|
--- |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
- dot_accuracy |
|
- manhattan_accuracy |
|
- euclidean_accuracy |
|
- max_accuracy |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:9504 |
|
- loss:TripletLoss |
|
widget: |
|
- source_sentence: cap product |
|
sentences: |
|
- method of adjoining a chain of degree p with a co-chain of degree q, where q is |
|
less than or equal to p, to form a composite chain of degree p-q |
|
- 'Ontology ' |
|
- hat commodity |
|
- source_sentence: cognitivism |
|
sentences: |
|
- supporting cognitive science |
|
- study of changes in organisms caused by modification of gene expression rather |
|
than alteration of the genetic code |
|
- 'the idea that mind works like an algorithmic symbol manipulation ' |
|
- source_sentence: doxastic voluntarism |
|
sentences: |
|
- Land surrounded by water |
|
- belief one is free |
|
- the ability to will beliefs |
|
- source_sentence: conceptual role |
|
sentences: |
|
- concept |
|
- inferential role |
|
- 'Theory of knowledge ' |
|
- source_sentence: scientific revolutions |
|
sentences: |
|
- scientific realism |
|
- Universal moral principles govern legal systems |
|
- paradigm shifts |
|
model-index: |
|
- name: SentenceTransformer |
|
results: |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: beatai dev |
|
type: beatai-dev |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.8080808080808081 |
|
name: Cosine Accuracy |
|
- type: dot_accuracy |
|
value: 0.28114478114478114 |
|
name: Dot Accuracy |
|
- type: manhattan_accuracy |
|
value: 0.8316498316498316 |
|
name: Manhattan Accuracy |
|
- type: euclidean_accuracy |
|
value: 0.8249158249158249 |
|
name: Euclidean Accuracy |
|
- type: max_accuracy |
|
value: 0.8316498316498316 |
|
name: Max Accuracy |
|
--- |
|
|
|
# SentenceTransformer |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
1. bert-base-uncased was pretrained on a large corpus of open access philosophy text. |
|
2. This model was further trained using TSDAE on a subset of sentences from this corpus for 6 epochs. |
|
3. Resulting model was finetuned using cosine similarity objective on the "philsim" private dataset. |
|
4. Resulting model was finetuned using cosine similarity objective on the beatai-philosophy dataset. |
|
|
|
Model internal name: pb-small-10e-tsdae6e-philsim-cosine-6e-beatai-20e |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 1024 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("dbourget/philai-embeddings-2.0") |
|
# Run inference |
|
sentences = [ |
|
'scientific revolutions', |
|
'paradigm shifts', |
|
'scientific realism', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Triplet |
|
* Dataset: `beatai-dev` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| cosine_accuracy | 0.8081 | |
|
| dot_accuracy | 0.2811 | |
|
| manhattan_accuracy | 0.8316 | |
|
| euclidean_accuracy | 0.8249 | |
|
| **max_accuracy** | **0.8316** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 138 |
|
- `per_device_eval_batch_size`: 138 |
|
- `learning_rate`: 2e-06 |
|
- `num_train_epochs`: 10 |
|
- `lr_scheduler_type`: constant |
|
- `bf16`: True |
|
- `dataloader_drop_last`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 138 |
|
- `per_device_eval_batch_size`: 138 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 2e-06 |
|
- `weight_decay`: 0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 10 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: constant |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: True |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: 2 |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | beatai-dev_max_accuracy | |
|
|:------:|:----:|:-------------:|:------:|:-----------------------:| |
|
| 0 | 0 | - | - | 0.8072 | |
|
| 0.1471 | 10 | 1.8573 | - | - | |
|
| 0.2941 | 20 | 1.8196 | - | - | |
|
| 0.4412 | 30 | 1.8594 | - | - | |
|
| 0.5882 | 40 | 1.8581 | - | - | |
|
| 0.7353 | 50 | 1.8766 | 2.3603 | 0.8047 | |
|
| 0.8824 | 60 | 1.8596 | - | - | |
|
| 1.0294 | 70 | 1.6816 | - | - | |
|
| 1.1765 | 80 | 1.7564 | - | - | |
|
| 1.3235 | 90 | 1.7191 | - | - | |
|
| 1.4706 | 100 | 1.6521 | 2.3296 | 0.8064 | |
|
| 1.6176 | 110 | 1.7054 | - | - | |
|
| 1.7647 | 120 | 1.6895 | - | - | |
|
| 1.9118 | 130 | 1.6724 | - | - | |
|
| 2.0588 | 140 | 1.6369 | - | - | |
|
| 2.2059 | 150 | 1.705 | 2.2941 | 0.8123 | |
|
| 2.3529 | 160 | 1.8329 | - | - | |
|
| 2.5 | 170 | 1.6071 | - | - | |
|
| 2.6471 | 180 | 1.5157 | - | - | |
|
| 2.7941 | 190 | 1.624 | - | - | |
|
| 2.9412 | 200 | 1.6185 | 2.2668 | 0.8140 | |
|
| 3.0882 | 210 | 1.6259 | - | - | |
|
| 3.2353 | 220 | 1.5749 | - | - | |
|
| 3.3824 | 230 | 1.5426 | - | - | |
|
| 3.5294 | 240 | 1.5522 | - | - | |
|
| 3.6765 | 250 | 1.5141 | 2.2498 | 0.8157 | |
|
| 3.8235 | 260 | 1.5215 | - | - | |
|
| 3.9706 | 270 | 1.4983 | - | - | |
|
| 4.1176 | 280 | 1.4819 | - | - | |
|
| 4.2647 | 290 | 1.4552 | - | - | |
|
| 4.4118 | 300 | 1.5597 | 2.2226 | 0.8199 | |
|
| 4.5588 | 310 | 1.3983 | - | - | |
|
| 4.7059 | 320 | 1.5386 | - | - | |
|
| 4.8529 | 330 | 1.4541 | - | - | |
|
| 5.0 | 340 | 1.4097 | - | - | |
|
| 5.1471 | 350 | 1.3741 | 2.2129 | 0.8207 | |
|
| 5.2941 | 360 | 1.3909 | - | - | |
|
| 5.4412 | 370 | 1.4116 | - | - | |
|
| 5.5882 | 380 | 1.52 | - | - | |
|
| 5.7353 | 390 | 1.3644 | - | - | |
|
| 5.8824 | 400 | 1.3016 | 2.1699 | 0.8266 | |
|
| 6.0294 | 410 | 1.4435 | - | - | |
|
| 6.1765 | 420 | 1.3112 | - | - | |
|
| 6.3235 | 430 | 1.4056 | - | - | |
|
| 6.4706 | 440 | 1.4541 | - | - | |
|
| 6.6176 | 450 | 1.3312 | 2.1486 | 0.8224 | |
|
| 6.7647 | 460 | 1.2879 | - | - | |
|
| 6.9118 | 470 | 1.227 | - | - | |
|
| 7.0588 | 480 | 1.3834 | - | - | |
|
| 7.2059 | 490 | 1.3242 | - | - | |
|
| 7.3529 | 500 | 1.3756 | 2.1507 | 0.8274 | |
|
| 7.5 | 510 | 1.2872 | - | - | |
|
| 7.6471 | 520 | 1.3288 | - | - | |
|
| 7.7941 | 530 | 1.2689 | - | - | |
|
| 7.9412 | 540 | 1.3102 | - | - | |
|
| 8.0882 | 550 | 1.2929 | 2.1355 | 0.8207 | |
|
| 8.2353 | 560 | 1.2511 | - | - | |
|
| 8.3824 | 570 | 1.1849 | - | - | |
|
| 8.5294 | 580 | 1.2774 | - | - | |
|
| 8.6765 | 590 | 1.1923 | - | - | |
|
| 8.8235 | 600 | 1.1927 | 2.1111 | 0.8283 | |
|
| 8.9706 | 610 | 1.2556 | - | - | |
|
| 9.1176 | 620 | 1.2767 | - | - | |
|
| 9.2647 | 630 | 1.1082 | - | - | |
|
| 9.4118 | 640 | 1.3077 | - | - | |
|
| 9.5588 | 650 | 1.1435 | 2.0922 | 0.8316 | |
|
| 9.7059 | 660 | 1.1888 | - | - | |
|
| 9.8529 | 670 | 1.2123 | - | - | |
|
| 10.0 | 680 | 1.2554 | - | - | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.8.18 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 1.13.1+cu117 |
|
- Accelerate: 0.34.2 |
|
- Datasets: 3.0.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### TripletLoss |
|
```bibtex |
|
@misc{hermans2017defense, |
|
title={In Defense of the Triplet Loss for Person Re-Identification}, |
|
author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, |
|
year={2017}, |
|
eprint={1703.07737}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |