a2c-PandaReachDense-v3 / config.json
davera-017's picture
Initial commit
f3e7bb2
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x783073bf9750>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x783073c07100>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693518862461888157, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAh30SPycYwr4nz1o90vPMvjxB076Bys8+Z1W7vjbD1r5PXaQ+nFqGPtA07zsw4Ns+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtEdoP0u5rr+5MZm/n7hhPuQs8r5Ew68/AEKtv01DfL7ispQ9b5KtPlW/tL+hI5+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACHfRI/JxjCvifPWj2YAIg9mGbMv28Jxr/S88y+PEHTvoHKzz4viJO9xyHUv20EiT9nVbu+NsPWvk9dpD71d9K+Kw7Ivy6RFj+cWoY+0DTvOzDg2z7o0uQ+U9Hruh4xwj6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.5722279 -0.37909052 0.05342021]\n [-0.4002977 -0.41260707 0.40584186]\n [-0.36588594 -0.4194581 0.3210244 ]\n [ 0.26241004 0.0073 0.4294448 ]]", "desired_goal": "[[ 0.9073441 -1.3650297 -1.1968299 ]\n [ 0.22043084 -0.47299874 1.3731465 ]\n [-1.3535767 -0.24635048 0.07260682]\n [ 0.33900782 -1.412089 -1.2432748 ]]", "observation": "[[ 0.5722279 -0.37909052 0.05342021 0.06640738 -1.5968809 -1.5471629 ]\n [-0.4002977 -0.41260707 0.40584186 -0.07203709 -1.6572808 1.0704476 ]\n [-0.36588594 -0.4194581 0.3210244 -0.41107145 -1.5629324 0.58815277]\n [ 0.26241004 0.0073 0.4294448 0.4469216 -0.00179915 0.37928098]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHwTwPBURWr0t/IU9MYPmPGFq07yQ9Ug90U89vSMN6r0T21M+pjR/Pe546r30B44+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02929884 -0.05323895 0.06542239]\n [ 0.02813873 -0.02580756 0.04906231]\n [-0.0462187 -0.11428287 0.20689039]\n [ 0.06230607 -0.11448847 0.27740443]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7QIdELH+62MAWyUSwKMAXSUR0CkfC5cs189dX2UKGgGR7+yfe1rqMWHaAdLAmgIR0Cke+1qesgddX2UKGgGR7/atnPE87p3aAdLBGgIR0Cke6xNZeRgdX2UKGgGR7/J73wkPczqaAdLA2gIR0Cke/qgRK6GdX2UKGgGR7/dNGEwnH/+aAdLBGgIR0Cke3S1NQCTdX2UKGgGR7/QYe1a4c3maAdLBGgIR0CkfEAccU/OdX2UKGgGR7/HRWLgn+hoaAdLA2gIR0Cke7fGuLaVdX2UKGgGR7+yT9sJpnHvaAdLAmgIR0Cke3yoXKr8dX2UKGgGR7/FhfjS5RTCaAdLA2gIR0CkfAiXyAhCdX2UKGgGR7/Sbvw3HaN/aAdLA2gIR0CkfE3AmAskdX2UKGgGR7/Cq6OHWSU1aAdLA2gIR0Cke8VtfoicdX2UKGgGR7/BSgGr0aqCaAdLAmgIR0CkfFWPLgXNdX2UKGgGR7/OcyWRigCfaAdLA2gIR0CkfBRigCfZdX2UKGgGR7/WsJIDoyKvaAdLBGgIR0Cke49roGILdX2UKGgGR7/fwGW2PT5PaAdLBGgIR0Cke9xDCxeLdX2UKGgGR7/BKaG5+YtyaAdLAmgIR0Cke52ZZ0SzdX2UKGgGR7/SjZcs189faAdLA2gIR0CkfCeOwPiDdX2UKGgGR7+Qy/KyOaOQaAdLAWgIR0Cke+CLVFx5dX2UKGgGR7/XepXIU8FIaAdLBGgIR0CkfGzq8lHCdX2UKGgGR7+bb5/LDAJtaAdLAWgIR0Cke+SN4qwydX2UKGgGR7/BloUSIxgzaAdLAmgIR0CkfC+jVQQ+dX2UKGgGR7/Gwnpjc2zfaAdLAmgIR0CkfHWF36hydX2UKGgGR7/bzLfUF0PpaAdLBGgIR0Cke6+3x4IKdX2UKGgGR7+oKtxMnJDFaAdLAWgIR0CkfH238XN1dX2UKGgGR7/ByoXKr7wbaAdLAmgIR0CkfDycLBsRdX2UKGgGR7/VxHG0eEIxaAdLBGgIR0Cke/j9fkWAdX2UKGgGR7/PqOcUdq+KaAdLA2gIR0Cke74gA6uGdX2UKGgGR7/MtL+PzWf9aAdLA2gIR0CkfEjdP+GXdX2UKGgGR7/Sqynk1dgOaAdLBGgIR0CkfI4qwyIpdX2UKGgGR7+j83uNPxhEaAdLAWgIR0CkfEz2vjffdX2UKGgGR7/UcDbJwKjSaAdLA2gIR0CkfAYwRGtqdX2UKGgGR7/XZBcAzYVZaAdLBGgIR0Cke9CSzPa+dX2UKGgGR7/GzhP0qYqoaAdLA2gIR0CkfJwPy08edX2UKGgGR7/JOdGy5Zr6aAdLA2gIR0CkfFreZXuFdX2UKGgGR7/TVrylN1yOaAdLA2gIR0CkfBPZ7HAAdX2UKGgGR7/APf8/D+BIaAdLAmgIR0CkfKOwgTysdX2UKGgGR7+zWwu/UONHaAdLAmgIR0CkfBtHpbD/dX2UKGgGR7/NeSB9Tgl4aAdLA2gIR0CkfGhZ6lchdX2UKGgGR7/LM5fdAPd3aAdLBGgIR0Cke+Jrcj7idX2UKGgGR7/Qa72+PBBSaAdLA2gIR0CkfLEPlMh6dX2UKGgGR7+995Qgs9SuaAdLAmgIR0CkfG/hl18tdX2UKGgGR7+4CW/rSmZWaAdLAmgIR0Cke+nnlnyvdX2UKGgGR7/VkbxVhkRSaAdLBGgIR0CkfCyZKFqSdX2UKGgGR7+yrIYFaB7NaAdLAmgIR0CkfHdyT6i1dX2UKGgGR7/TAVfu1F6SaAdLA2gIR0CkfL6UzKs/dX2UKGgGR7/SAZbY9Pk8aAdLA2gIR0Cke/dwFTvRdX2UKGgGR7/MyjYZl4C7aAdLA2gIR0CkfDpwjt5VdX2UKGgGR7+38P4EfT1DaAdLAmgIR0CkfMaoMrmRdX2UKGgGR7/QLf1pTMq0aAdLA2gIR0CkfIV50KZ2dX2UKGgGR7/Md8Rcu8K5aAdLA2gIR0CkfEWhh6SldX2UKGgGR7/UYGMXJo0zaAdLBGgIR0CkfAbzkIX1dX2UKGgGR7/Q2uxKQJXyaAdLA2gIR0CkfNSBK+SKdX2UKGgGR7/ZLs8gZCOWaAdLBGgIR0CkfJcA7xNJdX2UKGgGR7+6qfe1rqMWaAdLAmgIR0CkfBFA3T/idX2UKGgGR7/FpmEoOQQuaAdLAmgIR0CkfNx1gYxddX2UKGgGR7/OLronrpqzaAdLA2gIR0CkfFQuM+/ydX2UKGgGR7/XR3eN1hb4aAdLA2gIR0CkfKK15Sm7dX2UKGgGR7/NGxUvPC2uaAdLA2gIR0CkfOn+yZ8bdX2UKGgGR7/LSUC7sfJWaAdLA2gIR0CkfGG0eEIxdX2UKGgGR7/ZyJ9Aood/aAdLBGgIR0CkfCL3TNMXdX2UKGgGR7/HjqfOD8LsaAdLA2gIR0CkfLC9h7VsdX2UKGgGR7/ER5C4SYgJaAdLA2gIR0CkfPX1zySWdX2UKGgGR7/RALRa5f+kaAdLA2gIR0CkfC63AmAtdX2UKGgGR7/aA6uGKyfMaAdLBGgIR0CkfHF67dzodX2UKGgGR7/QnTRYzSCwaAdLA2gIR0CkfQM3AEdOdX2UKGgGR7/XcQyyleniaAdLBGgIR0CkfMImgJ1JdX2UKGgGR7/Tnyd4FA3UaAdLA2gIR0CkfH6PS2H+dX2UKGgGR7/eUA1ejVQRaAdLBGgIR0CkfD/RNRFadX2UKGgGR7/I1R+BpYcOaAdLA2gIR0CkfQ6UA1ejdX2UKGgGR7/Tukk8ifQKaAdLA2gIR0CkfM1hLGrCdX2UKGgGR7+89r433pOfaAdLAmgIR0CkfEfIKc/ddX2UKGgGR7+90xM36yjYaAdLAmgIR0CkfRiU5dWydX2UKGgGR7/Z5fdAPd2xaAdLBGgIR0CkfJBAfMfSdX2UKGgGR7/SrdnCfpUxaAdLA2gIR0CkfFWJBPbgdX2UKGgGR7/XMJQcghbGaAdLBGgIR0CkfN/OUt7KdX2UKGgGR7/Jkiliz9jxaAdLA2gIR0CkfJzTfBN3dX2UKGgGR7/aV/tpmEoOaAdLBGgIR0CkfSsKsuFpdX2UKGgGR7/UCfYjB2wFaAdLA2gIR0CkfGPEbYK6dX2UKGgGR7/KLqD9OymiaAdLA2gIR0CkfO2IwdsBdX2UKGgGR7/BHXEqDsdDaAdLAmgIR0CkfKaDGtITdX2UKGgGR7/C+bExZdOZaAdLAmgIR0CkfTLHU+cIdX2UKGgGR7/KRradtl7MaAdLA2gIR0CkfG8qFyq/dX2UKGgGR7+0hgVoHs1LaAdLAmgIR0CkfTo60Y0mdX2UKGgGR7/Lwm3OObRXaAdLA2gIR0CkfPkfkmx/dX2UKGgGR7/LAcDKYAsDaAdLA2gIR0CkfLIa1kUcdX2UKGgGR7/TdT5wfhddaAdLA2gIR0CkfHxVZLZjdX2UKGgGR7/Riml67dzoaAdLA2gIR0CkfUdpyp71dX2UKGgGR7/DNY8uBczJaAdLA2gIR0CkfQZkTYdydX2UKGgGR7/X2ki2UjcEaAdLA2gIR0CkfL9eIEbHdX2UKGgGR7+ksJ6Y3Ns4aAdLAWgIR0CkfICv5gw5dX2UKGgGR7+7undfsu3+aAdLAmgIR0CkfIirksBidX2UKGgGR7/RMeOn2qT9aAdLA2gIR0CkfVYwyqMndX2UKGgGR7/I0Sh8IAwPaAdLA2gIR0CkfRUAksz3dX2UKGgGR7/OHnEETxoaaAdLA2gIR0CkfM4QJ5VwdX2UKGgGR7+gwmE4//vOaAdLAWgIR0CkfVpmVZ9vdX2UKGgGR7/FCHh0hePaaAdLA2gIR0CkfJb/Ot4idX2UKGgGR7+yO0b961LKaAdLAmgIR0CkfWIS+QEIdX2UKGgGR7/PJbt7a7EpaAdLA2gIR0CkfSDnmq5tdX2UKGgGR7/PIjGDL8rJaAdLA2gIR0CkfNn6VMVUdX2UKGgGR7+2QcPvrnklaAdLAmgIR0CkfJ7UG3WndWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}