|
--- |
|
tags: |
|
- spacy |
|
- token-classification |
|
language: uk |
|
datasets: |
|
- ner-uk.2.0 |
|
license: mit |
|
model-index: |
|
- name: uk_ner_web_trf_13class |
|
results: |
|
- task: |
|
name: NER |
|
type: token-classification |
|
metrics: |
|
- name: NER Precision |
|
type: precision |
|
value: 0.8977982743 |
|
- name: NER Recall |
|
type: recall |
|
value: 0.8860666569 |
|
- name: NER F Score |
|
type: f_score |
|
value: 0.891893889 |
|
widget: |
|
- text: "Президент Володимир Зеленський пояснив, що наразі діалог із режимом Володимира путіна неможливий, адже агресор обрав курс на знищення українського народу. За словами Зеленського цей режим РФ виявляє неповагу до суверенітету і територіальної цілісності України." |
|
--- |
|
# uk_ner_web_trf_13class |
|
|
|
## Model description |
|
|
|
**uk_ner_web_trf_13class** is a fine-tuned [Roberta Large Ukrainian model](https://huggingface.co/benjamin/roberta-large-wechsel-ukrainian) that is ready to use for **Named Entity Recognition** and achieves a new **SoA** performance for the NER task for Ukrainian language. |
|
|
|
It has a solid performance and has been trained to recognize **thirteen** types of entities: |
|
- **ORG** — a name of a company, brand, agency, organization, institution (including religious, informal, non-profit), party, people's association, or specific project like a conference, a music band, a TV program, etc. Example: *UNESCO*. |
|
- **PERS** — a person name where person may refer to humans, book characters, or humanoid creatures like vampires, ghosts, mermaids, etc. Example: *Marquis de Sade*. |
|
- **LOC** — a geographical name, including names of districts, villages, cities, states, counties, countries, continents, rivers, lakes, seas, oceans, mountains, etc. Example: *Ukraine*. |
|
- **MON** — a sum of money including the currency. Examples: *\$40, 1 mln hryvnias*. |
|
- **PCT** — a percent value including the percent sign or the word "percent". Example: *10\%*. |
|
- **DATE** — a full or incomplete calendar date that may include a century, a year, a month, a day. Examples: *last week, 10.12.1999*. |
|
- **TIME** — a textual or numerical timestamp. Examples: *half past six, 18:30*. |
|
- **PERIOD** — a time period, which may consist of two dates. Examples: *a few months, 2014-2015*. |
|
- **JOB** — a job title. Examples: *member of parliament, ophthalmologist*. |
|
- **DOC** — a unique name of a document, including names of contracts, orders, bills, purchases. Example: *procurement contract CW2244226*. |
|
- **QUANT** — a quantity with the unit of measurement, such as weight, distance, size. Examples: *3 kilograms, a hundred miles*. |
|
- **ART** (artifact) — a name of a human-made product, like a book, a song, a car, or a sandwich. Examples: *Mona Lisa, iPhone*. |
|
- **MISC** — any other entity not covered in the list above, like nam*s of holidays, websites, battles, wars, sports events, hurricanes, etc. Example: *Black Friday*. |
|
|
|
The model was fine-tuned on the [NER-UK 2.0 dataset](https://github.com/lang-uk/ner-uk), released by the [lang-uk](https://lang.org.ua). |
|
|
|
Another transformer-based model **trained on 4 classes** for the SpaCy is available [here](https://huggingface.co/dchaplinsky/uk_ner_web_trf_best). |
|
|
|
## Citation |
|
TBA |
|
|
|
Copyright: [Dmytro Chaplynskyi](https://twitter.com/dchaplinsky), [Mariana Romanyshyn](https://scholar.google.com/citations?user=yji2ZvIAAAAJ&hl=uk&oi=ao), [lang-uk project](https://lang.org.ua), 2024 |
|
|