PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library.
Usage (with Stable-baselines3)
from stable_baselines3 import PPO
from huggingface_sb3 import load_from_hub
# repo info
checkpoint = load_from_hub(
repo_id="davidhornshaw/LunarLander-v2-PPO",
filename="ppo-LunarLander-v2.zip"
)
# make model
checkpoint = load_from_hub(repo_id, filename)
model = PPO.load(checkpoint, custom_objects=custom_objects, print_system_info=True)
# evaluate model
eval_env = Monitor(gym.make("LunarLander-v2", render_mode='rgb_array'))
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=100, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
- Downloads last month
- 5
Evaluation results
- mean_reward on LunarLander-v2self-reported286.92 +/- 15.86