ComOM-VIDeBERTa-3

This model is a fine-tuned version of Fsoft-AIC/videberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0971
  • Precision: 0.1319
  • Recall: 0.1029
  • F1: 0.1156
  • Accuracy: 0.6647

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 78 1.2306 0.0768 0.0370 0.0499 0.6486
No log 2.0 156 1.1902 0.0755 0.0609 0.0674 0.6407
No log 3.0 234 1.1627 0.0923 0.0679 0.0783 0.6499
No log 4.0 312 1.1489 0.1159 0.0879 0.1000 0.6530
No log 5.0 390 1.1219 0.0997 0.0749 0.0856 0.6529
No log 6.0 468 1.1130 0.1245 0.0879 0.1030 0.6589
1.0673 7.0 546 1.1095 0.1247 0.0919 0.1058 0.6600
1.0673 8.0 624 1.0971 0.1319 0.1029 0.1156 0.6647

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.14.1
Downloads last month
15
Safetensors
Model size
184M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for datleviet/ComOM-VIDeBERTa-3

Finetuned
(13)
this model