metadata
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results: []
bert-finetuned-ner
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2036
- Precision: 0.6420
- Recall: 0.6613
- F1: 0.6515
- Accuracy: 0.9421
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 261 | 0.2696 | 0.5284 | 0.5958 | 0.5601 | 0.9222 |
0.2809 | 2.0 | 522 | 0.2086 | 0.6354 | 0.6464 | 0.6408 | 0.9399 |
0.2809 | 3.0 | 783 | 0.2036 | 0.6420 | 0.6613 | 0.6515 | 0.9421 |
Framework versions
- Transformers 4.30.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3