max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
tests/user_test.py
jjinno/pygerduty
144
12766171
from __future__ import absolute_import import httpretty import pygerduty import pygerduty.v2 ################### # Version 1 Tests # ################### @httpretty.activate def test_get_user_v1(): body = open('tests/fixtures/user_v1.json').read() httpretty.register_uri( httpretty.GET, "https://contosso.pagerduty.com/api/v1/users/PIJ90N7", body=body, status=200) p = pygerduty.PagerDuty("contosso", "password") user = p.users.show("PIJ90N7") assert user.id == "PIJ90N7" assert user.name == "<NAME>" assert user.role == "admin" @httpretty.activate def test_list_user_contact_methods_v1(): user_body = open('tests/fixtures/user_v1.json').read() contact_body = open('tests/fixtures/contacts_v1.json').read() httpretty.register_uri( httpretty.GET, "https://contosso.pagerduty.com/api/v1/users/PIJ90N7", body=user_body, status=200), httpretty.register_uri( httpretty.GET, "https://contosso.pagerduty.com/api/v1/users/PIJ90N7/contact_methods", body=contact_body, status=200) p = pygerduty.PagerDuty("contosso", "password") user = p.users.show("PIJ90N7") contact_methods = [c for c in user.contact_methods.list()] assert len(contact_methods) == 3 assert len([c for c in contact_methods if c.type == "email"]) == 1 assert len([c for c in contact_methods if c.type == "phone"]) == 1 assert len([c for c in contact_methods if c.type == "SMS"]) == 1 ################### # Version 2 Tests # ################### @httpretty.activate def test_get_user_v2(): body = open('tests/fixtures/user_v2.json').read() httpretty.register_uri( httpretty.GET, "https://api.pagerduty.com/users/PXPGF42", body=body, status=200) p = pygerduty.v2.PagerDuty("password") user = p.users.show("PXPGF42") assert user.id == "PXPGF42" assert user.name == "<NAME>" assert user.role == "admin" assert user.self_ == 'https://api.pagerduty.com/users/PXPGF42' @httpretty.activate def test_list_user_contact_methods_v2(): user_body = open('tests/fixtures/user_v2.json').read() contact_body = open('tests/fixtures/contacts_v2.json').read() httpretty.register_uri( httpretty.GET, "https://api.pagerduty.com/users/PXPGF42", body=user_body, status=200) httpretty.register_uri( httpretty.GET, "https://api.pagerduty.com/users/PXPGF42/contact_methods", body=contact_body, status=200) p = pygerduty.v2.PagerDuty("password") user = p.users.show("PXPGF42") contact_methods = [c for c in user.contact_methods.list()] assert len(contact_methods) == 3 assert len([c for c in contact_methods if c.type == "email"]) == 1 assert len([c for c in contact_methods if c.type == "phone"]) == 1 assert len([c for c in contact_methods if c.type == "SMS"]) == 1 assert user.self_ == 'https://api.pagerduty.com/users/PXPGF42' @httpretty.activate def test_user_notification_rules_v2(): user_body = open('tests/fixtures/user_v2.json').read() notification_body = open('tests/fixtures/notification_v2.json').read() httpretty.register_uri( httpretty.GET, "https://api.pagerduty.com/users/PXPGF42", body=user_body, status=200) httpretty.register_uri( httpretty.GET, "https://api.pagerduty.com/users/PXPGF42/notification_rules", body=notification_body, status=200) p = pygerduty.v2.PagerDuty("password") user = p.users.show("PXPGF42") notification_rules = [n for n in user.notification_rules.list()] assert len(notification_rules) == 1 assert len([n for n in notification_rules if n.type == "assignment_notification_rule"]) == 1 assert user.self_ == "https://api.pagerduty.com/users/PXPGF42" def test_clean_response(): mock_response = { "user" : { "id": "PHDGK84", "type": "user", "self": "https://api.pagerduty.com/users/PHDGK84", "name": "Snoopy", "contact_methods": [ { "address": "<EMAIL>", "id": "PZMO0JF", "self": "https://api.pagerduty.com/users/PHDGK84/contact_method/PZMO0JF", "label": "Default" }, { "address": "8928393498", "id": "PZMN843", "self": "https://api.pagerduty.com/users/PHDGK84/contact_method/PZMN843", "label": "Default" } ], "notification_rules": [ { "id": "P8WETWW", "contact_method": { "id": "PZMO0JF", "self": "https://api.pagerduty.com/users/PHDGK84/contact_method/PZMO0JF", } } ] } } clean_response = pygerduty.common.clean_response(mock_response) assert clean_response == { "user" : { "id": "PHDGK84", "type": "user", "self_": "https://api.pagerduty.com/users/PHDGK84", "name": "Snoopy", "contact_methods": [ { "address": "<EMAIL>", "id": "PZMO0JF", "self_": "https://api.pagerduty.com/users/PHDGK84/contact_method/PZMO0JF", "label": "Default" }, { "address": "8928393498", "id": "PZMN843", "self_": "https://api.pagerduty.com/users/PHDGK84/contact_method/PZMN843", "label": "Default" } ], "notification_rules": [ { "id": "P8WETWW", "contact_method": { "id": "PZMO0JF", "self_": "https://api.pagerduty.com/users/PHDGK84/contact_method/PZMO0JF", } } ] } }
server_python/config.py
dkvirus/py-novel
145
12766193
# config.py # encoding:utf-8 DEBUG = True JSON_AS_ASCII = False
spacy-annotator/displacy/server.py
aniruddha-adhikary/spacy-dev-resources
132
12766203
#!/usr/bin/env python from __future__ import unicode_literals from __future__ import print_function import falcon import spacy import json import sys from spacy.pipeline import EntityRecognizer import spacy.util from spacy.tagger import Tagger from .parse import Entities, TrainEntities from falcon_cors import CORS try: unicode except NameError: unicode = str _models = {} def get_model(model_name): if model_name not in _models: model = spacy.load(model_name) if model.tagger is None: model.tagger = Tagger(model.vocab, features=Tagger.feature_templates) if model.entity is None: model.entity = EntityRecognizer(model.vocab, entity_types=['PERSON', 'NORP', 'FACILITY', 'ORG', 'GPE', 'LOC', 'PRODUCT', 'EVENT', 'WORK_OF_ART', 'LANGUAGE', 'DATE', 'TIME', 'PERCENT', 'MONEY', 'QUANTITY', 'ORDINAL', 'CARDINAL']) model.pipeline = [model.tagger, model.entity, model.parser] _models[model_name] = model return _models[model_name] def update_vocabulary(model, texts): for text in texts: doc = model.make_doc(text) for word in doc: _ = model.vocab[word.orth] class EntResource(object): """Parse text and return displaCy ent's expected output.""" def on_post(self, req, resp): req_body = req.stream.read() json_data = json.loads(req_body.decode('utf8')) paragraphs = json_data.get('paragraphs') model_name = json_data.get('model', 'en') try: model = get_model(model_name) entities = [] for p in paragraphs: e = Entities(model, p.get('text')) entities.append(e.to_json()) resp.body = json.dumps(entities, sort_keys=True, indent=2) resp.content_type = 'application/json' resp.status = falcon.HTTP_200 except Exception: resp.status = falcon.HTTP_500 class TrainEntResource(object): """Parse text and use it to train the entity recognizer.""" def on_post(self, req, resp): req_body = req.stream.read() json_data = json.loads(req_body.decode('utf8')) paragraphs = json_data.get('paragraphs') model_name = json_data.get('model', 'en') try: model = get_model(model_name) texts = [paragraph.get('text') for paragraph in paragraphs] update_vocabulary(model, texts) entities = [] for p in paragraphs: e = TrainEntities(model, p.get('text'), p.get('tags')) entities.append(e.to_json()) resp.body = json.dumps(entities, sort_keys=True, indent=2) resp.content_type = 'application/json' resp.status = falcon.HTTP_200 except Exception: print("Unexpected error:", sys.exc_info()[0]) resp.status = falcon.HTTP_500 cors = CORS(allow_all_origins=True) APP = falcon.API(middleware=[cors.middleware]) APP.add_route('/ent', EntResource()) APP.add_route('/train', TrainEntResource())
mmpose/core/optimizer/registry.py
chaowentao/mmpose
367
12766204
from mmcv.utils import Registry OPTIMIZERS = Registry('optimizers')
devil/devil/android/tools/system_app_test.py
Martijnve23/catapult
1,894
12766248
<reponame>Martijnve23/catapult<gh_stars>1000+ #!/usr/bin/env python # Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import sys import unittest if __name__ == '__main__': sys.path.append( os.path.abspath( os.path.join(os.path.dirname(__file__), '..', '..', '..'))) from devil import devil_env from devil.android import device_utils from devil.android.sdk import adb_wrapper from devil.android.sdk import version_codes from devil.android.tools import system_app with devil_env.SysPath(devil_env.PYMOCK_PATH): import mock _PACKAGE_NAME = 'com.android' _PACKAGE_PATH = '/path/to/com.android.apk' _PM_LIST_PACKAGES_COMMAND = [ 'pm', 'list', 'packages', '-f', '-u', _PACKAGE_NAME ] _PM_LIST_PACKAGES_OUTPUT_WITH_PATH = [ 'package:/path/to/other=' + _PACKAGE_NAME + '.other', 'package:' + _PACKAGE_PATH + '=' + _PACKAGE_NAME ] _PM_LIST_PACKAGES_OUTPUT_WITHOUT_PATH = [ 'package:/path/to/other=' + _PACKAGE_NAME + '.other' ] class SystemAppTest(unittest.TestCase): def testDoubleEnableModification(self): """Ensures that system app modification logic isn't repeated. If EnableSystemAppModification uses are nested, inner calls should not need to perform any of the expensive modification logic. """ # pylint: disable=no-self-use,protected-access mock_device = mock.Mock(spec=device_utils.DeviceUtils) mock_device.adb = mock.Mock(spec=adb_wrapper.AdbWrapper) type(mock_device).build_version_sdk = mock.PropertyMock( return_value=version_codes.LOLLIPOP) system_props = {} def dict_setprop(prop_name, value): system_props[prop_name] = value def dict_getprop(prop_name): return system_props.get(prop_name, '') mock_device.SetProp.side_effect = dict_setprop mock_device.GetProp.side_effect = dict_getprop with system_app.EnableSystemAppModification(mock_device): mock_device.EnableRoot.assert_called_once_with() mock_device.GetProp.assert_called_once_with( system_app._ENABLE_MODIFICATION_PROP) mock_device.SetProp.assert_called_once_with( system_app._ENABLE_MODIFICATION_PROP, '1') mock_device.reset_mock() with system_app.EnableSystemAppModification(mock_device): self.assertFalse(mock_device.EnableRoot.mock_calls) # assert not called mock_device.GetProp.assert_called_once_with( system_app._ENABLE_MODIFICATION_PROP) self.assertFalse(mock_device.SetProp.mock_calls) # assert not called mock_device.reset_mock() mock_device.SetProp.assert_called_once_with( system_app._ENABLE_MODIFICATION_PROP, '0') def test_GetApplicationPaths_found(self): """Path found in output along with another package having similar name.""" # pylint: disable=protected-access mock_device = mock.Mock(spec=device_utils.DeviceUtils) mock_device.RunShellCommand.configure_mock( return_value=_PM_LIST_PACKAGES_OUTPUT_WITH_PATH) paths = system_app._GetApplicationPaths(mock_device, _PACKAGE_NAME) self.assertEqual([_PACKAGE_PATH], paths) mock_device.RunShellCommand.assert_called_once_with( _PM_LIST_PACKAGES_COMMAND, check_return=True) def test_GetApplicationPaths_notFound(self): """Path not found in output, only another package with similar name.""" # pylint: disable=protected-access mock_device = mock.Mock(spec=device_utils.DeviceUtils) mock_device.RunShellCommand.configure_mock( return_value=_PM_LIST_PACKAGES_OUTPUT_WITHOUT_PATH) paths = system_app._GetApplicationPaths(mock_device, _PACKAGE_NAME) self.assertEqual([], paths) mock_device.RunShellCommand.assert_called_once_with( _PM_LIST_PACKAGES_COMMAND, check_return=True) def test_GetApplicationPaths_noPaths(self): """Nothing containing text of package name found in output.""" # pylint: disable=protected-access mock_device = mock.Mock(spec=device_utils.DeviceUtils) mock_device.RunShellCommand.configure_mock(return_value=[]) paths = system_app._GetApplicationPaths(mock_device, _PACKAGE_NAME) self.assertEqual([], paths) mock_device.RunShellCommand.assert_called_once_with( _PM_LIST_PACKAGES_COMMAND, check_return=True) def test_GetApplicationPaths_emptyName(self): """Called with empty name, should not return any packages.""" # pylint: disable=protected-access mock_device = mock.Mock(spec=device_utils.DeviceUtils) mock_device.RunShellCommand.configure_mock( return_value=_PM_LIST_PACKAGES_OUTPUT_WITH_PATH) paths = system_app._GetApplicationPaths(mock_device, '') self.assertEqual([], paths) mock_device.RunShellCommand.assert_called_once_with( _PM_LIST_PACKAGES_COMMAND[:-1] + [''], check_return=True) if __name__ == '__main__': unittest.main()
sleap/nn/data/training.py
hectorcarrion/sleap
156
12766250
<reponame>hectorcarrion/sleap """Transformers and utilities for training-related operations.""" import numpy as np import tensorflow as tf import sleap from sleap.nn.data.providers import LabelsReader from sleap.nn.data.utils import expand_to_rank, ensure_list import attr from typing import List, Text, Optional, Any, Union, Dict, Tuple, Sequence from sklearn.model_selection import train_test_split def split_labels_train_val( labels: sleap.Labels, validation_fraction: float ) -> Tuple[sleap.Labels, List[int], sleap.Labels, List[int]]: """Make a train/validation split from a labels dataset. Args: labels: A `sleap.Labels` dataset with labeled frames. validation_fraction: Fraction of frames to use for validation. Returns: A tuple of `(labels_train, idx_train, labels_val, idx_val)`. `labels_train` and `labels_val` are `sleap.Label` objects containing the selected frames for each split. Their `videos`, `tracks` and `provenance` attributes are identical to `labels` even if the split does not contain instances with a particular video or track. `idx_train` and `idx_val` are list indices of the labeled frames within the input labels that were assigned to each split, i.e.: `labels[idx_train] == labels_train[:]` If there is only one labeled frame in `labels`, both of the labels will contain the same frame. If `validation_fraction` would result in fewer than one label for either split, it will be rounded to ensure there is at least one label in each. """ if len(labels) == 1: return labels, [0], labels, [0] # Split indices. n_val = round(len(labels) * validation_fraction) n_val = max(min(n_val, len(labels) - 1), 1) idx_train, idx_val = train_test_split(list(range(len(labels))), test_size=n_val) # Create labels and keep original metadata. labels_train = sleap.Labels(labels[idx_train]) labels_train.videos = labels.videos labels_train.tracks = labels.tracks labels_train.provenance = labels.provenance labels_val = sleap.Labels(labels[idx_val]) labels_val.videos = labels.videos labels_val.tracks = labels.tracks labels_val.provenance = labels.provenance return labels_train, idx_train, labels_val, idx_val def split_labels( labels: sleap.Labels, split_fractions: Sequence[float] ) -> Tuple[sleap.Labels]: """Split a `sleap.Labels` into multiple new ones with random subsets of the data. Args: labels: An instance of `sleap.Labels`. split_fractions: One or more floats between 0 and 1 that specify the fraction of examples that should be in each dataset. These should add up to <= 1.0. Fractions of less than 1 element will be rounded up to ensure that is at least 1 element in each split. One of the fractions may be -1 to indicate that it should contain all elements left over from the other splits. Returns: A tuple of new `sleap.Labels` instances of the same length as `split_fractions`. Raises: ValueError: If more than one split fraction is specified as -1. ValueError: If the splits add up to more than the total available examples. Note: Sampling is done without replacement. """ # Get indices for labeled frames. labels_indices = np.arange(len(labels)).astype("int64") # Compute split sizes. n_examples = len(labels_indices) n_examples_per_split = np.array(split_fractions).astype("float64") if (n_examples_per_split == -1).sum() > 1: raise ValueError("Only one split fraction can be specified as -1.") n_examples_per_split[n_examples_per_split == -1] = np.NaN n_examples_per_split = np.ceil(n_examples_per_split * n_examples) n_examples_per_split[np.isnan(n_examples_per_split)] = np.maximum( n_examples - np.nansum(n_examples_per_split), 1 ) n_examples_per_split = n_examples_per_split.astype("int64") if n_examples_per_split.sum() > n_examples: raise ValueError("Splits cannot sum to more than the total input labels.") # Sample and create new Labels instances. split_labels = [] for n_samples in n_examples_per_split: # Sample. sampled_indices = np.random.default_rng().choice( labels_indices, size=n_samples, replace=False ) # Create new instance. split_labels.append(sleap.Labels([labels[int(ind)] for ind in sampled_indices])) # Exclude the sampled indices from the available indices. labels_indices = np.setdiff1d(labels_indices, sampled_indices) return tuple(split_labels) def split_labels_reader( labels_reader: LabelsReader, split_fractions: Sequence[float] ) -> Tuple[LabelsReader]: """Split a `LabelsReader` into multiple new ones with random subsets of the data. Args: labels_reader: An instance of `sleap.nn.data.providers.LabelsReader`. This is a provider that generates datasets that contain elements read from a `sleap.Labels` instance. split_fractions: One or more floats between 0 and 1 that specify the fraction of examples that should be in each dataset. These should add up to <= 1.0. Fractions of less than 1 element will be rounded up to ensure that is at least 1 element in each split. One of the fractions may be -1 to indicate that it should contain all elements left over from the other splits. Returns: A tuple of `LabelsReader` instances of the same length as `split_fractions`. The indices will be stored in the `example_indices` in each `LabelsReader` instance. The actual `sleap.Labels` instance will be the same for each instance, only the `example_indices` that are iterated over will change across splits. If the input `labels_reader` already has `example_indices`, a subset of these will be sampled to generate the splits. Raises: ValueError: If more than one split fraction is specified as -1. ValueError: If the splits add up to more than the total available examples. Note: Sampling is done without replacement. """ # Get available indices. labels_indices = labels_reader.example_indices if labels_indices is None: labels_indices = np.arange(len(labels_reader)) labels_indices = np.array(labels_indices).astype("int64") # Compute split sizes. n_examples = len(labels_indices) n_examples_per_split = np.array(split_fractions).astype("float64") if (n_examples_per_split == -1).sum() > 1: raise ValueError("Only one split fraction can be specified as -1.") n_examples_per_split[n_examples_per_split == -1] = np.NaN n_examples_per_split = np.ceil(n_examples_per_split * n_examples) n_examples_per_split[np.isnan(n_examples_per_split)] = np.maximum( n_examples - np.nansum(n_examples_per_split), 1 ) n_examples_per_split = n_examples_per_split.astype("int64") if n_examples_per_split.sum() > n_examples: raise ValueError("Splits cannot sum to more than the total input labels.") # Sample and create new LabelsReader instances. split_readers = [] for n_samples in n_examples_per_split: # Sample. sampled_indices = np.random.default_rng().choice( labels_indices, size=n_samples, replace=False ) # Create new instance. split_readers.append( LabelsReader(labels_reader.labels, example_indices=sampled_indices) ) # Exclude the sampled indices from the available indices. labels_indices = np.setdiff1d(labels_indices, sampled_indices) return tuple(split_readers) @attr.s(auto_attribs=True) class KeyMapper: """Maps example keys to specified outputs. This is useful for transforming examples into tuples that map onto specific layer names for training. Attributes: key_maps: Dictionary or list of dictionaries with string keys and values of the form: {input_key: output_key}. If a list, the examples will be in tuples in the same order. """ key_maps: List[Dict[Text, Text]] = attr.ib( converter=attr.converters.optional(ensure_list) ) @property def input_keys(self) -> List[Text]: """Return the keys that incoming elements are expected to have.""" input_keys = [] for key_map in self.key_maps: input_keys.extend(list(key_map.keys())) return input_keys @property def output_keys(self) -> List[Text]: """Return the keys that outgoing elements will have. These may be nested.""" output_keys = [] for key_map in self.key_maps: output_keys.extend(list(key_map.values())) return output_keys def transform_dataset(self, ds_input: tf.data.Dataset) -> tf.data.Dataset: """Create a dataset with input keys mapped to new key names. Args: ds_input: Any `tf.data.Dataset` that generates examples as a dictionary of tensors with the keys in `input_keys`. Return: A dataset that generates examples with the tensors in `input_keys` mapped to keys in `output_keys` according to the structure in `key_maps`. """ def map_keys(example): """Local processing function for dataset mapping.""" output_keys = [] for key_map in self.key_maps: output_keys.append( {key_out: example[key_in] for key_in, key_out in key_map.items()} ) return tuple(output_keys) ds_output = ds_input.map(map_keys) return ds_output
paas-ce/paas/esb/components/bk/apis/cc/add_app.py
renmcc/bk-PaaS
767
12766268
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2018 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # noqa from django import forms from common.forms import BaseComponentForm, ListField from common.constants import API_TYPE_OP from components.component import Component from .toolkit import tools, configs class AddApp(Component): """ apiLabel {{ _("新建业务") }} apiMethod POST ### {{ _("功能描述") }} {{ _("新建业务") }} ### {{ _("请求参数") }} {{ common_args_desc }} #### {{ _("接口参数") }} | {{ _("字段") }} | {{ _("类型") }} | {{ _("必选") }} | {{ _("描述") }} | |-----------|------------|--------|------------| | app_name | string | {{ _("是") }} | {{ _("业务名") }} | | maintainers | string | {{ _("是") }} | {{ _("运维人员, 多个人之间用逗号分隔") }} | | product_pm | string | {{ _("否") }} | {{ _("产品人员,多个人之间用逗号分隔") }} | | developer | string | {{ _("否") }} | {{ _("开发人员,多个人之间用逗号分隔") }} | | tester | string | {{ _("否") }} | {{ _("测试人员,多个人之间用逗号分隔") }} | | operator | string | {{ _("否") }} | {{ _("操作者,多个人之间用逗号分隔") }} | | company_name | string | {{ _("是") }} | {{ _("公司名,cmdb配置文件中定义的constants.php中的 COMPANY_NAME") }} | | level | int | {{ _("是") }} | {{ _("业务拓扑级别,2或者3") }} | | life_cycle | string | {{ _("是") }} | {{ _("生成周期,1: 测试中, 2: 已上线, 3: 停运其中的一个值") }} | ### {{ _("请求参数示例") }} ```python { "app_code": "esb_test", "app_secret": "xxx", "bk_token": "xxx", "app_name": "Test", "maintainers": "admin", "product_pm": "admin", "company_name": "CompanyName", "level": 3, "life_cycle": "1" } ``` ### 返回结果示例 ```python { "result": true, "code": "00", "message": "", "data": { "appId": 25 } } ``` """ sys_name = configs.SYSTEM_NAME api_type = API_TYPE_OP host = configs.host class Form(BaseComponentForm): app_name = forms.CharField(label='business name', required=True) maintainers = ListField(label='OPS', required=True) product_pm = ListField(label='PM', required=False) developer = ListField(label='developer', required=False) tester = ListField(label='test staff', required=False) operator = ListField(label='operator', required=False) company_name = forms.CharField(label='company name', required=True) level = forms.IntegerField(label='business topology level', required=True) life_cycle = forms.CharField(label='life cycle', required=True) def clean(self): data = self.cleaned_data return { 'ApplicationName': data['app_name'], 'Maintainers': ','.join(data['maintainers']), 'ProductPm': ','.join(data['product_pm']), 'Developer': ','.join(data['developer']), 'Tester': ','.join(data['tester']), 'Operator': ','.join(data['operator']), 'CompanyName': data['company_name'], 'Level': data['level'], 'LifeCycle': data['life_cycle'], } def handle(self): self.form_data['Creator'] = self.current_user.username client = tools.CCClient(self) self.response.payload = client.post_request( self.host, '/api/app/addApp', data=self.form_data, )
quora/wsgi.py
alexricheburton/gittest
116
12766296
import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "quora.settings") from django.core.wsgi import get_wsgi_application from dj_static import Cling from whitenoise.django import DjangoWhiteNoise application = Cling(get_wsgi_application()) application = DjangoWhiteNoise(application)
example/ner/utils.py
tipevo/webstruct
210
12766301
<reponame>tipevo/webstruct # -*- coding: utf-8 -*- from functools import partial from tqdm import tqdm pages_progress = partial(tqdm, unit=' pages', smoothing=False, leave=True)
theme/management/commands/reset_quota.py
hydroshare/hydroshare
178
12766318
<reponame>hydroshare/hydroshare from django.core.management.base import BaseCommand from django_irods.storage import IrodsStorage from django.conf import settings class Command(BaseCommand): help = "Reset quota by forcing quota iRODS microservices to recalculate quota for all users." def handle(self, *args, **options): istorage = IrodsStorage() # reset quota for data zone root_path = '/{}/home/{}'.format(settings.IRODS_ZONE, settings.IRODS_USERNAME) istorage.setAVU(root_path, 'resetQuotaDir', 1) # reset quota for user zone user_root_path = '/{}/home/{}'.format(settings.HS_USER_IRODS_ZONE, settings.HS_IRODS_PROXY_USER_IN_USER_ZONE) istorage.setAVU(user_root_path, 'resetQuotaDir', 1)
readthedocs/rtd_tests/tests/test_version_config.py
mforbes/readthedocs.org
4,054
12766331
<gh_stars>1000+ from django.test import TestCase from django_dynamic_fixture import get from readthedocs.builds.models import Build, Version from readthedocs.projects.models import Project class VersionConfigTests(TestCase): def setUp(self): self.project = get(Project) self.version = get(Version, project=self.project) def test_get_correct_config(self): build_old = Build.objects.create( project=self.project, version=self.version, _config={'version': 1}, ) build_new = Build.objects.create( project=self.project, version=self.version, _config={'version': 2}, ) build_new_error = Build.objects.create( project=self.project, version=self.version, _config={'version': 3}, success=False, ) build_new_unfinish = Build.objects.create( project=self.project, version=self.version, _config={'version': 4}, state='building', ) self.assertEqual(self.version.config, {'version': 2}) def test_get_correct_config_when_same_config(self): build_old = get( Build, project=self.project, version=self.version, _config={}, ) build_old.config = {'version': 1} build_old.save() build_new = get( Build, project=self.project, version=self.version, _config={}, ) build_new.config = {'version': 1} build_new.save() build_new_error = get( Build, project=self.project, version=self.version, _config={}, success=False, ) build_new_error.config = {'version': 3} build_new_error.save() build_new_unfinish = get( Build, project=self.project, version=self.version, _config={}, state='building', ) build_new_unfinish.config = {'version': 1} build_new_unfinish.save() config = self.version.config self.assertEqual(config, {'version': 1})
AET/imagenet/config/ImageNet_Unsupervised.py
pjwu1997/teil_project
114
12766347
<reponame>pjwu1997/teil_project<filename>AET/imagenet/config/ImageNet_Unsupervised.py batch_size = 192*4 config = {} # set the parameters related to the training and testing set data_train_opt = {} data_train_opt['batch_size'] = batch_size data_train_opt['unsupervised'] = True data_train_opt['epoch_size'] = None data_train_opt['random_sized_crop'] = False data_train_opt['dataset_name'] = 'imagenet' data_train_opt['split'] = 'train' data_test_opt = {} data_test_opt['batch_size'] = batch_size data_test_opt['unsupervised'] = True data_test_opt['epoch_size'] = None data_test_opt['random_sized_crop'] = False data_test_opt['dataset_name'] = 'imagenet' data_test_opt['split'] = 'val' config['data_train_opt'] = data_train_opt config['data_test_opt'] = data_test_opt config['max_num_epochs'] = 200 net_opt = {} net_opt['num_classes'] = 8 net_opt['num_stages'] = 4 networks = {} net_optim_params = {'optim_type': 'sgd', 'lr': 0.01, 'momentum':0.9, 'weight_decay': 5e-4, 'nesterov': True, 'LUT_lr':[(100, 0.01),(150,0.001),(200,0.0001)]} networks['model'] = {'def_file': 'architectures/AlexNet.py', 'pretrained': None, 'opt': net_opt, 'optim_params': net_optim_params} config['networks'] = networks criterions = {} criterions['loss'] = {'ctype':'MSELoss', 'opt':True} config['criterions'] = criterions config['algorithm_type'] = 'UnsupervisedModel'
models/fpn_global_local_fmreg_ensemble.py
yinchimaoliang/GLNet
119
12766349
from .resnet import resnet50 import torch.nn as nn import torch.nn.functional as F import torch import numpy as np class fpn_module_global(nn.Module): def __init__(self, numClass): super(fpn_module_global, self).__init__() self._up_kwargs = {'mode': 'bilinear'} # Top layer self.toplayer = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=0) # Reduce channels # Lateral layers self.latlayer1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0) self.latlayer2 = nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0) self.latlayer3 = nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0) # Smooth layers self.smooth1_1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.smooth2_1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.smooth3_1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.smooth4_1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.smooth1_2 = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1) self.smooth2_2 = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1) self.smooth3_2 = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1) self.smooth4_2 = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1) # Classify layers self.classify = nn.Conv2d(128*4, numClass, kernel_size=3, stride=1, padding=1) # Local2Global: double #channels #################################### # Top layer self.toplayer_ext = nn.Conv2d(2048*2, 256, kernel_size=1, stride=1, padding=0) # Reduce channels # Lateral layers self.latlayer1_ext = nn.Conv2d(1024*2, 256, kernel_size=1, stride=1, padding=0) self.latlayer2_ext = nn.Conv2d(512*2, 256, kernel_size=1, stride=1, padding=0) self.latlayer3_ext = nn.Conv2d(256*2, 256, kernel_size=1, stride=1, padding=0) # Smooth layers self.smooth1_1_ext = nn.Conv2d(256*2, 256, kernel_size=3, stride=1, padding=1) self.smooth2_1_ext = nn.Conv2d(256*2, 256, kernel_size=3, stride=1, padding=1) self.smooth3_1_ext = nn.Conv2d(256*2, 256, kernel_size=3, stride=1, padding=1) self.smooth4_1_ext = nn.Conv2d(256*2, 256, kernel_size=3, stride=1, padding=1) self.smooth1_2_ext = nn.Conv2d(256*2, 128, kernel_size=3, stride=1, padding=1) self.smooth2_2_ext = nn.Conv2d(256*2, 128, kernel_size=3, stride=1, padding=1) self.smooth3_2_ext = nn.Conv2d(256*2, 128, kernel_size=3, stride=1, padding=1) self.smooth4_2_ext = nn.Conv2d(256*2, 128, kernel_size=3, stride=1, padding=1) self.smooth = nn.Conv2d(128*4*2, 128*4, kernel_size=3, stride=1, padding=1) def _concatenate(self, p5, p4, p3, p2): _, _, H, W = p2.size() p5 = F.interpolate(p5, size=(H, W), **self._up_kwargs) p4 = F.interpolate(p4, size=(H, W), **self._up_kwargs) p3 = F.interpolate(p3, size=(H, W), **self._up_kwargs) return torch.cat([p5, p4, p3, p2], dim=1) def _upsample_add(self, x, y): '''Upsample and add two feature maps. Args: x: (Variable) top feature map to be upsampled. y: (Variable) lateral feature map. Returns: (Variable) added feature map. Note in PyTorch, when input size is odd, the upsampled feature map with `F.interpolate(..., scale_factor=2, mode='nearest')` maybe not equal to the lateral feature map size. e.g. original input size: [N,_,15,15] -> conv2d feature map size: [N,_,8,8] -> upsampled feature map size: [N,_,16,16] So we choose bilinear upsample which supports arbitrary output sizes. ''' _, _, H, W = y.size() return F.interpolate(x, size=(H, W), **self._up_kwargs) + y def forward(self, c2, c3, c4, c5, c2_ext=None, c3_ext=None, c4_ext=None, c5_ext=None, ps0_ext=None, ps1_ext=None, ps2_ext=None): # Top-down if c5_ext is None: p5 = self.toplayer(c5) p4 = self._upsample_add(p5, self.latlayer1(c4)) p3 = self._upsample_add(p4, self.latlayer2(c3)) p2 = self._upsample_add(p3, self.latlayer3(c2)) else: p5 = self.toplayer_ext(torch.cat((c5, c5_ext), dim=1)) p4 = self._upsample_add(p5, self.latlayer1_ext(torch.cat((c4, c4_ext), dim=1))) p3 = self._upsample_add(p4, self.latlayer2_ext(torch.cat((c3, c3_ext), dim=1))) p2 = self._upsample_add(p3, self.latlayer3_ext(torch.cat((c2, c2_ext), dim=1))) ps0 = [p5, p4, p3, p2] # Smooth if ps0_ext is None: p5 = self.smooth1_1(p5) p4 = self.smooth2_1(p4) p3 = self.smooth3_1(p3) p2 = self.smooth4_1(p2) else: p5 = self.smooth1_1_ext(torch.cat((p5, ps0_ext[0]), dim=1)) p4 = self.smooth2_1_ext(torch.cat((p4, ps0_ext[1]), dim=1)) p3 = self.smooth3_1_ext(torch.cat((p3, ps0_ext[2]), dim=1)) p2 = self.smooth4_1_ext(torch.cat((p2, ps0_ext[3]), dim=1)) ps1 = [p5, p4, p3, p2] if ps1_ext is None: p5 = self.smooth1_2(p5) p4 = self.smooth2_2(p4) p3 = self.smooth3_2(p3) p2 = self.smooth4_2(p2) else: p5 = self.smooth1_2_ext(torch.cat((p5, ps1_ext[0]), dim=1)) p4 = self.smooth2_2_ext(torch.cat((p4, ps1_ext[1]), dim=1)) p3 = self.smooth3_2_ext(torch.cat((p3, ps1_ext[2]), dim=1)) p2 = self.smooth4_2_ext(torch.cat((p2, ps1_ext[3]), dim=1)) ps2 = [p5, p4, p3, p2] # Classify if ps2_ext is None: ps3 = self._concatenate(p5, p4, p3, p2) output = self.classify(ps3) else: p = self._concatenate( torch.cat((p5, ps2_ext[0]), dim=1), torch.cat((p4, ps2_ext[1]), dim=1), torch.cat((p3, ps2_ext[2]), dim=1), torch.cat((p2, ps2_ext[3]), dim=1) ) ps3 = self.smooth(p) output = self.classify(ps3) return output, ps0, ps1, ps2, ps3 class fpn_module_local(nn.Module): def __init__(self, numClass): super(fpn_module_local, self).__init__() self._up_kwargs = {'mode': 'bilinear'} # Top layer fold = 2 self.toplayer = nn.Conv2d(2048 * fold, 256, kernel_size=1, stride=1, padding=0) # Reduce channels # Lateral layers [C] self.latlayer1 = nn.Conv2d(1024 * fold, 256, kernel_size=1, stride=1, padding=0) self.latlayer2 = nn.Conv2d(512 * fold, 256, kernel_size=1, stride=1, padding=0) self.latlayer3 = nn.Conv2d(256 * fold, 256, kernel_size=1, stride=1, padding=0) # Smooth layers # ps0 self.smooth1_1 = nn.Conv2d(256 * fold, 256, kernel_size=3, stride=1, padding=1) self.smooth2_1 = nn.Conv2d(256 * fold, 256, kernel_size=3, stride=1, padding=1) self.smooth3_1 = nn.Conv2d(256 * fold, 256, kernel_size=3, stride=1, padding=1) self.smooth4_1 = nn.Conv2d(256 * fold, 256, kernel_size=3, stride=1, padding=1) # ps1 self.smooth1_2 = nn.Conv2d(256 * fold, 128, kernel_size=3, stride=1, padding=1) self.smooth2_2 = nn.Conv2d(256 * fold, 128, kernel_size=3, stride=1, padding=1) self.smooth3_2 = nn.Conv2d(256 * fold, 128, kernel_size=3, stride=1, padding=1) self.smooth4_2 = nn.Conv2d(256 * fold, 128, kernel_size=3, stride=1, padding=1) # ps2 is concatenation # Classify layers self.smooth = nn.Conv2d(128*4*fold, 128*4, kernel_size=3, stride=1, padding=1) self.classify = nn.Conv2d(128*4, numClass, kernel_size=3, stride=1, padding=1) def _concatenate(self, p5, p4, p3, p2): _, _, H, W = p2.size() p5 = F.interpolate(p5, size=(H, W), **self._up_kwargs) p4 = F.interpolate(p4, size=(H, W), **self._up_kwargs) p3 = F.interpolate(p3, size=(H, W), **self._up_kwargs) return torch.cat([p5, p4, p3, p2], dim=1) def _upsample_add(self, x, y): '''Upsample and add two feature maps. Args: x: (Variable) top feature map to be upsampled. y: (Variable) lateral feature map. Returns: (Variable) added feature map. Note in PyTorch, when input size is odd, the upsampled feature map with `F.interpolate(..., scale_factor=2, mode='nearest')` maybe not equal to the lateral feature map size. e.g. original input size: [N,_,15,15] -> conv2d feature map size: [N,_,8,8] -> upsampled feature map size: [N,_,16,16] So we choose bilinear upsample which supports arbitrary output sizes. ''' _, _, H, W = y.size() return F.interpolate(x, size=(H, W), **self._up_kwargs) + y def forward(self, c2, c3, c4, c5, c2_ext, c3_ext, c4_ext, c5_ext, ps0_ext, ps1_ext, ps2_ext): # Top-down p5 = self.toplayer(torch.cat([c5] + [F.interpolate(c5_ext[0], size=c5.size()[2:], **self._up_kwargs)], dim=1)) p4 = self._upsample_add(p5, self.latlayer1(torch.cat([c4] + [F.interpolate(c4_ext[0], size=c4.size()[2:], **self._up_kwargs)], dim=1))) p3 = self._upsample_add(p4, self.latlayer2(torch.cat([c3] + [F.interpolate(c3_ext[0], size=c3.size()[2:], **self._up_kwargs)], dim=1))) p2 = self._upsample_add(p3, self.latlayer3(torch.cat([c2] + [F.interpolate(c2_ext[0], size=c2.size()[2:], **self._up_kwargs)], dim=1))) ps0 = [p5, p4, p3, p2] # Smooth p5 = self.smooth1_1(torch.cat([p5] + [F.interpolate(ps0_ext[0][0], size=p5.size()[2:], **self._up_kwargs)], dim=1)) p4 = self.smooth2_1(torch.cat([p4] + [F.interpolate(ps0_ext[1][0], size=p4.size()[2:], **self._up_kwargs)], dim=1)) p3 = self.smooth3_1(torch.cat([p3] + [F.interpolate(ps0_ext[2][0], size=p3.size()[2:], **self._up_kwargs)], dim=1)) p2 = self.smooth4_1(torch.cat([p2] + [F.interpolate(ps0_ext[3][0], size=p2.size()[2:], **self._up_kwargs)], dim=1)) ps1 = [p5, p4, p3, p2] p5 = self.smooth1_2(torch.cat([p5] + [F.interpolate(ps1_ext[0][0], size=p5.size()[2:], **self._up_kwargs)], dim=1)) p4 = self.smooth2_2(torch.cat([p4] + [F.interpolate(ps1_ext[1][0], size=p4.size()[2:], **self._up_kwargs)], dim=1)) p3 = self.smooth3_2(torch.cat([p3] + [F.interpolate(ps1_ext[2][0], size=p3.size()[2:], **self._up_kwargs)], dim=1)) p2 = self.smooth4_2(torch.cat([p2] + [F.interpolate(ps1_ext[3][0], size=p2.size()[2:], **self._up_kwargs)], dim=1)) ps2 = [p5, p4, p3, p2] # Classify # use ps2_ext ps3 = self._concatenate( torch.cat([p5] + [F.interpolate(ps2_ext[0][0], size=p5.size()[2:], **self._up_kwargs)], dim=1), torch.cat([p4] + [F.interpolate(ps2_ext[1][0], size=p4.size()[2:], **self._up_kwargs)], dim=1), torch.cat([p3] + [F.interpolate(ps2_ext[2][0], size=p3.size()[2:], **self._up_kwargs)], dim=1), torch.cat([p2] + [F.interpolate(ps2_ext[3][0], size=p2.size()[2:], **self._up_kwargs)], dim=1) ) ps3 = self.smooth(ps3) output = self.classify(ps3) return output, ps0, ps1, ps2, ps3 class fpn(nn.Module): def __init__(self, numClass): super(fpn, self).__init__() self._up_kwargs = {'mode': 'bilinear'} # Res net self.resnet_global = resnet50(True) self.resnet_local = resnet50(True) # fpn module self.fpn_global = fpn_module_global(numClass) self.fpn_local = fpn_module_local(numClass) self.c2_g = None; self.c3_g = None; self.c4_g = None; self.c5_g = None; self.output_g = None self.ps0_g = None; self.ps1_g = None; self.ps2_g = None; self.ps3_g = None self.c2_l = []; self.c3_l = []; self.c4_l = []; self.c5_l = []; self.ps00_l = []; self.ps01_l = []; self.ps02_l = []; self.ps03_l = []; self.ps10_l = []; self.ps11_l = []; self.ps12_l = []; self.ps13_l = []; self.ps20_l = []; self.ps21_l = []; self.ps22_l = []; self.ps23_l = []; self.ps0_l = None; self.ps1_l = None; self.ps2_l = None self.ps3_l = []#; self.output_l = [] self.c2_b = None; self.c3_b = None; self.c4_b = None; self.c5_b = None; self.ps00_b = None; self.ps01_b = None; self.ps02_b = None; self.ps03_b = None; self.ps10_b = None; self.ps11_b = None; self.ps12_b = None; self.ps13_b = None; self.ps20_b = None; self.ps21_b = None; self.ps22_b = None; self.ps23_b = None; self.ps3_b = []#; self.output_b = [] self.patch_n = 0 self.mse = nn.MSELoss() self.ensemble_conv = nn.Conv2d(128*4 * 2, numClass, kernel_size=3, stride=1, padding=1) nn.init.normal_(self.ensemble_conv.weight, mean=0, std=0.01) # init fpn for m in self.fpn_global.children(): if hasattr(m, 'weight'): nn.init.normal_(m.weight, mean=0, std=0.01) if hasattr(m, 'bias'): nn.init.constant_(m.bias, 0) for m in self.fpn_local.children(): if hasattr(m, 'weight'): nn.init.normal_(m.weight, mean=0, std=0.01) if hasattr(m, 'bias'): nn.init.constant_(m.bias, 0) def clear_cache(self): self.c2_g = None; self.c3_g = None; self.c4_g = None; self.c5_g = None; self.output_g = None self.ps0_g = None; self.ps1_g = None; self.ps2_g = None; self.ps3_g = None self.c2_l = []; self.c3_l = []; self.c4_l = []; self.c5_l = []; self.ps00_l = []; self.ps01_l = []; self.ps02_l = []; self.ps03_l = []; self.ps10_l = []; self.ps11_l = []; self.ps12_l = []; self.ps13_l = []; self.ps20_l = []; self.ps21_l = []; self.ps22_l = []; self.ps23_l = []; self.ps0_l = None; self.ps1_l = None; self.ps2_l = None self.ps3_l = []; self.output_l = [] self.c2_b = None; self.c3_b = None; self.c4_b = None; self.c5_b = None; self.ps00_b = None; self.ps01_b = None; self.ps02_b = None; self.ps03_b = None; self.ps10_b = None; self.ps11_b = None; self.ps12_b = None; self.ps13_b = None; self.ps20_b = None; self.ps21_b = None; self.ps22_b = None; self.ps23_b = None; self.ps3_b = []; self.output_b = [] self.patch_n = 0 def _sample_grid(self, fm, bbox, sampleSize): """ :param fm: tensor(b,c,h,w) the global feature map :param bbox: list [b* nparray(x1, y1, x2, y2)] the (x1,y1) is the left_top of bbox, (x2, y2) is the right_bottom of bbox there are in range [0, 1]. x is corresponding to width dimension and y is corresponding to height dimension :param sampleSize: (oH, oW) the point to sample in height dimension and width dimension :return: tensor(b, c, oH, oW) sampled tensor """ b, c, h, w = fm.shape b_bbox = len(bbox) bbox = [x*2 - 1 for x in bbox] # range transform if b != b_bbox and b == 1: fm = torch.cat([fm,]*b_bbox, dim=0) grid = np.zeros((b_bbox,) + sampleSize + (2,), dtype=np.float32) gridMap = np.array([[(cnt_w/(sampleSize[1]-1), cnt_h/(sampleSize[0]-1)) for cnt_w in range(sampleSize[1])] for cnt_h in range(sampleSize[0])]) for cnt_b in range(b_bbox): grid[cnt_b, :, :, 0] = bbox[cnt_b][0] + (bbox[cnt_b][2] - bbox[cnt_b][0])*gridMap[:, :, 0] grid[cnt_b, :, :, 1] = bbox[cnt_b][1] + (bbox[cnt_b][3] - bbox[cnt_b][1])*gridMap[:, :, 1] grid = torch.from_numpy(grid).cuda() return F.grid_sample(fm, grid) def _crop_global(self, f_global, top_lefts, ratio): ''' top_lefts: [(top, left)] * b ''' _, c, H, W = f_global.size() b = len(top_lefts) h, w = int(np.round(H * ratio[0])), int(np.round(W * ratio[1])) # bbox = [ np.array([left, top, left + ratio, top + ratio]) for (top, left) in top_lefts ] # crop = self._sample_grid(f_global, bbox, (H, W)) crop = [] for i in range(b): top, left = int(np.round(top_lefts[i][0] * H)), int(np.round(top_lefts[i][1] * W)) # # global's sub-region & upsample # f_global_patch = F.interpolate(f_global[0:1, :, top:top+h, left:left+w], size=(h, w), mode='bilinear') f_global_patch = f_global[0:1, :, top:top+h, left:left+w] crop.append(f_global_patch[0]) crop = torch.stack(crop, dim=0) # stack into mini-batch return [crop] # return as a list for easy to torch.cat def _merge_local(self, f_local, merge, f_global, top_lefts, oped, ratio, template): ''' merge feature maps from local patches, and finally to a whole image's feature map (on cuda) f_local: a sub_batch_size of patch's feature map oped: [start, end) ''' b, _, _, _ = f_local.size() _, c, H, W = f_global.size() # match global feature size if merge is None: merge = torch.zeros((1, c, H, W)).cuda() h, w = int(np.round(H * ratio[0])), int(np.round(W * ratio[1])) for i in range(b): index = oped[0] + i top, left = int(np.round(H * top_lefts[index][0])), int(np.round(W * top_lefts[index][1])) merge[:, :, top:top+h, left:left+w] += F.interpolate(f_local[i:i+1], size=(h, w), **self._up_kwargs) if oped[1] >= len(top_lefts): template = F.interpolate(template, size=(H, W), **self._up_kwargs) template = template.expand_as(merge) # template = Variable(template).cuda() merge /= template return merge def ensemble(self, f_local, f_global): return self.ensemble_conv(torch.cat((f_local, f_global), dim=1)) def collect_local_fm(self, image_global, patches, ratio, top_lefts, oped, batch_size, global_model=None, template=None, n_patch_all=None): ''' patches: 1 patch top_lefts: all top-left oped: [start, end) ''' with torch.no_grad(): if self.patch_n == 0: self.c2_g, self.c3_g, self.c4_g, self.c5_g = global_model.module.resnet_global.forward(image_global) self.output_g, self.ps0_g, self.ps1_g, self.ps2_g, self.ps3_g = global_model.module.fpn_global.forward(self.c2_g, self.c3_g, self.c4_g, self.c5_g) # self.output_g = F.interpolate(self.output_g, image_global.size()[2:], mode='nearest') self.patch_n += patches.size()[0] self.patch_n %= n_patch_all self.resnet_local.eval() self.fpn_local.eval() c2, c3, c4, c5 = self.resnet_local.forward(patches) # global's 1x patch cat output, ps0, ps1, ps2, ps3 = self.fpn_local.forward( c2, c3, c4, c5, self._crop_global(self.c2_g, top_lefts[oped[0]:oped[1]], ratio), c3_ext=self._crop_global(self.c3_g, top_lefts[oped[0]:oped[1]], ratio), c4_ext=self._crop_global(self.c4_g, top_lefts[oped[0]:oped[1]], ratio), c5_ext=self._crop_global(self.c5_g, top_lefts[oped[0]:oped[1]], ratio), ps0_ext=[ self._crop_global(f, top_lefts[oped[0]:oped[1]], ratio) for f in self.ps0_g ], ps1_ext=[ self._crop_global(f, top_lefts[oped[0]:oped[1]], ratio) for f in self.ps1_g ], ps2_ext=[ self._crop_global(f, top_lefts[oped[0]:oped[1]], ratio) for f in self.ps2_g ] ) # output = F.interpolate(output, patches.size()[2:], mode='nearest') self.c2_b = self._merge_local(c2, self.c2_b, self.c2_g, top_lefts, oped, ratio, template) self.c3_b = self._merge_local(c3, self.c3_b, self.c3_g, top_lefts, oped, ratio, template) self.c4_b = self._merge_local(c4, self.c4_b, self.c4_g, top_lefts, oped, ratio, template) self.c5_b = self._merge_local(c5, self.c5_b, self.c5_g, top_lefts, oped, ratio, template) self.ps00_b = self._merge_local(ps0[0], self.ps00_b, self.ps0_g[0], top_lefts, oped, ratio, template) self.ps01_b = self._merge_local(ps0[1], self.ps01_b, self.ps0_g[1], top_lefts, oped, ratio, template) self.ps02_b = self._merge_local(ps0[2], self.ps02_b, self.ps0_g[2], top_lefts, oped, ratio, template) self.ps03_b = self._merge_local(ps0[3], self.ps03_b, self.ps0_g[3], top_lefts, oped, ratio, template) self.ps10_b = self._merge_local(ps1[0], self.ps10_b, self.ps1_g[0], top_lefts, oped, ratio, template) self.ps11_b = self._merge_local(ps1[1], self.ps11_b, self.ps1_g[1], top_lefts, oped, ratio, template) self.ps12_b = self._merge_local(ps1[2], self.ps12_b, self.ps1_g[2], top_lefts, oped, ratio, template) self.ps13_b = self._merge_local(ps1[3], self.ps13_b, self.ps1_g[3], top_lefts, oped, ratio, template) self.ps20_b = self._merge_local(ps2[0], self.ps20_b, self.ps2_g[0], top_lefts, oped, ratio, template) self.ps21_b = self._merge_local(ps2[1], self.ps21_b, self.ps2_g[1], top_lefts, oped, ratio, template) self.ps22_b = self._merge_local(ps2[2], self.ps22_b, self.ps2_g[2], top_lefts, oped, ratio, template) self.ps23_b = self._merge_local(ps2[3], self.ps23_b, self.ps2_g[3], top_lefts, oped, ratio, template) self.ps3_b.append(ps3.cpu()) # self.output_b.append(output.cpu()) # each output is 1, 7, h, w if self.patch_n == 0: # merged all patches into an image self.c2_l.append(self.c2_b); self.c3_l.append(self.c3_b); self.c4_l.append(self.c4_b); self.c5_l.append(self.c5_b); self.ps00_l.append(self.ps00_b); self.ps01_l.append(self.ps01_b); self.ps02_l.append(self.ps02_b); self.ps03_l.append(self.ps03_b) self.ps10_l.append(self.ps10_b); self.ps11_l.append(self.ps11_b); self.ps12_l.append(self.ps12_b); self.ps13_l.append(self.ps13_b) self.ps20_l.append(self.ps20_b); self.ps21_l.append(self.ps21_b); self.ps22_l.append(self.ps22_b); self.ps23_l.append(self.ps23_b) # collected all ps3 and output of patches as a (b) tensor, append into list self.ps3_l.append(torch.cat(self.ps3_b, dim=0)); # a list of tensors # self.output_l.append(torch.cat(self.output_b, dim=0)) # a list of 36, 7, h, w tensors self.c2_b = None; self.c3_b = None; self.c4_b = None; self.c5_b = None; self.ps00_b = None; self.ps01_b = None; self.ps02_b = None; self.ps03_b = None; self.ps10_b = None; self.ps11_b = None; self.ps12_b = None; self.ps13_b = None; self.ps20_b = None; self.ps21_b = None; self.ps22_b = None; self.ps23_b = None; self.ps3_b = []# ; self.output_b = [] if len(self.c2_l) == batch_size: self.c2_l = torch.cat(self.c2_l, dim=0)# .cuda() self.c3_l = torch.cat(self.c3_l, dim=0)# .cuda() self.c4_l = torch.cat(self.c4_l, dim=0)# .cuda() self.c5_l = torch.cat(self.c5_l, dim=0)# .cuda() self.ps00_l = torch.cat(self.ps00_l, dim=0)# .cuda() self.ps01_l = torch.cat(self.ps01_l, dim=0)# .cuda() self.ps02_l = torch.cat(self.ps02_l, dim=0)# .cuda() self.ps03_l = torch.cat(self.ps03_l, dim=0)# .cuda() self.ps10_l = torch.cat(self.ps10_l, dim=0)# .cuda() self.ps11_l = torch.cat(self.ps11_l, dim=0)# .cuda() self.ps12_l = torch.cat(self.ps12_l, dim=0)# .cuda() self.ps13_l = torch.cat(self.ps13_l, dim=0)# .cuda() self.ps20_l = torch.cat(self.ps20_l, dim=0)# .cuda() self.ps21_l = torch.cat(self.ps21_l, dim=0)# .cuda() self.ps22_l = torch.cat(self.ps22_l, dim=0)# .cuda() self.ps23_l = torch.cat(self.ps23_l, dim=0)# .cuda() self.ps0_l = [self.ps00_l, self.ps01_l, self.ps02_l, self.ps03_l] self.ps1_l = [self.ps10_l, self.ps11_l, self.ps12_l, self.ps13_l] self.ps2_l = [self.ps20_l, self.ps21_l, self.ps22_l, self.ps23_l] # self.ps3_l = torch.cat(self.ps3_l, dim=0)# .cuda() return self.ps3_l, output# self.output_l def forward(self, image_global, patches, top_lefts, ratio, mode=1, global_model=None, n_patch=None): if mode == 1: # train global model c2_g, c3_g, c4_g, c5_g = self.resnet_global.forward(image_global) output_g, ps0_g, ps1_g, ps2_g, ps3_g = self.fpn_global.forward(c2_g, c3_g, c4_g, c5_g) # imsize = image_global.size()[2:] # output_g = F.interpolate(output_g, imsize, mode='nearest') return output_g, None elif mode == 2: # train global2local model with torch.no_grad(): if self.patch_n == 0: # calculate global images only if patches belong to a new set of global images (when self.patch_n % n_patch == 0) self.c2_g, self.c3_g, self.c4_g, self.c5_g = self.resnet_global.forward(image_global) self.output_g, self.ps0_g, self.ps1_g, self.ps2_g, self.ps3_g = self.fpn_global.forward(self.c2_g, self.c3_g, self.c4_g, self.c5_g) # imsize_glb = image_global.size()[2:] # self.output_g = F.interpolate(self.output_g, imsize_glb, mode='nearest') self.patch_n += patches.size()[0] self.patch_n %= n_patch # train local model ####################################### c2_l, c3_l, c4_l, c5_l = self.resnet_local.forward(patches) # global's 1x patch cat output_l, ps0_l, ps1_l, ps2_l, ps3_l = self.fpn_local.forward(c2_l, c3_l, c4_l, c5_l, self._crop_global(self.c2_g, top_lefts, ratio), self._crop_global(self.c3_g, top_lefts, ratio), self._crop_global(self.c4_g, top_lefts, ratio), self._crop_global(self.c5_g, top_lefts, ratio), [ self._crop_global(f, top_lefts, ratio) for f in self.ps0_g ], [ self._crop_global(f, top_lefts, ratio) for f in self.ps1_g ], [ self._crop_global(f, top_lefts, ratio) for f in self.ps2_g ] ) # imsize = patches.size()[2:] # output_l = F.interpolate(output_l, imsize, mode='nearest') ps3_g2l = self._crop_global(self.ps3_g, top_lefts, ratio)[0] # only calculate loss on 1x ps3_g2l = F.interpolate(ps3_g2l, size=ps3_l.size()[2:], **self._up_kwargs) output = self.ensemble(ps3_l, ps3_g2l) # output = F.interpolate(output, imsize, mode='nearest') return output, self.output_g, output_l, self.mse(ps3_l, ps3_g2l) else: # train local2global model c2_g, c3_g, c4_g, c5_g = self.resnet_global.forward(image_global) # local patch cat into global output_g, ps0_g, ps1_g, ps2_g, ps3_g = self.fpn_global.forward(c2_g, c3_g, c4_g, c5_g, c2_ext=self.c2_l, c3_ext=self.c3_l, c4_ext=self.c4_l, c5_ext=self.c5_l, ps0_ext=self.ps0_l, ps1_ext=self.ps1_l, ps2_ext=self.ps2_l) # imsize = image_global.size()[2:] # output_g = F.interpolate(output_g, imsize, mode='nearest') self.clear_cache() return output_g, ps3_g
src/opnsense/scripts/filter/pftop.py
onedr0p/core
2,109
12766350
<filename>src/opnsense/scripts/filter/pftop.py #!/usr/local/bin/python3 """ Copyright (c) 2021 <NAME> <<EMAIL>> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import ujson import argparse from lib.states import query_top if __name__ == '__main__': # parse input arguments parser = argparse.ArgumentParser() parser.add_argument('--filter', help='filter results', default='') parser.add_argument('--limit', help='limit number of results', default='') parser.add_argument('--offset', help='offset results', default='') parser.add_argument('--label', help='label / rule id', default='') parser.add_argument('--sort_by', help='sort by (field asc|desc)', default='') inputargs = parser.parse_args() result = { 'details': query_top(filter_str=inputargs.filter, rule_label=inputargs.label) } # sort results if inputargs.sort_by.strip() != '' and len(result['details']) > 0: sort_key = inputargs.sort_by.split()[0] sort_desc = inputargs.sort_by.split()[-1] == 'desc' if sort_key in result['details'][0]: if type(result['details'][0][sort_key]) is int: sorter = lambda k: k[sort_key] if sort_key in k else 0 else: sorter = lambda k: str(k[sort_key]).lower() if sort_key in k else '' result['details'] = sorted(result['details'], key=sorter, reverse=sort_desc) result['total_entries'] = len(result['details']) # apply offset and limit if inputargs.offset.isdigit(): result['details'] = result['details'][int(inputargs.offset):] if inputargs.limit.isdigit() and len(result['details']) >= int(inputargs.limit): result['details'] = result['details'][:int(inputargs.limit)] result['total'] = len(result['details']) print(ujson.dumps(result))
evaluate.py
wmylxmj/Anime-Super-Resolution
120
12766362
# -*- coding: utf-8 -*- """ Created on Tue Apr 30 21:24:36 2019 @author: wmy """ import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from PIL import Image from keras import backend as K from keras.losses import mean_absolute_error, mean_squared_error from keras.models import load_model from keras.optimizers import Adam import random import os from model import wdsr_a, wdsr_b from utils import DataLoader model = wdsr_b(scale=4, num_res_blocks=32) model.load_weights('./weights/wdsr-b-32-x4.h5') data_loader = DataLoader(scale=4) def evaluate_test(model, setpath='datasets/train', difficulty='easy', name='evaluate'): images = data_loader.search(setpath) image = random.choice(images) hr = data_loader.imread(image) resize = (hr.size[0]//data_loader.scale, hr.size[1]//data_loader.scale) hidden_scale = random.uniform(1, 3) radius = random.uniform(1, 3) if difficulty=='easy': hidden_scale = random.uniform(1, 1.5) radius = random.uniform(1, 1.5) pass elif difficulty=='normal': hidden_scale = random.uniform(1.5, 2) radius = random.uniform(1.5, 2) pass elif difficulty=='hard': hidden_scale = random.uniform(2, 2.5) radius = random.uniform(2, 2.5) pass elif difficulty=='lunatic': hidden_scale = random.uniform(2.5, 3) radius = random.uniform(2.5, 3) pass else: raise ValueError("unknown difficulty") hidden_resize = (int(resize[0]/hidden_scale), int(resize[1]/hidden_scale)) lr = data_loader.gaussianblur(hr, radius) lr = lr.resize(hidden_resize) lr = lr.resize(resize) lr_resize = lr.resize(hr.size) lr = np.asarray(lr) sr = model.predict(np.array([lr]))[0] sr = np.clip(sr, 0, 255) sr = sr.astype('uint8') lr = Image.fromarray(lr) sr = Image.fromarray(sr) lr_resize.save("images/" + name + "_lr.jpg") sr.save("images/" + name + "_sr.jpg") hr.save("images/" + name + "_hr.jpg") pass evaluate_test(model, difficulty='easy', name='easy') evaluate_test(model, difficulty='normal', name='normal') evaluate_test(model, difficulty='hard', name='hard') evaluate_test(model, difficulty='lunatic', name='lunatic')
Gelatin/compiler/Context.py
Etherbay/Gelatin
107
12766363
<filename>Gelatin/compiler/Context.py # Copyright (c) 2010-2017 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import sys import codecs def do_next(context): return 0 def do_skip(context): return 1 def do_fail(context, message='No matching statement found'): context._error(message) def do_say(context, message): context._msg(message) return 0 def do_warn(context, message): context._warn(message) return 0 def do_return(context, levels=1): # print "do.return():", -levels return -levels def out_create(context, path, data=None): # print "out.create():", path, data context.builder.create(path, data) context.builder.enter(path) context._trigger(context.on_add, context.re_stack[-1]) context.builder.leave() return 0 def out_replace(context, path, data=None): # print "out.replace():", path, data context.builder.add(path, data, replace=True) context.builder.enter(path) context._trigger(context.on_add, context.re_stack[-1]) context.builder.leave() return 0 def out_add(context, path, data=None): # print "out.add():", path, data context.builder.add(path, data) context.builder.enter(path) context._trigger(context.on_add, context.re_stack[-1]) context.builder.leave() return 0 def out_add_attribute(context, path, name, value): # print "out.add_attribute():", path, name, value context.builder.add_attribute(path, name, value) context.builder.enter(path) context._trigger(context.on_add, context.re_stack[-1]) context.builder.leave() return 0 def out_open(context, path): # print "out.open():", path context.builder.open(path) context._trigger(context.on_add, context.re_stack[-1]) context.stack[-1].on_leave.append((context.builder.leave, ())) return 0 def out_enter(context, path): # print "out.enter():", path context.builder.enter(path) context._trigger(context.on_add, context.re_stack[-1]) context.stack[-1].on_leave.append((context.builder.leave, ())) return 0 def out_enqueue_before(context, regex, path, data=None): # print "ENQ BEFORE", regex.pattern, path, data context.on_match_before.append((regex, out_add, (context, path, data))) return 0 def out_enqueue_after(context, regex, path, data=None): # print "ENQ AFTER", regex.pattern, path, data context.on_match_after.append((regex, out_add, (context, path, data))) return 0 def out_enqueue_on_add(context, regex, path, data=None): # print "ENQ ON ADD", regex.pattern, path, data context.on_add.append((regex, out_add, (context, path, data))) return 0 def out_clear_queue(context): context._clear_triggers() return 1 def out_set_root_name(context, name): context.builder.set_root_name(name) return 0 class Context(object): def __init__(self): self.functions = {'do.fail': do_fail, 'do.return': do_return, 'do.next': do_next, 'do.skip': do_skip, 'do.say': do_say, 'do.warn': do_warn, 'out.create': out_create, 'out.replace': out_replace, 'out.add': out_add, 'out.add_attribute': out_add_attribute, 'out.open': out_open, 'out.enter': out_enter, 'out.enqueue_before': out_enqueue_before, 'out.enqueue_after': out_enqueue_after, 'out.enqueue_on_add': out_enqueue_on_add, 'out.clear_queue': out_clear_queue, 'out.set_root_name': out_set_root_name} self.lexicon = {} self.grammars = {} self.input = None self.builder = None self.end = 0 self._init() def _init(self): self.start = 0 self.re_stack = [] self.stack = [] self._clear_triggers() def _clear_triggers(self): self.on_match_before = [] self.on_match_after = [] self.on_add = [] def _trigger(self, triggers, match): matching = [] for trigger in triggers: regex, func, args = trigger if regex.search(match.group(0)) is not None: matching.append(trigger) for trigger in matching: triggers.remove(trigger) for trigger in matching: regex, func, args = trigger func(*args) def _match_before_notify(self, match): self.re_stack.append(match) self._trigger(self.on_match_before, match) def _match_after_notify(self, match): self._trigger(self.on_match_after, match) self.re_stack.pop() def _get_lineno(self): return self.input.count('\n', 0, self.start) + 1 def _get_line(self, number=None): if number is None: number = self._get_lineno() return self.input.split('\n')[number - 1] def _get_line_position_from_char(self, char): line_start = char while line_start != 0: if self.input[line_start - 1] == '\n': break line_start -= 1 line_end = self.input.find('\n', char) return line_start, line_end def _format(self, error): start, end = self._get_line_position_from_char(self.start) line_number = self._get_lineno() line = self._get_line() offset = self.start - start token_len = 1 output = line + '\n' if token_len <= 1: output += (' ' * offset) + '^\n' else: output += (' ' * offset) + "'" + ('-' * (token_len - 2)) + "'\n" output += '%s in line %s' % (error, line_number) return output def _msg(self, error): print(self._format(error)) def _warn(self, error): sys.stderr.write(self._format(error) + '\n') def _error(self, error): raise Exception(self._format(error)) def _eof(self): return self.start >= self.end def parse_string(self, input, builder, debug=0): self._init() self.input = input self.builder = builder self.end = len(input) self.grammars['input'].parse(self, debug) if self.start < self.end: self._error('parser returned, but did not complete') def parse(self, filename, builder, encoding='utf8', debug=0): with codecs.open(filename, 'r', encoding=encoding) as input_file: return self.parse_string(input_file.read(), builder, debug) def dump(self): for grammar in self.grammars.values(): print(grammar)
src/python/pants/backend/terraform/lint/tffmt/tffmt.py
yoav-orca/pants
1,806
12766378
<filename>src/python/pants/backend/terraform/lint/tffmt/tffmt.py # Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import logging import textwrap from pants.backend.terraform.lint.fmt import TerraformFmtRequest from pants.backend.terraform.style import StyleSetup, StyleSetupRequest from pants.backend.terraform.tool import TerraformProcess from pants.backend.terraform.tool import rules as tool_rules from pants.core.goals.fmt import FmtResult from pants.core.goals.lint import LintRequest, LintResult, LintResults from pants.core.util_rules import external_tool from pants.engine.fs import Digest, MergeDigests from pants.engine.internals.selectors import Get, MultiGet from pants.engine.process import FallibleProcessResult, ProcessResult from pants.engine.rules import collect_rules, rule from pants.engine.unions import UnionRule from pants.option.subsystem import Subsystem from pants.util.logging import LogLevel logger = logging.getLogger(__name__) class TfFmtSubsystem(Subsystem): options_scope = "terraform-fmt" help = """Terraform fmt options.""" @classmethod def register_options(cls, register): super().register_options(register) register( "--skip", type=bool, default=False, help=( f"Don't use `terraform fmt` when running `{register.bootstrap.pants_bin_name} fmt` and " f"`{register.bootstrap.pants_bin_name} lint`." ), ) class TffmtRequest(TerraformFmtRequest): pass @rule(desc="Format with `terraform fmt`") async def tffmt_fmt(request: TffmtRequest, tffmt: TfFmtSubsystem) -> FmtResult: if tffmt.options.skip: return FmtResult.skip(formatter_name="tffmt") setup = await Get(StyleSetup, StyleSetupRequest(request, ("fmt",))) results = await MultiGet( Get(ProcessResult, TerraformProcess, process) for _, (process, _) in setup.directory_to_process.items() ) def format(directory, output): if len(output.strip()) == 0: return "" return textwrap.dedent( f"""\ Output from `terraform fmt` on files in {directory}: {output.decode("utf-8")} """ ) stdout_content = "" stderr_content = "" for directory, result in zip(setup.directory_to_process.keys(), results): stdout_content += format(directory, result.stdout) stderr_content += format(directory, result.stderr) # Merge all of the outputs into a single output. output_digest = await Get(Digest, MergeDigests(r.output_digest for r in results)) fmt_result = FmtResult( input=setup.original_digest, output=output_digest, stdout=stdout_content, stderr=stderr_content, formatter_name="tffmt", ) return fmt_result @rule(desc="Lint with `terraform fmt`", level=LogLevel.DEBUG) async def tffmt_lint(request: TffmtRequest, tffmt: TfFmtSubsystem) -> LintResults: if tffmt.options.skip: return LintResults([], linter_name="tffmt") setup = await Get(StyleSetup, StyleSetupRequest(request, ("fmt", "-check"))) results = await MultiGet( Get(FallibleProcessResult, TerraformProcess, process) for _, (process, _) in setup.directory_to_process.items() ) lint_results = [LintResult.from_fallible_process_result(result) for result in results] return LintResults(lint_results, linter_name="tffmt") def rules(): return [ *collect_rules(), *external_tool.rules(), *tool_rules(), UnionRule(LintRequest, TffmtRequest), UnionRule(TerraformFmtRequest, TffmtRequest), ]
third_party/weston/generate_configs.py
zealoussnow/chromium
14,668
12766394
<gh_stars>1000+ #!/usr/bin/env python # # Copyright 2020 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Creates config files for building Weston.""" from __future__ import print_function import os import re import shutil import subprocess import sys import tempfile BASE_DIR = os.path.abspath(os.path.dirname(__file__)) CHROMIUM_ROOT_DIR = os.path.abspath(os.path.join(BASE_DIR, '..', '..')) sys.path.append(os.path.join(CHROMIUM_ROOT_DIR, 'build')) import gn_helpers MESON = ['meson'] DEFAULT_BUILD_ARGS = [ '-Dbuild_tests=false', '--buildtype', 'release', '-Dbackend-drm-screencast-vaapi=false', '-Dbackend-rdp=false', '-Dxwayland=false', '-Dcolor-management-lcms=false', '-Dpipewire=false', '-Dcolor-management-colord=false', '-Dremoting=false', '-Dsimple-dmabuf-drm=auto', '-Dshell-ivi=false', '-Ddemo-clients=false', '-Dsimple-clients=egl', '-Dlauncher-logind=false', '-Dweston-launch=false', '-Dscreenshare=false', '-Dsystemd=false', '-Dimage-jpeg=false', '-Dimage-webp=false', '-Dbackend-drm=false', '-Dbackend-default=wayland' ] def PrintAndCheckCall(argv, *args, **kwargs): print('\n-------------------------------------------------\nRunning %s' % ' '.join(argv)) c = subprocess.check_call(argv, *args, **kwargs) def RewriteFile(path, search_replace): with open(path) as f: contents = f.read() with open(path, 'w') as f: for search, replace in search_replace: contents = re.sub(search, replace, contents) # Cleanup trailing newlines. f.write(contents.strip() + '\n') def AddAttributeInConfig(path): with open(path) as f: contents = f.read() with open(path, 'w') as f: f.write(contents.strip() + '\n') f.write('\n' + '__attribute__((visibility("default"))) int main(int argc, char* argv[]);' + '\n') def CopyConfigsAndCleanup(config_dir, dest_dir): if not os.path.exists(dest_dir): os.makedirs(dest_dir) shutil.copy(os.path.join(config_dir, 'config.h'), dest_dir) shutil.rmtree(config_dir) def RewriteGitFile(path, data): with open(path, 'w') as f: contents = data # Cleanup trailing newlines. f.write(contents.strip() + '\n') def CopyGitConfigsAndCleanup(config_dir, dest_dir): if not os.path.exists(dest_dir): os.makedirs(dest_dir) shutil.copy(os.path.join(config_dir, 'git-version.h'), dest_dir) shutil.rmtree(config_dir) def GenerateGitConfig(config_dir, env, special_args=[]): temp_dir = tempfile.mkdtemp() PrintAndCheckCall( MESON + DEFAULT_BUILD_ARGS + special_args + [temp_dir], cwd='src', env=env) label = subprocess.check_output(["git", "describe", "--always"]).strip() label = label.decode("utf-8") RewriteGitFile( os.path.join(temp_dir, 'git-version.h'), "#define BUILD_ID \"{label}\"".format(label=label)) CopyGitConfigsAndCleanup(temp_dir, config_dir) def GenerateConfig(config_dir, env, special_args=[]): temp_dir = tempfile.mkdtemp() PrintAndCheckCall( MESON + DEFAULT_BUILD_ARGS + special_args + [temp_dir], cwd='src', env=env) CopyConfigsAndCleanup(temp_dir, config_dir) def ChangeConfigPath(): configfile = os.path.join(BASE_DIR, "config/config.h") DIRS = ["BINDIR", "DATADIR", "LIBEXECDIR", "LIBWESTON_MODULEDIR", "MODULEDIR"] for dir in DIRS: pattern = "#define {dir} \"/[a-zA-Z0-9\\-_/]+\"".format(dir=dir) RewriteFile(configfile, [(pattern, "")]) # Add attribute in config.h to suppress all undefined symbol(function) warnings AddAttributeInConfig(configfile) def GenerateWestonVersion(): dirname = os.path.join(BASE_DIR, "version/libweston") if not os.path.exists(dirname): os.makedirs(dirname) version_op_file = os.path.join(BASE_DIR, "version/libweston/version.h") configfile = os.path.join(BASE_DIR, "config/config.h") version_in_file = os.path.join(BASE_DIR, "src/include/libweston/version.h.in") version_number = "0.0.0" with open(configfile, 'r') as f: for line in f: if "PACKAGE_VERSION" in line: package_version_list = (line.strip("\n")).split(" ") version_number = package_version_list[-1] version_number_list = (version_number.strip('"\n"')).split(".") version_number_list.append(version_number.strip("\"\"")) VERSIONS = ["@WESTON_VERSION_MAJOR@", "@WESTON_VERSION_MINOR@", "@WESTON_VERSION_MICRO@", "@WESTON_VERSION@"] with open(version_in_file) as f: contents = f.read() for version, version_number in zip(VERSIONS, version_number_list): pattern = version repl_string = version_number with open(version_op_file, 'w') as f: contents = re.sub(pattern, repl_string, contents) # Cleanup trailing newlines. f.write(contents.strip() + '\n') print("Created version.h file from version.h.in\n") def RemoveUndesiredDefines(): configfile = os.path.join(BASE_DIR, "config/config.h") # Weston doesn't have a meson option to avoid using memfd_create() method that was # introduced in GLIBC 2.27. That results in weston failing to run on Xenial based bot as # it has GLIBC 2.23, because this config might be generated on a system that has newer # libc libraries that meson checks with has_function() method. Thus, explicitly rewrite # the config to disable usage of that method. RewriteFile(configfile, [("#define HAVE_MEMFD_CREATE .*", "")]) def main(): env = os.environ env['CC'] = 'clang' GenerateGitConfig('version', env) GenerateConfig('config', env) ChangeConfigPath() RemoveUndesiredDefines() GenerateWestonVersion() if __name__ == '__main__': main()
language/serene/claim_tfds.py
Xtuden-com/language
1,199
12766416
<gh_stars>1000+ # coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """TFDS for only claims.""" import json from language.serene import constants from language.serene import util import tensorflow.compat.v2 as tf import tensorflow_datasets.public_api as tfds class ClaimDataset(tfds.core.GeneratorBasedBuilder): """Claim only datasets for fever, useful for embedding only claims.""" VERSION = tfds.core.Version("0.1.0") def __init__( self, *, fever_train_path = None, fever_dev_path = None, data_dir = None, config=None): super().__init__(data_dir=data_dir, config=config) self._fever_train_path = fever_train_path self._fever_dev_path = fever_dev_path def _info(self): return tfds.core.DatasetInfo( builder=self, features=tfds.features.FeaturesDict({ "example_id": tf.string, "metadata": tf.string, "claim_text": tfds.features.Text(), "evidence_text": tfds.features.Text(), "wikipedia_url": tfds.features.Text(), "sentence_id": tfds.features.Text(), "scrape_type": tfds.features.Text(), "evidence_label": tfds.features.ClassLabel( names=constants.EVIDENCE_MATCHING_CLASSES), "claim_label": tfds.features.ClassLabel(names=constants.FEVER_CLASSES) })) def _split_generators(self, dl_manager): return [ tfds.core.SplitGenerator( name=tfds.Split.TRAIN, gen_kwargs={"filepath": self._fever_train_path} ), tfds.core.SplitGenerator( name=tfds.Split.VALIDATION, gen_kwargs={"filepath": self._fever_dev_path} ) ] def _generate_examples(self, filepath, **kwargs): fever_claims = util.read_jsonlines(filepath) for claim in fever_claims: claim_id = claim["id"] claim_text = claim["claim"] claim_label = claim["label"] example_id = f"{claim_id}" yield claim_id, { "example_id": example_id, "claim_text": claim_text, "evidence_text": "", "wikipedia_url": "", # Ordinarily, this would (possibly) be concatenated to the evidence # but since this is claim only, I'm using a null integer value "sentence_id": "-1", # This label doesn't matter here since its claim only "evidence_label": constants.NOT_MATCHING, "claim_label": claim_label, "scrape_type": "", "metadata": json.dumps({ "claim_id": claim_id, }) }
kaldi/steps/dict/apply_lexicon_edits.py
ishine/asv-subtools
370
12766417
#!/usr/bin/env python # Copyright 2016 <NAME> # Apache 2.0. from __future__ import print_function import argparse import sys def GetArgs(): parser = argparse.ArgumentParser(description = "Apply an lexicon edits file (output from subtools/kaldi/steps/dict/select_prons_bayesian.py)to an input lexicon" "to produce a learned lexicon.", epilog = "See subtools/kaldi/steps/dict/learn_lexicon_greedy.sh for example") parser.add_argument("in_lexicon", metavar='<in-lexicon>', type = str, help = "Input lexicon. Each line must be <word> <phones>.") parser.add_argument("lexicon_edits_file", metavar='<lexicon-edits-file>', type = str, help = "Input lexicon edits file containing human-readable & editable" "pronounciation info. The info for each word is like:" "------------ an 4086.0 --------------" "R | Y | 2401.6 | AH N" "R | Y | 640.8 | AE N" "P | Y | 1035.5 | IH N" "R(ef), P(hone-decoding) represents the pronunciation source" "Y/N means the recommended decision of including this pron or not" "and the numbers are soft counts accumulated from lattice-align-word outputs. See subtools/kaldi/steps/dict/select_prons_bayesian.py for more details.") parser.add_argument("out_lexicon", metavar='<out-lexicon>', type = str, help = "Output lexicon to this file.") print (' '.join(sys.argv), file=sys.stderr) args = parser.parse_args() args = CheckArgs(args) return args def CheckArgs(args): if args.in_lexicon == "-": args.in_lexicon = sys.stdin else: args.in_lexicon_handle = open(args.in_lexicon) args.lexicon_edits_file_handle = open(args.lexicon_edits_file) if args.out_lexicon == "-": args.out_lexicon_handle = sys.stdout else: args.out_lexicon_handle = open(args.out_lexicon, "w") return args def ReadLexicon(lexicon_file_handle): lexicon = set() if lexicon_file_handle: for line in lexicon_file_handle.readlines(): splits = line.strip().split() if len(splits) == 0: continue if len(splits) < 2: raise Exception('Invalid format of line ' + line + ' in lexicon file.') word = splits[0] phones = ' '.join(splits[1:]) lexicon.add((word, phones)) return lexicon def ApplyLexiconEdits(lexicon, lexicon_edits_file_handle): if lexicon_edits_file_handle: for line in lexicon_edits_file_handle.readlines(): # skip all commented lines if line.startswith('#'): continue # read a word from a line like "---- MICROPHONES 200.0 ----". if line.startswith('---'): splits = line.strip().strip('-').strip().split() if len(splits) != 2: print(splits, file=sys.stderr) raise Exception('Invalid format of line ' + line + ' in lexicon edits file.') word = splits[0].strip() else: # parse the pron and decision 'Y/N' of accepting the pron or not, # from a line like: 'P | Y | 42.0 | M AY K R AH F OW N Z' splits = line.split('|') if len(splits) != 4: raise Exception('Invalid format of line ' + line + ' in lexicon edits file.') pron = splits[3].strip() if splits[1].strip() == 'Y': lexicon.add((word, pron)) elif splits[1].strip() == 'N': lexicon.discard((word, pron)) else: raise Exception('Invalid format of line ' + line + ' in lexicon edits file.') return lexicon def WriteLexicon(lexicon, out_lexicon_handle): for word, pron in lexicon: print('{0} {1}'.format(word, pron), file=out_lexicon_handle) out_lexicon_handle.close() def Main(): args = GetArgs() lexicon = ReadLexicon(args.in_lexicon_handle) ApplyLexiconEdits(lexicon, args.lexicon_edits_file_handle) WriteLexicon(lexicon, args.out_lexicon_handle) if __name__ == "__main__": Main()
B03898_02_Codes/B03898_02_02.py
prakharShuklaOfficial/Mastering-Python-for-Finance-source-codes
446
12766424
<reponame>prakharShuklaOfficial/Mastering-Python-for-Finance-source-codes<filename>B03898_02_Codes/B03898_02_02.py """ README ====== This is a Python code. ====== """ """ Least squares regression with statsmodels """ import numpy as np import statsmodels.api as sm # Generate some sample data num_periods = 9 all_values = np.array([np.random.random(8) for i in range(num_periods)]) # Filter the data y_values = all_values[:, 0] # First column values as Y x_values = all_values[:, 1:] # All other values as X x_values = sm.add_constant(x_values) # Include the intercept results = sm.OLS(y_values, x_values).fit() # Regress and fit the model print results.summary() print results.params
scripts/python/s2-c2-extract-schema.py
ashutoshsingh0223/freebase-triples
177
12766471
<filename>scripts/python/s2-c2-extract-schema.py #!/usr/bin/env python """ Run with: $ python this-script.py [path_to_input_file] """ import argparse import datetime import subprocess import time # Globals # Note: path to the query file has been hardcoded here # queries.txt file has a schema of [slice_title],[query] queries = open('queries/queries-schema-for-domains-types-properties').readlines() def main(input_file): """ Run the main shell commands :param input_file: the path to the RDF file you want sliced according to the queries """ query_count = 0 fname_input = input_file fname_output = "slices-new/fb-rdf-schema-" fname_rest = "fb-rdf-rest-" for query in queries: query = query.split(",") query_title = query[0].strip().replace(".", "-") query_raw = query[1].strip() query_count += 1 fname_output += query_title # Add the 1st column from the queries data to the title fname_rest += str(query_count) # Increment up the filename for the remainder data t0 = subprocess.check_output(['gdate','+"%s%3N"']) p = subprocess.Popen(['gawk', "{ fname" + '="'+fname_output+'";' + ' fname_rest="' +fname_rest +'"; ' + 'if(' + query_raw + ')' + " { print $0 >> fname; } else { print $0 >> fname_rest; } }", fname_input]) p.communicate() t1 = subprocess.check_output(['gdate','+"%s%3N"']) # Show the runtime stats: initial time, finished time print(query_title + "\t" + t0.decode('ascii').strip() + "\t" + t1.decode('ascii').strip()) # Reset some of the file names for the next loop fname_input = fname_rest fname_rest = "fb-rdf-rest-" fname_output = "slices-new/fb-rdf-schema-" if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('input_file', help='Path to the input data file') args = parser.parse_args() main(args.input_file) # main()
tools/graph_bag/scripts/test_rmse_utilities.py
limenutt/astrobee
629
12766482
<gh_stars>100-1000 #!/usr/bin/python # # Copyright (c) 2017, United States Government, as represented by the # Administrator of the National Aeronautics and Space Administration. # # All rights reserved. # # The Astrobee platform is licensed under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import math import unittest import numpy as np import poses import rmse_utilities def make_poses(times, xs, ys, zs): new_poses = poses.Poses("", "") new_poses.times = times new_poses.positions.xs = xs new_poses.positions.ys = ys new_poses.positions.zs = zs return new_poses class TestRMSESequence(unittest.TestCase): def test_prune_missing_timestamps_beginning_set(self): a_times = np.arange(10.0) xs = np.arange(10.0) ys = np.arange(10.0) + 1.0 zs = np.arange(10.0) + 2.0 b_times = np.arange(5.0) poses_a = make_poses(a_times, xs, ys, zs) poses_b = make_poses(b_times, xs, ys, zs) trimmed_a, trimmed_b = rmse_utilities.get_same_timestamp_poses(poses_a, poses_b) self.assertEqual(len(trimmed_a.times), len(trimmed_b.times)) self.assertEqual(len(trimmed_a.times), 5) self.assertTrue(np.allclose(trimmed_a.times, b_times, rtol=0)) self.assertTrue(np.allclose(trimmed_a.positions.xs, b_times, rtol=0)) self.assertTrue(np.allclose(trimmed_a.positions.ys, b_times + 1, rtol=0)) self.assertTrue(np.allclose(trimmed_a.positions.zs, b_times + 2, rtol=0)) def test_prune_missing_timestamps_middle_set(self): a_times = np.arange(10.0) xs = np.arange(10.0) ys = np.arange(10.0) + 1.0 zs = np.arange(10.0) + 2.0 b_times = np.arange(3.0, 7.0) poses_a = make_poses(a_times, xs, ys, zs) poses_b = make_poses(b_times, xs, ys, zs) trimmed_a, trimmed_b = rmse_utilities.get_same_timestamp_poses(poses_a, poses_b) self.assertEqual(len(trimmed_a.times), len(trimmed_b.times)) self.assertEqual(len(trimmed_a.times), 4) self.assertTrue(np.allclose(trimmed_a.times, b_times, rtol=0)) self.assertTrue(np.allclose(trimmed_a.positions.xs, b_times, rtol=0)) self.assertTrue(np.allclose(trimmed_a.positions.ys, b_times + 1, rtol=0)) self.assertTrue(np.allclose(trimmed_a.positions.zs, b_times + 2, rtol=0)) def test_prune_missing_timestamps_end_set(self): a_times = np.arange(10.0) xs = np.arange(10.0) ys = np.arange(10.0) + 1.0 zs = np.arange(10.0) + 2.0 b_times = np.arange(7.0, 10.0) poses_a = make_poses(a_times, xs, ys, zs) poses_b = make_poses(b_times, xs, ys, zs) trimmed_a, trimmed_b = rmse_utilities.get_same_timestamp_poses(poses_a, poses_b) self.assertEqual(len(trimmed_a.times), len(trimmed_b.times)) self.assertEqual(len(trimmed_a.times), 3) self.assertTrue(np.allclose(trimmed_a.times, b_times, rtol=0)) self.assertTrue(np.allclose(trimmed_a.positions.xs, b_times, rtol=0)) self.assertTrue(np.allclose(trimmed_a.positions.ys, b_times + 1, rtol=0)) self.assertTrue(np.allclose(trimmed_a.positions.zs, b_times + 2, rtol=0)) def test_prune_missing_timestamps_scattered_set(self): a_times = np.arange(10.0) xs = np.arange(10.0) ys = np.arange(10.0) + 1.0 zs = np.arange(10.0) + 2.0 b_times = np.array([1.0, 5.0, 6.0, 9.0]) poses_a = make_poses(a_times, xs, ys, zs) poses_b = make_poses(b_times, xs, ys, zs) trimmed_a, trimmed_b = rmse_utilities.get_same_timestamp_poses(poses_a, poses_b) self.assertEqual(len(trimmed_a.times), len(trimmed_b.times)) self.assertTrue(np.allclose(trimmed_a.times, b_times, rtol=0)) self.assertTrue(np.allclose(trimmed_a.positions.xs, b_times, rtol=0)) self.assertTrue(np.allclose(trimmed_a.positions.ys, b_times + 1, rtol=0)) self.assertTrue(np.allclose(trimmed_a.positions.zs, b_times + 2, rtol=0)) def test_prune_missing_timestamps_disjoint_set(self): a_times = np.arange(10.0) xs = np.arange(10.0) ys = np.arange(10.0) + 1.0 zs = np.arange(10.0) + 2.0 b_times = np.arange(11, 20) poses_a = make_poses(a_times, xs, ys, zs) poses_b = make_poses(b_times, xs, ys, zs) trimmed_a, trimmed_b = rmse_utilities.get_same_timestamp_poses(poses_a, poses_b) self.assertEqual(len(trimmed_a.times), 0) self.assertEqual(len(trimmed_b.times), 0) def test_prune_missing_timestamps_some_overlap(self): a_times = np.arange(10.0) xs = np.arange(10.0) ys = np.arange(10.0) + 1.0 zs = np.arange(10.0) + 2.0 b_times = np.arange(8.0, 20.0) poses_a = make_poses(a_times, xs, ys, zs) poses_b = make_poses(b_times, xs, ys, zs) expected_time_range = np.arange(8.0, 10.0) trimmed_a, trimmed_b = rmse_utilities.get_same_timestamp_poses(poses_a, poses_b) self.assertEqual(len(trimmed_a.times), len(trimmed_b.times)) self.assertTrue(np.allclose(trimmed_a.times, trimmed_b.times, rtol=0)) self.assertTrue(np.allclose(trimmed_a.times, expected_time_range, rtol=0)) self.assertTrue( np.allclose(trimmed_a.positions.xs, expected_time_range, rtol=0) ) self.assertTrue( np.allclose(trimmed_a.positions.ys, expected_time_range + 1, rtol=0) ) self.assertTrue( np.allclose(trimmed_a.positions.zs, expected_time_range + 2, rtol=0) ) def test_rmse_same_poses(self): a_times = np.arange(10.0) xs = np.arange(10.0) ys = np.arange(10.0) + 1.0 zs = np.arange(10.0) + 2.0 poses_a = make_poses(a_times, xs, ys, zs) poses_b = make_poses(a_times, xs, ys, zs) rmse = rmse_utilities.rmse_timestamped_poses(poses_a, poses_b) self.assertTrue(np.isclose(rmse, 0, rtol=0)) def test_rmse_off_by_one(self): a_times = np.arange(10.0) xs = np.arange(10.0) ys = np.arange(10.0) + 1.0 zs = np.arange(10.0) + 2.0 poses_a = make_poses(a_times, xs, ys, zs) poses_b = make_poses(a_times, xs + 1, ys, zs) rmse = rmse_utilities.rmse_timestamped_poses(poses_a, poses_b) self.assertTrue(np.isclose(rmse, 1.0, rtol=0)) def test_rmse_all_off_by_one(self): a_times = np.arange(10.0) xs = np.arange(10.0) ys = np.arange(10.0) + 1.0 zs = np.arange(10.0) + 2.0 poses_a = make_poses(a_times, xs, ys, zs) poses_b = make_poses(a_times, xs + 1, ys + 1, zs + 1) rmse = rmse_utilities.rmse_timestamped_poses(poses_a, poses_b) self.assertTrue(np.isclose(rmse, math.sqrt(3.0), rtol=0)) if __name__ == "__main__": unittest.main()
source_code/1-1-urllib.py
VickyMin1994/easy-scraping-tutorial
708
12766510
from urllib.request import urlopen # if has Chinese, apply decode() html = urlopen("https://mofanpy.com/static/scraping/basic-structure.html").read().decode('utf-8') print(html) import re res = re.findall(r"<title>(.+?)</title>", html) print("\nPage title is: ", res[0]) # Page title is: Scraping tutorial 1 | 莫烦Python res = re.findall(r"<p>(.*?)</p>", html, flags=re.DOTALL) # re.DOTALL if multi line print("\nPage paragraph is: ", res[0]) # Page paragraph is: # 这是一个在 <a href="https://mofanpy.com/">莫烦Python</a> # <a href="https://mofanpy.com/tutorials/scraping">爬虫教程</a> 中的简单测试. res = re.findall(r'href="(.*?)"', html) print("\nAll links: ", res) # All links: ['https://mofanpy.com/static/img/description/tab_icon.png', 'https://mofanpy.com/', 'https://mofanpy.com/tutorials/scraping']
tests/integration/workflows/nodejs_npm_esbuild/test_nodejs_npm_with_esbuild.py
awslabs/aws-lambda-builders
180
12766541
<filename>tests/integration/workflows/nodejs_npm_esbuild/test_nodejs_npm_with_esbuild.py<gh_stars>100-1000 import os import shutil import tempfile from unittest import TestCase from aws_lambda_builders.builder import LambdaBuilder from aws_lambda_builders.exceptions import WorkflowFailedError from aws_lambda_builders.workflows.nodejs_npm.npm import SubprocessNpm from aws_lambda_builders.workflows.nodejs_npm.utils import OSUtils from aws_lambda_builders.workflows.nodejs_npm_esbuild.esbuild import EsbuildExecutionError from aws_lambda_builders.workflows.nodejs_npm_esbuild.utils import EXPERIMENTAL_FLAG_ESBUILD from parameterized import parameterized class TestNodejsNpmWorkflowWithEsbuild(TestCase): """ Verifies that `nodejs_npm` workflow works by building a Lambda using NPM """ TEST_DATA_FOLDER = os.path.join(os.path.dirname(__file__), "testdata") def setUp(self): self.artifacts_dir = tempfile.mkdtemp() self.scratch_dir = tempfile.mkdtemp() self.dependencies_dir = tempfile.mkdtemp() self.no_deps = os.path.join(self.TEST_DATA_FOLDER, "no-deps-esbuild") self.builder = LambdaBuilder(language="nodejs", dependency_manager="npm-esbuild", application_framework=None) def tearDown(self): shutil.rmtree(self.artifacts_dir) shutil.rmtree(self.scratch_dir) @parameterized.expand([("nodejs12.x",), ("nodejs14.x",), ("nodejs16.x",)]) def test_doesnt_build_without_feature_flag(self, runtime): source_dir = os.path.join(self.TEST_DATA_FOLDER, "with-deps-esbuild") with self.assertRaises(EsbuildExecutionError) as context: self.builder.build( source_dir, self.artifacts_dir, self.scratch_dir, os.path.join(source_dir, "package.json"), runtime=runtime, ) self.assertEqual(str(context.exception), "Esbuild Failed: Feature flag must be enabled to use this workflow") @parameterized.expand([("nodejs12.x",), ("nodejs14.x",), ("nodejs16.x",)]) def test_builds_javascript_project_with_dependencies(self, runtime): source_dir = os.path.join(self.TEST_DATA_FOLDER, "with-deps-esbuild") options = {"entry_points": ["included.js"]} self.builder.build( source_dir, self.artifacts_dir, self.scratch_dir, os.path.join(source_dir, "package.json"), runtime=runtime, options=options, experimental_flags=[EXPERIMENTAL_FLAG_ESBUILD], ) expected_files = {"included.js", "included.js.map"} output_files = set(os.listdir(self.artifacts_dir)) self.assertEqual(expected_files, output_files) @parameterized.expand([("nodejs12.x",), ("nodejs14.x",), ("nodejs16.x",)]) def test_builds_javascript_project_with_multiple_entrypoints(self, runtime): source_dir = os.path.join(self.TEST_DATA_FOLDER, "with-deps-esbuild-multiple-entrypoints") options = {"entry_points": ["included.js", "included2.js"]} self.builder.build( source_dir, self.artifacts_dir, self.scratch_dir, os.path.join(source_dir, "package.json"), runtime=runtime, options=options, experimental_flags=[EXPERIMENTAL_FLAG_ESBUILD], ) expected_files = {"included.js", "included.js.map", "included2.js", "included2.js.map"} output_files = set(os.listdir(self.artifacts_dir)) self.assertEqual(expected_files, output_files) @parameterized.expand([("nodejs12.x",), ("nodejs14.x",), ("nodejs16.x",)]) def test_builds_typescript_projects(self, runtime): source_dir = os.path.join(self.TEST_DATA_FOLDER, "with-deps-esbuild-typescript") options = {"entry_points": ["included.ts"]} self.builder.build( source_dir, self.artifacts_dir, self.scratch_dir, os.path.join(source_dir, "package.json"), runtime=runtime, options=options, experimental_flags=[EXPERIMENTAL_FLAG_ESBUILD], ) expected_files = {"included.js", "included.js.map"} output_files = set(os.listdir(self.artifacts_dir)) self.assertEqual(expected_files, output_files) @parameterized.expand([("nodejs12.x",), ("nodejs14.x",), ("nodejs16.x",)]) def test_builds_with_external_esbuild(self, runtime): osutils = OSUtils() npm = SubprocessNpm(osutils) source_dir = os.path.join(self.TEST_DATA_FOLDER, "no-deps-esbuild") esbuild_dir = os.path.join(self.TEST_DATA_FOLDER, "esbuild-binary") npm.run(["ci"], cwd=esbuild_dir) binpath = npm.run(["bin"], cwd=esbuild_dir) options = {"entry_points": ["included.js"]} self.builder.build( source_dir, self.artifacts_dir, self.scratch_dir, os.path.join(source_dir, "package.json"), runtime=runtime, options=options, executable_search_paths=[binpath], experimental_flags=[EXPERIMENTAL_FLAG_ESBUILD], ) expected_files = {"included.js", "included.js.map"} output_files = set(os.listdir(self.artifacts_dir)) self.assertEqual(expected_files, output_files) @parameterized.expand([("nodejs12.x",), ("nodejs14.x",), ("nodejs16.x",)]) def test_no_options_passed_to_esbuild(self, runtime): source_dir = os.path.join(self.TEST_DATA_FOLDER, "with-deps-esbuild") with self.assertRaises(WorkflowFailedError) as context: self.builder.build( source_dir, self.artifacts_dir, self.scratch_dir, os.path.join(source_dir, "package.json"), runtime=runtime, experimental_flags=[EXPERIMENTAL_FLAG_ESBUILD], ) self.assertEqual(str(context.exception), "NodejsNpmEsbuildBuilder:EsbuildBundle - entry_points not set ({})") @parameterized.expand([("nodejs12.x",), ("nodejs14.x",), ("nodejs16.x",)]) def test_bundle_with_implicit_file_types(self, runtime): source_dir = os.path.join(self.TEST_DATA_FOLDER, "implicit-file-types") options = {"entry_points": ["included", "implicit"]} self.builder.build( source_dir, self.artifacts_dir, self.scratch_dir, os.path.join(source_dir, "package.json"), runtime=runtime, options=options, experimental_flags=[EXPERIMENTAL_FLAG_ESBUILD], ) expected_files = {"included.js.map", "implicit.js.map", "implicit.js", "included.js"} output_files = set(os.listdir(self.artifacts_dir)) self.assertEqual(expected_files, output_files) @parameterized.expand([("nodejs12.x",), ("nodejs14.x",), ("nodejs16.x",)]) def test_bundles_project_without_dependencies(self, runtime): source_dir = os.path.join(self.TEST_DATA_FOLDER, "no-package-esbuild") options = {"entry_points": ["included"]} osutils = OSUtils() npm = SubprocessNpm(osutils) esbuild_dir = os.path.join(self.TEST_DATA_FOLDER, "esbuild-binary") npm.run(["ci"], cwd=esbuild_dir) binpath = npm.run(["bin"], cwd=esbuild_dir) self.builder.build( source_dir, self.artifacts_dir, self.scratch_dir, os.path.join(source_dir, "package.json"), runtime=runtime, options=options, experimental_flags=[EXPERIMENTAL_FLAG_ESBUILD], executable_search_paths=[binpath], ) expected_files = {"included.js.map", "included.js"} output_files = set(os.listdir(self.artifacts_dir)) self.assertEqual(expected_files, output_files) @parameterized.expand([("nodejs12.x",), ("nodejs14.x",), ("nodejs16.x",)]) def test_builds_project_with_remote_dependencies_without_download_dependencies_with_dependencies_dir(self, runtime): source_dir = os.path.join(self.TEST_DATA_FOLDER, "with-deps-no-node_modules") options = {"entry_points": ["included.js"]} osutils = OSUtils() npm = SubprocessNpm(osutils) esbuild_dir = os.path.join(self.TEST_DATA_FOLDER, "esbuild-binary") npm.run(["ci"], cwd=esbuild_dir) binpath = npm.run(["bin"], cwd=esbuild_dir) self.builder.build( source_dir, self.artifacts_dir, self.scratch_dir, os.path.join(source_dir, "package.json"), options=options, runtime=runtime, dependencies_dir=self.dependencies_dir, download_dependencies=False, experimental_flags=[EXPERIMENTAL_FLAG_ESBUILD], executable_search_paths=[binpath], ) expected_files = {"included.js.map", "included.js"} output_files = set(os.listdir(self.artifacts_dir)) self.assertEqual(expected_files, output_files) @parameterized.expand([("nodejs12.x",), ("nodejs14.x",), ("nodejs16.x",)]) def test_builds_project_with_remote_dependencies_with_download_dependencies_and_dependencies_dir(self, runtime): source_dir = os.path.join(self.TEST_DATA_FOLDER, "with-deps-no-node_modules") options = {"entry_points": ["included.js"]} self.builder.build( source_dir, self.artifacts_dir, self.scratch_dir, os.path.join(source_dir, "package.json"), runtime=runtime, options=options, dependencies_dir=self.dependencies_dir, download_dependencies=True, experimental_flags=[EXPERIMENTAL_FLAG_ESBUILD], ) expected_files = {"included.js.map", "included.js"} output_files = set(os.listdir(self.artifacts_dir)) self.assertEqual(expected_files, output_files) expected_modules = "minimal-request-promise" output_modules = set(os.listdir(os.path.join(self.dependencies_dir, "node_modules"))) self.assertIn(expected_modules, output_modules) expected_dependencies_files = {"node_modules"} output_dependencies_files = set(os.listdir(os.path.join(self.dependencies_dir))) self.assertNotIn(expected_dependencies_files, output_dependencies_files) @parameterized.expand([("nodejs12.x",), ("nodejs14.x",), ("nodejs16.x",)]) def test_builds_project_with_remote_dependencies_without_download_dependencies_without_dependencies_dir( self, runtime ): source_dir = os.path.join(self.TEST_DATA_FOLDER, "with-deps-no-node_modules") with self.assertRaises(EsbuildExecutionError) as context: self.builder.build( source_dir, self.artifacts_dir, self.scratch_dir, os.path.join(source_dir, "package.json"), runtime=runtime, dependencies_dir=None, download_dependencies=False, experimental_flags=[EXPERIMENTAL_FLAG_ESBUILD], ) self.assertEqual(str(context.exception), "Esbuild Failed: Lambda Builders encountered and invalid workflow") @parameterized.expand([("nodejs12.x",), ("nodejs14.x",), ("nodejs16.x",)]) def test_builds_project_without_combine_dependencies(self, runtime): source_dir = os.path.join(self.TEST_DATA_FOLDER, "with-deps-no-node_modules") options = {"entry_points": ["included.js"]} self.builder.build( source_dir, self.artifacts_dir, self.scratch_dir, os.path.join(source_dir, "package.json"), runtime=runtime, options=options, dependencies_dir=self.dependencies_dir, download_dependencies=True, combine_dependencies=False, experimental_flags=[EXPERIMENTAL_FLAG_ESBUILD], ) expected_files = {"included.js.map", "included.js"} output_files = set(os.listdir(self.artifacts_dir)) self.assertEqual(expected_files, output_files) expected_modules = "minimal-request-promise" output_modules = set(os.listdir(os.path.join(self.dependencies_dir, "node_modules"))) self.assertIn(expected_modules, output_modules) expected_dependencies_files = {"node_modules"} output_dependencies_files = set(os.listdir(os.path.join(self.dependencies_dir))) self.assertNotIn(expected_dependencies_files, output_dependencies_files) @parameterized.expand([("nodejs12.x",), ("nodejs14.x",), ("nodejs16.x",)]) def test_builds_javascript_project_with_external(self, runtime): source_dir = os.path.join(self.TEST_DATA_FOLDER, "with-deps-esbuild-externals") options = {"entry_points": ["included.js"], "external": ["minimal-request-promise"]} self.builder.build( source_dir, self.artifacts_dir, self.scratch_dir, os.path.join(source_dir, "package.json"), runtime=runtime, options=options, experimental_flags=[EXPERIMENTAL_FLAG_ESBUILD], ) expected_files = {"included.js", "included.js.map"} output_files = set(os.listdir(self.artifacts_dir)) self.assertEqual(expected_files, output_files) with open(str(os.path.join(self.artifacts_dir, "included.js"))) as f: js_file = f.read() # Check that the module has been require() instead of bundled self.assertIn('require("minimal-request-promise")', js_file) @parameterized.expand([("nodejs12.x",), ("nodejs14.x",), ("nodejs16.x",)]) def test_builds_javascript_project_with_loader(self, runtime): osutils = OSUtils() source_dir = os.path.join(self.TEST_DATA_FOLDER, "no-deps-esbuild-loader") options = {"entry_points": ["included.js"], "loader": [".reference=json"]} self.builder.build( source_dir, self.artifacts_dir, self.scratch_dir, os.path.join(source_dir, "package.json"), runtime=runtime, options=options, experimental_flags=[EXPERIMENTAL_FLAG_ESBUILD], ) expected_files = {"included.js", "included.js.map"} output_files = set(os.listdir(self.artifacts_dir)) self.assertEqual(expected_files, output_files) included_js_path = os.path.join(self.artifacts_dir, "included.js") # check that the .reference file is correctly bundled as code by running the result self.assertEqual( osutils.check_output(included_js_path), str.encode( "===\n" "The Muses\n" "===\n" "\n" "\tcalliope: eloquence and heroic poetry\n" "\terato: lyric or erotic poetry\n" "\tmelpomene: tragedy\n" "\tpolymnia: sacred poetry\n" "\tterpsichore: dance\n" "\tthalia: comedy\n" "\turania: astronomy and astrology" ), )
elegantrl/envs/starcraft/smac_maps.py
tnerush71/ElegantRL
759
12766557
from __future__ import absolute_import from __future__ import division from __future__ import print_function from pysc2.maps import lib from smac.env.starcraft2.maps import smac_maps map_param_registry = { "1o_10b_vs_1r": { "n_agents": 11, "n_enemies": 1, "limit": 50, "a_race": "Z", "b_race": "Z", "unit_type_bits": 2, "map_type": "overload_bane" }, "1o_2r_vs_4r": { "n_agents": 3, "n_enemies": 4, "limit": 50, "a_race": "Z", "b_race": "Z", "unit_type_bits": 2, "map_type": "overload_roach" }, "bane_vs_hM": { "n_agents": 3, "n_enemies": 2, "limit": 30, "a_race": "Z", "b_race": "T", "unit_type_bits": 2, "map_type": "bZ_hM" } } smac_maps.map_param_registry.update(map_param_registry) def get_map_params(map_name): map_param_registry = smac_maps.get_smac_map_registry() return map_param_registry[map_name] for name in map_param_registry.keys(): globals()[name] = type(name, (smac_maps.SMACMap,), dict(filename=name))
tests/cyclic/bar.py
topwebmaster/factory_boy
1,932
12766570
# Copyright: See the LICENSE file. """Helper to test circular factory dependencies.""" import factory class Bar: def __init__(self, foo, y): self.foo = foo self.y = y class BarFactory(factory.Factory): class Meta: model = Bar y = 13 foo = factory.SubFactory('cyclic.foo.FooFactory')
examples/plot_sine_wave_2d.py
ktanishqk/py-earth
360
12766597
""" ================================== Plotting two simple sine functions ================================== A simple example plotting a fit of two sine functions. """ import numpy import matplotlib.pyplot as plt from pyearth import Earth # Create some fake data numpy.random.seed(2) m = 10000 n = 10 X = 80 * numpy.random.uniform(size=(m, n)) - 40 y1 = 100 * \ numpy.abs(numpy.sin((X[:, 6]) / 10) - 4.0) + \ 10 * numpy.random.normal(size=m) y2 = 100 * \ numpy.abs(numpy.sin((X[:, 6]) / 2) - 8.0) + \ 5 * numpy.random.normal(size=m) # Fit an Earth model model = Earth(max_degree=3, minspan_alpha=.5) y_mix = numpy.concatenate((y1[:, numpy.newaxis], y2[:, numpy.newaxis]), axis=1) model.fit(X, y_mix) # Print the model print(model.trace()) print(model.summary()) # Plot the model y_hat = model.predict(X) fig = plt.figure() ax = fig.add_subplot(1, 2, 1) ax.plot(X[:, 6], y_mix[:, 0], 'r.') ax.plot(X[:, 6], model.predict(X)[:, 0], 'b.') ax = fig.add_subplot(1, 2, 2) ax.plot(X[:, 6], y_mix[:, 1], 'r.') ax.plot(X[:, 6], model.predict(X)[:, 1], 'b.') plt.show()
setup.py
walles/px
149
12766599
#!/usr/bin/env python import os import re import shutil import filecmp import tempfile import subprocess from setuptools import setup VERSIONFILE = "px/version.py" git_version = ( subprocess.check_output(["git", "describe", "--dirty"]).decode("utf-8").strip() ) with tempfile.NamedTemporaryFile(suffix=".py", delete=False) as tmp: tmp.write(b"# NOTE: Auto generated by setup.py, no touchie!\n") tmp.write(b'VERSION = "%s"\n' % bytearray(git_version, "utf_8")) # Flushing is required for filecmp.cmp() to work (below) tmp.flush() if not os.path.isfile(VERSIONFILE): # No version file found shutil.move(tmp.name, VERSIONFILE) elif not filecmp.cmp(tmp.name, VERSIONFILE): # Version file needs updating shutil.move(tmp.name, VERSIONFILE) else: # VERSIONFILE was already up to date. If we touch it in this # case, it will have its file timestamp updated, which will # force the slow px_integration_test.py tests to get rerun. # # Just clean up our tempfile and be merry. os.remove(tmp.name) requirements = None with open("requirements.txt") as reqsfile: requirements = reqsfile.readlines() with open(os.path.join(os.path.dirname(__file__), "README.rst")) as fp: LONG_DESCRIPTION = fp.read() if not re.match(r"^[0-9]+\.[0-9]+\.[0-9]+$", git_version): # Setuptools wants nice version numbers git_version = "0.0.0" setup( name="pxpx", version=git_version, description="ps and top for Human Beings", long_description=LONG_DESCRIPTION, author="<NAME>", author_email="<EMAIL>", url="https://github.com/walles/px", license="MIT", classifiers=[ "Development Status :: 5 - Production/Stable", "Environment :: Console", "Intended Audience :: System Administrators", "License :: OSI Approved :: MIT License", "Operating System :: MacOS", "Operating System :: POSIX :: Linux", "Programming Language :: Python :: 2", "Programming Language :: Python :: 3", "Topic :: System :: Monitoring", "Topic :: System :: Systems Administration", "Topic :: Utilities", ], packages=["px"], install_requires=requirements, # See: http://setuptools.readthedocs.io/en/latest/setuptools.html#setting-the-zip-safe-flag zip_safe=True, setup_requires=[ "pytest-runner", ], tests_require=[ "pytest", ], entry_points={ "console_scripts": ["px = px.px:main", "ptop = px.px:main"], } # Note that we're by design *not* installing man pages here. # Using "data_files=" only puts the man pages in the egg file, # and installing that egg doesn't put them on the destination # system. # # After trying to figure this out for a bit, my conclusion is # that "pip install" simply isn't meant for installing any man # pages. # # /<EMAIL> 2018aug27 )
zproc/context.py
pycampers/zproc
106
12766600
import atexit import multiprocessing import pprint import signal import time from contextlib import suppress from typing import Callable, Union, Any, List, Mapping, Sequence, Tuple, cast from . import util from .consts import DEFAULT_NAMESPACE from .process import Process from .server import tools from .state.state import State from .task.map_plus import map_plus from .task.swarm import Swarm class ProcessList(list): def __str__(self): return ProcessList.__qualname__ + ": " + pprint.pformat(list(self)) def __repr__(self): return "<" + self.__str__() + ">" @staticmethod def _wait_or_catch_exc( process: Process, timeout: Union[int, float] = None ) -> Union[Exception, Any]: try: return process.wait(timeout) except Exception as e: return e def wait( self, timeout: Union[int, float] = None, safe: bool = False ) -> List[Union[Any, Exception]]: """ Call :py:meth:`~Process.wait()` on all the Processes in this list. :param timeout: Same as :py:meth:`~Process.wait()`. This parameter controls the timeout for all the Processes combined, not a single :py:meth:`~Process.wait()` call. :param safe: Suppress any errors that occur while waiting for a Process. The return value of failed :py:meth:`~Process.wait()` calls are substituted with the ``Exception`` that occurred. :return: A ``list`` containing the values returned by child Processes of this Context. """ if safe: _wait = self._wait_or_catch_exc else: _wait = Process.wait if timeout is None: return [_wait(process) for process in self] else: final = time.time() + timeout return [_wait(process, final - time.time()) for process in self] def start(self): """ Call :py:meth:`~Process.start()` on all the child processes of this Context Ignores if a Process is already started, unlike :py:meth:`~Process.start()`, which throws an ``AssertionError``. """ with suppress(AssertionError): for process in self: process.start() def stop(self): """ Call :py:meth:`~Process.stop()` on all the Processes in this list. Retains the same order as ``Context.process_list``. :return: A ``list`` containing the exitcodes of the child Processes of this Context. """ return [proc.stop() for proc in self] class Context: #: The :py:class:`multiprocessing.Process` object for the server. server_process: multiprocessing.Process def __init__( self, server_address: str = None, *, start_server: bool = True, backend: Callable = multiprocessing.Process, wait: bool = False, cleanup: bool = True, namespace: str = DEFAULT_NAMESPACE, **process_kwargs ) -> None: r""" Provides a high level interface to :py:class:`State` and :py:class:`Process`. Primarily used to manage and launch processes. All processes launched using a Context, share the same state. Don't share a Context object between Processes / Threads. A Context object is not thread-safe. :param server_address: The address of the server. If this is set to ``None``, a random address will be generated. :param start_server: Whether to start the ZProc server. It is started automatically by default. If this is set to ``None``, then you must either - - Start a server using a different Context object. - Start one manually, using :py:func:`start_server`. In both cases, it the user's responsibility to make sure that the ``server_address`` argument is satisfied. .. note:: If the server is not started before-hand, the Context object will block infinitely, waiting for the server to respond. In case you want to play around, the :py:func:`ping` function is handy, since it let's you *detect* the presence of a server at a given address. :param backend: .. include:: /api/snippets/backend.rst :param wait: Wait for all running process to finish their work before exiting. Alternative to manually calling :py:meth:`~Context.wait` at exit. :param cleanup: Whether to cleanup the process tree before exiting. Registers a signal handler for ``SIGTERM``, and an ``atexit`` handler. :param \*\*process_kwargs: Keyword arguments that :py:class:`~Process` takes, except ``server_address`` and ``target``. If provided, these will be used while creating processes using this Context. """ #: A :py:class:`ProcessList` object containing all Processes created under this Context. self.process_list = ProcessList() #: Passed on from the constructor. This is read-only. self.backend = backend #: Passed on from the constructor. This is read-only. self.namespace = namespace #: Passed on from the constructor. self.process_kwargs = process_kwargs self.process_kwargs.setdefault("namespace", self.namespace) self.process_kwargs.setdefault("backend", self.backend) self.server_address = cast(str, server_address) """The server's address. This holds the address this Context is connected to, not necessarily the value provided in the constructor. This is read-only.""" if start_server: self.start_server() assert self.server_address is not None, ( "Couldn't determine the server address. " "Hint: Either provide the `server_address` parameter, " "or pass `start_server=True`." ) # register cleanup before wait, so that wait runs before cleanup. # (order of execution is reversed) if cleanup: atexit.register(util.clean_process_tree) if util.is_main_thread(): signal.signal(signal.SIGTERM, util.clean_process_tree) if wait: atexit.register(self.wait) def __str__(self): return "%s - server: %r at %#x" % ( self.__class__.__qualname__, self.server_address, id(self), ) def __repr__(self): return util.enclose_in_brackets(self.__str__()) def create_state(self, value: dict = None, *, namespace: str = None): """ Creates a new :py:class:`State` object, sharing the same zproc server as this Context. :param value: If provided, call ``state.update(value)``. :param namespace: Use this as the namespace for the :py:class:`State` object, instead of this :py:class:`Context`\ 's namespace. :return: A :py:class:`State` object. """ if namespace is None: namespace = self.namespace state = State(self.server_address, namespace=namespace) if value is not None: state.update(value) return state def create_swarm(self, count: int = None): swarm = Swarm(self.server_address, namespace=self.namespace) swarm.start(count) return swarm def start_server(self) -> Tuple[multiprocessing.Process, str]: out = tools.start_server(self.server_address, backend=self.backend) self.server_process, self.server_address = out return out def _process( self, target: Callable = None, **process_kwargs ) -> Union[Process, Callable]: r""" Produce a child process bound to this context. Can be used both as a function and decorator: .. code-block:: python :caption: Usage @zproc.process(pass_context=True) # you may pass some arguments here def p1(ctx): print('hello', ctx) @zproc.process # or not... def p2(state): print('hello', state) def p3(state): print('hello', state) zproc.process(p3) # or just use as a good ol' function :param target: Passed on to the :py:class:`Process` constructor. *Must be omitted when using this as a decorator.* :param \*\*process_kwargs: .. include:: /api/context/params/process_kwargs.rst :return: The :py:class:`Process` instance produced. """ process = Process( self.server_address, target, **{**self.process_kwargs, **process_kwargs} ) self.process_list.append(process) return process def spawn(self, *targets: Callable, count: int = 1, **process_kwargs): r""" Produce one or many child process(s) bound to this context. :param \*targets: Passed on to the :py:class:`Process` constructor, one at a time. :param count: The number of processes to spawn for each item in ``targets``. :param \*\*process_kwargs: .. include:: /api/context/params/process_kwargs.rst :return: A ``ProcessList`` of the :py:class:`Process` instance(s) produced. """ if not targets: def wrapper(target: Callable): return self.spawn(target, count=count, **process_kwargs) return wrapper if len(targets) * count == 1: return self._process(targets[0], **process_kwargs) return ProcessList( self._process(target, **process_kwargs) for _ in range(count) for target in targets ) def spawn_map( self, target: Callable, map_iter: Sequence[Any] = None, *, map_args: Sequence[Sequence[Any]] = None, args: Sequence = None, map_kwargs: Sequence[Mapping[str, Any]] = None, kwargs: Mapping = None, **process_kwargs ): return ProcessList( map_plus( lambda *args, **kwargs: self._process( target, args=args, kwargs=kwargs, **process_kwargs ), map_iter, map_args, args, map_kwargs, kwargs, ) ) def wait( self, timeout: Union[int, float] = None, safe: bool = False ) -> List[Union[Any, Exception]]: """ alias for :py:meth:`ProcessList.wait()` """ return self.process_list.wait(timeout, safe) def start_all(self): """ alias for :py:meth:`ProcessList.start_all()` """ return self.process_list.start() def stop_all(self): """ alias for :py:meth:`ProcessList.stop_all()` """ return self.process_list.stop() def ping(self, **kwargs): r""" Ping the zproc server. :param \*\*kwargs: Keyword arguments that :py:func:`ping` takes, except ``server_address``. :return: Same as :py:func:`ping` """ return tools.ping(self.server_address, **kwargs)
demos/graphql/graph/chat/db_utils.py
hzlmn/aiohttp-demos
649
12766605
<gh_stars>100-1000 from aiopg.sa import SAConnection as SAConn from aiopg.sa.result import RowProxy from graph.types import RowsProxy from graph.constants import OBJECT_NOT_FOUND_ERROR from graph.chat.tables import ( rooms, messages, ) __all__ = [ 'select_rooms', 'select_messages_by_room_id', 'select_room', 'create_message', 'delete_message', ] # selects async def select_rooms(conn: SAConn) -> RowsProxy: cursor = await conn.execute( rooms.select().order_by(rooms.c.id) ) return await cursor.fetchall() async def select_room(conn: SAConn, id: int) -> RowProxy: cursor = await conn.execute( rooms.select().where(rooms.c.id == id) ) item = await cursor.fetchone() assert item, OBJECT_NOT_FOUND_ERROR return item async def select_messages_by_room_id(conn: SAConn, room_id: int) -> RowsProxy: query = messages\ .select()\ .where(messages.c.room_id == room_id)\ .order_by(messages.c.id) cursor = await conn.execute(query) return await cursor.fetchall() # create async def create_message( conn: SAConn, room_id: int, owner_id: int, body: str, ) -> RowProxy: query = messages\ .insert()\ .values(body=body, owner_id=owner_id, room_id=room_id)\ .returning(messages.c.id, messages.c.owner_id) res = await conn.execute(query) return await res.fetchone() # delete async def delete_message(conn: SAConn, id: int) -> None: await conn.execute( messages.delete().where(messages.c.id == id) )
dltools/hooks.py
geodekid/frnn
299
12766622
"""Defines hooks that can run during training.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import lasagne import numpy as np from sklearn import metrics class LoggingHook(object): """This hook writes information to a log file.""" def __init__(self, logger): """Initializes a new instance of the LoggingHook class. Args: logger: A logger instance. """ self._logger = logger def update(self, **kwargs): """Executes the hook. Args: **kwargs: Optimizer state dictionary. """ self._logger.log( key="status", message="Log at iteration %d" % kwargs["update_counter"] ) self._logger.log( key="update_counter", message=kwargs["update_counter"] ) self._logger.log( key="update_runtime", message=kwargs["runtime"] ) self._logger.log( key="losses", message=np.asarray(kwargs["losses"]) ) class SnapshotHook(object): """Hook for storing snapshots of the network's weights.""" def __init__(self, filename, network, interval): """Initializes a new instance of the SnapshotHook class. Args: filename: The base filename of the model. network: The network instance to store. interval: The snapshot interval. """ self._filename = filename self._network = network self._interval = interval def update(self, **kwargs): """Executed the hook. Args: **kwargs: The optimizer dictionary. """ # Run the hook now? if kwargs["update_counter"] % self._interval == 0: # Yes np.savez( "%s_snapshot_%d.npz" % ( self._filename, kwargs["update_counter"]), *lasagne.layers.get_all_param_values(self._network)) class SegmentationValidationHook(object): """Performs a validation run for semantic segmentation.""" def __init__(self, val_fn, data_provider, logger, interval=300, num_classes=19): """Initializes a new instance of the SegmentationValidationHook class. Args: val_fn: A function that returns the predictions for each image and a list of losses. data_provider: A chianti data provider. logger: A logger instance. interval: The validation interval. """ self._val_fn = val_fn self._data_provider = data_provider self._logger = logger self._interval = interval self._num_classes = num_classes def update(self, **kwargs): """Runs the validation hook.""" update_now = kwargs["update_counter"] % self._interval == 0 if update_now and kwargs["update_counter"] > 0: self._logger.log( key="validation_checkpoint", message=kwargs["update_counter"] ) self._logger.log( key="status", message="-> Start validation run" ) # Initialize the confusion matrix conf_matrix = np.zeros( (self._num_classes, self._num_classes)).astype('int64') accumulated_loss = 0 self._data_provider.reset() for batch_counter in range(self._data_provider.get_num_batches()): self._logger.log( key="status", message="--> Validate batch %d/%d" % ( batch_counter + 1, self._data_provider.get_num_batches())) batch = self._data_provider.next() images = batch[0] targets = batch[1] predictions, loss = self._val_fn(images, targets) accumulated_loss += loss # Mark the don't care predictions # Flatten the predictions and targets flat_predictions = predictions.flatten() non_void_pixels = (np.max(targets, axis=1) != 0.0).flatten() flat_targets = np.argmax(targets, axis=1).flatten() # Select the non-don't cares flat_targets = flat_targets[non_void_pixels] flat_predictions = flat_predictions[non_void_pixels] conf_matrix += metrics.confusion_matrix( flat_targets, flat_predictions, labels=np.arange(self._num_classes, dtype='int64')) accumulated_loss /= self._data_provider.get_num_batches() self._logger.log( key="conf_matrix", message=conf_matrix ) self._logger.log( key="validation_loss", message=accumulated_loss )
sahara-10.0.0/sahara/plugins/edp.py
scottwedge/OpenStack-Stein
161
12766624
<gh_stars>100-1000 # Copyright (c) 2018 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from sahara.service.edp import hdfs_helper from sahara.service.edp import job_utils from sahara.service.edp.oozie import engine as oozie_engine from sahara.service.edp.oozie.workflow_creator import workflow_factory from sahara.service.edp.spark import engine as spark_engine from sahara.service.edp.storm import engine as storm_engine from sahara.utils import edp JOB_TYPE_HIVE = edp.JOB_TYPE_HIVE JOB_TYPE_SPARK = edp.JOB_TYPE_SPARK JOB_TYPE_JAVA = edp.JOB_TYPE_JAVA JOB_TYPE_SHELL = edp.JOB_TYPE_SHELL JOB_TYPE_PIG = edp.JOB_TYPE_PIG JOB_TYPE_STORM = edp.JOB_TYPE_STORM JOB_TYPE_PYLEUS = edp.JOB_TYPE_PYLEUS JOB_TYPE_MAPREDUCE = edp.JOB_TYPE_MAPREDUCE JOB_TYPE_MAPREDUCE_STREAMING = edp.JOB_TYPE_MAPREDUCE_STREAMING JOB_TYPES_ALL = edp.JOB_TYPES_ALL JOB_STATUS_SUCCEEDED = edp.JOB_STATUS_SUCCEEDED class PluginsStormJobEngine(storm_engine.StormJobEngine): def __init__(self, cluster, **kwargs): super(PluginsStormJobEngine, self).__init__(cluster) class PluginsStormPyleusJobEngine(storm_engine.StormPyleusJobEngine): def __init__(self, cluster, **kwargs): super(PluginsStormPyleusJobEngine, self).__init__(cluster) class PluginsSparkJobEngine(spark_engine.SparkJobEngine): def __init__(self, cluster, **kwargs): super(PluginsSparkJobEngine, self).__init__(cluster) class PluginsSparkShellJobEngine(spark_engine.SparkShellJobEngine): def __init__(self, cluster, **kwargs): super(PluginsSparkShellJobEngine, self).__init__(cluster) class PluginsOozieJobEngine(oozie_engine.OozieJobEngine): def __init__(self, cluster, **kwargs): super(PluginsOozieJobEngine, self).__init__(cluster) def get_hive_shared_conf_path(hdfs_user, **kwargs): return edp.get_hive_shared_conf_path(hdfs_user) def compare_job_type(job_type, *args, **kwargs): return edp.compare_job_type(job_type, *args, **kwargs) def get_builtin_binaries(job, configs, **kwargs): return edp.get_builtin_binaries(job, configs) def create_dir_hadoop2(r, dir_name, hdfs_user, **kwargs): hdfs_helper.create_dir_hadoop2(r, dir_name, hdfs_user) def create_hbase_common_lib(r, **kwargs): hdfs_helper.create_hbase_common_lib(r) def get_plugin(cluster, **kwargs): return job_utils.get_plugin(cluster) def get_possible_job_config(job_type, **kwargs): return workflow_factory.get_possible_job_config(job_type) def get_possible_mapreduce_configs(**kwargs): return workflow_factory.get_possible_mapreduce_configs()
examples/tensorboard/projector_demo.py
dwolfschlaeger/guildai
694
12766648
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow as tf # Requires Tensorflow >=2.1 from tensorboard.plugins import projector import tensorflow_datasets as tfds # This demo expands upon the word embeddings tutorial found # here: https://www.tensorflow.org/tutorials/text/word_embeddings) # and is intended to demonstrate the use of the embedding projector. LOG_DIR = os.getenv("LOGDIR") or "/tmp/projector_demo" # Tensorboard log dir METADATA_FNAME = "meta.tsv" # Labels will be stored here STEP = 0 # Load imdb reviews dataset (train_data, test_data), info = tfds.load( "imdb_reviews/subwords8k", split=(tfds.Split.TRAIN, tfds.Split.TEST), with_info=True, as_supervised=True, ) encoder = info.features["text"].encoder # shuffle, pad, and train the data. train_batches = train_data.shuffle(1000).padded_batch(10, padded_shapes=((None,), ())) test_batches = test_data.shuffle(1000).padded_batch(10, padded_shapes=((None,), ())) train_batch, train_labels = next(iter(train_batches)) embedding_dim = 16 # Create a basic embedding layer embedding = tf.keras.layers.Embedding(encoder.vocab_size, embedding_dim) model = tf.keras.Sequential( [ embedding, tf.keras.layers.GlobalAveragePooling1D(), tf.keras.layers.Dense(16, activation="relu"), tf.keras.layers.Dense(1), ] ) # Compile model model.compile( optimizer="adam", loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=["accuracy"], ) # Train model history = model.fit( train_batches, epochs=1, validation_data=test_batches, validation_steps=20 ) # Fetch the embedding layer and get the weights. # Make sure to remove the first element, as it is padding. weights = tf.Variable(model.layers[0].get_weights()[0][1:]) def register_embedding(weights, labels, log_dir) -> None: """Saves a metadata file (labels) and a checkpoint (derived from weights) and configures the Embedding Projector to read from the appropriate locations. Args: weights: tf.Variable with the weights of the embedding layer to be displayed. labels: list of labels corresponding to the weights. logdir: Directory into which to store the config file, as a `str`. """ # Create a checkpoint from embedding, the filename and key are # name of the tensor. checkpoint = tf.train.Checkpoint(embedding=weights) checkpoint.save(os.path.join(LOG_DIR, "embedding.ckpt")) # Save Labels separately on a line-by-line manner. with open(os.path.join(log_dir, METADATA_FNAME), "w") as f: for label in labels: f.write("{}\n".format(label)) # Set up config config = projector.ProjectorConfig() embedding = config.embeddings.add() # The name of the tensor will be suffixed by `/.ATTRIBUTES/VARIABLE_VALUE` embedding.tensor_name = "embedding/.ATTRIBUTES/VARIABLE_VALUE" embedding.metadata_path = METADATA_FNAME projector.visualize_embeddings(log_dir, config) # Save Files register_embedding(weights, encoder.subwords, LOG_DIR)
alipay/aop/api/domain/AlipayFincoreComplianceCrossborderMerchantBatchqueryModel.py
antopen/alipay-sdk-python-all
213
12766670
<reponame>antopen/alipay-sdk-python-all #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.BaseCrossborderMerchantInfo import BaseCrossborderMerchantInfo class AlipayFincoreComplianceCrossborderMerchantBatchqueryModel(object): def __init__(self): self._biz_source = None self._org_list = None self._out_biz_no = None self._total = None @property def biz_source(self): return self._biz_source @biz_source.setter def biz_source(self, value): self._biz_source = value @property def org_list(self): return self._org_list @org_list.setter def org_list(self, value): if isinstance(value, list): self._org_list = list() for i in value: if isinstance(i, BaseCrossborderMerchantInfo): self._org_list.append(i) else: self._org_list.append(BaseCrossborderMerchantInfo.from_alipay_dict(i)) @property def out_biz_no(self): return self._out_biz_no @out_biz_no.setter def out_biz_no(self, value): self._out_biz_no = value @property def total(self): return self._total @total.setter def total(self, value): self._total = value def to_alipay_dict(self): params = dict() if self.biz_source: if hasattr(self.biz_source, 'to_alipay_dict'): params['biz_source'] = self.biz_source.to_alipay_dict() else: params['biz_source'] = self.biz_source if self.org_list: if isinstance(self.org_list, list): for i in range(0, len(self.org_list)): element = self.org_list[i] if hasattr(element, 'to_alipay_dict'): self.org_list[i] = element.to_alipay_dict() if hasattr(self.org_list, 'to_alipay_dict'): params['org_list'] = self.org_list.to_alipay_dict() else: params['org_list'] = self.org_list if self.out_biz_no: if hasattr(self.out_biz_no, 'to_alipay_dict'): params['out_biz_no'] = self.out_biz_no.to_alipay_dict() else: params['out_biz_no'] = self.out_biz_no if self.total: if hasattr(self.total, 'to_alipay_dict'): params['total'] = self.total.to_alipay_dict() else: params['total'] = self.total return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayFincoreComplianceCrossborderMerchantBatchqueryModel() if 'biz_source' in d: o.biz_source = d['biz_source'] if 'org_list' in d: o.org_list = d['org_list'] if 'out_biz_no' in d: o.out_biz_no = d['out_biz_no'] if 'total' in d: o.total = d['total'] return o
plato/datasources/femnist.py
cuiboyuan/plato
135
12766697
<reponame>cuiboyuan/plato """ The Federated EMNIST dataset. The Federated EMNIST dataset originates from the EMNIST dataset, which contains 817851 images, each of which is a 28x28 greyscale image in 1 out of 62 classes. The difference between the Federated EMNIST dataset and its original counterpart is that this dataset is already partitioned by the client ID, using the data provider IDs included in the original EMNIST dataset. As a result of this partitioning, there are 3597 clients in total, each of which has 227.37 images on average (std is 88.84). For each client, 90% data samples are used for training, while the remaining samples are used for testing. Reference: <NAME>, <NAME>, <NAME>, and <NAME>, "EMNIST: Extending MNIST to handwritten letters," in the 2017 International Joint Conference on Neural Networks (IJCNN). """ import json import logging import os import numpy as np from torch.utils.data import Dataset from torchvision import transforms from plato.config import Config from plato.datasources import base class CustomDictDataset(Dataset): """ Custom dataset from a dictionary with support of transforms. """ def __init__(self, loaded_data, transform=None): """ Initializing the custom dataset. """ super().__init__() self.loaded_data = loaded_data self.transform = transform def __getitem__(self, index): sample = self.loaded_data['x'][index] target = self.loaded_data['y'][index] if self.transform: sample = self.transform(sample) return sample, target def __len__(self): return len(self.loaded_data['y']) class ReshapeListTransform: """ The transform that reshapes an image. """ def __init__(self, new_shape): self.new_shape = new_shape def __call__(self, img): return np.array(img, dtype=np.float32).reshape(self.new_shape) class DataSource(base.DataSource): """The FEMNIST dataset.""" def __init__(self, client_id=0): super().__init__() self.trainset = None self.testset = None root_path = os.path.join(Config().data.data_path, 'FEMNIST', 'packaged_data') if client_id == 0: # If we are on the federated learning server data_dir = os.path.join(root_path, 'test') data_url = "https://jiangzhifeng.s3.us-east-2.amazonaws.com/FEMNIST/test/" \ + str(client_id) + ".zip" else: data_dir = os.path.join(root_path, 'train') data_url = "https://jiangzhifeng.s3.us-east-2.amazonaws.com/FEMNIST/train/" \ + str(client_id) + ".zip" if not os.path.exists(os.path.join(data_dir, str(client_id))): logging.info( "Downloading the Federated EMNIST dataset " "with the client datasets pre-partitioned. This may take a while.", ) self.download(url=data_url, data_path=data_dir) loaded_data = DataSource.read_data( file_path=os.path.join(data_dir, str(client_id), 'data.json')) _transform = transforms.Compose([ ReshapeListTransform((28, 28, 1)), transforms.ToPILImage(), transforms.RandomCrop(28, padding=2, padding_mode="constant", fill=1.0), transforms.RandomResizedCrop(28, scale=(0.8, 1.2), ratio=(4. / 5., 5. / 4.)), transforms.RandomRotation(5, fill=1.0), transforms.ToTensor(), transforms.Normalize(0.9637, 0.1597), ]) dataset = CustomDictDataset(loaded_data=loaded_data, transform=_transform) if client_id == 0: # testing dataset on the server self.testset = dataset else: # training dataset on one of the clients self.trainset = dataset @staticmethod def read_data(file_path): """ Reading the dataset specific to a client_id. """ with open(file_path, 'r') as fin: loaded_data = json.load(fin) return loaded_data def num_train_examples(self): return len(self.trainset) def num_test_examples(self): return len(self.testset)
mmtbx/kinemage/__init__.py
dperl-sol/cctbx_project
155
12766711
<filename>mmtbx/kinemage/__init__.py from __future__ import absolute_import, division, print_function def kin_vec(start_key, start_xyz, end_key, end_xyz, width=None): start_altloc = start_key[0:1] if start_altloc == ' ': start_altloc_txt = "" else: start_altloc_txt = " '%s'" % start_altloc.lower() end_altloc = end_key[0:1] if end_altloc == ' ': end_altloc_txt = "" else: end_altloc_txt = " '%s'" % end_altloc.lower() if width is None: return "{%s} P%s %.3f %.3f %.3f {%s} L%s %.3f %.3f %.3f\n" % ( start_key, start_altloc_txt, start_xyz[0], start_xyz[1], start_xyz[2], end_key, end_altloc_txt, end_xyz[0], end_xyz[1], end_xyz[2]) else: return "{%s} P%s %.3f %.3f %.3f {%s} L%s width%d %.3f %.3f %.3f\n" % ( start_key, start_altloc_txt, start_xyz[0], start_xyz[1], start_xyz[2], end_key, end_altloc_txt, width, end_xyz[0], end_xyz[1], end_xyz[2])
tests/tests_preprocessing/test_datetime_transformer.py
stjordanis/mljar-supervised
1,882
12766723
<filename>tests/tests_preprocessing/test_datetime_transformer.py import unittest import tempfile import json import numpy as np import pandas as pd from supervised.preprocessing.datetime_transformer import DateTimeTransformer class DateTimeTransformerTest(unittest.TestCase): def test_transformer(self): d = { "col1": [ "2020/06/01", "2020/06/02", "2020/06/03", "2021/06/01", "2022/06/01", ] } df = pd.DataFrame(data=d) df["col1"] = pd.to_datetime(df["col1"]) df_org = df.copy() transf = DateTimeTransformer() transf.fit(df, "col1") df = transf.transform(df) self.assertTrue(df.shape[0] == 5) self.assertTrue("col1" not in df.columns) self.assertTrue("col1_Year" in df.columns) transf2 = DateTimeTransformer() transf2.from_json(transf.to_json()) df2 = transf2.transform(df_org) self.assertTrue("col1" not in df2.columns) self.assertTrue("col1_Year" in df2.columns)
supersqlite/idxchk.py
plasticity-admin/supersqlite
687
12766731
#!/usr/bin/python '''idxchk.py - pretty print indexes used in a query Ported to Python by <NAME> (<EMAIL>). Requires pysqlite2, sqlite3 (comes with Python 2.5+) or apsw. Version 1.01 2008-03-07 Fix to list index method name thanks to <NAME>. Added sqlite3 support. Version 1.0 2006-07-18 Initial version. Placed in the public domain. I know no Tcl, corrections welcome. ''' import sys try: from pysqlite2 import dbapi2 sqlite_connect, SQLError = dbapi2.connect, dbapi2.OperationalError except ImportError: try: from sqlite3 import dbapi2 sqlite_connect, SQLError = dbapi2.connect, dbapi2.OperationalError except ImportError: import apsw sqlite_connect, SQLError = apsw.Connection, apsw.SQLError debug = False # if true, displays SQL. verbose = False dbname = '' sql = '' if '-debug' in sys.argv: debug = True sys.argv.remove('-debug') if '-v' in sys.argv: verbose = True sys.argv.remove('-v') if len(sys.argv) <= 1: print 'usage: %s [-v] [-debug] dbfile [sqlcmds ...]' % sys.argv[0] print print ' -v verbose output: opcodes, databases, tables, cursors' print ' -debug show the internal SQL queries' print ' dbfile a valid sqlite3 database file or ":memory:"' print " sqlcmds one or more sql statements separated by ';'" print print 'The last sqlcmd is explained, preceeding ones are executed.' print 'If sqlcmds is omitted, then read sqlcmds from stdin.' sys.exit(1) dbname = sys.argv[1] # if sql parm is missing, read from stdin if len(sys.argv) > 2: sql = ' '.join(sys.argv[2:]) + ' \n;\n' else: sql = sys.stdin.read() # Connect to database. session = sqlite_connect(dbname) def DO(sql, params={}, cur=session.cursor()): 'Run some SQL.' if debug: print '>>>', '\n...'.join(sql.split('\n')) if params: print ' %s' % params try: cur.execute(sql, params) rows = [] for row in cur: # apsw doesn't support cur.fetchall() rows.append(row) return rows except SQLError: print >>sys.stderr, "BAD SQL:", sql raise # find the last sql statement, others are executed first # eg, if temp tables are created and indexed, attach other db's, etc. idxsql = '' while len(idxsql) == 0: sqlcmds = sql.split(';') if sqlcmds: presql = sqlcmds[:-1] idxsql = sqlcmds[-1].strip() sql = ';'.join(presql) else: print 'no sqlcmds to explain' session.close() sys.exit(2) # execute any pre sql first cnt = 1 for s in presql: s = s.strip() if s: if verbose: print 'exec sql %d' % cnt print '----------------------------------------------------------' print s.replace('\n', ' ')[:50], '.....' print try: DO(s) except SQLError as e: print 'sql error while executing statement %d:' % cnt print s + '\n\nerror message:\n' + str(e) session.close() sys.exit(3) cnt += 1 try: vcode = DO('EXPLAIN ' + idxsql) except SQLError as e: print 'sql error while explaining statement %d:' % cnt print idxsql + '\n\nerror message:\n' + str(e) session.close() sys.exit(4) # get database names, in case the presql attached any other dbs or temp tables if verbose: print 'dbnum dbname' print '------ ---------------------------------------------------' dbarr = {} for dbnum, dbname, dbfile in DO('pragma database_list'): dbarr[dbnum] = dbname if verbose: print '%6d %s (%s)' % (dbnum, dbname, dbfile) prevint = -1 idxtbl = {} nesting = [] cursors = [] # collect cursors on first pass for addr, opcode, p1, p2, p3 in vcode: if opcode == 'Integer': prevint = p1 elif opcode == 'OpenRead': if prevint == -1: # previous opcode was not Integer! continue dbnum = prevint if dbnum not in dbarr: # explained statement is probably creating a temp table dbarr[dbnum] = 'temp' if dbarr[dbnum] == 'temp': temp = 'temp_' else: temp = '' if dbarr[dbnum] != 'main' and dbarr[dbnum] != 'temp': dbname = dbarr[dbnum] + '.' else: dbname = '' if p2 == 1: # opening sqlite_master itself, skip continue schemasql = '''SELECT type, name, tbl_name, rootpage FROM %(dbname)ssqlite_%(temp)smaster WHERE rootpage = %(p2)s''' % locals() type, name, tbl_name, rootpage = DO(schemasql)[0] cursors.append((p1, type, dbname + name, name, tbl_name)) else: # reset int value, if preceeding opcode not Integer prevint = -1 if verbose: print print 'explain sql' print '----------------------------------------------------------' print idxsql print '' print 'opcodes' print '----------------------------------------------------------' for addr, opcode, p1, p2, p3 in vcode: print '%s|%s|%s|%s|%s' % (addr, opcode, p1, p2, p3) print prevint = -1 # not present in the original Tcl - bug? for addr, opcode, p1, p2, p3 in vcode: if opcode == 'Integer': prevint = p1 elif opcode == 'OpenRead': if prevint == -1: # previous opcode was not Integer! continue dbnum = prevint if dbnum not in dbarr: # explained statement is probably creating a temp table dbarr[dbnum] = 'temp' if dbarr[dbnum] == 'temp': temp = 'temp_' else: temp = '' if dbarr[dbnum] != 'main' and dbarr[dbnum] != 'temp': dbname = dbarr[dbnum] + '.' else: dbname = '' schemasql = '''SELECT type, name, tbl_name, rootpage FROM %(dbname)ssqlite_%(temp)smaster WHERE rootpage = %(p2)s''' % locals() type, name, tbl_name, rootpage = DO(schemasql)[0] idxtab = dbname + tbl_name #cursors.append((p1, type, dbnamename)) if type == 'index': # get info for table, all indexes, and this index pr_tbl_info = DO('pragma table_info(%s)' % tbl_name) pr_idx_list = DO('pragma index_list(%s)' % tbl_name) pr_idx_info = DO('pragma index_info(%s)' % name) cols = [] pkcollist = [] # sort index column names and assemble index columns ielems = [] for seq, cid, iname in pr_idx_info: ielems.append((seq, cid, iname)) for seq, cid, iname in sorted(ielems): cols.append(iname) pkcollist.append(iname) cols = '(%s)' % ','.join(cols) # if index itself is unique unique = '' for iseq, iname, isuniq in pr_idx_list: if name == iname and isuniq: unique = ' UNIQUE' break cols += unique # index is primary key if all pkcollist names are in table pk cols i = -1 # for cid, cname, ctype, ispk in pr_tbl_info: # outdated. for cid, cname, ctype, notnull, dflt_value, ispk in pr_tbl_info: try: ispk = int(ispk) except ValueError: continue if ispk: try: i = pkcollist.index(cname) except ValueError: # didn't find a pk column in the list of index columns break # remove this column name from pkcollist del pkcollist[i] if i >= 0 and not pkcollist: # found all of the table pk columns in the pkcollist cols += ' PRIMARY KEY' idxtbl[idxtab] = idxtbl.get(idxtab, []) idxtbl[idxtab].append((name, cols)) elif type == 'table': # if not in idxtbl array, add it with empty index info if idxtab not in idxtbl: idxtbl[idxtab] = [] if idxtab not in nesting: nesting.append(idxtab) elif opcode == 'NotExists' or opcode == 'MoveGe' or opcode == 'MoveLt': # check for possible primary key usage for cp1, ctype, ctab, cname, ctbl in cursors: if p1 == cp1 and ctype == 'table': idxtbl[ctab].append(('<pk>', '<integer primary key or rowid>')) break else: # reset int value, if preceeding opcode not Integer prevint = -1 if verbose: print 'table open order (probable join table nesting)' print '-----------------------------------------------------------' lev = 0 for tab in nesting: print '| ' * lev + tab lev += 1 if lev > 1: print '| ' * lev print print 'cursor type name' print '------ ------ ----------------------------------------------' for cur in cursors: num, type, fullname, name, tbl = cur print '%6d %-6.6s %s' % (num, type, fullname) print # remove any duplicate indexes per each table for tbl, idxlist in idxtbl.items(): idxtbl[tbl] = sorted(list(set(idxlist))) # pretty print in column format # first, figure out column widths len1 = 6 len2 = 10 len3 = 10 for tbl, idxlist in idxtbl.items(): if len(tbl) > len1: len1 = len(tbl) for idx, idxdef in idxlist: if len(idx) > len2: len2 = len(idx) if len(idxdef) > len3: len3 = len(idxdef) fmt = '%-{len1}.{len1}s %-{len2}.{len2}s %-{len3}.{len3}s' # Substitute in for each "{lenX}" in fmt: fmt = fmt.replace('%', '%%').replace('{', '%(').replace('}', ')s') % locals() print fmt % ('table', 'index(es)', 'column(s)') print fmt % ('-' * len1, '-' * len2, '-' * len3) # now print in order of table open nesting for tbl in nesting: t = tbl idxlist = idxtbl[tbl] if not idxlist: print fmt % (tbl, '(none)', '') else: for ientry in idxlist: idx, idxdef = ientry print fmt % (tbl, idx, idxdef) #tbl = '' try: del idxtbl[t] except KeyError: pass # print any other indexes where index was opened, but not table for tbl in idxtbl: idxlist = idxtbl[tbl] if not idxlist: print fmt % (tbl, '(none)', '') else: for ientry in idxlist: idx, idxdef = ientry print fmt % (tbl, idx, idxdef) #tbl = '' print '\nSQLite version:', DO('SELECT sqlite_version()')[0][0] session.close()
somaticseq/utilities/attach_pileupVAF.py
bioinform/somaticseq
159
12766737
<filename>somaticseq/utilities/attach_pileupVAF.py #!/usr/bin/env python3 # Supports Insertion/Deletion as well as SNVs # Last updated: 8/29/2015 import math, argparse, sys, os, gzip import re import somaticseq.genomicFileHandler.genomic_file_handlers as genome import somaticseq.genomicFileHandler.pileup_reader as pileup nan = float('nan') inf = float('inf') parser = argparse.ArgumentParser(description='Given either a tumor-only or tumor-normal VCF file (requires SAMPLE NAME specified), and pileup file, it will attach VAF calculated from pileup file to the VCF file. The pileup file can also be streamed in.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-myvcf', '--my-vcf-file', type=str, help='My VCF', required=True, default=None) parser.add_argument('-normal', '--normal-sample-name', type=str, help='Normal Sample Name', required=False, default='NORMAL') parser.add_argument('-tumor', '--tumor-sample-name', type=str, help='Tumor Sample Name', required=False, default='TUMOR') parser.add_argument('-Npileup', '--normal-pileup-file', type=str, help='Normal VCF File', required=False, default=None) parser.add_argument('-Tpileup', '--tumor-pileup-file', type=str, help='Tumor VCF File', required=True) parser.add_argument('-fai', '--reference-fasta-fai', type=str, help='Use the fasta.fai file to get the valid contigs', required=False, default=None) parser.add_argument('-dict', '--reference-fasta-dict', type=str, help='Use the reference dict file to get the valid contigs', required=False, default=None) # From pileup: parser.add_argument('-plVAF', '--pileup-variant-allele-frequency', action='store_true', help='Variant Allele Frequency calculated from pileup file', required=False) parser.add_argument('-plDP4', '--pileup-DP4', action='store_true', help='DP4 from pileup file', required=False) # output file parser.add_argument('-outfile', '--output-file', type=str, help='Output File Name', required=True) args = parser.parse_args() ## my_vcf = args.my_vcf_file Tpileup = args.tumor_pileup_file Npileup = args.normal_pileup_file tumor_name = args.tumor_sample_name normal_name = args.normal_sample_name fai_file = args.reference_fasta_fai dict_file = args.reference_fasta_dict outfile = args.output_file nan = float('nan') #### Append headers according to user selection #### header_append = [] format_append = [] if args.pileup_DP4: header_append.append('##FORMAT=<ID=plDP4,Number=4,Type=Integer,Description="DP4 from pileup: ref forward, ref reverse, alt forward, alt reverse">') format_append.append('plDP4') if args.pileup_variant_allele_frequency: header_append.append('##FORMAT=<ID=plVAF,Number=1,Type=Float,Description="Variant allele frequency calculated from pileup">') format_append.append('plVAF') # Start Working by opening files: try: my_vcf = genome.open_textfile(my_vcf) Tpileup = genome.open_textfile(Tpileup) outhandle = open(outfile, 'w') Npileup = genome.open_textfile(Npileup) except AttributeError: pass if Npileup: npileup_line = Npileup.readline().rstrip('\n') if Tpileup: tpileup_line = Tpileup.readline().rstrip('\n') # Add the extra headers: out_vcf_headers = genome.vcf_header_modifier( my_vcf, addons=header_append ) # Find out where the tumor and normal samples are in the vcf files, i.e., which column. # Then, Assuming there are two sample names in "my vcf," the one that appears first should have an index of 0, and the next one is 1: main_header = out_vcf_headers[3].split('\t') vcf_idxT = main_header.index(tumor_name) idxT = vcf_idxT - 9 try: vcf_idxN = main_header.index(normal_name) idxN = vcf_idxN - 9 except ValueError: vcf_idxN = None idxN = None # Write the headers to the output vcf file: outhandle.write(out_vcf_headers[0] + '\n') ##fileformat=VCFv4.1 [ outhandle.write(out_i + '\n') for out_i in out_vcf_headers[1] ] [ outhandle.write(out_i + '\n') for out_i in out_vcf_headers[2] ] outhandle.write(out_vcf_headers[3] + '\n') #CHROM... # Convert contig_sequence to chrom_seq dict: if dict_file: chrom_seq = genome.faiordict2contigorder(dict_file, 'dict') elif fai_file: chrom_seq = genome.faiordict2contigorder(fai_file, 'fai') else: raise Exception('I need a fai or dict file, or else I do not know the contig order.') pattern_chrom = r'|'.join(chrom_seq) r_chrom = r'(' + pattern_chrom + r')' pattern_chr_position = r_chrom + r'\t[0-9]+' # Figure out the order of NORMAL and TUMOR if idxN != None: if Npileup and idxN==0: external_pileups = [ [Npileup, Tpileup], [npileup_line, tpileup_line] ] elif Npileup and idx==1: external_pileups = [ [Tpileup, Npileup], [tpileup_line, npileup_line] ] elif not Npileup: external_pileups = [ [Tpileup], [tpileup_line] ] else: external_pileups = [ [Tpileup], [tpileup_line] ] line_i = my_vcf.readline().rstrip('\n') while line_i: my_coordinate = re.search( pattern_chr_position, line_i ) if my_coordinate: my_coordinate = my_coordinate.group() else: print(line_i, file=sys.stderr) raise Exception('Your VCF file has a contig that does not exist.') # my_vcf: vcf_i = genome.Vcf_line( line_i ) # Modify the FORMAT column: field_items = vcf_i.get_sample_variable() field_items.extend( format_append ) field_format_line = ':'.join( field_items ) ########################################################################################### ###################### Find the same coordinate in the pileup file ######################## # Line up the order of reading the two files the same order as the sample columns in my_vcf: samples_collect = [] for SM_idx,current_vcf in enumerate( external_pileups[0] ): latest_pileup_run = genome.catchup(my_coordinate, external_pileups[1][SM_idx], current_vcf, chrom_seq) latest_sample = pileup.Pileup_line(latest_pileup_run[1]) sample_append = [] # If the position exists in this samtools generated vcf file: if latest_pileup_run[0]: assert vcf_i.position == latest_sample.position # Figure out alternate pattern: first_alt_call = vcf_i.altbase.split(',')[0] base_calls = latest_sample.base_reads() if base_calls: # SNV if len(first_alt_call) == len(vcf_i.refbase): ref_for, ref_rev, alt_for, alt_rev = base_calls[0], base_calls[1], base_calls[2].count(first_alt_call.upper()), base_calls[3].count(first_alt_call.lower()) # Insertion: elif len(first_alt_call) > len(vcf_i.refbase): inserted = first_alt_call[ len(vcf_i.refbase):: ] ref_for, ref_rev, alt_for, alt_rev = base_calls[0], base_calls[1], base_calls[6].count(inserted.upper()), base_calls[7].count(inserted.lower()) # Deletion: elif len(first_alt_call) < len(vcf_i.refbase): deleted = vcf_i.refbase[ len(first_alt_call) :: ] ref_for, ref_rev, alt_for, alt_rev = base_calls[0], base_calls[1], base_calls[4].count(deleted.upper()), base_calls[5].count(deleted.lower()) else: ref_for = ref_rev = alt_for = alt_rev = 0 ### Pre-defined material ### ### If user wants DP4 ### if args.pileup_DP4: pl_DP4 = '{},{},{},{}'.format( ref_for, ref_rev, alt_for, alt_rev ) sample_append.append( pl_DP4 ) ### If user wants VAF ### if args.pileup_variant_allele_frequency: try: pl_vaf = ( alt_for + alt_rev ) / ( alt_for + alt_rev + ref_for + ref_rev ) except ZeroDivisionError: pl_vaf = 0 pl_vaf = '%.3g' % pl_vaf sample_append.append( pl_vaf ) # Reset the current line: sample_items = list( vcf_i.get_sample_item(idx=SM_idx, out_type='l')[1] ) sample_items.extend( sample_append ) sample_out = ':'.join( sample_items ) # Reset the current line: external_pileups[1][SM_idx] = latest_sample.pileup_line # New format and sample columns: samples_collect.append( sample_out ) # If the position does not exist in pileup file: else: sample_items = list( vcf_i.get_sample_item(idx=SM_idx, out_type='l')[1] ) sample_append = ['.' if i!='plDP4' else '.,.,.,.' for i in format_append ] sample_items.extend( sample_append ) sample_out = ':'.join( sample_items ) samples_collect.append( sample_out ) external_pileups[1][SM_idx] = latest_sample.pileup_line ### Write out will have a few different possible situations ### # If NORMAL and TUMOR both exist in the designated VCF file: if vcf_idxT and vcf_idxN: # But the Nvcf is not supplied, modified the NORMAL column to reflect change in FORMAT column: if not Npileup: normal_items = list( vcf_i.get_sample_item(idx=idxN, out_type='l')[1] ) extra_normal_items = ['.' if i!='plDP4' else '.,.,.,.' for i in format_append ] normal_out = ':'.join( extra_normal_items ) samples_collect.append( normal_out ) # Write out: out_i = '\t'.join(( vcf_i.chromosome, str(vcf_i.position), vcf_i.identifier, vcf_i.refbase, vcf_i.altbase, vcf_i.qual, vcf_i.filters, vcf_i.info, field_format_line, samples_collect[0], samples_collect[1] )) outhandle.write( out_i + '\n' ) # Only TUMOR exists in the designated VCF file: if not vcf_idxN: # Write out: out_i = '\t'.join(( vcf_i.chromosome, str(vcf_i.position), vcf_i.identifier, vcf_i.refbase, vcf_i.altbase, vcf_i.qual, vcf_i.filters, vcf_i.info, field_format_line, samples_collect[0] )) outhandle.write( out_i + '\n' ) # Read the next line in the designated VCF file: line_i = my_vcf.readline().rstrip('\n') # Close files: my_vcf.close() Tpileup.close() outhandle.close() if Npileup != None: Npileup.close()
zinnia/urls/comments.py
Boondockers-Welcome/django-blog-zinnia
1,522
12766743
"""Urls for the Zinnia comments""" from django.conf.urls import url from zinnia.urls import _ from zinnia.views.comments import CommentSuccess urlpatterns = [ url(_(r'^success/$'), CommentSuccess.as_view(), name='comment_success'), ]
lib/python/treadmill/tests/keytabs_test.py
krcooke/treadmill
133
12766775
"""Unit test for keytabs """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import io import os import shutil import tempfile import unittest import mock from treadmill import keytabs class KeytabsTest(unittest.TestCase): """test keytabs function """ def setUp(self): self.spool_dir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.spool_dir) def _touch_file(self, name): with io.open(os.path.join(self.spool_dir, name), 'w'): pass @mock.patch('treadmill.subproc.check_call') def test_add_keytabs_to_file(self, mock_check_call): """test add keytabs princ files into dest file """ self._touch_file('HTTP#foo@realm') self._touch_file('HTTP#bar@realm') self._touch_file('host#foo@realm') self._touch_file('host#bar@realm') keytabs.add_keytabs_to_file(self.spool_dir, 'host', 'krb5.keytab') try: mock_check_call.assert_called_once_with( [ 'kt_add', 'krb5.keytab', os.path.join(self.spool_dir, 'host#foo@realm'), os.path.join(self.spool_dir, 'host#bar@realm'), ] ) except AssertionError: # then should called with files in other order mock_check_call.assert_called_once_with( [ 'kt_add', 'krb5.keytab', os.path.join(self.spool_dir, 'host#bar@realm'), os.path.join(self.spool_dir, 'host#foo@realm'), ] ) if __name__ == '__main__': unittest.main()
tests/flatpages_tests/urls.py
ni-ning/django
61,676
12766781
<gh_stars>1000+ from django.contrib.flatpages.sitemaps import FlatPageSitemap from django.contrib.sitemaps import views from django.urls import include, path urlpatterns = [ path( 'flatpages/sitemap.xml', views.sitemap, {'sitemaps': {'flatpages': FlatPageSitemap}}, name='django.contrib.sitemaps.views.sitemap'), path('flatpage_root/', include('django.contrib.flatpages.urls')), path('accounts/', include('django.contrib.auth.urls')), ]
examples/plugin_example/plugin.py
pfnet/pysen
423
12766818
import dataclasses import pathlib import subprocess from typing import DefaultDict, List, Sequence import dacite from pysen.command import CommandBase from pysen.component import ComponentBase, RunOptions from pysen.path import change_dir from pysen.plugin import PluginBase from pysen.pyproject_model import Config, PluginConfig from pysen.reporter import Reporter from pysen.runner_options import PathContext from pysen.setting import SettingFile class ShellCommand(CommandBase): def __init__(self, name: str, base_dir: pathlib.Path, cmd: Sequence[str]) -> None: self._name = name self._base_dir = base_dir self._cmd = cmd @property def name(self) -> str: return self._name def __call__(self, reporter: Reporter) -> int: with change_dir(self._base_dir): try: ret = subprocess.run(self._cmd) reporter.logger.info(f"{self._cmd} returns {ret.returncode}") return ret.returncode except BaseException as e: reporter.logger.info( f"an error occured while executing: {self._cmd}\n{e}" ) return 255 class ShellComponent(ComponentBase): def __init__(self, name: str, cmd: Sequence[str], targets: Sequence[str]) -> None: self._name = name self._cmd = cmd self._targets = targets @property def name(self) -> str: return self._name def export_settings( self, paths: PathContext, files: DefaultDict[str, SettingFile], ) -> None: print(f"Called export_settings at {self._name}: do nothing") @property def targets(self) -> Sequence[str]: return self._targets def create_command( self, target: str, paths: PathContext, options: RunOptions ) -> CommandBase: assert target in self._targets return ShellCommand(self._name, paths.base_dir, self._cmd) @dataclasses.dataclass class ShellPluginConfig: name: str command: List[str] targets: List[str] class ShellPlugin(PluginBase): def load( self, file_path: pathlib.Path, config_data: PluginConfig, root: Config ) -> Sequence[ComponentBase]: assert ( config_data.config is not None ), f"{config_data.location}.config must be not None" config = dacite.from_dict( ShellPluginConfig, config_data.config, dacite.Config(strict=True) ) return [ShellComponent(config.name, config.command, config.targets)] # NOTE(igarashi): This is the entry point of a plugin method def plugin() -> PluginBase: return ShellPlugin()
xc/common/libraries/generate_verilog.py
bl0x/symbiflow-arch-defs
183
12766855
"""Transforms the XML module definitions parsed from the PDF into a verilog representation""" from lxml import etree from datetime import datetime def format_port(name, width, type, **kwargs): wstr = '' if int(width) == 1 else '[%s:0]\t' % width return '\t%s\t%s%s;\n' % (type, wstr, name) def format_attrib(name, type, default, **kwargs): if type == 'STRING': default = '"%s"' % default # need to ensure strings are quoted return '\tparameter %s = %s;\n' % (name, default) def process(infile, outfile): tree = etree.parse(infile) root = tree.getroot() with open(outfile, "w") as output: output.write( '// Automatically generated from %s on %s\n\n' % (infile, datetime.now().isoformat()) ) for module in root.getchildren(): ports = module.xpath('port') attrs = module.xpath('attribute') output.write( 'module %s (%s);\n' % ( module.attrib['name'], ', '.join([port.attrib['name'] for port in ports]) ) ) for port in ports: output.write(format_port(**dict(port.attrib))) if len(attrs): output.write('\n') for attr in attrs: output.write(format_attrib(**dict(attr.attrib))) output.write('endmodule\n\n') if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--input', '-i', nargs='?', default='cells_xtra.xml') parser.add_argument('--output', '-o', nargs='?', default='cells_xtra.v') args = parser.parse_args() process(args.input, args.output)
dataloader.py
husnejahan/DeepAR-Pytorch
213
12766862
<gh_stars>100-1000 from __future__ import division import numpy as np import torch import os import logging from torch.utils.data import DataLoader, Dataset, Sampler logger = logging.getLogger('DeepAR.Data') class TrainDataset(Dataset): def __init__(self, data_path, data_name, num_class): self.data = np.load(os.path.join(data_path, f'train_data_{data_name}.npy')) self.label = np.load(os.path.join(data_path, f'train_label_{data_name}.npy')) self.train_len = self.data.shape[0] logger.info(f'train_len: {self.train_len}') logger.info(f'building datasets from {data_path}...') def __len__(self): return self.train_len def __getitem__(self, index): return (self.data[index,:,:-1],int(self.data[index,0,-1]), self.label[index]) class TestDataset(Dataset): def __init__(self, data_path, data_name, num_class): self.data = np.load(os.path.join(data_path, f'test_data_{data_name}.npy')) self.v = np.load(os.path.join(data_path, f'test_v_{data_name}.npy')) self.label = np.load(os.path.join(data_path, f'test_label_{data_name}.npy')) self.test_len = self.data.shape[0] logger.info(f'test_len: {self.test_len}') logger.info(f'building datasets from {data_path}...') def __len__(self): return self.test_len def __getitem__(self, index): return (self.data[index,:,:-1],int(self.data[index,0,-1]),self.v[index],self.label[index]) class WeightedSampler(Sampler): def __init__(self, data_path, data_name, replacement=True): v = np.load(os.path.join(data_path, f'train_v_{data_name}.npy')) self.weights = torch.as_tensor(np.abs(v[:,0])/np.sum(np.abs(v[:,0])), dtype=torch.double) logger.info(f'weights: {self.weights}') self.num_samples = self.weights.shape[0] logger.info(f'num samples: {self.num_samples}') self.replacement = replacement def __iter__(self): return iter(torch.multinomial(self.weights, self.num_samples, self.replacement).tolist()) def __len__(self): return self.num_samples
functions/process_data.py
donglinwu6066/SDEdit
330
12766898
import torch import os def download_process_data(path="colab_demo"): os.makedirs(path, exist_ok=True) print("Downloading data") torch.hub.download_url_to_file('https://image-editing-test-12345.s3-us-west-2.amazonaws.com/colab_examples/lsun_bedroom1.pth', os.path.join(path, 'lsun_bedroom1.pth')) torch.hub.download_url_to_file('https://image-editing-test-12345.s3-us-west-2.amazonaws.com/colab_examples/lsun_bedroom2.pth', os.path.join(path, 'lsun_bedroom2.pth')) torch.hub.download_url_to_file('https://image-editing-test-12345.s3-us-west-2.amazonaws.com/colab_examples/lsun_bedroom3.pth', os.path.join(path, 'lsun_bedroom3.pth')) torch.hub.download_url_to_file('https://image-editing-test-12345.s3-us-west-2.amazonaws.com/colab_examples/lsun_edit.pth', os.path.join(path, 'lsun_edit.pth')) torch.hub.download_url_to_file('https://image-editing-test-12345.s3-us-west-2.amazonaws.com/colab_examples/lsun_church.pth', os.path.join(path, 'lsun_church.pth')) print("Data downloaded")
src/frequent_phrase_mining/frequent_pattern_mining.py
paperplanet/SegPhrase
275
12766901
from sets import Set def frequentPatternMining(tokens, patternOutputFilename, threshold): dict = {} tokensNumber = len(tokens) for i in xrange(tokensNumber): token = tokens[i] if token == '$': continue if token in dict: dict[token].append(i) else: dict[token] = [i] print "# of distinct tokens = ", len(dict) patternOutput = open(patternOutputFilename, 'w') frequentPatterns = [] patternLength = 1 while (len(dict) > 0): if patternLength > 6: break #print "working on length = ", patternLength patternLength += 1 newDict = {} for pattern, positions in dict.items(): occurrence = len(positions) if occurrence >= threshold: frequentPatterns.append(pattern) patternOutput.write(pattern + "," + str(occurrence) + "\n") for i in positions: if i + 1 < tokensNumber: if tokens[i + 1] == '$': continue newPattern = pattern + " " + tokens[i + 1] if newPattern in newDict: newDict[newPattern].append(i + 1) else: newDict[newPattern] = [i + 1] dict.clear() dict = newDict patternOutput.close() return frequentPatterns
web/server/codechecker_server/migrations/report/versions/f8291ab1d6be_fix_setting_analysis_info_id_seq.py
ryankurte/codechecker
1,601
12766905
<filename>web/server/codechecker_server/migrations/report/versions/f8291ab1d6be_fix_setting_analysis_info_id_seq.py<gh_stars>1000+ """Fix setting analysis_info_id_seq Revision ID: f8291ab1d6be Revises: <PASSWORD> Create Date: 2021-07-15 16:49:05.354455 """ # revision identifiers, used by Alembic. revision = 'f8291ab1d6be' down_revision = '<PASSWORD>' branch_labels = None depends_on = None from alembic import op def upgrade(): ctx = op.get_context() dialect = ctx.dialect.name if dialect == 'postgresql': op.execute(""" SELECT SETVAL( 'analysis_info_id_seq', (SELECT MAX(id) + 1 FROM analysis_info) ) """)
test/test_path.py
afermanian/signatory
156
12766915
<gh_stars>100-1000 # Copyright 2019 <NAME>. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ========================================================================= """Tests the Path class.""" import copy import gc import pytest import random import torch import warnings import weakref from helpers import helpers as h from helpers import validation as v tests = ['Path'] depends = ['signature', 'logsignature'] signatory = v.validate_tests(tests, depends) def _update_lengths_update_grads(maxlength): update_lengths = [] update_grads = [] num = int(torch.randint(low=0, high=3, size=(1,))) for _ in range(num): update_lengths.append(int(torch.randint(low=1, high=maxlength, size=(1,)))) update_grads.append(random.choice([True, False])) return update_lengths, update_grads def test_path(): """Tests that Path behaves correctly.""" # Test small edge cases thoroughly for device in h.get_devices(): for batch_size in (1, 2): for input_stream, basepoints in zip((1, 2), ((True, h.without_grad, h.with_grad), (False, True, h.without_grad, h.with_grad))): for input_channels in (1, 2): for depth in (1, 2): for scalar_term in (True, False): for path_grad in (False, True): basepoint = random.choice(basepoints) update_lengths, update_grads = _update_lengths_update_grads(3) _test_path(device, path_grad, batch_size, input_stream, input_channels, depth, basepoint, update_lengths, update_grads, scalar_term, extrarandom=False, which='all') # Randomly test larger cases for _ in range(50): device = random.choice(h.get_devices()) batch_size = random.choice((1, 2, 5)) input_stream = random.choice([3, 6, 10]) input_channels = random.choice([1, 2, 6]) depth = random.choice([1, 2, 4, 6]) basepoint = random.choice([False, True, h.without_grad, h.with_grad]) path_grad = random.choice([False, True]) update_lengths, update_grads = _update_lengths_update_grads(10) scalar_term = random.choice([False, True]) _test_path(device, path_grad, batch_size, input_stream, input_channels, depth, basepoint, update_lengths, update_grads, scalar_term, extrarandom=True, which='random') # Do at least one large test for device in h.get_devices(): _test_path(device, path_grad=True, batch_size=5, input_stream=10, input_channels=6, depth=6, basepoint=True, update_lengths=[5, 6], update_grads=[False, True], scalar_term=False, extrarandom=False, which='none') def _randint(value): return torch.randint(low=0, high=value, size=(1,)).item() def _test_path(device, path_grad, batch_size, input_stream, input_channels, depth, basepoint, update_lengths, update_grads, scalar_term, extrarandom, which): path = h.get_path(batch_size, input_stream, input_channels, device, path_grad) basepoint = h.get_basepoint(batch_size, input_channels, device, basepoint) path_obj = signatory.Path(path, depth, basepoint=basepoint, scalar_term=scalar_term) if isinstance(basepoint, torch.Tensor): full_path = torch.cat([basepoint.unsqueeze(1), path], dim=1) elif basepoint is True: full_path = torch.cat([torch.zeros(batch_size, 1, input_channels, device=device, dtype=torch.double), path], dim=1) else: full_path = path if not path_grad and not (isinstance(basepoint, torch.Tensor) and basepoint.requires_grad): backup_path_obj = copy.deepcopy(path_obj) # derived objects to test copy_path_obj = copy.copy(path_obj) shuffle_path_obj1, perm1 = path_obj.shuffle() shuffle_path_obj2, perm2 = copy.deepcopy(path_obj).shuffle_() getitem1 = _randint(batch_size) getitem_path_obj1 = path_obj[getitem1] # integer all_derived = [(copy_path_obj, slice(None)), (shuffle_path_obj1, perm1), (shuffle_path_obj2, perm2), (getitem_path_obj1, getitem1)] start = _randint(batch_size) end = _randint(batch_size) getitem2 = slice(start, end) getitem3 = torch.randint(low=0, high=batch_size, size=(_randint(int(1.5 * batch_size)),)) getitem4 = torch.randint(low=0, high=batch_size, size=(_randint(int(1.5 * batch_size)),)).numpy() getitem5 = torch.randint(low=0, high=batch_size, size=(_randint(int(1.5 * batch_size)),)).tolist() try: getitem_path_obj2 = path_obj[getitem2] # slice, perhaps a 'null' slice except IndexError as e: if start >= end: pass else: pytest.fail(str(e)) else: all_derived.append((getitem_path_obj2, getitem2)) try: getitem_path_obj3 = path_obj[getitem3] # 1D tensor except IndexError as e: if len(getitem3) == 0: pass else: pytest.fail(str(e)) else: all_derived.append((getitem_path_obj3, getitem3)) try: getitem_path_obj4 = path_obj[getitem4] # array except IndexError as e: if len(getitem4) == 0: pass else: pytest.fail(str(e)) else: all_derived.append((getitem_path_obj4, getitem4)) try: getitem_path_obj5 = path_obj[getitem5] # list except IndexError as e: if len(getitem5) == 0: pass else: pytest.fail(str(e)) else: all_derived.append((getitem_path_obj5, getitem5)) if which == 'random': all_derived = [random.choice(all_derived)] elif which == 'none': all_derived = [] for derived_path_obj, derived_index in all_derived: # tests that the derived objects do what they claim to do _test_derived(path_obj, derived_path_obj, derived_index, extrarandom) # tests that the derived objects are consistent wrt themselves full_path_ = full_path[derived_index] if isinstance(derived_index, int): full_path_ = full_path_.unsqueeze(0) _test_path_obj(full_path_.size(0), input_channels, device, derived_path_obj, full_path_, depth, update_lengths, update_grads, scalar_term, extrarandom) # tests that the changes to the derived objects have not affected the original assert path_obj == backup_path_obj # finally test the original object _test_path_obj(batch_size, input_channels, device, path_obj, full_path, depth, update_lengths, update_grads, scalar_term, extrarandom) def _test_path_obj(batch_size, input_channels, device, path_obj, full_path, depth, update_lengths, update_grads, scalar_term, extrarandom): # First of all test a Path with no updates _test_signature(path_obj, full_path, depth, scalar_term, extrarandom) _test_logsignature(path_obj, full_path, depth, extrarandom) _test_equality(path_obj) assert path_obj.depth == depth if len(update_lengths) > 1: # Then test Path with variable amounts of updates for length, grad in zip(update_lengths, update_grads): new_path = torch.rand(batch_size, length, input_channels, dtype=torch.double, device=device, requires_grad=grad) path_obj.update(new_path) full_path = torch.cat([full_path, new_path], dim=1) _test_signature(path_obj, full_path, depth, scalar_term, extrarandom) _test_logsignature(path_obj, full_path, depth, extrarandom) _test_equality(path_obj) assert path_obj.depth == depth def _test_signature(path_obj, full_path, depth, scalar_term, extrarandom): def candidate(start=None, end=None): return path_obj.signature(start, end) def true(start, end): return signatory.signature(full_path[:, start:end], depth, scalar_term=scalar_term) def extra(true_signature): assert (path_obj.signature_size(-3), path_obj.signature_size(-1)) == true_signature.shape assert path_obj.signature_channels() == true_signature.size(-1) assert path_obj.shape == full_path.shape assert path_obj.channels() == full_path.size(-1) _test_operation(path_obj, candidate, true, extra, '_BackwardShortcutBackward', extrarandom) def _test_logsignature(path_obj, full_path, depth, extrarandom): if extrarandom: if random.choice([True, False, False]): modes = h.all_modes else: modes = (h.expand_mode, h.words_mode) else: modes = h.all_modes for mode in modes: def candidate(start=None, end=None): with warnings.catch_warnings(): warnings.filterwarnings('ignore', message="The logsignature with mode='brackets' has been requested on " "the GPU.", category=UserWarning) return path_obj.logsignature(start, end, mode=mode) def true(start, end): with warnings.catch_warnings(): warnings.filterwarnings('ignore', message="The logsignature with mode='brackets' has been requested on " "the GPU.", category=UserWarning) return signatory.logsignature(full_path[:, start:end], depth, mode=mode) def extra(true_logsignature): if mode != h.expand_mode: assert (path_obj.logsignature_size(-3), path_obj.logsignature_size(-1)) == true_logsignature.shape assert path_obj.logsignature_channels() == true_logsignature.size(-1) _test_operation(path_obj, candidate, true, extra, '_SignatureToLogsignatureFunctionBackward', extrarandom) def _test_equality(path_obj): assert path_obj == path_obj assert not (path_obj != path_obj) shuffled_path_obj, perm = path_obj.shuffle() assert shuffled_path_obj == path_obj[perm] assert not (shuffled_path_obj != path_obj[perm]) def _test_derived(path_obj, derived_path_obj, derived_index, extrarandom): def candidate(start=None, end=None): return torch.cat(derived_path_obj.path, dim=-2) def true(start, end): return torch.cat(path_obj.path, dim=-2)[derived_index] def extra(true_path): pass _test_operation(path_obj, candidate, true, extra, None, extrarandom) def candidate(start=None, end=None): return derived_path_obj.signature(start, end) def true(start, end): return path_obj.signature(start, end)[derived_index] def extra(true_signature): pass _test_operation(path_obj, candidate, true, extra, '_BackwardShortcutBackward', extrarandom) if extrarandom: if random.choice([True, False, False]): modes = h.all_modes else: modes = (h.expand_mode, h.words_mode) else: modes = h.all_modes for mode in modes: def candidate(start=None, end=None): with warnings.catch_warnings(): warnings.filterwarnings('ignore', message="The logsignature with mode='brackets' has been requested on " "the GPU.", category=UserWarning) return derived_path_obj.logsignature(start, end, mode=mode) def true(start, end): with warnings.catch_warnings(): warnings.filterwarnings('ignore', message="The logsignature with mode='brackets' has been requested on " "the GPU.", category=UserWarning) return path_obj.logsignature(start, end, mode=mode)[derived_index] def extra(true_logsignature): pass _test_operation(path_obj, candidate, true, extra, '_SignatureToLogsignatureFunctionBackward', extrarandom) def _boundaries(length): yield -length - 1 yield -length yield -1 yield 0 yield 1 yield length - 1 yield length yield None def _start_end(length, extrarandom): for start in _boundaries(length): for end in _boundaries(length): if (not extrarandom) or random.choice([True, False]): yield start, end for _ in range(5): start = int(torch.randint(low=-length, high=length, size=(1,))) end = int(torch.randint(low=-length, high=length, size=(1,))) yield start, end def _test_operation(path_obj, candidate, true, extra, backward_name, extrarandom): # We perform multiple tests here. # Test #1: That the memory usage is consistent # Test #2: That the backward 'ctx' is correctly garbage collected # Test #3: The forward accuracy of a particular operation # Test #4: The backward accuracy of the same operation def one_iteration(start, end): gc.collect() if torch.cuda.is_available(): torch.cuda.synchronize() torch.cuda.reset_max_memory_allocated() try: tensor = candidate(start, end) except ValueError as e: try: true(start, end) except ValueError: return 0 else: pytest.fail(str(e)) try: true_tensor = true(start, end) except ValueError as e: pytest.fail(str(e)) h.diff(tensor, true_tensor) # Test #3 extra(true_tensor) # Any extra tests if tensor.requires_grad: grad = torch.rand_like(tensor) tensor.backward(grad) path_grads = [] for path in path_obj.path: if path.grad is None: path_grads.append(None) else: path_grads.append(path.grad.clone()) path.grad.zero_() true_tensor.backward(grad) for path, path_grad in zip(path_obj.path, path_grads): if path_grad is None: assert (path.grad is None) or (path.grad.nonzero().numel() == 0) else: h.diff(path.grad, path_grad) # Test #4 path.grad.zero_() ctx = tensor.grad_fn assert type(ctx).__name__ == backward_name ref = weakref.ref(ctx) del ctx del tensor gc.collect() assert ref() is None # Test #2 if torch.cuda.is_available(): torch.cuda.synchronize() return torch.cuda.max_memory_allocated() else: return 0 # Computations involving the start or not operate differently, so we take the max over both memory_used = max(one_iteration(0, None), one_iteration(1, None)) for start, end in _start_end(path_obj.size(1), extrarandom): # This one seems to be a bit inconsistent with how much memory is used on each run, so we give some # leeway by doubling assert one_iteration(start, end) <= 2 * memory_used
CommandRecognition/model.py
c-z-h123/https-github.com-Ryuk17-SpeechAlgorithms
338
12766923
<reponame>c-z-h123/https-github.com-Ryuk17-SpeechAlgorithms<filename>CommandRecognition/model.py """ @FileName: model.py @Description: Implement model @Author: Ryuk @CreateDate: 2020/05/12 @LastEditTime: 2020/05/12 @LastEditors: Please set LastEditors @Version: v0.1 """ import torch import torch.nn as nn import torch.nn.functional as F class basicBlock(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1): super(basicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) # shortcut is a convolution layer with BatchNormalization self.shortcut = nn.Sequential() if stride != 1 or in_channels != self.expansion * in_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * out_channels) ) def forward(self, input): x = F.relu(self.bn1(self.conv1(input))) x = self.bn2(self.conv2(x)) x += self.shortcut(input) x = F.relu(x) return x class bottleneckBlock(nn.Module): expansion = 4 def __init__(self, in_channels, out_channels, stride=1): super(bottleneckBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.conv3 = nn.Conv2d(out_channels, self.expansion * out_channels, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion * out_channels) if stride != 1 or in_channels != self.expansion * out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * out_channels) ) def forward(self, input): x = F.relu(self.bn1(self.conv1(input))) x = F.relu(self.bn2(self.conv2(x))) x = self.bn3(self.conv3(x)) x += self.shortcut(input) x = F.relu(x) return x class Resnet(nn.Module): def __init__(self, block, num_blocks, num_classes=6): super(Resnet, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, out_channels, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion return nn.Sequential(*layers) def forward(self, x): x = F.relu(self.bn1(self.conv1(x))) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = F.avg_pool2d(x, 4) x = x.view(x.size(0), -1) x = self.linear(x) return x def ResNet18(): return Resnet(basicBlock, [2, 2, 2, 2]) def ResNet152(): return Resnet(bottleneckBlock, [3, 8, 36, 3]) def main(): x = torch.randn(1, 1, 50, 32) net = ResNet18() print(net(x)) if __name__ == "__main__": main()
depth_upsampling/losses/gradient_loss.py
Levintsky/ARKitScenes
237
12766951
import torch import dataset_keys def div_by_mask_sum(loss: torch.Tensor, mask_sum: torch.Tensor): return loss / torch.max(mask_sum, torch.ones_like(mask_sum)) class SafeTorchLog(torch.autograd.Function): @staticmethod def forward(ctx, input): """ In the forward pass we receive a Tensor containing the input and return a Tensor containing the output. ctx is a context object that can be used to stash information for backward computation. You can cache arbitrary objects for use in the backward pass using the ctx.save_for_backward method. """ input_abs = torch.abs(input) + 1e-9 ctx.save_for_backward(input_abs) return torch.log(input_abs) @staticmethod def backward(ctx, grad_output): """ In the backward pass we receive a Tensor containing the gradient of the loss with respect to the output, and we need to compute the gradient of the loss with respect to the input. """ (input_abs,) = ctx.saved_tensors grad_input = grad_output.clone() return grad_input * (1.0 / input_abs) / 2.302585093 # ln(10) safe_torch_log = SafeTorchLog.apply def create_gradient_log_loss(log_prediction_d, mask, log_gt): # compute log difference log_d_diff = log_prediction_d - log_gt log_d_diff = torch.mul(log_d_diff, mask) # compute vertical gradient v_gradient = torch.abs(log_d_diff[:, :, 2:, :] - log_d_diff[:, :, :-2, :]) v_mask = torch.mul(mask[:, :, 2:, :], mask[:, :, :-2, :]) v_gradient = torch.mul(v_gradient, v_mask) # compute horizontal gradient h_gradient = torch.abs(log_d_diff[:, :, :, 2:] - log_d_diff[:, :, :, :-2]) h_mask = torch.mul(mask[:, :, :, 2:], mask[:, :, :, :-2]) h_gradient = torch.mul(h_gradient, h_mask) # sum up gradients grad_loss = torch.sum(h_gradient, dim=[1, 2, 3]) + torch.sum(v_gradient, dim=[1, 2, 3]) num_valid_pixels = torch.sum(mask, dim=[1, 2, 3]) grad_loss = div_by_mask_sum(grad_loss, num_valid_pixels) return grad_loss def create_gradient_log_loss_4_scales(log_prediction, log_ground_truth, mask): log_prediction_d = log_prediction log_gt = log_ground_truth mask = mask log_prediction_d_scale_1 = log_prediction_d[:, :, fc00:db20:35b:7399::5, ::2] log_prediction_d_scale_2 = log_prediction_d_scale_1[:, :, fc00:db20:35b:7399::5, ::2] log_prediction_d_scale_3 = log_prediction_d_scale_2[:, :, fc00:db20:35b:7399::5, ::2] mask_scale_1 = mask[:, :, fc00:db20:35b:7399::5, ::2] mask_scale_2 = mask_scale_1[:, :, fc00:db20:35b:7399::5, ::2] mask_scale_3 = mask_scale_2[:, :, fc00:db20:35b:7399::5, ::2] log_gt_scale_1 = log_gt[:, :, fc00:db20:35b:7399::5, ::2] log_gt_scale_2 = log_gt_scale_1[:, :, fc00:db20:35b:7399::5, ::2] log_gt_scale_3 = log_gt_scale_2[:, :, fc00:db20:35b:7399::5, ::2] gradient_loss_scale_0 = create_gradient_log_loss(log_prediction_d, mask, log_gt) gradient_loss_scale_1 = create_gradient_log_loss( log_prediction_d_scale_1, mask_scale_1, log_gt_scale_1 ) gradient_loss_scale_2 = create_gradient_log_loss( log_prediction_d_scale_2, mask_scale_2, log_gt_scale_2 ) gradient_loss_scale_3 = create_gradient_log_loss( log_prediction_d_scale_3, mask_scale_3, log_gt_scale_3 ) gradient_loss_4_scales = ( gradient_loss_scale_0 + gradient_loss_scale_1 + gradient_loss_scale_2 + gradient_loss_scale_3 ) return gradient_loss_4_scales def gradient_loss(outputs, inputs): valid_mask = inputs[dataset_keys.VALID_MASK_IMG] gt_depth = inputs[dataset_keys.HIGH_RES_DEPTH_IMG] prediction = outputs[dataset_keys.PREDICTION_DEPTH_IMG] log_prediction = safe_torch_log(prediction) log_gt = safe_torch_log(gt_depth) loss = create_gradient_log_loss_4_scales(log_prediction, log_gt, valid_mask) loss = torch.mean(loss) return loss
tests/roots/test-epub-anchor-id/conf.py
samdoran/sphinx
4,973
12766984
<filename>tests/roots/test-epub-anchor-id/conf.py def setup(app): app.add_crossref_type(directivename="setting", rolename="setting")
dataset/waveform_dataset.py
wimmerb/Wave-U-Net-for-Speech-Enhancement
166
12766989
import os import librosa from torch.utils import data from util.utils import sample_fixed_length_data_aligned class Dataset(data.Dataset): def __init__(self, dataset, limit=None, offset=0, sample_length=16384, mode="train"): """Construct dataset for training and validation. Args: dataset (str): *.txt, the path of the dataset list file. See "Notes." limit (int): Return at most limit files in the list. If None, all files are returned. offset (int): Return files starting at an offset within the list. Use negative values to offset from the end of the list. sample_length(int): The model only supports fixed-length input. Use sample_length to specify the feature size of the input. mode(str): If mode is "train", return fixed-length signals. If mode is "validation", return original-length signals. Notes: dataset list file: <noisy_1_path><space><clean_1_path> <noisy_2_path><space><clean_2_path> ... <noisy_n_path><space><clean_n_path> e.g. /train/noisy/a.wav /train/clean/a.wav /train/noisy/b.wav /train/clean/b.wav ... Return: (mixture signals, clean signals, filename) """ super(Dataset, self).__init__() dataset_list = [line.rstrip('\n') for line in open(os.path.abspath(os.path.expanduser(dataset)), "r")] dataset_list = dataset_list[offset:] if limit: dataset_list = dataset_list[:limit] assert mode in ("train", "validation"), "Mode must be one of 'train' or 'validation'." self.length = len(dataset_list) self.dataset_list = dataset_list self.sample_length = sample_length self.mode = mode def __len__(self): return self.length def __getitem__(self, item): mixture_path, clean_path = self.dataset_list[item].split(" ") filename = os.path.splitext(os.path.basename(mixture_path))[0] mixture, _ = librosa.load(os.path.abspath(os.path.expanduser(mixture_path)), sr=None) clean, _ = librosa.load(os.path.abspath(os.path.expanduser(clean_path)), sr=None) if self.mode == "train": # The input of model should be fixed-length in the training. mixture, clean = sample_fixed_length_data_aligned(mixture, clean, self.sample_length) return mixture.reshape(1, -1), clean.reshape(1, -1), filename else: return mixture.reshape(1, -1), clean.reshape(1, -1), filename
paddlespeech/t2s/audio/codec.py
jerryuhoo/PaddleSpeech
1,379
12767017
<filename>paddlespeech/t2s/audio/codec.py # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import numpy as np import paddle # x: [0: 2**bit-1], return: [-1, 1] def label_2_float(x, bits): return 2 * x / (2**bits - 1.) - 1. #x: [-1, 1], return: [0, 2**bits-1] def float_2_label(x, bits): assert abs(x).max() <= 1.0 x = (x + 1.) * (2**bits - 1) / 2 return x.clip(0, 2**bits - 1) # y: [-1, 1], mu: 2**bits, return: [0, 2**bits-1] # see https://en.wikipedia.org/wiki/%CE%9C-law_algorithm # be careful the input `mu` here, which is +1 than that of the link above def encode_mu_law(x, mu): mu = mu - 1 fx = np.sign(x) * np.log(1 + mu * np.abs(x)) / np.log(1 + mu) return np.floor((fx + 1) / 2 * mu + 0.5) # from_labels = True: # y: [0: 2**bit-1], mu: 2**bits, return: [-1,1] # from_labels = False: # y: [-1, 1], return: [-1, 1] def decode_mu_law(y, mu, from_labels=True): # TODO: get rid of log2 - makes no sense if from_labels: y = label_2_float(y, math.log2(mu)) mu = mu - 1 x = paddle.sign(y) / mu * ((1 + mu)**paddle.abs(y) - 1) return x
components/mpas-seaice/testing_and_setup/testcases/square/1D_velocity_hex/plot_method_comparison.py
Fa-Li/E3SM
235
12767027
<reponame>Fa-Li/E3SM from netCDF4 import Dataset import numpy as np import matplotlib.pyplot as plt import math fig, axes = plt.subplots() subcycleNumber = 7680 operatorMethods = ["wachspress","pwl","weak"] for operatorMethod in operatorMethods: # data in filenameIn = "./output_hex_%s_%i/output.2000.nc" %(operatorMethod,subcycleNumber) filein = Dataset(filenameIn, "r") nCells = len(filein.dimensions["nCells"]) nVertices = len(filein.dimensions["nVertices"]) vertexDegree = len(filein.dimensions["vertexDegree"]) nTimes = len(filein.dimensions["Time"]) cellsOnVertex = filein.variables["cellsOnVertex"][:] cellsOnVertex -= 1 xVertex = filein.variables["xVertex"][:] yVertex = filein.variables["yVertex"][:] xCell = filein.variables["xCell"][:] yCell = filein.variables["yCell"][:] uVelocity = filein.variables["uVelocity"][-1,:] vVelocity = filein.variables["vVelocity"][-1,:] uVelocities = filein.variables["uVelocity"][:,:] filein.close() xmin = np.amin(xVertex) xmax = np.amax(xVertex) ymin = np.amin(yVertex) ymax = np.amax(yVertex) us = [] for iTime in range(0,nTimes): x = [] u = [] for iVertex in range(0,nVertices): if (math.fabs(yVertex[iVertex] - 508068.236886871) < 1e-8): x.append(xVertex[iVertex]) u.append(uVelocities[iTime,iVertex]) x = np.array(x) u = np.array(u) sortedIdxs = x.argsort() x = x[sortedIdxs] u = u[sortedIdxs] us.append(math.sqrt(np.sum(np.power(u,2)))) if (iTime == nTimes-1): axes.plot(x, u, label=operatorMethod) #axes.plot(x, np.zeros(x.shape[0]), zorder=1, c='k') uAir = 1.0 rhoair = 1.3 rhow = 1026.0 cocn = 0.00536 cair = 0.0012 Pstar = 2.75e4 Cstar = 20.0 e = 2 alpha = math.sqrt(1.0 + math.pow(1.0 / e, 2)) Lx = 1280000 uu = [] for xx in x: a = xx / Lx v = 2.0 * a dadx = (1.0 / Lx) dvdx = 2.0 * dadx oceanStressCoeff = rhow * cocn * a airStress = rhoair * uAir * uAir * a * cair P = Pstar * v * math.exp(-Cstar * (1-a)) dPdx = Pstar * math.exp(-Cstar * (1-a)) * (dvdx + v * Cstar * dadx) print(xx, a, -Cstar * (1-a), P, dPdx) u = max((airStress - 0.5*(alpha + 1.0) * dPdx) / oceanStressCoeff, 0.0) uu.append(u) axes.plot(x, uu, zorder=2, c='r') axes.set_xlabel("time") axes.set_ylabel("uVelocity") axes.legend() plt.savefig("1D_velocity_operator.png",dpi=300)
doorman/models.py
ESGuardian/doorman-docker
614
12767062
# -*- coding: utf-8 -*- import datetime as dt import string import uuid from flask_login import UserMixin from doorman.database import ( Column, Table, ForeignKey, Index, Model, SurrogatePK, db, reference_col, relationship, ARRAY, JSONB, INET, declared_attr, ) from doorman.extensions import bcrypt querypacks = Table( 'query_packs', Column('pack.id', db.Integer, ForeignKey('pack.id')), Column('query.id', db.Integer, ForeignKey('query.id')) ) pack_tags = Table( 'pack_tags', Column('tag.id', db.Integer, ForeignKey('tag.id')), Column('pack.id', db.Integer, ForeignKey('pack.id'), index=True) ) node_tags = Table( 'node_tags', Column('tag.id', db.Integer, ForeignKey('tag.id')), Column('node.id', db.Integer, ForeignKey('node.id'), index=True) ) query_tags = Table( 'query_tags', Column('tag.id', db.Integer, ForeignKey('tag.id')), Column('query.id', db.Integer, ForeignKey('query.id'), index=True) ) file_path_tags = Table( 'file_path_tags', Column('tag.id', db.Integer, ForeignKey('tag.id')), Column('file_path.id', db.Integer, ForeignKey('file_path.id'), index=True) ) class Tag(SurrogatePK, Model): value = Column(db.String, nullable=False, unique=True) nodes = relationship( 'Node', secondary=node_tags, back_populates='tags', ) packs = relationship( 'Pack', secondary=pack_tags, back_populates='tags', ) queries = relationship( 'Query', secondary=query_tags, back_populates='tags', ) file_paths = relationship( 'FilePath', secondary=file_path_tags, back_populates='tags', ) def __init__(self, value, **kwargs): self.value = value def __repr__(self): return '<Tag: {0.value}>'.format(self) @property def packs_count(self): return db.session.object_session(self) \ .query(Pack.id).with_parent(self, 'packs').count() @property def nodes_count(self): return db.session.object_session(self) \ .query(Node.id).with_parent(self, 'nodes').count() @property def queries_count(self): return db.session.object_session(self) \ .query(Query.id).with_parent(self, 'queries').count() @property def file_paths_count(self): return db.session.object_session(self) \ .query(FilePath.id).with_parent(self, 'file_paths').count() class Query(SurrogatePK, Model): name = Column(db.String, nullable=False) sql = Column(db.String, nullable=False) interval = Column(db.Integer, default=3600) platform = Column(db.String) version = Column(db.String) description = Column(db.String) value = Column(db.String) removed = Column(db.Boolean, nullable=False, default=True) shard = Column(db.Integer) packs = relationship( 'Pack', secondary=querypacks, back_populates='queries', ) tags = relationship( 'Tag', secondary=query_tags, back_populates='queries', lazy='joined', ) def __init__(self, name, query=None, sql=None, interval=3600, platform=None, version=None, description=None, value=None, removed=True, shard=None, **kwargs): self.name = name self.sql = query or sql self.interval = int(interval) self.platform = platform self.version = version self.description = description self.value = value self.removed = removed self.shard = shard def __repr__(self): return '<Query: {0.name}>'.format(self) def to_dict(self): return { 'query': self.sql, 'interval': self.interval, 'platform': self.platform, 'version': self.version, 'description': self.description, 'value': self.value, 'removed': self.removed, 'shard': self.shard, } class Pack(SurrogatePK, Model): name = Column(db.String, nullable=False, unique=True) platform = Column(db.String) version = Column(db.String) description = Column(db.String) shard = Column(db.Integer) queries = relationship( 'Query', secondary=querypacks, back_populates='packs', ) tags = relationship( 'Tag', secondary=pack_tags, back_populates='packs', ) def __init__(self, name, platform=None, version=None, description=None, shard=None, **kwargs): self.name = name self.platform = platform self.version = version self.description = description self.shard = shard def __repr__(self): return '<Pack: {0.name}>'.format(self) def to_dict(self): queries = {} discovery = [] for query in self.queries: if 'discovery' in (t.value for t in query.tags): discovery.append(query.sql) else: queries[query.name] = query.to_dict() return { 'platform': self.platform, 'version': self.version, 'shard': self.shard, 'discovery': discovery, 'queries': queries, } class Node(SurrogatePK, Model): node_key = Column(db.String, nullable=False, unique=True) enroll_secret = Column(db.String) enrolled_on = Column(db.DateTime) host_identifier = Column(db.String) last_checkin = Column(db.DateTime) node_info = Column(JSONB, default={}, nullable=False) is_active = Column(db.Boolean, default=True, nullable=False) last_ip = Column(INET, nullable=True) tags = relationship( 'Tag', secondary=node_tags, back_populates='nodes', lazy='joined', ) def __init__(self, host_identifier, node_key=None, enroll_secret=None, enrolled_on=None, last_checkin=None, is_active=True, last_ip=None, **kwargs): self.node_key = node_key or str(uuid.uuid4()) self.host_identifier = host_identifier self.enroll_secret = enroll_secret self.enrolled_on = enrolled_on self.last_checkin = last_checkin self.is_active = is_active self.last_ip = last_ip def __repr__(self): return '<Node-{0.id}: node_key={0.node_key}, host_identifier={0.host_identifier}>'.format(self) def get_config(self, **kwargs): from doorman.utils import assemble_configuration return assemble_configuration(self) def get_new_queries(self, **kwargs): from doorman.utils import assemble_distributed_queries return assemble_distributed_queries(self) @property def display_name(self): if 'display_name' in self.node_info and self.node_info['display_name']: return self.node_info['display_name'] elif 'hostname' in self.node_info and self.node_info['hostname']: return self.node_info['hostname'] elif 'computer_name' in self.node_info and self.node_info['computer_name']: return self.node_info['computer_name'] else: return self.host_identifier @property def packs(self): return db.session.object_session(self) \ .query(Pack) \ .join(pack_tags, pack_tags.c['pack.id'] == Pack.id) \ .join(node_tags, node_tags.c['tag.id'] == pack_tags.c['tag.id']) \ .filter(node_tags.c['node.id'] == self.id) \ .options(db.lazyload('*')) @property def queries(self): return db.session.object_session(self) \ .query(Query) \ .join(query_tags, query_tags.c['query.id'] == Query.id) \ .join(node_tags, node_tags.c['tag.id'] == query_tags.c['tag.id']) \ .filter(node_tags.c['node.id'] == self.id) \ .options(db.lazyload('*')) @property def file_paths(self): return db.session.object_session(self) \ .query(FilePath) \ .join(file_path_tags, file_path_tags.c['file_path.id'] == FilePath.id) \ .join(node_tags, node_tags.c['tag.id'] == file_path_tags.c['tag.id']) \ .filter(node_tags.c['node.id'] == self.id) \ .options(db.lazyload('*')) def to_dict(self): # NOTE: deliberately not including any secret values in here, for now. return { 'id': self.id, 'display_name': self.display_name, 'enrolled_on': self.enrolled_on, 'host_identifier': self.host_identifier, 'last_checkin': self.last_checkin, 'node_info': self.node_info.copy(), 'last_ip': self.last_ip, 'is_active': self.is_active } class FilePath(SurrogatePK, Model): category = Column(db.String, nullable=False, unique=True) target_paths = Column(db.String) tags = relationship( 'Tag', secondary=file_path_tags, back_populates='file_paths', lazy='joined', ) def __init__(self, category=None, target_paths=None, *args, **kwargs): self.category = category if target_paths is not None: self.set_paths(*target_paths) elif args: self.set_paths(*args) else: self.target_paths = '' def to_dict(self): return { self.category: self.get_paths() } def get_paths(self): return self.target_paths.split('!!') def set_paths(self, *target_paths): self.target_paths = '!!'.join(target_paths) class ResultLog(SurrogatePK, Model): name = Column(db.String, nullable=False) timestamp = Column(db.DateTime, default=dt.datetime.utcnow) action = Column(db.String) columns = Column(JSONB) node_id = reference_col('node', nullable=False) node = relationship( 'Node', backref=db.backref('result_logs', lazy='dynamic') ) def __init__(self, name=None, action=None, columns=None, timestamp=None, node=None, node_id=None, **kwargs): self.name = name self.action = action self.columns = columns or {} self.timestamp = timestamp if node: self.node = node elif node_id: self.node_id = node_id @declared_attr def __table_args__(cls): return ( Index('idx_%s_node_id_timestamp_desc' % cls.__tablename__, 'node_id', cls.timestamp.desc()), ) class StatusLog(SurrogatePK, Model): line = Column(db.Integer) message = Column(db.String) severity = Column(db.Integer) filename = Column(db.String) created = Column(db.DateTime, default=dt.datetime.utcnow) version = Column(db.String) node_id = reference_col('node', nullable=False) node = relationship( 'Node', backref=db.backref('status_logs', lazy='dynamic') ) def __init__(self, line=None, message=None, severity=None, filename=None, created=None, node=None, node_id=None, version=None, **kwargs): self.line = int(line) self.message = message self.severity = int(severity) self.filename = filename self.created = created self.version = version if node: self.node = node elif node_id: self.node_id = node_id @declared_attr def __table_args__(cls): return ( Index('idx_%s_node_id_created_desc' % cls.__tablename__, 'node_id', cls.created.desc()), ) class DistributedQuery(SurrogatePK, Model): description = Column(db.String, nullable=True) sql = Column(db.String, nullable=False) timestamp = Column(db.DateTime, default=dt.datetime.utcnow) not_before = Column(db.DateTime, default=dt.datetime.utcnow) def __init___(self, sql, description=None, not_before=None): self.sql = sql self.description = description self.not_before = not_before class DistributedQueryTask(SurrogatePK, Model): NEW = 0 PENDING = 1 COMPLETE = 2 FAILED = 3 guid = Column(db.String, nullable=False, unique=True) status = Column(db.Integer, default=0, nullable=False) timestamp = Column(db.DateTime) distributed_query_id = reference_col('distributed_query', nullable=False) distributed_query = relationship( 'DistributedQuery', backref=db.backref('tasks', cascade='all, delete-orphan', lazy='dynamic'), ) node_id = reference_col('node', nullable=False) node = relationship( 'Node', backref=db.backref('distributed_queries', lazy='dynamic'), ) def __init__(self, node=None, node_id=None, distributed_query=None, distributed_query_id=None): self.guid = str(uuid.uuid4()) if node: self.node = node elif node_id: self.node_id = node_id if distributed_query: self.distributed_query = distributed_query elif distributed_query_id: self.distributed_query_id = distributed_query_id @declared_attr def __table_args__(cls): return ( Index('idx_%s_node_id_status' % cls.__tablename__, 'node_id', 'status'), ) class DistributedQueryResult(SurrogatePK, Model): columns = Column(JSONB) timestamp = Column(db.DateTime, default=dt.datetime.utcnow) distributed_query_task_id = reference_col('distributed_query_task', nullable=False) distributed_query_task = relationship( 'DistributedQueryTask', backref=db.backref('results', cascade='all, delete-orphan', lazy='joined'), ) distributed_query_id = reference_col('distributed_query', nullable=False) distributed_query = relationship( 'DistributedQuery', backref=db.backref('results', cascade='all, delete-orphan', lazy='joined'), ) def __init__(self, columns, distributed_query=None, distributed_query_task=None): self.columns = columns self.distributed_query = distributed_query self.distributed_query_task = distributed_query_task class Rule(SurrogatePK, Model): name = Column(db.String, nullable=False) alerters = Column(ARRAY(db.String), nullable=False) description = Column(db.String, nullable=True) conditions = Column(JSONB) updated_at = Column(db.DateTime, nullable=False, default=dt.datetime.utcnow) def __init__(self, name, alerters, description=None, conditions=None, updated_at=None): self.name = name self.description = description self.alerters = alerters self.conditions = conditions self.updated_at = updated_at @property def template(self): return string.Template("{name}\r\n\r\n{description}".format( name=self.name, description=self.description or '') ) class User(UserMixin, SurrogatePK, Model): username = Column(db.String(80), unique=True, nullable=False) email = Column(db.String) password = Column(db.String, nullable=True) created_at = Column(db.DateTime, nullable=False, default=dt.datetime.utcnow) # oauth related stuff social_id = Column(db.String) first_name = Column(db.String) last_name = Column(db.String) def __init__(self, username, password=<PASSWORD>, email=None, social_id=None, first_name=None, last_name=None): self.username = username self.email = email if password: self.set_password(password) else: self.password = <PASSWORD> self.social_id = social_id self.first_name = first_name self.last_name = last_name def set_password(self, password): self.update(password=<PASSWORD>password_hash(password)) return def check_password(self, value): if not self.password: # still do the computation return bcrypt.generate_password_hash(value) and False return bcrypt.check_password_hash(self.password, value)
direction_net/pano_utils/transformation.py
DionysisChristopoulos/google-research
23,901
12767093
<filename>direction_net/pano_utils/transformation.py # coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transformations for equirectangular and perspective images. The coordinate system is the same as OpenGL's, where -Z is the camera looking direction, +Y points up and +X points right. Rotations are applied as pre-multiplication in all cases. """ import math from pano_utils import geometry from pano_utils import math_utils import tensorflow.compat.v1 as tf import tensorflow_addons as tfa def equirectangular_sampler(images, spherical_coordinates): """Sample panorama images using a grid of spherical coordinates. Args: images: a 4-D tensor of shape `[BATCH, HEIGHT, WIDTH, CHANNELS]`. spherical_coordinates: a float32 tensor with shape [BATCH, sampling_height, sampling_width, 2] representing spherical coordinates (colatitude, azimuth) of the sampling grids. Returns: a 4-D tensor of shape `[BATCH, sampling_height, sampling_width, CHANNELS]` representing resampled images. Raises: ValueError: 'images' or 'spherical_coordinates' has the wrong dimensions. """ with tf.name_scope( None, 'equirectangular_sampler', [images, spherical_coordinates]): if len(images.shape) != 4: raise ValueError("'images' has the wrong dimensions.") if spherical_coordinates.shape[-1] != 2: raise ValueError("'spherical_coordinates' has the wrong dimensions.") shape = images.shape.as_list() height, width = shape[1], shape[2] padded_images = geometry.equirectangular_padding(images, [[1, 1], [1, 1]]) colatitude, azimuth = tf.split(spherical_coordinates, [1, 1], -1) # The colatitude of the equirectangular image goes from 0 (the top row) # to pi (the bottom), not inclusively. The azimuth goes from 0 # (the leftmost column) to 2*pi (the rightmost column). # For example, azimuth-colatitude (0, pi/2) is the mid pixel in the first # column of the equirect image. # Convert spherical coordinates to equirectangular coordinates on images. # +1 in the end because of the padding. x_pano = (tf.mod(azimuth / math.pi, 2) * width / 2.0 - 0.5) + 1 y_pano = ((colatitude / math.pi) * height - 0.5) + 1 pano_coordinates = tf.concat([x_pano, y_pano], -1) remapped = tfa.image.resampler(padded_images, pano_coordinates) return remapped def rectilinear_projection(images, resolution, fov, rotations): """Convert equirectangular panoramic images to perspective images. First, the panorama images are rotated by the input parameter "rotations". Then, the region with the field of view "fov" centered at camera's look-at -Z axis is projected into perspective images. The -Z axis corresponds to the spherical coordinates (pi/2, pi/2) which is (HEIGHT/2, WIDTH/4) on the pano. Args: images: a 4-D tensor of shape `[BATCH, HEIGHT, WIDTH, CHANNELS]`. resolution: a 2-D tuple or list containing the resolution of desired output. fov: (float) camera's horizontal field of view in degrees. rotations: [BATCH, 3, 3] rotation matrices. Returns: 4-D tensor of shape `[BATCH, HEIGHT, WIDTH, CHANNELS]` Raises: ValueError: 'images' has the wrong dimensions. ValueError: 'images' is not a float tensor. ValueError: 'rotations' has the wrong dimensions. """ with tf.name_scope(None, 'rectilinear_projection', [images, resolution, fov, rotations]): if len(images.shape) != 4: raise ValueError("'images' has the wrong dimensions.") if images.dtype != tf.float32 and images.dtype != tf.float64: raise ValueError("'images' must be a float tensor.") if rotations.shape[-2:] != [3, 3]: raise ValueError("'rotations' has the wrong dimensions.") shape = images.shape.as_list() batch = shape[0] cartesian_coordinates = geometry.generate_cartesian_grid(resolution, fov) # create batch -> [batch, height, width, 3] cartesian_coordinates = tf.tile( tf.expand_dims(cartesian_coordinates, axis=0), [batch, 1, 1, 1]) # The rotation matrices have to be [batch, height, width, 3, 3]. flip_x = tf.constant([[-1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) rotations = tf.matmul(flip_x, tf.matmul(rotations, flip_x, transpose_a=True)) rotated_coordinates = tf.matmul( rotations[:, tf.newaxis, tf.newaxis], tf.expand_dims(cartesian_coordinates, -1), transpose_a=True) axis_convert = tf.constant([[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]) rotated_coordinates = tf.matmul(axis_convert, rotated_coordinates) rotated_coordinates = tf.squeeze(rotated_coordinates, -1) spherical_coordinates = geometry.cartesian_to_spherical(rotated_coordinates) # The azimuth of 'spherical_coordinates' decreases from left to right but # the x should increase from left to right. spherical_coordinates = tf.reverse(spherical_coordinates, [2]) return equirectangular_sampler(images, spherical_coordinates) def rotate_pano(images, rotations): """Rotate Panoramic images. Convert the spherical coordinates (colatitude, azimuth) to Cartesian (x, y, z) then apply SO(3) rotation matrices. Finally, convert them back to spherical coordinates and remap the equirectangular images. Note1: The rotations are applied to the sampling sphere instead of the camera. The camera actually rotates R^T. I_out(x) = I_in(R * x), x are points in the camera frame. Note2: It uses a simple linear interpolation for now instead of slerp, so the pixel values are not accurate but visually plausible. Args: images: a 4-D tensor of shape `[BATCH, HEIGHT, WIDTH, CHANNELS]`. rotations: [BATCH, 3, 3] rotation matrices. Returns: 4-D tensor of shape `[BATCH, HEIGHT, WIDTH, CHANNELS]`. Raises: ValueError: if the `images` or 'rotations' has the wrong dimensions. """ with tf.name_scope(None, 'rotate_pano', [images, rotations]): if len(images.shape) != 4: raise ValueError("'images' has the wrong dimensions.") if rotations.shape[-2:] != [3, 3]: raise ValueError("'rotations' must have 3x3 dimensions.") shape = images.shape.as_list() batch, height, width = shape[0], shape[1], shape[2] spherical = tf.expand_dims( geometry.generate_equirectangular_grid([height, width]), 0) spherical = tf.tile(spherical, [batch, 1, 1, 1]) cartesian = geometry.spherical_to_cartesian(spherical) axis_convert = tf.constant([[0., 1., 0.], [0., 0., -1.], [-1., 0., 0.]]) cartesian = tf.matmul(axis_convert, tf.expand_dims(cartesian, -1)) rotated_cartesian = tf.matmul( rotations[:, tf.newaxis, tf.newaxis], cartesian) rotated_cartesian = tf.squeeze( tf.matmul(axis_convert, rotated_cartesian, transpose_a=True), -1) rotated_spherical = geometry.cartesian_to_spherical(rotated_cartesian) return equirectangular_sampler(images, rotated_spherical) def rotate_image_in_3d(images, input_rotations, input_fov, output_fov, output_shape): """Return reprojected perspective view images given a rotated camera. This function applies a homography H = K_output * R^T * K_input' where K_output and K_input are the output and input camera intrinsics, R is the rotation from the input images' frame to the target frame. Args: images: [BATCH, HEIGHT, WIDTH, CHANNEL] perspective view images. input_rotations: [BATCH, 3, 3] rotations matrices from current camera frame to target camera frame. input_fov: [BATCH] a 1-D tensor (float32) of input field of view in degrees. output_fov: (float) output field of view in degrees. output_shape: a 2-D list of output dimension [height, width]. Returns: reprojected images [BATCH, height, width, CHANNELS]. """ with tf.name_scope( None, 'rotate_image_in_3d', [images, input_rotations, input_fov, output_fov, output_shape]): if len(images.shape) != 4: raise ValueError("'images' has the wrong dimensions.") if input_rotations.shape[-2:] != [3, 3]: raise ValueError("'input_rotations' must have 3x3 dimensions.") shape = images.shape.as_list() batch, height, width = shape[0], shape[1], shape[2] cartesian = geometry.generate_cartesian_grid(output_shape, output_fov) cartesian = tf.tile( cartesian[tf.newaxis, :, :, :, tf.newaxis], [batch, 1, 1, 1, 1]) input_rotations = tf.tile(input_rotations[:, tf.newaxis, tf.newaxis, :], [1]+output_shape+[1, 1]) cartesian = tf.squeeze( tf.matmul(input_rotations, cartesian, transpose_a=True), -1) image_coordinates = -cartesian[:, :, :, :2] / cartesian[:, :, :, -1:] x, y = tf.split(image_coordinates, [1, 1], -1) w = 2 * tf.tan(math_utils.degrees_to_radians(input_fov / 2)) h = 2 * tf.tan(math_utils.degrees_to_radians(input_fov / 2)) w = w[:, tf.newaxis, tf.newaxis, tf.newaxis] h = h[:, tf.newaxis, tf.newaxis, tf.newaxis] nx = x*width / w + width / 2 - 0.5 ny = -y * height / h + height / 2 - 0.5 return tfa.image.resampler(images, tf.concat([nx, ny], -1)) def rotate_image_on_pano(images, rotations, fov, output_shape): """Transform perspective images to equirectangular images after rotations. Return equirectangular panoramic images in which the input perspective images embedded in after the rotation R from the input images' frame to the target frame. The image with the field of view "fov" centered at camera's look-at -Z axis is projected onto the pano. The -Z axis corresponds to the spherical coordinates (pi/2, pi/2) which is (HEIGHT/2, WIDTH/4) on the pano. Args: images: [BATCH, HEIGHT, WIDTH, CHANNEL] perspective view images. rotations: [BATCH, 3, 3] rotations matrices. fov: (float) images' field of view in degrees. output_shape: a 2-D list of output dimension [height, width]. Returns: equirectangular images [BATCH, height, width, CHANNELS]. """ with tf.name_scope(None, 'rotate_image_on_pano', [images, rotations, fov, output_shape]): if len(images.shape) != 4: raise ValueError("'images' has the wrong dimensions.") if rotations.shape[-2:] != [3, 3]: raise ValueError("'rotations' must have 3x3 dimensions.") shape = images.shape.as_list() batch, height, width = shape[0], shape[1], shape[2] # Generate a mesh grid on a sphere. spherical = geometry.generate_equirectangular_grid(output_shape) cartesian = geometry.spherical_to_cartesian(spherical) cartesian = tf.tile( cartesian[tf.newaxis, :, :, :, tf.newaxis], [batch, 1, 1, 1, 1]) axis_convert = tf.constant([[0., -1., 0.], [0., 0., 1.], [1., 0., 0.]]) cartesian = tf.matmul(axis_convert, cartesian) cartesian = tf.squeeze( tf.matmul(rotations[:, tf.newaxis, tf.newaxis], cartesian), -1) # Only take one hemisphere. (camera lookat direction) hemisphere_mask = tf.cast(cartesian[:, :, :, -1:] < 0, tf.float32) image_coordinates = cartesian[:, :, :, :2] / cartesian[:, :, :, -1:] x, y = tf.split(image_coordinates, [1, 1], -1) # Map pixels on equirectangular pano to perspective image. nx = -x * width / (2 * tf.tan( math_utils.degrees_to_radians(fov / 2))) + width / 2 - 0.5 ny = y * height / (2 * tf.tan( math_utils.degrees_to_radians(fov / 2))) + height / 2 - 0.5 transformed = hemisphere_mask * tfa.image.resampler( images, tf.concat([nx, ny], -1)) return transformed
docs/examples/led_board_2.py
NotBobTheBuilder/gpiozero
743
12767106
from gpiozero import LEDBoard from signal import pause leds = LEDBoard(5, 6, 13, 19, 26, pwm=True) leds.value = (0.2, 0.4, 0.6, 0.8, 1.0) pause()
site/flask/lib/python2.7/site-packages/openid/consumer/__init__.py
theholyhades1/tartanHacks2015
5,079
12767158
<reponame>theholyhades1/tartanHacks2015<filename>site/flask/lib/python2.7/site-packages/openid/consumer/__init__.py<gh_stars>1000+ """ This package contains the portions of the library used only when implementing an OpenID consumer. """ __all__ = ['consumer', 'discover']
utils/test_analysis.py
ShenLeixian/data2vis
103
12767209
import os import json import matplotlib.pyplot as plt import numpy as np import scipy.stats as stats # t_stat, p_val = stats.ttest_ind(sample1, sample2, equal_var=False) test_result_dir = "utils/testresults" all_results = {} aggregate_terms = [ "count", "valid", "missing", "distinct", "sum", "mean", "average", "variance", "variancep", "stdev", "stdevp", "stderr", "median", "q1", "q3", "ci0", "ci1", "min", "max", "argmin", "argmax" ] file_paths = [ "/vizmodeluninat5.json", "/vizmodeluninat10.json", "/vizmodeluninat15.json", "/vizmodeluninat20.json", "/vizmodeluni5.json", "/vizmodeluni10.json", "/vizmodeluni15.json", "/vizmodeluni20.json", "/vizmodelbi5.json", "/vizmodelbi10.json", "/vizmodelbi15.json", "/vizmodelbi20.json" ] def analyze_test_suite(test_dataset_directory): # for subdir, dirs, files in os.walk(test_dataset_directory): # for file in files: # filepath = subdir + os.sep + file # if filepath.endswith( # "json") and not filepath.endswith("lsit.json"): for filepath in file_paths: filepath = test_result_dir + filepath # data = json.load(open(filepath)) # print(filepath) analyze_data(filepath) def is_valid_aggregate(agg_val): if (agg_val not in aggregate_terms): # print("issh", agg_val) return False else: return True def computer_anova(): print("anova") def analyze_data(filepath): data = json.load(open(filepath)) beam_width = data["beamwidth"] valid_json_array = [] valid_vega_array = [] phantom_count_array = [] x = list(range(0, 100)) for row in data["data"]: valid_json_count = row["validjsoncount"] / beam_width valid_json_array.append(valid_json_count) valid_vega_count = row["validvegacount"] vs_array = row["vegaspecarray"] # mark specs with incorrect aggregation value as invalid vega for vs_row in vs_array: if ("aggregate" in vs_row["encoding"]["y"]): if not is_valid_aggregate( vs_row["encoding"]["y"]["aggregate"]): valid_vega_count -= 1 else: if ("aggregate" in vs_row["encoding"]["x"]): if not is_valid_aggregate( vs_row["encoding"]["x"]["aggregate"]): valid_vega_count -= 1 # print(valid_vega_count, row["validjsoncount"]) valid_vegap_count = valid_vega_count valid_vega_count = valid_vega_count / beam_width valid_vega_array.append(valid_vega_count) if (valid_vega_count == 0): phantom_count = 0 else: phantom_count = row["phantomcount"] / valid_vegap_count phantom_count_array.append(phantom_count) # print("Count", row["phantomcount"], valid_vegap_count) # print(x, valid_json_array) # plt.plot(x, valid_json_array) # plt.plot(x, valid_vega_array) # plt.plot(x, phantom_count_array) # plt.show() print( filepath.split("vizmodel")[1], "Json:", round(np.mean(valid_json_array), 3), "Vega", round(np.mean(valid_vega_array), 3), "Mean % Phantom", round(np.mean(phantom_count_array), 3)) result = {"json:": valid_json_array, "vega": valid_vega_array} analyze_test_suite(test_result_dir) # data = json.load(open("utils/testresults/vizmodelbi15.json")) # print(len(data["data"])) # analyze_data("utils/testresults/vizmodeluninat15.json")
safekit/models/tiered_lm.py
duebukua/safekit
117
12767213
<filename>safekit/models/tiered_lm.py<gh_stars>100-1000 #!/usr/bin/env python """ This is a two tiered language model for anomaly detection, where the second tier LSTM (log line level) takes the concatenation of the average sentence vector and final hidden state from the lower tier (token level) LSTM as input, creating a new context vector and hidden state for the given user. Example Command for running a model configuration ------------------------------------------------- **Raw (character token) tiered model** (The jagged parameter lets the model know there are variable length sequences) :: python safekit/models/tiered_lm.py results/ safekit/features/specs/lm/lanl_char_config.json data_examples/lanl/lm_feats/raw_day_split/ -test -skipsos -jagged .. Note :: The output results will be printed to /tmp/lanl_result/ and then moved to results/ upon completion to avoid experiment slowdown of constant network traffic. File name convention: --------------------- - em: embedding size for token embedding - ns: number of loglines per user per mini-batch for trunctated back propagation through time - mb: Minibatch size (mini-batch over users) - lr: learnrate (step size for gradient descent) - cl: context layers (number of hidden layers for top level (log line level) context rnn) - lml: language model layers (number of hidden layers for the bottom level, token level, rnn) - rs: random seed for reproducible results stdout ------ For each mini-batch the following is printed to standard output :: batchsize line_number second status filename index current_loss Where: - batchsize: The size of the mini-batch - line_number: Line number from original auth.txt file (may be off by 1) - second: The second of the first event in the mini-batch - status: Whether the model is updating or merely forward propagating - filename: The current file being processed - index: The number of samples processed to date - current_loss: The average loss over the mini-batch File output ----------- :: batch_num line second day user red loss Where: - batch_num: The mini-batch this event was a part of - line: Line number from original auth.txt file (may be off by 1) - second: The second which the event occurred on - day: The day the event occurred on - user: The user who performed the event - red: Whether this event was a labeled red team activity (1 for red team activity 0 otherwise) - loss: The anomaly score for this event .. Note :: The runtime of the experiment is also printed to a file called runtimes.txt at the end of training Input Data ---------- The format of the input makes the following assumptions: - Input files are together in datafolder, one file for each day. - Input files are plain text files with one line of integers per log line representing meta data and the tokens from log text. - Input format for fixed length sequences :: line_nums second day user red logtokenid1 .... logtokenid_SentenceLen - Zero paded Input format for jagged sequences :: line_nums second day user red SentenceLen logtokenid1 .... logtokenid_SentenceLen 0 0 .... 0 """ import os import sys # So we can run this code on arbitrary environment which has tensorflow but not safekit installed cyberpath = '/'.join(os.path.realpath(__file__).split('/')[:-3]) sys.path.insert(0, cyberpath) import tensorflow as tf import numpy as np import time from safekit.batch import OnlineLMBatcher from simple_lm import write_results, CELL from safekit.tf_ops import lm_rnn, bidir_lm_rnn from safekit.graph_training_utils import ModelRunner from safekit.util import get_mask, Parser import json import math def return_parser(): parser = Parser() parser.add_argument('results_folder', type=str, help='The folder to print results to.') parser.add_argument('config', type=str, help='The data spec.') parser.add_argument("datafolder", type=str, help="File with token features") parser.add_argument('-encoding', type=str, default=None, help='Can be "oct", "raw" or "word"') parser.add_argument("-em", type=int, default=5, help="Dimension of token embeddings") parser.add_argument("-numsteps", type=int, default=3, help="length of unrolled context_rnn, number of log lines per user per train step") parser.add_argument('-mb', type=int, default=64, help='Number of users in mini-batch.') parser.add_argument('-learnrate', type=float, default=0.001, help='Step size for gradient descent.') parser.add_argument("-context_layers", type=int, nargs='+', default=[10], help='List of hidden layer sizes for context lstm.') parser.add_argument('-lm_layers', type=int, nargs='+', default=[5], help='List of hidden layer sizes for token lstm.') parser.add_argument('-debug', action='store_true', help='Use this flag to print feed dictionary contents and dimensions.') parser.add_argument('-random_seed', type=int, default=5, help='Random seed for reproducible experiments.') parser.add_argument('-jagged', action='store_true', help='Whether using sequences of variable length (Input should' 'be zero-padded to max_sequence_length.') parser.add_argument('-skipsos', action='store_true', help='Whether to skip a start of sentence token.') parser.add_argument('-bidir', action='store_true', help='Whether to use bidirectional lstm for lower tier.') parser.add_argument('-test', action='store_true', help='Whether to run on a subset of the data (5000 lines from days 1,2,3) or the entire set.') parser.add_argument('-verbose', type=int, default=1, help='Whether to print loss during training.') parser.add_argument('-delimiter', type=str, default=',', help="Delimiter for input text file") parser.add_argument('-cell_type', type=str, default='lstm', help='Can be either "lstm", "ident_ran", or "ran"') parser.add_argument('-upper_cell_type', type=str, default='lstm', help='Can be either "lstm", "ident_ran", or "ran"') return parser class ContextRNN: """ Log line level LSTM cell that keeps track of it's last lstm state tuple """ def __init__(self, layers, initial_state, cell=tf.nn.rnn_cell.LSTMCell): """ :param layers: List of hidden layer sizes. :param initial_state: List of numlayers lists of tensors (cell_state, hidden_state), or List of lstm state tuples (which are named tuples of tensors (c=cell_state, h=hidden_state) :param cell: Type of rnn cell to use. """ self.cell_type = cell self.cell_stack = tf.nn.rnn_cell.MultiRNNCell([self.cell_type(cell_size) for cell_size in layers]) self.layers = layers self.state = initial_state def __call__(self, lower_outputs, final_hidden, seq_len): """ :param line_input: The input for current time step. :param state: The cell state output by ContextRnn from previous time step. :param seq_len: A 1D tensor of of size mb giving lengths of sequences in mb for this time step :return: (tensor, LSTMStateTuple) output, state """ ctxt_input = ContextRNN._create_input(lower_outputs, final_hidden, seq_len) output, self.state = self.cell_stack(ctxt_input, self.state) return output, self.state @staticmethod def _create_input(lower_outputs, final_hidden, seq_len): """ :param lower_outputs: The list of output Tensors from the token level rnn :param final_hidden: The final hidden state from the token level rnn :param seq_len: A 1D tensor of of size mb giving lengths of token level sequences in mb for this time step :return: A tensor which is the concatenation of the hidden state averages and final hidden state from lower tier model. Used as input to context rnn """ if seq_len is not None: mean_hidden = tf.reduce_sum(tf.stack(lower_outputs, axis=0), axis=0)/seq_len else: mean_hidden = tf.reduce_mean(tf.stack(lower_outputs, axis=0), axis=0) return tf.concat([mean_hidden, final_hidden], 1) def tiered_lm(token_set_size, embedding_size, ph_dict, context_layers, lm_layers, numsteps, bidir=False, jagged=False): """ :param token_set_size: (int) Number of unique tokens in token set :param embedding_size: (int) Dimensionality of token embeddings :param ph_dict: dictionary of tensorflow placeholders and lists of tensorflow placeholders :param context_layers: List of hidden layer sizes for stacked context LSTM :param lm_layers: list of hidden layer sizes for stacked sentence LSTM :param numsteps: How many steps (log lines) to unroll the upper tier RNN :param bidir: Whether to use bidirectional LSTM for lower tier model :param jagged: Whether or not variable length sequences are used :return: total_loss (scalar tensor), context_vector (tensor), line_loss_matrix (tensor), Losses for each line in mini-batch context_state (LSTMStateTuple) Final state of upper tier model """ if bidir: language_model = bidir_lm_rnn else: language_model = lm_rnn # ========================================================= # ========== initialize token level lstm variables ======== # ========================================================= if jagged: ph_dict['lens'] = [] ph_dict['masks'] = [] context_vector = tf.placeholder(tf.float32, [None, ctxt_size], name="context_vector") ph_dict['context_vector'] = context_vector tf.add_to_collection('context_vector', ph_dict['context_vector']) token_embed = tf.Variable(tf.truncated_normal([token_set_size, embedding_size])) # Initial embeddings vocab X embedding size total_loss = 0.0 # ========================================================= # ======= initialize log line level (context) lstm ======== # ========================================================= ph_dict['c_state_init'] = [tf.placeholder(tf.float32, [None, c_size]) for c_size in context_layers] ph_dict['h_state_init'] = [tf.placeholder(tf.float32, [None, h_size]) for h_size in context_layers] context_init = [tf.nn.rnn_cell.LSTMStateTuple(ph_dict['c_state_init'][i], ph_dict['h_state_init'][i]) for i in range(len(context_layers))] ctxt_rnn = ContextRNN(context_layers, context_init, cell=CELL[args.upper_cell_type]) # ========================================================= # ======= initiate loop that ties together tiered lstm ==== # ========================================================= with tf.variable_scope("reuse_scope") as vscope: for i in range(numsteps): x = tf.placeholder(tf.int64, [None, sentence_length]) t = tf.placeholder(tf.int64, [None, sentence_length-2*bidir]) ph_dict['x'].append(x) ph_dict['t'].append(t) if jagged: seq_len = tf.placeholder(tf.int32, [None]) ph_dict['lens'].append(seq_len) else: seq_len = None token_losses, hidden_states, final_hidden = language_model(x, t, token_embed, lm_layers, seq_len=seq_len, context_vector=context_vector, cell=CELL[args.cell_type]) if jagged: ph_dict['masks'].append(tf.placeholder(tf.float32, [None, sentence_length-2*bidir])) token_losses *= ph_dict['masks'][-1] line_losses = tf.reduce_sum(token_losses, axis=1) # batch_size X 1 sequence_lengths = tf.reshape(tf.cast(ph_dict['lens'][-1], tf.float32), (-1, 1)) else: line_losses = tf.reduce_mean(token_losses, axis=1) # batch_size X 1 sequence_lengths = None avgloss = tf.reduce_mean(line_losses) # scalar total_loss += avgloss if i == 0: line_loss_matrix = tf.reshape(line_losses, [1, -1]) tf.add_to_collection('first_line_loss_matrix', line_loss_matrix) else: line_loss_matrix = tf.concat((line_loss_matrix, tf.reshape(line_losses, [1, -1])), 0) context_vector, context_state = ctxt_rnn(hidden_states, final_hidden, sequence_lengths) tf.add_to_collection('context_vector', context_vector) tf.add_to_collection('context_state', context_state) tf.get_variable_scope().reuse_variables() total_loss /= float(numsteps) return total_loss, context_vector, line_loss_matrix, context_state if __name__ == "__main__": # =========================================================================== # =========================PARSE ARGUMENTS=================================== # =========================================================================== args = return_parser().parse_args() conf = json.load(open(args.config, 'r')) assert all(x == args.context_layers[0] for x in args.context_layers), 'Different sized context layers not supported.' assert args.numsteps > 1, 'Must have at least two upper tier time steps to build graph for tiered lstm.' if not args.results_folder.endswith('/'): args.results_folder += '/' tf.set_random_seed(args.random_seed) np.random.seed(args.random_seed) sentence_length = (conf['sentence_length'] - 1) - int(args.skipsos) + int(args.bidir) token_set_size = conf['token_set_size'] ctxt_size = args.context_layers[0] direction = ('fwd', 'bidir')[args.bidir] results_file = 'tier_%s_%s_%s_%s__em_%s__ns_%s__mb_%s__lr_%s__cl_%s__lml_%s__rs_%s' % (direction, args.encoding, args.cell_type, time.ctime(time.time()).replace(' ', '-'), args.em, args.numsteps, args.mb, args.learnrate, args.context_layers[0], args.lm_layers[0], args.random_seed) # if the -test flag passed, store predictions in a temporary file if "lanl_results" not in os.listdir("/tmp"): os.system("mkdir /tmp/lanl_results; chmod g+rwx /tmp/lanl_results") outfile = open("/tmp/lanl_results/" + results_file, 'w') outfile.write("batch line second day user red loss\n") mode = ('fixed', 'update') jag = int(args.jagged) skipsos = int(args.skipsos) # =========================================================================== # =========================BUILD GRAPH======================================= # =========================================================================== ph_dict = {'x': [], 't': []} dummy_loss = tf.constant(1) total_loss, context_vector, line_loss_matrix, context_state = tiered_lm(token_set_size, args.em, ph_dict, args.context_layers, args.lm_layers, args.numsteps, bidir=args.bidir, jagged=args.jagged) tiered_network_model = ModelRunner(total_loss, ph_dict, learnrate=args.learnrate, debug=args.debug, decay=True, decay_rate=0.99, decay_steps=20) # =========================================================================== # =========================TRAINING LOOP===================================== # =========================================================================== init_triple = (np.zeros([1, ctxt_size], np.float32), # context [np.zeros([1, c_size], np.float32) for c_size in args.context_layers], # state [np.zeros([1, h_size], np.float32) for h_size in args.context_layers]) # hidden start_time = time.time() def trainday(is_training, f, states, logs): num_processed = 0 data = OnlineLMBatcher(args.datafolder + f, init_triple, batch_size=args.mb, num_steps=args.numsteps, skiprows=0) do_update = is_training if states is not None: data.state_triples = states batch, state_triple = data.next_batch() batch_num = 0 stragglers = False while batch is not None: if data.flush: do_update = False if len(batch.shape) == 2: # Straggler log lines that don't fit into num_steps by end of day are run in large batches one step at a time stragglers = True batch = batch.reshape((1, batch.shape[0], batch.shape[1])) endx = batch.shape[2] - int(not args.bidir) endt = batch.shape[2] - int(args.bidir) datadict = {'line': batch[:, :, 0], 'second': batch[:, :, 1], 'day': batch[:, :, 2], 'user': batch[:, :, 3], 'red': batch[:, :, 4], 'x': [batch[0, :, 5 + jag + skipsos:endx]] * args.numsteps, 't': [batch[0, :, 6 + jag + skipsos:endt]] * args.numsteps, 'context_vector': state_triple['context_vector'], 'c_state_init': state_triple['c_state_init'], 'h_state_init': state_triple['h_state_init']} if args.jagged: datadict['lens'] = [batch[0, :, 5] - skipsos] * args.numsteps datadict['masks'] = [get_mask(seq_length - 2 * args.bidir, sentence_length - 2 * args.bidir) for seq_length in datadict['lens']] for i in range(len(datadict['x'])): assert np.all(datadict['lens'][i] <= datadict['x'][i].shape[1]), \ 'Sequence found greater than num_tokens_predicted' assert np.nonzero(datadict['lens'][i])[0].shape[0] == datadict['lens'][i].shape[0], \ 'Sequence lengths must be greater than zero.' \ 'Found zero length sequence in datadict["lengths"]: %s' % datadict['lens'] first_output_context_state = tf.get_collection('context_state')[0] eval_tensors = ([total_loss, tf.get_collection('context_vector')[1], tf.get_collection('first_line_loss_matrix')[0]] + [state_tuple.c for state_tuple in first_output_context_state] + [state_tuple.h for state_tuple in first_output_context_state]) else: # Ordinary batching and matrix flush batching batch = np.transpose(batch, axes=(1, 0, 2)) endx = batch.shape[2] - int(not args.bidir) endt = batch.shape[2] - int(args.bidir) datadict = {'line': batch[:, :, 0], 'second': batch[:, :, 1], 'day': batch[:, :, 2], 'user': batch[:, :, 3], 'red': batch[:, :, 4], 'x': [batch[i, :, 5 + jag + skipsos:endx] for i in range(args.numsteps)], 't': [batch[i, :, 6 + jag + skipsos:endt] for i in range(args.numsteps)], 'context_vector': state_triple['context_vector'], 'c_state_init': state_triple['c_state_init'], 'h_state_init': state_triple['h_state_init']} if args.jagged: datadict['lens'] = [batch[i, :, 5] - skipsos for i in range(args.numsteps)] datadict['masks'] = [get_mask(seq_length-args.bidir-args.skipsos, sentence_length-2*args.bidir) for seq_length in datadict['lens']] for i in range(len(datadict['x'])): assert np.all(datadict['lens'][i] <= datadict['x'][i].shape[1]), \ 'Sequence found greater than num_tokens_predicted' assert np.nonzero(datadict['lens'][i])[0].shape[0] == datadict['lens'][i].shape[0], \ 'Sequence lengths must be greater than zero.' \ 'Found zero length sequence in datadict["lengths"]: %s' % datadict['lens'] eval_tensors = ([total_loss, context_vector, line_loss_matrix] + [state_tuple.c for state_tuple in context_state] + [state_tuple.h for state_tuple in context_state]) # output dims: 0: Nothing, 1 (total_loss): scalar, 2 (context_vector): num_users X hidden_size, # 3 (line_loss_matrix): num_users X num_steps output = tiered_network_model.train_step(datadict, eval_tensors=eval_tensors, update=do_update) loss, context, loss_matrix = output[1], output[2], output[3] current_context_state = output[4:4 + len(args.context_layers)] current_context_hidden = output[4 + len(args.context_layers):4 + 2*len(args.context_layers)] data.update_state_triples([context, current_context_state, current_context_hidden]) if args.verbose: print('%s %s %s %s %s %s %r' % (datadict['day'].shape[1], datadict['line'][0][0], datadict['second'][0][0], mode[do_update], f, data.line_num, loss)) if math.isnan(loss) or math.isinf(loss): print('Exiting due to divergence!') exit(1) if not is_training: num_processed += batch.shape[0] * batch.shape[1] if not stragglers: assert loss_matrix.shape[0] * loss_matrix.shape[1] == batch.shape[0] * batch.shape[1], 'Batch size %s is different from output size %s. May be losing datapoints.' % (batch.shape, loss_matrix.shape) write_results(datadict, loss_matrix, outfile, batch_num) else: assert loss_matrix[0, :].shape[0] == batch.shape[0] * batch.shape[1], 'Batch size is different from output size. May be losing datapoints.' write_results(datadict, loss_matrix[0, :], outfile, batch_num) batch, state_triple = data.next_batch() batch_num += 1 return data.state_triples, data.user_logs, num_processed weekend_days = conf["weekend_days"] if args.test: files = conf["test_files"] # 5000 lines from each of day 0, day 1 and day 2 else: files = [str(i) + '.txt' for i in range(conf["num_days"]) if i not in weekend_days] states1 = None logs1 = None number_processed = 0 for idx, f in enumerate(files[:-1]): states1, logs1, num_processed = trainday(True, f, states1, logs1) states2, logs2, num_processed = trainday(False, files[idx + 1], states1, logs1) number_processed += num_processed outfile.close() total_time = time.time() - start_time print('elapsed time: %s' % total_time) os.system("mv /tmp/lanl_results/%s %s" % (results_file, args.results_folder + results_file)) print('number processed', number_processed)
app/grandchallenge/reader_studies/templatetags/get_ground_truth.py
njmhendrix/grand-challenge.org
101
12767218
<filename>app/grandchallenge/reader_studies/templatetags/get_ground_truth.py from django import template register = template.Library() @register.simple_tag def get_ground_truth(obj, image, question): """ Get the ground truth value for the image/question combination in reader study obj. """ ground_truths = obj.statistics["ground_truths"] return ground_truths[image][question]
inference/modulated_detection.py
kylevedder/mvits_for_class_agnostic_od
114
12767231
import numpy as np import torch from PIL import Image import torchvision.transforms as T from infer import Inference from utils.nms import nms torch.set_grad_enabled(False) def class_agnostic_nms(boxes, scores, iou=0.5): if len(boxes) > 1: boxes, scores = nms(np.array(boxes), np.array(scores), iou) return list(boxes), list(scores) else: return boxes, scores def generate_image_crops(img, num_crops=8): """ Note: num_crops must be greater than 2 and of multiple of 2 """ assert num_crops > 2 assert num_crops % 2 == 0 # Get the image width and height img_w, img_h = img.size crops = [] coordinates = [] crops.append(img) coordinates.append((0, 0, img_w, img_h)) crop_chunks_x = int(num_crops / 2) crop_chunks_y = int(num_crops / crop_chunks_x) x_inc = int(img_w / crop_chunks_y) y_inc = int(img_h / crop_chunks_y) x_space = np.linspace(0, img_w - x_inc, crop_chunks_y) y_spcae = np.linspace(0, img_h - y_inc, int(num_crops / crop_chunks_y)) if num_crops > 1: for x in x_space: for y in y_spcae: x1, y1 = x, y x2, y2 = x1 + x_inc, y1 + y_inc crops.append((img.crop((x1, y1, x2, y2))).resize((img_w, img_h))) coordinates.append((x1, y1, x2, y2)) return crops, coordinates, (img_w, img_h) def scale_boxes(boxes, coordinates, img_dims): x1, y1, x2, y2 = coordinates img_w, img_h = img_dims w = x2 - x1 h = y2 - y1 for b in boxes: b[0], b[1], b[2], b[3] = int((b[0] / img_w) * w) + x1, int((b[1] / img_h) * h) + y1, \ int((b[2] / img_w) * w) + x1, int((b[3] / img_h) * h) + y1 return boxes class ModulatedDetection(Inference): """ The class supports the inference using both MDETR & MDef-DETR models. """ def __init__(self, model, confidence_thresh=0.0): Inference.__init__(self, model) self.conf_thresh = confidence_thresh self.transform = T.Compose([ T.Resize(800), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) @staticmethod def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=1) def rescale_bboxes(self, out_bbox, size): img_w, img_h = size b = self.box_cxcywh_to_xyxy(out_bbox) b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32) return b def infer_image(self, image_path, **kwargs): caption = kwargs["caption"] # Read the image im = Image.open(image_path) imq = np.array(im) if len(imq.shape) != 3: im = im.convert('RGB') img = self.transform(im).unsqueeze(0).cuda() # propagate through the models memory_cache = self.model(img, [caption], encode_and_save=True) outputs = self.model(img, [caption], encode_and_save=False, memory_cache=memory_cache) # keep only predictions with self.conf_thresh+ confidence probas = 1 - outputs['pred_logits'].softmax(-1)[0, :, -1].cpu() keep = (probas > self.conf_thresh).cpu() # convert boxes from [0; 1] to image scales bboxes_scaled = self.rescale_bboxes(outputs['pred_boxes'].cpu()[0, keep], im.size) kept_probs = probas[keep] # Convert outputs to the required format bboxes = list(bboxes_scaled.numpy()) probs = list(kept_probs.numpy()) boxes, scores = [], [] for b, conf in zip(bboxes, probs): boxes.append([int(b[0]), int(b[1]), int(b[2]), int(b[3])]) scores.append(conf) # Read image, perform inference, parse results, append the predicted boxes to detections return boxes, scores def infer_image_multi_crop(self, image_path, **kwargs): caption = kwargs["caption"] # Read the image im = Image.open(image_path) crops, coordinates, img_dims = generate_image_crops(im) imgs = [self.transform(crop).unsqueeze(0).cuda() for crop in crops] imgs = torch.cat(imgs) # propagate through the models memory_cache = self.model(imgs, [caption for i in range(imgs.shape[0])], encode_and_save=True) outputs = self.model(imgs, [caption], encode_and_save=False, memory_cache=memory_cache) all_boxes = [] all_scores = [] for i in range(len(crops)): # keep only predictions with self.conf_thresh+ confidence probas = 1 - outputs['pred_logits'].softmax(-1)[i, :, -1].cpu() keep = (probas > self.conf_thresh).cpu() # convert boxes from [0; 1] to image scales bboxes_scaled = self.rescale_bboxes(outputs['pred_boxes'].cpu()[i, keep], im.size) kept_probs = probas[keep] # Convert outputs to the required format bboxes = list(bboxes_scaled.numpy()) probs = list(kept_probs.numpy()) boxes, scores = [], [] for b, conf in zip(bboxes, probs): boxes.append([int(b[0]), int(b[1]), int(b[2]), int(b[3])]) scores.append(conf) # Read image, perform inference, parse results, append the predicted boxes to detections boxes = scale_boxes(boxes, coordinates[i], img_dims) all_boxes += boxes all_scores += scores all_boxes = class_agnostic_nms(all_boxes, all_scores) return all_boxes, all_scores
Calibration/EcalAlCaRecoProducers/python/alcastreamEcalEtaCalib_cff.py
ckamtsikis/cmssw
852
12767235
import FWCore.ParameterSet.Config as cms import HLTrigger.HLTfilters.hltHighLevel_cfi ecaletaCalibHLT = HLTrigger.HLTfilters.hltHighLevel_cfi.hltHighLevel.clone( # HLTPaths = ['AlCa_EcalEta'], eventSetupPathsKey='EcalCalEtaCalib', throw = False )
format.py
my-personal-forks/dart-sublime-bundle
182
12767244
<gh_stars>100-1000 # Copyright (c) 2014, <NAME>. Please see the AUTHORS file for details. # All rights reserved. Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file.) from subprocess import PIPE from subprocess import Popen import sublime import sublime_plugin from Dart.sublime_plugin_lib import PluginLogger from Dart.sublime_plugin_lib.plat import supress_window from Dart import analyzer from Dart.lib.sdk import DartFormat _logger = PluginLogger(__name__) class DartFormatCommand(sublime_plugin.WindowCommand): '''Formats the selected text in Sublime Text using `dartfmt`. Notes: - Can be used as a build system. ''' def run(self, **kwargs): view = self.window.active_view() if not view: return analyzer.g_server.send_format_file(view) class DartReplaceRegion(sublime_plugin.TextCommand): def run(self, edit, region, text): reg = sublime.Region(*region) self.view.replace(edit, reg, text) self.view.run_command('reindent')
InvenTree/part/migrations/0011_part_revision.py
ArakniD/InvenTree
656
12767274
# Generated by Django 2.2.2 on 2019-06-20 11:37 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('part', '0010_auto_20190620_2135'), ] operations = [ migrations.AddField( model_name='part', name='revision', field=models.CharField(blank=True, help_text='Part revision or version number', max_length=100), ), ]
mtgjson5/classes/mtgjson_deck_header.py
0az/mtgjson
512
12767309
<gh_stars>100-1000 """ MTGJSON Singular Deck Header Object """ from typing import Any, Dict from ..classes.mtgjson_deck import MtgjsonDeckObject from ..utils import to_camel_case class MtgjsonDeckHeaderObject: """ MTGJSON Singular Deck Header Object """ code: str file_name: str name: str release_date: str type: str def __init__(self, output_deck: MtgjsonDeckObject) -> None: """ Initialize the header given a deck """ self.code = output_deck.code self.file_name = output_deck.file_name self.name = output_deck.name self.release_date = output_deck.release_date self.type = output_deck.type def to_json(self) -> Dict[str, Any]: """ Support json.dump() :return: JSON serialized object """ return { to_camel_case(key): value for key, value in self.__dict__.items() if "__" not in key and not callable(value) }
exercises/bob/example.py
kishankj/python
1,177
12767326
<gh_stars>1000+ def response(hey_bob): hey_bob = hey_bob.strip() if _is_silence(hey_bob): return 'Fine. Be that way!' if _is_shouting(hey_bob): if _is_question(hey_bob): return "Calm down, I know what I'm doing!" else: return 'Whoa, chill out!' elif _is_question(hey_bob): return 'Sure.' else: return 'Whatever.' def _is_silence(hey_bob): return hey_bob == '' def _is_shouting(hey_bob): return hey_bob.isupper() def _is_question(hey_bob): return hey_bob.endswith('?')
chaos_genius/alerts/utils.py
rsohlot/chaos_genius
320
12767375
"""Common utilities for alerts and alert digests.""" import os from math import floor, log10 from typing import List, Optional, Union from jinja2 import Environment, FileSystemLoader, select_autoescape from chaos_genius.alerts.email import send_static_alert_email from chaos_genius.core.utils.round import round_number from chaos_genius.settings import CHAOSGENIUS_WEBAPP_URL class AlertException(Exception): """A general exception in a specific alert. Stores and prints alert ID and KPI ID. """ def __init__(self, message: str, alert_id: int, kpi_id: Optional[int] = None): """Initialize a new alert exception. Args: message: exception message. alert_id: ID of alert where this originated from. kpi_id: ID of KPI associated with the alert. """ if kpi_id: message = f"(KPI: {kpi_id}, Alert: {alert_id}) {message}" else: message = f"(Alert: {alert_id}) {message}" super().__init__(message) def webapp_url_prefix(): """Constructs webapp URL prefix with a trailing slash. If not setup, this will be an invalid URL with an appropriate message. TODO: redirect to docs link showing how to setup instead of invalid URL. """ if not CHAOSGENIUS_WEBAPP_URL: return "Webapp URL not setup. Please setup CHAOSGENIUS_WEBAPP_URL in the environment file./" forward_slash = "/" if not CHAOSGENIUS_WEBAPP_URL[-1] == "/" else "" return f"{CHAOSGENIUS_WEBAPP_URL}{forward_slash}" def change_message_from_percent(percent_change: Union[str, int, float]) -> str: """Creates a change message from given percentage change. percent_change will be: - "–" in case the last data point was missing or both the points had values 0 - 0 (int) in case there was no change - positive value (int/float) in case there was an increase - negative value (int/float) in case there was a decrease """ if isinstance(percent_change, str): return percent_change elif percent_change == 0: return "No change (–)" elif percent_change > 0: return f"Increased by ({percent_change}%)" else: return f"Decreased by ({percent_change}%)" def find_percentage_change( curr_val: Union[int, float], prev_val: Optional[Union[int, float]] ) -> Union[int, float, str]: """Calculates percentage change between previous and current value.""" if prev_val is None: # previous point wasn't found return "–" elif curr_val == 0 and prev_val == curr_val: # both current and previous value are 0 return "–" elif prev_val == 0: # previous value is 0, but current value isn't sign_ = "+" if curr_val > 0 else "-" return sign_ + "inf" else: change = curr_val - prev_val percentage_change = (change / prev_val) * 100 return round_number(percentage_change) def send_email_using_template( template_name: str, recipient_emails: List[str], subject: str, files: List[dict], **kwargs, ) -> None: """Sends an email using a template.""" path = os.path.join(os.path.dirname(__file__), "email_templates") env = Environment( loader=FileSystemLoader(path), autoescape=select_autoescape(["html", "xml"]) ) template = env.get_template(template_name) send_static_alert_email(recipient_emails, subject, template.render(**kwargs), files) HRN_PREFIXES = { -9: "n", -6: "µ", -3: "m", 0: "", 3: "K", 6: "M", 9: "B", 12: "T", } def _get_exponent(num: float) -> int: """Returns the power of 10 to which the number is raised to.""" if num == 0: return 0 return floor(log10(abs(num))) def human_readable(num: float) -> str: """Returns the human readable format of a number.""" exponent = _get_exponent(num) new_exponent = min((3 * floor(exponent / 3)), 12) precision = 10 ** (new_exponent) new_val = round(num / precision, 3) human_readable_format = str(new_val) + HRN_PREFIXES[new_exponent] return human_readable_format
recipes/Python/576957_Asynchronous_subprocess_using/recipe-576957.py
tdiprima/code
2,023
12767393
<gh_stars>1000+ #!/usr/bin/env python """asyncsubproc.py: Asynchronous subprocess communication using asyncore. The `AsyncPopen` class wraps the I/O pipes from `Popen` in asynchronous dispatchers, providing asynchronous communication with the subprocess using `asyncore.loop()` to read and write in parallel with other I/O. The `SubprocessExecutor` class wraps `AsyncPopen` in an `Executor`, allowing inline subprocess execution using a generator. Full-duplex Communication: Data that the subprocess writes might not be made available to the parent until the subprocess calls `flush()` or exits; thus, a parent which attempts to write data, read a response, and then write new data contingent on the response might find itself deadlocked. There seems to be no way for the parent process to force flushing of the subprocess output; changing the value of the `bufsize` parameter to `Popen()` to zero (or any other value) doesn't do it, and `asyncore.file_dispatcher` already sets `O_NONBLOCK` on the pipes. Subprocess Exit: Detecting subprocess exit while avoiding zombie subprocesses can be tricky in asynchronous code. Calling `wait()` on a subprocess would block, leaving three alternatives for checking for subprocess exit: 1) Exit the asynchronous select loop (e.g. `asyncore.loop()`) occasionally to call `poll()` on any unterminated subprocesses. This requires maintaining a list of all unterminated subprocess objects, along with any context needed to handle the subprocess exit. 2) Set a handler for `SIGCHLD` which calls `os.waitpid(-1, os.WNOHANG)`, and then use the return value to locate the asynchronous process object and handle the subprocess exit. This must be done in a loop to avoid missing consolidated signals, requires maintaining a list of all unterminated subprocesses, and is limited by reentrancy restrictions on signal handlers. 3) Check for `stdout` and `stderr` to both be closed, which can be done as part of the asynchronous loop which reads data. This requires that at least one of `stdout` and `stderr` be a pipe, but an asynchronous subprocess is probably unnecessary in the first place if neither is a pipe. There is no absolute guarantee that the subprocess has exited when `stdout` and `stderr` have closed, but once they have, no more data is coming. However, because `wait()` is not being called on the subprocesses, special care has to be taken to avoid leaving zombie subproceses. There are again three alternatives: a) Set `SIGCHLD` to `SIG_IGN`. This should work on most varieties of UNIX including Mac OS X. However, it prevents collecting the exit status of the subprocess; `poll()` will return `None` and `wait()` will raise an `OSError` exception. b) Set a handler for `SIGCHLD` as in solution (2) above; if this is to be implemented, it may be better to simply implement solution (2) rather than waiting for the output pipes to close in the first place. c) Call `wait()` on the subprocess after stdout and stderr are closed. While this will block (briefly), it should be reasonably safe unless the subprocess does something very unusual. `SubprocessExecutor` waits for `stdout` and `stderr` to both be closed, and then calls `wait()` on the subprocess if no handler for `SIGCHLD` is set. References: http://code.activestate.com/recipes/577600/ [queued SIGALRM alarms] http://code.activestate.com/recipes/576965/ [event-based asynchronous pattern] http://code.activestate.com/recipes/576967/ [asynchronous pipe I/O] """ import os import sys import signal import threading from traceback import print_exc from subprocess import Popen, PIPE from logging import ERROR, INFO import alarm from asyncpipes import PipeDispatcher, InputPipeDispatcher, OutputPipeDispatcher from worker import Executor from observer import Observable if __name__ == '__main__': import optparse from asyncore import loop from string import digits from time import sleep from worker import execute, ExecutionQueue __version__ = '$Revision: 3414 $'.split()[1] __usage__ = 'usage: %prog [options] [data]' class AsyncPopen(Observable, Popen): """An extension to Popen which creates a subprocess with asynchronous pipes for input and output. Pipe output can be read using an Observer pattern while asyncore.loop() is run. Also contains additional small extensions, such as a subprocess timeout and a fix to handling of signals for subprocesses. """ def __init__(self, argv, map=None, timeout=None, close_when_done=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, preexec_fn=None, bufsize=0, **popen_keyw): """Accepts all the same arguments and keywords as `subprocess.Popen`. Input or outputs specified as `PIPE` (now the default) for are wrapped in an asynchronous pipe dispatcher. The timeout is used to create an alarm, which can be cancelled by calling `cancel_timeout()`, `communicate()`, `wait()` or `kill()`. """ Observable.__init__(self) self._map = map # Create the subprocess itself, wrapping preexec_fn in the clear_signals call Popen.__init__(self, argv, preexec_fn=lambda: self.clear_signals(preexec_fn), stdin=stdin, stdout=stdout, stderr=stderr, **popen_keyw) # Set the timeout on the subprocess. If it fails, ignore the failure. try: fto = float(timeout) self._alarmobj = alarm.alarm(fto, self.kill) if fto > 0 else None except: self._alarmobj = None # Wrap the pipe I/O. Sets the Popen and pipe buffer sizes the same; perhaps not optimal. if stdout == PIPE: self.stdout = OutputPipeDispatcher(self.stdout, map=map, ignore_broken_pipe=True, universal_newlines=self.universal_newlines, maxdata=bufsize) self.stdout.obs_add(self._pipe_event) if stderr == PIPE: self.stderr = OutputPipeDispatcher(self.stderr, map=map, ignore_broken_pipe=True, universal_newlines=self.universal_newlines, maxdata=bufsize) self.stderr.obs_add(self._pipe_event) if stdin == PIPE: self.stdin = InputPipeDispatcher(self.stdin, map=map, ignore_broken_pipe=True, close_when_done=close_when_done, maxdata=bufsize) self.stdin.obs_add(self._pipe_event) def cancel_timeout(self, logger=None): if not self._alarmobj: return try: alarm.cancel(self._alarmobj) except: if logger: logger.debug("Error canceling child PID %d alarm" % child.pid, exc_info=1) finally: self._alarmobj = None def wait(self, logger=None): returncode = Popen.wait(self) self.cancel_timeout(logger=logger) return returncode @staticmethod def clear_signals(preexec_fn): """Wraps any preexec_fn in order to clear any signal handlers.""" for s in range(1, signal.NSIG): try: if s not in [signal.SIGKILL, signal.SIGSTOP]: signal.signal(s, signal.SIG_DFL) except: pass if callable(preexec_fn): preexec_fn() def kill(self): """Kill the child process with extreme prejudice.""" try: if self.returncode is None: os.kill(self.pid, signal.SIGKILL) finally: self.cancel_timeout() def fetch_output(self, clear=True): """Fetch data from the subprocess output pipes. An output file not set to a pipe returns an empty string. """ outdata = self.stdout.fetch_data(clear) if self.stdout is not None else '' errdata = self.stderr.fetch_data(clear) if self.stderr is not None else '' return outdata, errdata def output_closed(self): """Return true if both subprocess output pipes are closed. Can be used to detected the termination of the subprocess. An output file not sent to a pipe is ignored. """ outread = self.stdout.readable() if self.stdout is not None else False errread = self.stderr.readable() if self.stderr is not None else False return not (outread or errread) def _pipe_event(self, observed, event): """Forward events on the pipes. The forwarded events contain the pipe event and the pipe itself as a two-element tuple.""" self._obs_notify((event, observed)) class SubprocessExecutor(Executor): """Executes subprocesses, reading and writing data using `asyncore`. For each subprocess to be created, the generator must yield either the object to be passed to the `argv` argument of the `Popen` constructor, or a dictionary containing a required `argv` key, an optional `input` key containing a string to be written to `stdin` of the subprocess, and keys corresponding to the keyword parameters to `AsyncPopen` (the same keywords as the `child_spawn()` method). Once the subprocess has exited, the executor will call `send()` on the generator, passing a 4-element tuple containing the data read from `stdout` and `stderr`, the exit status returned by `Popen.poll()`, and the pid of the subprocess. The generator can then yield the parameters for another subprocess. """ def __init__(self, generator, exc_handler=print_exc, logger=None, **async_popen_keyw): """Initialize a subprocess executor. Additional keyword parameters to this constructor (usually passed through the decorator) will be passed to `AsyncPopen`. """ Executor.__init__(self, generator, exc_handler) self._logger = logger self.__async_popen_dict = async_popen_keyw self.__current_child = None def _execute(self, logger=None, **async_popen_keyw): """Iterate the generator to completion (in the calling thread). The generator must yield the parameters for the first subprocess, which will be passed to `_spawn()`. Additional keyword parameters passed to this object when called will be passed to `AsyncPopen` (and override values passed to this object's constructor). """ self.__async_popen_dict.update(async_popen_keyw) if logger is not None: self._logger = logger # Get the command to be executed from the generator self.__coerce_and_spawn(self.next()) def _pipe_closed(self, observed, event): """Called when one of the output pipes (stdout or stderr) is closed. Once both are closed, declare the subprocess finished and call `_child_exit()`. """ if observed.output_closed(): self._child_exit(observed) def _child_exit(self, child): """Called once `stdout` and `stderr` are both closed. Cleans up the subprocess, and then passes the subprocess results tom the generator by calling `send()`. If the generator yields parameters for another subprocess, calls `_child_spawn()`. """ self.__current_child = None # Close stdin for the child, so that it knows it won't be getting more data try: if child.stdin is not None: child.stdin.close() except: if self._logger: self._logger.debug("Error closing stdin for PID %d" % child.pid, exc_info=1) # Wait for the child if there's no signal handler if signal.getsignal(signal.SIGCHLD) == signal.SIG_DFL: try: # This will cancel the alarm returncode = child.wait(logger=self._logger) except: if self._logger: self._logger.debug("Error waiting for child PID %d" % child.pid, exc_info=1) else: print_exc(file=sys.stderr) else: child.cancel_timeout(logger=self._logger) # This next will return None unless an exit status injector has been set up. returncode = child.poll() # Extract the result from the child process; and move on with the executor try: outdata, errdata = child.fetch_output() child_result = (outdata, errdata, returncode, child.pid) if self._logger: self._logger.debug("PID %d exited with code %s" % (child.pid, returncode)) self.__coerce_and_spawn(self.send(child_result)) except: self.throw(*sys.exc_info()) def close(self): """Kill the subprocess when closing the generator.""" child = self.__current_child if child: try: child.kill() except: if self._logger: self._logger.exception("Error killing child PID %d" % child.pid) else: print_exc(file=sys.stderr) else: self.__current_child = None Executor.close(self) def __coerce_and_spawn(self, arg): """Coerce the argument into a call to `_child_spawn()`""" try: self._child_spawn(**arg) except: self._child_spawn(argv=arg) def _child_spawn(self, argv=None, input=None, **async_popen_keyw): """Create the subprocess and send the data to the input pipe. Called with the value(s) yielded by the generator. If a subprocess is to be spawned, the `argv` keyword must be supplied with a non-empty value. The value passed to the `input` keyword will be written to `stdin` of the subprocess. Additional keyword parameters passed to this method will be passed to `AsyncPopen` (and override values passed to this object's constructor). """ if self.stopped(): return # Merge the keyword arguments together to pass to AsyncPopen async_popen_dict = self.__async_popen_dict.copy() async_popen_dict.update(async_popen_keyw) if input: async_popen_dict["stdin"] = PIPE # Create the subprocess itself if self._logger: self._logger.debug("Spawning subprocess %s" % argv) self.__current_child = AsyncPopen(argv, **async_popen_dict) if self._logger: self._logger.debug("Spawned subprocess %s with PID %d" % (argv, self.__current_child.pid)) # Listen for both output pipes to close, and push the data to stdin self.__current_child.obs_add(self._pipe_closed, criteria=PipeDispatcher.PIPE_CLOSED) if input: self.__current_child.stdin.push_data(str(input)) if __name__ == '__main__': def printdata(data, pid, channame): print '[%d] %s %d bytes received: %r' % (pid, channame, len(data), data) execq = ExecutionQueue() @execute(execq, SubprocessExecutor) def spawn_child(argv, data, child, loops): """Spawn a cascade of subprocesses.""" for lp in range(1, loops + 1): (stdout, stderr, stat, pid) = yield {'argv': argv, 'input': '%s%s' % (data, '\n')} printdata(stdout, pid, 'stdout') printdata(stderr, pid, 'stderr') print "Loop %d child %d [%d] exited with status %s" % (lp, child, pid, stat) if stat == 0 and data == stdout.rstrip()[::-1]: data = stdout[:-1] def run_child(pause, exitstat): """Run the subprocess code; a simple string inverter.""" line = sys.stdin.readline().strip() sleep(pause / 2.0) # Write and close both pipes to show that it waits for exit anyway. print line[::-1] print >>sys.stderr, line sys.stdout.close() sys.stderr.close() sleep(pause / 2.0) sys.exit(exitstat) optparser = optparse.OptionParser(usage=__usage__, version=__version__) optparser.disable_interspersed_args() optparser.add_option('--loops', type='int', metavar='N', default=3, help='Number of times to iterate each child [%default]') optparser.add_option('--children', type='int', metavar='N', default=3, help='Number of children to spawn [%default]') optparser.add_option('--timeout', type='float', metavar='SECONDS', default=10.0, help='Maximum time subprocess is allowed to run [%default sec]') optparser.add_option('--no-signal', dest='nosignal', action='store_true', default=False, help='Ignore signals from child processes.') childopts = optparse.OptionGroup(optparser, 'Child options') childopts.add_option('--child', action='store_true', help=optparse.SUPPRESS_HELP) childopts.add_option('--pause', type='float', metavar='SECONDS', default=2.0, help='Time to pause in the child process [%default sec]') childopts.add_option('--exitstat', type='int', metavar='STATUS', default=0, help='Child exit status [%default]') optparser.add_option_group(childopts) (options, args) = optparser.parse_args() if options.child: run_child(options.pause, options.exitstat) else: # Run the parent process code: start the first child and send data. if options.nosignal: signal.signal(signal.SIGCHLD, signal.SIG_IGN) sys.argv.insert(1, '--child') # Create and queue the children, and then loop asyncore data = ' '.join(args) if len(args) else digits for ch in range(1, options.children + 1): spawn_child(sys.argv, data, ch, options.loops)(timeout=options.timeout) loop() os.system('ps -ef')
rnns/gru.py
anoidgit/zero
111
12767423
# coding: utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from func import linear from rnns import cell as cell class gru(cell.Cell): """The Gated Recurrent Unit.""" def __init__(self, d, ln=False, scope='gru'): super(gru, self).__init__(d, ln=ln, scope=scope) def get_init_state(self, shape=None, x=None, scope=None): return self._get_init_state( self.d, shape=shape, x=x, scope=scope) def fetch_states(self, x): with tf.variable_scope( "fetch_state_{}".format(self.scope or "gru")): g = linear(x, self.d * 2, bias=False, ln=self.ln, scope="gate_x") h = linear(x, self.d, bias=False, ln=self.ln, scope="hide_x") return g, h def __call__(self, h_, x): # h_: the previous hidden state # x_g/x: the current input state for gate # x_h/x: the current input state for hidden """ z = sigmoid(h_, x) r = sigmoid(h_, x) h' = tanh(x, r * h_) h = z * h_ + (1. - z) * h' """ with tf.variable_scope( "cell_{}".format(self.scope or "gru")): x_g, x_h = x h_g = linear(h_, self.d * 2, ln=self.ln, scope="gate_h") z, r = tf.split( tf.sigmoid(x_g + h_g), 2, -1) h_h = linear(h_ * r, self.d, ln=self.ln, scope="hide_h") h = tf.tanh(x_h + h_h) h = z * h_ + (1. - z) * h return h
docs_Ismail_Geles/benchmark/utils/format.py
isgeles/SMARTS
554
12767458
# MIT License # # Copyright (C) 2021. Huawei Technologies Co., Ltd. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. def pretty_dict(d, indent=0): """Pretty the output format of a dictionary. Parameters ---------- d dict, the input dictionary instance. indent int, indent level, non-negative. Returns ------- res str, the output string """ res = "" for k, v in d.items(): res += "\t" * indent + str(k) if isinstance(v, dict): res += "\n" + pretty_dict(v, indent + 1) else: res += ": " + str(v) + "\n" return res
mmskeleton/deprecated/datasets/recognition.py
fserracant/mmskeleton
1,347
12767463
import os import numpy as np import json import torch from .utils import skeleton class SkeletonDataset(torch.utils.data.Dataset): """ Feeder for skeleton-based action recognition Arguments: data_path: the path to data folder random_choose: If true, randomly choose a portion of the input sequence random_move: If true, randomly perfrom affine transformation window_size: The length of the output sequence repeat: times of repeating the dataset data_subscripts: subscript expression of einsum operation. In the default case, the shape of output data is `(channel, vertex, frames, person)`. To permute the shape to `(channel, frames, vertex, person)`, set `data_subscripts` to 'cvfm->cfvm'. """ def __init__(self, data_dir, random_choose=False, random_move=False, window_size=-1, num_track=1, data_subscripts=None, repeat=1): self.data_dir = data_dir self.random_choose = random_choose self.random_move = random_move self.window_size = window_size self.num_track = num_track self.data_subscripts = data_subscripts self.files = [ os.path.join(self.data_dir, f) for f in os.listdir(self.data_dir) ] * repeat def __len__(self): return len(self.files) def __getitem__(self, index): with open(self.files[index]) as f: data = json.load(f) resolution = data['info']['resolution'] category_id = data['category_id'] annotations = data['annotations'] num_frame = data['info']['num_frame'] num_keypoints = data['info']['num_keypoints'] channel = data['info']['keypoint_channels'] num_channel = len(channel) # get data data = np.zeros( (num_channel, num_keypoints, num_frame, self.num_track), dtype=np.float32) for a in annotations: person_id = a['id'] if a['person_id'] is None else a['person_id'] frame_index = a['frame_index'] if person_id < self.num_track and frame_index < num_frame: data[:, :, frame_index, person_id] = np.array( a['keypoints']).transpose() # normalization if self.normalization: for i, c in enumerate(channel): if c == 'x': data[i] = data[i] / resolution[0] - 0.5 if c == 'y': data[i] = data[i] / resolution[1] - 0.5 if c == 'score' or c == 'visibility': mask = (data[i] == 0) for j in range(num_channel): if c != j: data[j][mask] = 0 # permute if self.data_subscripts is not None: data = np.einsum(self.data_subscripts, data) # augmentation if self.random_choose: data = skeleton.random_choose(data, self.window_size) elif self.window_size > 0: data = skeleton.auto_pading(data, self.window_size) if self.random_move: data = skeleton.random_move(data) return data, category_id
rastervision_pytorch_learner/rastervision/pytorch_learner/learner_pipeline.py
theoway/raster-vision
1,577
12767466
from rastervision.pipeline.pipeline import Pipeline from rastervision.pytorch_learner import LearnerConfig class LearnerPipeline(Pipeline): """Simple Pipeline that is a wrapper around Learner.main() This supports the ability to use the pytorch_learner package to train models using the RV pipeline package and its runner functionality without the rest of RV. """ commands = ['train'] gpu_commands = ['train'] def train(self): learner_cfg: LearnerConfig = self.config.learner learner = learner_cfg.build(learner_cfg, self.tmp_dir) learner.main()
python/fate_arch/common/__init__.py
QuantumA/FATE
715
12767470
<filename>python/fate_arch/common/__init__.py from fate_arch.common._types import FederatedMode, FederatedCommunicationType, EngineType, CoordinationProxyService, \ CoordinationCommunicationProtocol from fate_arch.common._types import BaseType, Party, DTable
us/tests/test_us.py
Juh10/python-us
346
12767473
<reponame>Juh10/python-us<filename>us/tests/test_us.py from itertools import chain import jellyfish # type: ignore import pytest # type: ignore import pytz import us # attribute def test_attribute(): for state in us.STATES_AND_TERRITORIES: assert state == getattr(us.states, state.abbr) def test_valid_timezones(): for state in us.STATES_AND_TERRITORIES: if state.capital: assert pytz.timezone(state.capital_tz) for tz in state.time_zones: assert pytz.timezone(tz) # During migration from SQLite to Python classes, a duplicate # time zone had been found assert len(state.time_zones) == len(set(state.time_zones)) # maryland lookup def test_fips(): assert us.states.lookup("24") == us.states.MD assert us.states.lookup("51") != us.states.MD def test_abbr(): assert us.states.lookup("MD") == us.states.MD assert us.states.lookup("md") == us.states.MD assert us.states.lookup("VA") != us.states.MD assert us.states.lookup("va") != us.states.MD def test_name(): assert us.states.lookup("Maryland") == us.states.MD assert us.states.lookup("maryland") == us.states.MD assert us.states.lookup("Maryland", field="name") == us.states.MD assert us.states.lookup("maryland", field="name") is None assert us.states.lookup("murryland") == us.states.MD assert us.states.lookup("Virginia") != us.states.MD # lookups def test_abbr_lookup(): for state in us.STATES: assert us.states.lookup(state.abbr) == state def test_fips_lookup(): for state in us.STATES: assert us.states.lookup(state.fips) == state def test_name_lookup(): for state in us.STATES: assert us.states.lookup(state.name) == state def test_obsolete_lookup(): for state in us.OBSOLETE: assert us.states.lookup(state.name) is None # test metaphone def test_jellyfish_metaphone(): for state in chain(us.STATES_AND_TERRITORIES, us.OBSOLETE): assert state.name_metaphone == jellyfish.metaphone(state.name) # mappings def test_mapping(): states = us.STATES[:5] assert us.states.mapping("abbr", "fips", states=states) == dict( (s.abbr, s.fips) for s in states ) def test_obsolete_mapping(): mapping = us.states.mapping("abbr", "fips") for state in us.states.OBSOLETE: assert state.abbr not in mapping def test_custom_mapping(): mapping = us.states.mapping("abbr", "fips", states=[us.states.DC, us.states.MD]) assert len(mapping) == 2 assert "DC" in mapping assert "MD" in mapping # known bugs def test_kentucky_uppercase(): assert us.states.lookup("kentucky") == us.states.KY assert us.states.lookup("KENTUCKY") == us.states.KY def test_wayoming(): assert us.states.lookup("Wyoming") == us.states.WY assert us.states.lookup("Wayoming") is None def test_dc(): assert us.states.DC not in us.STATES assert us.states.lookup("DC") == us.states.DC assert us.states.lookup("District of Columbia") == us.states.DC assert "DC" in us.states.mapping("abbr", "name") # shapefiles @pytest.mark.skip def test_head(): import requests for state in us.STATES_AND_TERRITORIES: for url in state.shapefile_urls().values(): resp = requests.head(url) assert resp.status_code == 200 # counts def test_obsolete(): assert len(us.OBSOLETE) == 3 def test_states(): assert len(us.STATES) == 50 def test_territories(): assert len(us.TERRITORIES) == 5 def test_contiguous(): # Lower 48 assert len(us.STATES_CONTIGUOUS) == 48 def test_continental(): # Lower 48 + Alaska assert len(us.STATES_CONTINENTAL) == 49 def test_dc(): assert us.states.DC not in us.STATES
ciphey/basemods/Decoders/base64_url.py
AlexandruValeanu/Ciphey
9,908
12767490
import base64 from typing import Dict, Optional from ciphey.iface import Config, Decoder, ParamSpec, T, U, registry @registry.register class Base64_url(Decoder[str]): def decode(self, ctext: T) -> Optional[U]: """ Performs Base64 URL decoding """ ctext_padding = ctext + "=" * (4 - len(ctext) % 4) try: return base64.urlsafe_b64decode(ctext_padding).decode("utf-8") except Exception: return None @staticmethod def priority() -> float: # Not expected to show up often, but also very fast to check. return 0.05 def __init__(self, config: Config): super().__init__(config) @staticmethod def getParams() -> Optional[Dict[str, ParamSpec]]: return None @staticmethod def getTarget() -> str: return "base64_url"
bayesiancoresets/coreset/__init__.py
trevorcampbell/hilbert-coresets
118
12767529
from .hilbert import HilbertCoreset from .sampling import UniformSamplingCoreset from .sparsevi import SparseVICoreset from .bpsvi import BatchPSVICoreset
tests/conftest.py
amagge/flair
3,957
12767539
import pytest from pathlib import Path @pytest.fixture(scope="module") def resources_path(): return Path(__file__).parent / "resources" @pytest.fixture(scope="module") def tasks_base_path(resources_path): return resources_path / "tasks" @pytest.fixture(scope="module") def results_base_path(resources_path): return resources_path / "results" def pytest_addoption(parser): parser.addoption( "--runslow", action="store_true", default=False, help="run slow tests" ) parser.addoption( "--runintegration", action="store_true", default=False, help="run integration tests", ) def pytest_collection_modifyitems(config, items): if config.getoption("--runslow") and config.getoption("--runintegration"): return if not config.getoption("--runslow"): skip_slow = pytest.mark.skip(reason="need --runslow option to run") for item in items: if "slow" in item.keywords: item.add_marker(skip_slow) if not config.getoption("--runintegration"): skip_integration = pytest.mark.skip( reason="need --runintegration option to run" ) for item in items: if "integration" in item.keywords: item.add_marker(skip_integration)
torchcde/__init__.py
jb-c/torchcde
247
12767550
<reponame>jb-c/torchcde from .interpolation_base import InterpolationBase from .interpolation_cubic import natural_cubic_spline_coeffs, natural_cubic_coeffs, CubicSpline from .interpolation_linear import linear_interpolation_coeffs, LinearInterpolation from .interpolation_hermite_cubic_bdiff import hermite_cubic_coefficients_with_backward_differences from .log_ode import logsignature_windows, logsig_windows from .misc import TupleControl from .solver import cdeint __version__ = "0.2.5"
dtech_instagram/InstagramAPI/src/http/Response/LoginResponse.py
hideki-saito/InstagramAPP_Flask
126
12767567
<gh_stars>100-1000 from .Response import Response class LoginResponse(Response): def __init__(self, response): self.username = None self.has_anonymous_profile_picture = None self.profile_pic_url = None self.profile_pic_id = None self.full_name = None self.pk = None self.is_private = None if 'logged_in_user' in response and 'username' in response['logged_in_user']: self.username = response['logged_in_user']['username'] self.has_anonymous_profile_picture = response['logged_in_user']['has_anonymous_profile_picture'] self.profile_pic_url = response['logged_in_user']['profile_pic_url'] self.full_name = response['logged_in_user']['full_name'] self.pk = response['logged_in_user']['pk'] self.is_private = response['logged_in_user']['is_private'] else: self.setMessage(response['message']) self.setStatus(response['status']) def getUsername(self): return self.username def getHasAnonymousProfilePicture(self): return self.has_anonymous_profile_picture def getProfilePicUrl(self): return self.profile_pic_url def getProfilePicId(self): return self.profile_pic_id def getFullName(self): return self.full_name def getUsernameId(self): return str(self.pk) def getIsPrivate(self): return self.is_private
pypykatz/commons/winapi/constants.py
wisdark/pypykatz
1,861
12767608
#!/usr/bin/env python3 # # Author: # <NAME> (@skelsec) # PROCESS_QUERY_INFORMATION = 0x0400 PROCESS_VM_READ = 0x0010 PROCESS_VM_WRITE = 0x0020 PROCESS_VM_OPERATION = 0x0008 PROCESS_CREATE_THREAD = 0x0002 # Standard access rights DELETE = 0x00010000 READ_CONTROL = 0x00020000 WRITE_DAC = 0x00040000 WRITE_OWNER = 0x00080000 SYNCHRONIZE = 0x00100000 STANDARD_RIGHTS_REQUIRED = 0x000F0000 STANDARD_RIGHTS_READ = READ_CONTROL STANDARD_RIGHTS_WRITE = READ_CONTROL STANDARD_RIGHTS_EXECUTE = READ_CONTROL STANDARD_RIGHTS_ALL = 0x001F0000 SPECIFIC_RIGHTS_ALL = 0x0000FFFF #--- Constants ---------------------------------------------------------------- privnames = { "SE_ASSIGNPRIMARYTOKEN_NAME" : "SeAssignPrimaryTokenPrivilege", "SE_AUDIT_NAME" : "SeAuditPrivilege", "SE_BACKUP_NAME" : "SeBackupPrivilege", "SE_CHANGE_NOTIFY_NAME" : "SeChangeNotifyPrivilege", "SE_CREATE_GLOBAL_NAME" : "SeCreateGlobalPrivilege", "SE_CREATE_PAGEFILE_NAME" : "SeCreatePagefilePrivilege", "SE_CREATE_PERMANENT_NAME" : "SeCreatePermanentPrivilege", "SE_CREATE_SYMBOLIC_LINK_NAME" : "SeCreateSymbolicLinkPrivilege", "SE_CREATE_TOKEN_NAME" : "SeCreateTokenPrivilege", "SE_DEBUG_NAME" : "SeDebugPrivilege", "SE_ENABLE_DELEGATION_NAME" : "SeEnableDelegationPrivilege", "SE_IMPERSONATE_NAME" : "SeImpersonatePrivilege", "SE_INC_BASE_PRIORITY_NAME" : "SeIncreaseBasePriorityPrivilege", "SE_INCREASE_QUOTA_NAME" : "SeIncreaseQuotaPrivilege", "SE_INC_WORKING_SET_NAME" : "SeIncreaseWorkingSetPrivilege", "SE_LOAD_DRIVER_NAME" : "SeLoadDriverPrivilege", "SE_LOCK_MEMORY_NAME" : "SeLockMemoryPrivilege", "SE_MACHINE_ACCOUNT_NAME" : "SeMachineAccountPrivilege", "SE_MANAGE_VOLUME_NAME" : "SeManageVolumePrivilege", "SE_PROF_SINGLE_PROCESS_NAME" : "SeProfileSingleProcessPrivilege", "SE_RELABEL_NAME" : "SeRelabelPrivilege", "SE_REMOTE_SHUTDOWN_NAME" : "SeRemoteShutdownPrivilege", "SE_RESTORE_NAME" : "SeRestorePrivilege", "SE_SECURITY_NAME" : "SeSecurityPrivilege", "SE_SHUTDOWN_NAME" : "SeShutdownPrivilege", "SE_SYNC_AGENT_NAME" : "SeSyncAgentPrivilege", "SE_SYSTEM_ENVIRONMENT_NAME" : "SeSystemEnvironmentPrivilege", "SE_SYSTEM_PROFILE_NAME" : "SeSystemProfilePrivilege", "SE_SYSTEMTIME_NAME" : "SeSystemtimePrivilege", "SE_TAKE_OWNERSHIP_NAME" : "SeTakeOwnershipPrivilege", "SE_TCB_NAME" : "SeTcbPrivilege", "SE_TIME_ZONE_NAME" : "SeTimeZonePrivilege", "SE_TRUSTED_CREDMAN_ACCESS_NAME" : "SeTrustedCredManAccessPrivilege", "SE_UNDOCK_NAME" : "SeUndockPrivilege", "SE_UNSOLICITED_INPUT_NAME" : "SeUnsolicitedInputPrivilege" } # Privilege constants SE_ASSIGNPRIMARYTOKEN_NAME = "SeAssignPrimaryTokenPrivilege" SE_AUDIT_NAME = "SeAuditPrivilege" SE_BACKUP_NAME = "SeBackupPrivilege" SE_CHANGE_NOTIFY_NAME = "SeChangeNotifyPrivilege" SE_CREATE_GLOBAL_NAME = "SeCreateGlobalPrivilege" SE_CREATE_PAGEFILE_NAME = "SeCreatePagefilePrivilege" SE_CREATE_PERMANENT_NAME = "SeCreatePermanentPrivilege" SE_CREATE_SYMBOLIC_LINK_NAME = "SeCreateSymbolicLinkPrivilege" SE_CREATE_TOKEN_NAME = "SeCreateTokenPrivilege" SE_DEBUG_NAME = "SeDebugPrivilege" SE_ENABLE_DELEGATION_NAME = "SeEnableDelegationPrivilege" SE_IMPERSONATE_NAME = "SeImpersonatePrivilege" SE_INC_BASE_PRIORITY_NAME = "SeIncreaseBasePriorityPrivilege" SE_INCREASE_QUOTA_NAME = "SeIncreaseQuotaPrivilege" SE_INC_WORKING_SET_NAME = "SeIncreaseWorkingSetPrivilege" SE_LOAD_DRIVER_NAME = "SeLoadDriverPrivilege" SE_LOCK_MEMORY_NAME = "SeLockMemoryPrivilege" SE_MACHINE_ACCOUNT_NAME = "SeMachineAccountPrivilege" SE_MANAGE_VOLUME_NAME = "SeManageVolumePrivilege" SE_PROF_SINGLE_PROCESS_NAME = "SeProfileSingleProcessPrivilege" SE_RELABEL_NAME = "SeRelabelPrivilege" SE_REMOTE_SHUTDOWN_NAME = "SeRemoteShutdownPrivilege" SE_RESTORE_NAME = "SeRestorePrivilege" SE_SECURITY_NAME = "SeSecurityPrivilege" SE_SHUTDOWN_NAME = "SeShutdownPrivilege" SE_SYNC_AGENT_NAME = "SeSyncAgentPrivilege" SE_SYSTEM_ENVIRONMENT_NAME = "SeSystemEnvironmentPrivilege" SE_SYSTEM_PROFILE_NAME = "SeSystemProfilePrivilege" SE_SYSTEMTIME_NAME = "SeSystemtimePrivilege" SE_TAKE_OWNERSHIP_NAME = "SeTakeOwnershipPrivilege" SE_TCB_NAME = "SeTcbPrivilege" SE_TIME_ZONE_NAME = "SeTimeZonePrivilege" SE_TRUSTED_CREDMAN_ACCESS_NAME = "SeTrustedCredManAccessPrivilege" SE_UNDOCK_NAME = "SeUndockPrivilege" SE_UNSOLICITED_INPUT_NAME = "SeUnsolicitedInputPrivilege" SE_CREATE_TOKEN = 2 SE_ASSIGNPRIMARYTOKEN = 3 SE_LOCK_MEMORY=4 SE_INCREASE_QUOTA=5 SE_UNSOLICITED_INPUT=6 SE_TCB=7 SE_SECURITY=8 SE_TAKE_OWNERSHIP=9 SE_LOAD_DRIVER=10 SE_SYSTEM_PROFILE=11 SE_SYSTEMTIME=12 SE_PROF_SINGLE_PROCESS=13 SE_INC_BASE_PRIORITY=14 SE_CREATE_PAGEFILE=15 SE_CREATE_PERMANENT=16 SE_BACKUP=17 SE_RESTORE=18 SE_SHUTDOWN=19 SE_DEBUG=20 SE_AUDIT=21 SE_SYSTEM_ENVIRONMENT=22 SE_CHANGE_NOTIFY=23 SE_REMOTE_SHUTDOWN=24 SE_UNDOCK=25 SE_SYNC_AGENT=26 SE_ENABLE_DELEGATION=27 SE_MANAGE_VOLUME=28 SE_IMPERSONATE=29 SE_CREATE_GLOBAL=30 SE_TRUSTED_CREDMAN_ACCESS=31 SE_RELABEL=32 SE_INC_WORKING_SET=33 SE_TIME_ZONE=34 SE_CREATE_SYMBOLIC_LINK=35 SE_PRIVILEGE_ENABLED_BY_DEFAULT = 0x00000001 SE_PRIVILEGE_ENABLED = 0x00000002 SE_PRIVILEGE_REMOVED = 0x00000004 SE_PRIVILEGE_USED_FOR_ACCESS = 0x80000000 TOKEN_ADJUST_PRIVILEGES = 0x00000020 LOGON_WITH_PROFILE = 0x00000001 LOGON_NETCREDENTIALS_ONLY = 0x00000002 # Token access rights TOKEN_ASSIGN_PRIMARY = 0x0001 TOKEN_DUPLICATE = 0x0002 TOKEN_IMPERSONATE = 0x0004 TOKEN_QUERY = 0x0008 TOKEN_QUERY_SOURCE = 0x0010 TOKEN_ADJUST_PRIVILEGES = 0x0020 TOKEN_ADJUST_GROUPS = 0x0040 TOKEN_ADJUST_DEFAULT = 0x0080 TOKEN_ADJUST_SESSIONID = 0x0100 TOKEN_READ = (STANDARD_RIGHTS_READ | TOKEN_QUERY) TOKEN_ALL_ACCESS = (STANDARD_RIGHTS_REQUIRED | TOKEN_ASSIGN_PRIMARY | TOKEN_DUPLICATE | TOKEN_IMPERSONATE | TOKEN_QUERY | TOKEN_QUERY_SOURCE | TOKEN_ADJUST_PRIVILEGES | TOKEN_ADJUST_GROUPS | TOKEN_ADJUST_DEFAULT | TOKEN_ADJUST_SESSIONID) #dont ask me... TOKEN_MANIP_ACCESS = (TOKEN_QUERY | TOKEN_READ | TOKEN_IMPERSONATE | TOKEN_QUERY_SOURCE | TOKEN_DUPLICATE | TOKEN_ASSIGN_PRIMARY | (131072 | 4)) # typedef enum _SECURITY_IMPERSONATION_LEVEL { # SecurityAnonymous, # SecurityIdentification, # SecurityImpersonation, # SecurityDelegation # } SECURITY_IMPERSONATION_LEVEL, *PSECURITY_IMPERSONATION_LEVEL; SecurityAnonymous = 0 SecurityIdentification = 1 SecurityImpersonation = 2 SecurityDelegation = 3 TokenPrimary = 1 TokenImpersonation = 2 # Predefined HKEY values HKEY_CLASSES_ROOT = 0x80000000 HKEY_CURRENT_USER = 0x80000001 HKEY_LOCAL_MACHINE = 0x80000002 HKEY_USERS = 0x80000003 HKEY_PERFORMANCE_DATA = 0x80000004 HKEY_CURRENT_CONFIG = 0x80000005 # Registry access rights KEY_ALL_ACCESS = 0xF003F KEY_CREATE_LINK = 0x0020 KEY_CREATE_SUB_KEY = 0x0004 KEY_ENUMERATE_SUB_KEYS = 0x0008 KEY_EXECUTE = 0x20019 KEY_NOTIFY = 0x0010 KEY_QUERY_VALUE = 0x0001 KEY_READ = 0x20019 KEY_SET_VALUE = 0x0002 KEY_WOW64_32KEY = 0x0200 KEY_WOW64_64KEY = 0x0100 KEY_WRITE = 0x20006 # Registry value types REG_NONE = 0 REG_SZ = 1 REG_EXPAND_SZ = 2 REG_BINARY = 3 REG_DWORD = 4 REG_DWORD_LITTLE_ENDIAN = REG_DWORD REG_DWORD_BIG_ENDIAN = 5 REG_LINK = 6 REG_MULTI_SZ = 7 REG_RESOURCE_LIST = 8 REG_FULL_RESOURCE_DESCRIPTOR = 9 REG_RESOURCE_REQUIREMENTS_LIST = 10 REG_QWORD = 11 REG_QWORD_LITTLE_ENDIAN = REG_QWORD
tensorflow_graphics/projects/cvxnet/train.py
Liang813/graphics
2,759
12767670
# Copyright 2020 The TensorFlow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Training Loop.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow.compat.v1 as tf from tensorflow_graphics.projects.cvxnet.lib import datasets from tensorflow_graphics.projects.cvxnet.lib import models from tensorflow_graphics.projects.cvxnet.lib import utils tf.disable_eager_execution() flags = tf.app.flags logging = tf.logging tf.logging.set_verbosity(tf.logging.INFO) utils.define_flags() FLAGS = flags.FLAGS def main(unused_argv): tf.set_random_seed(2191997) np.random.seed(6281996) logging.info("=> Starting ...") # Select dataset. logging.info("=> Preparing datasets ...") data = datasets.get_dataset(FLAGS.dataset, "train", FLAGS) batch = tf.data.make_one_shot_iterator(data).get_next() # Select model. logging.info("=> Creating {} model".format(FLAGS.model)) model = models.get_model(FLAGS.model, FLAGS) optimizer = tf.train.AdamOptimizer(FLAGS.lr) # Set up the graph train_loss, train_op, global_step = model.compute_loss( batch, training=True, optimizer=optimizer) # Training hooks stop_hook = tf.train.StopAtStepHook(last_step=FLAGS.max_steps) summary_writer = tf.summary.FileWriter(FLAGS.train_dir) ops = tf.get_collection(tf.GraphKeys.SUMMARIES) summary_hook = tf.train.SummarySaverHook( save_steps=100, summary_writer=summary_writer, summary_op=ops) step_counter_hook = tf.train.StepCounterHook(summary_writer=summary_writer) hooks = [stop_hook, step_counter_hook, summary_hook] logging.info("=> Start training loop ...") with tf.train.MonitoredTrainingSession( checkpoint_dir=FLAGS.train_dir, hooks=hooks, scaffold=None, save_checkpoint_steps=FLAGS.save_every, save_checkpoint_secs=None, save_summaries_steps=None, save_summaries_secs=None, log_step_count_steps=None, max_wait_secs=3600) as mon_sess: while not mon_sess.should_stop(): mon_sess.run([batch, train_loss, global_step, train_op]) if __name__ == "__main__": tf.app.run(main)
scripts/isqrt.py
Marlon-Lazo-Coronado/tiny-bignum-c
331
12767678
<reponame>Marlon-Lazo-Coronado/tiny-bignum-c #isqrt.py import math def isqrt(n): if n == 0: return 0 high = n low = 0 calcMid = lambda: (high - low) / 2 + low + 1 mid = calcMid() while high > low: sq = mid**2 if sq > n: high = mid - 1 else: low = mid mid = calcMid() return low if __name__ == "__main__": for i in range(10000000): sq = isqrt(i) if sq != int(math.sqrt(i)): print "Failed on {}: {}".format(i, sq) elif i % 100000==0: print i
utils/wfuzzbasicauthbrute/wfuzz/plugins/scripts/robots.py
ismailbozkurt/kubebot
171
12767703
<reponame>ismailbozkurt/kubebot import re from urlparse import urlparse, urljoin from framework.plugins.api import DiscoveryPlugin from framework.plugins.api import url_filename from externals.moduleman.plugin import moduleman_plugin @moduleman_plugin class robots(DiscoveryPlugin): name = "robots" description = "Parses robots.txt looking for new content. Optional: discovery.bl=\".txt,.gif\"" category = ["default", "active", "discovery"] priority = 99 def validate(self, fuzzresult): return url_filename(fuzzresult) == "robots.txt" and fuzzresult.code == 200 def process(self, fuzzresult): # Shamelessly (partially) copied from w3af's plugins/discovery/robotsReader.py for line in fuzzresult.history.fr_content().split('\n'): line = line.strip() if len(line) > 0 and line[0] != '#' and (line.upper().find('ALLOW') == 0 or\ line.upper().find('DISALLOW') == 0 or line.upper().find('SITEMAP') == 0): url = line[ line.find(':') + 1 : ] url = url.strip(" *") if url and not self.blacklisted_extension(url): self.queue_url(urljoin(fuzzresult.url, url))
ps2000Examples/streaming_mode/streaming_mode_gathering.py
LauritzRaisch/picosdk-python-wrappers
114
12767754
from time import time_ns from ctypes import POINTER, c_int16, c_uint32 import matplotlib.pyplot as plt import numpy as np from picosdk.ps2000 import ps2000 from picosdk.functions import assert_pico2000_ok from picosdk.ctypes_wrapper import C_CALLBACK_FUNCTION_FACTORY from enum import IntEnum class Channel(IntEnum): PS2000_CHANNEL_A = 0 PS2000_CHANNEL_B = 1 class PotentialRange(IntEnum): PS2000_10MV = 0 PS2000_20MV = 1 PS2000_50MV = 2 PS2000_100MV = 3 PS2000_200MV = 4 PS2000_500MV = 5 PS2000_1V = 6 PS2000_2V = 7 PS2000_5V = 8 PS2000_10V = 9 PS2000_20V = 10 class TimeUnit(IntEnum): FEMTOSECOND = 0 PICOSECOND = 1 NANOSECOND = 2 MICROSECOND = 3 MILLISECOND = 4 SECOND = 5 CALLBACK = C_CALLBACK_FUNCTION_FACTORY(None, POINTER(POINTER(c_int16)), c_int16, c_uint32, c_int16, c_int16, c_uint32) # reimplement this because the other one only takes ctypes def adc_to_mv(values, range_, bitness=16): v_ranges = [10, 20, 50, 100, 200, 500, 1_000, 2_000, 5_000, 10_000, 20_000] return [(x * v_ranges[range_]) / (2**(bitness - 1) - 1) for x in values] def determine_time_unit(interval_ns): unit = 0 units = ['ns', 'us', 'ms', 's'] while interval_ns > 5_000: interval_ns /= 1000 unit += 1 return interval_ns, units[unit] class StreamingDevice: def __init__(self, gather_values, potential_range=PotentialRange.PS2000_50MV): self.device = ps2000.open_unit() self.potential_range = potential_range self.gather_values = gather_values res = ps2000.ps2000_set_channel(self.device.handle, Channel.PS2000_CHANNEL_A, True, True, potential_range) assert_pico2000_ok(res) # start 'fast-streaming' mode res = ps2000.ps2000_run_streaming_ns( self.device.handle, 500, TimeUnit.NANOSECOND, 100_000, False, 1, 50_000 ) assert_pico2000_ok(res) self.start_time = time_ns() self.end_time = time_ns() def close(self): ps2000.ps2000_stop(self.device.handle) self.device.close() def gather(self): adc_values = [] def get_overview_buffers(buffers, _overflow, _triggered_at, _triggered, _auto_stop, n_values): adc_values.extend(buffers[0][0:n_values]) callback = CALLBACK(get_overview_buffers) while len(adc_values) < self.gather_values: ps2000.ps2000_get_streaming_last_values( self.device.handle, callback ) self.end_time = time_ns() return adc_to_mv(adc_values, self.potential_range) stream = StreamingDevice(6_000_000) values = stream.gather() stream.close() print('Values gathered: {}'.format(len(values))) fig, ax = plt.subplots() interval, units = determine_time_unit(stream.end_time - stream.start_time) ax.set_xlabel('time/{}'.format(units)) ax.set_ylabel('voltage/mV') ax.plot(np.linspace(0, interval, len(values)), values) plt.show()
tests/test_history.py
l1kw1d/stashboard
761
12767755
<filename>tests/test_history.py from datetime import datetime from datetime import date from datetime import timedelta from base import TestbedTest from models import Event from models import Service from models import Status class HistoryTest(TestbedTest): def setUp(self): super(HistoryTest, self).setUp() Status.load_defaults() self.service = Service(slug="account", name="Account", description="The BEST SERVICE") self.service.put() def test_history_order(self): start = date(2011, 4, 13) up = Status.get_by_slug("up") history = self.service.history(5, up, start=start) self.assertEquals(len(history), 5) history_days = [ h["day"] for h in history ] expected = [ date(2011, 4, 12), date(2011, 4, 11), date(2011, 4, 10), date(2011, 4, 9), date(2011, 4, 8), ] self.assertEquals(history_days, expected) def test_history_order_early_month(self): start = date(2011, 4, 2) up = Status.get_by_slug("up") history = self.service.history(5, up, start=start) history_days = [ h["day"] for h in history ] expected = [ date(2011, 4, 1), date(2011, 3, 31), date(2011, 3, 30), date(2011, 3, 29), date(2011, 3, 28), ] self.assertEquals(history_days, expected) for h in history: self.assertFalse(h["information"]) def test_history_order_late_month(self): start = date(2011, 4, 5) up = Status.get_by_slug("up") history = self.service.history(5, up, start=start) history_days = [ h["day"] for h in history ] expected = [ date(2011, 4, 4), date(2011, 4, 3), date(2011, 4, 2), date(2011, 4, 1), date(2011, 3, 31), ] self.assertEquals(history_days, expected) def test_history_no_errors_boundary(self): down = Status.get_by_slug("down") up = Status.get_by_slug("up") now = datetime(2011, 4, 5) event = Event(status=down, service=self.service, start=now, message="HEY") event.put() history = self.service.history(5, up, start=date(2011, 4, 5)) self.assertEquals(history[0]["information"], False) def test_history_one_error(self): down = Status.get_by_slug("down") up = Status.get_by_slug("up") now = datetime(2011, 4, 4, 12) event = Event(status=down, service=self.service, start=now, message="HEY") event.put() history = self.service.history(5, up, start=date(2011, 4, 5)) self.assertEquals(history[0]["information"], True) self.assertEquals(history[0]["name"], "information") def test_history_one_error_boundary(self): down = Status.get_by_slug("down") up = Status.get_by_slug("up") now = datetime(2011, 3, 31) event = Event(status=down, service=self.service, start=now, message="HEY") event.put() history = self.service.history(5, up, start=date(2011, 4, 5)) self.assertEquals(history[4]["information"], True) self.assertEquals(history[4]["name"], "information") def test_history_count(self): up = Status.get_by_slug("up") history = self.service.history(10, up, start=date(2011, 4, 5)) self.assertEquals(len(history), 10) def test_history_current_status(self): down = Status.get_by_slug("down") up = Status.get_by_slug("up") now = datetime(2011, 4, 4, 12, 51) event = Event(status=down, service=self.service, start=now, message="HEY") event.put() history, = self.service.history(1, up, start=date(2011, 4, 5)) self.assertEquals(history["information"], True)
src/detext/layers/multi_layer_perceptron.py
StarWang/detext
1,229
12767777
<gh_stars>1000+ from typing import List import tensorflow as tf class MultiLayerPerceptron(tf.keras.layers.Layer): """ A multi layer perceptron """ def __init__(self, num_hidden: List[int], activations: List, prefix: str = ''): """ Initializes the layer :param num_hidden: list of hidden layer sizes :param activations: list of activations for dense layer :param prefix: prefix of hidden layer name """ super(MultiLayerPerceptron, self).__init__() assert len(num_hidden) == len(activations), "num hidden and activations must contain the same number of elements" self.mlp = [] for i, (hidden_size, activation) in enumerate(zip(num_hidden, activations)): if hidden_size == 0: continue layer = tf.keras.layers.Dense(units=hidden_size, use_bias=True, activation=activation, name=f'{prefix}hidden_projection_{str(i)}') self.mlp.append(layer) def call(self, inputs, **kwargs): """ Applies multi-layer perceptron on given inputs :return output Shape=inputs.shape[:-1] + [num_hidden[-1]] """ x = inputs for layer in self.mlp: x = layer(x) return x
python3/pracmln/utils/latexmath2png.py
seba90/pracmln
123
12767802
#!/usr/bin/python2.5 # Until Python 2.6 from dnutils import logs from pracmln.utils import locs """ Converts LaTeX math to png images. Run latexmath2png.py --help for usage instructions. """ """ Author: <NAME> <<EMAIL>> URL: http://www.kamilkisiel.net Revision History: 2007/04/20 - Initial version TODO: - Make handling of bad input more graceful? --- Some ideas borrowed from Kjell Fauske's article at http://fauskes.net/nb/htmleqII/ Licensed under the MIT License: Copyright (c) 2007 <NAME> <<EMAIL>> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os import tempfile from PIL import Image import base64 logger = logs.getlogger(__name__, logs.DEBUG) # Default packages to use when generating output default_packages = [ 'amsmath', 'amsthm', 'amssymb', 'bm' ] def __build_preamble(packages, declarations): preamble = '\documentclass{article}\n' for p in packages: preamble += "\\usepackage{{{}}}\n".format(p) for d in declarations: preamble += '{}\n'.format(d) preamble += "\pagestyle{empty}\n\\begin{document}\n" return preamble def __write_output(infile, outdir, workdir='.', filename='', size=1, svg=True): try: # Generate the DVI file. NOTE: no output in stdout, as it is piped into /dev/null! latexcmd = 'latex -halt-on-error -output-directory {} {} >/dev/null'.format(workdir, infile) rc = os.system(latexcmd) # Something bad happened, abort if rc != 0: raise Exception('latex error') # Convert the DVI file to PNG's dvifile = infile.replace('.tex', '.dvi') outfilename = os.path.join(outdir, filename) if svg: dvicmd = "dvisvgm -v 0 -o {}.svg --no-fonts {}".format(outfilename, dvifile) else: dvicmd = "dvipng -q* -T tight -x {} -z 9 -bg Transparent -o {}.png {} >/dev/null".format(size * 1000, outfilename, dvifile) rc = os.system(dvicmd) if rc != 0: raise Exception('{} error'.format('dvisvgm error' if svg else'dvipng')) finally: # Cleanup temporaries basefile = infile.replace('.tex', '') tempext = ['.aux', '.dvi', '.log'] for te in tempext: tempfile = basefile + te if os.path.exists(tempfile): os.remove(tempfile) def math2png(content, outdir, packages=default_packages, declarations=[], filename='', size=1, svg=True): """ Generate png images from $$...$$ style math environment equations. Parameters: content - A string containing latex math environment formulas outdir - Output directory for PNG images packages - Optional list of packages to include in the LaTeX preamble declarations - Optional list of declarations to add to the LaTeX preamble filename - Optional filename for output files size - Scale factor for output """ outfilename = '/tmp/default.tex' # Set the working directory workdir = tempfile.gettempdir() # Get a temporary file fd, texfile = tempfile.mkstemp('.tex', 'eq', workdir, True) try: content = content.replace('$', r'\$') # Create the TeX document and save to tempfile fileContent = '{}$${}$$\n\end{{document}}'.format(__build_preamble(packages, declarations), content) with os.fdopen(fd, 'w+') as f: f.write(fileContent) __write_output(texfile, outdir, workdir=workdir, filename=filename, size=size, svg=svg) outfilename = os.path.join(outdir, '{}.{}'.format(filename, 'svg' if svg else 'png')) except: logger.error('Unable to create image. A reason you encounter ' 'this error might be that you are either missing latex ' 'packages for generating .dvi files or {} for ' 'generating the {} image from the .dvi file.'.format('dvisvgm' if svg else 'dvipng', 'svg' if svg else 'png')) outfilename = os.path.join(locs.etc, 'default.{}'.format('svg' if svg else 'png')) finally: if svg: with open(outfilename, 'r') as outfile: filecontent = outfile.read() ratio = 1 else: # determine image size im = Image.open(outfilename) width, height = im.size ratio = float(width)/float(height) # create base64 encoded file content png = open(outfilename) filecontent = base64.b64encode(png.read()) # cleanup and delete temporary files if os.path.exists(texfile) and locs.etc not in outfilename: os.remove(texfile) if os.path.exists(outfilename) and locs.etc not in outfilename: os.remove(outfilename) return filecontent, ratio
lib/python2.7/site-packages/samba/tests/common.py
abankalarm/pth-toolkit
480
12767846
<filename>lib/python2.7/site-packages/samba/tests/common.py # Unix SMB/CIFS implementation. Tests for common.py routines # Copyright (C) <NAME> 2011 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # """Tests for samba.common""" import samba, os import samba.tests from samba.common import * from samba.samdb import SamDB class CommonTests(samba.tests.TestCase): def test_normalise_int32(self): self.assertEquals('17', normalise_int32(17)) self.assertEquals('17', normalise_int32('17')) self.assertEquals('-123', normalise_int32('-123')) self.assertEquals('-1294967296', normalise_int32('3000000000')) def test_dsdb_Dn(self): sam = samba.Ldb(url='dntest.ldb') dn1 = dsdb_Dn(sam, "DC=foo,DC=bar") dn2 = dsdb_Dn(sam, "B:8:0000000D:<GUID=b3f0ec29-17f4-452a-b002-963e1909d101>;DC=samba,DC=example,DC=com") self.assertEquals(dn2.binary, "0000000D") self.assertEquals(13, dn2.get_binary_integer()) os.unlink('dntest.ldb')
zoomus/components/live_stream.py
seantibor/zoomus
178
12767860
from __future__ import absolute_import from zoomus import util from zoomus.components import base class LiveStreamComponentV2(base.BaseComponent): def update(self, **kwargs): """ Use this API to update the meeting's stream information. Expects: - meeting_id: int - stream_url: string (URL) - stream_key: string - page_url: string (URL) """ util.require_keys(kwargs, "meeting_id") return self.patch_request( "/meetings/{}/livestream".format(kwargs.get("meeting_id")), data=kwargs ) def update_status(self, **kwargs): """ Use this API to update the status of a meeting's live stream. Expects: - meeting_id: int - action (start|stop) - settings: dict """ util.require_keys(kwargs, "meeting_id") return self.patch_request( "/meetings/{}/livestream/status".format(kwargs.get("meeting_id")), data=kwargs, )
tests/test_contrib_debug_toolbar_flask.py
proofit404/userstories
187
12767866
<gh_stars>100-1000 import pytest @pytest.mark.xfail def test_contrib_is_available(): from stories.contrib.debug_toolbars.flask import StoriesPanel # noqa: F401
titus/test/producer/testCart.py
jmilleralpine/hadrian
127
12767871
#!/usr/bin/env python # Copyright (C) 2014 Open Data ("Open Data" refers to # one or more of the following companies: Open Data Partners LLC, # Open Data Research LLC, or Open Data Capital LLC.) # # This file is part of Hadrian. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy from titus.genpy import PFAEngine from titus.producer.tools import look from titus.producer.cart import * class TestProducerCart(unittest.TestCase): @staticmethod def data(): while True: x = random.uniform(0, 10) y = random.uniform(0, 10) if x < 4.0: if y < 6.0: z = random.gauss(5, 1) else: z = random.gauss(8, 1) else: if y < 2.0: z = random.gauss(1, 1) else: z = random.gauss(2, 1) if z < 0.0: z = 0.0 elif z >= 10.0: z = 9.99999 a = "A" + str(int(x)) b = "B" + str(int(y/2) * 2) c = "C" + str(int(z/3) * 3) yield (x, y, z, a, b, c) def testCartMustBuildNumericalNumerical(self): random.seed(12345) numpy.seterr(divide="ignore", invalid="ignore") dataset = Dataset.fromIterable(((x, y, z) for (x, y, z, a, b, c) in TestProducerCart.data()), 100000, ("x", "y", "z")) tree = TreeNode.fromWholeDataset(dataset, "z") tree.splitMaxDepth(2) doc = tree.pfaDocument({"type": "record", "name": "Datum", "fields": [{"name": "x", "type": "double"}, {"name": "y", "type": "double"}]}, "TreeNode") # look(doc, maxDepth=8) self.assertEqual(doc["cells"]["tree"]["init"]["field"], "x") self.assertAlmostEqual(doc["cells"]["tree"]["init"]["value"], 4.00, places=2) self.assertEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["field"], "y") self.assertAlmostEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["value"], 6.00, places=2) self.assertAlmostEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["pass"]["double"], 5.00, places=2) self.assertAlmostEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["fail"]["double"], 8.02, places=2) self.assertEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["field"], "y") self.assertAlmostEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["value"], 2.00, places=2) self.assertAlmostEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["pass"]["double"], 1.09, places=2) self.assertAlmostEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["fail"]["double"], 2.00, places=2) engine, = PFAEngine.fromJson(doc) self.assertAlmostEqual(engine.action({"x": 2.0, "y": 3.0}), 5.00, places=2) self.assertAlmostEqual(engine.action({"x": 2.0, "y": 8.0}), 8.02, places=2) self.assertAlmostEqual(engine.action({"x": 7.0, "y": 1.0}), 1.09, places=2) self.assertAlmostEqual(engine.action({"x": 7.0, "y": 5.0}), 2.00, places=2) doc = tree.pfaDocument( {"type": "record", "name": "Datum", "fields": [{"name": "x", "type": "double"}, {"name": "y", "type": "double"}]}, "TreeNode", nodeScores=True, datasetSize=True, predictandUnique=True, nTimesVariance=True, gain=True) # look(doc, maxDepth=8) engine, = PFAEngine.fromJson(doc) def testCartMustBuildNumericalCategorical(self): random.seed(12345) numpy.seterr(divide="ignore", invalid="ignore") dataset = Dataset.fromIterable(((x, y, c) for (x, y, z, a, b, c) in TestProducerCart.data()), 100000, ("x", "y", "c")) tree = TreeNode.fromWholeDataset(dataset, "c") tree.splitMaxDepth(2) doc = tree.pfaDocument({"type": "record", "name": "Datum", "fields": [{"name": "x", "type": "double"}, {"name": "y", "type": "double"}]}, "TreeNode") # look(doc, maxDepth=8) self.assertEqual(doc["cells"]["tree"]["init"]["field"], "x") self.assertAlmostEqual(doc["cells"]["tree"]["init"]["value"], 4.00, places=2) self.assertEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["field"], "y") self.assertAlmostEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["value"], 6.00, places=2) self.assertEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["pass"]["string"], "C3") self.assertEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["fail"]["string"], "C6") self.assertEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["field"], "y") self.assertAlmostEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["value"], 2.00, places=2) self.assertEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["pass"]["string"], "C0") self.assertEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["fail"]["string"], "C0") engine, = PFAEngine.fromJson(doc) self.assertEqual(engine.action({"x": 2.0, "y": 3.0}), "C3") self.assertEqual(engine.action({"x": 2.0, "y": 8.0}), "C6") self.assertEqual(engine.action({"x": 7.0, "y": 1.0}), "C0") self.assertEqual(engine.action({"x": 7.0, "y": 5.0}), "C0") doc = tree.pfaDocument( {"type": "record", "name": "Datum", "fields": [{"name": "x", "type": "double"}, {"name": "y", "type": "double"}]}, "TreeNode", nodeScores=True, datasetSize=True, predictandDistribution=True, predictandUnique=True, entropy=True, gain=True) # look(doc, maxDepth=8) engine, = PFAEngine.fromJson(doc) def testCartMustBuildCategoricalNumerical(self): random.seed(12345) numpy.seterr(divide="ignore", invalid="ignore") dataset = Dataset.fromIterable(((a, b, z) for (x, y, z, a, b, c) in TestProducerCart.data()), 100000, ("a", "b", "z")) tree = TreeNode.fromWholeDataset(dataset, "z") tree.splitMaxDepth(2) doc = tree.pfaDocument({"type": "record", "name": "Datum", "fields": [{"name": "a", "type": "string"}, {"name": "b", "type": "string"}]}, "TreeNode") # look(doc, maxDepth=8) self.assertEqual(doc["cells"]["tree"]["init"]["field"], "a") self.assertEqual(doc["cells"]["tree"]["init"]["value"], ["A0", "A1", "A2", "A3"]) self.assertEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["field"], "b") self.assertEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["value"], ["B6", "B8"]) self.assertAlmostEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["pass"]["double"], 8.02, places=2) self.assertAlmostEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["fail"]["double"], 5.00, places=2) self.assertEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["field"], "b") self.assertEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["value"], ["B0"]) self.assertAlmostEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["pass"]["double"], 1.09, places=2) self.assertAlmostEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["fail"]["double"], 2.00, places=2) engine, = PFAEngine.fromJson(doc) self.assertAlmostEqual(engine.action({"a": "A1", "b": "B6"}), 8.02, places=2) self.assertAlmostEqual(engine.action({"a": "A1", "b": "B2"}), 5.00, places=2) self.assertAlmostEqual(engine.action({"a": "A5", "b": "B0"}), 1.09, places=2) self.assertAlmostEqual(engine.action({"a": "A5", "b": "B4"}), 2.00, places=2) doc = tree.pfaDocument( {"type": "record", "name": "Datum", "fields": [{"name": "a", "type": "string"}, {"name": "b", "type": "string"}]}, "TreeNode", nodeScores=True, datasetSize=True, predictandUnique=True, nTimesVariance=True, gain=True) # look(doc, maxDepth=8) engine, = PFAEngine.fromJson(doc) def testCartMustBuildCategoricalCategorical(self): random.seed(12345) numpy.seterr(divide="ignore", invalid="ignore") dataset = Dataset.fromIterable(((a, b, c) for (x, y, z, a, b, c) in TestProducerCart.data()), 100000, ("a", "b", "c")) tree = TreeNode.fromWholeDataset(dataset, "c") tree.splitMaxDepth(2) doc = tree.pfaDocument({"type": "record", "name": "Datum", "fields": [{"name": "a", "type": "string"}, {"name": "b", "type": "string"}]}, "TreeNode") # look(doc, maxDepth=8) self.assertEqual(doc["cells"]["tree"]["init"]["field"], "a") self.assertEqual(doc["cells"]["tree"]["init"]["value"], ["A0", "A1", "A2", "A3"]) self.assertEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["field"], "b") self.assertEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["value"], ["B6", "B8"]) self.assertEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["pass"]["string"], "C6") self.assertEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["fail"]["string"], "C3") self.assertEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["field"], "b") self.assertEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["value"], ["B0"]) self.assertEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["pass"]["string"], "C0") self.assertEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["fail"]["string"], "C0") engine, = PFAEngine.fromJson(doc) self.assertEqual(engine.action({"a": "A1", "b": "B6"}), "C6") self.assertEqual(engine.action({"a": "A1", "b": "B2"}), "C3") self.assertEqual(engine.action({"a": "A5", "b": "B0"}), "C0") self.assertEqual(engine.action({"a": "A5", "b": "B4"}), "C0") doc = tree.pfaDocument( {"type": "record", "name": "Datum", "fields": [{"name": "a", "type": "string"}, {"name": "b", "type": "string"}]}, "TreeNode", nodeScores=True, datasetSize=True, predictandDistribution=True, predictandUnique=True, entropy=True, gain=True) # look(doc, maxDepth=8) engine, = PFAEngine.fromJson(doc) if __name__ == "__main__": unittest.main()
lightreid/models/backbones/__init__.py
nataliamiccini/light-reid
296
12767883
<gh_stars>100-1000 from .resnet import resnet18, resnet34, resnet50, resnet101, resnet152 from .resnet import resnet18ibna, resnet34ibna, resnet50ibna, resnet101ibna, resnet152ibna from .transformers import * __cnnbackbone_factory = { # resnet series 'resnet18': resnet18, 'resnet34': resnet34, 'resnet50': resnet50, 'resnet101': resnet101, 'resnet152': resnet152, 'resnet18ibna': resnet18ibna, 'resnet34ibna': resnet34ibna, 'resnet50ibna': resnet50ibna, 'resnet101ibna': resnet101ibna, 'resnet152ibna': resnet152ibna, # vision transformer series 'vit_small_patch16_224': vit_small_patch16_224, 'vit_base_patch16_224': vit_base_patch16_224, 'vit_base_patch32_224': vit_base_patch32_224, 'vit_base_patch16_384': vit_base_patch16_384, 'vit_base_patch32_384': vit_base_patch32_384, 'vit_large_patch16_224': vit_large_patch16_224, 'vit_large_patch32_224': vit_large_patch32_224, 'vit_large_patch16_384': vit_large_patch16_384, 'vit_large_patch32_384': vit_large_patch32_384, 'vit_base_patch16_224_in21k': vit_base_patch16_224_in21k, 'vit_base_patch32_224_in21k': vit_base_patch32_224_in21k, 'vit_large_patch16_224_in21k': vit_large_patch16_224_in21k, 'vit_large_patch32_224_in21k': vit_large_patch32_224_in21k, 'vit_huge_patch14_224_in21k': vit_huge_patch14_224_in21k, 'vit_deit_tiny_patch16_224': vit_deit_tiny_patch16_224, 'vit_deit_small_patch16_224': vit_deit_small_patch16_224, 'vit_deit_base_patch16_224': vit_deit_base_patch16_224, 'vit_deit_base_patch16_384': vit_deit_base_patch16_384, 'vit_deit_tiny_distilled_patch16_224': vit_deit_tiny_distilled_patch16_224, 'vit_deit_small_distilled_patch16_224': vit_deit_small_distilled_patch16_224, 'vit_deit_base_distilled_patch16_224': vit_deit_base_distilled_patch16_224, 'vit_deit_base_distilled_patch16_384': vit_deit_base_distilled_patch16_384, 'vit_base_patch16_224_miil_in21k': vit_base_patch16_224_miil_in21k, 'vit_base_patch16_224_miil': vit_base_patch16_224_miil, } def build_cnnbackbone(name, pretrained=True, **kwargs): return __cnnbackbone_factory[name](pretrained=pretrained, **kwargs)
lib/blackboxprotobuf/lib/protofile.py
nccgroup/blackboxprotobuf
261
12767899
""" Python methods for importing and exporting '.proto' files from the BBP type definition format. """ # TODO get custom exceptions for these methods import io import re import logging from blackboxprotobuf.lib.exceptions import TypedefException import blackboxprotobuf.lib.api PROTO_FILE_TYPE_MAP = { "uint": "uint64", "int": "int64", "sint": "sint64", "fixed32": "fixed32", "sfixed32": "sfixed32", "float": "float", "fixed64": "fixed64", "sfixed64": "sfixed64", "double": "double", "bytes": "bytes", "bytes_hex": "bytes", "string": "string", } PACKABLE_TYPES = [ "uint", "int", "sint", "fixed32", "sfixed32", "float", "fixed64", "sfixed64", "double", ] # Inverse of the above, but we have to include more types PROTO_FILE_TYPE_TO_BBP = { "double": "double", "float": "float", "int32": "int", "int64": "int", "uint32": "uint", "uint64": "uint", "sint32": "sint", "sint64": "sint", "fixed32": "fixed32", "fixed64": "fixed64", "sfixed32": "sfixed32", "sfixed64": "sfixed64", "bool": "uint", "string": "string", # should be default_binary_type, but can't handle that well here "bytes": "bytes", } NAME_REGEX = re.compile(r"\A[a-zA-Z_][a-zA-Z0-9_]*\Z") # add packed types to the list for packable_type in PACKABLE_TYPES: packed_type = "packed_" + packable_type PROTO_FILE_TYPE_MAP[packed_type] = PROTO_FILE_TYPE_MAP[packable_type] def _print_message(message_name, typedef, output_file, depth=0): indent = u" " * depth if not NAME_REGEX.match(message_name): raise TypedefException("Message name: %s is not valid" % message_name) # sort typedef for better looking output typedef = blackboxprotobuf.lib.api.sort_typedef(typedef) message_name = message_name.strip() output_file.write(u"\n") output_file.write(indent) output_file.write(u"message %s {\n" % message_name) for field_number, field_typedef in typedef.items(): # TODO Default to all fields as repeated? or optional proto_type = None field_name = None field_options = "" # a repeated field with one element is indistinduishable from a # repeated field so we just put repeated if we have proof that it is # repeatable, but this might be wrong sometimes # maybe some sort of protobuf discovery tool can detect this is_repeated = field_typedef.get("seen_repeated", False) if "name" in field_typedef and field_typedef["name"] != "": field_name = field_typedef["name"] field_name = field_name.strip() if not NAME_REGEX.match(field_name): field_name = None if field_name is None: field_name = u"field%s" % field_number if field_typedef["type"] == "message": # If we have multiple typedefs, this means is something like the Any # message, and has to be manually reparsed to each type if "alt_typedefs" in field_typedef: proto_type = "bytes" else: proto_type = field_name + "_type" _print_message( proto_type, field_typedef["message_typedef"], output_file, depth + 1 ) else: if field_typedef["type"] not in PROTO_FILE_TYPE_MAP: raise TypedefException( "Type %s does not have a mapping to protobuf types." % field_typedef["type"] ) proto_type = PROTO_FILE_TYPE_MAP[field_typedef["type"]] # we're using proto3 syntax. Repeated numeric fields are packed by default # if it's repeated and not packed, then make sure we specify it's not packed if is_repeated and field_typedef["type"] in PACKABLE_TYPES: field_options = u" [packed=false]" # if it's a packed type, we'll explicitoly set that too, can't hurt elif field_typedef["type"].startswith("packed_"): field_options = u" [packed=true]" is_repeated = True output_file.write(indent) output_file.write( u" %s%s %s = %s%s;\n" % ( "repeated " if is_repeated else "", proto_type, field_name, field_number, field_options, ) ) output_file.write(indent) output_file.write(u"}\n\n") def export_proto(typedef_map, output_filename=None, output_file=None, package=None): """Export the given type definitons as a '.proto' file. Typedefs are expected as a dictionary of {'message_name': typedef } Write to output_file or output_filename if provided, otherwise return a string output_filename will be overwritten if it exists """ return_string = False if output_filename is not None: output_file = io.open(output_filename, "w+") if output_file is None: return_string = True output_file = io.StringIO() # preamble output_file.write(u'syntax = "proto3";\n\n') if package: output_file.write(u"package %s;\n\n" % package) for typedef_name, typedef in typedef_map.items(): _print_message(typedef_name, typedef, output_file) if return_string: return output_file.getvalue() # close the file if we opened it elif output_filename is not None: output_file.close() return None MESSAGE_START_REGEX = re.compile(r"^message +([a-zA-Z_0-9]+) *{.*") FIELD_REGEX = re.compile( r"^ *(repeated|optional|required)? *([a-zA-Z0-9_]+) +([a-zA-Z0-9_]+) += +([0-9]+) *(\[[a-z]+=[a-z]*\])?.*;.*$" ) SYNTAX_REGEX = re.compile(r'^ *syntax += +"(proto\d)" *;.*') ENUM_REGEX = re.compile(r"^ *enum +([a-zA-Z0-9_]+) *{.*") PACKAGE_REGEX = re.compile(r"^ *package +([a-zA-Z0-9_.]+) *;.*") def import_proto(config, input_string=None, input_filename=None, input_file=None): typedef_map = {} if input_string is not None: input_file = io.StringIO(input_string) if input_file is None and input_filename is not None: input_file = io.open(input_filename, "r") if input_file is None: raise ValueError("No file provided to import_proto") syntax_version = "proto2" package_prefix = "" enum_names = [] message_trees = [] message_names = [] line = input_file.readline() while line: line = line.strip() if line.startswith("syntax") and SYNTAX_REGEX.match(line): syntax_version = SYNTAX_REGEX.match(line).group(1) elif line.startswith("package") and PACKAGE_REGEX.match(line): package_prefix = PACKAGE_REGEX.match(line).group(1) + "." elif line.startswith("import"): logging.warn( "Proto file has import which is not supported " "by the parser. Ensure the imported files are " "processed first: %s", line, ) elif line.startswith("enum") and ENUM_REGEX.match(line): enum_name = _parse_enum(line, input_file) enum_names.append(enum_name) elif line.startswith("message") and MESSAGE_START_REGEX.match(line): message_tree = _preparse_message(line, input_file) message_trees.append(message_tree) line = input_file.readline() # TODO parse the message data for tree in message_trees: new_message_names, new_enum_names = _collect_names(package_prefix, tree) enum_names += new_enum_names message_names += new_message_names logging.debug("Got the following enum_names: %s", enum_names) logging.debug("Got the following message_names: %s", message_names) for tree in message_trees: _parse_message( tree, typedef_map, message_names, enum_names, package_prefix, syntax_version == "proto3", config, ) return typedef_map def _parse_enum(line, input_file): """Parse an enum out of the file. Goes from enum declaration to next } Returns the enum's name """ enum_name = ENUM_REGEX.match(line).group(1) # parse until the next '}' while "}" not in line: line = input_file.readline() if not line: raise ValueError("Did not find close of enum") return enum_name def _preparse_message(line, input_file): """Parse out a message name and the lines that make it up""" message_name = MESSAGE_START_REGEX.match(line).group(1) message_lines = [] inner_enums = [] inner_messages = [] while "}" not in line: line = input_file.readline() if not line: raise ValueError("Did not find close of message") line = line.strip() if line.startswith("enum") and ENUM_REGEX.match(line): enum_name = _parse_enum(line, input_file) inner_enums.append(enum_name) elif line.startswith("message") and MESSAGE_START_REGEX.match(line): message_tree = _preparse_message(line, input_file) inner_messages.append(message_tree) # not an inner enum or message else: message_lines.append(line) return { "name": message_name, "data": message_lines, "enums": inner_enums, "inner_messages": inner_messages, } def _collect_names(prefix, message_tree): message_names = [] enum_names = [] name = prefix + message_tree["name"] message_names.append(name) for enum_name in message_tree["enums"]: enum_names.append(prefix + enum_name) for inner_message in message_tree["inner_messages"]: new_message_names, new_enum_names = _collect_names(name + ".", inner_message) message_names += new_message_names enum_names += new_enum_names return message_names, enum_names def _check_message_name(current_path, name, known_message_names, config): # Verify message name against preparsed message names and global # known_messages # For example, if we have: # Message.InnerMesage # referenced from: # PackageA.Message2 # we would look up: # PackageA.Message2.Message.InnerMessage # PackageA.Message.InnerMessage # should also work for enums if name in config.known_types: return True # search for anything under a common prefix in known_message_names logging.debug("Testing message name: %s", name) prefix_options = [""] for part in current_path.split("."): if part: prefix_options = [prefix_options[0] + part + "."] + prefix_options logging.debug("prefix_options: %s", prefix_options) for prefix in prefix_options: logging.debug("Testing message name: %s", prefix + name) if prefix + name in known_message_names: return prefix + name # remove the last bit of the prefix if "." not in prefix: break prefix = ".".join(prefix.split(".")[:-1]) logging.debug( "Message %s not found from %s Known names are: %s", name, current_path, known_message_names, ) return None def _parse_message( message_tree, typdef_map, known_message_names, enum_names, prefix, is_proto3, config ): message_typedef = {} message_name = prefix + message_tree["name"] prefix = message_name + "." # parse the actual message fields for line in message_tree["data"]: # lines should already be stripped and should not have messages or enums # logging.debug("Line before assert: %s", line) assert all([not line.strip().startswith(x) for x in ["message ", "enum "]]) # Check if the line matches the field regex match = FIELD_REGEX.match(line) if match: field_number, field_typedef = _parse_field( match, known_message_names, enum_names, prefix, is_proto3, config ) message_typedef[field_number] = field_typedef # add the messsage to tyep returned typedefs logging.debug("Adding message %s to typedef maps", message_name) typdef_map[message_name] = message_typedef for inner_message in message_tree["inner_messages"]: # TODO prefix should be added to? _parse_message( inner_message, typdef_map, known_message_names, enum_names, prefix, is_proto3, config, ) # parse a field into a dictionary for the typedef def _parse_field(match, known_message_names, enum_names, prefix, is_proto3, config): typedef = {} field_name = match.group(3) if not field_name: raise ValueError("Could not parse field name from line: %s" % match) typedef["name"] = field_name field_number = match.group(4) if not field_number: raise ValueError("Could not parse field number from line: %s" % match) # figure out repeated field_rule = match.group(1) is_repeated = False if field_rule and "repeated" in field_rule: is_repeated = True typedef["seen_repeated"] = True field_type = match.group(2) if not field_type: raise ValueError("Could not parse field type from line: %s" % match) # check normal types bbp_type = PROTO_FILE_TYPE_TO_BBP.get(field_type, None) if not bbp_type: logging.debug("Got non-basic type: %s, checking enums", field_type) # check enum names if _check_message_name(prefix, field_type, enum_names, config): # enum = uint bbp_type = "uint" if not bbp_type: # Not enum or normal type, check messages message_name = _check_message_name( prefix, field_type, known_message_names, config ) if message_name: bbp_type = "message" typedef["message_type_name"] = message_name if not bbp_type: # If we don't have a type now, then fail raise ValueError( "Could not get a type for field %s: %s" % (field_name, field_type) ) # figure out packed # default based on repeated + proto3, fallback to options field_options = match.group(5) is_packed = is_repeated and is_proto3 and (field_type in PACKABLE_TYPES) if is_packed and field_options and "packed=false" in field_options: is_packed = False elif is_repeated and field_options and "packed=true" in field_options: is_packed = True # make sure the type lines up with packable if is_packed and bbp_type not in PACKABLE_TYPES: raise ValueError( "Field %s set as packable, but not a packable type: %s" % (field_name, bbp_type) ) if is_packed: bbp_type = "packed_" + bbp_type typedef["type"] = bbp_type logging.debug("Parsed field number %s: %s", field_number, typedef) return field_number, typedef
src/genie/libs/parser/nxos/tests/ShowSpanningTreeDetail/cli/equal/golden_output_1_expected.py
balmasea/genieparser
204
12767934
<filename>src/genie/libs/parser/nxos/tests/ShowSpanningTreeDetail/cli/equal/golden_output_1_expected.py expected_output = { 'mstp': { 'mst_instances': { 0: { 'mst_id': 0, 'bridge_priority': 32768, 'bridge_sysid': 0, 'bridge_address': '00e3.04ff.ad03', 'topology_change_flag': False, 'topology_detected_flag': False, 'topology_changes': 0, 'time_since_topology_change': '142:22:13', 'times': { 'hold': 1, 'topology_change': 70, 'notification': 10, 'max_age': 40, 'hello': 10, 'forwarding_delay': 30, }, 'timers' : { 'hello': 0, 'topology_change': 0, 'notification': 0, }, 'root_of_the_spanning_tree': True, 'interfaces': { 'Port-channel30': { 'name': 'Port-channel30', 'bridge_assurance_inconsistent': True, 'vpc_peer_link_inconsistent': True, 'port_num': 4125, 'status': 'broken', 'cost': 500, 'port_priority': 128, 'port_identifier': '128.4125', 'designated_root_priority': 32768, 'designated_root_address': '0023.04ff.ad03', 'designated_bridge_priority': 61440, 'designated_bridge_address': '4055.39ff.fee7', 'designated_port_id': '128.4125', 'designated_path_cost': 0, 'timers': { 'message_age': 0, 'forward_delay': 0, 'hold': 0, }, 'port_type' : 'network', 'number_of_forward_transitions': 0, 'link_type': 'point-to-point', 'internal': True, 'peer_type': 'STP', 'pvst_simulation': True, 'counters': { 'bpdu_sent': 110, 'bpdu_received': 0 } } } } }, 'hello_time': 10, 'max_age': 40, 'forwarding_delay': 30 } }
hyperglass/cache/base.py
blkmajik/hyperglass
298
12767935
<reponame>blkmajik/hyperglass<gh_stars>100-1000 """Base Redis cache handler.""" # Standard Library import re import json from typing import Any, Optional # Third Party from pydantic import SecretStr class BaseCache: """Redis cache handler.""" def __init__( self, db: int, host: str = "localhost", port: int = 6379, password: Optional[SecretStr] = None, decode_responses: bool = True, **kwargs: Any, ) -> None: """Initialize Redis connection.""" self.db: int = db self.host: str = str(host) self.port: int = port self.password: Optional[SecretStr] = password self.decode_responses: bool = decode_responses self.redis_args: dict = kwargs def __repr__(self) -> str: """Represent class state.""" return "HyperglassCache(db={}, host={}, port={}, password={})".format( self.db, self.host, self.port, self.password ) def parse_types(self, value: str) -> Any: """Parse a string to standard python types.""" def parse_string(str_value: str): is_float = (re.compile(r"^(\d+\.\d+)$"), float) is_int = (re.compile(r"^(\d+)$"), int) is_bool = (re.compile(r"^(True|true|False|false)$"), bool) is_none = (re.compile(r"^(None|none|null|nil|\(nil\))$"), lambda v: None) is_jsonable = (re.compile(r"^[\{\[].*[\}\]]$"), json.loads) for pattern, factory in (is_float, is_int, is_bool, is_none, is_jsonable): if isinstance(str_value, str) and bool(re.match(pattern, str_value)): str_value = factory(str_value) break return str_value if isinstance(value, str): value = parse_string(value) elif isinstance(value, bytes): value = parse_string(value.decode("utf-8")) elif isinstance(value, list): value = [parse_string(i) for i in value] elif isinstance(value, tuple): value = tuple(parse_string(i) for i in value) elif isinstance(value, dict): value = {k: self.parse_types(v) for k, v in value.items()} return value
saleor/account/migrations/0059_merge_20220221_1025.py
victor-abz/saleor
1,392
12767937
<filename>saleor/account/migrations/0059_merge_20220221_1025.py # Generated by Django 3.2.12 on 2022-02-21 10:25 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("account", "0057_clear_user_addresses"), ("account", "0058_update_user_search_document"), ] operations = []
sematch/classify.py
dhimmel/sematch
397
12767949
<gh_stars>100-1000 from gsitk.datasets.datasets import DatasetManager from nltk.corpus import opinion_lexicon from collections import Counter def prepare_lexicon(process=True, dim=250, save=False): if process: dm = DatasetManager() data = dm.prepare_datasets() nega = set(opinion_lexicon.negative()) posi = set(opinion_lexicon.positive()) lexicon = opinion_lexicon.words() lexicon_dic = {x: 0 for x in lexicon} for t in data['vader']['text']: for w in t: if w in lexicon_dic: lexicon_dic[w] += 1 for t in data['sentiment140']['text']: for w in t: if w in lexicon_dic: lexicon_dic[w] += 1 L = Counter(lexicon_dic).most_common(4000) N = [] P = [] for w, _ in L: if w in nega: N.append(w) elif w in posi: P.append(w) l = P[:dim] + N[:dim] if save: with open('senti.lexicon', 'w') as f: for d in l: f.write(d) f.write('\n') return l else: with open('senti.lexicon', 'r') as f: data = [line.strip() for line in f] return data from gensim.models import Word2Vec from numpy import array, dot from gensim import matutils import collections import functools class memoized(object): def __init__(self, func): self.func = func self.cache = {} def __call__(self, *args): if not isinstance(args, collections.Hashable): # uncacheable. a list, for instance. # better to not cache than blow up. return self.func(*args) if args in self.cache: return self.cache[args] else: value = self.func(*args) self.cache[args] = value return value def __repr__(self): '''Return the function's docstring.''' return self.func.__doc__ def __get__(self, obj, objtype): '''Support instance methods.''' return functools.partial(self.__call__, obj) class WordRelatedness: def __init__(self, model): self._model = model self._words = set([w for w in self._model.vocab]) def check_word(self, word): return True if word in self._words else False def check_words(self, words): return [w for w in words if self.check_word(w)] def similar_words(self, word): return self._model.most_similar(word) if self.check_word(word) else [] @memoized def word_similarity(self, w1, w2): return self._model.similarity(w1, w2) if self.check_word(w1) and self.check_word(w2) else 0.0 def words_similarity(self, words1, words2): w1 = self.check_words(words1) w2 = self.check_words(words2) return self._model.n_similarity(w1, w2) if w1 and w2 else 0.0 def word_vector(self, w): return matutils.unitvec(self._model[w]) if self.check_word(w) else None def words_vector(self, words): v_words = [self._model[w] for w in self.check_words(words)] return matutils.unitvec(array(v_words).mean(axis=0)) if v_words else None def consine_similarity(self, v1, v2): return dot(v1, v2) from gsitk.features.word2vec import Word2VecFeatures from sklearn.base import BaseEstimator, TransformerMixin from sklearn.feature_extraction import DictVectorizer from sklearn.pipeline import Pipeline import numpy as np import nltk class SimVectorizer: def __init__(self, senti_lexicon): w2v_feat = Word2VecFeatures(w2v_model_path='/data/w2vmodel_500d_5mc') sim_model = WordRelatedness(w2v_feat.model) self._sim = sim_model.word_similarity self._lexicon = senti_lexicon self._N = len(self._lexicon) # self._vectorizer = DictVectorizer(sparse=False) self._stopwords = set(nltk.corpus.stopwords.words('english')) def word_process(self, words): return [w for w in words if w not in self._stopwords and len(w) > 2] def similarity(self, words, feature): return max([self._sim(w, feature) for w in words] + [0.0]) def transform(self, X): X_transformed = np.zeros((len(X), self._N)) for i, x in enumerate(X): # if i % 10000 == 0: # print(i) words = self.word_process(x) words = set(words) for j, f in enumerate(self._lexicon): X_transformed[i, j] = self.similarity(words, f) return X_transformed from nltk.corpus import opinion_lexicon from collections import Counter import numpy as np import nltk Punc = [".", "!", "?", ",", ";", ":", "-", "'", "\"", "!!", "!!!", "??", "???", "?!?", "!?!", "?!?!", "!?!?"] Negate = ["aint", "arent", "cannot", "cant", "couldnt", "darent", "didnt", "doesnt", "ain't", "aren't", "can't", "couldn't", "daren't", "didn't", "doesn't", "dont", "hadnt", "hasnt", "havent", "isnt", "mightnt", "mustnt", "neither", "don't", "hadn't", "hasn't", "haven't", "isn't", "mightn't", "mustn't", "neednt", "needn't", "never", "none", "nope", "nor", "not", "nothing", "nowhere", "oughtnt", "shant", "shouldnt", "uhuh", "wasnt", "werent", "oughtn't", "shan't", "shouldn't", "uh-uh", "wasn't", "weren't", "without", "wont", "wouldnt", "won't", "wouldn't", "rarely", "seldom", "despite"] Booster = ["absolutely", "amazingly", "awfully", "completely", "considerably", "decidedly", "deeply", "effing", "enormously", "entirely", "especially", "exceptionally", "extremely", "fabulously", "flipping", "flippin", "fricking", "frickin", "frigging", "friggin", "fully", "fucking", "greatly", "hella", "highly", "hugely", "incredibly", "intensely", "majorly", "more", "most", "particularly", "purely", "quite", "really", "remarkably", "so", "substantially", "thoroughly", "totally", "tremendously", "uber", "unbelievably", "unusually", "utterly", "very", "almost", "barely", "hardly", "just enough", "kind of", "kinda", "kindof", "kind-of", "less", "little", "marginally", "occasionally", "partly", "scarcely", "slightly", "somewhat", "sort of", "sorta", "sortof", "sort-of"] Extra_Lexicon = Punc + Negate + Booster def create_lexicon(corpus, embedding, num=250): stopwords = set(nltk.corpus.stopwords.words('english')) V = set([w for w in embedding.vocab]) tags = corpus['polarity'] texts = corpus['text'] P = [t for i, t in texts.iteritems() if int(tags[i]) == 1] N = [t for i, t in texts.iteritems() if int(tags[i]) == -1] def word_count(X): d = {} for x in X: for w in x: if w not in stopwords and w in V and len(w) > 1: d[w] = d[w] + 1 if w in d else 1 return d P_dict = word_count(P) N_dict = word_count(N) L_p = Counter(P_dict).most_common(num) L_n = Counter(N_dict).most_common(num) Words_p, Counts_p = zip(*L_p) Words_n, Counts_n = zip(*L_n) P_sum = sum(Counts_p) N_sum = sum(Counts_n) P_score = [x * 1.0 / P_sum for x in Counts_p] N_score = [x * 1.0 / N_sum for x in Counts_n] return Words_p + Words_n, P_score + N_score def prepare_lexicon(corpus, embedding, num=250, extra=False): V = set([w for w in embedding.vocab]) neg = set(opinion_lexicon.negative()) pos = set(opinion_lexicon.positive()) senti_lexicon = opinion_lexicon.words() senti_lexicon = [w for w in senti_lexicon if w in V] lexicon_dic = {x: 0 for x in senti_lexicon} for sent in corpus: for w in sent: if w in lexicon_dic: lexicon_dic[w] += 1 L = Counter(lexicon_dic).most_common(5000) N = [] N_count = [] P = [] P_count = [] for word, count in L: if word in neg: N.append(word) N_count.append(count) elif word in pos: P.append(word) P_count.append(count) Senti_L = P[:num] + N[:num] P_sum = sum(P_count[:num]) P_score = [x * 1.0 / P_sum for x in P_count[:num]] N_sum = sum(N_count[:num]) N_score = [x * 1.0 / N_sum for x in N_count[:num]] Senti_W = P_score + N_score if extra: Extra_L = [l for l in Extra_Lexicon if l in V] Extra_W = [1.0 for l in Extra_L] return Senti_L + Extra_L, Senti_W + Extra_W return Senti_L, Senti_W class SimVectorizer: def __init__(self, lexicon, weight, embedding, stopword=True, weighted=False): self._stopwords = set(nltk.corpus.stopwords.words('english')) self._model = embedding self._W = weight self._V = set([w for w in self._model.vocab]) self._L = self.word_vectors(lexicon).T self._filter = lambda x: self.vectorization(self.word_process(x)) self.sim_vectorization = self._filter if stopword else self.vectorization self._weighter = lambda x: np.multiply(self.sim_vectorization(x), self._W) self.sim_vector = self._weighter if weighted else self.sim_vectorization def word_process(self, words): return [w for w in words if w not in self._stopwords and len(w) > 1] def word_vectors(self, x): return np.array([self._model[w] for _, w in enumerate(x) if w in self._V]) def vectorization(self, x): v = self.word_vectors(x) if v.shape[0] == 0: return np.zeros(self._L.shape[1]) s = np.dot(v, self._L) return s.max(axis=0) def transform(self, X): return np.array([self.sim_vector(x) for _, x in enumerate(X)])