detoxify-optimized / README.md
Daniel Ferreira
first commit
3665cbf
|
raw
history blame
1.91 kB
metadata
license: apache-2.0

This repo has an optimized version of Detoxify, which needs less disk space and less memory at the cost of just a little bit of accuracy.

This is an experiment for me to learn how to use 🤗 Optimum.

Usage

Loading the model requires the 🤗 Optimum library installed.

from optimum.onnxruntime import ORTModelForSequenceClassification
from optimum.pipelines import pipeline as opt_pipeline
from transformers import AutoTokenizer


tokenizer = AutoTokenizer.from_pretrained("dcferreira/detoxify-optimized")
model = ORTModelForSequenceClassification.from_pretrained("dcferreira/detoxify-optimized")
pipe = opt_pipeline(
    model=model,
    task="text-classification",
    function_to_apply="sigmoid",
    accelerator="ort",
    tokenizer=tokenizer,
    return_all_scores=True,  # return scores for all the labels, model was trained as multilabel
)

print(pipe(['example text','exemple de texte','texto de ejemplo','testo di esempio','texto de exemplo','örnek metin','пример текста']))

Performance

The table below compares some statistics on running the original model, vs the original model with the onnxruntime, vs optimizing the model with onnxruntime.

model Accuracy Samples p/ second (CPU) Samples p/ second (GPU) GPU VRAM Disk Space
original 92.1083 16 250 3GB 1.1GB
ort 92.1067 19 340 4GB 1.1GB
optimized (O4) 92.1031 14 650 2GB 540MB