donut_experiment_2 / README.md
davelotito's picture
End of training
764f932 verified
metadata
license: mit
base_model: naver-clova-ix/donut-base
tags:
  - generated_from_trainer
metrics:
  - bleu
  - wer
model-index:
  - name: donut_experiment_2
    results: []

donut_experiment_2

This model is a fine-tuned version of naver-clova-ix/donut-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3855
  • Bleu: 0.0663
  • Precisions: [0.8273684210526315, 0.7703349282296651, 0.7285318559556787, 0.6842105263157895]
  • Brevity Penalty: 0.0883
  • Length Ratio: 0.2918
  • Translation Length: 475
  • Reference Length: 1628
  • Cer: 0.7539
  • Wer: 0.8251

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Precisions Brevity Penalty Length Ratio Translation Length Reference Length Cer Wer
0.9517 1.0 253 0.5797 0.0543 [0.7160751565762005, 0.6184834123222749, 0.5671232876712329, 0.5097402597402597] 0.0908 0.2942 479 1628 0.7738 0.8500
0.3907 2.0 506 0.4532 0.0590 [0.7851063829787234, 0.711864406779661, 0.6657303370786517, 0.6220735785953178] 0.0851 0.2887 470 1628 0.7610 0.8370
0.3245 3.0 759 0.4102 0.0625 [0.8008474576271186, 0.7397590361445783, 0.7011173184357542, 0.6611295681063123] 0.0864 0.2899 472 1628 0.7593 0.8336
0.2318 4.0 1012 0.3855 0.0663 [0.8273684210526315, 0.7703349282296651, 0.7285318559556787, 0.6842105263157895] 0.0883 0.2918 475 1628 0.7539 0.8251

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.1.0
  • Datasets 2.18.0
  • Tokenizers 0.19.1