datnguyentien204 commited on
Commit
b927a0f
1 Parent(s): 466558e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -31
README.md CHANGED
@@ -1,31 +1,28 @@
1
- # Visual Question Answering using BLIP pre-trained model!
2
-
3
- This implementation applies the BLIP pre-trained model to solve the icon domain task.
4
- ![The BLIP model for VQA task](https://i.postimg.cc/ncnxSnJw/image.png)
5
- | ![enter image description here](https://i.postimg.cc/1zSYsrmm/image.png)| |
6
- |--|--|
7
- | How many dots are there? | 36 |
8
-
9
- # Description
10
- **Note: The test dataset does not have labels. I evaluated the model via Kaggle competition and got 96% in accuracy manner. Obviously, you can use a partition of the training set as a testing set.
11
- ## Create data folder
12
-
13
- Copy all data following the example form
14
- You can download data [here](https://drive.google.com/file/d/1tt6qJbOgevyPpfkylXpKYy-KaT4_aCYZ/view?usp=sharing)
15
-
16
- ## Install requirements.txt
17
-
18
- pip install -r requirements.txt
19
-
20
- ## Run finetuning code
21
-
22
- python finetuning.py
23
-
24
- ## Run prediction
25
-
26
- python predicting.py
27
-
28
- ### References:
29
-
30
- > Nguyen Van Tuan (2023). JAIST_Advanced Machine Learning_Visual_Question_Answering
31
-
 
1
+ # Visual Question Answering using BLIP pre-trained model!
2
+
3
+ This implementation applies the BLIP pre-trained model to solve the icon domain task.
4
+ ![The BLIP model for VQA task](https://i.postimg.cc/ncnxSnJw/image.png)
5
+ | ![enter image description here](https://i.postimg.cc/1zSYsrmm/image.png)| |
6
+ |--|--|
7
+ | How many dots are there? | 36 |
8
+
9
+ # Description
10
+ **Note: The test dataset does not have labels. I evaluated the model via Kaggle competition and got 96% in accuracy manner. Obviously, you can use a partition of the training set as a testing set.
11
+ ## Create data folder
12
+
13
+ Copy all data following the example form
14
+ You can download data [here](https://drive.google.com/file/d/1tt6qJbOgevyPpfkylXpKYy-KaT4_aCYZ/view?usp=sharing)
15
+
16
+ ## Install requirements.txt
17
+
18
+ pip install -r requirements.txt
19
+
20
+ ## Run finetuning code
21
+
22
+ python finetuning.py
23
+
24
+ ## Run prediction
25
+
26
+ python predicting.py
27
+
28
+