donut_experiment_5 / README.md
davelotito's picture
End of training
82fad32 verified
|
raw
history blame
2.91 kB
metadata
license: mit
base_model: naver-clova-ix/donut-base
tags:
  - generated_from_trainer
metrics:
  - bleu
  - wer
model-index:
  - name: donut_experiment_5
    results: []

donut_experiment_5

This model is a fine-tuned version of naver-clova-ix/donut-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3987
  • Bleu: 0.0661
  • Precisions: [0.8020833333333334, 0.7375886524822695, 0.6994535519125683, 0.6601941747572816]
  • Brevity Penalty: 0.0915
  • Length Ratio: 0.2948
  • Translation Length: 480
  • Reference Length: 1628
  • Cer: 0.7576
  • Wer: 0.8280

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Precisions Brevity Penalty Length Ratio Translation Length Reference Length Cer Wer
0.3274 1.0 253 0.4698 0.0586 [0.7707006369426752, 0.6956521739130435, 0.6582633053221288, 0.62] 0.0857 0.2893 471 1628 0.7660 0.8432
0.2539 2.0 506 0.4198 0.0643 [0.799163179916318, 0.7315914489311164, 0.6868131868131868, 0.6416938110749185] 0.0902 0.2936 478 1628 0.7605 0.8313
0.224 3.0 759 0.3941 0.0658 [0.8075313807531381, 0.7387173396674585, 0.7060439560439561, 0.6710097719869706] 0.0902 0.2936 478 1628 0.7573 0.8283
0.1566 4.0 1012 0.3987 0.0661 [0.8020833333333334, 0.7375886524822695, 0.6994535519125683, 0.6601941747572816] 0.0915 0.2948 480 1628 0.7576 0.8280

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.1.0
  • Datasets 2.18.0
  • Tokenizers 0.19.1