Update handler.py
Browse files- handler.py +17 -16
handler.py
CHANGED
@@ -4,6 +4,8 @@ from PIL import Image
|
|
4 |
import requests
|
5 |
import torch
|
6 |
import gc
|
|
|
|
|
7 |
|
8 |
class EndpointHandler:
|
9 |
def __init__(self, path=""):
|
@@ -22,27 +24,30 @@ class EndpointHandler:
|
|
22 |
)
|
23 |
|
24 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
25 |
-
# Clear CUDA cache
|
26 |
torch.cuda.empty_cache()
|
27 |
gc.collect()
|
28 |
|
29 |
-
# Extract inputs from the request data
|
30 |
inputs = data.get("inputs", {})
|
31 |
image_url = inputs.get("image_url")
|
|
|
32 |
text_prompt = inputs.get("text_prompt", "Describe this image.")
|
33 |
|
34 |
-
if
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
image = Image.open(requests.get(image_url, stream=True).raw)
|
40 |
-
if image.mode != "RGB":
|
41 |
-
image = image.convert("RGB")
|
42 |
-
except Exception as e:
|
43 |
-
return [{"error": f"Failed to load image: {str(e)}"}]
|
44 |
|
45 |
-
# Process the image and text
|
46 |
try:
|
47 |
with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16):
|
48 |
inputs = self.processor.process(
|
@@ -50,21 +55,17 @@ class EndpointHandler:
|
|
50 |
text=text_prompt
|
51 |
)
|
52 |
|
53 |
-
# Move inputs to the correct device and make a batch of size 1
|
54 |
inputs = {k: v.to(self.model.device).unsqueeze(0) for k, v in inputs.items()}
|
55 |
|
56 |
-
# Generate output
|
57 |
output = self.model.generate_from_batch(
|
58 |
inputs,
|
59 |
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"),
|
60 |
tokenizer=self.processor.tokenizer
|
61 |
)
|
62 |
|
63 |
-
# Decode the generated tokens
|
64 |
generated_tokens = output[0, inputs['input_ids'].size(1):]
|
65 |
generated_text = self.processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
66 |
|
67 |
-
# Clear CUDA cache again
|
68 |
torch.cuda.empty_cache()
|
69 |
gc.collect()
|
70 |
|
|
|
4 |
import requests
|
5 |
import torch
|
6 |
import gc
|
7 |
+
import base64
|
8 |
+
import io
|
9 |
|
10 |
class EndpointHandler:
|
11 |
def __init__(self, path=""):
|
|
|
24 |
)
|
25 |
|
26 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
|
|
27 |
torch.cuda.empty_cache()
|
28 |
gc.collect()
|
29 |
|
|
|
30 |
inputs = data.get("inputs", {})
|
31 |
image_url = inputs.get("image_url")
|
32 |
+
image_data = inputs.get("image")
|
33 |
text_prompt = inputs.get("text_prompt", "Describe this image.")
|
34 |
|
35 |
+
if image_url:
|
36 |
+
try:
|
37 |
+
image = Image.open(requests.get(image_url, stream=True).raw)
|
38 |
+
except Exception as e:
|
39 |
+
return [{"error": f"Failed to load image from URL: {str(e)}"}]
|
40 |
+
elif image_data:
|
41 |
+
try:
|
42 |
+
image = Image.open(io.BytesIO(base64.b64decode(image_data)))
|
43 |
+
except Exception as e:
|
44 |
+
return [{"error": f"Failed to decode image data: {str(e)}"}]
|
45 |
+
else:
|
46 |
+
return [{"error": "No image_url or image data provided in inputs"}]
|
47 |
|
48 |
+
if image.mode != "RGB":
|
49 |
+
image = image.convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
51 |
try:
|
52 |
with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16):
|
53 |
inputs = self.processor.process(
|
|
|
55 |
text=text_prompt
|
56 |
)
|
57 |
|
|
|
58 |
inputs = {k: v.to(self.model.device).unsqueeze(0) for k, v in inputs.items()}
|
59 |
|
|
|
60 |
output = self.model.generate_from_batch(
|
61 |
inputs,
|
62 |
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"),
|
63 |
tokenizer=self.processor.tokenizer
|
64 |
)
|
65 |
|
|
|
66 |
generated_tokens = output[0, inputs['input_ids'].size(1):]
|
67 |
generated_text = self.processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
68 |
|
|
|
69 |
torch.cuda.empty_cache()
|
70 |
gc.collect()
|
71 |
|