dctanner's picture
End of training
95d3ec2 verified
|
raw
history blame
3.05 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - alignment-handbook
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - sablo/HelpSteer_binarized
base_model: sablo/sablo-pebble-mistral
model-index:
  - name: sablo-pebble-mistral-dpo-lora-HelpSteer_binarized
    results: []

sablo-pebble-mistral-dpo-lora-HelpSteer_binarized

This model is a fine-tuned version of sablo/sablo-pebble-mistral on the sablo/HelpSteer_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5212
  • Rewards/chosen: -2.5398
  • Rewards/rejected: -3.5311
  • Rewards/accuracies: 0.7406
  • Rewards/margins: 0.9913
  • Logps/rejected: -214.9349
  • Logps/chosen: -206.5847
  • Logits/rejected: -2.0624
  • Logits/chosen: -2.1620

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.652 0.2 200 0.6595 0.0498 -0.0320 0.6415 0.0818 -98.2975 -120.2629 -2.0236 -2.1231
0.4905 0.39 400 0.5551 -1.6581 -2.1527 0.6958 0.4946 -168.9884 -177.1946 -2.0950 -2.1951
0.4249 0.59 600 0.5327 -3.4554 -4.3247 0.7241 0.8693 -241.3867 -237.1045 -2.0782 -2.1773
0.5858 0.79 800 0.5207 -2.5072 -3.4512 0.7335 0.9440 -212.2718 -205.4982 -2.0586 -2.1591
0.6128 0.98 1000 0.5212 -2.5398 -3.5311 0.7406 0.9913 -214.9349 -206.5847 -2.0624 -2.1620

Framework versions

  • PEFT 0.7.1
  • Transformers 4.36.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.6
  • Tokenizers 0.15.0