid_env = False if not valid_env: arcpy.AddError("\n\n".join(msg)) sys.exit() def create_registry_entry(product, arc_version): """Create a registry link back to the arcgisbinding package.""" root_key = winreg.HKEY_CURRENT_USER if product == 'Pro': product_name = "ArcGISPro" else: product_name = "Desktop{}".format(arc_version) reg_path = "SOFTWARE\\Esri\\{}".format(product_name) package_key = 'RintegrationProPackagePath' link_key = None try: full_access = (winreg.KEY_WOW64_64KEY + winreg.KEY_ALL_ACCESS) # find the key, 64- or 32-bit we want it all link_key = winreg.OpenKey(root_key, reg_path, 0, full_access) except fnf_exception as error: handle_fnf(error) if link_key: try: arcpy.AddMessage("Using registry key to link install.") binding_path = "{}\\{}".format(r_lib_path(), "arcgisbinding") winreg.SetValueEx(link_key, package_key, 0, winreg.REG_SZ, binding_path) except fnf_exception as error: handle_fnf(error) def install_package(overwrite=False, r_library_path=r_lib_path()): """Install ArcGIS R bindings onto this machine.""" if overwrite is True: overwrite = True else: overwrite = False (install_dir, arc_version, product) = arcgis_platform() arcmap_needs_link = False # check that we're in a sane installation environment validate_environment(overwrite) # detect if we we have a 10.3.1 install that needs linking if product == 'Pro' and arcmap_exists("10.3"): arcmap_needs_link = True msg_base = "Pro side by side with 10.3 detected," if arcmap_path() is not None: msg = "{} installing bridge for both environments.".format(msg_base) arcpy.AddMessage(msg) else: msg = "{} but unable to find install path.".format(msg_base) + \ "ArcGIS bridge must be manually installed in ArcGIS 10.3." arcpy.AddWarning(msg) # if we're going to install the bridge in 10.3.1, create the appropriate # directory before trying to install. if arc_version == '10.3.1' and product == 'ArcMap' or arcmap_needs_link: r_integration_dir = os.path.join(arcmap_path(), "Rintegration") # TODO escalate privs here? test on non-admin user if not os.path.exists(r_integration_dir): try: write_test = os.path.join(install_dir, 'test.txt') with open(write_test, 'w') as f: f.write('test') os.remove(write_test) os.makedirs(r_integration_dir) except IOError: arcpy.AddError( "Insufficient privileges to create 10.3.1 bridge directory." " Please start {} as an administrator, by right clicking" " the icon, selecting \"Run as Administrator\", then run this" " script again.".format(product)) return # set an R-compatible temporary folder, if needed. orig_tmpdir = os.getenv("TMPDIR") if not orig_tmpdir: set_env_tmpdir() download_url = release_info()[0] if download_url is None: arcpy.AddWarning( "Unable to get current release information." " Trying offline installation.") local_install = False base_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), '..') zip_glob = glob.glob(os.path.join(base_path, "arcgisbinding*.zip")) # see if we have a local copy of the binding if zip_glob and os.path.exists(zip_glob[0]): local_install = True zip_path = zip_glob[0] zip_name = os.path.basename(zip_path) elif not download_url and not local_install: arcpy.AddError( "Unable to access online package, and no " "local copy of package found.") return else: local_install = False zip_name = os.path.basename(download_url) # check for a network-based R installation if r_path() and r_path()[0:2] == r'\\': arcpy.AddMessage( "R installed on a network path, using fallback installation method.") r_local_install = False else: r_local_install = True # we have a release, write it to disk for installation with mkdtemp() as temp_dir: # For R 4.0+, check version from GitHub but install via repo if r_version() and r_version().split(".")[0] == '4': cmd = "install.packages(\"arcgisbinding\", repos=\"https://r.esri.com\", type=\"win.binary\")" install_script = os.path.join(temp_dir, 'install.R') with open(install_script, 'w') as f: f.write(cmd) rcmd_return = execute_r("Rscript", install_script) if rcmd_return != 0: arcpy.AddError("Failed to install bridge with `install.packages`, try manualy running the command `{cmd}` from an R session or RStudio.") else: package_path = os.path.join(temp_dir, zip_name) if local_install: arcpy.AddMessage("Found local copy of binding, installing from zip") shutil.copyfile(zip_path, package_path) else: save_url(download_url, package_path) if os.path.exists(package_path): # TODO -- need to do UAC escalation here? # call the R installation script rcmd_return = 0 if r_local_install: rcmd_return = execute_r('Rcmd', 'INSTALL', package_path) if not r_local_install or rcmd_return != 0: # if we don't have a per-user library, create one r_user_lib = r_user_lib_path() if not os.path.exists(r_user_lib): try: arcpy.AddMessage("Creating per-user library directory") os.makedirs(r_user_lib) except OSError: arcpy.AddWarning("Failed to create per-user library.") # Can't execute Rcmd in this context, write out a temporary # script and run install.packages() from within an R session. install_script = os.path.join(temp_dir, 'install.R') with open(install_script, 'w') as f: f.write("install.packages(\"{}\", repos=NULL)".format( package_path.replace("\\", "/"))) rcmd_return = execute_r("Rscript", install_script) if rcmd_return != 0: arcpy.AddWarning("Fallback installation method failed.") else: arcpy.AddError("No package found at {}".format(package_path)) return # return TMPDIR to its original value; only need it for Rcmd INSTALL set_env_tmpdir(orig_tmpdir) # at 10.4 and Pro <=1.2, if the user has installed a version with a non- # numeric patch level (e.g. 3.2.4revised), and the bridge is installed # into Program Files, the link will fail. In this case, set the # appropriate registry key so that the bridge will still work. Note that # this isn't ideal, because it will persist after updates, but it is # better than the bridge failing to work at all. if (arc_version == '10.4' and product == 'Desktop') or \ (arc_version in ('1.1', '1.1.1', '1.2') and product == 'Pro'): if r_version(): (r_major, r_minor, r_patchlevel) = r_version().split(".") # if we have a patchlevel like '4revised' or '3alpha', and # the global library path is used, then use the registry key. if len(r_patchlevel) > 1 and 'Program Files' in r_library_path: # create_registry_entry(product, arc_version) msg = ("Currently, the bridge doesn't support patched releases" " (e.g. 3.2.4 Revised) in a global install. Please use" " another version of R.") arcpy.AddError(msg) return # at 10.3.1, we _must_ have the bridge installed at the correct location. # create a symlink that connects back to the correct location on disk. if arc_version == '10.3.1' and product == 'ArcMap' or arcmap_needs_link: link_dir = os.path.join(r_integration_dir, PACKAGE_NAME) if os.path.exists(link_dir): if junctions_supported(link_dir) or hardlinks_supported(link_dir): # os.rmdir uses RemoveDirectoryW, and can delete a junction os.rmdir(link_dir) else: shutil.rmtree(link_dir) # set up the link r_package_path = r_pkg_path() if r_package_path: arcpy.AddMessage("R package path: {}.".format(r_package_path)) else: arcpy.AddError("Unable to locate R package library. Link failed.") return detect_msg = "ArcGIS 10.3.1 detected." if junctions_supported(link_dir) or hardlinks_supported(link_dir): arcpy.AddMessage("{} Creating link to package.".format(detect_msg)) kdll.CreateSymbolicLinkW(link_dir, r_package_path, 1) else: # working on a non-NTFS volume, copy instead vol_info = getvolumeinfo(link_dir) arcpy.AddMessage("{} Drive type: {}. Copying package files.".format( detect_msg, vol_info[0])) # NOTE: this will need to be resynced when the package is updated, # if installed from the R side. shutil.copytree(r_package_path, link_dir) # execute as standalone script, get parameters from sys.argv if __name__ == '__main__': if len(sys.argv) == 2: overwrite = sys.argv[1] else: overwrite = None print("library path: {}".format(r_lib_path())) install_package(overwrite=overwrite, r_library_path=r_lib_path())
tests/capi2_cores/misc/generate/testgen.py
idex-biometrics/fusesoc
829
12752697
<reponame>idex-biometrics/fusesoc # Copyright FuseSoC contributors # Licensed under the 2-Clause BSD License, see LICENSE for details. # SPDX-License-Identifier: BSD-2-Clause import sys import yaml template = """CAPI=2: name : {} targets: default: parameters: [p] parameters: p: datatype : str paramtype : vlogparam """ with open(sys.argv[1]) as fin: data = yaml.safe_load(fin) config = data.get("parameters") files_root = data.get("files_root") vlnv = data.get("vlnv") with open("generated.core", "w") as fout: fout.write(template.format(vlnv))
demo/demo_bbox_detector.py
realblack0/eft
241
12752751
<filename>demo/demo_bbox_detector.py # Copyright (c) Facebook, Inc. and its affiliates. import os import sys import numpy as np import cv2 import torch import torchvision.transforms as transforms from PIL import Image ##Yolo related yolo_path = './PyTorch-YOLOv3' sys.path.append(yolo_path) try: from models import Darknet from utils.utils import non_max_suppression, rescale_boxes from utils.datasets import pad_to_square,resize except ImportError: print("Cannot find PyTorch-YOLOv3") ##lightweight human pose # pose2d_estimator_path = '/home/hjoo/codes_test/lightweight-human-pose-estimation.pytorch/' # pose2d_checkpoint = "/home/hjoo/codes_test/lightweight-human-pose-estimation.pytorch/pretrain/checkpoint_iter_370000.pth" pose2d_checkpoint = "./lightweight-human-pose-estimation.pytorch/checkpoint_iter_370000.pth" pose2d_estimator_path = './lightweight-human-pose-estimation.pytorch/' sys.path.append(pose2d_estimator_path) try: from pose2d_models.with_mobilenet import PoseEstimationWithMobileNet from modules.load_state import load_state from val import normalize, pad_width from modules.pose import Pose, track_poses from modules.keypoints import extract_keypoints, group_keypoints except ImportError: print("Cannot find lightweight-human-pose-estimation.pytorch") def Load_Yolo(device): #Load Darknet yolo_model_def= os.path.join(yolo_path, 'config/yolov3-tiny.cfg') yolo_img_size = 416 yolo_weights_path = os.path.join(yolo_path, 'weights/yolov3-tiny.weights') model = Darknet(yolo_model_def, img_size=yolo_img_size).to(device) if yolo_weights_path.endswith(".weights"): # Load darknet weights model.load_darknet_weights(yolo_weights_path) else: # Load checkpoint weights model.load_state_dict(torch.load(yolo_weights_path)) model.eval() # Set in evaluation mode return model def Yolo_detect(model, camInputFrame, img_size = 416, conf_thres = 0.8, nms_thres = 0.4): img = transforms.ToTensor()(Image.fromarray(camInputFrame)) # Pad to square resolution img, _ = pad_to_square(img, 0) # Resize img = resize(img, img_size) img = img.unsqueeze(0) #(1,3,416.419) input_imgs = img.cuda() with torch.no_grad(): detections = model(input_imgs) detections = non_max_suppression(detections, conf_thres, nms_thres) if detections is not None: detections = detections[0] if detections is not None: detections = rescale_boxes(detections, img_size, camInputFrame.shape[:2]) return detections def Yolo_detectHuman(model, camInputFrame): detections = Yolo_detect(model,camInputFrame, conf_thres = 0.1, nms_thres = 0.3) #Modified to be better with yolo tiny bbr_list=[] #minX, minY, width, height if detections is not None: for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections: if cls_pred!=0: continue box_w = x2 - x1 box_h = y2 - y1 # camInputFrame = viewer2D.Vis_Bbox_minmaxPt(camInputFrame,[x1,y1], [x2,y2]) bbr_list.append( np.array([x1,y1,box_w,box_h])) return bbr_list #Code from https://github.com/Daniil-Osokin/lightweight-human-pose-estimation.pytorch/demo.py def infer_fast(net, img, net_input_height_size, stride, upsample_ratio, cpu, pad_value=(0, 0, 0), img_mean=(128, 128, 128), img_scale=1/256): height, width, _ = img.shape scale = net_input_height_size / height scaled_img = cv2.resize(img, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) scaled_img = normalize(scaled_img, img_mean, img_scale) min_dims = [net_input_height_size, max(scaled_img.shape[1], net_input_height_size)] padded_img, pad = pad_width(scaled_img, stride, pad_value, min_dims) tensor_img = torch.from_numpy(padded_img).permute(2, 0, 1).unsqueeze(0).float() if not cpu: tensor_img = tensor_img.cuda() stages_output = net(tensor_img) stage2_heatmaps = stages_output[-2] heatmaps = np.transpose(stage2_heatmaps.squeeze().cpu().data.numpy(), (1, 2, 0)) heatmaps = cv2.resize(heatmaps, (0, 0), fx=upsample_ratio, fy=upsample_ratio, interpolation=cv2.INTER_CUBIC) stage2_pafs = stages_output[-1] pafs = np.transpose(stage2_pafs.squeeze().cpu().data.numpy(), (1, 2, 0)) pafs = cv2.resize(pafs, (0, 0), fx=upsample_ratio, fy=upsample_ratio, interpolation=cv2.INTER_CUBIC) return heatmaps, pafs, scale, pad #Code from https://github.com/Daniil-Osokin/lightweight-human-pose-estimation.pytorch/demo.py def pose2d_detectHuman(net, img, height_size =256, track = 1, smooth=1, bVis =True): stride = 8 upsample_ratio = 4 num_keypoints = Pose.num_kpts previous_poses = [] delay = 33 if True: # for img in image_provider: orig_img = img.copy() heatmaps, pafs, scale, pad = infer_fast(net, img, height_size, stride, upsample_ratio, cpu=not torch.cuda.is_available()) total_keypoints_num = 0 all_keypoints_by_type = [] for kpt_idx in range(num_keypoints): # 19th for bg total_keypoints_num += extract_keypoints(heatmaps[:, :, kpt_idx], all_keypoints_by_type, total_keypoints_num) pose_entries, all_keypoints = group_keypoints(all_keypoints_by_type, pafs, demo=True) for kpt_id in range(all_keypoints.shape[0]): all_keypoints[kpt_id, 0] = (all_keypoints[kpt_id, 0] * stride / upsample_ratio - pad[1]) / scale all_keypoints[kpt_id, 1] = (all_keypoints[kpt_id, 1] * stride / upsample_ratio - pad[0]) / scale current_poses = [] for n in range(len(pose_entries)): if len(pose_entries[n]) == 0: continue pose_keypoints = np.ones((num_keypoints, 2), dtype=np.int32) * -1 for kpt_id in range(num_keypoints): if pose_entries[n][kpt_id] != -1.0: # keypoint was found pose_keypoints[kpt_id, 0] = int(all_keypoints[int(pose_entries[n][kpt_id]), 0]) pose_keypoints[kpt_id, 1] = int(all_keypoints[int(pose_entries[n][kpt_id]), 1]) pose = Pose(pose_keypoints, pose_entries[n][18]) current_poses.append(pose) if bVis: if track: track_poses(previous_poses, current_poses, smooth=smooth) previous_poses = current_poses for pose in current_poses: pose.draw(img) img = cv2.addWeighted(orig_img, 0.6, img, 0.4, 0) for pose in current_poses: cv2.rectangle(img, (pose.bbox[0], pose.bbox[1]), (pose.bbox[0] + pose.bbox[2], pose.bbox[1] + pose.bbox[3]), (0, 255, 0)) if track: cv2.putText(img, 'id: {}'.format(pose.id), (pose.bbox[0], pose.bbox[1] - 16), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255)) cv2.imshow('Lightweight Human Pose Estimation Python Demo', img) key = cv2.waitKey(delay) if key == 27: # esc return elif key == 112: # 'p' if delay == 33: delay = 0 else: delay = 33 return current_poses def Load_pose2d(device): """ This one runs in CPU """ net = PoseEstimationWithMobileNet() checkpoint = torch.load(pose2d_checkpoint, map_location='cpu') load_state(net, checkpoint) net = net.eval() net = net.to(device) return net class BodyBboxDetector: def __init__(self, method="2dpose", device = torch.device('cuda')): """ args: method: "yolo" or "2dpose" """ self.method = method if method =="yolo": print("Loading Yolo Model...") self.model = Load_Yolo(device) print("Done") elif method=="2dpose": print("Loading Pose Estimation Model...") self.model = Load_pose2d(device) print("Done") else : print("invalid method") assert False self.bboxXYWH_list = None def detectBbox(self, img_bgr): """ args: img_bgr: Raw image with BGR order (cv2 default). Currently assumes BGR #TODO: make sure the input type of each method output: bboxXYWH_list: list of bboxes. Each bbox has XYWH form (minX,minY,width,height) """ if self.method=="yolo": bboxXYWH_list = Yolo_detectHuman(self.model, img_bgr) elif self.method=="2dpose": poses_from2dPoseEst = pose2d_detectHuman(self.model, img_bgr, bVis=False) bboxXYWH_list =[] for poseEst in poses_from2dPoseEst: bboxXYWH_list.append(np.array (poseEst.bbox)) else: print("Unknown bbox extimation method") assert False self.bboxXYWH_list = bboxXYWH_list #Save this as member function return bboxXYWH_list
dmb/data/loaders/__init__.py
jiaw-z/DenseMatchingBenchmark
160
12752797
<reponame>jiaw-z/DenseMatchingBenchmark from .builder import build_data_loader
reinforcement_learning/dqn/atari_utils.py
AaratiAkkapeddi/nnabla-examples
228
12752800
<filename>reinforcement_learning/dqn/atari_utils.py # Copyright 2019,2020,2021 Sony Corporation. # Copyright 2021 Sony Group Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gym import numpy as np class Squeeze(gym.ObservationWrapper): '''Assume wrap_deepmind with scale=True''' def __init__(self, env): from gym import spaces gym.ObservationWrapper.__init__(self, env) self.observation_space = spaces.Box( low=0, high=1.0, shape=(84, 84), dtype=np.float32) def observation(self, observation): return np.squeeze(observation) def make_atari_deepmind(rom_name, valid=False): from external.atari_wrappers import make_atari, wrap_deepmind env = make_atari(rom_name) # framestack is handled by sampler.py env = wrap_deepmind(env, episode_life=not valid, frame_stack=False, scale=True) env = Squeeze(env) return env
django_covid19/apps.py
zhangguoyuanshuai/Python-Covid19API
103
12752814
<filename>django_covid19/apps.py from django.apps import AppConfig from django.utils.translation import ugettext_lazy as _ class DjangoCovid19Config(AppConfig): name = 'django_covid19' verbose_name = _('django_covid19') def ready(self): import django_covid19.signals
urduhack/tokenization/wtk.py
cinfotech94/urduhackk
252
12752838
<reponame>cinfotech94/urduhackk """SentencePiece based word tokenizer module""" from pathlib import Path from typing import List import sentencepiece as spm from urduhack.stop_words import STOP_WORDS def _is_token(pieces: list, special_symbol: str = "▁") -> List[str]: """ Check for stopwords and actual words in word pieces Args: pieces (list): word pieces returned by sentencepiece model special_symbol (str): spm prefix special symbol for space Returns: List of decoded words """ decoded = [] for piece in pieces: if special_symbol not in piece: if piece in STOP_WORDS or len(piece) > 3: piece = special_symbol + piece decoded.append(piece) else: decoded.append(piece) else: decoded.append(piece) return decoded def _load_model(model_path: str) -> spm.SentencePieceProcessor: """ Loads pre_trained keras model and vocab file Args: model_path (str): Path to the spm model file Returns: spm model class instance """ spm_model = spm.SentencePieceProcessor() spm_model.Load(model_file=model_path) return spm_model def _is_model_available(model_path: str) -> None: """ Check if the models file exist. Args: model_path (str): path to the tokenizer model file Raises: FileNotFoundError: If model_path does not exist Returns: None """ if not Path(model_path).exists(): _error = "Word tokenizer Model not found!" \ "Please run 'urduhack download' in terminal." \ "Doc: https://urduhack.readthedocs.io/en/stable/installation.html#downloading-models" raise FileNotFoundError(_error)
interactive_control_train.py
mohamedSabry0/new_autoRCCar
333
12752870
#!/usr/bin/env python """Interactive control for the car""" import time import io import pygame import pygame.font import picamera import configuration import helpers.motor_driver as motor_driver_helper import helpers.image as image_helper UP = LEFT = DOWN = RIGHT = ACCELERATE = DECELERATE = False def get_keys(): """Returns a tuple of (UP, DOWN, LEFT, RIGHT, change, ACCELERATE, DECELERATE, stop) representing which keys are UP or DOWN and whether or not the key states changed. """ change = False stop = False key_to_global_name = { pygame.K_LEFT: 'LEFT', pygame.K_RIGHT: 'RIGHT', pygame.K_UP: 'UP', pygame.K_DOWN: 'DOWN', pygame.K_ESCAPE: 'QUIT', pygame.K_q: 'QUIT', pygame.K_w: 'ACCELERATE', pygame.K_s: 'DECELERATE' } for event in pygame.event.get(): if event.type in {pygame.K_q, pygame.K_ESCAPE}: stop = True elif event.type in {pygame.KEYDOWN, pygame.KEYUP}: down = (event.type == pygame.KEYDOWN) change = (event.key in key_to_global_name) if event.key in key_to_global_name: globals()[key_to_global_name[event.key]] = down return (UP, DOWN, LEFT, RIGHT, change, ACCELERATE, DECELERATE, stop) def interactive_control(): """Runs the interactive control""" setup_interactive_control() clock = pygame.time.Clock() with picamera.PiCamera() as camera: camera.resolution = configuration.PICAMERA_RESOLUTION camera.framerate = configuration.PICAMERA_FRAMERATE time.sleep(configuration.PICAMERA_WARM_UP_TIME) # GPIO.output(BACK_MOTOR_ENABLE_PIN, True) pwm = motor_driver_helper.get_pwm_imstance() motor_driver_helper.start_pwm(pwm) command = 'idle' duty_cycle = configuration.INITIAL_PWM_DUTY_CYCLE while True: up_key, down, left, right, change, accelerate, decelerate, stop = get_keys() if stop: break if accelerate: duty_cycle = duty_cycle + 3 if (duty_cycle + 3) <= 100 else duty_cycle motor_driver_helper.change_pwm_duty_cycle(pwm, duty_cycle) print("speed: " + str(duty_cycle)) if decelerate: duty_cycle = duty_cycle - 3 if (duty_cycle - 3) >= 0 else duty_cycle motor_driver_helper.change_pwm_duty_cycle(pwm, duty_cycle) print("speed: " + str(duty_cycle)) if change: command = 'idle' motor_driver_helper.set_idle_mode() if up_key: command = 'forward' print(duty_cycle) motor_driver_helper.set_forward_mode() elif down: command = 'reverse' motor_driver_helper.set_reverse_mode() append = lambda x: command + '_' + x if command != 'idle' else x if left: command = append('left') motor_driver_helper.set_left_mode() elif right: command = append('right') motor_driver_helper.set_right_mode() print(command) stream = io.BytesIO() camera.capture(stream, format='jpeg', use_video_port=True) image_helper.save_image_with_direction(stream, command) stream.flush() clock.tick(30) pygame.quit() def setup_interactive_control(): """Setup the Pygame Interactive Control Screen""" pygame.init() display_size = (300, 400) screen = pygame.display.set_mode(display_size) background = pygame.Surface(screen.get_size()) color_white = (255, 255, 255) display_font = pygame.font.Font(None, 40) pygame.display.set_caption('RC Car Interactive Control') text = display_font.render('Use arrows to move', 1, color_white) text_position = text.get_rect(centerx=display_size[0] / 2) background.blit(text, text_position) screen.blit(background, (0, 0)) pygame.display.flip() def main(): """Main function""" motor_driver_helper.set_gpio_pins() interactive_control() if __name__ == '__main__': main()
Trakttv.bundle/Contents/Libraries/Shared/plex_database/models/directory.py
disrupted/Trakttv.bundle
1,346
12752883
<gh_stars>1000+ from plex_database.core import db from plex_database.models.library_section import LibrarySection from peewee import * class Directory(Model): class Meta: database = db db_table = 'directories' library_section = ForeignKeyField(LibrarySection, null=True, related_name='directories') parent_directory = ForeignKeyField('self', null=True, related_name='children') path = CharField(null=True) created_at = DateTimeField(null=True) updated_at = DateTimeField(null=True) deleted_at = DateTimeField(null=True)
commands/uninstall/__init__.py
tamarindmonkey/.oh-my-comma
102
12752884
#!/usr/bin/python # -*- coding: utf-8 -*- from commands.base import CommandBase from py_utils.emu_utils import run, error, input_with_options, UNINSTALL_PATH class Uninstall(CommandBase): def __init__(self): super().__init__() self.name = 'uninstall' self.description = '👋 Uninstalls emu' @staticmethod def _uninstall(): print('Are you sure you want to uninstall emu?') if input_with_options(['Y', 'n'], 'n')[0] == 0: run(['sh', UNINSTALL_PATH]) else: error('Not uninstalling!')
tests/test_crc32c.py
shirui-japina/tensorboardX
5,378
12752886
import unittest from tensorboardX.crc32c import _crc32c, _crc32c_native, crc32c class CRC32CTest(unittest.TestCase): def test_crc32c(self): data = b'abcd' assert crc32c(data) == 0x92c80a31 def test_crc32c_python(self): data = b'abcd' assert _crc32c(data) == 0x92c80a31 def test_crc32c_native(self): if _crc32c_native is None: return data = b'abcd' assert _crc32c_native(data) == 0x92c80a31
util/security/test/test_jwtutil.py
giuseppe/quay
2,027
12752921
<gh_stars>1000+ import time import pytest import jwt from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.hazmat.primitives import serialization from authlib.jose import jwk from util.security.jwtutil import ( decode, exp_max_s_option, jwk_dict_to_public_key, InvalidTokenError, InvalidAlgorithmError, ) @pytest.fixture(scope="session") def private_key(): return rsa.generate_private_key( public_exponent=65537, key_size=2048, ) @pytest.fixture(scope="session") def private_key_pem(private_key): return private_key.private_bytes( encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.TraditionalOpenSSL, encryption_algorithm=serialization.NoEncryption(), ) @pytest.fixture(scope="session") def public_key(private_key): return private_key.public_key().public_bytes( encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo, ) def _token_data(audience, subject, iss, iat=None, exp=None, nbf=None): return { "iss": iss, "aud": audience, "nbf": nbf() if nbf is not None else int(time.time()), "iat": iat() if iat is not None else int(time.time()), "exp": exp() if exp is not None else int(time.time() + 3600), "sub": subject, } @pytest.mark.parametrize( "aud, iss, nbf, iat, exp, expected_exception", [ pytest.param( "invalidaudience", "someissuer", None, None, None, "Invalid audience", id="invalid audience", ), pytest.param( "someaudience", "invalidissuer", None, None, None, "Invalid issuer", id="invalid issuer" ), pytest.param( "someaudience", "someissuer", lambda: time.time() + 120, None, None, "The token is not yet valid", id="invalid not before", ), pytest.param( "someaudience", "someissuer", None, lambda: time.time() + 120, None, "Issued At claim", id="issued at in future", ), pytest.param( "someaudience", "someissuer", None, None, lambda: time.time() - 100, "Signature has expired", id="already expired", ), pytest.param( "someaudience", "someissuer", None, None, lambda: time.time() + 10000, "Token was signed for more than", id="expiration too far in future", ), pytest.param( "someaudience", "someissuer", lambda: time.time() + 10, None, None, None, id="not before in future by within leeway", ), pytest.param( "someaudience", "someissuer", None, lambda: time.time() + 10, None, None, id="issued at in future but within leeway", ), pytest.param( "someaudience", "someissuer", None, None, lambda: time.time() - 10, None, id="expiration in past but within leeway", ), ], ) def test_decode_jwt_validation( aud, iss, nbf, iat, exp, expected_exception, private_key_pem, public_key ): token = jwt.encode(_token_data(aud, "subject", iss, iat, exp, nbf), private_key_pem, "RS256") if expected_exception is not None: with pytest.raises(InvalidTokenError) as ite: max_exp = exp_max_s_option(3600) decode( token, public_key, algorithms=["RS256"], audience="someaudience", issuer="someissuer", options=max_exp, leeway=60, ) assert ite.match(expected_exception) else: max_exp = exp_max_s_option(3600) decode( token, public_key, algorithms=["RS256"], audience="someaudience", issuer="someissuer", options=max_exp, leeway=60, ) def test_decode_jwt_invalid_key(private_key_pem): # Encode with the test private key. token = jwt.encode(_token_data("aud", "subject", "someissuer"), private_key_pem, "RS256") # Try to decode with a different public key. another_public_key = ( rsa.generate_private_key( public_exponent=65537, key_size=2048, ) .public_key() .public_bytes( encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo, ) ) with pytest.raises(InvalidTokenError) as ite: max_exp = exp_max_s_option(3600) decode( token, another_public_key, algorithms=["RS256"], audience="aud", issuer="someissuer", options=max_exp, leeway=60, ) assert ite.match("Signature verification failed") def test_decode_jwt_invalid_algorithm(private_key_pem, public_key): # Encode with the test private key. token = jwt.encode(_token_data("aud", "subject", "someissuer"), private_key_pem, "RS256") # Attempt to decode but only with a different algorithm than that used. with pytest.raises(InvalidAlgorithmError) as ite: max_exp = exp_max_s_option(3600) decode( token, public_key, algorithms=["ES256"], audience="aud", issuer="someissuer", options=max_exp, leeway=60, ) assert ite.match("are not whitelisted") def test_jwk_dict_to_public_key(private_key, private_key_pem): public_key = private_key.public_key() key_dict = jwk.dumps( public_key.public_bytes( encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo, ) ) converted = jwk_dict_to_public_key(key_dict) # Encode with the test private key. token = jwt.encode(_token_data("aud", "subject", "someissuer"), private_key_pem, "RS256") # Decode with the converted key. max_exp = exp_max_s_option(3600) decode( token, converted, algorithms=["RS256"], audience="aud", issuer="someissuer", options=max_exp, leeway=60, )
setup.py
sliderSun/scrapy-djangoitem
509
12752933
<gh_stars>100-1000 from setuptools import setup, find_packages setup( name='scrapy-djangoitem', version='1.1.1', url='https://github.com/scrapy-plugins/scrapy-djangoitem', description='Scrapy extension to write scraped items using Django models', long_description=open('README.rst').read(), author='Scrapy developers', license='BSD', packages=find_packages(exclude=('tests', 'tests.*')), include_package_data=True, zip_safe=False, classifiers=[ 'Framework :: Scrapy', 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Utilities', 'Framework :: Django', 'Framework :: Scrapy', ], install_requires=['six'], requires=['scrapy (>=0.24.5)', 'django'], )
game/sdl/nacl/generate_nmf.py
spiffcode/hostile-takeover
113
12752936
<filename>game/sdl/nacl/generate_nmf.py<gh_stars>100-1000 #!/usr/bin/python # # Copyright (c) 2011, The Native Client Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import sys import optparse # This script generates a JSON .nmf file, which provides the mapping to indicate # which .nexe file to load and execute for a particular architecture. # The script must have -nmf <filename> as an option, which designates the name # of the .nmf file to be generated. # One or more nexes must be specified on the command line. Each # nexe file is preceded by an argument that specifies the architecture # that the nexe is associated with: --x86-64, --x86-32, --arm. # # For example: # generate_nmf.py --nmf test.nmf --x86-64 hello_world_x86-64.nexe \ # --x86-32 hello32.nexe # will create test.nmf that contains 2 entries, while # # generate_nmf.py --nmf hello.nmf --arm arm.nexe # # will create hello.nmf with a single entry. # Note: argv has been passed in without the program name in argv[0] def main(argv): parser = optparse.OptionParser() parser.add_option('--nmf', dest='nmf_file', help='nmf file to generate') parser.add_option('--x86-64', dest='x86_64', help='x86_64 nexe') parser.add_option('--x86-32', dest='x86_32', help='x86_32 nexe') parser.add_option('--arm', dest='arm', help='arm nexe') (options, args) = parser.parse_args(argv) if options.nmf_file == None: parser.error("nmf file not specified. Use --nmf") # Make sure that not all nexes are None -- i.e. at least one was specified. if options.x86_64 == None and options.x86_32 == None and options.arm == None: parser.error("No nexe files were specified") nmf_file = open(options.nmf_file, 'w') nmf_file.write('{\n') nmf_file.write(' "nexes": {\n') # Output an entry in the manifest file for each specified architecture if options.x86_64: nmf_file.write(' "x86-64": "%s",\n' % options.x86_64) if options.x86_32: nmf_file.write(' "x86-32": "%s",\n' % options.x86_32) if options.arm: nmf_file.write(' "arm": "%s",\n' % options.arm) nmf_file.write(' }\n') nmf_file.write('}\n') nmf_file.close() if __name__ == '__main__': main(sys.argv[1:])
testing/scripts/test_benchmark.py
MichaelXcc/seldon-core
3,049
12752981
<reponame>MichaelXcc/seldon-core<filename>testing/scripts/test_benchmark.py import json import numpy as np import pytest import tensorflow as tf from google.protobuf import json_format from seldon_e2e_utils import post_comment_in_pr, run_benchmark_and_capture_results @pytest.mark.benchmark @pytest.mark.usefixtures("argo_worfklows") def test_service_orchestrator(): sort_by = ["apiType", "disableOrchestrator"] data_size = 1_000 data = [100.0] * data_size data_tensor = {"data": {"tensor": {"values": data, "shape": [1, data_size]}}} df = run_benchmark_and_capture_results( api_type_list=["rest", "grpc"], disable_orchestrator_list=["false", "true"], image_list=["seldonio/seldontest_predict:1.10.0-dev"], benchmark_data=data_tensor, ) df = df.sort_values(sort_by) result_body = "# Benchmark results - Testing Service Orchestrator\n\n" orch_mean = all( ( df[df["disableOrchestrator"] == "false"]["mean"].values - df[df["disableOrchestrator"] == "true"]["mean"].values ) < 3 ) result_body += f"* Orch added mean latency under 4ms: {orch_mean}\n" orch_nth = all( ( df[df["disableOrchestrator"] == "false"]["95th"].values - df[df["disableOrchestrator"] == "true"]["95th"].values ) < 5 ) result_body += f"* Orch added 95th latency under 5ms: {orch_nth}\n" orch_nth = all( ( df[df["disableOrchestrator"] == "false"]["99th"].values - df[df["disableOrchestrator"] == "true"]["99th"].values ) < 10 ) result_body += f"* Orch added 99th latency under 10ms: {orch_nth}\n" # We have to set no errors to 1 as the tools for some reason have 1 as base no_err = all(df["errors"] <= 1) result_body += f"* No errors: {no_err}\n" result_body += "\n### Results table\n\n" result_body += str(df.to_markdown()) post_comment_in_pr(result_body) assert orch_mean assert orch_nth @pytest.mark.benchmark @pytest.mark.usefixtures("argo_worfklows") def test_workers_performance(): sort_by = ["apiType", "serverWorkers"] data_size = 10 data = [100.0] * data_size data_tensor = {"data": {"tensor": {"values": data, "shape": [1, data_size]}}} df = run_benchmark_and_capture_results( api_type_list=["grpc", "rest"], server_workers_list=["1", "5", "10"], benchmark_concurrency_list=["10", "100", "1000"], parallelism="1", requests_cpu_list=["4000Mi"], limits_cpu_list=["4000Mi"], image_list=["seldonio/seldontest_predict:1.10.0-dev"], benchmark_data=data_tensor, ) df = df.sort_values(sort_by) result_body = "# Benchmark results - Testing Workers Performance\n\n" result_body += "\n### Results table\n\n" result_body += str(df.to_markdown()) post_comment_in_pr(result_body) @pytest.mark.benchmark @pytest.mark.usefixtures("argo_worfklows") def test_python_wrapper_v1_vs_v2_iris(): sort_by = ["concurrency", "apiType"] benchmark_concurrency_list = ["1", "50", "150"] result_body = "" result_body += "\n# Benchmark Results - Python Wrapper V1 vs V2\n\n" # Using single worker as fastapi also uses single worker df_pywrapper = run_benchmark_and_capture_results( api_type_list=["rest", "grpc"], protocol="seldon", server_list=["SKLEARN_SERVER"], benchmark_concurrency_list=benchmark_concurrency_list, model_uri_list=["gs://seldon-models/v1.12.0-dev/sklearn/iris"], benchmark_data={"data": {"ndarray": [[1, 2, 3, 4]]}}, ) df_pywrapper = df_pywrapper.sort_values(sort_by) conc_idx = df_pywrapper["concurrency"] == 1 # Python V1 Wrapper Validations # Ensure base mean performance latency below 10 ms v1_latency_mean = all((df_pywrapper[conc_idx]["mean"] < 10)) result_body += f"* V1 base mean performance latency under 10ms: {v1_latency_mean}\n" # Ensure 99th percentiles are not spiking above 15ms v1_latency_nth = all(df_pywrapper[conc_idx]["99th"] < 10) result_body += f"* V1 base 99th performance latenc under 10ms: {v1_latency_nth}\n" # Ensure throughput is above 180 rps for REST v1_rps_rest = all( df_pywrapper[(df_pywrapper["apiType"] == "rest") & conc_idx][ "throughputAchieved" ] > 180 ) result_body += f"* V1 base throughput above 180rps: {v1_rps_rest}\n" # Ensure throughput is above 250 rps for GRPC v1_rps_grpc = all( df_pywrapper[(df_pywrapper["apiType"] == "grpc") & conc_idx][ "throughputAchieved" ] > 250 ) result_body += f"* V1 base throughput above 250rps: {v1_rps_grpc}\n" # Validate latenc added by adding service orchestrator is lower than 4ms # TODO: Validate equivallent of parallel workers in MLServer df_mlserver = run_benchmark_and_capture_results( api_type_list=["rest", "grpc"], model_name="classifier", protocol="kfserving", server_list=["SKLEARN_SERVER"], model_uri_list=["gs://seldon-models/sklearn/iris-0.23.2/lr_model"], benchmark_concurrency_list=benchmark_concurrency_list, benchmark_data={ "inputs": [ { "name": "predict", "datatype": "FP32", "shape": [1, 4], "data": [[1, 2, 3, 4]], } ] }, benchmark_grpc_data_override={ "model_name": "classifier", "inputs": [ { "name": "predict", "datatype": "FP32", "shape": [1, 4], "contents": {"fp32_contents": [1, 2, 3, 4]}, } ], }, ) # First we sort the dataframes to ensure they are compared correctly df_mlserver = df_mlserver.sort_values(sort_by) # Python V1 Wrapper Validations conc_idx = df_mlserver["concurrency"] == 1 # Ensure all mean performance latency below 5 ms v2_latency_mean = all(df_mlserver[conc_idx]["mean"] < 5) result_body += f"* V2 mean performance latency under 5ms: {v2_latency_mean}\n" # Ensure 99th percentiles are not spiking above 15ms v2_latency_nth = all(df_mlserver[conc_idx]["99th"] < 10) result_body += f"* V2 99th performance latenc under 10ms: {v2_latency_nth}\n" # Ensure throughput is above 180 rps for REST v2_rps_rest = all( df_mlserver[(df_mlserver["apiType"] == "rest") & conc_idx]["throughputAchieved"] > 250 ) result_body += f"* V2 REST throughput above 250rps: {v2_rps_rest}\n" # Ensure throughput is above 250 rps for GRPC v2_rps_grpc = all( df_mlserver[(df_mlserver["apiType"] == "grpc") & conc_idx]["throughputAchieved"] > 250 ) result_body += f"* V2 throughput above 300rps: {v2_rps_grpc}\n" result_body += "\n### Python V1 Wrapper Results table\n\n" result_body += str(df_pywrapper.to_markdown()) result_body += "\n\n\n### Python V2 MLServer Results table\n\n" result_body += str(df_mlserver.to_markdown()) post_comment_in_pr(result_body) assert v1_latency_mean assert v1_latency_nth assert v1_rps_rest assert v1_rps_grpc assert v2_latency_mean assert v2_latency_nth assert v2_rps_rest assert v2_rps_grpc @pytest.mark.benchmark @pytest.mark.usefixtures("argo_worfklows") def test_v1_seldon_data_types(): sort_by = ["concurrency", "apiType"] # 10000 element array data_size = 10_000 data = [100.0] * data_size benchmark_concurrency_list = ["1", "50", "150"] image_list = ["seldonio/seldontest_predict:1.10.0-dev"] data_ndarray = {"data": {"ndarray": data}} data_tensor = {"data": {"tensor": {"values": data, "shape": [1, data_size]}}} array = np.array(data) tftensor_proto = tf.make_tensor_proto(array) tftensor_json_str = json_format.MessageToJson(tftensor_proto) tftensor_dict = json.loads(tftensor_json_str) data_tftensor = {"data": {"tftensor": tftensor_dict}} df_ndarray = run_benchmark_and_capture_results( api_type_list=["rest", "grpc"], image_list=image_list, benchmark_concurrency_list=benchmark_concurrency_list, benchmark_data=data_ndarray, ) df_ndarray = df_ndarray.sort_values(sort_by) df_tensor = run_benchmark_and_capture_results( api_type_list=["rest", "grpc"], image_list=image_list, benchmark_concurrency_list=benchmark_concurrency_list, benchmark_data=data_tensor, ) df_tensor = df_tensor.sort_values(sort_by) df_tftensor = run_benchmark_and_capture_results( api_type_list=["rest", "grpc"], image_list=image_list, benchmark_concurrency_list=benchmark_concurrency_list, benchmark_data=data_tftensor, ) df_tftensor = df_tftensor.sort_values(sort_by) result_body = "# Benchmark results - Testing Seldon V1 Data Types\n\n" result_body += "\n### Results for NDArray\n\n" result_body += str(df_ndarray.to_markdown()) result_body += "\n### Results for Tensor\n\n" result_body += str(df_tensor.to_markdown()) result_body += "\n### Results for TFTensor\n\n" result_body += str(df_tftensor.to_markdown()) post_comment_in_pr(result_body)
python/dlbs/result_processor.py
joehandzik/dlcookbook-dlbs
123
12752991
# (c) Copyright [2017] Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ * Validate that every benchmark in ``input-file`` has mandatory parameters defined in ``params`` $ python result_processor.py validate --input-file= --params= * Filter benchmarks in ``input-file`` by throwing away those not containing specific parameters defined in ``params``. The filtered subset of benchmarks is written to ``output-file``. $ python result_processor.py filter --input-file= --params= --output-file= * Update every benchmark in ``input-file`` by overriding values of specific parameters which value are defined in ``params``. The updated subset of benchmarks is written to ``output-file``. $ python result_processor.py update --input-file= --params= --output-file= """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import json from collections import defaultdict from dlbs.utils import Six from dlbs.utils import DictUtils from dlbs.processor import Processor def load_json_file(file_name): """ Loads a json object from a file. :param str file_name: A file name to load JSON object from. :return: A loaded JSON object. """ with open(file_name) as file_obj: return json.load(file_obj) def get_params(params): """Loads parameters specified by params. :param str params: A JSON parsable string that defines how parameters need to be loaded. See function comments on how it is done. :return: A dictionary with keys being parameters and values being their values. Null value means no value - that's perfectly valid case. :rtype: dict The ``params`` is a JSON parsable string treated differently depending on its type: * ``string`` The value is a file name that contains JSON object * ``list`` The list of parameters * ``dict`` The dictionary that maps parameters to their values. If type is list or loaded JSON object is a list, it gets converted to dictionary with null values. """ parsed_params = json.loads(params) if isinstance(parsed_params, Six.string_types): parsed_params = load_json_file(parsed_params) if isinstance(parsed_params, list): parsed_params = dict.fromkeys(parsed_params, None) if not isinstance(parsed_params, dict): raise ValueError("Invalid type of object that holds parameters (%s)" % type(parsed_params)) return parsed_params def validate_benchmarks(args): """Validates benchmarks ensuring every benchmark contains mandatory parameters. Also make sure `exp.id`s are unique. :param argparse args: Command line arguments. The following command line arguments are used: * ``args.input_file`` A file with benchmark results. * ``args.params`` Specification of mandatory parameters. For format, read comments of ``get_params`` function """ # Load benchmarks and parameters. benchmarks = load_json_file(args.input_file)['data'] params = get_params(args.params) # Figure out missing parameters. missing_params = defaultdict(lambda: 0) exp_ids = set() # All identifiers of experiments duplicates = False # If two or more experiments have the same ID for benchmark in benchmarks: keys = [key for key in params if key not in benchmark] for key in keys: missing_params[key] += 1 if 'exp.id' in benchmark: if benchmark['exp.id'] not in exp_ids: exp_ids.add(benchmark['exp.id']) else: duplicates = True # Report validation results. print("Number of benchmarks: %d" % len(benchmarks)) if not missing_params and not duplicates: print("Benchmark validation result: SUCCESS") else: print("Benchmark validation result: FAILURE") if len(missing_params) > 0: print("missing parameters:") for missing_param in missing_params: print("\t%s: %d" % (missing_param, missing_params[missing_param])) if duplicates: print("Several benchmarks have same identifier (exp.id)") def filter_benchmarks(args): """Filter benchmarks by removing those that do not contain provided parameters. :param argparse args: Command line arguments. The following command line arguments are used: * ``args.input_file`` A file with benchmark results. * ``args.params`` Specification of mandatory parameters. For format, read comments of ``get_params`` function * ``args.output_file`` An output file with updated benchmark results. """ # Load benchmarks and parameters input_benchmarks = load_json_file(args.input_file)['data'] params = get_params(args.params) # Filter benchmarks output_benchmarks = [] for input_benchmark in input_benchmarks: keep = True for key in params: if key not in input_benchmark or not input_benchmark[key]: keep = False break if keep: output_benchmarks.append(input_benchmark) # Report results and serialize print("Number of input benchmarks: %d" % len(input_benchmarks)) print("Number of output benchmarks: %d" % len(output_benchmarks)) DictUtils.dump_json_to_file({"data": output_benchmarks}, args.output_file) def update_benchmarks(args): """Update benchmarks by overriding parameters provided by a user. :param argparse args: Command line arguments. The following command line arguments are used: * ``args.input_file`` A file with benchmark results. * ``args.params`` Specification of mandatory parameters. For format, read comments of ``get_params`` function * ``args.output_file`` An output file with updated benchmark results. """ # Load benchmarks and parameters. benchmarks = load_json_file(args.input_file)['data'] prefix = '__' params = {prefix + k: v for k, v in get_params(args.params).items()} # Add prefixed parameters to all benchmarks. for benchmark in benchmarks: benchmark.update(params) # Process and compute variables Processor().compute_variables(benchmarks) # Replace prefix overwriting variables in case of a conflict prefixed_keys = params.keys() prefix_len = len(prefix) output_benchmarks = [] for benchmark in benchmarks: for k in prefixed_keys: benchmark[k[prefix_len:]] = benchmark[k] del benchmark[k] if benchmark['exp.model'] != '': output_benchmarks.append(benchmark) benchmarks = output_benchmarks # Serialize updated benchmarks. DictUtils.dump_json_to_file({"data": benchmarks}, args.output_file) def main(): """Main function - parses command line args and processes benchmarks.""" parser = argparse.ArgumentParser() parser.add_argument( 'action', type=str, help="Action to perform ('validate', 'filter', 'update')" ) parser.add_argument( '--input_file', '--input-file', type=str, required=True, default=None, help='An input JSON file. This file is never modified.' ) parser.add_argument( '--params', type=str, required=False, default=None, help="JSON array or object OR string. If string it's considered as a file name." ) parser.add_argument( '--output_file', '--output-file', required=False, default=False, help="Output JSON file, possible, modified version of an input JSON file." ) args = parser.parse_args() if args.action == 'validate': validate_benchmarks(args) elif args.action == 'filter': filter_benchmarks(args) elif args.action == 'update': update_benchmarks(args) else: raise ValueError("Action parameter has invalid value (%s). " "Must be one of ['validate', 'filter', 'update']" % args.action) if __name__ == '__main__': main()
yotta/version.py
microbit-foundation/yotta
176
12753014
<filename>yotta/version.py # Copyright 2014 ARM Limited # # Licensed under the Apache License, Version 2.0 # See LICENSE file for details. # standard library modules, , , import argparse import logging import os # version, , represent versions and specifications, internal from yotta.lib import version # Component, , represents an installed component, internal from yotta.lib import component # Target, , represents an installed target, internal from yotta.lib import target # vcs, , represent version controlled directories, internal from yotta.lib import vcs def addOptions(parser): def patchType(s): if s.lower() in ('major', 'minor', 'patch'): return s.lower() try: return version.Version(s) except: raise argparse.ArgumentTypeError( '"%s" is not a valid version (expected patch, major, minor, or something like 1.2.3)' % s ) parser.add_argument('action', type=patchType, nargs='?', help='[patch | minor | major | <version>]') def execCommand(args, following_args): wd = os.getcwd() c = component.Component(wd) # skip testing for target if we already found a component t = None if c else target.Target(wd) if not (c or t): logging.debug(str(c.getError())) if t: logging.debug(str(t.getError())) logging.error('The current directory does not contain a valid module or target.') return 1 else: # only needed separate objects in order to display errors p = (c or t) if args.action: try: if not p.vcsIsClean(): logging.error('The working directory is not clean') return 1 v = p.getVersion() pre_script_env = { 'YOTTA_OLD_VERSION':str(v) } if args.action in ('major', 'minor', 'patch'): v.bump(args.action) else: v = args.action pre_script_env['YOTTA_NEW_VERSION'] =str(v) errcode = p.runScript('preVersion', pre_script_env) if errcode: return errcode logging.info('@%s' % v) p.setVersion(v) p.writeDescription() errcode = p.runScript('postVersion') if errcode: return errcode p.commitVCS(tag='v'+str(v)) except vcs.VCSError as e: logging.error(e) else: logging.info(str(p.getVersion()))
test/programytest/utils/logging/test_snapshot.py
cdoebler1/AIML2
345
12753028
<reponame>cdoebler1/AIML2 import unittest from programy.utils.logging.ylogger import YLoggerSnapshot class YLoggerSnapshotTests(unittest.TestCase): def test_snapshot_with_defaults(self): snapshot = YLoggerSnapshot() self.assertIsNotNone(snapshot) self.assertEquals("Critical(0) Fatal(0) Error(0) Exception(0) Warning(0) Info(0), Debug(0)", str(snapshot)) self.assertEqual({'criticals': 0, 'debugs': 0, 'errors': 0, 'exceptions': 0, 'fatals': 0, 'infos': 0, 'warnings': 0}, snapshot.to_json()) def test_snapshot_without_defaults(self): snapshot = YLoggerSnapshot(criticals=1, fatals=2, errors=3, exceptions=4, warnings=5, infos=6, debugs=7) self.assertIsNotNone(snapshot) self.assertEquals("Critical(1) Fatal(2) Error(3) Exception(4) Warning(5) Info(6), Debug(7)", str(snapshot)) self.assertEqual({'criticals': 1, 'debugs': 7, 'errors': 3, 'exceptions': 4, 'fatals': 2, 'infos': 6, 'warnings': 5}, snapshot.to_json())
src/version.py
copyit/picbed
115
12753039
__version__ = "1.13.3"
homeassistant/components/oem/__init__.py
domwillcode/home-assistant
30,023
12753057
"""The oem component."""
utils_cv/action_recognition/dataset.py
muminkoykiran/computervision-recipes
7,899
12753070
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import os import copy import math from pathlib import Path import warnings from typing import Callable, Tuple, Union, List import decord from einops.layers.torch import Rearrange import matplotlib.pyplot as plt import numpy as np from numpy.random import randint import torch from torch.utils.data import Dataset, Subset, DataLoader from torchvision.transforms import Compose from .references import transforms_video as transforms from .references.functional_video import denormalize from ..common.misc import Config from ..common.gpu import num_devices, db_num_workers Trans = Callable[[object, dict], Tuple[object, dict]] DEFAULT_MEAN = (0.43216, 0.394666, 0.37645) DEFAULT_STD = (0.22803, 0.22145, 0.216989) class VideoRecord(object): """ This class is used for parsing split-files where each row contains a path and a label: Ex: ``` path/to/my/clip_1 3 path/to/another/clip_2 32 ``` """ def __init__(self, data: List[str]): """ Initialized a VideoRecord Ex. data = ["path/to/video.mp4", 2, "cooking"] Args: row: a list where first element is the path and second element is the label, and the third element (optional) is the label name """ assert len(data) >= 2 and len(data) <= 3 assert isinstance(data[0], str) assert isinstance(int(data[1]), int) if len(data) == 3: assert isinstance(data[2], str) self._data = data self._num_frames = None @property def path(self) -> str: return self._data[0] @property def num_frames(self) -> int: if self._num_frames is None: self._num_frames = int( len([x for x in Path(self._data[0]).glob("img_*")]) - 1 ) return self._num_frames @property def label(self) -> int: return int(self._data[1]) @property def label_name(self) -> str: return None if len(self._data) <= 2 else self._data[2] def get_transforms(train: bool = True, tfms_config: Config = None) -> Trans: """ Get default transformations to apply depending on whether we're applying it to the training or the validation set. If no tfms configurations are passed in, use the defaults. Args: train: whether or not this is for training tfms_config: Config object with tranforms-related configs Returns: A list of transforms to apply """ if tfms_config is None: tfms_config = get_default_tfms_config(train=train) # 1. resize tfms = [ transforms.ToTensorVideo(), transforms.ResizeVideo( tfms_config.im_scale, tfms_config.resize_keep_ratio ), ] # 2. crop if tfms_config.random_crop: if tfms_config.random_crop_scales: crop = transforms.RandomResizedCropVideo( tfms_config.input_size, tfms_config.random_crop_scales ) else: crop = transforms.RandomCropVideo(tfms_config.input_size) else: crop = transforms.CenterCropVideo(tfms_config.input_size) tfms.append(crop) # 3. flip tfms.append(transforms.RandomHorizontalFlipVideo(tfms_config.flip_ratio)) # 4. normalize tfms.append(transforms.NormalizeVideo(tfms_config.mean, tfms_config.std)) return Compose(tfms) def get_default_tfms_config(train: bool) -> Config: """ Args: train: whether or not this is for training Settings: input_size (int or tuple): Model input image size. im_scale (int or tuple): Resize target size. resize_keep_ratio (bool): If True, keep the original ratio when resizing. mean (tuple): Normalization mean. if train: std (tuple): Normalization std. flip_ratio (float): Horizontal flip ratio. random_crop (bool): If False, do center-crop. random_crop_scales (tuple): Range of size of the origin size random cropped. """ flip_ratio = 0.5 if train else 0.0 random_crop = True if train else False random_crop_scales = (0.6, 1.0) if train else None return Config( dict( input_size=112, im_scale=128, resize_keep_ratio=True, mean=DEFAULT_MEAN, std=DEFAULT_STD, flip_ratio=flip_ratio, random_crop=random_crop, random_crop_scales=random_crop_scales, ) ) class VideoDataset: """ A video recognition dataset. """ def __init__( self, root: str, seed: int = None, train_pct: float = 0.75, num_samples: int = 1, sample_length: int = 8, sample_step: int = 1, temporal_jitter: bool = True, temporal_jitter_step: int = 2, random_shift: bool = True, batch_size: int = 8, video_ext: str = "mp4", warning: bool = False, train_split_file: str = None, test_split_file: str = None, train_transforms: Trans = get_transforms(train=True), test_transforms: Trans = get_transforms(train=False), ) -> None: """ initialize dataset Arg: root: Videos directory. seed: random seed train_pct: percentage of dataset to use for training num_samples: Number of clips to sample from each video. sample_length: Number of consecutive frames to sample from a video (i.e. clip length). sample_step: Sampling step. temporal_jitter: Randomly skip frames when sampling each frames. temporal_jitter_step: temporal jitter in frames random_shift: Random temporal shift when sample a clip. video_ext: Video file extension. warning: On or off warning. train_split_file: Annotation file containing video filenames and labels. test_split_file: Annotation file containing video filenames and labels. train_transforms: transforms for training test_transforms: transforms for testing """ assert sample_step > 0 assert num_samples > 0 if temporal_jitter: assert temporal_jitter_step > 0 if train_split_file: assert Path(train_split_file).exists() assert ( test_split_file is not None and Path(test_split_file).exists() ) if test_split_file: assert Path(test_split_file).exists() assert ( train_split_file is not None and Path(train_split_file).exists() ) self.root = root self.seed = seed self.num_samples = num_samples self.sample_length = sample_length self.sample_step = sample_step self.presample_length = sample_length * sample_step self.temporal_jitter_step = temporal_jitter_step self.train_transforms = train_transforms self.test_transforms = test_transforms self.random_shift = random_shift self.temporal_jitter = temporal_jitter self.batch_size = batch_size self.video_ext = video_ext self.warning = warning # create training and validation datasets self.train_ds, self.test_ds = ( self.split_with_file( train_split_file=train_split_file, test_split_file=test_split_file, ) if train_split_file else self.split_by_folder(train_pct=train_pct) ) # initialize dataloaders self.init_data_loaders() def split_by_folder( self, train_pct: float = 0.8 ) -> Tuple[Dataset, Dataset]: """ Split this dataset into a training and testing set based on the folders that the videos are in. ``` /data +-- action_class_1 | +-- video_01.mp4 | +-- video_02.mp4 | +-- ... +-- action_class_2 | +-- video_11.mp4 | +-- video_12.mp4 | +-- ... +-- ... ``` Args: train_pct: the ratio of images to use for training vs testing Return A training and testing dataset in that order """ self.video_records = [] # get all dirs in root (and make sure they are dirs) dirs = [] for entry in os.listdir(self.root): if os.path.isdir(os.path.join(self.root, entry)): dirs.append(os.path.join(self.root, entry)) # add each video in each dir as a video record label = 0 self.classes = [] for action in dirs: action = os.path.basename(os.path.normpath(action)) self.video_records.extend( [ VideoRecord( [ os.path.join(self.root, action, vid.split(".")[0]), label, action, ] ) for vid in os.listdir(os.path.join(self.root, action)) ] ) label += 1 self.classes.append(action) # random split test_num = math.floor(len(self) * (1 - train_pct)) if self.seed: torch.manual_seed(self.seed) # set indices indices = torch.randperm(len(self)).tolist() train_range = indices[test_num:] test_range = indices[:test_num] return self.split_train_test(train_range, test_range) def split_with_file( self, train_split_file: Union[Path, str], test_split_file: Union[Path, str], ) -> Tuple[Dataset, Dataset]: """ Split this dataset into a training and testing set using a split file. Each line in the split file must use the form: ``` path/to/jumping/video_name_1 3 path/to/swimming/video_name_2 5 path/to/another/jumping/video_name_3 3 ``` Args: split_files: a tuple of 2 files Return: A training and testing dataset in that order """ self.video_records = [] # add train records self.video_records.extend( [ VideoRecord(row.strip().split(" ")) for row in open(train_split_file) ] ) train_len = len(self.video_records) # add validation records self.video_records.extend( [ VideoRecord(row.strip().split(" ")) for row in open(test_split_file) ] ) # create indices indices = torch.arange(0, len(self.video_records)) train_range = indices[:train_len] test_range = indices[train_len:] return self.split_train_test(train_range, test_range) def split_train_test( self, train_range: torch.Tensor, test_range: torch.Tensor, ) -> Tuple[Dataset, Dataset]: """ Split this dataset into a training and testing set Args: train_range: range of indices for training set test_range: range of indices for testing set Return A training and testing dataset in that order """ # create train subset train = copy.deepcopy(Subset(self, train_range)) train.dataset.transforms = self.train_transforms train.dataset.sample_step = ( self.temporal_jitter_step if self.temporal_jitter else self.sample_step ) train.dataset.presample_length = self.sample_length * self.sample_step # create test subset test = copy.deepcopy(Subset(self, test_range)) test.dataset.transforms = self.test_transforms test.dataset.random_shift = False test.dataset.temporal_jitter = False return train, test def init_data_loaders(self) -> None: """ Create training and validation data loaders. """ devices = num_devices() self.train_dl = DataLoader( self.train_ds, batch_size=self.batch_size * devices, shuffle=True, num_workers=db_num_workers(), pin_memory=True, ) self.test_dl = DataLoader( self.test_ds, batch_size=self.batch_size * devices, shuffle=False, num_workers=db_num_workers(), pin_memory=True, ) def __len__(self) -> int: return len(self.video_records) def _sample_indices(self, record: VideoRecord) -> List[int]: """ Create a list of frame-wise offsets into a video record. Depending on whether or not 'random shift' is used, perform a uniform sample or a random sample. Args: record (VideoRecord): A video record. Return: list: Segment offsets (start indices) """ if record.num_frames > self.presample_length: if self.random_shift: # Random sample offsets = np.sort( randint( record.num_frames - self.presample_length + 1, size=self.num_samples, ) ) else: # Uniform sample distance = ( record.num_frames - self.presample_length + 1 ) / self.num_samples offsets = np.array( [ int(distance / 2.0 + distance * x) for x in range(self.num_samples) ] ) else: if self.warning: warnings.warn( f"num_samples and/or sample_length > num_frames in {record.path}" ) offsets = np.zeros((self.num_samples,), dtype=int) return offsets def _get_frames( self, video_reader: decord.VideoReader, offset: int, ) -> List[np.ndarray]: """ Get frames at sample length. Args: video_reader: the decord tool for parsing videos offset: where to start the reader from Returns Frames at sample length in a List """ clip = list() # decord.seek() seems to have a bug. use seek_accurate(). video_reader.seek_accurate(offset) # first frame clip.append(video_reader.next().asnumpy()) # remaining frames try: for i in range(self.sample_length - 1): step = ( randint(self.sample_step + 1) if self.temporal_jitter else self.sample_step ) if step == 0 and self.temporal_jitter: clip.append(clip[-1].copy()) else: if step > 1: video_reader.skip_frames(step - 1) cur_frame = video_reader.next().asnumpy() clip.append(cur_frame) except StopIteration: # pass when video has ended pass # if clip needs more frames, simply duplicate the last frame in the clip. while len(clip) < self.sample_length: clip.append(clip[-1].copy()) return clip def __getitem__(self, idx: int) -> Tuple[torch.tensor, int]: """ Return: (clips (torch.tensor), label (int)) """ record = self.video_records[idx] video_reader = decord.VideoReader( "{}.{}".format( os.path.join(self.root, record.path), self.video_ext ), # TODO try to add `ctx=decord.ndarray.gpu(0) or .cuda(0)` ) record._num_frames = len(video_reader) offsets = self._sample_indices(record) clips = np.array([self._get_frames(video_reader, o) for o in offsets]) if self.num_samples == 1: return ( # [T, H, W, C] -> [C, T, H, W] self.transforms(torch.from_numpy(clips[0])), record.label, ) else: return ( # [S, T, H, W, C] -> [S, C, T, H, W] torch.stack( [self.transforms(torch.from_numpy(c)) for c in clips] ), record.label, ) def _show_batch( self, images: List[torch.tensor], labels: List[int], sample_length: int, mean: Tuple[int, int, int] = DEFAULT_MEAN, std: Tuple[int, int, int] = DEFAULT_STD, ) -> None: """ Display a batch of images. Args: images: List of sample (clip) tensors labels: List of labels sample_length: Number of frames to show for each sample mean: Normalization mean std: Normalization std-dev """ batch_size = len(images) plt.tight_layout() fig, axs = plt.subplots( batch_size, sample_length, figsize=(4 * sample_length, 3 * batch_size), ) for i, ax in enumerate(axs): if batch_size == 1: clip = images[0] else: clip = images[i] clip = Rearrange("c t h w -> t c h w")(clip) if not isinstance(ax, np.ndarray): ax = [ax] for j, a in enumerate(ax): a.axis("off") a.imshow( np.moveaxis(denormalize(clip[j], mean, std).numpy(), 0, -1) ) # display label/label_name on the first image if j == 0: a.text( x=3, y=15, s=f"{labels[i]}", fontsize=20, bbox=dict(facecolor="white", alpha=0.80), ) def show_batch(self, train_or_test: str = "train", rows: int = 2) -> None: """Plot first few samples in the datasets""" if train_or_test == "train": batch = [self.train_ds[i] for i in range(rows)] elif train_or_test == "test": batch = [self.test_ds[i] for i in range(rows)] else: raise ValueError("Unknown data type {}".format(which_data)) images = [im[0] for im in batch] labels = [im[1] for im in batch] self._show_batch(images, labels, self.sample_length)
hwt/hdl/types/string.py
ufo2011/hwt
134
12753097
from hwt.doc_markers import internal from hwt.hdl.types.hdlType import HdlType class HString(HdlType): def all_mask(self): return 1 @internal @classmethod def getValueCls(cls): try: return cls._valCls except AttributeError: from hwt.hdl.types.stringVal import HStringVal cls._valCls = HStringVal return cls._valCls
contrib/packs/tests/test_action_aliases.py
muyouming/st2
4,920
12753098
# Copyright 2020 The StackStorm Authors. # Copyright 2019 Extreme Networks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from st2tests.base import BaseActionAliasTestCase class PackGet(BaseActionAliasTestCase): action_alias_name = "pack_get" def test_alias_pack_get(self): format_string = self.action_alias_db.formats[0]["representation"][0] format_strings = self.action_alias_db.get_format_strings() command = "pack get st2" expected_parameters = {"pack": "st2"} self.assertExtractedParametersMatch( format_string=format_string, command=command, parameters=expected_parameters ) self.assertCommandMatchesExactlyOneFormatString( format_strings=format_strings, command=command ) class PackInstall(BaseActionAliasTestCase): action_alias_name = "pack_install" def test_alias_pack_install(self): format_string = self.action_alias_db.formats[0]["representation"][0] command = "pack install st2" expected_parameters = {"packs": "st2"} self.assertExtractedParametersMatch( format_string=format_string, command=command, parameters=expected_parameters ) class PackSearch(BaseActionAliasTestCase): action_alias_name = "pack_search" def test_alias_pack_search(self): format_string = self.action_alias_db.formats[0]["representation"][0] format_strings = self.action_alias_db.get_format_strings() command = "pack search st2" expected_parameters = {"query": "st2"} self.assertExtractedParametersMatch( format_string=format_string, command=command, parameters=expected_parameters ) self.assertCommandMatchesExactlyOneFormatString( format_strings=format_strings, command=command ) class PackShow(BaseActionAliasTestCase): action_alias_name = "pack_show" def test_alias_pack_show(self): format_string = self.action_alias_db.formats[0]["representation"][0] format_strings = self.action_alias_db.get_format_strings() command = "pack show st2" expected_parameters = {"pack": "st2"} self.assertExtractedParametersMatch( format_string=format_string, command=command, parameters=expected_parameters ) self.assertCommandMatchesExactlyOneFormatString( format_strings=format_strings, command=command )
docs/source/internals/includes/snippets/api.py
azadoks/aiida-core
180
12753110
#!/usr/bin/env python # -*- coding: utf-8 -*- from flask_restful import Resource from aiida.restapi.api import AiidaApi, App from aiida.restapi.run_api import run_api class NewResource(Resource): """ resource containing GET and POST methods. Description of each method follows: GET: returns id, ctime, and attributes of the latest created Dict. POST: creates a Dict object, stores it in the database, and returns its newly assigned id. """ def get(self): from aiida.orm import Dict, QueryBuilder qb = QueryBuilder() qb.append(Dict, project=['id', 'ctime', 'attributes'], tag='pdata') qb.order_by({'pdata': {'ctime': 'desc'}}) result = qb.first() # Results are returned as a dictionary, datetime objects is # serialized as ISO 8601 return dict(id=result[0], ctime=result[1].isoformat(), attributes=result[2]) def post(self): from aiida.orm import Dict params = dict(property1='spam', property2='egg') paramsData = Dict(dict=params).store() return {'id': paramsData.pk} class NewApi(AiidaApi): def __init__(self, app=None, **kwargs): """ This init serves to add new endpoints to the basic AiiDA Api """ super().__init__(app=app, **kwargs) self.add_resource(NewResource, '/new-endpoint/', strict_slashes=False) # processing the options and running the app from aiida import load_profile import aiida.restapi.common as common CONFIG_DIR = common.__path__[0] import click @click.command() @click.option('-P', '--port', type=click.INT, default=5000, help='Port number') @click.option('-H', '--hostname', default='127.0.0.1', help='Hostname') @click.option('-c','--config-dir','config',type=click.Path(exists=True), default=CONFIG_DIR, help='the path of the configuration directory') @click.option('--debug', 'debug', is_flag=True, default=False, help='run app in debug mode') @click.option('--wsgi-profile', 'wsgi_profile', is_flag=True, default=False, help='to use WSGI profiler middleware for finding bottlenecks in web application') def newendpoint(**kwargs): """ runs the REST api """ # Invoke the runner run_api(App, NewApi, **kwargs) # main program if __name__ == '__main__': """ Run the app with the provided options. For example: python example.py --hostname=127.0.0.2 --port=6000 """ load_profile() newendpoint()
scrapcore/tools.py
lantip/SerpScrap
199
12753119
<reponame>lantip/SerpScrap<gh_stars>100-1000 # -*- coding: utf-8 -*- from collections import namedtuple import csv import json import os import threading from scrapcore import database class JsonStreamWriter(): """Writes consecutive objects to an json output file.""" def __init__(self, filename): self.file = open(filename, 'wt') self.file.write('[') self.last_object = None def write(self, obj): if self.last_object: self.file.write(',') json.dump(obj, self.file, indent=2, sort_keys=True) self.last_object = id(obj) def end(self): self.file.write(']') self.file.close() class CsvStreamWriter(): """ Writes consecutive objects to an csv output file. """ def __init__(self, filename, csv_fieldnames): self.csv_fieldnames = csv_fieldnames self.file = open(filename, 'wt') self.dict_writer = csv.DictWriter( self.file, fieldnames=csv_fieldnames, delimiter=',' ) self.dict_writer.writeheader() def write(self, data, serp): for row in data['results']: d = serp d.update(row) d = ({k: v if type(v) is str else v for k, v in d.items() if k in self.csv_fieldnames}) self.dict_writer.writerow(d) def end(self): self.file.close() class ScrapeJobGenerator(): def get(self, keywords, search_engines, scrape_method, num_pages): """Get scrape jobs by keywords.""" for keyword in keywords: for search_engine in search_engines: for page in range(1, num_pages + 1): yield { 'query': keyword, 'search_engine': search_engine, 'scrape_method': scrape_method, 'page_number': page } class Proxies(): Proxy = namedtuple('Proxy', 'proto, host, port, username, password') def parse_proxy_file(self, fname): """Parses a proxy file The format should be like the following: socks5 XX.XXX.XX.XX:1080 username:password socks4 XX.XXX.XX.XX:80 username:password http XX.XXX.XX.XX:80 If username and password aren't provided, we assumes that the proxy doesn't need auth credentials. Args: fname: The file name where to look for proxies. Returns: The parsed proxies. Raises: ValueError if no file with the path fname could be found. """ proxies = [] path = os.path.join(os.getcwd(), fname) if os.path.exists(path): with open(path, 'r') as pf: for line in pf.readlines(): if not (line.strip().startswith('#') or line.strip().startswith('//')): tokens = line.replace('\n', '').split(' ') try: proto = tokens[0] host, port = tokens[1].split(':') except Exception: raise Exception(''' Invalid proxy file. Should have the following format: {} '''.format(self.parse_proxy_file.__doc__) ) if len(tokens) == 3: username, password = tokens[2].split(':') proxies.append( self.Proxy( proto=proto, host=host, port=port, username=username, password=password ) ) else: proxies.append( self.Proxy( proto=proto, host=host, port=port, username='', password='' ) ) return proxies else: raise ValueError('No such file/directory') def add_proxies_to_db(self, proxies, session): """Adds the list of proxies to the database. If the proxy-ip already exists and the other data differs, it will be overwritten. Will not check the status of the proxy. Args: proxies: A list of proxies. session: A database session to work with. """ for proxy in proxies: if proxy: p = session.query(database.Proxy).filter(proxy.host == database.Proxy.ip).first() if not p: p = database.Proxy(ip=proxy.host) p.port = proxy.port p.username = proxy.username p.password = <PASSWORD> p.proto = proxy.proto session.add(p) session.commit() class ShowProgressQueue(threading.Thread): """Prints the number of keywords scraped already to show the user the progress of the scraping process.. """ def __init__(self, config, queue, num_keywords): """Create a ShowProgressQueue thread instance. Args: queue: A queue.Queue instance to share among the worker threads. num_keywords: The number of total keywords that need to be scraped. """ super().__init__() self.queue = queue self.num_keywords = num_keywords self.num_already_processed = 0 self.progress_fmt = '\033[92m{}/{} keywords processed.\033[0m' def run(self): while self.num_already_processed < self.num_keywords: e = self.queue.get() if e == 'done': break self.num_already_processed += 1 print(self.progress_fmt.format(self.num_already_processed, self.num_keywords), end='\r') self.queue.task_done() class Error(Exception): pass class ConfigurationError(Exception): pass class BlockedSearchException(Exception): pass
yasql/apps/sqlorders/apps.py
Fanduzi/YaSQL
443
12753123
<filename>yasql/apps/sqlorders/apps.py<gh_stars>100-1000 from django.apps import AppConfig class SqlordersConfig(AppConfig): name = 'sqlorders' verbose_name = 'SQL工单配置'
pkg/codegen/testing/test/testdata/output-funcs-edgeorder/python/pulumi_myedgeorder/_enums.py
goverdhan07/pulumi
12,004
12753129
<reponame>goverdhan07/pulumi # coding=utf-8 # *** WARNING: this file was generated by test. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** from enum import Enum __all__ = [ 'SupportedFilterTypes', ] class SupportedFilterTypes(str, Enum): """ Type of product filter. """ SHIP_TO_COUNTRIES = "ShipToCountries" """ Ship to country """ DOUBLE_ENCRYPTION_STATUS = "DoubleEncryptionStatus" """ Double encryption status """
EventFilter/CSCRawToDigi/python/cscPacker_cfi.py
Purva-Chaudhari/cmssw
852
12753157
import FWCore.ParameterSet.Config as cms ## baseline configuration in the class itself from EventFilter.CSCRawToDigi.cscPackerDef_cfi import cscPackerDef cscpacker = cscPackerDef.clone() ## In Run-2 common: update the format version for new OTMBs in ME1/1 ## Note: in the past, the packing with triggers and pretriggers was disabled ## for Run-2, Run-3 and Phase-2 scenarios. This should no longer be the case ## as of CMSSW_12_0_0_pre5 from Configuration.Eras.Modifier_run2_common_cff import run2_common run2_common.toModify( cscpacker, formatVersion = 2013) ## in Run-3 scenarios with GEM: pack GEM clusters from Configuration.Eras.Modifier_run3_GEM_cff import run3_GEM run3_GEM.toModify( cscpacker, useGEMs = True)
server/www/packages/packages-windows/x86/ldap3/utils/config.py
tinygg/teleport
640
12753194
<filename>server/www/packages/packages-windows/x86/ldap3/utils/config.py<gh_stars>100-1000 """ """ # Created on 2016.08.31 # # Author: <NAME> # # Copyright 2013 - 2020 <NAME> # # This file is part of ldap3. # # ldap3 is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ldap3 is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with ldap3 in the COPYING and COPYING.LESSER files. # If not, see <http://www.gnu.org/licenses/>. from sys import stdin, getdefaultencoding from .. import ALL_ATTRIBUTES, ALL_OPERATIONAL_ATTRIBUTES, NO_ATTRIBUTES, SEQUENCE_TYPES from ..core.exceptions import LDAPConfigurationParameterError # checks _CLASSES_EXCLUDED_FROM_CHECK = ['subschema'] _ATTRIBUTES_EXCLUDED_FROM_CHECK = [ALL_ATTRIBUTES, ALL_OPERATIONAL_ATTRIBUTES, NO_ATTRIBUTES, 'ldapSyntaxes', 'matchingRules', 'matchingRuleUse', 'dITContentRules', 'dITStructureRules', 'nameForms', 'altServer', 'namingContexts', 'supportedControl', 'supportedExtension', 'supportedFeatures', 'supportedCapabilities', 'supportedLdapVersion', 'supportedSASLMechanisms', 'vendorName', 'vendorVersion', 'subschemaSubentry', 'ACL'] _UTF8_ENCODED_SYNTAXES = ['1.2.840.113556.1.4.904', # DN String [MICROSOFT] '1.2.840.113556.1.4.1362', # String (Case) [MICROSOFT] '1.3.6.1.4.1.1466.172.16.31.10', # DN String [RFC4517] '1.3.6.1.4.1.1466.192.168.3.11', # Directory String [RFC4517] '1.3.6.1.4.1.1466.192.168.3.11', # Postal Address) [RFC4517] '1.3.6.1.4.1.1466.172.16.31.10', # Substring Assertion [RFC4517] '2.16.840.1.113719.1.1.5.1.6', # Case Ignore List [NOVELL] '2.16.840.1.113719.1.1.5.1.14', # Tagged String [NOVELL] '2.16.840.1.113719.1.1.5.1.15', # Tagged Name and String [NOVELL] '2.16.840.1.113719.1.1.5.1.23', # Tagged Name [NOVELL] '2.16.840.1.113719.1.1.5.1.25'] # Typed Name [NOVELL] _UTF8_ENCODED_TYPES = [] _ATTRIBUTES_EXCLUDED_FROM_OBJECT_DEF = ['msds-memberOfTransitive', 'msds-memberTransitive', 'entryDN'] _IGNORED_MANDATORY_ATTRIBUTES_IN_OBJECT_DEF = ['instanceType', 'nTSecurityDescriptor', 'objectCategory'] _CASE_INSENSITIVE_ATTRIBUTE_NAMES = True _CASE_INSENSITIVE_SCHEMA_NAMES = True # abstraction layer _ABSTRACTION_OPERATIONAL_ATTRIBUTE_PREFIX = 'OA_' # communication _POOLING_LOOP_TIMEOUT = 10 # number of seconds to wait before restarting a cycle to find an active server in the pool _RESPONSE_SLEEPTIME = 0.05 # seconds to wait while waiting for a response in asynchronous strategies _RESPONSE_WAITING_TIMEOUT = 3 # waiting timeout for receiving a response in asynchronous strategies _SOCKET_SIZE = 4096 # socket byte size _CHECK_AVAILABILITY_TIMEOUT = 2.5 # default timeout for socket connect when checking availability _RESET_AVAILABILITY_TIMEOUT = 5 # default timeout for resetting the availability status when checking candidate addresses _RESTARTABLE_SLEEPTIME = 2 # time to wait in a restartable strategy before retrying the request _RESTARTABLE_TRIES = 30 # number of times to retry in a restartable strategy before giving up. Set to True for unlimited retries _REUSABLE_THREADED_POOL_SIZE = 5 _REUSABLE_THREADED_LIFETIME = 3600 # 1 hour _DEFAULT_THREADED_POOL_NAME = 'REUSABLE_DEFAULT_POOL' _ADDRESS_INFO_REFRESH_TIME = 300 # seconds to wait before refreshing address info from dns _ADDITIONAL_SERVER_ENCODINGS = ['latin-1', 'koi8-r'] # some broken LDAP implementation may have different encoding than those expected by RFCs _ADDITIONAL_CLIENT_ENCODINGS = ['utf-8'] _IGNORE_MALFORMED_SCHEMA = False # some flaky LDAP servers returns malformed schema. If True no expection is raised and schema is thrown away _DEFAULT_SERVER_ENCODING = 'utf-8' # should always be utf-8 if stdin and hasattr(stdin, 'encoding') and stdin.encoding: _DEFAULT_CLIENT_ENCODING = stdin.encoding elif getdefaultencoding(): _DEFAULT_CLIENT_ENCODING = getdefaultencoding() else: _DEFAULT_CLIENT_ENCODING = 'utf-8' PARAMETERS = ['CASE_INSENSITIVE_ATTRIBUTE_NAMES', 'CASE_INSENSITIVE_SCHEMA_NAMES', 'ABSTRACTION_OPERATIONAL_ATTRIBUTE_PREFIX', 'POOLING_LOOP_TIMEOUT', 'RESPONSE_SLEEPTIME', 'RESPONSE_WAITING_TIMEOUT', 'SOCKET_SIZE', 'CHECK_AVAILABILITY_TIMEOUT', 'RESTARTABLE_SLEEPTIME', 'RESTARTABLE_TRIES', 'REUSABLE_THREADED_POOL_SIZE', 'REUSABLE_THREADED_LIFETIME', 'DEFAULT_THREADED_POOL_NAME', 'ADDRESS_INFO_REFRESH_TIME', 'RESET_AVAILABILITY_TIMEOUT', 'DEFAULT_CLIENT_ENCODING', 'DEFAULT_SERVER_ENCODING', 'CLASSES_EXCLUDED_FROM_CHECK', 'ATTRIBUTES_EXCLUDED_FROM_CHECK', 'UTF8_ENCODED_SYNTAXES', 'UTF8_ENCODED_TYPES', 'ADDITIONAL_SERVER_ENCODINGS', 'ADDITIONAL_CLIENT_ENCODINGS', 'IGNORE_MALFORMED_SCHEMA', 'ATTRIBUTES_EXCLUDED_FROM_OBJECT_DEF', 'IGNORED_MANDATORY_ATTRIBUTES_IN_OBJECT_DEF' ] def get_config_parameter(parameter): if parameter == 'CASE_INSENSITIVE_ATTRIBUTE_NAMES': # Boolean return _CASE_INSENSITIVE_ATTRIBUTE_NAMES elif parameter == 'CASE_INSENSITIVE_SCHEMA_NAMES': # Boolean return _CASE_INSENSITIVE_SCHEMA_NAMES elif parameter == 'ABSTRACTION_OPERATIONAL_ATTRIBUTE_PREFIX': # String return _ABSTRACTION_OPERATIONAL_ATTRIBUTE_PREFIX elif parameter == 'POOLING_LOOP_TIMEOUT': # Integer return _POOLING_LOOP_TIMEOUT elif parameter == 'RESPONSE_SLEEPTIME': # Integer return _RESPONSE_SLEEPTIME elif parameter == 'RESPONSE_WAITING_TIMEOUT': # Integer return _RESPONSE_WAITING_TIMEOUT elif parameter == 'SOCKET_SIZE': # Integer return _SOCKET_SIZE elif parameter == 'CHECK_AVAILABILITY_TIMEOUT': # Integer return _CHECK_AVAILABILITY_TIMEOUT elif parameter == 'RESTARTABLE_SLEEPTIME': # Integer return _RESTARTABLE_SLEEPTIME elif parameter == 'RESTARTABLE_TRIES': # Integer return _RESTARTABLE_TRIES elif parameter == 'REUSABLE_THREADED_POOL_SIZE': # Integer return _REUSABLE_THREADED_POOL_SIZE elif parameter == 'REUSABLE_THREADED_LIFETIME': # Integer return _REUSABLE_THREADED_LIFETIME elif parameter == 'DEFAULT_THREADED_POOL_NAME': # String return _DEFAULT_THREADED_POOL_NAME elif parameter == 'ADDRESS_INFO_REFRESH_TIME': # Integer return _ADDRESS_INFO_REFRESH_TIME elif parameter == 'RESET_AVAILABILITY_TIMEOUT': # Integer return _RESET_AVAILABILITY_TIMEOUT elif parameter in ['DEFAULT_CLIENT_ENCODING', 'DEFAULT_ENCODING']: # String - DEFAULT_ENCODING for backward compatibility return _DEFAULT_CLIENT_ENCODING elif parameter == 'DEFAULT_SERVER_ENCODING': # String return _DEFAULT_SERVER_ENCODING elif parameter == 'CLASSES_EXCLUDED_FROM_CHECK': # Sequence if isinstance(_CLASSES_EXCLUDED_FROM_CHECK, SEQUENCE_TYPES): return _CLASSES_EXCLUDED_FROM_CHECK else: return [_CLASSES_EXCLUDED_FROM_CHECK] elif parameter == 'ATTRIBUTES_EXCLUDED_FROM_CHECK': # Sequence if isinstance(_ATTRIBUTES_EXCLUDED_FROM_CHECK, SEQUENCE_TYPES): return _ATTRIBUTES_EXCLUDED_FROM_CHECK else: return [_ATTRIBUTES_EXCLUDED_FROM_CHECK] elif parameter == 'UTF8_ENCODED_SYNTAXES': # Sequence if isinstance(_UTF8_ENCODED_SYNTAXES, SEQUENCE_TYPES): return _UTF8_ENCODED_SYNTAXES else: return [_UTF8_ENCODED_SYNTAXES] elif parameter == 'UTF8_ENCODED_TYPES': # Sequence if isinstance(_UTF8_ENCODED_TYPES, SEQUENCE_TYPES): return _UTF8_ENCODED_TYPES else: return [_UTF8_ENCODED_TYPES] elif parameter in ['ADDITIONAL_SERVER_ENCODINGS', 'ADDITIONAL_ENCODINGS']: # Sequence - ADDITIONAL_ENCODINGS for backward compatibility if isinstance(_ADDITIONAL_SERVER_ENCODINGS, SEQUENCE_TYPES): return _ADDITIONAL_SERVER_ENCODINGS else: return [_ADDITIONAL_SERVER_ENCODINGS] elif parameter in ['ADDITIONAL_CLIENT_ENCODINGS']: # Sequence if isinstance(_ADDITIONAL_CLIENT_ENCODINGS, SEQUENCE_TYPES): return _ADDITIONAL_CLIENT_ENCODINGS else: return [_ADDITIONAL_CLIENT_ENCODINGS] elif parameter == 'IGNORE_MALFORMED_SCHEMA': # Boolean return _IGNORE_MALFORMED_SCHEMA elif parameter == 'ATTRIBUTES_EXCLUDED_FROM_OBJECT_DEF': # Sequence if isinstance(_ATTRIBUTES_EXCLUDED_FROM_OBJECT_DEF, SEQUENCE_TYPES): return _ATTRIBUTES_EXCLUDED_FROM_OBJECT_DEF else: return [_ATTRIBUTES_EXCLUDED_FROM_OBJECT_DEF] elif parameter == 'IGNORED_MANDATORY_ATTRIBUTES_IN_OBJECT_DEF': # Sequence if isinstance(_IGNORED_MANDATORY_ATTRIBUTES_IN_OBJECT_DEF, SEQUENCE_TYPES): return _IGNORED_MANDATORY_ATTRIBUTES_IN_OBJECT_DEF else: return [_IGNORED_MANDATORY_ATTRIBUTES_IN_OBJECT_DEF] raise LDAPConfigurationParameterError('configuration parameter %s not valid' % parameter) def set_config_parameter(parameter, value): if parameter == 'CASE_INSENSITIVE_ATTRIBUTE_NAMES': global _CASE_INSENSITIVE_ATTRIBUTE_NAMES _CASE_INSENSITIVE_ATTRIBUTE_NAMES = value elif parameter == 'CASE_INSENSITIVE_SCHEMA_NAMES': global _CASE_INSENSITIVE_SCHEMA_NAMES _CASE_INSENSITIVE_SCHEMA_NAMES = value elif parameter == 'ABSTRACTION_OPERATIONAL_ATTRIBUTE_PREFIX': global _ABSTRACTION_OPERATIONAL_ATTRIBUTE_PREFIX _ABSTRACTION_OPERATIONAL_ATTRIBUTE_PREFIX = value elif parameter == 'POOLING_LOOP_TIMEOUT': global _POOLING_LOOP_TIMEOUT _POOLING_LOOP_TIMEOUT = value elif parameter == 'RESPONSE_SLEEPTIME': global _RESPONSE_SLEEPTIME _RESPONSE_SLEEPTIME = value elif parameter == 'RESPONSE_WAITING_TIMEOUT': global _RESPONSE_WAITING_TIMEOUT _RESPONSE_WAITING_TIMEOUT = value elif parameter == 'SOCKET_SIZE': global _SOCKET_SIZE _SOCKET_SIZE = value elif parameter == 'CHECK_AVAILABILITY_TIMEOUT': global _CHECK_AVAILABILITY_TIMEOUT _CHECK_AVAILABILITY_TIMEOUT = value elif parameter == 'RESTARTABLE_SLEEPTIME': global _RESTARTABLE_SLEEPTIME _RESTARTABLE_SLEEPTIME = value elif parameter == 'RESTARTABLE_TRIES': global _RESTARTABLE_TRIES _RESTARTABLE_TRIES = value elif parameter == 'REUSABLE_THREADED_POOL_SIZE': global _REUSABLE_THREADED_POOL_SIZE _REUSABLE_THREADED_POOL_SIZE = value elif parameter == 'REUSABLE_THREADED_LIFETIME': global _REUSABLE_THREADED_LIFETIME _REUSABLE_THREADED_LIFETIME = value elif parameter == 'DEFAULT_THREADED_POOL_NAME': global _DEFAULT_THREADED_POOL_NAME _DEFAULT_THREADED_POOL_NAME = value elif parameter == 'ADDRESS_INFO_REFRESH_TIME': global _ADDRESS_INFO_REFRESH_TIME _ADDRESS_INFO_REFRESH_TIME = value elif parameter == 'RESET_AVAILABILITY_TIMEOUT': global _RESET_AVAILABILITY_TIMEOUT _RESET_AVAILABILITY_TIMEOUT = value elif parameter in ['DEFAULT_CLIENT_ENCODING', 'DEFAULT_ENCODING']: global _DEFAULT_CLIENT_ENCODING _DEFAULT_CLIENT_ENCODING = value elif parameter == 'DEFAULT_SERVER_ENCODING': global _DEFAULT_SERVER_ENCODING _DEFAULT_SERVER_ENCODING = value elif parameter == 'CLASSES_EXCLUDED_FROM_CHECK': global _CLASSES_EXCLUDED_FROM_CHECK _CLASSES_EXCLUDED_FROM_CHECK = value elif parameter == 'ATTRIBUTES_EXCLUDED_FROM_CHECK': global _ATTRIBUTES_EXCLUDED_FROM_CHECK _ATTRIBUTES_EXCLUDED_FROM_CHECK = value elif parameter == 'UTF8_ENCODED_SYNTAXES': global _UTF8_ENCODED_SYNTAXES _UTF8_ENCODED_SYNTAXES = value elif parameter == 'UTF8_ENCODED_TYPES': global _UTF8_ENCODED_TYPES _UTF8_ENCODED_TYPES = value elif parameter in ['ADDITIONAL_SERVER_ENCODINGS', 'ADDITIONAL_ENCODINGS']: global _ADDITIONAL_SERVER_ENCODINGS _ADDITIONAL_SERVER_ENCODINGS = value if isinstance(value, SEQUENCE_TYPES) else [value] elif parameter in ['ADDITIONAL_CLIENT_ENCODINGS']: global _ADDITIONAL_CLIENT_ENCODINGS _ADDITIONAL_CLIENT_ENCODINGS = value if isinstance(value, SEQUENCE_TYPES) else [value] elif parameter == 'IGNORE_MALFORMED_SCHEMA': global _IGNORE_MALFORMED_SCHEMA _IGNORE_MALFORMED_SCHEMA = value elif parameter == 'ATTRIBUTES_EXCLUDED_FROM_OBJECT_DEF': global _ATTRIBUTES_EXCLUDED_FROM_OBJECT_DEF _ATTRIBUTES_EXCLUDED_FROM_OBJECT_DEF = value elif parameter == 'IGNORED_MANDATORY_ATTRIBUTES_IN_OBJECT_DEF': global _IGNORED_MANDATORY_ATTRIBUTES_IN_OBJECT_DEF _IGNORED_MANDATORY_ATTRIBUTES_IN_OBJECT_DEF = value else: raise LDAPConfigurationParameterError('unable to set configuration parameter %s' % parameter)
google/ads/googleads/v8/resources/types/conversion_value_rule.py
JakobSteixner/google-ads-python
285
12753208
<filename>google/ads/googleads/v8/resources/types/conversion_value_rule.py # -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.ads.googleads.v8.enums.types import conversion_value_rule_status from google.ads.googleads.v8.enums.types import value_rule_device_type from google.ads.googleads.v8.enums.types import ( value_rule_geo_location_match_type, ) from google.ads.googleads.v8.enums.types import value_rule_operation __protobuf__ = proto.module( package="google.ads.googleads.v8.resources", marshal="google.ads.googleads.v8", manifest={"ConversionValueRule",}, ) class ConversionValueRule(proto.Message): r"""A conversion value rule Attributes: resource_name (str): Immutable. The resource name of the conversion value rule. Conversion value rule resource names have the form: ``customers/{customer_id}/conversionValueRules/{conversion_value_rule_id}`` id (int): Output only. The ID of the conversion value rule. action (google.ads.googleads.v8.resources.types.ConversionValueRule.ValueRuleAction): Action applied when the rule is triggered. geo_location_condition (google.ads.googleads.v8.resources.types.ConversionValueRule.ValueRuleGeoLocationCondition): Condition for Geo location that must be satisfied for the value rule to apply. device_condition (google.ads.googleads.v8.resources.types.ConversionValueRule.ValueRuleDeviceCondition): Condition for device type that must be satisfied for the value rule to apply. audience_condition (google.ads.googleads.v8.resources.types.ConversionValueRule.ValueRuleAudienceCondition): Condition for audience that must be satisfied for the value rule to apply. owner_customer (str): Output only. The resource name of the conversion value rule's owner customer. When the value rule is inherited from a manager customer, owner_customer will be the resource name of the manager whereas the customer in the resource_name will be of the requesting serving customer. \*\* Read-only \*\* status (google.ads.googleads.v8.enums.types.ConversionValueRuleStatusEnum.ConversionValueRuleStatus): The status of the conversion value rule. """ class ValueRuleAction(proto.Message): r"""Action applied when rule is applied. Attributes: operation (google.ads.googleads.v8.enums.types.ValueRuleOperationEnum.ValueRuleOperation): Specifies applied operation. value (float): Specifies applied value. """ operation = proto.Field( proto.ENUM, number=1, enum=value_rule_operation.ValueRuleOperationEnum.ValueRuleOperation, ) value = proto.Field(proto.DOUBLE, number=2,) class ValueRuleGeoLocationCondition(proto.Message): r"""Condition on Geo dimension. Attributes: excluded_geo_target_constants (Sequence[str]): Geo locations that advertisers want to exclude. excluded_geo_match_type (google.ads.googleads.v8.enums.types.ValueRuleGeoLocationMatchTypeEnum.ValueRuleGeoLocationMatchType): Excluded Geo location match type. geo_target_constants (Sequence[str]): Geo locations that advertisers want to include. geo_match_type (google.ads.googleads.v8.enums.types.ValueRuleGeoLocationMatchTypeEnum.ValueRuleGeoLocationMatchType): Included Geo location match type. """ excluded_geo_target_constants = proto.RepeatedField( proto.STRING, number=1, ) excluded_geo_match_type = proto.Field( proto.ENUM, number=2, enum=value_rule_geo_location_match_type.ValueRuleGeoLocationMatchTypeEnum.ValueRuleGeoLocationMatchType, ) geo_target_constants = proto.RepeatedField(proto.STRING, number=3,) geo_match_type = proto.Field( proto.ENUM, number=4, enum=value_rule_geo_location_match_type.ValueRuleGeoLocationMatchTypeEnum.ValueRuleGeoLocationMatchType, ) class ValueRuleAudienceCondition(proto.Message): r"""Condition on Audience dimension. Attributes: user_lists (Sequence[str]): User Lists. user_interests (Sequence[str]): User Interests. """ user_lists = proto.RepeatedField(proto.STRING, number=1,) user_interests = proto.RepeatedField(proto.STRING, number=2,) class ValueRuleDeviceCondition(proto.Message): r"""Condition on Device dimension. Attributes: device_types (Sequence[google.ads.googleads.v8.enums.types.ValueRuleDeviceTypeEnum.ValueRuleDeviceType]): Value for device type condition. """ device_types = proto.RepeatedField( proto.ENUM, number=1, enum=value_rule_device_type.ValueRuleDeviceTypeEnum.ValueRuleDeviceType, ) resource_name = proto.Field(proto.STRING, number=1,) id = proto.Field(proto.INT64, number=2,) action = proto.Field(proto.MESSAGE, number=3, message=ValueRuleAction,) geo_location_condition = proto.Field( proto.MESSAGE, number=4, message=ValueRuleGeoLocationCondition, ) device_condition = proto.Field( proto.MESSAGE, number=5, message=ValueRuleDeviceCondition, ) audience_condition = proto.Field( proto.MESSAGE, number=6, message=ValueRuleAudienceCondition, ) owner_customer = proto.Field(proto.STRING, number=7,) status = proto.Field( proto.ENUM, number=8, enum=conversion_value_rule_status.ConversionValueRuleStatusEnum.ConversionValueRuleStatus, ) __all__ = tuple(sorted(__protobuf__.manifest))
lldb/packages/Python/lldbsuite/test/commands/expression/radar_9673664/TestExprHelpExamples.py
dan-zheng/llvm-project
765
12753219
""" Test example snippets from the lldb 'help expression' output. """ from __future__ import print_function import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil class Radar9673644TestCase(TestBase): mydir = TestBase.compute_mydir(__file__) def setUp(self): # Call super's setUp(). TestBase.setUp(self) # Find the line number to break inside main(). self.main_source = "main.c" self.line = line_number(self.main_source, '// Set breakpoint here.') def test_expr_commands(self): """The following expression commands should just work.""" self.build() self.runCmd("file " + self.getBuildArtifact("a.out"), CURRENT_EXECUTABLE_SET) lldbutil.run_break_set_by_file_and_line( self, self.main_source, self.line, num_expected_locations=1, loc_exact=True) self.runCmd("run", RUN_SUCCEEDED) # rdar://problem/9673664 lldb expression evaluation problem self.expect('expr char str[] = "foo"; str[0]', substrs=["'f'"]) # runCmd: expr char c[] = "foo"; c[0] # output: (char) $0 = 'f'
site/flask/lib/python2.7/site-packages/whoosh/multiproc.py
theholyhades1/tartanHacks2015
319
12753230
# Copyright 2011 <NAME>. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY MATT CHAPUT ``AS IS'' AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO # EVENT SHALL MATT CHAPUT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, # OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # The views and conclusions contained in the software and documentation are # those of the authors and should not be interpreted as representing official # policies, either expressed or implied, of Matt Chaput. from __future__ import with_statement import os from multiprocessing import Process, Queue, cpu_count from whoosh.compat import xrange, iteritems, pickle from whoosh.codec import base from whoosh.writing import PostingPool, SegmentWriter from whoosh.externalsort import imerge from whoosh.util import random_name def finish_subsegment(writer, k=64): # Tell the pool to finish up the current file writer.pool.save() # Tell the pool to merge any and all runs in the pool until there # is only one run remaining. "k" is an optional parameter passed # from the parent which sets the maximum number of files to open # while reducing. writer.pool.reduce_to(1, k) # The filename of the single remaining run runname = writer.pool.runs[0] # The indexed field names fieldnames = writer.pool.fieldnames # The segment object (parent can use this to re-open the files created # by the sub-writer) segment = writer._partial_segment() return runname, fieldnames, segment # Multiprocessing Writer class SubWriterTask(Process): # This is a Process object that takes "jobs" off a job Queue, processes # them, and when it's done, puts a summary of its work on a results Queue def __init__(self, storage, indexname, jobqueue, resultqueue, kwargs, multisegment): Process.__init__(self) self.storage = storage self.indexname = indexname self.jobqueue = jobqueue self.resultqueue = resultqueue self.kwargs = kwargs self.multisegment = multisegment self.running = True def run(self): # This is the main loop of the process. OK, so the way this works is # kind of brittle and stupid, but I had to figure out how to use the # multiprocessing module, work around bugs, and address performance # issues, so there is at least some reasoning behind some of this # The "parent" task farms individual documents out to the subtasks for # indexing. You could pickle the actual documents and put them in the # queue, but that is not very performant. Instead, we assume the tasks # share a filesystem and use that to pass the information around. The # parent task writes a certain number of documents to a file, then puts # the filename on the "job queue". A subtask gets the filename off the # queue and reads through the file processing the documents. jobqueue = self.jobqueue resultqueue = self.resultqueue multisegment = self.multisegment # Open a placeholder object representing the index ix = self.storage.open_index(self.indexname) # Open a writer for the index. The _lk=False parameter means to not try # to lock the index (the parent object that started me takes care of # locking the index) writer = self.writer = SegmentWriter(ix, _lk=False, **self.kwargs) # If the parent task calls cancel() on me, it will set self.running to # False, so I'll notice the next time through the loop while self.running: # Take an object off the job queue jobinfo = jobqueue.get() # If the object is None, it means the parent task wants me to # finish up if jobinfo is None: break # The object from the queue is a tuple of (filename, # number_of_docs_in_file). Pass those two pieces of information as # arguments to _process_file(). self._process_file(*jobinfo) if not self.running: # I was cancelled, so I'll cancel my underlying writer writer.cancel() else: if multisegment: # Actually finish the segment and return it with no run runname = None fieldnames = writer.pool.fieldnames segment = writer._finalize_segment() else: # Merge all runs in the writer's pool into one run, close the # segment, and return the run name and the segment k = self.kwargs.get("k", 64) runname, fieldnames, segment = finish_subsegment(writer, k) # Put the results (the run filename and the segment object) on the # result queue resultqueue.put((runname, fieldnames, segment), timeout=5) def _process_file(self, filename, doc_count): # This method processes a "job file" written out by the parent task. A # job file is a series of pickled (code, arguments) tuples. Currently # the only command codes is 0=add_document writer = self.writer tempstorage = writer.temp_storage() load = pickle.load with tempstorage.open_file(filename).raw_file() as f: for _ in xrange(doc_count): # Load the next pickled tuple from the file code, args = load(f) assert code == 0 writer.add_document(**args) # Remove the job file tempstorage.delete_file(filename) def cancel(self): self.running = False class MpWriter(SegmentWriter): def __init__(self, ix, procs=None, batchsize=100, subargs=None, multisegment=False, **kwargs): # This is the "main" writer that will aggregate the results created by # the sub-tasks SegmentWriter.__init__(self, ix, **kwargs) self.procs = procs or cpu_count() # The maximum number of documents in each job file submitted to the # sub-tasks self.batchsize = batchsize # You can use keyword arguments or the "subargs" argument to pass # keyword arguments to the sub-writers self.subargs = subargs if subargs else kwargs # If multisegment is True, don't merge the segments created by the # sub-writers, just add them directly to the TOC self.multisegment = multisegment # A list to hold the sub-task Process objects self.tasks = [] # A queue to pass the filenames of job files to the sub-tasks self.jobqueue = Queue(self.procs * 4) # A queue to get back the final results of the sub-tasks self.resultqueue = Queue() # A buffer for documents before they are flushed to a job file self.docbuffer = [] self._grouping = 0 self._added_sub = False def _new_task(self): task = SubWriterTask(self.storage, self.indexname, self.jobqueue, self.resultqueue, self.subargs, self.multisegment) self.tasks.append(task) task.start() return task def _enqueue(self): # Flush the documents stored in self.docbuffer to a file and put the # filename on the job queue docbuffer = self.docbuffer dump = pickle.dump length = len(docbuffer) filename = "%s.doclist" % random_name() with self.temp_storage().create_file(filename).raw_file() as f: for item in docbuffer: dump(item, f, -1) if len(self.tasks) < self.procs: self._new_task() jobinfo = (filename, length) self.jobqueue.put(jobinfo) self.docbuffer = [] def cancel(self): try: for task in self.tasks: task.cancel() finally: SegmentWriter.cancel(self) def start_group(self): self._grouping += 1 def end_group(self): if not self._grouping: raise Exception("Unbalanced end_group") self._grouping -= 1 def add_document(self, **fields): # Add the document to the docbuffer self.docbuffer.append((0, fields)) # If the buffer is full, flush it to the job queue if not self._grouping and len(self.docbuffer) >= self.batchsize: self._enqueue() self._added_sub = True def _read_and_renumber_run(self, path, offset): # Note that SortingPool._read_run() automatically deletes the run file # when it's finished gen = self.pool._read_run(path) # If offset is 0, just return the items unchanged if not offset: return gen else: # Otherwise, add the offset to each docnum return ((fname, text, docnum + offset, weight, value) for fname, text, docnum, weight, value in gen) def commit(self, mergetype=None, optimize=None, merge=None): if self._added_sub: # If documents have been added to sub-writers, use the parallel # merge commit code self._commit(mergetype, optimize, merge) else: # Otherwise, just do a regular-old commit SegmentWriter.commit(self, mergetype=mergetype, optimize=optimize, merge=merge) def _commit(self, mergetype, optimize, merge): # Index the remaining documents in the doc buffer if self.docbuffer: self._enqueue() # Tell the tasks to finish for task in self.tasks: self.jobqueue.put(None) # Merge existing segments finalsegments = self._merge_segments(mergetype, optimize, merge) # Wait for the subtasks to finish for task in self.tasks: task.join() # Pull a (run_file_name, fieldnames, segment) tuple off the result # queue for each sub-task, representing the final results of the task results = [] for task in self.tasks: results.append(self.resultqueue.get(timeout=5)) if self.multisegment: # If we're not merging the segments, we don't care about the runname # and fieldnames in the results... just pull out the segments and # add them to the list of final segments finalsegments += [s for _, _, s in results] if self._added: finalsegments.append(self._finalize_segment()) else: self._close_segment() assert self.perdocwriter.is_closed else: # Merge the posting sources from the sub-writers and my # postings into this writer self._merge_subsegments(results, mergetype) self._close_segment() self._assemble_segment() finalsegments.append(self.get_segment()) assert self.perdocwriter.is_closed self._commit_toc(finalsegments) self._finish() def _merge_subsegments(self, results, mergetype): schema = self.schema schemanames = set(schema.names()) storage = self.storage codec = self.codec sources = [] # If information was added to this writer the conventional (e.g. # through add_reader or merging segments), add it as an extra source if self._added: sources.append(self.pool.iter_postings()) pdrs = [] for runname, fieldnames, segment in results: fieldnames = set(fieldnames) | schemanames pdr = codec.per_document_reader(storage, segment) pdrs.append(pdr) basedoc = self.docnum docmap = self.write_per_doc(fieldnames, pdr) assert docmap is None items = self._read_and_renumber_run(runname, basedoc) sources.append(items) # Create a MultiLengths object combining the length files from the # subtask segments self.perdocwriter.close() pdrs.insert(0, self.per_document_reader()) mpdr = base.MultiPerDocumentReader(pdrs) try: # Merge the iterators into the field writer self.fieldwriter.add_postings(schema, mpdr, imerge(sources)) finally: mpdr.close() self._added = True class SerialMpWriter(MpWriter): # A non-parallel version of the MpWriter for testing purposes def __init__(self, ix, procs=None, batchsize=100, subargs=None, **kwargs): SegmentWriter.__init__(self, ix, **kwargs) self.procs = procs or cpu_count() self.batchsize = batchsize self.subargs = subargs if subargs else kwargs self.tasks = [SegmentWriter(ix, _lk=False, **self.subargs) for _ in xrange(self.procs)] self.pointer = 0 self._added_sub = False def add_document(self, **fields): self.tasks[self.pointer].add_document(**fields) self.pointer = (self.pointer + 1) % len(self.tasks) self._added_sub = True def _commit(self, mergetype, optimize, merge): # Pull a (run_file_name, segment) tuple off the result queue for each # sub-task, representing the final results of the task # Merge existing segments finalsegments = self._merge_segments(mergetype, optimize, merge) results = [] for writer in self.tasks: results.append(finish_subsegment(writer)) self._merge_subsegments(results, mergetype) self._close_segment() self._assemble_segment() finalsegments.append(self.get_segment()) self._commit_toc(finalsegments) self._finish() # For compatibility with old multiproc module class MultiSegmentWriter(MpWriter): def __init__(self, *args, **kwargs): MpWriter.__init__(self, *args, **kwargs) self.multisegment = True
tests/integration/services/policy_engine/test_loaders.py
rbrady/anchore-engine
1,484
12753258
<gh_stars>1000+ import json import time import pytest from anchore_engine.configuration import localconfig from anchore_engine.db import ( FeedGroupMetadata, FeedMetadata, GemMetadata, Image, NpmMetadata, NvdMetadata, Vulnerability, session_scope, ) from anchore_engine.services.policy_engine.engine.tasks import ( FeedsUpdateTask, ImageLoadTask, ) from anchore_engine.subsys import logger logger.enable_test_logging() localconfig.localconfig.update( {"feeds": {"sync_enabled": True, "selective_sync": {"enabled": False, "feeds": {}}}} ) @pytest.mark.skip("Skipping due to long run time, will fix later") def test_feed_task(test_data_env, anchore_db): logger.info("Running a feed sync with config: {}".format(localconfig.get_config())) t = FeedsUpdateTask() t.execute() with session_scope() as db: feeds = db.query(FeedMetadata).all() logger.info("{}".format(feeds)) assert len(feeds) == 4 # packages, vulns, snyk, nvd feed_groups = db.query(FeedGroupMetadata).all() # See the tests/data/test_data_env/feeds dir for the proper count here logger.info("{}".format(feed_groups)) assert len(feed_groups) == 11 # ToDo: set the source data to a small number and make this an exact count assert db.query(Vulnerability).count() > 0 assert db.query(NpmMetadata).count() > 0 assert db.query(GemMetadata).count() > 0 assert db.query(NvdMetadata).count() == 0 def test_image_load(test_data_env): for f in test_data_env.image_exports(): logger.info("Testing image export loading into the db") with open(f[1]) as infile: json_data = json.load(infile) image_id = ( json_data[0]["image"]["imagedata"]["image_report"]["meta"]["imageId"] if type(json_data) == list else json_data["image_report"]["meta"]["imageId"] ) logger.info("Using image id: " + image_id) t = time.time() task = ImageLoadTask( user_id="0", image_id=image_id, url="file://" + f[1], force_reload=True ) load_result = task.execute() load_duration = time.time() - t logger.info( "Load complete for {}. Took: {} sec for db load. Result: {}".format( f, load_duration, load_result ) ) with session_scope() as db: assert ( db.query(Image).filter_by(id=image_id, user_id="0").one_or_none() is not None )
tests/test_handler_metric_logger.py
KohYoungResearchAmerica/MONAI
2,971
12753272
<reponame>KohYoungResearchAmerica/MONAI # Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from monai.utils import optional_import from tests.utils import SkipIfNoModule try: _, has_ignite = optional_import("ignite") from ignite.engine import Engine, Events from monai.handlers import MetricLogger except ImportError: has_ignite = False class TestHandlerMetricLogger(unittest.TestCase): @SkipIfNoModule("ignite") def test_metric_logging(self): dummy_name = "dummy" # set up engine def _train_func(engine, batch): return torch.tensor(0.0) engine = Engine(_train_func) # set up dummy metric @engine.on(Events.EPOCH_COMPLETED) def _update_metric(engine): engine.state.metrics[dummy_name] = 1 # set up testing handler handler = MetricLogger(loss_transform=lambda output: output.item()) handler.attach(engine) engine.run(range(3), max_epochs=2) expected_loss = [(1, 0.0), (2, 0.0), (3, 0.0), (4, 0.0), (5, 0.0), (6, 0.0)] expected_metric = [(4, 1), (5, 1), (6, 1)] self.assertSetEqual({dummy_name}, set(handler.metrics)) self.assertListEqual(expected_loss, handler.loss) self.assertListEqual(expected_metric, handler.metrics[dummy_name]) if __name__ == "__main__": unittest.main()
AWS Management Scripts/AWS Automation Script for AWS endorsement management/ec2.py
avinashkranjan/PraticalPythonProjects
930
12753276
<reponame>avinashkranjan/PraticalPythonProjects from datetime import datetime, timedelta, timezone import boto3 def get_delete_data(older_days): delete_time = datetime.now(tz=timezone.utc) - timedelta(days=older_days) return delete_time def is_ignore_shutdown(tags): for tag in tags: print("K " + str(tag['Key']) + " is " + str(tag['Value'])) if str(tag['Key']) == 'excludepower' and str(tag['Value']) == 'true': print("Not stopping K " + str(tag['Key']) + " is " + str(tag['Value'])) return True return False def is_unassigned(tags): if 'user' not in [t['Key'] for t in tags]: return True return False class Ec2Instances(object): def __init__(self, region): print("region " + region) # if you are not using AWS Tool Kit tool you will be needing to pass your access key and secret key here # client = boto3.client('rds', region_name=region_name, aws_access_key_id=aws_access_key_id, # aws_secret_access_key=aws_secret_access_key) self.ec2 = boto3.client('ec2', region_name=region) def delete_snapshots(self, older_days=2): delete_snapshots_num = 0 snapshots = self.get_nimesa_created_snapshots() for snapshot in snapshots['Snapshots']: fmt_start_time = snapshot['StartTime'] if fmt_start_time < get_delete_data(older_days): try: self.delete_snapshot(snapshot['SnapshotId']) delete_snapshots_num + 1 except Exception as e: print(e) return delete_snapshots_num def get_user_created_snapshots(self): snapshots = self.ec2.describe_snapshots( Filters=[{ 'Name': 'owner-id', 'Values': ['your owner id'], }]) # Filters=[{'Name': 'description', 'Values': ['Created by Nimesa']}] return snapshots def delete_available_volumes(self): volumes = self.ec2.describe_volumes()['Volumes'] for volume in volumes: if volume['State'] == "available": self.ec2.delete_volume(VolumeId=volume['VolumeId']) def delete_snapshot(self, snapshot_id): self.ec2.delete_snapshot(SnapshotId=snapshot_id) def shutdown(self): instances = self.ec2.describe_instances() instance_to_stop = [] instance_to_terminate = [] for res in instances['Reservations']: for instance in res['Instances']: tags = instance.get('Tags') if tags is None: instance_to_terminate.append(instance['InstanceId']) continue if is_unassigned(tags): print("instance_to_terminate " + instance['InstanceId']) instance_to_terminate.append(instance['InstanceId']) if is_ignore_shutdown(tags): continue if instance['State']['Code'] == 16: instance_to_stop.append(instance['InstanceId']) if any(instance_to_stop): self.ec2.stop_instances( InstanceIds=instance_to_stop ) if any(instance_to_terminate): print(instance_to_terminate) self.ec2.terminate_instances( InstanceIds=instance_to_terminate ) if __name__ == "__main__": ec2 = Ec2Instances('us-east-1') ec2.delete_snapshots(3) ec2.shutdown()
tests/integration_tests/db_engine_specs/presto_tests.py
delorenzosoftware/superset
18,621
12753314
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from collections import namedtuple from unittest import mock, skipUnless import pandas as pd from sqlalchemy import types from sqlalchemy.engine.result import RowProxy from sqlalchemy.sql import select from superset.db_engine_specs.presto import PrestoEngineSpec from superset.errors import ErrorLevel, SupersetError, SupersetErrorType from superset.sql_parse import ParsedQuery from superset.utils.core import DatasourceName, GenericDataType from tests.integration_tests.db_engine_specs.base_tests import TestDbEngineSpec class TestPrestoDbEngineSpec(TestDbEngineSpec): @skipUnless(TestDbEngineSpec.is_module_installed("pyhive"), "pyhive not installed") def test_get_datatype_presto(self): self.assertEqual("STRING", PrestoEngineSpec.get_datatype("string")) def test_presto_get_view_names_return_empty_list( self, ): # pylint: disable=invalid-name self.assertEqual( [], PrestoEngineSpec.get_view_names(mock.ANY, mock.ANY, mock.ANY) ) @mock.patch("superset.db_engine_specs.presto.is_feature_enabled") def test_get_view_names(self, mock_is_feature_enabled): mock_is_feature_enabled.return_value = True mock_execute = mock.MagicMock() mock_fetchall = mock.MagicMock(return_value=[["a", "b,", "c"], ["d", "e"]]) database = mock.MagicMock() database.get_sqla_engine.return_value.raw_connection.return_value.cursor.return_value.execute = ( mock_execute ) database.get_sqla_engine.return_value.raw_connection.return_value.cursor.return_value.fetchall = ( mock_fetchall ) result = PrestoEngineSpec.get_view_names(database, mock.Mock(), None) mock_execute.assert_called_once_with( "SELECT table_name FROM information_schema.views", {} ) assert result == ["a", "d"] @mock.patch("superset.db_engine_specs.presto.is_feature_enabled") def test_get_view_names_with_schema(self, mock_is_feature_enabled): mock_is_feature_enabled.return_value = True mock_execute = mock.MagicMock() mock_fetchall = mock.MagicMock(return_value=[["a", "b,", "c"], ["d", "e"]]) database = mock.MagicMock() database.get_sqla_engine.return_value.raw_connection.return_value.cursor.return_value.execute = ( mock_execute ) database.get_sqla_engine.return_value.raw_connection.return_value.cursor.return_value.fetchall = ( mock_fetchall ) schema = "schema" result = PrestoEngineSpec.get_view_names(database, mock.Mock(), schema) mock_execute.assert_called_once_with( "SELECT table_name FROM information_schema.views " "WHERE table_schema=%(schema)s", {"schema": schema}, ) assert result == ["a", "d"] def verify_presto_column(self, column, expected_results): inspector = mock.Mock() inspector.engine.dialect.identifier_preparer.quote_identifier = mock.Mock() keymap = { "Column": (None, None, 0), "Type": (None, None, 1), "Null": (None, None, 2), } row = RowProxy(mock.Mock(), column, [None, None, None, None], keymap) inspector.bind.execute = mock.Mock(return_value=[row]) results = PrestoEngineSpec.get_columns(inspector, "", "") self.assertEqual(len(expected_results), len(results)) for expected_result, result in zip(expected_results, results): self.assertEqual(expected_result[0], result["name"]) self.assertEqual(expected_result[1], str(result["type"])) def test_presto_get_column(self): presto_column = ("column_name", "boolean", "") expected_results = [("column_name", "BOOLEAN")] self.verify_presto_column(presto_column, expected_results) @mock.patch.dict( "superset.extensions.feature_flag_manager._feature_flags", {"PRESTO_EXPAND_DATA": True}, clear=True, ) def test_presto_get_simple_row_column(self): presto_column = ("column_name", "row(nested_obj double)", "") expected_results = [("column_name", "ROW"), ("column_name.nested_obj", "FLOAT")] self.verify_presto_column(presto_column, expected_results) @mock.patch.dict( "superset.extensions.feature_flag_manager._feature_flags", {"PRESTO_EXPAND_DATA": True}, clear=True, ) def test_presto_get_simple_row_column_with_name_containing_whitespace(self): presto_column = ("column name", "row(nested_obj double)", "") expected_results = [("column name", "ROW"), ("column name.nested_obj", "FLOAT")] self.verify_presto_column(presto_column, expected_results) @mock.patch.dict( "superset.extensions.feature_flag_manager._feature_flags", {"PRESTO_EXPAND_DATA": True}, clear=True, ) def test_presto_get_simple_row_column_with_tricky_nested_field_name(self): presto_column = ("column_name", 'row("Field Name(Tricky, Name)" double)', "") expected_results = [ ("column_name", "ROW"), ('column_name."Field Name(Tricky, Name)"', "FLOAT"), ] self.verify_presto_column(presto_column, expected_results) @mock.patch.dict( "superset.extensions.feature_flag_manager._feature_flags", {"PRESTO_EXPAND_DATA": True}, clear=True, ) def test_presto_get_simple_array_column(self): presto_column = ("column_name", "array(double)", "") expected_results = [("column_name", "ARRAY")] self.verify_presto_column(presto_column, expected_results) @mock.patch.dict( "superset.extensions.feature_flag_manager._feature_flags", {"PRESTO_EXPAND_DATA": True}, clear=True, ) def test_presto_get_row_within_array_within_row_column(self): presto_column = ( "column_name", "row(nested_array array(row(nested_row double)), nested_obj double)", "", ) expected_results = [ ("column_name", "ROW"), ("column_name.nested_array", "ARRAY"), ("column_name.nested_array.nested_row", "FLOAT"), ("column_name.nested_obj", "FLOAT"), ] self.verify_presto_column(presto_column, expected_results) @mock.patch.dict( "superset.extensions.feature_flag_manager._feature_flags", {"PRESTO_EXPAND_DATA": True}, clear=True, ) def test_presto_get_array_within_row_within_array_column(self): presto_column = ( "column_name", "array(row(nested_array array(double), nested_obj double))", "", ) expected_results = [ ("column_name", "ARRAY"), ("column_name.nested_array", "ARRAY"), ("column_name.nested_obj", "FLOAT"), ] self.verify_presto_column(presto_column, expected_results) def test_presto_get_fields(self): cols = [ {"name": "column"}, {"name": "column.nested_obj"}, {"name": 'column."quoted.nested obj"'}, ] actual_results = PrestoEngineSpec._get_fields(cols) expected_results = [ {"name": '"column"', "label": "column"}, {"name": '"column"."nested_obj"', "label": "column.nested_obj"}, { "name": '"column"."quoted.nested obj"', "label": 'column."quoted.nested obj"', }, ] for actual_result, expected_result in zip(actual_results, expected_results): self.assertEqual(actual_result.element.name, expected_result["name"]) self.assertEqual(actual_result.name, expected_result["label"]) @mock.patch.dict( "superset.extensions.feature_flag_manager._feature_flags", {"PRESTO_EXPAND_DATA": True}, clear=True, ) def test_presto_expand_data_with_simple_structural_columns(self): cols = [ {"name": "row_column", "type": "ROW(NESTED_OBJ VARCHAR)"}, {"name": "array_column", "type": "ARRAY(BIGINT)"}, ] data = [ {"row_column": ["a"], "array_column": [1, 2, 3]}, {"row_column": ["b"], "array_column": [4, 5, 6]}, ] actual_cols, actual_data, actual_expanded_cols = PrestoEngineSpec.expand_data( cols, data ) expected_cols = [ {"name": "row_column", "type": "ROW(NESTED_OBJ VARCHAR)"}, {"name": "row_column.nested_obj", "type": "VARCHAR"}, {"name": "array_column", "type": "ARRAY(BIGINT)"}, ] expected_data = [ {"array_column": 1, "row_column": ["a"], "row_column.nested_obj": "a"}, {"array_column": 2, "row_column": "", "row_column.nested_obj": ""}, {"array_column": 3, "row_column": "", "row_column.nested_obj": ""}, {"array_column": 4, "row_column": ["b"], "row_column.nested_obj": "b"}, {"array_column": 5, "row_column": "", "row_column.nested_obj": ""}, {"array_column": 6, "row_column": "", "row_column.nested_obj": ""}, ] expected_expanded_cols = [{"name": "row_column.nested_obj", "type": "VARCHAR"}] self.assertEqual(actual_cols, expected_cols) self.assertEqual(actual_data, expected_data) self.assertEqual(actual_expanded_cols, expected_expanded_cols) @mock.patch.dict( "superset.extensions.feature_flag_manager._feature_flags", {"PRESTO_EXPAND_DATA": True}, clear=True, ) def test_presto_expand_data_with_complex_row_columns(self): cols = [ { "name": "row_column", "type": "ROW(NESTED_OBJ1 VARCHAR, NESTED_ROW ROW(NESTED_OBJ2 VARCHAR))", } ] data = [{"row_column": ["a1", ["a2"]]}, {"row_column": ["b1", ["b2"]]}] actual_cols, actual_data, actual_expanded_cols = PrestoEngineSpec.expand_data( cols, data ) expected_cols = [ { "name": "row_column", "type": "ROW(NESTED_OBJ1 VARCHAR, NESTED_ROW ROW(NESTED_OBJ2 VARCHAR))", }, {"name": "row_column.nested_obj1", "type": "VARCHAR"}, {"name": "row_column.nested_row", "type": "ROW(NESTED_OBJ2 VARCHAR)"}, {"name": "row_column.nested_row.nested_obj2", "type": "VARCHAR"}, ] expected_data = [ { "row_column": ["a1", ["a2"]], "row_column.nested_obj1": "a1", "row_column.nested_row": ["a2"], "row_column.nested_row.nested_obj2": "a2", }, { "row_column": ["b1", ["b2"]], "row_column.nested_obj1": "b1", "row_column.nested_row": ["b2"], "row_column.nested_row.nested_obj2": "b2", }, ] expected_expanded_cols = [ {"name": "row_column.nested_obj1", "type": "VARCHAR"}, {"name": "row_column.nested_row", "type": "ROW(NESTED_OBJ2 VARCHAR)"}, {"name": "row_column.nested_row.nested_obj2", "type": "VARCHAR"}, ] self.assertEqual(actual_cols, expected_cols) self.assertEqual(actual_data, expected_data) self.assertEqual(actual_expanded_cols, expected_expanded_cols) @mock.patch.dict( "superset.extensions.feature_flag_manager._feature_flags", {"PRESTO_EXPAND_DATA": True}, clear=True, ) def test_presto_expand_data_with_complex_row_columns_and_null_values(self): cols = [ {"name": "row_column", "type": "ROW(NESTED_ROW ROW(NESTED_OBJ VARCHAR))",} ] data = [ {"row_column": '[["a"]]'}, {"row_column": "[[null]]"}, {"row_column": "[null]"}, {"row_column": "null"}, ] actual_cols, actual_data, actual_expanded_cols = PrestoEngineSpec.expand_data( cols, data ) expected_cols = [ {"name": "row_column", "type": "ROW(NESTED_ROW ROW(NESTED_OBJ VARCHAR))",}, {"name": "row_column.nested_row", "type": "ROW(NESTED_OBJ VARCHAR)"}, {"name": "row_column.nested_row.nested_obj", "type": "VARCHAR"}, ] expected_data = [ { "row_column": [["a"]], "row_column.nested_row": ["a"], "row_column.nested_row.nested_obj": "a", }, { "row_column": [[None]], "row_column.nested_row": [None], "row_column.nested_row.nested_obj": None, }, { "row_column": [None], "row_column.nested_row": None, "row_column.nested_row.nested_obj": "", }, { "row_column": None, "row_column.nested_row": "", "row_column.nested_row.nested_obj": "", }, ] expected_expanded_cols = [ {"name": "row_column.nested_row", "type": "ROW(NESTED_OBJ VARCHAR)"}, {"name": "row_column.nested_row.nested_obj", "type": "VARCHAR"}, ] self.assertEqual(actual_cols, expected_cols) self.assertEqual(actual_data, expected_data) self.assertEqual(actual_expanded_cols, expected_expanded_cols) @mock.patch.dict( "superset.extensions.feature_flag_manager._feature_flags", {"PRESTO_EXPAND_DATA": True}, clear=True, ) def test_presto_expand_data_with_complex_array_columns(self): cols = [ {"name": "int_column", "type": "BIGINT"}, { "name": "array_column", "type": "ARRAY(ROW(NESTED_ARRAY ARRAY(ROW(NESTED_OBJ VARCHAR))))", }, ] data = [ {"int_column": 1, "array_column": [[[["a"], ["b"]]], [[["c"], ["d"]]]]}, {"int_column": 2, "array_column": [[[["e"], ["f"]]], [[["g"], ["h"]]]]}, ] actual_cols, actual_data, actual_expanded_cols = PrestoEngineSpec.expand_data( cols, data ) expected_cols = [ {"name": "int_column", "type": "BIGINT"}, { "name": "array_column", "type": "ARRAY(ROW(NESTED_ARRAY ARRAY(ROW(NESTED_OBJ VARCHAR))))", }, { "name": "array_column.nested_array", "type": "ARRAY(ROW(NESTED_OBJ VARCHAR))", }, {"name": "array_column.nested_array.nested_obj", "type": "VARCHAR"}, ] expected_data = [ { "array_column": [[["a"], ["b"]]], "array_column.nested_array": ["a"], "array_column.nested_array.nested_obj": "a", "int_column": 1, }, { "array_column": "", "array_column.nested_array": ["b"], "array_column.nested_array.nested_obj": "b", "int_column": "", }, { "array_column": [[["c"], ["d"]]], "array_column.nested_array": ["c"], "array_column.nested_array.nested_obj": "c", "int_column": "", }, { "array_column": "", "array_column.nested_array": ["d"], "array_column.nested_array.nested_obj": "d", "int_column": "", }, { "array_column": [[["e"], ["f"]]], "array_column.nested_array": ["e"], "array_column.nested_array.nested_obj": "e", "int_column": 2, }, { "array_column": "", "array_column.nested_array": ["f"], "array_column.nested_array.nested_obj": "f", "int_column": "", }, { "array_column": [[["g"], ["h"]]], "array_column.nested_array": ["g"], "array_column.nested_array.nested_obj": "g", "int_column": "", }, { "array_column": "", "array_column.nested_array": ["h"], "array_column.nested_array.nested_obj": "h", "int_column": "", }, ] expected_expanded_cols = [ { "name": "array_column.nested_array", "type": "ARRAY(ROW(NESTED_OBJ VARCHAR))", }, {"name": "array_column.nested_array.nested_obj", "type": "VARCHAR"}, ] self.assertEqual(actual_cols, expected_cols) self.assertEqual(actual_data, expected_data) self.assertEqual(actual_expanded_cols, expected_expanded_cols) def test_presto_extra_table_metadata(self): db = mock.Mock() db.get_indexes = mock.Mock(return_value=[{"column_names": ["ds", "hour"]}]) db.get_extra = mock.Mock(return_value={}) df = pd.DataFrame({"ds": ["01-01-19"], "hour": [1]}) db.get_df = mock.Mock(return_value=df) PrestoEngineSpec.get_create_view = mock.Mock(return_value=None) result = PrestoEngineSpec.extra_table_metadata(db, "test_table", "test_schema") self.assertEqual({"ds": "01-01-19", "hour": 1}, result["partitions"]["latest"]) def test_presto_where_latest_partition(self): db = mock.Mock() db.get_indexes = mock.Mock(return_value=[{"column_names": ["ds", "hour"]}]) db.get_extra = mock.Mock(return_value={}) df = pd.DataFrame({"ds": ["01-01-19"], "hour": [1]}) db.get_df = mock.Mock(return_value=df) columns = [{"name": "ds"}, {"name": "hour"}] result = PrestoEngineSpec.where_latest_partition( "test_table", "test_schema", db, select(), columns ) query_result = str(result.compile(compile_kwargs={"literal_binds": True})) self.assertEqual("SELECT \nWHERE ds = '01-01-19' AND hour = 1", query_result) def test_convert_dttm(self): dttm = self.get_dttm() self.assertEqual( PrestoEngineSpec.convert_dttm("DATE", dttm), "from_iso8601_date('2019-01-02')", ) self.assertEqual( PrestoEngineSpec.convert_dttm("TIMESTAMP", dttm), "from_iso8601_timestamp('2019-01-02T03:04:05.678900')", ) def test_query_cost_formatter(self): raw_cost = [ { "inputTableColumnInfos": [ { "table": { "catalog": "hive", "schemaTable": { "schema": "default", "table": "fact_passenger_state", }, }, "columnConstraints": [ { "columnName": "ds", "typeSignature": "varchar", "domain": { "nullsAllowed": False, "ranges": [ { "low": { "value": "2019-07-10", "bound": "EXACTLY", }, "high": { "value": "2019-07-10", "bound": "EXACTLY", }, } ], }, } ], "estimate": { "outputRowCount": 9.04969899e8, "outputSizeInBytes": 3.54143678301e11, "cpuCost": 3.54143678301e11, "maxMemory": 0.0, "networkCost": 0.0, }, } ], "estimate": { "outputRowCount": 9.04969899e8, "outputSizeInBytes": 3.54143678301e11, "cpuCost": 3.54143678301e11, "maxMemory": 0.0, "networkCost": 3.54143678301e11, }, } ] formatted_cost = PrestoEngineSpec.query_cost_formatter(raw_cost) expected = [ { "Output count": "904 M rows", "Output size": "354 GB", "CPU cost": "354 G", "Max memory": "0 B", "Network cost": "354 G", } ] self.assertEqual(formatted_cost, expected) @mock.patch.dict( "superset.extensions.feature_flag_manager._feature_flags", {"PRESTO_EXPAND_DATA": True}, clear=True, ) def test_presto_expand_data_array(self): cols = [ {"name": "event_id", "type": "VARCHAR", "is_date": False}, {"name": "timestamp", "type": "BIGINT", "is_date": False}, { "name": "user", "type": "ROW(ID BIGINT, FIRST_NAME VARCHAR, LAST_NAME VARCHAR)", "is_date": False, }, ] data = [ { "event_id": "abcdef01-2345-6789-abcd-ef0123456789", "timestamp": "1595895506219", "user": '[1, "JOHN", "DOE"]', } ] actual_cols, actual_data, actual_expanded_cols = PrestoEngineSpec.expand_data( cols, data ) expected_cols = [ {"name": "event_id", "type": "VARCHAR", "is_date": False}, {"name": "timestamp", "type": "BIGINT", "is_date": False}, { "name": "user", "type": "ROW(ID BIGINT, FIRST_NAME VARCHAR, LAST_NAME VARCHAR)", "is_date": False, }, {"name": "user.id", "type": "BIGINT"}, {"name": "user.first_name", "type": "VARCHAR"}, {"name": "user.last_name", "type": "VARCHAR"}, ] expected_data = [ { "event_id": "abcdef01-2345-6789-abcd-ef0123456789", "timestamp": "1595895506219", "user": [1, "JOHN", "DOE"], "user.id": 1, "user.first_name": "JOHN", "user.last_name": "DOE", } ] expected_expanded_cols = [ {"name": "user.id", "type": "BIGINT"}, {"name": "user.first_name", "type": "VARCHAR"}, {"name": "user.last_name", "type": "VARCHAR"}, ] self.assertEqual(actual_cols, expected_cols) self.assertEqual(actual_data, expected_data) self.assertEqual(actual_expanded_cols, expected_expanded_cols) def test_get_sqla_column_type(self): column_spec = PrestoEngineSpec.get_column_spec("varchar(255)") assert isinstance(column_spec.sqla_type, types.VARCHAR) assert column_spec.sqla_type.length == 255 self.assertEqual(column_spec.generic_type, GenericDataType.STRING) column_spec = PrestoEngineSpec.get_column_spec("varchar") assert isinstance(column_spec.sqla_type, types.String) assert column_spec.sqla_type.length is None self.assertEqual(column_spec.generic_type, GenericDataType.STRING) column_spec = PrestoEngineSpec.get_column_spec("char(10)") assert isinstance(column_spec.sqla_type, types.CHAR) assert column_spec.sqla_type.length == 10 self.assertEqual(column_spec.generic_type, GenericDataType.STRING) column_spec = PrestoEngineSpec.get_column_spec("char") assert isinstance(column_spec.sqla_type, types.CHAR) assert column_spec.sqla_type.length is None self.assertEqual(column_spec.generic_type, GenericDataType.STRING) column_spec = PrestoEngineSpec.get_column_spec("integer") assert isinstance(column_spec.sqla_type, types.Integer) self.assertEqual(column_spec.generic_type, GenericDataType.NUMERIC) column_spec = PrestoEngineSpec.get_column_spec("time") assert isinstance(column_spec.sqla_type, types.Time) assert type(column_spec.sqla_type).__name__ == "TemporalWrapperType" self.assertEqual(column_spec.generic_type, GenericDataType.TEMPORAL) column_spec = PrestoEngineSpec.get_column_spec("timestamp") assert isinstance(column_spec.sqla_type, types.TIMESTAMP) assert type(column_spec.sqla_type).__name__ == "TemporalWrapperType" self.assertEqual(column_spec.generic_type, GenericDataType.TEMPORAL) sqla_type = PrestoEngineSpec.get_sqla_column_type(None) assert sqla_type is None @mock.patch( "superset.utils.feature_flag_manager.FeatureFlagManager.is_feature_enabled" ) @mock.patch("superset.db_engine_specs.base.BaseEngineSpec.get_table_names") @mock.patch("superset.db_engine_specs.presto.PrestoEngineSpec.get_view_names") def test_get_table_names_no_split_views_from_tables( self, mock_get_view_names, mock_get_table_names, mock_is_feature_enabled ): mock_get_view_names.return_value = ["view1", "view2"] table_names = ["table1", "table2", "view1", "view2"] mock_get_table_names.return_value = table_names mock_is_feature_enabled.return_value = False tables = PrestoEngineSpec.get_table_names(mock.Mock(), mock.Mock(), None) assert tables == table_names @mock.patch( "superset.utils.feature_flag_manager.FeatureFlagManager.is_feature_enabled" ) @mock.patch("superset.db_engine_specs.base.BaseEngineSpec.get_table_names") @mock.patch("superset.db_engine_specs.presto.PrestoEngineSpec.get_view_names") def test_get_table_names_split_views_from_tables( self, mock_get_view_names, mock_get_table_names, mock_is_feature_enabled ): mock_get_view_names.return_value = ["view1", "view2"] table_names = ["table1", "table2", "view1", "view2"] mock_get_table_names.return_value = table_names mock_is_feature_enabled.return_value = True tables = PrestoEngineSpec.get_table_names(mock.Mock(), mock.Mock(), None) assert sorted(tables) == sorted(table_names) @mock.patch( "superset.utils.feature_flag_manager.FeatureFlagManager.is_feature_enabled" ) @mock.patch("superset.db_engine_specs.base.BaseEngineSpec.get_table_names") @mock.patch("superset.db_engine_specs.presto.PrestoEngineSpec.get_view_names") def test_get_table_names_split_views_from_tables_no_tables( self, mock_get_view_names, mock_get_table_names, mock_is_feature_enabled ): mock_get_view_names.return_value = [] table_names = [] mock_get_table_names.return_value = table_names mock_is_feature_enabled.return_value = True tables = PrestoEngineSpec.get_table_names(mock.Mock(), mock.Mock(), None) assert tables == [] def test_get_full_name(self): names = [ ("part1", "part2"), ("part11", "part22"), ] result = PrestoEngineSpec._get_full_name(names) assert result == "part1.part11" def test_get_full_name_empty_tuple(self): names = [ ("part1", "part2"), ("", "part3"), ("part4", "part5"), ("", "part6"), ] result = PrestoEngineSpec._get_full_name(names) assert result == "part1.part4" def test_split_data_type(self): data_type = "value1 value2" result = PrestoEngineSpec._split_data_type(data_type, " ") assert result == ["value1", "value2"] data_type = "value1,value2" result = PrestoEngineSpec._split_data_type(data_type, ",") assert result == ["value1", "value2"] data_type = '"value,1",value2' result = PrestoEngineSpec._split_data_type(data_type, ",") assert result == ['"value,1"', "value2"] def test_show_columns(self): inspector = mock.MagicMock() inspector.engine.dialect.identifier_preparer.quote_identifier = ( lambda x: f'"{x}"' ) mock_execute = mock.MagicMock(return_value=["a", "b"]) inspector.bind.execute = mock_execute table_name = "table_name" result = PrestoEngineSpec._show_columns(inspector, table_name, None) assert result == ["a", "b"] mock_execute.assert_called_once_with(f'SHOW COLUMNS FROM "{table_name}"') def test_show_columns_with_schema(self): inspector = mock.MagicMock() inspector.engine.dialect.identifier_preparer.quote_identifier = ( lambda x: f'"{x}"' ) mock_execute = mock.MagicMock(return_value=["a", "b"]) inspector.bind.execute = mock_execute table_name = "table_name" schema = "schema" result = PrestoEngineSpec._show_columns(inspector, table_name, schema) assert result == ["a", "b"] mock_execute.assert_called_once_with( f'SHOW COLUMNS FROM "{schema}"."{table_name}"' ) def test_is_column_name_quoted(self): column_name = "mock" assert PrestoEngineSpec._is_column_name_quoted(column_name) is False column_name = '"mock' assert PrestoEngineSpec._is_column_name_quoted(column_name) is False column_name = '"moc"k' assert PrestoEngineSpec._is_column_name_quoted(column_name) is False column_name = '"moc"k"' assert PrestoEngineSpec._is_column_name_quoted(column_name) is True @mock.patch("superset.db_engine_specs.base.BaseEngineSpec.select_star") def test_select_star_no_presto_expand_data(self, mock_select_star): database = mock.Mock() table_name = "table_name" engine = mock.Mock() cols = [ {"col1": "val1"}, {"col2": "val2"}, ] PrestoEngineSpec.select_star(database, table_name, engine, cols=cols) mock_select_star.assert_called_once_with( database, table_name, engine, None, 100, False, True, True, cols ) @mock.patch("superset.db_engine_specs.presto.is_feature_enabled") @mock.patch("superset.db_engine_specs.base.BaseEngineSpec.select_star") def test_select_star_presto_expand_data( self, mock_select_star, mock_is_feature_enabled ): mock_is_feature_enabled.return_value = True database = mock.Mock() table_name = "table_name" engine = mock.Mock() cols = [ {"name": "val1"}, {"name": "val2<?!@#$312,/'][p098"}, {"name": ".val2"}, {"name": "val2."}, {"name": "val.2"}, {"name": ".val2."}, ] PrestoEngineSpec.select_star( database, table_name, engine, show_cols=True, cols=cols ) mock_select_star.assert_called_once_with( database, table_name, engine, None, 100, True, True, True, [{"name": "val1"}, {"name": "val2<?!@#$312,/'][p098"},], ) def test_estimate_statement_cost(self): mock_cursor = mock.MagicMock() estimate_json = {"a": "b"} mock_cursor.fetchone.return_value = [ '{"a": "b"}', ] result = PrestoEngineSpec.estimate_statement_cost( "SELECT * FROM brth_names", mock_cursor ) assert result == estimate_json def test_estimate_statement_cost_invalid_syntax(self): mock_cursor = mock.MagicMock() mock_cursor.execute.side_effect = Exception() with self.assertRaises(Exception): PrestoEngineSpec.estimate_statement_cost( "DROP TABLE brth_names", mock_cursor ) def test_get_all_datasource_names(self): df = pd.DataFrame.from_dict( {"table_schema": ["schema1", "schema2"], "table_name": ["name1", "name2"]} ) database = mock.MagicMock() database.get_df.return_value = df result = PrestoEngineSpec.get_all_datasource_names(database, "table") expected_result = [ DatasourceName(schema="schema1", table="name1"), DatasourceName(schema="schema2", table="name2"), ] assert result == expected_result def test_get_create_view(self): mock_execute = mock.MagicMock() mock_fetchall = mock.MagicMock(return_value=[["a", "b,", "c"], ["d", "e"]]) database = mock.MagicMock() database.get_sqla_engine.return_value.raw_connection.return_value.cursor.return_value.execute = ( mock_execute ) database.get_sqla_engine.return_value.raw_connection.return_value.cursor.return_value.fetchall = ( mock_fetchall ) database.get_sqla_engine.return_value.raw_connection.return_value.cursor.return_value.poll.return_value = ( False ) schema = "schema" table = "table" result = PrestoEngineSpec.get_create_view(database, schema=schema, table=table) assert result == "a" mock_execute.assert_called_once_with(f"SHOW CREATE VIEW {schema}.{table}") def test_get_create_view_exception(self): mock_execute = mock.MagicMock(side_effect=Exception()) database = mock.MagicMock() database.get_sqla_engine.return_value.raw_connection.return_value.cursor.return_value.execute = ( mock_execute ) schema = "schema" table = "table" with self.assertRaises(Exception): PrestoEngineSpec.get_create_view(database, schema=schema, table=table) def test_get_create_view_database_error(self): from pyhive.exc import DatabaseError mock_execute = mock.MagicMock(side_effect=DatabaseError()) database = mock.MagicMock() database.get_sqla_engine.return_value.raw_connection.return_value.cursor.return_value.execute = ( mock_execute ) schema = "schema" table = "table" result = PrestoEngineSpec.get_create_view(database, schema=schema, table=table) assert result is None def test_extract_error_message_orig(self): DatabaseError = namedtuple("DatabaseError", ["error_dict"]) db_err = DatabaseError( {"errorName": "name", "errorLocation": "location", "message": "msg"} ) exception = Exception() exception.orig = db_err result = PrestoEngineSpec._extract_error_message(exception) assert result == "name at location: msg" def test_extract_error_message_db_errr(self): from pyhive.exc import DatabaseError exception = DatabaseError({"message": "Err message"}) result = PrestoEngineSpec._extract_error_message(exception) assert result == "Err message" def test_extract_error_message_general_exception(self): exception = Exception("Err message") result = PrestoEngineSpec._extract_error_message(exception) assert result == "Err message" def test_extract_errors(self): msg = "Generic Error" result = PrestoEngineSpec.extract_errors(Exception(msg)) assert result == [ SupersetError( message="Generic Error", error_type=SupersetErrorType.GENERIC_DB_ENGINE_ERROR, level=ErrorLevel.ERROR, extra={ "engine_name": "Presto", "issue_codes": [ { "code": 1002, "message": "Issue 1002 - The database returned an unexpected error.", } ], }, ) ] msg = "line 1:8: Column 'bogus' cannot be resolved" result = PrestoEngineSpec.extract_errors(Exception(msg)) assert result == [ SupersetError( message='We can\'t seem to resolve the column "bogus" at line 1:8.', error_type=SupersetErrorType.COLUMN_DOES_NOT_EXIST_ERROR, level=ErrorLevel.ERROR, extra={ "engine_name": "Presto", "issue_codes": [ { "code": 1003, "message": "Issue 1003 - There is a syntax error in the SQL query. Perhaps there was a misspelling or a typo.", }, { "code": 1004, "message": "Issue 1004 - The column was deleted or renamed in the database.", }, ], }, ) ] msg = "line 1:15: Table 'tpch.tiny.region2' does not exist" result = PrestoEngineSpec.extract_errors(Exception(msg)) assert result == [ SupersetError( message="The table \"'tpch.tiny.region2'\" does not exist. A valid table must be used to run this query.", error_type=SupersetErrorType.TABLE_DOES_NOT_EXIST_ERROR, level=ErrorLevel.ERROR, extra={ "engine_name": "Presto", "issue_codes": [ { "code": 1003, "message": "Issue 1003 - There is a syntax error in the SQL query. Perhaps there was a misspelling or a typo.", }, { "code": 1005, "message": "Issue 1005 - The table was deleted or renamed in the database.", }, ], }, ) ] msg = "line 1:15: Schema 'tin' does not exist" result = PrestoEngineSpec.extract_errors(Exception(msg)) assert result == [ SupersetError( message='The schema "tin" does not exist. A valid schema must be used to run this query.', error_type=SupersetErrorType.SCHEMA_DOES_NOT_EXIST_ERROR, level=ErrorLevel.ERROR, extra={ "engine_name": "Presto", "issue_codes": [ { "code": 1003, "message": "Issue 1003 - There is a syntax error in the SQL query. Perhaps there was a misspelling or a typo.", }, { "code": 1016, "message": "Issue 1005 - The schema was deleted or renamed in the database.", }, ], }, ) ] msg = b"Access Denied: Invalid credentials" result = PrestoEngineSpec.extract_errors(Exception(msg), {"username": "alice"}) assert result == [ SupersetError( message='Either the username "alice" or the password is incorrect.', error_type=SupersetErrorType.CONNECTION_ACCESS_DENIED_ERROR, level=ErrorLevel.ERROR, extra={ "engine_name": "Presto", "issue_codes": [ { "code": 1014, "message": "Issue 1014 - Either the username or the password is wrong.", } ], }, ) ] msg = "Failed to establish a new connection: [Errno 8] nodename nor servname provided, or not known" result = PrestoEngineSpec.extract_errors( Exception(msg), {"hostname": "badhost"} ) assert result == [ SupersetError( message='The hostname "badhost" cannot be resolved.', error_type=SupersetErrorType.CONNECTION_INVALID_HOSTNAME_ERROR, level=ErrorLevel.ERROR, extra={ "engine_name": "Presto", "issue_codes": [ { "code": 1007, "message": "Issue 1007 - The hostname provided can't be resolved.", } ], }, ) ] msg = "Failed to establish a new connection: [Errno 60] Operation timed out" result = PrestoEngineSpec.extract_errors( Exception(msg), {"hostname": "badhost", "port": 12345} ) assert result == [ SupersetError( message='The host "badhost" might be down, and can\'t be reached on port 12345.', error_type=SupersetErrorType.CONNECTION_HOST_DOWN_ERROR, level=ErrorLevel.ERROR, extra={ "engine_name": "Presto", "issue_codes": [ { "code": 1009, "message": "Issue 1009 - The host might be down, and can't be reached on the provided port.", } ], }, ) ] msg = "Failed to establish a new connection: [Errno 61] Connection refused" result = PrestoEngineSpec.extract_errors( Exception(msg), {"hostname": "badhost", "port": 12345} ) assert result == [ SupersetError( message='Port 12345 on hostname "badhost" refused the connection.', error_type=SupersetErrorType.CONNECTION_PORT_CLOSED_ERROR, level=ErrorLevel.ERROR, extra={ "engine_name": "Presto", "issue_codes": [ {"code": 1008, "message": "Issue 1008 - The port is closed."} ], }, ) ] msg = "line 1:15: Catalog 'wrong' does not exist" result = PrestoEngineSpec.extract_errors(Exception(msg)) assert result == [ SupersetError( message='Unable to connect to catalog named "wrong".', error_type=SupersetErrorType.CONNECTION_UNKNOWN_DATABASE_ERROR, level=ErrorLevel.ERROR, extra={ "engine_name": "Presto", "issue_codes": [ { "code": 1015, "message": "Issue 1015 - Either the database is spelled incorrectly or does not exist.", } ], }, ) ] def test_is_readonly(): def is_readonly(sql: str) -> bool: return PrestoEngineSpec.is_readonly_query(ParsedQuery(sql)) assert not is_readonly("SET hivevar:desc='Legislators'") assert not is_readonly("UPDATE t1 SET col1 = NULL") assert not is_readonly("INSERT OVERWRITE TABLE tabB SELECT a.Age FROM TableA") assert is_readonly("SHOW LOCKS test EXTENDED") assert is_readonly("EXPLAIN SELECT 1") assert is_readonly("SELECT 1") assert is_readonly("WITH (SELECT 1) bla SELECT * from bla")
Python3/790.py
rakhi2001/ecom7
854
12753324
<gh_stars>100-1000 __________________________________________________________________________________________________ sample 28 ms submission class Solution: def numTilings(self, N: int) -> int: #dp[N]=dp[N-1]+dp[N-2] + 2*(dp[N-3]+dp[N-4]+...dp[1]+dp[0]) ...eq(1) #dp[N-1] =dp[N-2]+dp[N-3] + 2*(dp[N-4]+dp[N-5]+....dp[0]) ...eq(2) #eq(1)-eq(2)=> # dp[N]=2*dp[N-1]+dp[N-3] #dp[0]=dp[1]=1 if N<=1: return 1 dp=[0]*(N+1) dp[0]=1 dp[1]=1 dp[2]=2 md=int(1e9+7) for i in range(3,N+1): dp[i]=2*dp[i-1]+dp[i-3] dp[i]=dp[i]%md return dp[-1] __________________________________________________________________________________________________ sample 13140 kb submission class Solution: def numTilings(self, N: int) -> int: if N == 1: return 1 elif N == 2: return 2 else: f0 = 1 # full f1 = 2 l1 = 1 # l shape r1 = 1 # r shape for i in range(3, N + 1): f2 = (f1 + f0 + l1 + r1) % 1000000007 l2 = (f0 + r1) r2 = (f0 + l1) f0 = f1 f1 = f2 l1 = l2 r1 = r2 return f2 __________________________________________________________________________________________________
engines/ep/scripts/evictionVisualiser.py
BenHuddleston/kv_engine
104
12753336
<gh_stars>100-1000 #!/usr/bin/env python2.7 # # Copyright 2017-Present Couchbase, Inc. # # Use of this software is governed by the Business Source License included in # the file licenses/BSL-Couchbase.txt. As of the Change Date specified in that # file, in accordance with the Business Source License, use of this software # will be governed by the Apache License, Version 2.0, included in the file # licenses/APL2.txt. # import fileinput import png import re # The script is to be used on conjuction with the ep - engine module test # STHashTableEvictionItemPagerTest.The test is run as follows: # cd to kv_engine build directory # run the test as follows, redirecting standard error to a file.For example # ./ ep - engine_ep_unit_tests -- gtest_filter = STHashTableEvictionTest \ # .#STHashTableEvictionItemPagerTest 2> eviction_data.txt # The eviction_data.txt contains a textual output for which documents remain # resident and which are evicted. # The script is run as follows, using the example input file eviction_data.txt # evictionVisualiser.py < eviction_data.txt # The output from running the script is the generation of a png file # evictionMap.png # four vbucket colours and evicted(black) green = (127, 201, 127); purple = (190, 174, 212); orange = (253, 192, 134); yellow = (255, 255, 153); black = (0, 0, 0); colours = [ green, purple, orange, yellow, black ]; maxNoOfColumns = 500; # contains a row of PNG values row = []; # contains the complete PNG image image = []; # count of the number of rows in the image rowCount = 0; # current count of columns # reset when generating new row columnCount = 0; # regular expression to match document number, vbucket number, and whether # evicted or not e.g."DOC_1 0 RESIDENT" or "DOC_2600 0 EVICT" regex = r"DOC_(\d+) (\d+) (\w+)" for line in fileinput.input(): matches = re.search(regex, line) if matches: vbucket = matches.group(2); # RESIDENT or EVICT state = matches.group(3); if (columnCount == maxNoOfColumns) : columnCount = 0; rowCount += 1; image += [row] * 10; row = []; num = int(vbucket); if (state == 'EVICT'): colour = black; else: colour = colours[num]; row += colour * 10; columnCount += 1; f = open('evictionMap.png', 'wb'); w = png.Writer(maxNoOfColumns * 10, rowCount * 10); w.write(f, image); f.close();
tools/vcrpy/tests/unit/test_vcr_import.py
rsdoherty/azure-sdk-for-python
2,728
12753376
<gh_stars>1000+ import sys def test_vcr_import_deprecation(recwarn): if "vcr" in sys.modules: # Remove imported module entry if already loaded in another test del sys.modules["vcr"] import vcr # noqa: F401 if sys.version_info[0] == 2: assert len(recwarn) == 1 assert issubclass(recwarn[0].category, DeprecationWarning) else: assert len(recwarn) == 0
homeassistant/components/temper/__init__.py
domwillcode/home-assistant
30,023
12753387
<filename>homeassistant/components/temper/__init__.py<gh_stars>1000+ """The temper component."""
theano_lstm/__init__.py
JonathanRaiman/theano_lstm
348
12753393
<filename>theano_lstm/__init__.py """ Small Theano LSTM recurrent network module. @author: <NAME> @date: December 10th 2014 Implements most of the great things that came out in 2014 concerning recurrent neural networks, and some good optimizers for these types of networks. Note (from 5 January 2015): Dropout api is a bit sophisticated due to the way random number generators are dealt with in Theano's scan. """ import theano, theano.tensor as T import numpy as np from collections import OrderedDict srng = theano.tensor.shared_randomstreams.RandomStreams(1234) np_rng = np.random.RandomState(1234) from .masked_loss import masked_loss, masked_loss_dx from .shared_memory import wrap_params, borrow_memory, borrow_all_memories class GradClip(theano.compile.ViewOp): """ Here we clip the gradients as <NAME> does in his recurrent neural networks. In particular this prevents explosion of gradients during backpropagation. The original poster of this code was <NAME>, [here](https://groups.google.com/forum/#!topic/theano-dev/GaJwGw6emK0). """ def __init__(self, clip_lower_bound, clip_upper_bound): self.clip_lower_bound = clip_lower_bound self.clip_upper_bound = clip_upper_bound assert(self.clip_upper_bound >= self.clip_lower_bound) def grad(self, args, g_outs): return [T.clip(g_out, self.clip_lower_bound, self.clip_upper_bound) for g_out in g_outs] def clip_gradient(x, bound): grad_clip = GradClip(-bound, bound) try: T.opt.register_canonicalize(theano.gof.OpRemove(grad_clip), name='grad_clip_%.1f' % (bound)) except ValueError: pass return grad_clip(x) def create_shared(out_size, in_size=None, name=None): """ Creates a shared matrix or vector using the given in_size and out_size. Inputs ------ out_size int : outer dimension of the vector or matrix in_size int (optional) : for a matrix, the inner dimension. Outputs ------- theano shared : the shared matrix, with random numbers in it """ if in_size is None: return theano.shared(random_initialization((out_size, )), name=name) else: return theano.shared(random_initialization((out_size, in_size)), name=name) def random_initialization(size): return (np_rng.standard_normal(size) * 1. / size[0]).astype(theano.config.floatX) def Dropout(shape, prob): """ Return a dropout mask on x. The probability of a value in x going to zero is prob. Inputs ------ x theano variable : the variable to add noise to prob float, variable : probability of dropping an element. size tuple(int, int) : size of the dropout mask. Outputs ------- y theano variable : x with the noise multiplied. """ mask = srng.binomial(n=1, p=1-prob, size=shape) return T.cast(mask, theano.config.floatX) def MultiDropout(shapes, dropout = 0.): """ Return all the masks needed for dropout outside of a scan loop. """ return [Dropout(shape, dropout) for shape in shapes] class Layer(object): """ Base object for neural network layers. A layer has an input set of neurons, and a hidden activation. The activation, f, is a function applied to the affine transformation of x by the connection matrix W, and the bias vector b. > y = f ( W * x + b ) """ def __init__(self, input_size, hidden_size, activation, clip_gradients=False): self.input_size = input_size self.hidden_size = hidden_size self.activation = activation self.clip_gradients = clip_gradients self.is_recursive = False self.create_variables() def create_variables(self): """ Create the connection matrix and the bias vector """ self.linear_matrix = create_shared(self.hidden_size, self.input_size, name="Layer.linear_matrix") self.bias_matrix = create_shared(self.hidden_size, name="Layer.bias_matrix") def activate(self, x): """ The hidden activation of the network """ if self.clip_gradients is not False: x = clip_gradient(x, self.clip_gradients) if x.ndim > 1: return self.activation( T.dot(self.linear_matrix, x.T) + self.bias_matrix[:,None] ).T else: return self.activation( T.dot(self.linear_matrix, x) + self.bias_matrix ) @property def params(self): return [self.linear_matrix, self.bias_matrix] @params.setter def params(self, param_list): self.linear_matrix.set_value(param_list[0].get_value()) self.bias_matrix.set_value(param_list[1].get_value()) class Embedding(Layer): """ A Matrix useful for storing word vectors or other distributed representations. use #activate(T.iscalar()) or #activate(T.ivector()) to embed a symbol. """ def __init__(self, vocabulary_size, hidden_size): """ Vocabulary size is the number of different symbols to store, and hidden_size is the size of their embedding. """ self.vocabulary_size = vocabulary_size self.hidden_size = hidden_size self.create_variables() self.is_recursive = False def create_variables(self): self.embedding_matrix = create_shared(self.vocabulary_size, self.hidden_size, name='Embedding.embedding_matrix') def activate(self, x): """ Inputs ------ x T.ivector() or T.iscalar() : indices to embed Output ------ embedding : self.embedding_matrix[x] """ return self.embedding_matrix[x] @property def params(self): return [self.embedding_matrix] @params.setter def params(self, param_list): self.embedding_matrix.set_value(param_list[0].get_value()) class RNN(Layer): """ Special recurrent layer than takes as input a hidden activation, h, from the past and an observation x. > y = f ( W * [x, h] + b ) Note: x and h are concatenated in the activation. """ def __init__(self, *args, **kwargs): super(RNN, self).__init__(*args, **kwargs) self.is_recursive = True def create_variables(self): """ Create the connection matrix and the bias vector, and the base hidden activation. """ self.linear_matrix = create_shared(self.hidden_size, self.input_size+ self.hidden_size, name="RNN.linear_matrix") self.bias_matrix = create_shared(self.hidden_size, name="RNN.bias_matrix") self.initial_hidden_state = create_shared(self.hidden_size, name="RNN.initial_hidden_state") def activate(self, x, h): """ The hidden activation of the network """ if self.clip_gradients is not False: x = clip_gradient(x, self.clip_gradients) h = clip_gradient(h, self.clip_gradients) if x.ndim > 1: return self.activation( T.dot( self.linear_matrix, T.concatenate([x, h], axis=1).T ) + self.bias_matrix[:,None] ).T else: return self.activation( T.dot( self.linear_matrix, T.concatenate([x, h]) ) + self.bias_matrix ) @property def params(self): return [self.linear_matrix, self.bias_matrix] @params.setter def params(self, param_list): self.linear_matrix.set_value(param_list[0].get_value()) self.bias_matrix.set_value(param_list[1].get_value()) class GRU(RNN): def create_variables(self): self.reset_layer = theano_lstm.RNN(self.input_size, self.hidden_size, activation = T.nnet.sigmoid) self.memory_interpolation_layer = theano_lstm.RNN(self.input_size, self.hidden_size, activation = T.nnet.sigmoid) self.memory_to_memory_layer = theano_lstm.RNN(self.input_size, self.hidden_size, activation = T.tanh) self.internal_layers = [ self.reset_layer, self.memory_interpolation_layer, self.memory_to_memory_layer ] @property def params(self): return [param for layer in self.internal_layers for param in layer.params] @params.setter def params(self, param_list): assert(len(param_list) == 6) self.reset_layer.params = param_list[0:2] self.memory_interpolation_layer.params = param_list[2:4] self.memory_to_memory_layer.params = param_list[4:6] def activate(self, x, h): reset_gate = self.reset_layer.activate( x, h ) # the new state dampened by resetting reset_h = reset_gate * h; # the new hidden state: candidate_h = self.memory_to_memory_layer.activate( x, reset_h ) # how much to update the new hidden state: update_gate = self.memory_interpolation_layer.activate( x, h ) # the new state interploated between candidate and old: new_h = ( h * (1.0 - update_gate) + candidate_h * update_gate ) return new_h class LSTM(RNN): """ The structure of the LSTM allows it to learn on problems with long term dependencies relatively easily. The "long term" memory is stored in a vector of memory cells c. Although many LSTM architectures differ in their connectivity structure and activation functions, all LSTM architectures have memory cells that are suitable for storing information for long periods of time. Here we implement the LSTM from Graves et al. (2013). """ def create_variables(self): """ Create the different LSTM gates and their variables, along with the initial hidden state for the memory cells and the initial hidden activation. """ # input gate for cells self.in_gate = Layer(self.input_size + self.hidden_size, self.hidden_size, T.nnet.sigmoid, self.clip_gradients) # forget gate for cells self.forget_gate = Layer(self.input_size + self.hidden_size, self.hidden_size, T.nnet.sigmoid, self.clip_gradients) # input modulation for cells self.in_gate2 = Layer(self.input_size + self.hidden_size, self.hidden_size, self.activation, self.clip_gradients) # output modulation self.out_gate = Layer(self.input_size + self.hidden_size, self.hidden_size, T.nnet.sigmoid, self.clip_gradients) # keep these layers organized self.internal_layers = [self.in_gate, self.forget_gate, self.in_gate2, self.out_gate] # store the memory cells in first n spots, and store the current # output in the next n spots: self.initial_hidden_state = create_shared(self.hidden_size * 2, name="LSTM.initial_hidden_state") @property def params(self): """ Parameters given by the 4 gates and the initial hidden activation of this LSTM cell layer. """ return [param for layer in self.internal_layers for param in layer.params] @params.setter def params(self, param_list): start = 0 for layer in self.internal_layers: end = start + len(layer.params) layer.params = param_list[start:end] start = end def postprocess_activation(self, x, *args): if x.ndim > 1: return x[:, self.hidden_size:] else: return x[self.hidden_size:] def activate(self, x, h): """ The hidden activation, h, of the network, along with the new values for the memory cells, c, Both are concatenated as follows: > y = f( x, past ) Or more visibly, with past = [prev_c, prev_h] > [c, h] = f( x, [prev_c, prev_h] ) """ if h.ndim > 1: #previous memory cell values prev_c = h[:, :self.hidden_size] #previous activations of the hidden layer prev_h = h[:, self.hidden_size:] else: #previous memory cell values prev_c = h[:self.hidden_size] #previous activations of the hidden layer prev_h = h[self.hidden_size:] # input and previous hidden constitute the actual # input to the LSTM: if h.ndim > 1: obs = T.concatenate([x, prev_h], axis=1) else: obs = T.concatenate([x, prev_h]) # TODO could we combine these 4 linear transformations for efficiency? (e.g., http://arxiv.org/pdf/1410.4615.pdf, page 5) # how much to add to the memory cells in_gate = self.in_gate.activate(obs) # how much to forget the current contents of the memory forget_gate = self.forget_gate.activate(obs) # modulate the input for the memory cells in_gate2 = self.in_gate2.activate(obs) # new memory cells next_c = forget_gate * prev_c + in_gate2 * in_gate # modulate the memory cells to create the new output out_gate = self.out_gate.activate(obs) # new hidden output next_h = out_gate * T.tanh(next_c) if h.ndim > 1: return T.concatenate([next_c, next_h], axis=1) else: return T.concatenate([next_c, next_h]) class GatedInput(RNN): def create_variables(self): # input gate for cells self.in_gate = Layer(self.input_size + self.hidden_size, 1, T.nnet.sigmoid, self.clip_gradients) self.internal_layers = [self.in_gate] @property def params(self): """ Parameters given by the 4 gates and the initial hidden activation of this LSTM cell layer. """ return [param for layer in self.internal_layers for param in layer.params] @params.setter def params(self, param_list): start = 0 for layer in self.internal_layers: end = start + len(layer.params) layer.params = param_list[start:end] start = end def activate(self, x, h): # input and previous hidden constitute the actual # input to the LSTM: if h.ndim > 1: obs = T.concatenate([x, h], axis=1) else: obs = T.concatenate([x, h]) gate = self.in_gate.activate(obs) if h.ndim > 1: gate = gate[:,0][:,None] else: gate = gate[0] return gate def postprocess_activation(self, gate, x, h): return gate * x def apply_dropout(x, mask): if mask is not None: return mask * x else: return x class StackedCells(object): """ Sequentially connect several recurrent layers. celltypes can be RNN or LSTM. """ def __init__(self, input_size, celltype=RNN, layers=None, activation=lambda x:x, clip_gradients=False): if layers is None: layers = [] self.input_size = input_size self.clip_gradients = clip_gradients self.create_layers(layers, activation, celltype) def create_layers(self, layer_sizes, activation_type, celltype): self.layers = [] prev_size = self.input_size for k, layer_size in enumerate(layer_sizes): layer = celltype(prev_size, layer_size, activation_type, clip_gradients=self.clip_gradients) self.layers.append(layer) prev_size = layer_size @property def params(self): return [param for layer in self.layers for param in layer.params] @params.setter def params(self, param_list): start = 0 for layer in self.layers: end = start + len(layer.params) layer.params = param_list[start:end] start = end def forward(self, x, prev_hiddens=None, dropout=None): """ Return new hidden activations for all stacked RNNs """ if dropout is None: dropout = [] if prev_hiddens is None: prev_hiddens = [(T.repeat(T.shape_padleft(layer.initial_hidden_state), x.shape[0], axis=0) if x.ndim > 1 else layer.initial_hidden_state) if hasattr(layer, 'initial_hidden_state') else None for layer in self.layers] out = [] layer_input = x for k, layer in enumerate(self.layers): level_out = layer_input if len(dropout) > 0: level_out = apply_dropout(layer_input, dropout[k]) if layer.is_recursive: level_out = layer.activate(level_out, prev_hiddens[k]) else: level_out = layer.activate(level_out) out.append(level_out) # deliberate choice to change the upward structure here # in an RNN, there is only one kind of hidden values if hasattr(layer, 'postprocess_activation'): # in this case the hidden activation has memory cells # that are not shared upwards # along with hidden activations that can be sent # updwards if layer.is_recursive: level_out = layer.postprocess_activation(level_out, layer_input, prev_hiddens[k]) else: level_out = layer.postprocess_activation(level_out, layer_input) layer_input = level_out return out def create_optimization_updates(cost, params, updates=None, max_norm=5.0, lr=0.01, eps=1e-6, rho=0.95, method = "adadelta", gradients = None): """ Get the updates for a gradient descent optimizer using SGD, AdaDelta, or AdaGrad. Returns the shared variables for the gradient caches, and the updates dictionary for compilation by a theano function. Inputs ------ cost theano variable : what to minimize params list : list of theano variables with respect to which the gradient is taken. max_norm float : cap on excess gradients lr float : base learning rate for adagrad and SGD eps float : numerical stability value to not divide by zero sometimes rho float : adadelta hyperparameter. method str : 'adagrad', 'adadelta', or 'sgd'. Outputs: -------- updates OrderedDict : the updates to pass to a theano function gsums list : gradient caches for Adagrad and Adadelta xsums list : gradient caches for AdaDelta only lr theano shared : learning rate max_norm theano_shared : normalizing clipping value for excessive gradients (exploding). """ lr = theano.shared(np.float64(lr).astype(theano.config.floatX)) eps = np.float64(eps).astype(theano.config.floatX) rho = theano.shared(np.float64(rho).astype(theano.config.floatX)) if max_norm is not None and max_norm is not False: max_norm = theano.shared(np.float64(max_norm).astype(theano.config.floatX)) gsums = [theano.shared(np.zeros_like(param.get_value(borrow=True))) if (method == 'adadelta' or method == 'adagrad') else None for param in params] xsums = [theano.shared(np.zeros_like(param.get_value(borrow=True))) if method == 'adadelta' else None for param in params] gparams = T.grad(cost, params) if gradients is None else gradients if updates is None: updates = OrderedDict() for gparam, param, gsum, xsum in zip(gparams, params, gsums, xsums): # clip gradients if they get too big if max_norm is not None and max_norm is not False: grad_norm = gparam.norm(L=2) gparam = (T.minimum(max_norm, grad_norm)/ (grad_norm + eps)) * gparam if method == 'adadelta': updates[gsum] = T.cast(rho * gsum + (1. - rho) * (gparam **2), theano.config.floatX) dparam = -T.sqrt((xsum + eps) / (updates[gsum] + eps)) * gparam updates[xsum] = T.cast(rho * xsum + (1. - rho) * (dparam **2), theano.config.floatX) updates[param] = T.cast(param + dparam, theano.config.floatX) elif method == 'adagrad': updates[gsum] = T.cast(gsum + (gparam ** 2), theano.config.floatX) updates[param] = T.cast(param - lr * (gparam / (T.sqrt(updates[gsum] + eps))), theano.config.floatX) else: updates[param] = param - gparam * lr if method == 'adadelta': lr = rho return updates, gsums, xsums, lr, max_norm __all__ = [ "create_optimization_updates", "masked_loss", "masked_loss_dx", "clip_gradient", "create_shared", "Dropout", "apply_dropout", "StackedCells", "Layer", "LSTM", "RNN", "GatedInput", "Embedding", "MultiDropout", "wrap_params", "borrow_memory", "borrow_all_memories" ]
lib/django-1.5/django/contrib/gis/geos/__init__.py
MiCHiLU/google_appengine_sdk
790
12753400
""" The GeoDjango GEOS module. Please consult the GeoDjango documentation for more details: http://geodjango.org/docs/geos.html """ from django.contrib.gis.geos.geometry import GEOSGeometry, wkt_regex, hex_regex from django.contrib.gis.geos.point import Point from django.contrib.gis.geos.linestring import LineString, LinearRing from django.contrib.gis.geos.polygon import Polygon from django.contrib.gis.geos.collections import GeometryCollection, MultiPoint, MultiLineString, MultiPolygon from django.contrib.gis.geos.error import GEOSException, GEOSIndexError from django.contrib.gis.geos.io import WKTReader, WKTWriter, WKBReader, WKBWriter from django.contrib.gis.geos.factory import fromfile, fromstr from django.contrib.gis.geos.libgeos import geos_version, geos_version_info, GEOS_PREPARE
pytorch_toolkit/face_recognition/model/blocks/shufflenet_v2_blocks.py
AnastasiaaSenina/openvino_training_extensions
158
12753427
<gh_stars>100-1000 """ Copyright (c) 2018 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import torch import torch.nn as nn from model.blocks.shared_blocks import make_activation def conv_bn(inp, oup, stride, activation=nn.ReLU): conv = nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), make_activation(activation) ) nn.init.kaiming_normal_(conv[0].weight, mode='fan_out') return conv def conv_1x1_bn(inp, oup, activation=nn.ReLU): conv = nn.Sequential( nn.Conv2d(inp, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), make_activation(activation) ) nn.init.kaiming_normal_(conv[0].weight, mode='fan_out') return conv def channel_shuffle(x, groups): batchsize, num_channels, height, width = x.data.size() channels_per_group = num_channels // groups # reshape x = x.view(batchsize, groups, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batchsize, -1, height, width) return x class ShuffleInvertedResidual(nn.Module): def __init__(self, inp, oup, stride, benchmodel, activation=nn.ReLU): super(ShuffleInvertedResidual, self).__init__() self.benchmodel = benchmodel self.stride = stride assert stride in [1, 2] oup_inc = oup//2 if self.benchmodel == 1: # assert inp == oup_inc self.branch2 = nn.Sequential( # pw nn.Conv2d(oup_inc, oup_inc, 1, 1, 0, bias=False), nn.BatchNorm2d(oup_inc), make_activation(activation), # dw nn.Conv2d(oup_inc, oup_inc, 3, stride, 1, groups=oup_inc, bias=False), nn.BatchNorm2d(oup_inc), # pw-linear nn.Conv2d(oup_inc, oup_inc, 1, 1, 0, bias=False), nn.BatchNorm2d(oup_inc), make_activation(activation), ) else: self.branch1 = nn.Sequential( # dw nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False), nn.BatchNorm2d(inp), # pw-linear nn.Conv2d(inp, oup_inc, 1, 1, 0, bias=False), nn.BatchNorm2d(oup_inc), make_activation(activation), ) self.branch2 = nn.Sequential( # pw nn.Conv2d(inp, oup_inc, 1, 1, 0, bias=False), nn.BatchNorm2d(oup_inc), make_activation(activation), # dw nn.Conv2d(oup_inc, oup_inc, 3, stride, 1, groups=oup_inc, bias=False), nn.BatchNorm2d(oup_inc), # pw-linear nn.Conv2d(oup_inc, oup_inc, 1, 1, 0, bias=False), nn.BatchNorm2d(oup_inc), make_activation(activation), ) self.init_weights() @staticmethod def _concat(x, out): # concatenate along channel axis return torch.cat((x, out), 1) def init_weights(self): for m in self.children(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): if self.benchmodel == 1: x1 = x[:, :(x.shape[1]//2), :, :] x2 = x[:, (x.shape[1]//2):, :, :] out = self._concat(x1, self.branch2(x2)) elif self.benchmodel == 2: out = self._concat(self.branch1(x), self.branch2(x)) return channel_shuffle(out, 2)
utils/export_utils.py
Mithilesh1609/assembled-cnn
363
12753430
# coding=utf8 # This code is adapted from the https://github.com/tensorflow/models/tree/master/official/r1/resnet. # ========================================================================================== # NAVER’s modifications are Copyright 2020 NAVER corp. All rights reserved. # ========================================================================================== # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import os import tensorflow as tf from official.utils.export import export from utils import data_util from functions import data_config import numpy as np from tqdm import tqdm def export_test(bin_export_path, flags_obj, ir_eval): ds = tf.data.Dataset.list_files(flags_obj.data_dir + '/' + flags_obj.val_regex) ds = ds.interleave(tf.data.TFRecordDataset, cycle_length=10) def parse_tfr(example_proto): feature_def = {'image/class/label': tf.FixedLenFeature([], dtype=tf.int64, default_value=-1), 'image/encoded': tf.FixedLenFeature([], dtype=tf.string, default_value='')} features = tf.io.parse_single_example(serialized=example_proto, features=feature_def) return features['image/encoded'], features['image/class/label'] ds = ds.map(parse_tfr) ds = ds.batch(flags_obj.val_batch_size) iterator = ds.make_one_shot_iterator() images, labels = iterator.get_next() dconf = data_config.get_config(flags_obj.dataset_name) num_val_images = dconf.num_images['validation'] if flags_obj.zeroshot_eval or ir_eval: feature_dim = flags_obj.embedding_size if flags_obj.embedding_size > 0 else flags_obj.num_features np_features = np.zeros((num_val_images, feature_dim), dtype=np.float32) np_labels = np.zeros(num_val_images, dtype=np.int64) np_i = 0 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) tf.saved_model.load(sess=sess, export_dir=bin_export_path, tags={"serve"}) for _ in tqdm(range(int(num_val_images / flags_obj.val_batch_size) + 1)): try: np_image, np_label = sess.run([images, labels]) np_predict = sess.run('embedding_tensor:0', feed_dict={'input_tensor:0': np_image}) np_features[np_i:np_i + np_predict.shape[0], :] = np_predict np_labels[np_i:np_i + np_label.shape[0]] = np_label np_i += np_predict.shape[0] except tf.errors.OutOfRangeError: break assert np_i == num_val_images from sklearn.preprocessing import normalize x = normalize(np_features) np_sim = x.dot(x.T) np.fill_diagonal(np_sim, -10) # removing similarity for query. num_correct = 0 for i in range(num_val_images): cur_label = np_labels[i] rank1_label = np_labels[np.argmax(np_sim[i, :])] if rank1_label == cur_label: num_correct += 1 recall_at_1 = num_correct / num_val_images metric = recall_at_1 else: np_i = 0 correct_cnt = 0 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) tf.saved_model.load(sess=sess, export_dir=bin_export_path, tags={"serve"}) for _ in tqdm(range(int(num_val_images / flags_obj.val_batch_size) + 1)): try: np_image, np_label = sess.run([images, labels]) np_predict = sess.run('ArgMax:0', feed_dict={'input_tensor:0': np_image}) np_i += np_predict.shape[0] correct_cnt += np.sum(np_predict == np_label) except tf.errors.OutOfRangeError: break assert np_i == num_val_images metric = correct_cnt / np_i return metric def image_bytes_serving_input_fn(image_shape, decoder_name, dtype=tf.float32, pptype='imagenet'): """Serving input fn for raw jpeg images.""" def _preprocess_image(image_bytes): """Preprocess a single raw image.""" # Bounding box around the whole image. bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=dtype, shape=[1, 1, 4]) _, _, num_channels = image_shape tf.logging.info("!!!!!!!!!! Preprocessing type for exporting pb: {} and decoder type: {}".format(pptype, decoder_name)) image = data_util.preprocess_image( image_buffer=image_bytes, is_training=False, bbox=bbox, num_channels=num_channels, dtype=dtype, use_random_crop=False, decoder_name=decoder_name, dct_method='INTEGER_ACCURATE', preprocessing_type=pptype) return image image_bytes_list = tf.placeholder( shape=[None], dtype=tf.string, name='input_tensor') images = tf.map_fn( _preprocess_image, image_bytes_list, back_prop=False, dtype=dtype) return tf.estimator.export.TensorServingInputReceiver( images, {'image_bytes': image_bytes_list}) def export_pb(flags_core, flags_obj, shape, classifier, ir_eval=False): export_dtype = flags_core.get_tf_dtype(flags_obj) if not flags_obj.data_format: raise ValueError('The `data_format` must be specified: channels_first or channels_last ') bin_export_path = os.path.join(flags_obj.export_dir, flags_obj.data_format, 'binary_input') bin_input_receiver_fn = functools.partial(image_bytes_serving_input_fn, shape, flags_obj.export_decoder_type, dtype=export_dtype, pptype=flags_obj.preprocessing_type) pp_export_path = os.path.join(flags_obj.export_dir, flags_obj.data_format, 'preprocessed_input') pp_input_receiver_fn = export.build_tensor_serving_input_receiver_fn( shape, batch_size=None, dtype=export_dtype) result_bin_export_path = classifier.export_savedmodel(bin_export_path, bin_input_receiver_fn) classifier.export_savedmodel(pp_export_path, pp_input_receiver_fn) if flags_obj.export_decoder_type == 'jpeg': metric = export_test(result_bin_export_path, flags_obj, ir_eval) msg = 'IMPOTANT! Evaluation metric of exported saved_model.pb is {}'.format(metric) tf.logging.info(msg) with tf.gfile.Open(result_bin_export_path.decode("utf-8") + '/model_performance.txt', 'w') as fp: fp.write(msg)
apps/xcode.py
zachbarrow/talon_community
125
12753434
# Talon voice commands for Xcode # <NAME> <EMAIL> from talon.voice import Key, Context from ..misc.mouse import control_shift_click ctx = Context("xcode", bundle="com.apple.dt.Xcode") ctx.keymap( { "build it": Key("cmd-b"), "stop it": Key("cmd-."), "run it": Key("cmd-r"), "go back": Key("cmd-ctrl-left"), "go (fore | forward)": Key("cmd-ctrl-right"), "find in (proj | project)": Key("cmd-shift-f"), "(sell find in (proj | project) | find selection in project)": Key( "cmd-e cmd-shift-f enter" ), "(sell find ace in (proj | project) | replace selection in project)": Key( "cmd-e cmd-shift-alt-f" ), "next in (proj | project)": Key("cmd-ctrl-g"), "prev in (proj | project)": Key("shift-cmd-ctrl-g"), "split window": Key("cmd-alt-enter"), "show editor": Key("cmd-enter"), "(show | hide) debug": Key("cmd-shift-y"), "(show | find) call hierarchy": Key("cmd-ctrl-shift-h"), "show (recent | recent files)": [Key("ctrl-1"), "recent files\n"], "show related": Key("ctrl-1"), "show history": Key("ctrl-2"), "show files": Key("ctrl-5"), "show (methods | items)": Key("ctrl-6"), "show navigator": Key("cmd-0"), "hide (navigator | project | warnings | breakpoints | reports | build)": Key( "cmd-0" ), "show project": Key("cmd-1"), "show warnings": Key("cmd-5"), "show breakpoints": Key("cmd-8"), "show (reports | build)": Key("cmd-9"), "show diffs": Key("cmd-alt-shift-enter"), "(next counterpart | show header | switcher)": Key("cmd-ctrl-down"), "prev counterpart": Key("cmd-ctrl-up"), "toggle comment": Key("cmd-/"), "toggle breakpoint": Key("cmd-\\"), "toggle all breakpoints": Key("cmd-y"), "move line up": Key("cmd-alt-["), "move line down": Key("cmd-alt-]"), "go (deafen | definition)": Key("cmd-ctrl-j"), "edit scheme": Key("cmd-shift-,"), "quick open": Key("cmd-shift-o"), "comm skoosh": "// ", "(comm | comment) line": [ "//------------------------------------------------------------------------------", Key("enter"), ], "step in": Key("f7"), "step over": Key("f6"), "step out": Key("f8"), "step (continue | go)": Key("ctrl-cmd-y"), "show blame for line": Key("cmd-alt-ctrl-b"), "(reveal file | show file in finder)": Key("cmd-alt-ctrl-shift-f"), "(snipline | delete line)": Key("cmd-alt-ctrl-shift-backspace"), "add cursor down": Key("ctrl-shift-down"), "add cursor up": Key("ctrl-shift-up"), "add cursor": control_shift_click, "dub add cursor": lambda m: control_shift_click(m, 0, 2), "((select | sell) (partial | sub) [word] left)": Key("shift-ctrl-left"), "((select | sell) (partial | sub) [word] right)": Key("shift-ctrl-right"), # the following require custom key bindings in xcode preferences "((partial | sub) [word] left | wonkrim)": Key("alt-ctrl-left"), "((partial | sub) [word] right | wonkrish)": Key("alt-ctrl-right"), } )
tools/deep_memory_profiler/subcommands/cat.py
iplo/Chain
231
12753445
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import json import logging import sys from lib.bucket import BUCKET_ID, COMMITTED, ALLOC_COUNT, FREE_COUNT from lib.ordered_dict import OrderedDict from lib.subcommand import SubCommand from lib.sorter import MallocUnit, MMapUnit, SorterSet, UnhookedUnit, UnitSet LOGGER = logging.getLogger('dmprof') class CatCommand(SubCommand): def __init__(self): super(CatCommand, self).__init__('Usage: %prog cat <first-dump>') self._parser.add_option('--alternative-dirs', dest='alternative_dirs', metavar='/path/on/target@/path/on/host[:...]', help='Read files in /path/on/host/ instead of ' 'files in /path/on/target/.') self._parser.add_option('--indent', dest='indent', action='store_true', help='Indent the output.') def do(self, sys_argv): options, args = self._parse_args(sys_argv, 1) dump_path = args[1] # TODO(dmikurube): Support shared memory. alternative_dirs_dict = {} if options.alternative_dirs: for alternative_dir_pair in options.alternative_dirs.split(':'): target_path, host_path = alternative_dir_pair.split('@', 1) alternative_dirs_dict[target_path] = host_path (bucket_set, dumps) = SubCommand.load_basic_files( dump_path, True, alternative_dirs=alternative_dirs_dict) # Load all sorters. sorters = SorterSet() json_root = OrderedDict() json_root['version'] = 1 json_root['run_id'] = None json_root['roots'] = [] for sorter in sorters: if sorter.root: json_root['roots'].append([sorter.world, sorter.name]) json_root['default_template'] = 'l2' json_root['templates'] = sorters.templates.as_dict() orders = OrderedDict() orders['worlds'] = OrderedDict() for world in ['vm', 'malloc']: orders['worlds'][world] = OrderedDict() orders['worlds'][world]['breakdown'] = OrderedDict() for sorter in sorters.iter_world(world): order = [] for rule in sorter.iter_rule(): if rule.name not in order: order.append(rule.name) orders['worlds'][world]['breakdown'][sorter.name] = order json_root['orders'] = orders json_root['snapshots'] = [] for dump in dumps: if json_root['run_id'] and json_root['run_id'] != dump.run_id: LOGGER.error('Inconsistent heap profile dumps.') json_root['run_id'] = '' else: json_root['run_id'] = dump.run_id LOGGER.info('Sorting a dump %s...' % dump.path) json_root['snapshots'].append( self._fill_snapshot(dump, bucket_set, sorters)) if options.indent: json.dump(json_root, sys.stdout, indent=2) else: json.dump(json_root, sys.stdout) print '' @staticmethod def _fill_snapshot(dump, bucket_set, sorters): root = OrderedDict() root['time'] = dump.time root['worlds'] = OrderedDict() root['worlds']['vm'] = CatCommand._fill_world( dump, bucket_set, sorters, 'vm') root['worlds']['malloc'] = CatCommand._fill_world( dump, bucket_set, sorters, 'malloc') return root @staticmethod def _fill_world(dump, bucket_set, sorters, world): root = OrderedDict() root['name'] = world if world == 'vm': root['unit_fields'] = ['size', 'reserved'] elif world == 'malloc': root['unit_fields'] = ['size', 'alloc_count', 'free_count'] # Make { vm | malloc } units with their sizes. root['units'] = OrderedDict() unit_set = UnitSet(world) if world == 'vm': for unit in CatCommand._iterate_vm_unit(dump, None, bucket_set): unit_set.append(unit) for unit in unit_set: root['units'][unit.unit_id] = [unit.committed, unit.reserved] elif world == 'malloc': for unit in CatCommand._iterate_malloc_unit(dump, bucket_set): unit_set.append(unit) for unit in unit_set: root['units'][unit.unit_id] = [ unit.size, unit.alloc_count, unit.free_count] # Iterate for { vm | malloc } sorters. root['breakdown'] = OrderedDict() for sorter in sorters.iter_world(world): LOGGER.info(' Sorting with %s:%s.' % (sorter.world, sorter.name)) breakdown = OrderedDict() for rule in sorter.iter_rule(): category = OrderedDict() category['name'] = rule.name subs = [] for sub_world, sub_breakdown in rule.iter_subs(): subs.append([sub_world, sub_breakdown]) if subs: category['subs'] = subs if rule.hidden: category['hidden'] = True category['units'] = [] breakdown[rule.name] = category for unit in unit_set: found = sorter.find(unit) if found: # Note that a bucket which doesn't match any rule is just dropped. breakdown[found.name]['units'].append(unit.unit_id) root['breakdown'][sorter.name] = breakdown return root @staticmethod def _iterate_vm_unit(dump, pfn_dict, bucket_set): unit_id = 0 for _, region in dump.iter_map: unit_id += 1 if region[0] == 'unhooked': if pfn_dict and dump.pageframe_length: for pageframe in region[1]['pageframe']: yield UnhookedUnit(unit_id, pageframe.size, pageframe.size, region, pageframe, pfn_dict) else: yield UnhookedUnit(unit_id, int(region[1]['committed']), int(region[1]['reserved']), region) elif region[0] == 'hooked': if pfn_dict and dump.pageframe_length: for pageframe in region[1]['pageframe']: yield MMapUnit(unit_id, pageframe.size, pageframe.size, region, bucket_set, pageframe, pfn_dict) else: yield MMapUnit(unit_id, int(region[1]['committed']), int(region[1]['reserved']), region, bucket_set) else: LOGGER.error('Unrecognized mapping status: %s' % region[0]) @staticmethod def _iterate_malloc_unit(dump, bucket_set): for line in dump.iter_stacktrace: words = line.split() bucket = bucket_set.get(int(words[BUCKET_ID])) if bucket and bucket.allocator_type == 'malloc': yield MallocUnit(int(words[BUCKET_ID]), int(words[COMMITTED]), int(words[ALLOC_COUNT]), int(words[FREE_COUNT]), bucket) elif not bucket: # 'Not-found' buckets are all assumed as malloc buckets. yield MallocUnit(int(words[BUCKET_ID]), int(words[COMMITTED]), int(words[ALLOC_COUNT]), int(words[FREE_COUNT]), None)
scripts/mi_tests/test_mutual_information.py
vishalbelsare/crosscat
207
12753448
<reponame>vishalbelsare/crosscat<gh_stars>100-1000 # # Copyright (c) 2010-2016, MIT Probabilistic Computing Project # # Lead Developers: <NAME> and <NAME> # Authors: <NAME>, <NAME>, <NAME>, <NAME> # Research Leads: <NAME>, <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # calculated the mutual information of various shapes of data import numpy import pylab as pl import crosscat.utils.sample_utils as su import crosscat.utils.inference_utils as iu import crosscat.utils.data_utils as du import crosscat.cython_code.State as State import random import math def ring(n=200): X = numpy.zeros((n,2)) for i in range(n): angle = random.uniform(0,2*math.pi) distance = random.uniform(1,1.5) X[i,0] = math.cos(angle)*distance X[i,1] = math.sin(angle)*distance return X def circle(n=200): X = numpy.zeros((n,2)) for i in range(n): angle = random.uniform(0,2*math.pi) distance = random.uniform(0,1.5) X[i,0] = math.cos(angle)*distance X[i,1] = math.sin(angle)*distance return X def square(n=200): X = numpy.zeros((n,2)) for i in range(n): x = random.uniform(-1,1) y = random.uniform(-1,1) X[i,0] = x X[i,1] = y return X def diamond(n=200): X = square(n=n) for i in range(n): angle = math.atan(X[i,1]/X[i,0]) angle += math.pi/4 hyp = (X[i,0]**2.0+X[i,1]**2.0)**.5 x = math.cos(angle)*hyp y = math.sin(angle)*hyp X[i,0] = x X[i,1] = y return X def four_dots(n=200): X = numpy.zeros((n,2)) nb = n/4 mx = [ -1, 1, -1, 1] my = [ -1, -1, 1, 1] s = .25 for i in range(n): n = random.randrange(4) x = random.normalvariate(mx[n], s) y = random.normalvariate(my[n], s) X[i,0] = x X[i,1] = y return X def correlated(r,n=200): X = numpy.random.multivariate_normal([0,0], [[1, r],[r, 1]], n) return X def sample_from_view(M_c, X_L, X_D, get_next_seed): view_col = X_L['column_partition']['assignments'][0] view_col2 = X_L['column_partition']['assignments'][1] same_view = True if view_col2 != view_col: same_view = False view_state = X_L['view_state'][view_col] view_state2 = X_L['view_state'][view_col2] cluster_crps = numpy.exp(su.determine_cluster_crp_logps(view_state)) cluster_crps2 = numpy.exp(su.determine_cluster_crp_logps(view_state2)) assert( math.fabs(numpy.sum(cluster_crps) - 1) < .00000001 ) samples = numpy.zeros((n,2)) cluster_idx1 = numpy.nonzero(numpy.random.multinomial(1, cluster_crps))[0][0] cluster_model1 = su.create_cluster_model_from_X_L(M_c, X_L, view_col, cluster_idx1) if same_view: cluster_idx2 = cluster_idx1 cluster_model2 = cluster_model1 else: cluster_idx2 = numpy.nonzero(numpy.random.multinomial(1, cluster_crps2))[0][0] cluster_model2 = su.create_cluster_model_from_X_L(M_c, X_L, view_col2, cluster_idx2) component_model1 = cluster_model1[0] x = component_model1.get_draw(get_next_seed()) component_model2 = cluster_model2[1] y = component_model2.get_draw(get_next_seed()) return x, y def sample_data_from_crosscat(M_c, X_Ls, X_Ds, get_next_seed, n): X = numpy.zeros((n,2)) n_samples = len(X_Ls) for i in range(n): cc = random.randrange(n_samples) x, y = sample_from_view(M_c, X_Ls[cc], X_Ds[cc], get_next_seed) X[i,0] = x X[i,1] = y return X def do_test(which_plot, max_plots, n, burn_in, cc_samples, which_test, correlation=0, do_plot=False): if which_test is "correlated": X = correlated(correlation, n=n) elif which_test is "square": X = square(n=n) elif which_test is "ring": X = ring(n=n) elif which_test is "circle": X = circle(n=n) elif which_test is "diamond": X = diamond(n=n) elif which_test is "blob": X = correlated(0.0, n=n) elif which_test is "dots": X = four_dots(n=n) elif which_test is "mixed": X = numpy.vstack((correlated(.95, n=n/2),correlated(0, n=n/2))) get_next_seed = lambda : random.randrange(32000) # Build a state M_c = du.gen_M_c_from_T(X.tolist()) state = State.p_State(M_c, X.tolist()) X_Ls = [] X_Ds = [] # collect crosscat samples for _ in range(cc_samples): state = State.p_State(M_c, X.tolist()) state.transition(n_steps=burn_in) X_Ds.append(state.get_X_D()) X_Ls.append(state.get_X_L()) SX = sample_data_from_crosscat(M_c, X_Ls, X_Ds, get_next_seed, n) if do_plot: pl.subplot(2,max_plots,which_plot) pl.scatter(X[:,0],X[:,1],c='blue',alpha=.5) pl.title("Original data") pl.subplot(2,max_plots,max_plots+which_plot) pl.scatter(SX[:,0],SX[:,1],c='red',alpha=.5) pl.title("Sampled data") pl.show return M_c, X_Ls, X_Ds def MI_test(n, burn_in, cc_samples, which_test, n_MI_samples=500, correlation=0): get_next_seed = lambda : random.randrange(32000) M_c, X_Ls, X_Ds = do_test(0, 0, n, burn_in, cc_samples, "correlated", correlation=correlation, do_plot=False) # query column 0 and 1 MI, Linfoot = iu.mutual_information(M_c, X_Ls, X_Ds, [(0,1)], get_next_seed, n_samples=n_MI_samples) MI = numpy.mean(MI) Linfoot = numpy.mean(Linfoot) if which_test == "correlated": test_strn = "Test: correlation (%1.2f), N: %i, burn_in: %i, samples: %i, MI_samples: %i\n\tMI: %f, Linfoot %f" % (correlation, n, burn_in, cc_samples, n_MI_samples, MI, Linfoot) else: test_strn = "Test: %s, N: %i, burn_in: %i, samples: %i, MI_samples: %i\n\tMI: %f, Linfoot %f" % (which_test, n, burn_in, cc_samples, n_MI_samples, MI, Linfoot) print(test_strn) return test_strn do_plot = False n_mi_samples = 500 N = [10, 100, 1000] burn_in = 200 cc_samples = 10 print(" ") for n in N: strn = MI_test(n, burn_in, cc_samples, "correlated", correlation=.3) strn = MI_test(n, burn_in, cc_samples, "correlated", correlation=.6) strn = MI_test(n, burn_in, cc_samples, "correlated", correlation=.9) strn = MI_test(n, burn_in, cc_samples, "ring") strn = MI_test(n, burn_in, cc_samples, "dots") strn = MI_test(n, burn_in, cc_samples, "mixed")
xdl-algorithm-solution/ESMM/data/third_party/protobuf/protobuf-3.5.0/conformance/update_failure_list.py
hitflame/x-deeplearning
4,071
12753477
<gh_stars>1000+ # Copyright (C) 2016-2018 Alibaba Group Holding Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== #!/usr/bin/env python # Protocol Buffers - Google's data interchange format # Copyright 2008 Google Inc. All rights reserved. # https://developers.google.com/protocol-buffers/ # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Script to update a failure list file to add/remove failures. This is sort of like comm(1), except it recognizes comments and ignores them. """ import argparse parser = argparse.ArgumentParser( description='Adds/removes failures from the failure list.') parser.add_argument('filename', type=str, help='failure list file to update') parser.add_argument('--add', dest='add_list', action='append') parser.add_argument('--remove', dest='remove_list', action='append') args = parser.parse_args() add_set = set() remove_set = set() for add_file in (args.add_list or []): with open(add_file) as f: for line in f: add_set.add(line) for remove_file in (args.remove_list or []): with open(remove_file) as f: for line in f: if line in add_set: raise Exception("Asked to both add and remove test: " + line) remove_set.add(line.strip()) add_list = sorted(add_set, reverse=True) with open(args.filename) as in_file: existing_list = in_file.read() with open(args.filename, "w") as f: for line in existing_list.splitlines(True): test = line.split("#")[0].strip() while len(add_list) > 0 and test > add_list[-1]: f.write(add_list.pop()) if test not in remove_set: f.write(line)
common_test.py
iostermann/deeplab2
587
12753491
<reponame>iostermann/deeplab2 # coding=utf-8 # Copyright 2021 The Deeplab2 Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for common.py.""" import tensorflow as tf from deeplab2 import common class CommonTest(tf.test.TestCase): def test_constants_keys(self): self.assertEqual(common.PRED_PANOPTIC_KEY, 'panoptic_pred') self.assertEqual(common.PRED_SEMANTIC_KEY, 'semantic_pred') self.assertEqual(common.PRED_INSTANCE_CENTER_KEY, 'instance_center_pred') self.assertEqual(common.PRED_INSTANCE_KEY, 'instance_pred') self.assertEqual(common.PRED_SEMANTIC_LOGITS_KEY, 'semantic_logits') self.assertEqual(common.PRED_CENTER_HEATMAP_KEY, 'center_heatmap') self.assertEqual(common.PRED_OFFSET_MAP_KEY, 'offset_map') self.assertEqual(common.PRED_FRAME_OFFSET_MAP_KEY, 'frame_offset_map') self.assertEqual(common.GT_PANOPTIC_KEY, 'panoptic_gt') self.assertEqual(common.GT_SEMANTIC_KEY, 'semantic_gt') self.assertEqual(common.GT_INSTANCE_CENTER_KEY, 'instance_center_gt') self.assertEqual(common.GT_FRAME_OFFSET_KEY, 'frame_offset_gt') self.assertEqual(common.GT_INSTANCE_REGRESSION_KEY, 'instance_regression_gt') self.assertEqual(common.GT_PANOPTIC_RAW, 'panoptic_raw') self.assertEqual(common.GT_SEMANTIC_RAW, 'semantic_raw') self.assertEqual(common.GT_SIZE_RAW, 'size_raw') self.assertEqual(common.SEMANTIC_LOSS_WEIGHT_KEY, 'semantic_loss_weight') self.assertEqual(common.CENTER_LOSS_WEIGHT_KEY, 'center_loss_weight') self.assertEqual(common.REGRESSION_LOSS_WEIGHT_KEY, 'regression_loss_weight') self.assertEqual(common.FRAME_REGRESSION_LOSS_WEIGHT_KEY, 'frame_regression_loss_weight') self.assertEqual(common.RESIZED_IMAGE, 'resized_image') self.assertEqual(common.IMAGE, 'image') self.assertEqual(common.IMAGE_NAME, 'image_name') self.assertEqual(common.SEQUENCE_ID, 'sequence_id') self.assertEqual(common.KEY_FRAME_ID, 'video/frame_id') self.assertEqual(common.KEY_SEQUENCE_ID, 'video/sequence_id') self.assertEqual(common.KEY_LABEL_FORMAT, 'image/segmentation/class/format') self.assertEqual(common.KEY_ENCODED_PREV_LABEL, 'prev_image/segmentation/class/encoded') self.assertEqual(common.KEY_ENCODED_LABEL, 'image/segmentation/class/encoded') self.assertEqual(common.KEY_IMAGE_CHANNELS, 'image/channels') self.assertEqual(common.KEY_IMAGE_WIDTH, 'image/width') self.assertEqual(common.KEY_IMAGE_HEIGHT, 'image/height') self.assertEqual(common.KEY_IMAGE_FORMAT, 'image/format') self.assertEqual(common.KEY_IMAGE_FILENAME, 'image/filename') self.assertEqual(common.KEY_ENCODED_PREV_IMAGE, 'prev_image/encoded') self.assertEqual(common.KEY_ENCODED_IMAGE, 'image/encoded') if __name__ == '__main__': tf.test.main()
benchmarks/report.py
nammingi/haste
291
12753516
<gh_stars>100-1000 # Copyright 2020 LMNT, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import argparse import matplotlib.pyplot as plt import numpy as np import os def extract(x, predicate): return np.array(list(filter(predicate, x))) def main(args): np.set_printoptions(suppress=True) A = np.loadtxt(args.A, delimiter=',') B = np.loadtxt(args.B, delimiter=',') faster = 1.0 - A[:,-1] / B[:,-1] print(f'A is faster than B by:') print(f' mean: {np.mean(faster)*100:7.4}%') print(f' std: {np.std(faster)*100:7.4}%') print(f' median: {np.median(faster)*100:7.4}%') print(f' min: {np.min(faster)*100:7.4}%') print(f' max: {np.max(faster)*100:7.4}%') for batch_size in np.unique(A[:,0]): for input_size in np.unique(A[:,2]): a = extract(A, lambda x: x[0] == batch_size and x[2] == input_size) b = extract(B, lambda x: x[0] == batch_size and x[2] == input_size) fig, ax = plt.subplots(dpi=200) ax.set_xticks(a[:,1]) ax.set_xticklabels(a[:,1].astype(np.int32), rotation=60) ax.tick_params(axis='y', which='both', length=0) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) plt.title(f'batch size={int(batch_size)}, input size={int(input_size)}') plt.plot(a[:,1], a[:,-1], color=args.color[0]) plt.plot(a[:,1], b[:,-1], color=args.color[1]) plt.xlabel('hidden size') plt.ylabel('time (ms)') plt.legend(args.name, frameon=False) plt.tight_layout() if args.save: os.makedirs(args.save[0], exist_ok=True) plt.savefig(f'{args.save[0]}/report_n={int(batch_size)}_c={int(input_size)}.png', dpi=200) else: plt.show() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--name', nargs=2, default=['A', 'B']) parser.add_argument('--color', nargs=2, default=['#1f77b4', '#2ca02c']) parser.add_argument('--save', nargs=1, default=None) parser.add_argument('A') parser.add_argument('B') main(parser.parse_args())
boto3_type_annotations/boto3_type_annotations/elasticbeanstalk/client.py
cowboygneox/boto3_type_annotations
119
12753525
<reponame>cowboygneox/boto3_type_annotations from typing import Optional from botocore.client import BaseClient from typing import Dict from typing import Union from botocore.paginate import Paginator from datetime import datetime from botocore.waiter import Waiter from typing import List class Client(BaseClient): def abort_environment_update(self, EnvironmentId: str = None, EnvironmentName: str = None): pass def apply_environment_managed_action(self, ActionId: str, EnvironmentName: str = None, EnvironmentId: str = None) -> Dict: pass def can_paginate(self, operation_name: str = None): pass def check_dns_availability(self, CNAMEPrefix: str) -> Dict: pass def compose_environments(self, ApplicationName: str = None, GroupName: str = None, VersionLabels: List = None) -> Dict: pass def create_application(self, ApplicationName: str, Description: str = None, ResourceLifecycleConfig: Dict = None, Tags: List = None) -> Dict: pass def create_application_version(self, ApplicationName: str, VersionLabel: str, Description: str = None, SourceBuildInformation: Dict = None, SourceBundle: Dict = None, BuildConfiguration: Dict = None, AutoCreateApplication: bool = None, Process: bool = None, Tags: List = None) -> Dict: pass def create_configuration_template(self, ApplicationName: str, TemplateName: str, SolutionStackName: str = None, PlatformArn: str = None, SourceConfiguration: Dict = None, EnvironmentId: str = None, Description: str = None, OptionSettings: List = None, Tags: List = None) -> Dict: pass def create_environment(self, ApplicationName: str, EnvironmentName: str = None, GroupName: str = None, Description: str = None, CNAMEPrefix: str = None, Tier: Dict = None, Tags: List = None, VersionLabel: str = None, TemplateName: str = None, SolutionStackName: str = None, PlatformArn: str = None, OptionSettings: List = None, OptionsToRemove: List = None) -> Dict: pass def create_platform_version(self, PlatformName: str, PlatformVersion: str, PlatformDefinitionBundle: Dict, EnvironmentName: str = None, OptionSettings: List = None, Tags: List = None) -> Dict: pass def create_storage_location(self) -> Dict: pass def delete_application(self, ApplicationName: str, TerminateEnvByForce: bool = None): pass def delete_application_version(self, ApplicationName: str, VersionLabel: str, DeleteSourceBundle: bool = None): pass def delete_configuration_template(self, ApplicationName: str, TemplateName: str): pass def delete_environment_configuration(self, ApplicationName: str, EnvironmentName: str): pass def delete_platform_version(self, PlatformArn: str = None) -> Dict: pass def describe_account_attributes(self) -> Dict: pass def describe_application_versions(self, ApplicationName: str = None, VersionLabels: List = None, MaxRecords: int = None, NextToken: str = None) -> Dict: pass def describe_applications(self, ApplicationNames: List = None) -> Dict: pass def describe_configuration_options(self, ApplicationName: str = None, TemplateName: str = None, EnvironmentName: str = None, SolutionStackName: str = None, PlatformArn: str = None, Options: List = None) -> Dict: pass def describe_configuration_settings(self, ApplicationName: str, TemplateName: str = None, EnvironmentName: str = None) -> Dict: pass def describe_environment_health(self, EnvironmentName: str = None, EnvironmentId: str = None, AttributeNames: List = None) -> Dict: pass def describe_environment_managed_action_history(self, EnvironmentId: str = None, EnvironmentName: str = None, NextToken: str = None, MaxItems: int = None) -> Dict: pass def describe_environment_managed_actions(self, EnvironmentName: str = None, EnvironmentId: str = None, Status: str = None) -> Dict: pass def describe_environment_resources(self, EnvironmentId: str = None, EnvironmentName: str = None) -> Dict: pass def describe_environments(self, ApplicationName: str = None, VersionLabel: str = None, EnvironmentIds: List = None, EnvironmentNames: List = None, IncludeDeleted: bool = None, IncludedDeletedBackTo: datetime = None, MaxRecords: int = None, NextToken: str = None) -> Dict: pass def describe_events(self, ApplicationName: str = None, VersionLabel: str = None, TemplateName: str = None, EnvironmentId: str = None, EnvironmentName: str = None, PlatformArn: str = None, RequestId: str = None, Severity: str = None, StartTime: datetime = None, EndTime: datetime = None, MaxRecords: int = None, NextToken: str = None) -> Dict: pass def describe_instances_health(self, EnvironmentName: str = None, EnvironmentId: str = None, AttributeNames: List = None, NextToken: str = None) -> Dict: pass def describe_platform_version(self, PlatformArn: str = None) -> Dict: pass def generate_presigned_url(self, ClientMethod: str = None, Params: Dict = None, ExpiresIn: int = None, HttpMethod: str = None): pass def get_paginator(self, operation_name: str = None) -> Paginator: pass def get_waiter(self, waiter_name: str = None) -> Waiter: pass def list_available_solution_stacks(self) -> Dict: pass def list_platform_versions(self, Filters: List = None, MaxRecords: int = None, NextToken: str = None) -> Dict: pass def list_tags_for_resource(self, ResourceArn: str) -> Dict: pass def rebuild_environment(self, EnvironmentId: str = None, EnvironmentName: str = None): pass def request_environment_info(self, InfoType: str, EnvironmentId: str = None, EnvironmentName: str = None): pass def restart_app_server(self, EnvironmentId: str = None, EnvironmentName: str = None): pass def retrieve_environment_info(self, InfoType: str, EnvironmentId: str = None, EnvironmentName: str = None) -> Dict: pass def swap_environment_cnames(self, SourceEnvironmentId: str = None, SourceEnvironmentName: str = None, DestinationEnvironmentId: str = None, DestinationEnvironmentName: str = None): pass def terminate_environment(self, EnvironmentId: str = None, EnvironmentName: str = None, TerminateResources: bool = None, ForceTerminate: bool = None) -> Dict: pass def update_application(self, ApplicationName: str, Description: str = None) -> Dict: pass def update_application_resource_lifecycle(self, ApplicationName: str, ResourceLifecycleConfig: Dict) -> Dict: pass def update_application_version(self, ApplicationName: str, VersionLabel: str, Description: str = None) -> Dict: pass def update_configuration_template(self, ApplicationName: str, TemplateName: str, Description: str = None, OptionSettings: List = None, OptionsToRemove: List = None) -> Dict: pass def update_environment(self, ApplicationName: str = None, EnvironmentId: str = None, EnvironmentName: str = None, GroupName: str = None, Description: str = None, Tier: Dict = None, VersionLabel: str = None, TemplateName: str = None, SolutionStackName: str = None, PlatformArn: str = None, OptionSettings: List = None, OptionsToRemove: List = None) -> Dict: pass def update_tags_for_resource(self, ResourceArn: str, TagsToAdd: List = None, TagsToRemove: List = None): pass def validate_configuration_settings(self, ApplicationName: str, OptionSettings: List, TemplateName: str = None, EnvironmentName: str = None) -> Dict: pass
src/exabgp/bgp/message/update/attribute/med.py
pierky/exabgp
1,560
12753528
<gh_stars>1000+ # encoding: utf-8 """ med.py Created by <NAME> on 2009-11-05. Copyright (c) 2009-2017 Exa Networks. All rights reserved. License: 3-clause BSD. (See the COPYRIGHT file) """ from struct import pack from struct import unpack from exabgp.bgp.message.update.attribute.attribute import Attribute # ====================================================================== MED (4) # @Attribute.register() class MED(Attribute): ID = Attribute.CODE.MED FLAG = Attribute.Flag.OPTIONAL CACHING = True def __init__(self, med, packed=None): self.med = med self._packed = self._attribute(packed if packed is not None else pack('!L', med)) def __eq__(self, other): return self.ID == other.ID and self.FLAG == other.FLAG and self.med == other.med def __ne__(self, other): return not self.__eq__(other) def pack(self, negotiated=None): return self._packed def __len__(self): return 4 def __repr__(self): return str(self.med) def __hash__(self): return hash(self.med) @classmethod def unpack(cls, data, direction, negotiated): return cls(unpack('!L', data)[0])
tests/test_managed_object.py
zhgcao/pyvmomi
1,894
12753537
<reponame>zhgcao/pyvmomi<filename>tests/test_managed_object.py # VMware vSphere Python SDK # Copyright (c) 2008-2015 VMware, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import tests from pyVim import connect class ManagedObjectTests(tests.VCRTestBase): @tests.VCRTestBase.my_vcr.use_cassette('root_folder_parent.yaml', cassette_library_dir=tests.fixtures_path, record_mode='once') def test_root_folder_parent(self): # see: http://python3porting.com/noconv.html si = connect.SmartConnect(host='vcsa', user='my_user', pwd='<PASSWORD>') root_folder = si.content.rootFolder self.assertTrue(hasattr(root_folder, 'parent')) # NOTE (hartsock): assertIsNone does not work in Python 2.6 self.assertTrue(root_folder.parent is None)
yolo_tf2/core/evaluation.py
emadboctorx/yolov3-keras-tf2
650
12753544
<gh_stars>100-1000 import numpy as np import pandas as pd def get_true_positives(actual, detections, iou_threshold): """ Identify and flag true positive detections. Args: actual: Ground truth data as `pd.DataFrame` having `image`, `object_name`, `object_index`, `x0`, `y0`, `x1`, `y1` as columns. detections: Detections as `pd.DataFrame` having `image`, `object_name`, `object_index`, `x0`, `y0`, `x1`, `y1`, `score` as columns. iou_threshold: Percentage above which detections overlapping with ground truths are considered true positive. Returns: pd.DataFrame containing filtered out true positives. """ if 'detection_key' not in detections.columns: detections['detection_key'] = np.random.default_rng().choice( detections.shape[0], size=detections.shape[0], replace=False ) merged = actual.merge(detections, on=['image', 'object_name']) merged['x0'] = merged[['x0_x', 'x0_y']].max(1) merged['x1'] = merged[['x1_x', 'x1_y']].min(1) merged['y0'] = merged[['y0_x', 'y0_y']].max(1) merged['y1'] = merged[['y1_x', 'y1_y']].min(1) true_intersect = (merged['x1'] > merged['x0']) & (merged['y1'] > merged['y0']) merged = merged[true_intersect] actual_areas = (merged['x1_x'] - merged['x0_x']) * (merged['y1_x'] - merged['y0_x']) predicted_areas = (merged['x1_y'] - merged['x0_y']) * ( merged['y1_y'] - merged['y0_y'] ) intersection_areas = (merged['x1'] - merged['x0']) * (merged['y1'] - merged['y0']) merged['iou'] = intersection_areas / ( actual_areas + predicted_areas - intersection_areas ) merged['true_positive'] = True merged['false_positive'] = False merged = merged[merged['iou'] >= iou_threshold] return merged.drop_duplicates(subset='detection_key') def get_false_positives(detections, true_positives): """ Filter out False positives. Args: detections: Detections as `pd.DataFrame` having `image`, `object_name`, `object_index`, `x0`, `y0`, `x1`, `y1`, `score` as columns. true_positives: `pd.DataFrame` of true positive detections, the result of `get_true_positives`. Returns: `pd.DataFrame` containing filtered out false positives. """ keys_before = detections['detection_key'].values keys_after = true_positives['detection_key'].values false_keys = np.where(np.isin(keys_before, keys_after, invert=True)) false_keys = keys_before[false_keys] false_positives = detections.set_index('detection_key').loc[false_keys] false_positives['true_positive'] = False false_positives['false_positive'] = True return false_positives.reset_index() def calculate_ap(combined, total_actual): """ Calculate single object average precision. Args: combined: `pd.DataFrame` containing true positives + false positives. total_actual: Total instances of an object in the dataset. Returns: Updated combined with average precision calculated. """ combined = combined.sort_values(by='score', ascending=False).reset_index(drop=True) combined['acc_tp'] = combined['true_positive'].cumsum() combined['acc_fp'] = combined['false_positive'].cumsum() combined['precision'] = combined['acc_tp'] / ( combined['acc_tp'] + combined['acc_fp'] ) combined['recall'] = combined['acc_tp'] / total_actual combined['m_pre1'] = combined['precision'].shift(1, fill_value=0) combined['m_pre'] = combined[['m_pre1', 'precision']].max(axis=1) combined['m_rec1'] = combined['recall'].shift(1, fill_value=0) combined.loc[combined['m_rec1'] != combined['recall'], 'valid_m_rec'] = 1 combined['average_precision'] = ( combined['recall'] - combined['m_rec1'] ) * combined['m_pre'] return combined def calculate_stats( actual, detections, true_positives, false_positives, combined, ): """ Calculate display data including total actual, total true positives, total false positives and sort resulting `pd.DataFrame` by object average precision. Args: actual: Ground truth data as `pd.DataFrame` having `image`, `object_name`, `object_index`, `x0`, `y0`, `x1`, `y1` as columns. detections: Detections as `pd.DataFrame` having `image`, `object_name`, `object_index`, `x0`, `y0`, `x1`, `y1`, `score` as columns. true_positives: `pd.DataFrame` of true positive detections, the result of `get_true_positives`. false_positives: `pd.DataFrame` of false positive detections, the result of `get_false_positives`. combined: `pd.DataFrame` containing true positives + false positives. Returns: `pd.DataFrame` with calculated average precisions per dataset object. """ class_stats = [] for object_name in actual['object_name'].drop_duplicates().values: stats = dict() stats['object_name'] = object_name stats['average_precision'] = combined[combined['object_name'] == object_name][ 'average_precision' ].sum() stats['actual'] = actual[actual['object_name'] == object_name].shape[0] stats['detections'] = detections[ detections['object_name'] == object_name ].shape[0] stats['true_positives'] = true_positives[ true_positives['object_name'] == object_name ].shape[0] stats['false_positives'] = false_positives[ false_positives['object_name'] == object_name ].shape[0] stats['combined'] = combined[combined['object_name'] == object_name].shape[0] class_stats.append(stats) total_stats = pd.DataFrame(class_stats).sort_values( by='average_precision', ascending=False ) return total_stats def calculate_map(actual, detections, iou_threshold): """ Calculate average precision per dataset object. The mean of the resulting `pd.DataFrame` `average_precision` column is the mAP score. Args: actual: Ground truth data as `pd.DataFrame` having `image`, `object_name`, `object_index`, `x0`, `y0`, `x1`, `y1` as columns. detections: Detections as `pd.DataFrame` having `image`, `object_name`, `object_index`, `x0`, `y0`, `x1`, `y1`, `score` as columns. iou_threshold: Percentage above which detections overlapping with ground truths are considered true positive. Returns: `pd.DataFrame`, the result of `calculate_stats`. """ class_counts = actual['object_name'].value_counts().to_dict() true_positives = get_true_positives(actual, detections, iou_threshold) false_positives = get_false_positives(detections, true_positives) true_positives = true_positives[ [*set(true_positives.columns) & set(false_positives.columns)] ] false_positives = false_positives[ [*set(true_positives.columns) & set(false_positives.columns)] ] combined = pd.concat([true_positives, false_positives]) combined = pd.concat( [ calculate_ap(group, class_counts.get(object_name)) for object_name, group in combined.groupby('object_name') ] ) return calculate_stats( actual, detections, true_positives, false_positives, combined )
tests/thread/stress_heap.py
learnforpractice/micropython-cpp
692
12753546
<filename>tests/thread/stress_heap.py # stress test for the heap by allocating lots of objects within threads # allocates about 5mb on the heap # # MIT license; Copyright (c) 2016 <NAME> on behalf of Pycom Ltd try: import utime as time except ImportError: import time import _thread def last(l): return l[-1] def thread_entry(n): # allocate a bytearray and fill it data = bytearray(i for i in range(256)) # run a loop which allocates a small list and uses it each iteration lst = 8 * [0] sum = 0 for i in range(n): sum += last(lst) lst = [0, 0, 0, 0, 0, 0, 0, i + 1] # check that the bytearray still has the right data for i, b in enumerate(data): assert i == b # print the result of the loop and indicate we are finished with lock: print(sum, lst[-1]) global n_finished n_finished += 1 lock = _thread.allocate_lock() n_thread = 10 n_finished = 0 # spawn threads for i in range(n_thread): _thread.start_new_thread(thread_entry, (10000,)) # wait for threads to finish while n_finished < n_thread: time.sleep(1)
test/integration/component/test_ss_volume_usage.py
ycyun/ablestack-cloud
1,131
12753559
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Test cases for checking that the secondary Storage usage is accounted. This is verified by checking the usage_event table for a volume in 'Uploaded' state. This test case does the following: 1.Creates an account and uploads a volume. 2.After the volume is uploaded successfully, connects to the database 3.From the database verifies that an entry is added to cloud.events table for the uploaded volume. 4.Cleans up the resources. """ from marvin.cloudstackTestCase import * from marvin.cloudstackAPI import * from marvin.lib.utils import * from marvin.lib.base import * from marvin.lib.common import * from nose.plugins.attrib import attr from marvin.sshClient import SshClient from marvin.codes import (BACKED_UP, PASS, FAIL) import time def verify_vm(self, vmid, state): list_vm = list_virtual_machines(self.userapiclient, account=self.account.name, domainid=self.account.domainid, id=vmid ) self.assertEqual( validateList(list_vm)[0], PASS, "Check List vm response for vmid: %s" % vmid) self.assertGreater( len(list_vm), 0, "Check the list vm response for vm id: %s" % vmid) vm = list_vm[0] self.assertEqual( vm.id, str(vmid), "Vm deployed is different from the test") self.assertEqual(vm.state, state, "VM is in %s state" %state) def uploadVolume(self): # upload a volume self.debug("Upload volume format is '%s'" %self.uploadVolumeformat) self.testdata["configurableData"]["upload_volume"]["format"] = self.uploadVolumeformat self.testdata["configurableData"]["upload_volume"]["url"] = self.uploadvolumeUrl upload_volume = Volume.upload( self.apiclient, self.testdata["configurableData"]["upload_volume"], account=self.account.name, domainid=self.domain.id, zoneid=self.zone.id ) upload_volume.wait_for_upload(self.apiclient) return upload_volume.id def restartUsageServer(self): #Restart usage server sshClient = SshClient( self.mgtSvrDetails["mgtSvrIp"], 22, self.mgtSvrDetails["user"], self.mgtSvrDetails["passwd"] ) command = "service cloudstack-usage restart" sshClient.execute(command) return def checkUsage(self, uuid_upload_volume_id): volume_id = self.dbclient.execute("SELECT id from cloud.volumes where uuid='%s';" % uuid_upload_volume_id) self.debug("Volume id of uploaded volume is= %s" %volume_id[0]); qryresult_after_usageServerExecution = self.dbclient.execute( "SELECT type FROM cloud.usage_event where resource_id = '%s';" % (volume_id[0])) self.debug("Usage Type is %s " % qryresult_after_usageServerExecution[0][0]) self.assertEqual(qryresult_after_usageServerExecution[0][0], 'VOLUME.UPLOAD') class TestSecondaryVolumeUsage(cloudstackTestCase): @classmethod def setUpClass(cls): testClient = super(TestSecondaryVolumeUsage, cls).getClsTestClient() cls.apiclient = testClient.getApiClient() cls.dbclient = testClient.getDbConnection() cls.testdata = testClient.getParsedTestDataConfig() cls.hypervisor = cls.testClient.getHypervisorInfo() cls.storagetype = 'shared' # Get Zone, Domain and templates cls.domain = get_domain(cls.apiclient) cls.zone = get_zone(cls.apiclient, testClient.getZoneForTests()) cls.mgtSvrDetails = cls.config.__dict__["mgtSvr"][0].__dict__ cls._cleanup = [] # Create an account cls.account = Account.create( cls.apiclient, cls.testdata["account"], domainid=cls.domain.id ) cls._cleanup.append(cls.account) # Create user api client of the account cls.userapiclient = testClient.getUserApiClient( UserName=cls.account.name, DomainName=cls.account.domain ) # Create Service offering cls.service_offering = ServiceOffering.create( cls.apiclient, cls.testdata["service_offering"], ) cls._cleanup.append(cls.service_offering) cls.disk_offering = DiskOffering.create( cls.apiclient, cls.testdata["disk_offering"], ) cls._cleanup.append(cls.disk_offering) cls.skip = 0 hosts = list_hosts( cls.apiclient, type="Routing" ) for hypervisorhost in hosts: if hypervisorhost.hypervisor.lower() in ["xenserver"]: cls.uploadVolumeformat = "VHD" cls.uploadvolumeUrl = "http://download.cloudstack.org/releases/2.0.0/systemvm.vhd.bz2" break elif hypervisorhost.hypervisor.lower() in ["vmware"]: cls.uploadVolumeformat = "OVA" cls.uploadvolumeUrl = "http://download.cloudstack.org/releases/2.2.0/systemvm-redundant-router.ova" break elif hypervisorhost.hypervisor == "KVM": cls.uploadVolumeformat = "QCOW2" cls.uploadvolumeUrl = "http://download.cloudstack.org/releases/2.0.0/UbuntuServer-10-04-64bit.qcow2.bz2" break elif hypervisorhost.hypervisor == "LXC": cls.uploadvolumeformat = "QCOW2" cls.uploadvolumeUrl = "http://download.cloudstack.org/releases/2.0.0/UbuntuServer-10-04-64bit.qcow2.bz2" break else: break cls.template = get_template( cls.apiclient, cls.zone.id, cls.testdata["ostype"]) try: cls.vm = VirtualMachine.create( cls.userapiclient, cls.testdata["small"], templateid=cls.template.id, accountid=cls.account.name, domainid=cls.account.domainid, serviceofferingid=cls.service_offering.id, zoneid=cls.zone.id ) except Exception as e: cls.tearDownClass() raise e return @classmethod def tearDownClass(cls): try: cleanup_resources(cls.apiclient, cls._cleanup) except Exception as e: raise Exception("Warning: Exception during cleanup : %s" % e) @attr(tags=["basic", "advanced"], required_hardware="true") def test_01_SecondaryUsageUploadedVolume(self): try: uploaded_volume_id_uuid = uploadVolume(self) checkUsage(self, uploaded_volume_id_uuid) except Exception as e: self.tearDown() raise e return
ocr/utils/sclite_helper.py
vee51/Hand
435
12753578
<gh_stars>100-1000 import os import subprocess import re import uuid class ScliteHelper(): ''' The Sclite helper class calculates the word error rate (WER) and charater error rate (CER) given a predicted and actual text. This class uses sclite2.4 (ftp://jaguar.ncsl.nist.gov/pub/sctk-2.4.10-20151007-1312Z.tar.bz2) and formats the data according. Parameters ---------- sclite_location: optional, default="sctk-2.4.10/bin" Location of the sclite_program tmp_file_location: optional, default=tmp folder to store the temporary text files. ''' def __init__(self, sclite_location=os.path.join("..", "SCTK", "bin"), tmp_file_location="tmp", use_uuid=True): # Check if sclite exists assert os.path.isdir(sclite_location), "{} does not exist".format(sclite_location) sclite_error = "{} doesn't contain sclite".format(sclite_location) retries = 10 for i in range(retries): if self._test_sclite(sclite_location): break elif i == retries-1: raise sclite_error self.sclite_location = sclite_location if use_uuid: tmp_file_location += "/" + str(uuid.uuid4()) # Check if tmp_file_location exists if not os.path.isdir(tmp_file_location): os.makedirs(tmp_file_location) self.tmp_file_location = tmp_file_location self.predicted_text = [] self.actual_text = [] def clear(self): ''' Clear the class for new calculations. ''' self.predicted_text = [] self.actual_text = [] def _test_sclite(self, sclite_location): sclite_path = os.path.join(sclite_location, "sclite") command_line_options = [sclite_path] try: subprocess.check_output(command_line_options, stderr=subprocess.STDOUT) except OSError: return False except subprocess.CalledProcessError: return True return True def _write_string_to_sclite_file(self, sentences_arrays, filename): SPEAKER_LABEL = "(spk{}_{})" # Split string into sentences converted_string = '' for i, sentences_array in enumerate(sentences_arrays): for line, sentence in enumerate(sentences_array): converted_string += sentence + SPEAKER_LABEL.format(i+1, line+1) + "\n" # Write converted_string into file filepath = os.path.join(self.tmp_file_location, filename) with open(filepath, "w") as f: f.write(converted_string) def _run_sclite(self, predicted_filename, actual_filename, mode, output): ''' Run command line for sclite. Parameters --------- predicted_filename: str file containing output string of the network actual_filename: str file containing string of the label mode: string, Options = ["CER", "WER"] Choose between CER or WER output: string, Options = ["print", "string"] Choose between printing the output or returning a string Returns ------- stdoutput If string was chosen as the output option, this function will return a file containing the stdout ''' assert mode in ["CER", "WER"], "mode {} is not in ['CER', 'WER]".format(mode) assert output in ["print", "string"], "output {} is not in ['print', 'string']".format( output) command_line = [os.path.join(self.sclite_location, "sclite"), "-h", os.path.join(self.tmp_file_location, predicted_filename), "-r", os.path.join(self.tmp_file_location, actual_filename), "-i", "rm"] if mode == "WER": pass # Word error rate is by default retries = 10 for i in range(retries): try: if mode == "CER": command_line.append("-c") if output == "print": subprocess.call(command_line) elif output == "string": cmd = subprocess.Popen(command_line, stdout=subprocess.PIPE) return cmd.stdout except: print("There was an error") def _print_error_rate_summary(self, mode, predicted_filename="predicted.txt", actual_filename="actual.txt"): ''' Print the error rate summary of sclite Parameters ---------- mode: string, Options = ["CER", "WER"] Choose between CER or WER ''' self._run_sclite(predicted_filename, actual_filename, mode, output="print") def _get_error_rate(self, mode, predicted_filename="predicted.txt", actual_filename="actual.txt"): ''' Get the error rate by analysing the output of sclite Parameters ---------- mode: string, Options = ["CER", "WER"] Choose between CER or WER Returns ------- number: int The number of characters or words depending on the mode selected. error_rate: float ''' number = None er = None output_file = self._run_sclite(predicted_filename, actual_filename, mode, output="string") match_tar = r'.*Mean.*\|.* (\d*.\d) .* (\d*.\d).* \|' for line in output_file.readlines(): match = re.match(match_tar, line.decode('utf-8'), re.M|re.I) if match: number = match.group(1) er = match.group(2) assert number != None and er != None, "Error in parsing output." return float(number), 100.0 - float(er) def _make_sclite_files(self, predicted_filename="predicted.txt", actual_filename="actual.txt"): ''' Run command line for sclite. Parameters --------- predicted_filename: str, default: predicted.txt filename of the predicted file actual_filename: str, default: actual.txt filename of the actual file ''' self._write_string_to_sclite_file(self.predicted_text, filename=predicted_filename) self._write_string_to_sclite_file(self.actual_text, filename=actual_filename) def add_text(self, predicted_text, actual_text): ''' Function to save predicted and actual text pairs in memory. Running the future fuctions will generate the required text files. ''' self.predicted_text.append(predicted_text) self.actual_text.append(actual_text) def print_wer_summary(self): ''' see _print_error_rate_summary for docstring ''' self._make_sclite_files() self._print_error_rate_summary(mode="WER") def print_cer_summary(self): ''' see _print_error_rate_summary for docstring ''' self._make_sclite_files() self._print_error_rate_summary(mode="CER") def get_wer(self): ''' See _get_error_rate for docstring ''' self._make_sclite_files() return self._get_error_rate(mode="WER") def get_cer(self): ''' See _get_error_rate for docstring ''' self._make_sclite_files() return self._get_error_rate(mode="CER") if __name__ == "__main__": cls = ScliteHelper() actual1 = 'Jonathan loves to eat apples. This is the second sentence.' predicted1 = 'Jonothon loves to eot. This is the second santense.' cls.add_text(predicted1, actual1) actual2 = 'Jonathan loves to eat apples. This is the second sentence.' predicted2 = 'Jonothan loves to eot. This is the second santense.' cls.add_text(predicted2, actual2) cls.print_cer_summary() num, er = cls.get_cer() print(num, er)
tests/ssr.py
xuhao1/taichi_three
152
12753584
<filename>tests/ssr.py import taichi as ti import tina ti.init(ti.gpu) scene = tina.Scene((640, 480), smoothing=True, ssr=True, taa=True) monkey_material = tina.PBR(metallic=0.0, roughness=0.4) monkey = tina.MeshModel('assets/monkey.obj') scene.add_object(monkey, monkey_material) param_metallic = tina.Param() param_roughness = tina.Param() plane_material = tina.PBR(metallic=param_metallic, roughness=param_roughness) plane = tina.MeshTransform(tina.MeshGrid(32), tina.scale(2) @ tina.eularXYZ([-ti.pi / 2, 0, 0])) scene.add_object(plane, plane_material) gui = ti.GUI(res=scene.res) nsteps = gui.slider('nsteps', 1, 128, 1) nsamples = gui.slider('nsamples', 1, 128, 1) stepsize = gui.slider('stepsize', 0, 32, 0.1) tolerance = gui.slider('tolerance', 0, 64, 0.1) blurring = gui.slider('blurring', 1, 8, 1) metallic = gui.slider('metallic', 0, 1, 0.01) roughness = gui.slider('roughness', 0, 1, 0.01) nsteps.value = 64 nsamples.value = 12 blurring.value = 4 stepsize.value = 2 tolerance.value = 15 metallic.value = 1.0 roughness.value = 0.0 while gui.running: scene.ssr.nsteps[None] = int(nsteps.value) scene.ssr.nsamples[None] = int(nsamples.value) scene.ssr.blurring[None] = int(blurring.value) scene.ssr.stepsize[None] = stepsize.value scene.ssr.tolerance[None] = tolerance.value param_metallic.value[None] = metallic.value param_roughness.value[None] = roughness.value scene.input(gui) scene.render() gui.set_image(scene.img) gui.show()
tests/unit/sagemaker/test_deserializers.py
LastRemote/sagemaker-python-sdk
1,690
12753646
<reponame>LastRemote/sagemaker-python-sdk<gh_stars>1000+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import absolute_import import io import json import numpy as np import pandas as pd import pytest from sagemaker.deserializers import ( StringDeserializer, BytesDeserializer, CSVDeserializer, StreamDeserializer, NumpyDeserializer, JSONDeserializer, PandasDeserializer, JSONLinesDeserializer, ) def test_string_deserializer(): deserializer = StringDeserializer() result = deserializer.deserialize(io.BytesIO(b"[1, 2, 3]"), "application/json") assert result == "[1, 2, 3]" def test_bytes_deserializer(): deserializer = BytesDeserializer() result = deserializer.deserialize(io.BytesIO(b"[1, 2, 3]"), "application/json") assert result == b"[1, 2, 3]" @pytest.fixture def csv_deserializer(): return CSVDeserializer() def test_csv_deserializer_single_element(csv_deserializer): result = csv_deserializer.deserialize(io.BytesIO(b"1"), "text/csv") assert result == [["1"]] def test_csv_deserializer_array(csv_deserializer): result = csv_deserializer.deserialize(io.BytesIO(b"1,2,3"), "text/csv") assert result == [["1", "2", "3"]] def test_csv_deserializer_2dimensional(csv_deserializer): result = csv_deserializer.deserialize(io.BytesIO(b"1,2,3\n3,4,5"), "text/csv") assert result == [["1", "2", "3"], ["3", "4", "5"]] def test_csv_deserializer_posix_compliant(csv_deserializer): result = csv_deserializer.deserialize(io.BytesIO(b"1,2,3\n3,4,5\n"), "text/csv") assert result == [["1", "2", "3"], ["3", "4", "5"]] def test_stream_deserializer(): deserializer = StreamDeserializer() stream, content_type = deserializer.deserialize(io.BytesIO(b"[1, 2, 3]"), "application/json") try: result = stream.read() finally: stream.close() assert result == b"[1, 2, 3]" assert content_type == "application/json" @pytest.fixture def numpy_deserializer(): return NumpyDeserializer() def test_numpy_deserializer_from_csv(numpy_deserializer): stream = io.BytesIO(b"1,2,3\n4,5,6") array = numpy_deserializer.deserialize(stream, "text/csv") assert np.array_equal(array, np.array([[1, 2, 3], [4, 5, 6]])) def test_numpy_deserializer_from_csv_ragged(numpy_deserializer): stream = io.BytesIO(b"1,2,3\n4,5,6,7") with pytest.raises(ValueError) as error: numpy_deserializer.deserialize(stream, "text/csv") assert "errors were detected" in str(error) def test_numpy_deserializer_from_csv_alpha(): numpy_deserializer = NumpyDeserializer(dtype="U5") stream = io.BytesIO(b"hello,2,3\n4,5,6") array = numpy_deserializer.deserialize(stream, "text/csv") assert np.array_equal(array, np.array([["hello", 2, 3], [4, 5, 6]])) def test_numpy_deserializer_from_json(numpy_deserializer): stream = io.BytesIO(b"[[1,2,3],\n[4,5,6]]") array = numpy_deserializer.deserialize(stream, "application/json") assert np.array_equal(array, np.array([[1, 2, 3], [4, 5, 6]])) # Sadly, ragged arrays work fine in JSON (giving us a 1D array of Python lists) def test_numpy_deserializer_from_json_ragged(numpy_deserializer): stream = io.BytesIO(b"[[1,2,3],\n[4,5,6,7]]") array = numpy_deserializer.deserialize(stream, "application/json") assert np.array_equal(array, np.array([[1, 2, 3], [4, 5, 6, 7]])) def test_numpy_deserializer_from_json_alpha(): numpy_deserializer = NumpyDeserializer(dtype="U5") stream = io.BytesIO(b'[["hello",2,3],\n[4,5,6]]') array = numpy_deserializer.deserialize(stream, "application/json") assert np.array_equal(array, np.array([["hello", 2, 3], [4, 5, 6]])) def test_numpy_deserializer_from_npy(numpy_deserializer): array = np.ones((2, 3)) stream = io.BytesIO() np.save(stream, array) stream.seek(0) result = numpy_deserializer.deserialize(stream, "application/x-npy") assert np.array_equal(array, result) def test_numpy_deserializer_from_npy_object_array(numpy_deserializer): array = np.array([{"a": "", "b": ""}, {"c": "", "d": ""}]) stream = io.BytesIO() np.save(stream, array) stream.seek(0) result = numpy_deserializer.deserialize(stream, "application/x-npy") assert np.array_equal(array, result) def test_numpy_deserializer_from_npy_object_array_with_allow_pickle_false(): numpy_deserializer = NumpyDeserializer(allow_pickle=False) array = np.array([{"a": "", "b": ""}, {"c": "", "d": ""}]) stream = io.BytesIO() np.save(stream, array) stream.seek(0) with pytest.raises(ValueError): numpy_deserializer.deserialize(stream, "application/x-npy") @pytest.fixture def json_deserializer(): return JSONDeserializer() def test_json_deserializer_array(json_deserializer): result = json_deserializer.deserialize(io.BytesIO(b"[1, 2, 3]"), "application/json") assert result == [1, 2, 3] def test_json_deserializer_2dimensional(json_deserializer): result = json_deserializer.deserialize( io.BytesIO(b"[[1, 2, 3], [3, 4, 5]]"), "application/json" ) assert result == [[1, 2, 3], [3, 4, 5]] def test_json_deserializer_invalid_data(json_deserializer): with pytest.raises(ValueError) as error: json_deserializer.deserialize(io.BytesIO(b"[[1]"), "application/json") assert "column" in str(error) @pytest.fixture def pandas_deserializer(): return PandasDeserializer() def test_pandas_deserializer_json(pandas_deserializer): data = {"col 1": {"row 1": "a", "row 2": "c"}, "col 2": {"row 1": "b", "row 2": "d"}} stream = io.BytesIO(json.dumps(data).encode("utf-8")) result = pandas_deserializer.deserialize(stream, "application/json") expected = pd.DataFrame( [["a", "b"], ["c", "d"]], index=["row 1", "row 2"], columns=["col 1", "col 2"] ) assert result.equals(expected) def test_pandas_deserializer_csv(pandas_deserializer): stream = io.BytesIO(b"col 1,col 2\na,b\nc,d") result = pandas_deserializer.deserialize(stream, "text/csv") expected = pd.DataFrame([["a", "b"], ["c", "d"]], columns=["col 1", "col 2"]) assert result.equals(expected) @pytest.fixture def json_lines_deserializer(): return JSONLinesDeserializer() @pytest.mark.parametrize( "source, expected", [ (b'["Name", "Score"]\n["Gilbert", 24]', [["Name", "Score"], ["Gilbert", 24]]), (b'["Name", "Score"]\n["Gilbert", 24]\n', [["Name", "Score"], ["Gilbert", 24]]), ( b'{"Name": "Gilbert", "Score": 24}\n{"Name": "Alexa", "Score": 29}', [{"Name": "Gilbert", "Score": 24}, {"Name": "Alexa", "Score": 29}], ), ], ) def test_json_lines_deserializer(json_lines_deserializer, source, expected): stream = io.BytesIO(source) content_type = "application/jsonlines" actual = json_lines_deserializer.deserialize(stream, content_type) assert actual == expected
python/ht/pyfilter/utils.py
Hengle/Houdini-Toolbox
136
12753664
<gh_stars>100-1000 """This module contains functions related to Mantra Python filtering.""" # ============================================================================= # IMPORTS # ============================================================================= # Standard Library import logging import os from typing import List, Optional _logger = logging.getLogger(__name__) # ============================================================================= # FUNCTIONS # ============================================================================= def build_pyfilter_command( pyfilter_args: Optional[List[str]] = None, pyfilter_path: Optional[str] = None ) -> str: """Build a PyFilter -P command. :param pyfilter_args: Optional list of args to pass to the command. :param pyfilter_path: Optional path to the filter script. :return: The constructed PyFilter command. """ import hou if pyfilter_args is None: pyfilter_args = [] # If no path was passed, use the one located in the HOUDINI_PATH. if pyfilter_path is None: try: pyfilter_path = hou.findFile("pyfilter/ht-pyfilter.py") # If we can't find the script them log an error and return nothing. except hou.OperationFailed: _logger.error("Could not find pyfilter/ht-pyfilter.py") return "" else: # Ensure the script path exists. if not os.path.isfile(pyfilter_path): raise OSError("No such file: {}".format(pyfilter_path)) cmd = '-P "{} {}"'.format(pyfilter_path, " ".join(pyfilter_args)) return cmd
sortedm2m_tests/compat.py
Freston2021/dfconfecciones
187
12753669
def m2m_set(instance, field_name, objs): getattr(instance, field_name).set(objs)
Codes/gracekoo/4_find_median_sorted_array.py
ghoslation/algorithm
256
12753689
<filename>Codes/gracekoo/4_find_median_sorted_array.py<gh_stars>100-1000 # -*- coding: utf-8 -*- # @Time: 2019/12/4 12:14 上午 # @Author: GraceKoo # @File: 4_find_median_sorted_array.py # @Desc: https://leetcode-cn.com/problems/median-of-two-sorted-arrays/ import timeit class Solution: def findMedianSortedArrays(self, nums1, nums2) -> float: m = len(nums1) n = len(nums2) k = (m + n) % 2 if k == 1: return self.find_k(nums1, nums2, (m + n) // 2) else: return ( self.find_k(nums1, nums2, (m + n) // 2 - 1) + self.find_k(nums1, nums2, (m + n) // 2) ) / 2 def find_k(self, nums1, nums2, k): if not nums1: return nums2[k] if not nums2: return nums1[k] # print("len nums1:", len(nums1), "len nums2:", len(nums2)) i = len(nums1) // 2 j = len(nums2) // 2 # print(i, j, k) if k > i + j: if nums1[i] > nums2[j]: return self.find_k(nums1, nums2[j + 1 :], k - j - 1) else: return self.find_k(nums1[i + 1 :], nums2, k - i - 1) else: if nums1[i] > nums2[j]: return self.find_k(nums1[:i], nums2, k) else: return self.find_k(nums1, nums2[:j], k) if __name__ == "__main__": so = Solution() nums1 = [1, 2, 3] nums2 = [1, 2, 3] start = timeit.default_timer() print(so.findMedianSortedArrays(nums1, nums2)) end = timeit.default_timer() print(str((end - start) * 1000), "s") nums1 = [1, 2, 3] nums2 = [4, 5, 6] print(so.findMedianSortedArrays(nums1, nums2)) nums1 = [1, 2, 3] nums2 = [4, 5] print(so.findMedianSortedArrays(nums1, nums2)) nums1 = [1, 4, 6] nums2 = [2, 5] print(so.findMedianSortedArrays(nums1, nums2))
fonts/vector/symbol.py
szczys/st7789_mpy
153
12753697
<gh_stars>100-1000 WIDTH = 87 HEIGHT = 87 FIRST = 0x20 LAST = 0x7f _font =\ b'\x00\x4a\x5a\x02\x44\x60\x44\x52\x60\x52\x02\x44\x60\x44\x60'\ b'\x60\x44\x02\x52\x52\x52\x3e\x52\x66\x02\x44\x60\x44\x44\x60'\ b'\x60\x02\x44\x60\x44\x52\x60\x52\x02\x46\x5e\x46\x59\x5e\x4b'\ b'\x02\x4b\x59\x4b\x5e\x59\x46\x02\x52\x52\x52\x44\x52\x60\x02'\ b'\x4b\x59\x4b\x46\x59\x5e\x02\x46\x5e\x46\x4b\x5e\x59\x02\x4b'\ b'\x59\x4b\x52\x59\x52\x02\x4d\x57\x4d\x57\x57\x4d\x02\x52\x52'\ b'\x52\x4b\x52\x59\x02\x4d\x57\x4d\x4d\x57\x57\x07\x47\x52\x52'\ b'\x47\x50\x47\x4d\x48\x4a\x4a\x48\x4d\x47\x50\x47\x52\x07\x47'\ b'\x52\x47\x52\x47\x54\x48\x57\x4a\x5a\x4d\x5c\x50\x5d\x52\x5d'\ b'\x07\x52\x5d\x52\x5d\x54\x5d\x57\x5c\x5a\x5a\x5c\x57\x5d\x54'\ b'\x5d\x52\x07\x52\x5d\x5d\x52\x5d\x50\x5c\x4d\x5a\x4a\x57\x48'\ b'\x54\x47\x52\x47\x08\x44\x60\x44\x4f\x47\x51\x4b\x53\x50\x54'\ b'\x54\x54\x59\x53\x5d\x51\x60\x4f\x08\x50\x55\x55\x44\x53\x47'\ b'\x51\x4b\x50\x50\x50\x54\x51\x59\x53\x5d\x55\x60\x08\x4f\x54'\ b'\x4f\x44\x51\x47\x53\x4b\x54\x50\x54\x54\x53\x59\x51\x5d\x4f'\ b'\x60\x08\x44\x60\x44\x55\x47\x53\x4b\x51\x50\x50\x54\x50\x59'\ b'\x51\x5d\x53\x60\x55\x04\x4b\x59\x52\x4a\x59\x4e\x4b\x56\x52'\ b'\x5a\x04\x4a\x5a\x4a\x52\x4e\x4b\x56\x59\x5a\x52\x04\x4b\x59'\ b'\x4b\x56\x4b\x4e\x59\x56\x59\x4e\x04\x4a\x5a\x4c\x58\x4a\x50'\ b'\x5a\x54\x58\x4c\x16\x4a\x5a\x4a\x5d\x4c\x5d\x4f\x5c\x51\x5b'\ b'\x54\x58\x55\x56\x56\x53\x56\x4f\x55\x4c\x54\x4a\x53\x49\x51'\ b'\x49\x50\x4a\x4f\x4c\x4e\x4f\x4e\x53\x4f\x56\x50\x58\x53\x5b'\ b'\x55\x5c\x58\x5d\x5a\x5d\x16\x49\x5d\x5d\x5a\x5d\x58\x5c\x55'\ b'\x5b\x53\x58\x50\x56\x4f\x53\x4e\x4f\x4e\x4c\x4f\x4a\x50\x49'\ b'\x51\x49\x53\x4a\x54\x4c\x55\x4f\x56\x53\x56\x56\x55\x58\x54'\ b'\x5b\x51\x5c\x4f\x5d\x4c\x5d\x4a\x16\x4a\x5a\x5a\x47\x58\x47'\ b'\x55\x48\x53\x49\x50\x4c\x4f\x4e\x4e\x51\x4e\x55\x4f\x58\x50'\ b'\x5a\x51\x5b\x53\x5b\x54\x5a\x55\x58\x56\x55\x56\x51\x55\x4e'\ b'\x54\x4c\x51\x49\x4f\x48\x4c\x47\x4a\x47\x16\x47\x5b\x47\x4a'\ b'\x47\x4c\x48\x4f\x49\x51\x4c\x54\x4e\x55\x51\x56\x55\x56\x58'\ b'\x55\x5a\x54\x5b\x53\x5b\x51\x5a\x50\x58\x4f\x55\x4e\x51\x4e'\ b'\x4e\x4f\x4c\x50\x49\x53\x48\x55\x47\x58\x47\x5a\x14\x45\x5b'\ b'\x45\x50\x46\x52\x48\x54\x4a\x55\x4d\x56\x51\x56\x55\x55\x58'\ b'\x53\x5a\x50\x5b\x4e\x5a\x4c\x57\x4c\x53\x4d\x51\x4e\x4e\x50'\ b'\x4c\x53\x4b\x56\x4b\x59\x4c\x5c\x4d\x5e\x12\x45\x59\x45\x54'\ b'\x48\x56\x4b\x57\x50\x57\x53\x56\x56\x54\x58\x51\x59\x4e\x59'\ b'\x4c\x58\x4b\x56\x4b\x53\x4c\x50\x4e\x4e\x51\x4d\x54\x4d\x59'\ b'\x4e\x5c\x50\x5f\x19\x4f\x55\x51\x4f\x4f\x51\x4f\x53\x51\x55'\ b'\x53\x55\x55\x53\x55\x51\x53\x4f\x51\x4f\x20\x52\x51\x50\x50'\ b'\x51\x50\x53\x51\x54\x53\x54\x54\x53\x54\x51\x53\x50\x51\x50'\ b'\x20\x52\x52\x51\x51\x52\x52\x53\x53\x52\x52\x51\x0a\x52\x57'\ b'\x52\x4d\x53\x4d\x55\x4e\x56\x4f\x57\x51\x57\x53\x56\x55\x55'\ b'\x56\x53\x57\x52\x57\x08\x44\x60\x44\x52\x4a\x52\x20\x52\x4f'\ b'\x52\x55\x52\x20\x52\x5a\x52\x60\x52\x04\x44\x60\x44\x55\x44'\ b'\x4f\x60\x4f\x60\x55\x05\x4a\x5a\x52\x44\x4a\x52\x20\x52\x52'\ b'\x44\x5a\x52\x08\x44\x60\x44\x52\x60\x52\x20\x52\x4a\x59\x5a'\ b'\x59\x20\x52\x50\x60\x54\x60\x08\x44\x60\x44\x52\x60\x52\x20'\ b'\x52\x44\x52\x52\x62\x20\x52\x60\x52\x52\x62\x11\x4b\x59\x51'\ b'\x4b\x4e\x4c\x4c\x4e\x4b\x51\x4b\x53\x4c\x56\x4e\x58\x51\x59'\ b'\x53\x59\x56\x58\x58\x56\x59\x53\x59\x51\x58\x4e\x56\x4c\x53'\ b'\x4b\x51\x4b\x05\x4c\x58\x4c\x4c\x4c\x58\x58\x58\x58\x4c\x4c'\ b'\x4c\x04\x4b\x59\x52\x4a\x4b\x56\x59\x56\x52\x4a\x05\x4c\x58'\ b'\x52\x48\x4c\x52\x52\x5c\x58\x52\x52\x48\x0b\x4a\x5a\x52\x49'\ b'\x50\x4f\x4a\x4f\x4f\x53\x4d\x59\x52\x55\x57\x59\x55\x53\x5a'\ b'\x4f\x54\x4f\x52\x49\x05\x4b\x59\x52\x4b\x52\x59\x20\x52\x4b'\ b'\x52\x59\x52\x05\x4d\x57\x4d\x4d\x57\x57\x20\x52\x57\x4d\x4d'\ b'\x57\x08\x4d\x57\x52\x4c\x52\x58\x20\x52\x4d\x4f\x57\x55\x20'\ b'\x52\x57\x4f\x4d\x55\x22\x4e\x56\x51\x4e\x4f\x4f\x4e\x51\x4e'\ b'\x53\x4f\x55\x51\x56\x53\x56\x55\x55\x56\x53\x56\x51\x55\x4f'\ b'\x53\x4e\x51\x4e\x20\x52\x4f\x51\x4f\x53\x20\x52\x50\x50\x50'\ b'\x54\x20\x52\x51\x4f\x51\x55\x20\x52\x52\x4f\x52\x55\x20\x52'\ b'\x53\x4f\x53\x55\x20\x52\x54\x50\x54\x54\x20\x52\x55\x51\x55'\ b'\x53\x1a\x4e\x56\x4e\x4e\x4e\x56\x56\x56\x56\x4e\x4e\x4e\x20'\ b'\x52\x4f\x4f\x4f\x55\x20\x52\x50\x4f\x50\x55\x20\x52\x51\x4f'\ b'\x51\x55\x20\x52\x52\x4f\x52\x55\x20\x52\x53\x4f\x53\x55\x20'\ b'\x52\x54\x4f\x54\x55\x20\x52\x55\x4f\x55\x55\x10\x4d\x57\x52'\ b'\x4c\x4d\x55\x57\x55\x52\x4c\x20\x52\x52\x4f\x4f\x54\x20\x52'\ b'\x52\x4f\x55\x54\x20\x52\x52\x52\x51\x54\x20\x52\x52\x52\x53'\ b'\x54\x10\x4c\x55\x4c\x52\x55\x57\x55\x4d\x4c\x52\x20\x52\x4f'\ b'\x52\x54\x55\x20\x52\x4f\x52\x54\x4f\x20\x52\x52\x52\x54\x53'\ b'\x20\x52\x52\x52\x54\x51\x10\x4d\x57\x52\x58\x57\x4f\x4d\x4f'\ b'\x52\x58\x20\x52\x52\x55\x55\x50\x20\x52\x52\x55\x4f\x50\x20'\ b'\x52\x52\x52\x53\x50\x20\x52\x52\x52\x51\x50\x10\x4f\x58\x58'\ b'\x52\x4f\x4d\x4f\x57\x58\x52\x20\x52\x55\x52\x50\x4f\x20\x52'\ b'\x55\x52\x50\x55\x20\x52\x52\x52\x50\x51\x20\x52\x52\x52\x50'\ b'\x53\x0a\x52\x59\x52\x4b\x52\x59\x20\x52\x52\x4b\x59\x4e\x52'\ b'\x51\x20\x52\x53\x4d\x56\x4e\x53\x4f\x14\x49\x5b\x52\x47\x52'\ b'\x56\x20\x52\x4d\x4a\x57\x50\x20\x52\x57\x4a\x4d\x50\x20\x52'\ b'\x49\x56\x4c\x5c\x20\x52\x5b\x56\x58\x5c\x20\x52\x49\x56\x5b'\ b'\x56\x20\x52\x4c\x5c\x58\x5c\x0c\x4d\x57\x52\x4c\x52\x58\x20'\ b'\x52\x4f\x4f\x55\x4f\x20\x52\x4d\x55\x4f\x57\x51\x58\x53\x58'\ b'\x55\x57\x57\x55\x0a\x4c\x58\x52\x4c\x52\x58\x20\x52\x4c\x51'\ b'\x4d\x4f\x57\x4f\x58\x51\x20\x52\x50\x57\x54\x57\x0d\x4b\x59'\ b'\x4d\x4e\x57\x58\x20\x52\x57\x4e\x4d\x58\x20\x52\x4f\x4c\x4c'\ b'\x4f\x4b\x51\x20\x52\x55\x4c\x58\x4f\x59\x51\x11\x49\x5b\x4e'\ b'\x49\x49\x5b\x20\x52\x56\x49\x5b\x5b\x20\x52\x4d\x4d\x5b\x5b'\ b'\x20\x52\x57\x4d\x49\x5b\x20\x52\x4e\x49\x56\x49\x20\x52\x4d'\ b'\x4d\x57\x4d\x02\x4b\x59\x4b\x46\x59\x5e\x0a\x47\x5b\x4d\x4a'\ b'\x53\x56\x20\x52\x4b\x50\x53\x4c\x20\x52\x47\x5c\x5b\x5c\x5b'\ b'\x52\x47\x5c\x0d\x4c\x58\x50\x4c\x50\x50\x4c\x50\x4c\x54\x50'\ b'\x54\x50\x58\x54\x58\x54\x54\x58\x54\x58\x50\x54\x50\x54\x4c'\ b'\x50\x4c\x1f\x4b\x59\x59\x50\x58\x4e\x56\x4c\x53\x4b\x51\x4b'\ b'\x4e\x4c\x4c\x4e\x4b\x51\x4b\x53\x4c\x56\x4e\x58\x51\x59\x53'\ b'\x59\x56\x58\x58\x56\x59\x54\x20\x52\x59\x50\x57\x4e\x55\x4d'\ b'\x53\x4d\x51\x4e\x50\x4f\x4f\x51\x4f\x53\x50\x55\x51\x56\x53'\ b'\x57\x55\x57\x57\x56\x59\x54\x09\x4b\x59\x52\x4a\x4b\x56\x59'\ b'\x56\x52\x4a\x20\x52\x52\x5a\x59\x4e\x4b\x4e\x52\x5a\x21\x47'\ b'\x5d\x50\x49\x50\x47\x51\x46\x53\x46\x54\x47\x54\x49\x20\x52'\ b'\x47\x5a\x48\x58\x4a\x56\x4b\x54\x4c\x50\x4c\x4b\x4d\x4a\x4f'\ b'\x49\x55\x49\x57\x4a\x58\x4b\x58\x50\x59\x54\x5a\x56\x5c\x58'\ b'\x5d\x5a\x20\x52\x47\x5a\x5d\x5a\x20\x52\x51\x5a\x50\x5b\x51'\ b'\x5c\x53\x5c\x54\x5b\x53\x5a\x3f\x4a\x5a\x52\x4d\x52\x53\x20'\ b'\x52\x52\x53\x51\x5c\x20\x52\x52\x53\x53\x5c\x20\x52\x51\x5c'\ b'\x53\x5c\x20\x52\x52\x4d\x51\x4a\x50\x48\x4e\x47\x20\x52\x51'\ b'\x4a\x4e\x47\x20\x52\x52\x4d\x53\x4a\x54\x48\x56\x47\x20\x52'\ b'\x53\x4a\x56\x47\x20\x52\x52\x4d\x4e\x4b\x4c\x4b\x4a\x4d\x20'\ b'\x52\x50\x4c\x4c\x4c\x4a\x4d\x20\x52\x52\x4d\x56\x4b\x58\x4b'\ b'\x5a\x4d\x20\x52\x54\x4c\x58\x4c\x5a\x4d\x20\x52\x52\x4d\x50'\ b'\x4e\x4f\x4f\x4f\x52\x20\x52\x52\x4d\x50\x4f\x4f\x52\x20\x52'\ b'\x52\x4d\x54\x4e\x55\x4f\x55\x52\x20\x52\x52\x4d\x54\x4f\x55'\ b'\x52\x5d\x4a\x5a\x52\x49\x52\x4b\x20\x52\x52\x4e\x52\x50\x20'\ b'\x52\x52\x53\x52\x55\x20\x52\x52\x59\x51\x5c\x20\x52\x52\x59'\ b'\x53\x5c\x20\x52\x51\x5c\x53\x5c\x20\x52\x52\x47\x51\x49\x50'\ b'\x4a\x20\x52\x52\x47\x53\x49\x54\x4a\x20\x52\x50\x4a\x52\x49'\ b'\x54\x4a\x20\x52\x52\x4b\x50\x4e\x4e\x4f\x4d\x4e\x20\x52\x52'\ b'\x4b\x54\x4e\x56\x4f\x57\x4e\x20\x52\x4e\x4f\x50\x4f\x52\x4e'\ b'\x54\x4f\x56\x4f\x20\x52\x52\x50\x50\x53\x4e\x54\x4c\x54\x4b'\ b'\x52\x4b\x53\x4c\x54\x20\x52\x52\x50\x54\x53\x56\x54\x58\x54'\ b'\x59\x52\x59\x53\x58\x54\x20\x52\x4e\x54\x50\x54\x52\x53\x54'\ b'\x54\x56\x54\x20\x52\x52\x55\x50\x58\x4f\x59\x4d\x5a\x4c\x5a'\ b'\x4b\x59\x4a\x57\x4a\x59\x4c\x5a\x20\x52\x52\x55\x54\x58\x55'\ b'\x59\x57\x5a\x58\x5a\x59\x59\x5a\x57\x5a\x59\x58\x5a\x20\x52'\ b'\x4d\x5a\x4f\x5a\x52\x59\x55\x5a\x57\x5a\x27\x4a\x5a\x52\x59'\ b'\x51\x5c\x20\x52\x52\x59\x53\x5c\x20\x52\x51\x5c\x53\x5c\x20'\ b'\x52\x52\x59\x55\x5a\x58\x5a\x5a\x58\x5a\x55\x59\x54\x57\x54'\ b'\x59\x52\x5a\x4f\x59\x4d\x57\x4c\x55\x4d\x56\x4a\x55\x48\x53'\ b'\x47\x51\x47\x4f\x48\x4e\x4a\x4f\x4d\x4d\x4c\x4b\x4d\x4a\x4f'\ b'\x4b\x52\x4d\x54\x4b\x54\x4a\x55\x4a\x58\x4c\x5a\x4f\x5a\x52'\ b'\x59\x1f\x4a\x5a\x52\x59\x51\x5c\x20\x52\x52\x59\x53\x5c\x20'\ b'\x52\x51\x5c\x53\x5c\x20\x52\x52\x59\x56\x58\x56\x56\x58\x55'\ b'\x58\x52\x5a\x51\x5a\x4c\x59\x49\x58\x48\x56\x48\x54\x47\x50'\ b'\x47\x4e\x48\x4c\x48\x4b\x49\x4a\x4c\x4a\x51\x4c\x52\x4c\x55'\ b'\x4e\x56\x4e\x58\x52\x59\x0e\x49\x5b\x49\x50\x4b\x52\x20\x52'\ b'\x4c\x4b\x4e\x50\x20\x52\x52\x47\x52\x4f\x20\x52\x58\x4b\x56'\ b'\x50\x20\x52\x5b\x50\x59\x52\x1b\x47\x5d\x49\x49\x4a\x4b\x4b'\ b'\x4f\x4b\x55\x4a\x59\x49\x5b\x20\x52\x5b\x49\x5a\x4b\x59\x4f'\ b'\x59\x55\x5a\x59\x5b\x5b\x20\x52\x49\x49\x4b\x4a\x4f\x4b\x55'\ b'\x4b\x59\x4a\x5b\x49\x20\x52\x49\x5b\x4b\x5a\x4f\x59\x55\x59'\ b'\x59\x5a\x5b\x5b\x36\x46\x5e\x52\x52\x52\x5b\x51\x5c\x20\x52'\ b'\x52\x56\x51\x5c\x20\x52\x52\x49\x51\x48\x4f\x48\x4e\x49\x4e'\ b'\x4b\x4f\x4e\x52\x52\x20\x52\x52\x49\x53\x48\x55\x48\x56\x49'\ b'\x56\x4b\x55\x4e\x52\x52\x20\x52\x52\x52\x4e\x4f\x4c\x4e\x4a'\ b'\x4e\x49\x4f\x49\x51\x4a\x52\x20\x52\x52\x52\x56\x4f\x58\x4e'\ b'\x5a\x4e\x5b\x4f\x5b\x51\x5a\x52\x20\x52\x52\x52\x4e\x55\x4c'\ b'\x56\x4a\x56\x49\x55\x49\x53\x4a\x52\x20\x52\x52\x52\x56\x55'\ b'\x58\x56\x5a\x56\x5b\x55\x5b\x53\x5a\x52\x2d\x4a\x5a\x55\x49'\ b'\x54\x4a\x55\x4b\x56\x4a\x56\x49\x55\x47\x53\x46\x51\x46\x4f'\ b'\x47\x4e\x49\x4e\x4b\x4f\x4d\x51\x4f\x56\x52\x20\x52\x4f\x4d'\ b'\x54\x50\x56\x52\x57\x54\x57\x56\x56\x58\x54\x5a\x20\x52\x50'\ b'\x4e\x4e\x50\x4d\x52\x4d\x54\x4e\x56\x50\x58\x55\x5b\x20\x52'\ b'\x4e\x56\x53\x59\x55\x5b\x56\x5d\x56\x5f\x55\x61\x53\x62\x51'\ b'\x62\x4f\x61\x4e\x5f\x4e\x5e\x4f\x5d\x50\x5e\x4f\x5f\x1d\x4a'\ b'\x5a\x52\x46\x51\x48\x52\x4a\x53\x48\x52\x46\x20\x52\x52\x46'\ b'\x52\x62\x20\x52\x52\x51\x51\x54\x52\x62\x53\x54\x52\x51\x20'\ b'\x52\x4c\x4d\x4e\x4e\x50\x4d\x4e\x4c\x4c\x4d\x20\x52\x4c\x4d'\ b'\x58\x4d\x20\x52\x54\x4d\x56\x4e\x58\x4d\x56\x4c\x54\x4d\x37'\ b'\x4a\x5a\x52\x46\x51\x48\x52\x4a\x53\x48\x52\x46\x20\x52\x52'\ b'\x46\x52\x54\x20\x52\x52\x50\x51\x52\x53\x56\x52\x58\x51\x56'\ b'\x53\x52\x52\x50\x20\x52\x52\x54\x52\x62\x20\x52\x52\x5e\x51'\ b'\x60\x52\x62\x53\x60\x52\x5e\x20\x52\x4c\x4d\x4e\x4e\x50\x4d'\ b'\x4e\x4c\x4c\x4d\x20\x52\x4c\x4d\x58\x4d\x20\x52\x54\x4d\x56'\ b'\x4e\x58\x4d\x56\x4c\x54\x4d\x20\x52\x4c\x5b\x4e\x5c\x50\x5b'\ b'\x4e\x5a\x4c\x5b\x20\x52\x4c\x5b\x58\x5b\x20\x52\x54\x5b\x56'\ b'\x5c\x58\x5b\x56\x5a\x54\x5b\x11\x45\x5f\x52\x49\x51\x4a\x52'\ b'\x4b\x53\x4a\x52\x49\x20\x52\x49\x59\x48\x5a\x49\x5b\x4a\x5a'\ b'\x49\x59\x20\x52\x5b\x59\x5a\x5a\x5b\x5b\x5c\x5a\x5b\x59\x20'\ b'\x46\x5e\x52\x48\x4e\x4c\x4b\x50\x4a\x53\x4a\x55\x4b\x57\x4d'\ b'\x58\x4f\x58\x51\x57\x52\x55\x20\x52\x52\x48\x56\x4c\x59\x50'\ b'\x5a\x53\x5a\x55\x59\x57\x57\x58\x55\x58\x53\x57\x52\x55\x20'\ b'\x52\x52\x55\x51\x59\x50\x5c\x20\x52\x52\x55\x53\x59\x54\x5c'\ b'\x20\x52\x50\x5c\x54\x5c\x19\x46\x5e\x52\x4e\x51\x4b\x50\x49'\ b'\x4e\x48\x4d\x48\x4b\x49\x4a\x4b\x4a\x4f\x4b\x52\x4c\x54\x4e'\ b'\x57\x52\x5c\x20\x52\x52\x4e\x53\x4b\x54\x49\x56\x48\x57\x48'\ b'\x59\x49\x5a\x4b\x5a\x4f\x59\x52\x58\x54\x56\x57\x52\x5c\x13'\ b'\x46\x5e\x52\x47\x50\x4a\x4c\x4f\x49\x52\x20\x52\x52\x47\x54'\ b'\x4a\x58\x4f\x5b\x52\x20\x52\x49\x52\x4c\x55\x50\x5a\x52\x5d'\ b'\x20\x52\x5b\x52\x58\x55\x54\x5a\x52\x5d\x2f\x46\x5e\x52\x54'\ b'\x54\x57\x56\x58\x58\x58\x5a\x57\x5b\x55\x5b\x53\x5a\x51\x58'\ b'\x50\x56\x50\x53\x51\x20\x52\x53\x51\x55\x4f\x56\x4d\x56\x4b'\ b'\x55\x49\x53\x48\x51\x48\x4f\x49\x4e\x4b\x4e\x4d\x4f\x4f\x51'\ b'\x51\x20\x52\x51\x51\x4e\x50\x4c\x50\x4a\x51\x49\x53\x49\x55'\ b'\x4a\x57\x4c\x58\x4e\x58\x50\x57\x52\x54\x20\x52\x52\x54\x51'\ b'\x59\x50\x5c\x20\x52\x52\x54\x53\x59\x54\x5c\x20\x52\x50\x5c'\ b'\x54\x5c\x2f\x49\x5b\x56\x2b\x53\x2d\x51\x2f\x50\x31\x4f\x34'\ b'\x4f\x38\x50\x3c\x54\x44\x55\x47\x55\x4a\x54\x4d\x52\x50\x20'\ b'\x52\x53\x2d\x51\x30\x50\x34\x50\x38\x51\x3b\x55\x43\x56\x47'\ b'\x56\x4a\x55\x4d\x52\x50\x4e\x52\x52\x54\x55\x57\x56\x5a\x56'\ b'\x5d\x55\x61\x51\x69\x50\x6c\x50\x70\x51\x74\x53\x77\x20\x52'\ b'\x52\x54\x54\x57\x55\x5a\x55\x5d\x54\x60\x50\x68\x4f\x6c\x4f'\ b'\x70\x50\x73\x51\x75\x53\x77\x56\x79\x2f\x49\x5b\x4e\x2b\x51'\ b'\x2d\x53\x2f\x54\x31\x55\x34\x55\x38\x54\x3c\x50\x44\x4f\x47'\ b'\x4f\x4a\x50\x4d\x52\x50\x20\x52\x51\x2d\x53\x30\x54\x34\x54'\ b'\x38\x53\x3b\x4f\x43\x4e\x47\x4e\x4a\x4f\x4d\x52\x50\x56\x52'\ b'\x52\x54\x4f\x57\x4e\x5a\x4e\x5d\x4f\x61\x53\x69\x54\x6c\x54'\ b'\x70\x53\x74\x51\x77\x20\x52\x52\x54\x50\x57\x4f\x5a\x4f\x5d'\ b'\x50\x60\x54\x68\x55\x6c\x55\x70\x54\x73\x53\x75\x51\x77\x4e'\ b'\x79\x1f\x49\x5b\x56\x2e\x53\x31\x51\x34\x4f\x38\x4e\x3d\x4e'\ b'\x43\x4f\x49\x50\x4d\x53\x58\x54\x5c\x55\x62\x55\x67\x54\x6c'\ b'\x53\x6f\x51\x73\x20\x52\x53\x31\x51\x35\x50\x38\x4f\x3d\x4f'\ b'\x42\x50\x48\x51\x4c\x54\x57\x55\x5b\x56\x61\x56\x67\x55\x6c'\ b'\x53\x70\x51\x73\x4e\x76\x1f\x49\x5b\x4e\x2e\x51\x31\x53\x34'\ b'\x55\x38\x56\x3d\x56\x43\x55\x49\x54\x4d\x51\x58\x50\x5c\x4f'\ b'\x62\x4f\x67\x50\x6c\x51\x6f\x53\x73\x20\x52\x51\x31\x53\x35'\ b'\x54\x38\x55\x3d\x55\x42\x54\x48\x53\x4c\x50\x57\x4f\x5b\x4e'\ b'\x61\x4e\x67\x4f\x6c\x51\x70\x53\x73\x56\x76\x0d\x37\x5a\x3a'\ b'\x52\x41\x52\x52\x6f\x20\x52\x40\x52\x51\x6f\x20\x52\x3f\x52'\ b'\x52\x72\x20\x52\x5a\x22\x56\x4a\x52\x72\x1a\x49\x5b\x54\x4d'\ b'\x56\x4e\x58\x50\x58\x4f\x57\x4e\x54\x4d\x51\x4d\x4e\x4e\x4d'\ b'\x4f\x4c\x51\x4c\x53\x4d\x55\x4f\x57\x53\x5a\x20\x52\x51\x4d'\ b'\x4f\x4e\x4e\x4f\x4d\x51\x4d\x53\x4e\x55\x53\x5a\x54\x5c\x54'\ b'\x5e\x53\x5f\x51\x5f\x2c\x47\x5d\x4c\x4d\x4b\x4e\x4a\x50\x4a'\ b'\x52\x4b\x55\x4f\x59\x50\x5b\x20\x52\x4a\x52\x4b\x54\x4f\x58'\ b'\x50\x5b\x50\x5d\x4f\x60\x4d\x62\x4c\x62\x4b\x61\x4a\x5f\x4a'\ b'\x5c\x4b\x58\x4d\x54\x4f\x51\x52\x4e\x54\x4d\x56\x4d\x59\x4e'\ b'\x5a\x50\x5a\x54\x59\x58\x57\x5a\x55\x5b\x54\x5b\x53\x5a\x53'\ b'\x58\x54\x57\x55\x58\x54\x59\x20\x52\x56\x4d\x58\x4e\x59\x50'\ b'\x59\x54\x58\x58\x57\x5a\x44\x45\x5f\x59\x47\x58\x48\x59\x49'\ b'\x5a\x48\x59\x47\x57\x46\x54\x46\x51\x47\x4f\x49\x4e\x4b\x4d'\ b'\x4e\x4c\x52\x4a\x5b\x49\x5f\x48\x61\x20\x52\x54\x46\x52\x47'\ b'\x50\x49\x4f\x4b\x4e\x4e\x4c\x57\x4b\x5b\x4a\x5e\x49\x60\x48'\ b'\x61\x46\x62\x44\x62\x43\x61\x43\x60\x44\x5f\x45\x60\x44\x61'\ b'\x20\x52\x5f\x47\x5e\x48\x5f\x49\x60\x48\x60\x47\x5f\x46\x5d'\ b'\x46\x5b\x47\x5a\x48\x59\x4a\x58\x4d\x55\x5b\x54\x5f\x53\x61'\ b'\x20\x52\x5d\x46\x5b\x48\x5a\x4a\x59\x4e\x57\x57\x56\x5b\x55'\ b'\x5e\x54\x60\x53\x61\x51\x62\x4f\x62\x4e\x61\x4e\x60\x4f\x5f'\ b'\x50\x60\x4f\x61\x20\x52\x49\x4d\x5e\x4d\x33\x46\x5e\x5b\x47'\ b'\x5a\x48\x5b\x49\x5c\x48\x5b\x47\x58\x46\x55\x46\x52\x47\x50'\ b'\x49\x4f\x4b\x4e\x4e\x4d\x52\x4b\x5b\x4a\x5f\x49\x61\x20\x52'\ b'\x55\x46\x53\x47\x51\x49\x50\x4b\x4f\x4e\x4d\x57\x4c\x5b\x4b'\ b'\x5e\x4a\x60\x49\x61\x47\x62\x45\x62\x44\x61\x44\x60\x45\x5f'\ b'\x46\x60\x45\x61\x20\x52\x59\x4d\x57\x54\x56\x58\x56\x5a\x57'\ b'\x5b\x5a\x5b\x5c\x59\x5d\x57\x20\x52\x5a\x4d\x58\x54\x57\x58'\ b'\x57\x5a\x58\x5b\x20\x52\x4a\x4d\x5a\x4d\x35\x46\x5e\x59\x47'\ b'\x58\x48\x59\x49\x5a\x48\x5a\x47\x58\x46\x20\x52\x5c\x46\x55'\ b'\x46\x52\x47\x50\x49\x4f\x4b\x4e\x4e\x4d\x52\x4b\x5b\x4a\x5f'\ b'\x49\x61\x20\x52\x55\x46\x53\x47\x51\x49\x50\x4b\x4f\x4e\x4d'\ b'\x57\x4c\x5b\x4b\x5e\x4a\x60\x49\x61\x47\x62\x45\x62\x44\x61'\ b'\x44\x60\x45\x5f\x46\x60\x45\x61\x20\x52\x5b\x46\x57\x54\x56'\ b'\x58\x56\x5a\x57\x5b\x5a\x5b\x5c\x59\x5d\x57\x20\x52\x5c\x46'\ b'\x58\x54\x57\x58\x57\x5a\x58\x5b\x20\x52\x4a\x4d\x59\x4d\x55'\ b'\x40\x63\x54\x47\x53\x48\x54\x49\x55\x48\x54\x47\x52\x46\x4f'\ b'\x46\x4c\x47\x4a\x49\x49\x4b\x48\x4e\x47\x52\x45\x5b\x44\x5f'\ b'\x43\x61\x20\x52\x4f\x46\x4d\x47\x4b\x49\x4a\x4b\x49\x4e\x47'\ b'\x57\x46\x5b\x45\x5e\x44\x60\x43\x61\x41\x62\x3f\x62\x3e\x61'\ b'\x3e\x60\x3f\x5f\x40\x60\x3f\x61\x20\x52\x60\x47\x5f\x48\x60'\ b'\x49\x61\x48\x60\x47\x5d\x46\x5a\x46\x57\x47\x55\x49\x54\x4b'\ b'\x53\x4e\x52\x52\x50\x5b\x4f\x5f\x4e\x61\x20\x52\x5a\x46\x58'\ b'\x47\x56\x49\x55\x4b\x54\x4e\x52\x57\x51\x5b\x50\x5e\x4f\x60'\ b'\x4e\x61\x4c\x62\x4a\x62\x49\x61\x49\x60\x4a\x5f\x4b\x60\x4a'\ b'\x61\x20\x52\x5e\x4d\x5c\x54\x5b\x58\x5b\x5a\x5c\x5b\x5f\x5b'\ b'\x61\x59\x62\x57\x20\x52\x5f\x4d\x5d\x54\x5c\x58\x5c\x5a\x5d'\ b'\x5b\x20\x52\x44\x4d\x5f\x4d\x57\x40\x63\x54\x47\x53\x48\x54'\ b'\x49\x55\x48\x54\x47\x52\x46\x4f\x46\x4c\x47\x4a\x49\x49\x4b'\ b'\x48\x4e\x47\x52\x45\x5b\x44\x5f\x43\x61\x20\x52\x4f\x46\x4d'\ b'\x47\x4b\x49\x4a\x4b\x49\x4e\x47\x57\x46\x5b\x45\x5e\x44\x60'\ b'\x43\x61\x41\x62\x3f\x62\x3e\x61\x3e\x60\x3f\x5f\x40\x60\x3f'\ b'\x61\x20\x52\x5e\x47\x5d\x48\x5e\x49\x5f\x48\x5f\x47\x5d\x46'\ b'\x20\x52\x61\x46\x5a\x46\x57\x47\x55\x49\x54\x4b\x53\x4e\x52'\ b'\x52\x50\x5b\x4f\x5f\x4e\x61\x20\x52\x5a\x46\x58\x47\x56\x49'\ b'\x55\x4b\x54\x4e\x52\x57\x51\x5b\x50\x5e\x4f\x60\x4e\x61\x4c'\ b'\x62\x4a\x62\x49\x61\x49\x60\x4a\x5f\x4b\x60\x4a\x61\x20\x52'\ b'\x60\x46\x5c\x54\x5b\x58\x5b\x5a\x5c\x5b\x5f\x5b\x61\x59\x62'\ b'\x57\x20\x52\x61\x46\x5d\x54\x5c\x58\x5c\x5a\x5d\x5b\x20\x52'\ b'\x44\x4d\x5e\x4d\x13\x4c\x59\x4d\x51\x4e\x4f\x50\x4d\x53\x4d'\ b'\x54\x4e\x54\x51\x52\x57\x52\x5a\x53\x5b\x20\x52\x52\x4d\x53'\ b'\x4e\x53\x51\x51\x57\x51\x5a\x52\x5b\x55\x5b\x57\x59\x58\x57'\ b'\x15\x4c\x58\x52\x4c\x4e\x57\x58\x50\x4c\x50\x56\x57\x52\x4c'\ b'\x20\x52\x52\x52\x52\x4c\x20\x52\x52\x52\x4c\x50\x20\x52\x52'\ b'\x52\x4e\x57\x20\x52\x52\x52\x56\x57\x20\x52\x52\x52\x58\x50'\ b'\x17\x46\x5e\x49\x55\x49\x53\x4a\x50\x4c\x4f\x4e\x4f\x50\x50'\ b'\x54\x53\x56\x54\x58\x54\x5a\x53\x5b\x51\x20\x52\x49\x53\x4a'\ b'\x51\x4c\x50\x4e\x50\x50\x51\x54\x54\x56\x55\x58\x55\x5a\x54'\ b'\x5b\x51\x5b\x4f' _index =\ b'\x00\x00\x03\x00\x0a\x00\x11\x00\x18\x00\x1f\x00\x26\x00\x2d'\ b'\x00\x34\x00\x3b\x00\x42\x00\x49\x00\x50\x00\x57\x00\x5e\x00'\ b'\x65\x00\x76\x00\x87\x00\x98\x00\xa9\x00\xbc\x00\xcf\x00\xe2'\ b'\x00\xf5\x00\x00\x01\x0b\x01\x16\x01\x21\x01\x50\x01\x7f\x01'\ b'\xae\x01\xdd\x01\x08\x02\x2f\x02\x64\x02\x7b\x02\x8e\x02\x99'\ b'\x02\xa6\x02\xb9\x02\xcc\x02\xf1\x02\xfe\x02\x09\x03\x16\x03'\ b'\x2f\x03\x3c\x03\x49\x03\x5c\x03\xa3\x03\xda\x03\xfd\x03\x20'\ b'\x04\x43\x04\x66\x04\x7d\x04\xa8\x04\xc3\x04\xda\x04\xf7\x04'\ b'\x1c\x05\x23\x05\x3a\x05\x57\x05\x98\x05\xad\x05\xf2\x05\x73'\ b'\x06\x30\x07\x81\x07\xc2\x07\xe1\x07\x1a\x08\x89\x08\xe6\x08'\ b'\x23\x09\x94\x09\xb9\x09\xfc\x09\x31\x0a\x5a\x0a\xbb\x0a\x1c'\ b'\x0b\x7d\x0b\xbe\x0b\xff\x0b\x1c\x0c\x53\x0c\xae\x0c\x39\x0d'\ b'\xa2\x0d\x0f\x0e\xbc\x0e\x6d\x0f\x96\x0f\xc3\x0f' INDEX = memoryview(_index) FONT = memoryview(_font)
scripts/release18/colorchooser/colorchooser_savePreset.py
tdapper/cinema4d_py_sdk
113
12753704
<reponame>tdapper/cinema4d_py_sdk # This example loads the swatches of the given BaseDocument and stores them as a preset. # Note: The ColorSwatchData of the active document must contain some colors. import c4d from c4d.modules import colorchooser as cc def main(): # Creates a new ColorSwatchData swatchData = cc.ColorSwatchData() if swatchData is None: return # Loads color groups from the active document if not swatchData.Load(doc): return # Builds preset URL url = cc.GetColorSwatchPresetDirectory() url = url + "/newColorPreset" # Saves color swatches preset if swatchData.SavePresetByURL(url, "User", "This is my preset"): print "Color swatch preset saved successfully" else: print "Color swatch preset could not be saved!" c4d.EventAdd() if __name__=='__main__': main()
satchless/process/test_process.py
sahil2128/satchless
381
12753710
from unittest import TestCase from . import ProcessManager, Step, InvalidData class AddSwallows(Step): def __init__(self, data): self.data = data def __str__(self): return 'swallows-needed' def validate(self): if self.data.swallows < 2: raise InvalidData('Not enough swallows') class AddCoconuts(Step): def __init__(self, data): self.data = data def __str__(self): return 'coconuts-needed' def validate(self): if self.data.coconuts < 1: raise InvalidData('Need a coconut') class CoconutDelivery(ProcessManager): def __init__(self): self.swallows = 0 self.coconuts = 0 def __iter__(self): yield AddSwallows(self) yield AddCoconuts(self) class ProcessManagerTest(TestCase): def test_iter(self): 'ProcessManager.__iter__() returns the steps' process = CoconutDelivery() steps = list(map(str, list(process))) self.assertEqual(steps, ['swallows-needed', 'coconuts-needed']) def test_get_next_step(self): 'ProcessManager.get_next_step() returns the first step with invalid data' process = CoconutDelivery() process.coconuts = 1 self.assertEqual(str(process.get_next_step()), 'swallows-needed') process.swallows = 2 self.assertEqual(process.get_next_step(), None) process.coconuts = 0 self.assertEqual(str(process.get_next_step()), 'coconuts-needed') def test_is_complete(self): 'ProcessManager.is_complete() returns true if all steps are satisfied' process = CoconutDelivery() self.assertFalse(process.is_complete()) process.coconuts = 1 process.swallows = 2 self.assertTrue(process.is_complete()) def test_item_access(self): 'You can index a ProcessManager using step names' process = CoconutDelivery() self.assertTrue(isinstance(process['coconuts-needed'], AddCoconuts)) def invalid(): return process['spam-needed'] self.assertRaises(KeyError, invalid) def test_errors(self): 'ProcessManager.get_errors() returns a dict of all invalid steps' process = CoconutDelivery() process.swallows = 2 errors = process.get_errors() self.assertFalse('swallows-needed' in errors) self.assertTrue('coconuts-needed' in errors)
tests/models/torchvision_models/retinanet/lightning/test_train.py
ai-fast-track/mantisshrimp
580
12753729
import pytest from icevision.all import * from icevision.models.torchvision import retinanet @pytest.fixture def light_model_cls(): class LightModel(retinanet.lightning.ModelAdapter): def configure_optimizers(self): return SGD(self.parameters(), lr=1e-4) return LightModel @pytest.mark.parametrize("metrics", [[], [COCOMetric()]]) def test_lightining_retinanet_train( fridge_faster_rcnn_dls, fridge_retinanet_model, light_model_cls, metrics ): train_dl, valid_dl = fridge_faster_rcnn_dls light_model = light_model_cls(fridge_retinanet_model, metrics=metrics) trainer = pl.Trainer( max_epochs=1, weights_summary=None, num_sanity_val_steps=0, logger=False, checkpoint_callback=False, ) trainer.fit(light_model, train_dl, valid_dl)
tests/test_cwa.py
al3pht/cloud-custodian
2,415
12753732
<reponame>al3pht/cloud-custodian # Copyright The Cloud Custodian Authors. # SPDX-License-Identifier: Apache-2.0 from .common import BaseTest class AlarmTest(BaseTest): def test_delete(self): alarm_name = "c7n-test-alarm-delete" factory = self.replay_flight_data("test_alarm_delete") client = factory().client("cloudwatch") client.put_metric_alarm( AlarmName=alarm_name, MetricName="CPUUtilization", Namespace="AWS/EC2", Statistic="Average", Period=3600, EvaluationPeriods=5, Threshold=10, ComparisonOperator="GreaterThanThreshold", ) p = self.load_policy( { "name": "delete-alarm", "resource": "alarm", "filters": [{"AlarmName": alarm_name}], "actions": ["delete"], }, session_factory=factory, ) resources = p.run() self.assertEqual(len(resources), 1) self.assertEqual( client.describe_alarms(AlarmNames=[alarm_name])["MetricAlarms"], [] ) def test_filter_tags(self): factory = self.replay_flight_data("test_alarm_tags_filter") p = self.load_policy( { "name": "filter-alarm-tags", "resource": "alarm", "filters": [ { 'type': 'value', 'key': 'tag:some-tag', 'value': 'some-value', 'op': 'eq' } ], }, session_factory=factory, ) resources = p.run() self.assertEqual(len(resources), 1) self.assertEqual(resources[0].get('c7n:MatchedFilters'), ['tag:some-tag']) def test_add_alarm_tags(self): factory = self.replay_flight_data("test_alarm_add_tags") p = self.load_policy( { "name": "add-alarm-tags", "resource": "alarm", "actions": [{ "type": "tag", "key": "OwnerName", "value": "SomeName" }], }, session_factory=factory, ) resources = p.run() self.assertEqual(len(resources), 1) self.assertTrue({'Key': 'OwnerName', 'Value': 'SomeName'} in resources[0].get('Tags'))
venv/Lib/site-packages/IPython/utils/shimmodule.py
ajayiagbebaku/NFL-Model
6,989
12753741
"""A shim module for deprecated imports """ # Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. import sys import types from importlib import import_module from .importstring import import_item class ShimWarning(Warning): """A warning to show when a module has moved, and a shim is in its place.""" class ShimImporter(object): """Import hook for a shim. This ensures that submodule imports return the real target module, not a clone that will confuse `is` and `isinstance` checks. """ def __init__(self, src, mirror): self.src = src self.mirror = mirror def _mirror_name(self, fullname): """get the name of the mirrored module""" return self.mirror + fullname[len(self.src):] def find_module(self, fullname, path=None): """Return self if we should be used to import the module.""" if fullname.startswith(self.src + '.'): mirror_name = self._mirror_name(fullname) try: mod = import_item(mirror_name) except ImportError: return else: if not isinstance(mod, types.ModuleType): # not a module return None return self def load_module(self, fullname): """Import the mirrored module, and insert it into sys.modules""" mirror_name = self._mirror_name(fullname) mod = import_item(mirror_name) sys.modules[fullname] = mod return mod class ShimModule(types.ModuleType): def __init__(self, *args, **kwargs): self._mirror = kwargs.pop("mirror") src = kwargs.pop("src", None) if src: kwargs['name'] = src.rsplit('.', 1)[-1] super(ShimModule, self).__init__(*args, **kwargs) # add import hook for descendent modules if src: sys.meta_path.append( ShimImporter(src=src, mirror=self._mirror) ) @property def __path__(self): return [] @property def __spec__(self): """Don't produce __spec__ until requested""" return import_module(self._mirror).__spec__ def __dir__(self): return dir(import_module(self._mirror)) @property def __all__(self): """Ensure __all__ is always defined""" mod = import_module(self._mirror) try: return mod.__all__ except AttributeError: return [name for name in dir(mod) if not name.startswith('_')] def __getattr__(self, key): # Use the equivalent of import_item(name), see below name = "%s.%s" % (self._mirror, key) try: return import_item(name) except ImportError: raise AttributeError(key)
datasets/data.py
gongda0e/AVT
102
12753744
<reponame>gongda0e/AVT<gh_stars>100-1000 # Copyright (c) Facebook, Inc. and its affiliates. import os import torch from importlib import import_module from tqdm import tqdm import omegaconf import hydra from common import utils __all__ = [ "get_dataset", ] def get_dataset(dataset_cfg, data_cfg, transform, logger): # If there is _precomputed_metadata file passed in, load that in kwargs = {} precomp_metadata_fpath = None if '_precomputed_metadata_file' in dataset_cfg: precomp_metadata_fpath = dataset_cfg._precomputed_metadata_file # Remove from the config since otherwise can't init the obj with omegaconf.open_dict(dataset_cfg): del dataset_cfg['_precomputed_metadata_file'] if os.path.exists(precomp_metadata_fpath): _precomputed_metadata = torch.load(precomp_metadata_fpath) kwargs['_precomputed_metadata'] = _precomputed_metadata kwargs['transform'] = transform kwargs['frame_rate'] = data_cfg.frame_rate kwargs['frames_per_clip'] = data_cfg.num_frames # Have to call dict() here since relative interpolation somehow doesn't # work once I get the subclips object kwargs['subclips_options'] = dict(data_cfg.subclips) kwargs['load_seg_labels'] = data_cfg.load_seg_labels logger.info('Creating the dataset object...') # Not recursive since many of the sub-instantiations would need positional # arguments _dataset = hydra.utils.instantiate(dataset_cfg, _recursive_=False, **kwargs) try: logger.info('Computing clips...') _dataset.video_clips.compute_clips(data_cfg.num_frames, 1, frame_rate=data_cfg.frame_rate) logger.info('Done') except AttributeError: # if video_clips not in _dataset logger.warning('No video_clips present') logger.info(f'Created dataset with {len(_dataset)} elts') if precomp_metadata_fpath and not os.path.exists(precomp_metadata_fpath): utils.save_on_master(_dataset.metadata, precomp_metadata_fpath) return _dataset
rl_coach/tests/exploration_policies/test_additive_noise.py
Lpallett4/coach
1,960
12753794
<gh_stars>1000+ import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) import pytest from rl_coach.spaces import DiscreteActionSpace, BoxActionSpace from rl_coach.exploration_policies.additive_noise import AdditiveNoise from rl_coach.schedules import LinearSchedule import numpy as np @pytest.mark.unit_test def test_init(): # discrete control action_space = DiscreteActionSpace(3) noise_schedule = LinearSchedule(1.0, 1.0, 1000) # additive noise requires a bounded range for the actions action_space = BoxActionSpace(np.array([10])) with pytest.raises(ValueError): policy = AdditiveNoise(action_space, noise_schedule, 0) @pytest.mark.unit_test def test_get_action(): # make sure noise is in range action_space = BoxActionSpace(np.array([10]), -1, 1) noise_schedule = LinearSchedule(1.0, 1.0, 1000) policy = AdditiveNoise(action_space, noise_schedule, 0) # the action range is 2, so there is a ~0.1% chance that the noise will be larger than 3*std=3*2=6 for i in range(1000): action = policy.get_action(np.zeros([10])) assert np.all(action < 10) # make sure there is no clipping of the action since it should be the environment that clips actions assert np.all(action != 1.0) assert np.all(action != -1.0) # make sure that each action element has a different value assert np.all(action[0] != action[1:])
test-framework/test-suites/integration/files/list/mock_switch_mac_test_x1052.py
kmcm0/stacki
123
12753813
from unittest.mock import patch, create_autospec, PropertyMock from stack.expectmore import ExpectMore from stack.switch.x1052 import SwitchDellX1052 # Switch data to mock MAC address table SWITCH_DATA = """ show mac address-table show mac address-table Flags: I - Internal usage VLAN Aging time is 300 sec Vlan Mac Address Port Type ------------ --------------------- ---------- ---------- 1 00:00:00:00:00:00 gi1/0/10 dynamic 1 f4:8e:38:44:10:15 0 self console#: """ # Intercept expectmore calls mock_expectmore = patch(target = "stack.switch.x1052.ExpectMore", autospec = True).start() # Need to set the instance mock returned from calling ExpectMore() mock_expectmore.return_value = create_autospec( spec = ExpectMore, spec_set = True, instance = True, ) # Need to set the match_index to the base console prompt so that the switch thinks it is at the # correct prompt, and wont try to page through output. type(mock_expectmore.return_value).match_index = PropertyMock( return_value = SwitchDellX1052.CONSOLE_PROMPTS.index(SwitchDellX1052.CONSOLE_PROMPT) ) # Return our SWITCH_DATA from ExpectMore().ask() mock_expectmore.return_value.ask.return_value = SWITCH_DATA.splitlines()
src/azure-cli/azure/cli/command_modules/eventhubs/_completers.py
YuanyuanNi/azure-cli
3,287
12753827
<filename>src/azure-cli/azure/cli/command_modules/eventhubs/_completers.py<gh_stars>1000+ # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # pylint: disable=unused-argument # pylint: disable=line-too-long # pylint: disable=no-value-for-parameter from azure.cli.core.decorators import Completer @Completer def get_eventhubs_command_completion_list(cmd, prefix, namespace): from ._client_factory import event_hub_mgmt_client_factory resource_group_name = namespace.resource_group_name namespace_name = namespace.name result = event_hub_mgmt_client_factory(cmd.cli_ctx).list_by_namespace(resource_group_name, namespace_name) return [r.name for r in result] @Completer def get_consumergroup_command_completion_list(cmd, prefix, namespace): from ._client_factory import consumer_groups_mgmt_client_factory resource_group_name = namespace.resource_group_name namespace_name = namespace.namespace_name eventhub_name = namespace.name result = consumer_groups_mgmt_client_factory(cmd.cli_ctx).list_by_event_hub(resource_group_name, namespace_name, eventhub_name) return [r.name for r in result]
setup.py
nadabyte/openmaptiles-tools
254
12753832
<reponame>nadabyte/openmaptiles-tools import setuptools import re from pathlib import Path path = Path('.') with (path / "README.md").open() as fh: long_description = fh.read() version_file = path / "openmaptiles" / "__init__.py" with version_file.open() as fh: m = re.search(r"^__version__\s*=\s*(['\"])([^'\"]*)\1", fh.read().strip(), re.M) if not m: raise ValueError(f"Version string is not found in {version_file}") version = m.group(2) with (path / "requirements.txt").open(encoding="utf-8") as fh: # Requirements will contain a list of libraries without version restrictions # It seems this is a common practice for the setup.py vs requirements.txt requirements = [m.group(1) for m in (re.match(r'^[ \t]*([^>=<!#\n]+).*', line) for line in fh.readlines()) if m] scripts = [str(p) for p in path.glob('bin/*') if p.is_file()] setuptools.setup( name='openmaptiles-tools', version=version, packages=['openmaptiles'], description="The OpenMapTiles tools for generating TM2Source projects, imposm3 mappings and SQL instructions from " "OpenMapTiles layers. We encourage other people to use this for their vector tile projects as well " "since this approach works well for us.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/openmaptiles/openmaptiles-tools", license='MIT', scripts=scripts, install_requires=requirements, )
src/saml2/ws/wsutil.py
cnelson/pysaml2
5,079
12753853
#!/usr/bin/env python # # Generated Sun Jun 14 12:18:10 2015 by parse_xsd.py version 0.5. # import saml2 from saml2 import SamlBase NAMESPACE = 'http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd' class TTimestampFault_(SamlBase): """The http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd:tTimestampFault element """ c_tag = 'tTimestampFault' c_namespace = NAMESPACE c_children = SamlBase.c_children.copy() c_attributes = SamlBase.c_attributes.copy() c_child_order = SamlBase.c_child_order[:] c_cardinality = SamlBase.c_cardinality.copy() def t_timestamp_fault__from_string(xml_string): return saml2.create_class_from_xml_string(TTimestampFault_, xml_string) class AttributedDateTime_(SamlBase): """The http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd:AttributedDateTime element """ c_tag = 'AttributedDateTime' c_namespace = NAMESPACE c_value_type = {'base': 'string'} c_children = SamlBase.c_children.copy() c_attributes = SamlBase.c_attributes.copy() c_child_order = SamlBase.c_child_order[:] c_cardinality = SamlBase.c_cardinality.copy() c_attributes['Id'] = ('Id', 'anyURI', False) def __init__(self, Id=None, text=None, extension_elements=None, extension_attributes=None, ): SamlBase.__init__(self, text=text, extension_elements=extension_elements, extension_attributes=extension_attributes, ) self.Id=Id def attributed_date_time__from_string(xml_string): return saml2.create_class_from_xml_string(AttributedDateTime_, xml_string) class AttributedURI_(SamlBase): """The http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd:AttributedURI element """ c_tag = 'AttributedURI' c_namespace = NAMESPACE c_value_type = {'base': 'anyURI'} c_children = SamlBase.c_children.copy() c_attributes = SamlBase.c_attributes.copy() c_child_order = SamlBase.c_child_order[:] c_cardinality = SamlBase.c_cardinality.copy() c_attributes['Id'] = ('Id', 'anyURI', False) def __init__(self, Id=None, text=None, extension_elements=None, extension_attributes=None, ): SamlBase.__init__(self, text=text, extension_elements=extension_elements, extension_attributes=extension_attributes, ) self.Id=Id def attributed_ur_i__from_string(xml_string): return saml2.create_class_from_xml_string(AttributedURI_, xml_string) class Expires(AttributedDateTime_): """The http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd:Expires element """ c_tag = 'Expires' c_namespace = NAMESPACE c_children = AttributedDateTime_.c_children.copy() c_attributes = AttributedDateTime_.c_attributes.copy() c_child_order = AttributedDateTime_.c_child_order[:] c_cardinality = AttributedDateTime_.c_cardinality.copy() def expires_from_string(xml_string): return saml2.create_class_from_xml_string(Expires, xml_string) class Created(AttributedDateTime_): """The http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd:Created element """ c_tag = 'Created' c_namespace = NAMESPACE c_children = AttributedDateTime_.c_children.copy() c_attributes = AttributedDateTime_.c_attributes.copy() c_child_order = AttributedDateTime_.c_child_order[:] c_cardinality = AttributedDateTime_.c_cardinality.copy() def created_from_string(xml_string): return saml2.create_class_from_xml_string(Created, xml_string) class TimestampType_(SamlBase): """The http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd:TimestampType element """ c_tag = 'TimestampType' c_namespace = NAMESPACE c_children = SamlBase.c_children.copy() c_attributes = SamlBase.c_attributes.copy() c_child_order = SamlBase.c_child_order[:] c_cardinality = SamlBase.c_cardinality.copy() c_children['{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd}Created'] = ('created', Created) c_cardinality['created'] = {"min":0, "max":1} c_children['{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd}Expires'] = ('expires', Expires) c_cardinality['expires'] = {"min":0, "max":1} c_attributes['Id'] = ('Id', 'anyURI', False) c_child_order.extend(['created', 'expires']) def __init__(self, created=None, expires=None, Id=None, text=None, extension_elements=None, extension_attributes=None, ): SamlBase.__init__(self, text=text, extension_elements=extension_elements, extension_attributes=extension_attributes, ) self.created=created self.expires=expires self.Id=Id def timestamp_type__from_string(xml_string): return saml2.create_class_from_xml_string(TimestampType_, xml_string) class Timestamp(TimestampType_): """The http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd:Timestamp element """ c_tag = 'Timestamp' c_namespace = NAMESPACE c_children = TimestampType_.c_children.copy() c_attributes = TimestampType_.c_attributes.copy() c_child_order = TimestampType_.c_child_order[:] c_cardinality = TimestampType_.c_cardinality.copy() def timestamp_from_string(xml_string): return saml2.create_class_from_xml_string(Timestamp, xml_string) #.................. AG_commonAtts = [ ('Id', '', False), ] ELEMENT_FROM_STRING = { TTimestampFault_.c_tag: t_timestamp_fault__from_string, AttributedDateTime_.c_tag: attributed_date_time__from_string, AttributedURI_.c_tag: attributed_ur_i__from_string, TimestampType_.c_tag: timestamp_type__from_string, Timestamp.c_tag: timestamp_from_string, Expires.c_tag: expires_from_string, Created.c_tag: created_from_string, } ELEMENT_BY_TAG = { 'tTimestampFault': TTimestampFault_, 'AttributedDateTime': AttributedDateTime_, 'AttributedURI': AttributedURI_, 'TimestampType': TimestampType_, 'Timestamp': Timestamp, 'Expires': Expires, 'Created': Created, } def factory(tag, **kwargs): return ELEMENT_BY_TAG[tag](**kwargs)
argoverse/utils/plane_visualization_utils.py
gargrohin/argoverse-api
560
12753868
# <Copyright 2019, Argo AI, LLC. Released under the MIT license.> from typing import List, Optional import numpy as np from argoverse.utils import mayavi_wrapper from argoverse.utils.mesh_grid import get_mesh_grid_as_point_cloud from argoverse.visualization.mayavi_utils import ( Figure, draw_mayavi_line_segment, plot_3d_clipped_bbox_mayavi, plot_points_3D_mayavi, ) def populate_frustum_voxels(planes: List[np.ndarray], fig: Figure, axis_pair: str) -> Figure: """ Generate grid in xy plane, and then treat it as grid in xz (ground) plane in camera coordinate system. Args: planes: list of length 5. Each list element is a Numpy array of shape (4,) representing the equation of a plane, e.g. (a,b,c,d) in ax+by+cz=d fig: Mayavi figure to draw on axis_pair: Either "xz" or "yz" Returns: Mayavi figure """ sparse_xz_voxel_grid = get_mesh_grid_as_point_cloud(-20, 20, 0, 40, downsample_factor=0.1) sparse_voxel_grid = np.zeros((sparse_xz_voxel_grid.shape[0], 3)) if axis_pair == "xz": sparse_voxel_grid[:, 0] = sparse_xz_voxel_grid[:, 0] sparse_voxel_grid[:, 2] = sparse_xz_voxel_grid[:, 1] elif axis_pair == "yz": sparse_voxel_grid[:, 1] = sparse_xz_voxel_grid[:, 0] sparse_voxel_grid[:, 2] = sparse_xz_voxel_grid[:, 1] # keep only the points that have signed distance > 0 (inside the frustum, plane # normals also point into the frustum) for plane in planes: signed_d = np.matmul(sparse_voxel_grid, plane[:3]) + plane[3] sparse_voxel_grid = sparse_voxel_grid[np.where(signed_d > 0)] plot_points_3D_mayavi(sparse_voxel_grid, fig, fixed_color=(1, 0, 0)) return fig def plot_frustum_planes_and_normals( planes: List[np.ndarray], cuboid_verts: Optional[np.ndarray] = None, near_clip_dist: float = 0.5, ) -> None: """ Args: planes: list of length 5. Each list element is a Numpy array of shape (4,) representing the equation of a plane, e.g. (a,b,c,d) in ax+by+cz=d cuboid_verts: Numpy array of shape (N,3) representing cuboid vertices Returns: None """ fig = mayavi_wrapper.mlab.figure(bgcolor=(1, 1, 1), size=(2000, 1000)) # type: ignore if cuboid_verts is not None: # fig = plot_bbox_3d_mayavi(fig, cuboid_verts) fig = plot_3d_clipped_bbox_mayavi(fig, planes, cuboid_verts) P = np.array([0.0, 0.0, 0.0]) for i, plane in enumerate(planes): (a, b, c, d) = plane if i == 0: color = (1, 0, 0) # red left elif i == 1: color = (0, 0, 1) # blue right elif i == 2: color = (1, 1, 0) # near yellow P = np.array([0.0, 0.0, near_clip_dist]) elif i == 3: color = (0, 1, 0) # low is green elif i == 4: color = (0, 1, 1) # top is teal plane_pts = generate_grid_on_plane(a, b, c, d, P) fig = plot_points_3D_mayavi(plane_pts, fig, color) # plot the normals at (0,0,0.5) and normal vector (u,v,w) given by (a,b,c) mayavi_wrapper.mlab.quiver3d( # type: ignore 0, 0, 0.5, a * 1000, b * 1000, c * 1000, color=color, figure=fig, line_width=8, ) # draw teal line at top below the camera pt1 = np.array([-5, 0, -5]) pt2 = np.array([5, 0, -5]) color = (0, 1, 1) draw_mayavi_line_segment(fig, [pt1, pt2], color=color, line_width=8) # draw blue line in middle pt1 = np.array([-5, 5, -5]) pt2 = np.array([5, 5, -5]) color = (0, 0, 1) draw_mayavi_line_segment(fig, [pt1, pt2], color=color, line_width=8) # draw yellow, lowest line (+y axis is down) pt1 = np.array([-5, 10, -5]) pt2 = np.array([5, 10, -5]) color = (1, 1, 0) draw_mayavi_line_segment(fig, [pt1, pt2], color=color, line_width=8) fig = populate_frustum_voxels(planes, fig, "xz") fig = populate_frustum_voxels(planes, fig, "yz") mayavi_wrapper.mlab.view(distance=200) # type: ignore mayavi_wrapper.mlab.show() # type: ignore def get_perpendicular(n: np.ndarray) -> np.ndarray: """ n guarantees that dot(n, getPerpendicular(n)) is zero, which is the orthogonality condition, while also keeping the magnitude of the vector as high as possible. Note that setting the component with the smallest magnitude to 0 also guarantees that you don't get a 0,0,0 vector as a result, unless that is already your input. Args: n: Numpy array of shape (3,) Returns: result: Numpy array of shape (3,) """ # find smallest component i = np.argmin(n) # get the other two indices a = (i + 1) % 3 b = (i + 2) % 3 result = np.zeros(3) result[i] = 0.0 result[a] = n[b] result[b] = -n[a] return result def generate_grid_on_plane(a: float, b: float, c: float, d: float, P: np.ndarray, radius: float = 15) -> np.ndarray: """ Args: a,b,c,d: Coefficients of ``ax + by + cz = d`` defining plane P: Numpy array of shape (3,) representing point on the plane radius: Radius (default 15) Returns: plane_pts: Numpy array of shape (N,3) with points on the input plane """ n = np.array([a, b, c]) # a,b,c from your equation perp = get_perpendicular(n) u = perp / np.linalg.norm(perp) v = np.cross(u, n) N = 100 # delta and epsilon are floats: delta = radius / N # N is how many points you want max in one direction epsilon = delta * 0.5 n_pts = int((2 * radius + epsilon) / delta) pts = np.linspace(-radius, radius + epsilon, n_pts) plane_pts: List[float] = [] for y in pts: for x in pts: # if (x*x+y*y < radius*radius): # only in the circle: plane_pts += [P + x * u + y * v] # P is the point on the plane return np.array(plane_pts)
{{ cookiecutter.project_slug }}/tests/test_sample.py
gphillips8frw/cookiecutter-docker-science
308
12753877
import unittest class TestSample(unittest.TestCase): def setUp(self): pass def test_add(self): self.assertEqual((3 + 4), 7)
tools/coresctostandoff.py
pombredanne/brat
1,406
12753879
<gh_stars>1000+ #!/usr/bin/env python import re import sys try: import cElementTree as ET except BaseException: import xml.etree.cElementTree as ET # tags of elements to exclude from standoff output # (not used now; anything not explicitly converted is excluded) EXCLUDED_TAGS = [ # "SP", # "IT", # "SB", # "REF", # "P", # "B", # "TITLE", # "PAPER", # "HEADER", # "DIV", # "BODY", # "ABSTRACT", # "THEAD", # "TGROUP", # "TBODY", # "SUP", # "EQN", # "ENTRY", # "XREF", # "ROW", # "EQ-S", # "text", # "datasection", # "s", # "mode2", ] EXCLUDED_TAG = {t: True for t in EXCLUDED_TAGS} # string to use to indicate elided text in output ELIDED_TEXT_STRING = "[[[...]]]" # maximum length of text strings printed without elision MAXIMUM_TEXT_DISPLAY_LENGTH = 1000 # c-style string escaping for just newline, tab and backslash. # (s.encode('string_escape') does too much for utf-8) def c_escape(s): return s.replace('\\', '\\\\').replace('\t', '\\t').replace('\n', '\\n') def strip_ns(tag): # remove namespace spec from tag, if any return tag if tag[0] != '{' else re.sub(r'\{.*?\}', '', tag) class Standoff: def __init__(self, sid, element, start, end, text): self.sid = sid self.element = element self.start = start self.end = end self.text = text def compress_text(self, l): if len(self.text) >= l: el = len(ELIDED_TEXT_STRING) sl = (l - el) / 2 self.text = ( self.text[:sl] + ELIDED_TEXT_STRING + self.text[-(l - sl - el):]) def tag(self): return strip_ns(self.element.tag) def attrib(self): # remove namespace specs from attribute names, if any attrib = {} for a in self.element.attrib: if a[0] == "{": an = re.sub(r'\{.*?\}', '', a) else: an = a attrib[an] = self.element.attrib[a] return attrib def __str__(self): return "X%d\t%s %d %d\t%s\t%s" % \ (self.sid, self.tag(), self.start, self.end, c_escape(self.text.encode("utf-8")), " ".join(['%s="%s"' % (k.encode("utf-8"), v.encode("utf-8")) for k, v in list(self.attrib().items())])) def txt(s): return s if s is not None else "" next_free_so_id = 1 def text_and_standoffs(e, curroff=0, standoffs=None): global next_free_so_id if standoffs is None: standoffs = [] startoff = curroff # to keep standoffs in element occurrence order, append # a placeholder before recursing so = Standoff(next_free_so_id, e, 0, 0, "") next_free_so_id += 1 standoffs.append(so) setext, dummy = subelem_text_and_standoffs( e, curroff + len(txt(e.text)), standoffs) text = txt(e.text) + setext curroff += len(text) so.start = startoff so.end = curroff so.text = text return (text, standoffs) def subelem_text_and_standoffs(e, curroff, standoffs): startoff = curroff text = "" for s in e: stext, dummy = text_and_standoffs(s, curroff, standoffs) text += stext text += txt(s.tail) curroff = startoff + len(text) return (text, standoffs) def empty_elements(e, tags=None): if tags is None or strip_ns(e.tag) in tags: e.clear() for c in e: empty_elements(c, tags) def add_space(e): if strip_ns(e.tag) in ('title', ): e.tail = (e.tail if e.tail is not None else '') + '\n' for c in e: add_space(c) def convert_coresc1(s): sostrings = [] # create a textbound of the type specified by the "type" # attribute. tid = "T%d" % convert_coresc1._idseq sostrings.append('%s\t%s %d %d\t%s' % (tid, s.attrib()['type'], s.start, s.end, s.text.encode('utf-8'))) # TODO: consider converting "advantage" and "novelty" attributes convert_coresc1._idseq += 1 return sostrings convert_coresc1._idseq = 1 convert_function = { 'CoreSc1': convert_coresc1, 'annotationART': convert_coresc1, } def main(argv=[]): if len(argv) != 4: print("Usage:", argv[0], "IN-XML OUT-TEXT OUT-SO", file=sys.stderr) return -1 in_fn, out_txt_fn, out_so_fn = argv[1:] # "-" for STDIN / STDOUT if in_fn == "-": in_fn = "/dev/stdin" if out_txt_fn == "-": out_txt_fn = "/dev/stdout" if out_so_fn == "-": out_so_fn = "/dev/stdout" tree = ET.parse(in_fn) root = tree.getroot() # remove unannotated, (primarily) non-content elements empty_elements(root, set(['article-categories', 'copyright-statement', 'license', 'copyright-holder', 'copyright-year', 'journal-meta', 'article-id', 'back', 'fig', 'table-wrap', 'contrib-group', 'aff', 'author-notes', 'pub-date', 'volume', 'issue', 'fpage', 'lpage', 'history' ])) add_space(root) text, standoffs = text_and_standoffs(root) # filter standoffs = [s for s in standoffs if not s.tag() in EXCLUDED_TAG] # convert selected elements converted = [] for s in standoffs: if s.tag() in convert_function: converted.extend(convert_function[s.tag()](s)) # else: # converted.append(s) standoffs = converted for so in standoffs: try: so.compress_text(MAXIMUM_TEXT_DISPLAY_LENGTH) except AttributeError: pass # open output files out_txt = open(out_txt_fn, "wt") out_so = open(out_so_fn, "wt") out_txt.write(text.encode("utf-8")) for so in standoffs: print(so, file=out_so) out_txt.close() out_so.close() if __name__ == "__main__": sys.exit(main(sys.argv))
nogotofail/mitm/util/tls/types/errors.py
kbfl0912/nogotofail
1,594
12753896
<reponame>kbfl0912/nogotofail<gh_stars>1000+ r''' Copyright 2015 Google Inc. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' class TlsNotEnoughDataError(Exception): """Error in TLS parsing where the TLS record is so far valid but incomplete""" pass class TlsRecordIncompleteError(TlsNotEnoughDataError): """Error for when a TLS Record appears valid but is not enough data is present to parse the record""" def __init__(self, data_available, record_size): self.data_available = data_available self.record_size = record_size class TlsMessageFragmentedError(TlsNotEnoughDataError): """Error for when not enough data is present to parse a TLS message because of fragmentation""" def __init__(self, fragment_data, data_consumed): self.fragment_data = fragment_data self.data_consumed = data_consumed
tests/esp32/uart2.py
rodgergr/pycom-micropython-sigfox-1
198
12753956
<gh_stars>100-1000 ''' P11 and P12 must be connected together for this test to pass. ''' from machine import UART from machine import Pin import os import time # do not execute this test on the GPy and FiPy if os.uname().sysname == 'GPy' or os.uname().sysname == 'FiPy': print("SKIP") import sys sys.exit() uart = UART(2, 115200) print(uart) uart.init(57600, 8, None, 1, pins=('P11', 'P12')) uart.init(baudrate=9600, stop=2, parity=UART.EVEN, pins=('P11', 'P12')) uart.init(baudrate=115200, parity=UART.ODD, stop=1, pins=('P11', 'P12')) uart.read() print (uart.read()) print (uart.readline()) buff = bytearray(1) print (uart.readinto(buff, 1)) print (uart.read()) print (uart.any()) print (uart.write('a')) uart.deinit() uart = UART(2, 1000000, pins=('P12', 'P11')) print(uart) uart.read() print(uart.write(b'123456') == 6) print(uart.read() == b'123456') uart.deinit() uart = UART(2, 1000000, pins=('P11', 'P12')) print(uart) uart.read() print(uart.write(b'123456') == 6) print(uart.read() == b'123456') uart.deinit() uart = UART(2, 1000000, pins=('P11', 'P12')) print(uart.write(b'123') == 3) print(uart.read(1) == b'1') print(uart.read(2) == b'23') print(uart.read() == None) uart.write(b'123') buf = bytearray(3) print(uart.readinto(buf, 1) == 1) print(buf) print(uart.readinto(buf) == 2) print(buf) uart.deinit() # check for memory leaks... for i in range (0, 1000): uart = UART(2, 1000000) uart.deinit() # next ones must raise try: UART(2, 9600, parity=None, pins=('GP12', 'GP13', 'GP7')) except Exception: print('Exception') try: UART(2, 9600, parity=UART.ODD, pins=('GP12', 'GP7')) except Exception: print('Exception') # buffer overflow uart = UART(2, 1000000, pins=('P11', 'P12')) buf = bytearray([0x55AA] * 567) for i in range(200): r = uart.write(buf) r = uart.read() r = uart.read() print(r) print(uart.write(b'123456') == 6) print(uart.read() == b'123456') uart.deinit()
salt/utils/error.py
markgras/salt
9,425
12753960
<gh_stars>1000+ """ Utilities to enable exception reraising across the master commands """ import builtins import salt.exceptions import salt.utils.event def raise_error(name=None, args=None, message=""): """ Raise an exception with __name__ from name, args from args If args is None Otherwise message from message\ If name is empty then use "Exception" """ name = name or "Exception" if hasattr(salt.exceptions, name): ex = getattr(salt.exceptions, name) elif hasattr(builtins, name): ex = getattr(builtins, name) else: name = "SaltException" ex = getattr(salt.exceptions, name) if args is not None: raise ex(*args) else: raise ex(message) def pack_exception(exc): if hasattr(exc, "pack"): packed_exception = exc.pack() else: packed_exception = {"message": exc.__unicode__(), "args": exc.args} return packed_exception def fire_exception(exc, opts, job=None, node="minion"): """ Fire raw exception across the event bus """ if job is None: job = {} event = salt.utils.event.SaltEvent(node, opts=opts, listen=False) event.fire_event(pack_exception(exc), "_salt_error")
sdk/batch/microsoft-azure-batch/tools/publish.py
ppartarr/azure-sdk-for-java
1,350
12753981
#!/usr/bin/python import sys import os import fnmatch import shutil import re def main(argv): # validation if len(argv) < 4: print "Usage: " + get_usage() exit(1) # figure out source dir folder = os.path.dirname(os.path.realpath(__file__)) if len(argv) == 5: folder = argv[4] if not os.path.isdir(folder): print "Cannot find directory " + folder exit(1) folder = folder.strip('/') # make working dir version = argv[1] working = folder + "/" + version if os.path.exists(working): print "Cowardly exiting because " + working + " already exists" exit(1) os.mkdir(working) # copy over all jars for i in get_jars(folder): shutil.copy(i, working) # copy over all poms pkgs = [] for i in get_poms(folder): assert isinstance(i, str) parts = i.rsplit("\\") pkg_name = parts[len(parts) - 2] if len(parts) == len(folder.rsplit("\\")) + 1: # root folder shutil.copyfile(i, "%s/%s-%s.pom" % (working, "azure-bom", version)) pkg_name = "azure-bom" elif pkg_name == "azure": # parent folder shutil.copyfile(i, "%s/%s-%s.pom" % (working, "azure-parent", version)) pkg_name = "azure-parent" else: shutil.copyfile(i, "%s/%s-%s.pom" % (working, pkg_name, version)) pkgs.append(pkg_name) # filter out packages print "Publishing the following: " to_pub = [] for pkg in pkgs: if re.match(argv[3], pkg) is not None: to_pub.append(os.path.join(working, pkg)) print pkg if len(to_pub) == 0: print "No compiled package matches the regex. Exiting." exit(1) for pkg in to_pub: cmd = "mvn gpg:sign-and-deploy-file" cmd += " -Durl=https://oss.sonatype.org/service/local/staging/deploy/maven2/" cmd += " -DrepositoryId=sonatype-nexus-staging -DpomFile=%s-%s.pom" % (pkg, version) assert isinstance(pkg, str) if pkg.endswith("azure-parent") or pkg.endswith("azure-bom"): cmd += " -Dfile=%s-%s.pom -Dgpg.passphrase=%s" % (pkg, version, argv[2]) os.system(cmd) else: os.system(cmd + " -Dfile=%s-%s.jar -Dgpg.passphrase=%s" % (pkg, version, argv[2])) os.system(cmd + " -Dfile=%s-%s-javadoc.jar -Dclassifier=javadoc -Dgpg.passphrase=%s" % (pkg, version, argv[2])) os.system(cmd + " -Dfile=%s-%s-sources.jar -Dclassifier=sources -Dgpg.passphrase=%s" % (pkg, version, argv[2])) print "Finished." def mvn_package(): cmd = "mvn package source:jar javadoc:jar" print "Shell: " + cmd os.system(cmd) def get_poms(folder): matches = [] for root, dirnames, filenames in os.walk(folder): for filename in fnmatch.filter(filenames, 'pom.xml'): matches.append(os.path.join(root, filename)) return matches def get_jars(folder): matches = [] for root, dirnames, filenames in os.walk(folder): for filename in fnmatch.filter(filenames, '*.jar'): matches.append(os.path.join(root, filename)) return matches def get_usage(): return "publish.py version gpg_passphrase package_grep_string [root_directory]" main(sys.argv)
paco/thunk.py
lmicra/paco
208
12753997
# -*- coding: utf-8 -*- import asyncio from .assertions import assert_corofunction def thunk(coro): """ A thunk is a subroutine that is created, often automatically, to assist a call to another subroutine. Creates a thunk coroutine which returns coroutine function that accepts no arguments and when invoked it schedules the wrapper coroutine and returns the final result. See Wikipedia page for more information about Thunk subroutines: https://en.wikipedia.org/wiki/Thunk Arguments: value (coroutinefunction): wrapped coroutine function to invoke. Returns: coroutinefunction Usage:: async def task(): return 'foo' coro = paco.thunk(task) await coro() # => 'foo' await coro() # => 'foo' """ assert_corofunction(coro=coro) @asyncio.coroutine def wrapper(): return (yield from coro()) return wrapper
dts/utils/__init__.py
albertogaspar/dts
139
12754004
<filename>dts/utils/__init__.py from dts.utils.utils import get_args from dts.utils.losses import r2, smape, nrmse_a, nrmse_b, nrmse_c, nrmsd from dts.utils.experiments import DTSExperiment, log_metrics, run_single_experiment, run_grid_search metrics = ['mse', 'mae', nrmse_a, nrmse_b, nrmsd, r2, smape, 'mape']
mammoth/cli.py
cockcrow/python-mammoth
557
12754018
import argparse import io import os import shutil import sys import mammoth from . import writers def main(): args = _parse_args() if args.style_map is None: style_map = None else: with open(args.style_map) as style_map_fileobj: style_map = style_map_fileobj.read() with open(args.path, "rb") as docx_fileobj: if args.output_dir is None: convert_image = None output_path = args.output else: convert_image = mammoth.images.img_element(ImageWriter(args.output_dir)) output_filename = "{0}.html".format(os.path.basename(args.path).rpartition(".")[0]) output_path = os.path.join(args.output_dir, output_filename) result = mammoth.convert( docx_fileobj, style_map=style_map, convert_image=convert_image, output_format=args.output_format, ) for message in result.messages: sys.stderr.write(message.message) sys.stderr.write("\n") _write_output(output_path, result.value) class ImageWriter(object): def __init__(self, output_dir): self._output_dir = output_dir self._image_number = 1 def __call__(self, element): extension = element.content_type.partition("/")[2] image_filename = "{0}.{1}".format(self._image_number, extension) with open(os.path.join(self._output_dir, image_filename), "wb") as image_dest: with element.open() as image_source: shutil.copyfileobj(image_source, image_dest) self._image_number += 1 return {"src": image_filename} def _write_output(path, contents): if path is None: if sys.version_info[0] <= 2: stdout = sys.stdout else: stdout = sys.stdout.buffer stdout.write(contents.encode("utf-8")) stdout.flush() else: with io.open(path, "w", encoding="utf-8") as fileobj: fileobj.write(contents) def _parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "path", metavar="docx-path", help="Path to the .docx file to convert.") output_group = parser.add_mutually_exclusive_group() output_group.add_argument( "output", nargs="?", metavar="output-path", help="Output path for the generated document. Images will be stored inline in the output document. Output is written to stdout if not set.") output_group.add_argument( "--output-dir", help="Output directory for generated HTML and images. Images will be stored in separate files. Mutually exclusive with output-path.") parser.add_argument( "--output-format", required=False, choices=writers.formats(), help="Output format.") parser.add_argument( "--style-map", required=False, help="File containg a style map.") return parser.parse_args() if __name__ == "__main__": main()
2018-evaluation-script/program/task1_eval.py
yolochai/scisumm-corpus
198
12754026
import os import sys import json, csv from bs4 import BeautifulSoup import xml.etree.ElementTree as ET from copy import copy def dictify(r,root=True): if root: return {r.tag : dictify(r, False)} d=copy(r.attrib) if r.text: d["_text"]=r.text for x in r.findall("./*"): if x.tag not in d: d[x.tag]=[] d[x.tag].append(dictify(x,False)) return d def parse(file): print("parsing: " + str(file)) parse_data = {} with open(file, "r") as f: data = f.read().strip().split("\n") for line in data: line = line.strip() if len(line) == 0: continue if line[-1] == "|": line = line[0:-1] # print("Old line: " + line) line = line.replace("a | s, ", "a PIPE s, ") # print("New line: " + line) items = line.split(" | ") line_data = {} for kvpair in items: if len(kvpair) == 0: continue # print kvpair key = kvpair.strip().split(":", 1)[0].strip() value = kvpair.strip().split(":", 1)[1].strip() # print key + ":" + value line_data[key] = value if "Discourse Facet" not in line_data: line_data["Discourse Facet"] = "None" line_data["Reference Article"] = line_data["Reference Article"].replace(".xml", "") line_data["Citing Article"] = line_data["Citing Article"].replace(".xml", "") print("original cit marker offset is " + line_data["Citation Marker Offset"]) if line_data["Citation Marker Offset"].startswith("["): line_data["Citation Marker Offset"] = line_data["Citation Marker Offset"][1:] if line_data["Citation Marker Offset"].endswith("]"): line_data["Citation Marker Offset"] = line_data["Citation Marker Offset"][:-1] if line_data["Citation Marker Offset"].startswith("\'"): line_data["Citation Marker Offset"] = line_data["Citation Marker Offset"][1:] if line_data["Citation Marker Offset"].endswith("\'"): line_data["Citation Marker Offset"] = line_data["Citation Marker Offset"][:-1] if line_data["Citation Offset"].startswith("["): line_data["Citation Offset"] = line_data["Citation Offset"][1:] if line_data["Citation Offset"].endswith("]"): line_data["Citation Offset"] = line_data["Citation Offset"][:-1] print("new cit marker offset is " + line_data["Citation Marker Offset"]) if line_data["Reference Article"] not in parse_data: parse_data[line_data["Reference Article"]] = {} if line_data["Citing Article"] not in parse_data[line_data["Reference Article"]]: parse_data[line_data["Reference Article"]][line_data["Citing Article"]] = {} if line_data["Citation Marker Offset"] not in parse_data[line_data["Reference Article"]][line_data["Citing Article"]]: parse_data[line_data["Reference Article"]][line_data["Citing Article"]][line_data["Citation Marker Offset"]] = {"original": line_data, "comparable": False} ref_offset = line_data["Reference Offset"] if ref_offset.startswith("["): ref_offset = ref_offset[1:] if ref_offset.endswith("]"): ref_offset = ref_offset[:-1] parsed_ref_offset_tmp = [x.strip() for x in ref_offset.split(",")] print("\n\n") print(parsed_ref_offset_tmp) parsed_ref_offset = [] for ref in parsed_ref_offset_tmp: print(ref) if ref.startswith("\'") or ref.startswith("\""): ref = ref[1:] if ref.endswith("\'") or ref.endswith("\""): ref = ref[:-1] parsed_ref_offset.append(ref) print(parsed_ref_offset) # print("<root>" + line_data["Reference Text"] + "</root>") line = "<root>" + line_data["Reference Text"] + "</root>" # print("Line is:") # print(line) line = line.replace("&", "&amp;") line = str(BeautifulSoup(line, "xml")) # line = line.replace("<\s>", "</s>") # print("Line is:") # print(line) root = ET.fromstring(line) ref_text_dict = dictify(root) # print(ref_text_dict) ref_text_dict_clean = {} cnt = 0 for item in ref_text_dict["root"]["S"]: cnt += 1 ref_text_dict_clean[item.get("sid", cnt)] = item["_text"] parse_data[line_data["Reference Article"]][line_data["Citing Article"]][line_data["Citation Marker Offset"]]["Reference Text"] = ref_text_dict_clean parse_data[line_data["Reference Article"]][line_data["Citing Article"]][line_data["Citation Marker Offset"]]["Reference Offset"] = parsed_ref_offset ref_discourse_facet = line_data["Discourse Facet"] parsed_discourse_facet = [] if len(ref_discourse_facet) > 0: if ref_discourse_facet[0] == "[": parsed_discourse_facet_tmp = [x.strip().lower().replace(" ", "_") for x in ref_discourse_facet[1:-1].split(",")] parsed_discourse_facet = [] for ref in parsed_discourse_facet_tmp: if ref.startswith("\'") or ref.startswith("\""): ref = ref[1:] if ref.endswith("\'") or ref.endswith("\""): ref = ref[:-1] parsed_discourse_facet.append(ref) else: ref = ref_discourse_facet.lower().replace(" ", "_") if ref.startswith("\'") or ref.startswith("\""): ref = ref[1:] if ref.endswith("\'") or ref.endswith("\""): ref = ref[:-1] parsed_discourse_facet.append(ref) parse_data[line_data["Reference Article"]][line_data["Citing Article"]][line_data["Citation Marker Offset"]]["Discourse Facet"] = parsed_discourse_facet # print(json.dumps(parse_data, sort_keys=True, indent=4)) # print("###################################################################################################################") return parse_data def parse_csv(file): print("parsing: " + str(file)) parse_data = {} csv_obj = csv.reader(open(file,"r")) items_list = None for i, row in enumerate(csv_obj): if i==0: # first line items_list = row # Citance Number,Reference Article, ... continue line_data = {} if len(row) != len(items_list): print "Error: # of items mismatch" print items_list print row continue for key, value in zip(items_list, row): # print kvpair line_data[key] = value if line_data["Reference Text"] == "NA": continue # print items_list print line_data["Reference Text"] line_data["Reference Article"] = line_data["Reference Article"].replace(".xml", "") line_data["Citing Article"] = line_data["Citing Article"].replace(".xml", "") print("original cit marker offset is " + line_data["Citation Marker Offset"]) # if line_data["Citation Marker Offset"].startswith("["): # line_data["Citation Marker Offset"] = line_data["Citation Marker Offset"][1:] # if line_data["Citation Marker Offset"].endswith("]"): # line_data["Citation Marker Offset"] = line_data["Citation Marker Offset"][:-1] # if line_data["Citation Marker Offset"].startswith("\'"): # line_data["Citation Marker Offset"] = line_data["Citation Marker Offset"][1:] # if line_data["Citation Marker Offset"].endswith("\'"): # line_data["Citation Marker Offset"] = line_data["Citation Marker Offset"][:-1] # if line_data["Citation Offset"].startswith("["): # line_data["Citation Offset"] = line_data["Citation Offset"][1:] # if line_data["Citation Offset"].endswith("]"): # line_data["Citation Offset"] = line_data["Citation Offset"][:-1] line_data["Citation Marker Offset"] = '0' line_data["Citation Offset"] = '0' print("new cit marker offset is " + line_data["Citation Marker Offset"]) if line_data["Reference Article"] not in parse_data: parse_data[line_data["Reference Article"]] = {} if line_data["Citing Article"] not in parse_data[line_data["Reference Article"]]: parse_data[line_data["Reference Article"]][line_data["Citing Article"]] = {} if line_data["Citation Marker Offset"] not in parse_data[line_data["Reference Article"]][line_data["Citing Article"]]: parse_data[line_data["Reference Article"]][line_data["Citing Article"]][line_data["Citation Marker Offset"]] = {"original": line_data, "comparable": False} ref_offset = line_data["Reference Offset"] if ref_offset.startswith("["): ref_offset = ref_offset[1:] if ref_offset.endswith("]"): ref_offset = ref_offset[:-1] parsed_ref_offset_tmp = [x.strip() for x in ref_offset.split(",")] print("\n\n") print(parsed_ref_offset_tmp) parsed_ref_offset = [] for ref in parsed_ref_offset_tmp: print(ref) if ref.startswith("\'") or ref.startswith("\""): ref = ref[1:] if ref.endswith("\'") or ref.endswith("\""): ref = ref[:-1] parsed_ref_offset.append(ref) print(parsed_ref_offset) # print("<root>" + line_data["Reference Text"] + "</root>") line = "<root>" + line_data["Reference Text"] + "</root>" # print("Line is:") # print(line) line = line.replace("&amp;", "&") line = line.replace("&", "&amp;") line = str(BeautifulSoup(line, "xml")) # line = line.replace("<\s>", "</s>") # print("Line is:") # print(line) root = ET.fromstring(line) ref_text_dict = dictify(root) # print(ref_text_dict) ref_text_dict_clean = {} cnt = 0 # if "S" not in ref_text_dict["root"]: # # print "Key Error at", file # continue try: for item in ref_text_dict["root"]["S"]: cnt += 1 ref_text_dict_clean[item.get("sid", cnt)] = item["_text"] parse_data[line_data["Reference Article"]][line_data["Citing Article"]][line_data["Citation Marker Offset"]]["Reference Text"] = ref_text_dict_clean # print "ref_text_dict_clean", ref_text_dict_clean parse_data[line_data["Reference Article"]][line_data["Citing Article"]][line_data["Citation Marker Offset"]]["Reference Offset"] = parsed_ref_offset except: print "Error in Reference Offset" continue try: ref_discourse_facet = line_data["Discourse Facet"] parsed_discourse_facet = [] if len(ref_discourse_facet) > 0: if ref_discourse_facet[0] == "[": parsed_discourse_facet_tmp = [x.strip().lower().replace(" ", "_") for x in ref_discourse_facet[1:-1].split(",")] parsed_discourse_facet = [] for ref in parsed_discourse_facet_tmp: if ref.startswith("\'") or ref.startswith("\""): ref = ref[1:] if ref.endswith("\'") or ref.endswith("\""): ref = ref[:-1] parsed_discourse_facet.append(ref) else: parsed_discourse_facet_tmp = [x.strip().lower().replace(" ", "_") for x in ref_discourse_facet.split(",")] parsed_discourse_facet = [] for ref in parsed_discourse_facet_tmp: if ref.startswith("\'") or ref.startswith("\""): ref = ref[1:] if ref.endswith("\'") or ref.endswith("\""): ref = ref[:-1] parsed_discourse_facet.append(ref) print "parsed_discourse_facet", parsed_discourse_facet parse_data[line_data["Reference Article"]][line_data["Citing Article"]][line_data["Citation Marker Offset"]]["Discourse Facet"] = parsed_discourse_facet except: print "Error in Discourse Facet" continue # print(json.dumps(parse_data, sort_keys=True, indent=4)) # print("###################################################################################################################") return parse_data def calculate(gold_data, submit_data): # print(json.dumps(gold_data, indent=4, sort_keys=True)) # print(json.dumps(submit_data, indent=4, sort_keys=True)) [TP_ref, FN_ref, FP_ref, TP_facet, FN_facet, FP_facet] = [0, 0, 0, 0, 0, 0] for ref_article in gold_data: for cit_article in gold_data[ref_article]: for cit_marker_offset in gold_data[ref_article][cit_article]: old_TP_ref = TP_ref try: for ref_offset in gold_data[ref_article][cit_article][cit_marker_offset]["Reference Offset"]: try: ref_offset_list = submit_data[ref_article][cit_article][cit_marker_offset]["Reference Offset"] if ref_offset in ref_offset_list: TP_ref += 1 gold_data[ref_article][cit_article][cit_marker_offset]["comparable"] = True else: FN_ref += 1 except KeyError as e: print("IGNORE THIS: key error 1") FN_ref += 1 except: continue for ref_article in submit_data: for cit_article in submit_data[ref_article]: for cit_marker_offset in submit_data[ref_article][cit_article]: try: for ref_offset in submit_data[ref_article][cit_article][cit_marker_offset]["Reference Offset"]: try: ref_offset_list = gold_data[ref_article][cit_article][cit_marker_offset]["Reference Offset"] if ref_offset not in ref_offset_list: FP_ref += 1 except KeyError as e: print("IGNORE THIS: key error 2") FP_ref += 1 except: continue [precision_ref, recall_ref, f_ref] = [0.0, 0.0, 0.0] try: precision_ref = TP_ref / float(TP_ref + FP_ref) except ZeroDivisionError as e: precision_ref = 0 try: recall_ref = TP_ref / float(TP_ref + FN_ref) except ZeroDivisionError as e: recall_ref = 0 try: f_ref = 2.0 * precision_ref * recall_ref / float(precision_ref + recall_ref) except ZeroDivisionError as e: f_ref = 0 for ref_article in gold_data: for cit_article in gold_data[ref_article]: for cit_marker_offset in gold_data[ref_article][cit_article]: try: for facet in gold_data[ref_article][cit_article][cit_marker_offset]["Discourse Facet"]: if gold_data[ref_article][cit_article][cit_marker_offset]["comparable"]: print("\n\n") print(ref_article) print(cit_article) print(cit_marker_offset) print(facet) print(submit_data[ref_article][cit_article][cit_marker_offset]["Discourse Facet"]) try: if facet in submit_data[ref_article][cit_article][cit_marker_offset]["Discourse Facet"]: TP_facet += 1 else: FN_facet += 1 except KeyError as e: print("IGNORE THIS: Key error 4") FN_facet += 1 else: FN_facet += 1 except: continue for ref_article in submit_data: for cit_article in submit_data[ref_article]: for cit_marker_offset in submit_data[ref_article][cit_article]: try: for facet in submit_data[ref_article][cit_article][cit_marker_offset]["Discourse Facet"]: try: if gold_data[ref_article][cit_article][cit_marker_offset]["comparable"]: if facet not in gold_data[ref_article][cit_article][cit_marker_offset]["Discourse Facet"]: FP_facet += 1 except KeyError as e: print("IGNORE THIS: Key error 5") FP_facet += 1 except: continue [precision_facet, recall_facet, f_facet] = [0.0, 0.0, 0.0] try: precision_facet = TP_facet / float(TP_facet + FP_facet) except ZeroDivisionError as e: precision_facet = 0 try: recall_facet = TP_facet / float(TP_facet + FN_facet) except ZeroDivisionError as e: recall_facet = 0 try: f_facet = 2.0 * precision_facet * recall_facet / float(precision_facet + recall_facet) except ZeroDivisionError as e: f_facet = 0 return (precision_ref, recall_ref, f_ref, precision_facet, recall_facet, f_facet, TP_ref, FP_ref, FN_ref, TP_facet, FP_facet, FN_facet) def evaluate(gold_file, submit_file, score_file): # print(gold_file) # print(submit_file) gold_data = parse_csv(gold_file) submit_data = parse_csv(submit_file) (p_ref, r_ref, f_ref, p_facet, r_facet, f_facet, TP_ref, FP_ref, FN_ref, TP_facet, FP_facet, FN_facet) = calculate(gold_data, submit_data) with open(score_file, "a") as f: f.write(os.path.basename(gold_file) + "_task1a_precision: " + str(p_ref) + "\n") f.write(os.path.basename(gold_file) + "_task1a_recall: " + str(r_ref) + "\n") f.write(os.path.basename(gold_file) + "_task1a_f1: " + str(f_ref) + "\n") f.write(os.path.basename(gold_file) + "_task1b_precision: " + str(p_facet) + "\n") f.write(os.path.basename(gold_file) + "_task1b_recall: " + str(r_facet) + "\n") f.write(os.path.basename(gold_file) + "_task1b_f1: " + str(f_facet) + "\n") return (p_ref, r_ref, f_ref, p_facet, r_facet, f_facet, TP_ref, FP_ref, FN_ref, TP_facet, FP_facet, FN_facet) def main(input_dir, output_dir): if not os.path.exists(input_dir): print("%s not a valid director" % input_dir) if not os.path.exists(output_dir): print("%s not a valid director" % output_dir) truth_dir = os.path.join(input_dir, "ref", "Task1") if not os.path.exists(truth_dir): print("%s not a valid director" % truth_dir) submit_dir = os.path.join(input_dir, "res", "Task1") if not os.path.exists(submit_dir): print("%s not a valid director" % submit_dir) score_file = os.path.join(output_dir, "scores.txt") if os.path.exists(score_file): os.remove(score_file) P_ref_list = [] P_facet_list = [] R_ref_list = [] R_facet_list = [] F_ref_list = [] F_facet_list = [] TP_ref_list = [] FP_ref_list = [] FN_ref_list = [] TP_facet_list = [] FP_facet_list = [] FN_facet_list = [] for gold_file in os.listdir(truth_dir): if gold_file.startswith('.'): continue paper_id = gold_file.split('_')[0] submit_file = os.path.join(submit_dir, paper_id +".csv") if not os.path.exists(submit_file): continue (p_ref, r_ref, f_ref, p_facet, r_facet, f_facet, TP_ref, FP_ref, FN_ref, TP_facet, FP_facet, FN_facet) = evaluate(os.path.join(truth_dir, gold_file), submit_file, score_file) P_ref_list.append(p_ref) P_facet_list.append(p_facet) R_ref_list.append(r_ref) R_facet_list.append(r_facet) F_ref_list.append(f_ref) F_facet_list.append(f_facet) TP_ref_list.append(TP_ref) FP_ref_list.append(FP_ref) FN_ref_list.append(FN_ref) TP_facet_list.append(TP_facet) FP_facet_list.append(FP_facet) FN_facet_list.append(FN_facet) TP_ref_sum = sum(TP_ref_list) FP_ref_sum = sum(FP_ref_list) FN_ref_sum = sum(FN_ref_list) TP_facet_sum = sum(TP_facet_list) FP_facet_sum = sum(FP_facet_list) FN_facet_sum = sum(FN_facet_list) try: precision_ref_micro = TP_ref_sum / float(TP_ref_sum + FP_ref_sum) except ZeroDivisionError as e: precision_ref_micro = 0 try: recall_ref_micro = TP_ref_sum / float(TP_ref_sum + FN_ref_sum) except ZeroDivisionError as e: recall_ref_micro = 0 try: f_ref_micro = 2.0 * precision_ref_micro * recall_ref_micro / float(precision_ref_micro + recall_ref_micro) except ZeroDivisionError as e: f_ref_micro = 0 try: precision_ref_macro = sum(P_ref_list) / len(P_ref_list) except ZeroDivisionError as e: precision_ref_macro = 0 try: recall_ref_macro = sum(R_ref_list) / len(R_ref_list) except ZeroDivisionError as e: recall_ref_macro = 0 try: f_ref_macro = 2.0 * precision_ref_macro * recall_ref_macro / float(precision_ref_macro + recall_ref_macro) except ZeroDivisionError as e: f_ref_macro = 0 try: # precision_facet_micro = TP_ref_sum / float(TP_ref_sum + FP_ref_sum) precision_facet_micro = TP_facet_sum / float(TP_facet_sum + FP_facet_sum) except ZeroDivisionError as e: precision_facet_micro = 0 try: # recall_facet_micro = TP_ref_sum / float(TP_ref_sum + FN_ref_sum) recall_facet_micro = TP_facet_sum / float(TP_facet_sum + FN_facet_sum) except ZeroDivisionError as e: recall_facet_micro = 0 try: # f_facet_micro = 2.0 * precision_ref_micro * recall_ref_micro / float(precision_ref_micro + recall_ref_micro) f_facet_micro = 2.0 * precision_facet_micro * recall_facet_micro / float(precision_facet_micro + recall_facet_micro) except ZeroDivisionError as e: f_facet_micro = 0 try: precision_facet_macro = sum(P_facet_list) / len(P_facet_list) except ZeroDivisionError as e: precision_facet_macro = 0 try: recall_facet_macro = sum(R_facet_list) / len(R_facet_list) except ZeroDivisionError as e: recall_facet_macro = 0 try: f_facet_macro = 2.0 * precision_facet_macro * recall_facet_macro / float(precision_facet_macro + recall_facet_macro) except ZeroDivisionError as e: f_facet_macro = 0 with open(score_file, "a") as f: f.write("task1a_precision_micro_avg: " + str(precision_ref_micro) + "\n") f.write("task1a_precision_macro_avg: " + str(precision_ref_macro) + "\n") f.write("task1a_recall_micro_avg: " + str(recall_ref_micro) + "\n") f.write("task1a_recall_macro_avg: " + str(recall_ref_macro) + "\n") f.write("task1a_f1_micro_avg: " + str(f_ref_micro) + "\n") f.write("task1a_f1_macro_avg: " + str(f_ref_macro) + "\n") f.write("task1b_precision_micro_avg: " + str(precision_facet_micro) + "\n") f.write("task1b_precision_macro_avg: " + str(precision_facet_macro) + "\n") f.write("task1b_recall_micro_avg: " + str(recall_facet_micro) + "\n") f.write("task1b_recall_macro_avg: " + str(recall_facet_macro) + "\n") f.write("task1b_f1_micro_avg: " + str(f_facet_micro) + "\n") f.write("task1b_f1_macro_avg: " + str(f_facet_macro) + "\n") if __name__ == "__main__": input_dir = sys.argv[1] output_dir = sys.argv[2] main(input_dir, output_dir)