davidilag's picture
End of training
b06439b verified
|
raw
history blame
2.77 kB
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: wav2vec2-xls-r-1b-danish-12h-6k-steps
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: da
          split: test
          args: da
        metrics:
          - name: Wer
            type: wer
            value: 29.80512727765972

wav2vec2-xls-r-1b-danish-12h-6k-steps

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4179
  • Wer: 29.8051
  • Cer: 9.5826

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 3000
  • training_steps: 11000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.9182 5.3333 1000 0.5134 53.0768 16.3044
0.2894 10.6667 2000 0.3309 35.3529 10.9777
0.2917 16.0 3000 0.3877 38.0657 12.0348
0.1964 21.3333 4000 0.4244 36.1713 11.4545
0.1227 26.6667 5000 0.4213 36.4335 11.6030
0.1455 32.0 6000 0.4112 34.1412 10.9986
0.1005 37.3333 7000 0.4383 33.8563 10.8228
0.0604 42.6667 8000 0.4381 33.0379 10.5787
0.0616 48.0 9000 0.4445 31.4826 10.0955
0.0425 53.3333 10000 0.4412 30.7637 9.8170
0.0326 58.6667 11000 0.4179 29.8051 9.5826

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3