wav2vec2-xls-r-1b-scandinavian-251h-30-epochs-20250111_v9

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2085
  • Wer: 22.6884
  • Cer: 5.8380

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 3000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
2.7619 0.3502 1000 1.0505 79.7500 27.7494
1.5883 0.7004 2000 0.5542 52.5223 16.3287
1.1356 1.0504 3000 0.5714 52.2068 16.0785
1.0134 1.4006 4000 0.4909 48.9568 14.9144
1.049 1.7508 5000 0.4658 46.3140 14.0887
0.8085 2.1009 6000 0.4274 44.0995 12.9620
0.725 2.4511 7000 0.3970 41.9410 12.1666
0.805 2.8013 8000 0.3763 40.2846 11.4667
0.6876 3.1513 9000 0.3804 40.3847 11.7141
0.6424 3.5015 10000 0.3761 39.6587 11.3674
0.6857 3.8517 11000 0.3511 37.7114 11.1336
0.6235 4.2017 12000 0.3565 37.6741 10.7539
0.6165 4.5519 13000 0.3212 36.0533 10.1479
0.5964 4.9021 14000 0.3031 34.7786 9.6009
0.6145 5.2521 15000 0.3198 35.3324 9.8529
0.6662 5.6023 16000 0.3006 34.1068 9.5917
0.663 5.9525 17000 0.3007 33.6539 9.4145
0.6603 6.3026 18000 0.3044 33.9652 9.3871
0.6754 6.6528 19000 0.2873 33.1790 9.0868
0.6519 7.0028 20000 0.2672 31.9034 8.8680
0.6412 7.3530 21000 0.2759 32.1841 8.8061
0.6028 7.7032 22000 0.2853 31.8364 8.7611
0.5709 8.0532 23000 0.2838 32.5454 9.1492
0.571 8.4034 24000 0.2512 31.2495 8.6213
0.6812 8.7536 25000 0.2698 32.6989 9.2092
0.5007 9.1037 26000 0.2726 31.5692 8.6188
0.4518 9.4539 27000 0.2600 30.0146 8.3456
0.5155 9.8041 28000 0.2494 30.0994 8.2447
0.4055 10.1541 29000 0.2502 29.6261 8.0922
0.3963 10.5043 30000 0.2512 30.0646 8.2523
0.4581 10.8545 31000 0.2405 28.9417 7.8634
0.3554 11.2045 32000 0.2547 29.5303 8.0054
0.3613 11.5547 33000 0.2452 28.4074 7.7358
0.3798 11.9049 34000 0.2373 29.2818 8.0558
0.347 12.2549 35000 0.2354 28.1614 7.6554
0.3401 12.6051 36000 0.2216 27.2794 7.2458
0.3242 12.9553 37000 0.2315 26.9537 7.1938
0.3393 13.3054 38000 0.2313 27.3888 7.3823
0.3717 13.6556 39000 0.2218 26.5771 7.0449
0.3662 14.0056 40000 0.2357 27.6390 7.5118
0.3541 14.3558 41000 0.2265 26.1751 6.8972
0.3686 14.7060 42000 0.2215 26.1937 6.9842
0.3832 15.0560 43000 0.2242 26.0046 6.9059
0.4 15.4062 44000 0.2239 26.0326 6.9814
0.4254 15.7564 45000 0.2192 25.6408 6.8145
0.3963 16.1065 46000 0.2154 25.6933 6.8087
0.3457 16.4567 47000 0.2177 26.4965 7.1219
0.3609 16.8069 48000 0.2196 25.6645 7.0066
0.3055 17.1569 49000 0.2217 26.0267 6.8638
0.296 17.5071 50000 0.2094 25.0878 6.5902
0.2876 17.8573 51000 0.2244 25.5763 6.7381
0.2356 18.2073 52000 0.2205 24.9292 6.5937
0.2801 18.5575 53000 0.2203 24.8028 6.5381
0.2626 18.9077 54000 0.2076 24.4457 6.3823
0.224 19.2577 55000 0.2080 24.4262 6.4048
0.2196 19.6079 56000 0.2169 25.1039 6.6133
0.2341 19.9582 57000 0.2072 24.2269 6.3431
0.1899 20.3082 58000 0.2080 24.1506 6.3084
0.1848 20.6584 59000 0.2076 24.3211 6.3481
0.1816 21.0084 60000 0.2068 23.8003 6.1728
0.207 21.3586 61000 0.2126 23.6527 6.1666
0.1935 21.7088 62000 0.2104 23.3550 6.0682
0.2268 22.0588 63000 0.2122 23.5009 6.0946
0.2236 22.4090 64000 0.2082 23.2601 6.0101
0.2118 22.7592 65000 0.2071 23.4195 6.0859
0.2608 23.1093 66000 0.2023 23.3975 6.0759
0.2122 23.4595 67000 0.2102 23.3958 6.0669
0.2192 23.8097 68000 0.2046 22.9106 5.9151
0.2492 24.1597 69000 0.2106 22.9445 5.9293
0.229 24.5099 70000 0.2077 22.8877 5.9126
0.2188 24.8601 71000 0.2127 22.9759 5.9271
0.2203 25.2101 72000 0.2080 22.7563 5.8728
0.2732 25.5603 73000 0.2083 22.8555 5.9057
0.2355 25.9105 74000 0.2065 22.6748 5.8377
0.1742 26.2605 75000 0.2068 22.6723 5.8282
0.1717 26.6108 76000 0.2081 22.6307 5.8337
0.1944 26.9610 77000 0.2069 22.6341 5.8331
0.1526 27.3110 78000 0.2067 22.6460 5.8402
0.1894 27.6612 79000 0.2067 22.6367 5.8324
0.1358 28.0112 80000 0.2080 22.6638 5.8319
0.1346 28.3614 81000 0.2077 22.6486 5.8285
0.1318 28.7116 82000 0.2082 22.6647 5.8406
0.1584 29.0616 83000 0.2085 22.6876 5.8403
0.1491 29.4118 84000 0.2085 22.6808 5.8377
0.1347 29.7620 85000 0.2085 22.6884 5.8380

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
963M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for davidilag/wav2vec2-xls-r-1b-scandinavian-251h-30-epochs-20250111_v9

Finetuned
(100)
this model