BLIP_fine_tune / prediction.py
datnguyentien204's picture
Upload 6 files
466558e verified
raw
history blame
1.92 kB
from transformers import ViltProcessor, ViltForQuestionAnswering
from transformers import BlipProcessor, BlipForQuestionAnswering
import requests
from PIL import Image
import json, os, csv
import logging
from tqdm import tqdm
import torch
# Set the path to your test data directory
test_data_dir = "Data/test_data/test_data"
# processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
# model = ViltForQuestionAnswering.from_pretrained("test_model/checkpoint-525")
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
model = BlipForQuestionAnswering.from_pretrained("Model/blip-saved-model").to("cuda")
# Create a list to store the results
results = []
# Iterate through each file in the test data directory
samples = os.listdir(test_data_dir)
for filename in tqdm(os.listdir(test_data_dir), desc="Processing"):
sample_path = f"Data/test_data/{filename}"
# Read the json file
json_path = os.path.join(sample_path, "data.json")
with open(json_path, "r") as json_file:
data = json.load(json_file)
question = data["question"]
image_id = data["id"]
# Read the corresponding image
image_path = os.path.join(test_data_dir, f"{image_id}", "image.png")
image = Image.open(image_path).convert("RGB")
# prepare inputs
encoding = processor(image, question, return_tensors="pt").to("cuda:0", torch.float16)
out = model.generate(**encoding)
generated_text = processor.decode(out[0], skip_special_tokens=True)
results.append((image_id, generated_text))
# Write the results to a CSV file
csv_file_path = "Results/results.csv"
with open(csv_file_path, mode="w", newline="") as csv_file:
csv_writer = csv.writer(csv_file)
csv_writer.writerow(["ID", "Label"]) # Write header
csv_writer.writerows(results)
print(f"Results saved to {csv_file_path}")