donut_experiment_1 / README.md
davelotito's picture
End of training
0a99450 verified
|
raw
history blame
2.91 kB
metadata
license: mit
base_model: naver-clova-ix/donut-base
tags:
  - generated_from_trainer
metrics:
  - bleu
  - wer
model-index:
  - name: donut_experiment_1
    results: []

donut_experiment_1

This model is a fine-tuned version of naver-clova-ix/donut-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4233
  • Bleu: 0.0659
  • Precisions: [0.8058455114822547, 0.7440758293838863, 0.7013698630136986, 0.6590909090909091]
  • Brevity Penalty: 0.0908
  • Length Ratio: 0.2942
  • Translation Length: 479
  • Reference Length: 1628
  • Cer: 0.7576
  • Wer: 0.8295

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Precisions Brevity Penalty Length Ratio Translation Length Reference Length Cer Wer
0.8942 1.0 253 0.5716 0.0571 [0.7436974789915967, 0.6610978520286396, 0.6104972375690608, 0.5672131147540984] 0.0889 0.2924 476 1628 0.7669 0.8416
0.3794 2.0 506 0.4522 0.0594 [0.770042194092827, 0.697841726618705, 0.6472222222222223, 0.6072607260726073] 0.0876 0.2912 474 1628 0.7642 0.8415
0.3017 3.0 759 0.4154 0.0642 [0.8029350104821803, 0.7357142857142858, 0.6887052341597796, 0.6503267973856209] 0.0895 0.2930 477 1628 0.7577 0.8320
0.222 4.0 1012 0.4233 0.0659 [0.8058455114822547, 0.7440758293838863, 0.7013698630136986, 0.6590909090909091] 0.0908 0.2942 479 1628 0.7576 0.8295

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.1.0
  • Datasets 2.18.0
  • Tokenizers 0.19.1