|
--- |
|
license: mit |
|
base_model: naver-clova-ix/donut-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
- wer |
|
model-index: |
|
- name: donut-base-sroie-metrics-combined-new |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# donut-base-sroie-metrics-combined-new |
|
|
|
This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4671 |
|
- Bleu: 0.0662 |
|
- Precisions: [0.785140562248996, 0.6825396825396826, 0.6197916666666666, 0.5626911314984709] |
|
- Brevity Penalty: 0.1007 |
|
- Length Ratio: 0.3035 |
|
- Translation Length: 498 |
|
- Reference Length: 1641 |
|
- Cer: 0.7528 |
|
- Wer: 0.8385 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 2 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Cer | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:----------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:------:| |
|
| 3.6559 | 1.0 | 253 | 1.5613 | 0.0007 | [0.5056179775280899, 0.1943127962085308, 0.07692307692307693, 0.02830188679245283] | 0.0058 | 0.1627 | 267 | 1641 | 0.8768 | 0.9436 | |
|
| 1.2493 | 2.0 | 506 | 0.6697 | 0.0409 | [0.6560509554140127, 0.5048309178743962, 0.4481792717086835, 0.39] | 0.0834 | 0.2870 | 471 | 1641 | 0.7766 | 0.8837 | |
|
| 0.9257 | 3.0 | 759 | 0.5168 | 0.0594 | [0.75, 0.6275862068965518, 0.5714285714285714, 0.5264797507788161] | 0.0968 | 0.2998 | 492 | 1641 | 0.7570 | 0.8499 | |
|
| 0.6416 | 4.0 | 1012 | 0.4671 | 0.0662 | [0.785140562248996, 0.6825396825396826, 0.6197916666666666, 0.5626911314984709] | 0.1007 | 0.3035 | 498 | 1641 | 0.7528 | 0.8385 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.0.dev0 |
|
- Pytorch 2.1.0 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|