davelotito's picture
End of training
ba3fd10 verified
|
raw
history blame
2.96 kB
metadata
license: mit
base_model: naver-clova-ix/donut-base
tags:
  - generated_from_trainer
metrics:
  - bleu
  - wer
model-index:
  - name: donut-base-sroie-metrics-combined-new
    results: []

donut-base-sroie-metrics-combined-new

This model is a fine-tuned version of naver-clova-ix/donut-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4671
  • Bleu: 0.0662
  • Precisions: [0.785140562248996, 0.6825396825396826, 0.6197916666666666, 0.5626911314984709]
  • Brevity Penalty: 0.1007
  • Length Ratio: 0.3035
  • Translation Length: 498
  • Reference Length: 1641
  • Cer: 0.7528
  • Wer: 0.8385

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Precisions Brevity Penalty Length Ratio Translation Length Reference Length Cer Wer
3.6559 1.0 253 1.5613 0.0007 [0.5056179775280899, 0.1943127962085308, 0.07692307692307693, 0.02830188679245283] 0.0058 0.1627 267 1641 0.8768 0.9436
1.2493 2.0 506 0.6697 0.0409 [0.6560509554140127, 0.5048309178743962, 0.4481792717086835, 0.39] 0.0834 0.2870 471 1641 0.7766 0.8837
0.9257 3.0 759 0.5168 0.0594 [0.75, 0.6275862068965518, 0.5714285714285714, 0.5264797507788161] 0.0968 0.2998 492 1641 0.7570 0.8499
0.6416 4.0 1012 0.4671 0.0662 [0.785140562248996, 0.6825396825396826, 0.6197916666666666, 0.5626911314984709] 0.1007 0.3035 498 1641 0.7528 0.8385

Framework versions

  • Transformers 4.41.0.dev0
  • Pytorch 2.1.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1