Datasets:
Tasks:
Image Segmentation
Modalities:
Image
Sub-tasks:
semantic-segmentation
Languages:
English
Size:
10K - 100K
License:
import datasets | |
import pandas as pd | |
_CITATION = """\ | |
@InProceedings{huggingface:dataset, | |
title = {RSNA-ATD2023}, | |
author = {Yeow Zi Qin}, | |
year = {2023} | |
} | |
""" | |
_DESCRIPTION = """\ | |
The dataset is the processed version of Kaggle Competition: RSNA 2023 Abdominal Trauma Detection. | |
It comprises of segmentation of 205 series of CT scans with 5 classes (liver, spleen, right_kidney, | |
left_kidney, bowel). | |
""" | |
_NAME = "RSNA-ATD2023" | |
_HOMEPAGE = f"https://huggingface.co/datasets/ziq/{_NAME}" | |
_LICENSE = "MIT" | |
_DATA = f"https://huggingface.co/datasets/ziq/{_NAME}/resolve/main/data/" | |
class RSNAATD(datasets.GeneratorBasedBuilder): | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
# "image_path": datasets.Value("string"), | |
"patient_id": datasets.Value("int64"), | |
"series_id": datasets.Value("int64"), | |
"frame_id": datasets.Value("int64"), | |
"image": datasets.Image(), | |
"mask": datasets.Image(), | |
} | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
train_images = dl_manager.download(f"{_DATA}images.tar.gz") | |
train_masks = dl_manager.download(f"{_DATA}masks.tar.gz") | |
metadata = dl_manager.download(f"{_DATA}metadata.csv") | |
train_images = dl_manager.iter_archive(train_images) | |
train_masks = dl_manager.iter_archive(train_masks) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"images": train_images, | |
"masks": train_masks, | |
"metadata": metadata, | |
}, | |
), | |
] | |
# def sort_key(self, x): | |
# patient_id, series_id, frame_id = ( | |
# x[0][0].replace("images/", "").replace(".png", "").split("_") | |
# ) | |
# return int(patient_id), int(series_id), int(frame_id) | |
def _generate_examples(self, images, masks, metadata): | |
df = pd.read_csv(metadata) | |
for idx, ((image_path, image), (mask_path, mask)) in enumerate( | |
zip(images, masks) | |
): | |
row = df.loc[df["path"] == image_path.lower().replace("images/", "")] | |
yield idx, { | |
"patient_id": row["patient_id"].values[0], | |
"series_id": row["series_id"].values[0], | |
"frame_id": row["frame_id"].values[0], | |
"image": {"path": image_path, "bytes": image.read()}, | |
"mask": {"path": mask_path, "bytes": mask.read()}, | |
} | |