|
--- |
|
license: mit |
|
base_model: naver-clova-ix/donut-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
- wer |
|
model-index: |
|
- name: donut_experiment_bayesian_trial_15 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# donut_experiment_bayesian_trial_15 |
|
|
|
This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5777 |
|
- Bleu: 0.0659 |
|
- Precisions: [0.8158995815899581, 0.7434679334916865, 0.7060439560439561, 0.6644951140065146] |
|
- Brevity Penalty: 0.0902 |
|
- Length Ratio: 0.2936 |
|
- Translation Length: 478 |
|
- Reference Length: 1628 |
|
- Cer: 0.7557 |
|
- Wer: 0.8239 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2.349414650597281e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 2 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Cer | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:------:| |
|
| 0.0066 | 1.0 | 253 | 0.5790 | 0.0648 | [0.8305084745762712, 0.7686746987951807, 0.7262569832402235, 0.6843853820598007] | 0.0864 | 0.2899 | 472 | 1628 | 0.7593 | 0.8258 | |
|
| 0.0143 | 2.0 | 506 | 0.5824 | 0.0663 | [0.8225469728601252, 0.7511848341232228, 0.7041095890410959, 0.6525974025974026] | 0.0908 | 0.2942 | 479 | 1628 | 0.7577 | 0.8265 | |
|
| 0.009 | 3.0 | 759 | 0.5826 | 0.0640 | [0.8185654008438819, 0.7458033573141487, 0.7055555555555556, 0.6600660066006601] | 0.0876 | 0.2912 | 474 | 1628 | 0.7553 | 0.8248 | |
|
| 0.0103 | 4.0 | 1012 | 0.5777 | 0.0659 | [0.8158995815899581, 0.7434679334916865, 0.7060439560439561, 0.6644951140065146] | 0.0902 | 0.2936 | 478 | 1628 | 0.7557 | 0.8239 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.0 |
|
- Pytorch 2.1.0 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.19.1 |
|
|