metadata
tags:
- autotrain
- text-classification
language:
- en
widget:
- text: ' frases-bertimbau-v0.4 This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset.'
- text: >-
Model description BERTa is a transformer-based masked language model for
the Catalan language. It is based on the
[RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta)
base model and has been trained on a medium-size corpus collected from
publicly available corpora and crawlers
- text: Model description More information needed
datasets:
- davanstrien/autotrain-data-dataset-mentions
co2_eq_emissions:
emissions: 0.008999666562870793
Model Trained Using AutoTrain
- Problem type: Binary Classification
- Model ID: 3390592983
- CO2 Emissions (in grams): 0.0090
Validation Metrics
- Loss: 0.014
- Accuracy: 0.997
- Precision: 0.998
- Recall: 0.997
- AUC: 1.000
- F1: 0.998
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/davanstrien/autotrain-dataset-mentions-3390592983
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("davanstrien/autotrain-dataset-mentions-3390592983", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("davanstrien/autotrain-dataset-mentions-3390592983", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)