metadata
license: mit
base_model: naver-clova-ix/donut-base
tags:
- generated_from_trainer
metrics:
- bleu
- wer
model-index:
- name: donut_experiment_1
results: []
donut_experiment_1
This model is a fine-tuned version of naver-clova-ix/donut-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4233
- Bleu: 0.0659
- Precisions: [0.8058455114822547, 0.7440758293838863, 0.7013698630136986, 0.6590909090909091]
- Brevity Penalty: 0.0908
- Length Ratio: 0.2942
- Translation Length: 479
- Reference Length: 1628
- Cer: 0.7576
- Wer: 0.8295
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Cer | Wer |
---|---|---|---|---|---|---|---|---|---|---|---|
0.8942 | 1.0 | 253 | 0.5716 | 0.0571 | [0.7436974789915967, 0.6610978520286396, 0.6104972375690608, 0.5672131147540984] | 0.0889 | 0.2924 | 476 | 1628 | 0.7669 | 0.8416 |
0.3794 | 2.0 | 506 | 0.4522 | 0.0594 | [0.770042194092827, 0.697841726618705, 0.6472222222222223, 0.6072607260726073] | 0.0876 | 0.2912 | 474 | 1628 | 0.7642 | 0.8415 |
0.3017 | 3.0 | 759 | 0.4154 | 0.0642 | [0.8029350104821803, 0.7357142857142858, 0.6887052341597796, 0.6503267973856209] | 0.0895 | 0.2930 | 477 | 1628 | 0.7577 | 0.8320 |
0.222 | 4.0 | 1012 | 0.4233 | 0.0659 | [0.8058455114822547, 0.7440758293838863, 0.7013698630136986, 0.6590909090909091] | 0.0908 | 0.2942 | 479 | 1628 | 0.7576 | 0.8295 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.1.0
- Datasets 2.18.0
- Tokenizers 0.19.1