metadata
base_model: dbourget/pb-small-10e-tsdae6e-philsim-cosine-6e-beatai-cosine-50e
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:9504
- loss:TripletLoss
widget:
- source_sentence: cap product
sentences:
- >-
method of adjoining a chain of degree p with a co-chain of degree q,
where q is less than or equal to p, to form a composite chain of degree
p-q
- 'Ontology '
- hat commodity
- source_sentence: cognitivism
sentences:
- supporting cognitive science
- >-
study of changes in organisms caused by modification of gene expression
rather than alteration of the genetic code
- 'the idea that mind works like an algorithmic symbol manipulation '
- source_sentence: doxastic voluntarism
sentences:
- Land surrounded by water
- belief one is free
- the ability to will beliefs
- source_sentence: conceptual role
sentences:
- concept
- inferential role
- 'Theory of knowledge '
- source_sentence: scientific revolutions
sentences:
- scientific realism
- Universal moral principles govern legal systems
- paradigm shifts
model-index:
- name: >-
SentenceTransformer based on
dbourget/pb-small-10e-tsdae6e-philsim-cosine-6e-beatai-cosine-50e
results:
- task:
type: triplet
name: Triplet
dataset:
name: beatai dev
type: beatai-dev
metrics:
- type: cosine_accuracy
value: 0.813973063973064
name: Cosine Accuracy
- type: dot_accuracy
value: 0.22727272727272727
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.8198653198653199
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.8156565656565656
name: Euclidean Accuracy
- type: max_accuracy
value: 0.8198653198653199
name: Max Accuracy
SentenceTransformer based on dbourget/pb-small-10e-tsdae6e-philsim-cosine-6e-beatai-cosine-50e
This is a sentence-transformers model finetuned from dbourget/pb-small-10e-tsdae6e-philsim-cosine-6e-beatai-cosine-50e. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: dbourget/pb-small-10e-tsdae6e-philsim-cosine-6e-beatai-cosine-50e
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("dbourget/pb-small-10e-tsdae6e-philsim-cosine-6e-beatai-cosine-80e")
# Run inference
sentences = [
'scientific revolutions',
'paradigm shifts',
'scientific realism',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
beatai-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.814 |
dot_accuracy | 0.2273 |
manhattan_accuracy | 0.8199 |
euclidean_accuracy | 0.8157 |
max_accuracy | 0.8199 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 138per_device_eval_batch_size
: 138learning_rate
: 5e-07weight_decay
: 0.01num_train_epochs
: 30lr_scheduler_type
: constantbf16
: Truedataloader_drop_last
: Trueresume_from_checkpoint
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 138per_device_eval_batch_size
: 138per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-07weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 30max_steps
: -1lr_scheduler_type
: constantlr_scheduler_kwargs
: {}warmup_ratio
: 0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: 2past_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Truehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss | beatai-dev_cosine_accuracy |
---|---|---|---|---|
0 | 0 | - | - | 0.7904 |
0.1471 | 10 | 0.0721 | - | - |
0.2941 | 20 | 0.0708 | - | - |
0.4412 | 30 | 0.0736 | - | - |
0.5882 | 40 | 0.0704 | - | - |
0.7353 | 50 | 0.0732 | 0.0971 | 0.7929 |
0.8824 | 60 | 0.0716 | - | - |
1.0294 | 70 | 0.0665 | - | - |
1.1765 | 80 | 0.0698 | - | - |
1.3235 | 90 | 0.0699 | - | - |
1.4706 | 100 | 0.0691 | 0.0968 | 0.7912 |
1.6176 | 110 | 0.0687 | - | - |
1.7647 | 120 | 0.0701 | - | - |
1.9118 | 130 | 0.0689 | - | - |
2.0588 | 140 | 0.0696 | - | - |
2.2059 | 150 | 0.071 | 0.0966 | 0.7929 |
2.3529 | 160 | 0.078 | - | - |
2.5 | 170 | 0.0675 | - | - |
2.6471 | 180 | 0.065 | - | - |
2.7941 | 190 | 0.0684 | - | - |
2.9412 | 200 | 0.0689 | 0.0963 | 0.7938 |
3.0882 | 210 | 0.0736 | - | - |
3.2353 | 220 | 0.0684 | - | - |
3.3824 | 230 | 0.0669 | - | - |
3.5294 | 240 | 0.0688 | - | - |
3.6765 | 250 | 0.0678 | 0.0959 | 0.7963 |
3.8235 | 260 | 0.0682 | - | - |
3.9706 | 270 | 0.0678 | - | - |
4.1176 | 280 | 0.0686 | - | - |
4.2647 | 290 | 0.0664 | - | - |
4.4118 | 300 | 0.0703 | 0.0957 | 0.7980 |
4.5588 | 310 | 0.065 | - | - |
4.7059 | 320 | 0.0719 | - | - |
4.8529 | 330 | 0.0685 | - | - |
5.0 | 340 | 0.0639 | - | - |
5.1471 | 350 | 0.0667 | 0.0957 | 0.7971 |
5.2941 | 360 | 0.0661 | - | - |
5.4412 | 370 | 0.0678 | - | - |
5.5882 | 380 | 0.0725 | - | - |
5.7353 | 390 | 0.0655 | - | - |
5.8824 | 400 | 0.0649 | 0.0953 | 0.7980 |
6.0294 | 410 | 0.0661 | - | - |
6.1765 | 420 | 0.0662 | - | - |
6.3235 | 430 | 0.0671 | - | - |
6.4706 | 440 | 0.0698 | - | - |
6.6176 | 450 | 0.0636 | 0.0951 | 0.7980 |
6.7647 | 460 | 0.0644 | - | - |
6.9118 | 470 | 0.0633 | - | - |
7.0588 | 480 | 0.0679 | - | - |
7.2059 | 490 | 0.067 | - | - |
7.3529 | 500 | 0.0713 | 0.0948 | 0.7963 |
7.5 | 510 | 0.0677 | - | - |
7.6471 | 520 | 0.0666 | - | - |
7.7941 | 530 | 0.065 | - | - |
7.9412 | 540 | 0.0665 | - | - |
8.0882 | 550 | 0.0656 | 0.0946 | 0.7963 |
8.2353 | 560 | 0.0649 | - | - |
8.3824 | 570 | 0.0649 | - | - |
8.5294 | 580 | 0.0653 | - | - |
8.6765 | 590 | 0.0648 | - | - |
8.8235 | 600 | 0.0622 | 0.0944 | 0.7946 |
8.9706 | 610 | 0.0689 | - | - |
9.1176 | 620 | 0.0711 | - | - |
9.2647 | 630 | 0.0611 | - | - |
9.4118 | 640 | 0.0697 | - | - |
9.5588 | 650 | 0.0645 | 0.0942 | 0.7963 |
9.7059 | 660 | 0.0639 | - | - |
9.8529 | 670 | 0.0643 | - | - |
10.0 | 680 | 0.0644 | - | - |
10.1471 | 690 | 0.0599 | - | - |
10.2941 | 700 | 0.0723 | 0.0940 | 0.7955 |
10.4412 | 710 | 0.0652 | - | - |
10.5882 | 720 | 0.0646 | - | - |
10.7353 | 730 | 0.0602 | - | - |
10.8824 | 740 | 0.0644 | - | - |
11.0294 | 750 | 0.066 | 0.0938 | 0.7971 |
11.1765 | 760 | 0.0624 | - | - |
11.3235 | 770 | 0.0652 | - | - |
11.4706 | 780 | 0.0649 | - | - |
11.6176 | 790 | 0.0624 | - | - |
11.7647 | 800 | 0.0626 | 0.0937 | 0.7988 |
11.9118 | 810 | 0.0635 | - | - |
12.0588 | 820 | 0.0643 | - | - |
12.2059 | 830 | 0.0663 | - | - |
12.3529 | 840 | 0.0641 | - | - |
12.5 | 850 | 0.0614 | 0.0933 | 0.8005 |
12.6471 | 860 | 0.0613 | - | - |
12.7941 | 870 | 0.0648 | - | - |
12.9412 | 880 | 0.065 | - | - |
13.0882 | 890 | 0.0589 | - | - |
13.2353 | 900 | 0.0632 | 0.0931 | 0.7997 |
13.3824 | 910 | 0.0649 | - | - |
13.5294 | 920 | 0.0612 | - | - |
13.6765 | 930 | 0.0634 | - | - |
13.8235 | 940 | 0.0637 | - | - |
13.9706 | 950 | 0.0626 | 0.0930 | 0.7997 |
14.1176 | 960 | 0.0593 | - | - |
14.2647 | 970 | 0.0662 | - | - |
14.4118 | 980 | 0.0644 | - | - |
14.5588 | 990 | 0.0582 | - | - |
14.7059 | 1000 | 0.0626 | 0.0927 | 0.8013 |
14.8529 | 1010 | 0.0605 | - | - |
15.0 | 1020 | 0.0615 | - | - |
15.1471 | 1030 | 0.0676 | - | - |
15.2941 | 1040 | 0.0633 | - | - |
15.4412 | 1050 | 0.06 | 0.0927 | 0.8047 |
15.5882 | 1060 | 0.0572 | - | - |
15.7353 | 1070 | 0.0579 | - | - |
15.8824 | 1080 | 0.0594 | - | - |
16.0294 | 1090 | 0.063 | - | - |
16.1765 | 1100 | 0.0581 | 0.0927 | 0.8030 |
16.3235 | 1110 | 0.0564 | - | - |
16.4706 | 1120 | 0.0632 | - | - |
16.6176 | 1130 | 0.065 | - | - |
16.7647 | 1140 | 0.0602 | - | - |
16.9118 | 1150 | 0.0581 | 0.0926 | 0.8039 |
17.0588 | 1160 | 0.0623 | - | - |
17.2059 | 1170 | 0.06 | - | - |
17.3529 | 1180 | 0.0562 | - | - |
17.5 | 1190 | 0.0627 | - | - |
17.6471 | 1200 | 0.056 | 0.0924 | 0.8013 |
17.7941 | 1210 | 0.0586 | - | - |
17.9412 | 1220 | 0.0576 | - | - |
18.0882 | 1230 | 0.056 | - | - |
18.2353 | 1240 | 0.0611 | - | - |
18.3824 | 1250 | 0.0551 | 0.0922 | 0.8047 |
18.5294 | 1260 | 0.058 | - | - |
18.6765 | 1270 | 0.0571 | - | - |
18.8235 | 1280 | 0.0616 | - | - |
18.9706 | 1290 | 0.0599 | - | - |
19.1176 | 1300 | 0.0604 | 0.0920 | 0.8081 |
19.2647 | 1310 | 0.0633 | - | - |
19.4118 | 1320 | 0.0573 | - | - |
19.5588 | 1330 | 0.0549 | - | - |
19.7059 | 1340 | 0.0591 | - | - |
19.8529 | 1350 | 0.0585 | 0.0918 | 0.8089 |
20.0 | 1360 | 0.057 | - | - |
20.1471 | 1370 | 0.057 | - | - |
20.2941 | 1380 | 0.0625 | - | - |
20.4412 | 1390 | 0.0589 | - | - |
20.5882 | 1400 | 0.0577 | 0.0918 | 0.8098 |
20.7353 | 1410 | 0.0583 | - | - |
20.8824 | 1420 | 0.0567 | - | - |
21.0294 | 1430 | 0.0619 | - | - |
21.1765 | 1440 | 0.0572 | - | - |
21.3235 | 1450 | 0.0594 | 0.0917 | 0.8123 |
21.4706 | 1460 | 0.0567 | - | - |
21.6176 | 1470 | 0.0611 | - | - |
21.7647 | 1480 | 0.0533 | - | - |
21.9118 | 1490 | 0.0595 | - | - |
22.0588 | 1500 | 0.0521 | 0.0913 | 0.8114 |
22.2059 | 1510 | 0.0586 | - | - |
22.3529 | 1520 | 0.0603 | - | - |
22.5 | 1530 | 0.0601 | - | - |
22.6471 | 1540 | 0.0567 | - | - |
22.7941 | 1550 | 0.0551 | 0.0911 | 0.8114 |
22.9412 | 1560 | 0.0542 | - | - |
23.0882 | 1570 | 0.057 | - | - |
23.2353 | 1580 | 0.0541 | - | - |
23.3824 | 1590 | 0.0586 | - | - |
23.5294 | 1600 | 0.0573 | 0.0912 | 0.8106 |
23.6765 | 1610 | 0.0543 | - | - |
23.8235 | 1620 | 0.0578 | - | - |
23.9706 | 1630 | 0.0563 | - | - |
24.1176 | 1640 | 0.0549 | - | - |
24.2647 | 1650 | 0.0549 | 0.0909 | 0.8140 |
24.4118 | 1660 | 0.056 | - | - |
24.5588 | 1670 | 0.0599 | - | - |
24.7059 | 1680 | 0.0543 | - | - |
24.8529 | 1690 | 0.0547 | - | - |
25.0 | 1700 | 0.0575 | 0.0906 | 0.8114 |
25.1471 | 1710 | 0.0544 | - | - |
25.2941 | 1720 | 0.0574 | - | - |
25.4412 | 1730 | 0.0565 | - | - |
25.5882 | 1740 | 0.0587 | - | - |
25.7353 | 1750 | 0.0559 | 0.0905 | 0.8157 |
25.8824 | 1760 | 0.0551 | - | - |
26.0294 | 1770 | 0.0569 | - | - |
26.1765 | 1780 | 0.0516 | - | - |
26.3235 | 1790 | 0.0561 | - | - |
26.4706 | 1800 | 0.0567 | 0.0906 | 0.8165 |
26.6176 | 1810 | 0.0599 | - | - |
26.7647 | 1820 | 0.0577 | - | - |
26.9118 | 1830 | 0.0532 | - | - |
27.0588 | 1840 | 0.0554 | - | - |
27.2059 | 1850 | 0.0579 | 0.0906 | 0.8123 |
27.3529 | 1860 | 0.0532 | - | - |
27.5 | 1870 | 0.0493 | - | - |
27.6471 | 1880 | 0.0552 | - | - |
27.7941 | 1890 | 0.0532 | - | - |
27.9412 | 1900 | 0.0569 | 0.0904 | 0.8089 |
28.0882 | 1910 | 0.0568 | - | - |
28.2353 | 1920 | 0.052 | - | - |
28.3824 | 1930 | 0.0555 | - | - |
28.5294 | 1940 | 0.0563 | - | - |
28.6765 | 1950 | 0.0555 | 0.0903 | 0.8140 |
28.8235 | 1960 | 0.0535 | - | - |
28.9706 | 1970 | 0.0525 | - | - |
29.1176 | 1980 | 0.0566 | - | - |
29.2647 | 1990 | 0.0562 | - | - |
29.4118 | 2000 | 0.0547 | 0.0902 | 0.8140 |
29.5588 | 2010 | 0.0495 | - | - |
29.7059 | 2020 | 0.0532 | - | - |
29.8529 | 2030 | 0.0553 | - | - |
30.0 | 2040 | 0.0544 | - | - |
Framework Versions
- Python: 3.8.18
- Sentence Transformers: 3.1.1
- Transformers: 4.45.1
- PyTorch: 1.13.1+cu117
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.20.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}