|
""" Caffe2 validation script |
|
|
|
This script is created to verify exported ONNX models running in Caffe2 |
|
It utilizes the same PyTorch dataloader/processing pipeline for a |
|
fair comparison against the originals. |
|
|
|
Copyright 2020 Ross Wightman |
|
""" |
|
import argparse |
|
import numpy as np |
|
from caffe2.python import core, workspace, model_helper |
|
from caffe2.proto import caffe2_pb2 |
|
from data import create_loader, resolve_data_config, Dataset |
|
from utils import AverageMeter |
|
import time |
|
|
|
parser = argparse.ArgumentParser(description='Caffe2 ImageNet Validation') |
|
parser.add_argument('data', metavar='DIR', |
|
help='path to dataset') |
|
parser.add_argument('--c2-prefix', default='', type=str, metavar='NAME', |
|
help='caffe2 model pb name prefix') |
|
parser.add_argument('--c2-init', default='', type=str, metavar='PATH', |
|
help='caffe2 model init .pb') |
|
parser.add_argument('--c2-predict', default='', type=str, metavar='PATH', |
|
help='caffe2 model predict .pb') |
|
parser.add_argument('-j', '--workers', default=2, type=int, metavar='N', |
|
help='number of data loading workers (default: 2)') |
|
parser.add_argument('-b', '--batch-size', default=256, type=int, |
|
metavar='N', help='mini-batch size (default: 256)') |
|
parser.add_argument('--img-size', default=None, type=int, |
|
metavar='N', help='Input image dimension, uses model default if empty') |
|
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', |
|
help='Override mean pixel value of dataset') |
|
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', |
|
help='Override std deviation of of dataset') |
|
parser.add_argument('--crop-pct', type=float, default=None, metavar='PCT', |
|
help='Override default crop pct of 0.875') |
|
parser.add_argument('--interpolation', default='', type=str, metavar='NAME', |
|
help='Image resize interpolation type (overrides model)') |
|
parser.add_argument('--tf-preprocessing', dest='tf_preprocessing', action='store_true', |
|
help='use tensorflow mnasnet preporcessing') |
|
parser.add_argument('--print-freq', '-p', default=10, type=int, |
|
metavar='N', help='print frequency (default: 10)') |
|
|
|
|
|
def main(): |
|
args = parser.parse_args() |
|
args.gpu_id = 0 |
|
if args.c2_prefix: |
|
args.c2_init = args.c2_prefix + '.init.pb' |
|
args.c2_predict = args.c2_prefix + '.predict.pb' |
|
|
|
model = model_helper.ModelHelper(name="validation_net", init_params=False) |
|
|
|
|
|
init_net_proto = caffe2_pb2.NetDef() |
|
with open(args.c2_init, "rb") as f: |
|
init_net_proto.ParseFromString(f.read()) |
|
model.param_init_net = core.Net(init_net_proto) |
|
|
|
|
|
predict_net_proto = caffe2_pb2.NetDef() |
|
with open(args.c2_predict, "rb") as f: |
|
predict_net_proto.ParseFromString(f.read()) |
|
model.net = core.Net(predict_net_proto) |
|
|
|
data_config = resolve_data_config(None, args) |
|
loader = create_loader( |
|
Dataset(args.data, load_bytes=args.tf_preprocessing), |
|
input_size=data_config['input_size'], |
|
batch_size=args.batch_size, |
|
use_prefetcher=False, |
|
interpolation=data_config['interpolation'], |
|
mean=data_config['mean'], |
|
std=data_config['std'], |
|
num_workers=args.workers, |
|
crop_pct=data_config['crop_pct'], |
|
tensorflow_preprocessing=args.tf_preprocessing) |
|
|
|
|
|
input_blob = model.net.external_inputs[0] |
|
output_blob = model.net.external_outputs[0] |
|
|
|
if True: |
|
device_opts = None |
|
else: |
|
|
|
device_opts = core.DeviceOption(caffe2_pb2.PROTO_CUDA, args.gpu_id) |
|
model.net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True) |
|
model.param_init_net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True) |
|
|
|
model.param_init_net.GaussianFill( |
|
[], input_blob.GetUnscopedName(), |
|
shape=(1,) + data_config['input_size'], mean=0.0, std=1.0) |
|
workspace.RunNetOnce(model.param_init_net) |
|
workspace.CreateNet(model.net, overwrite=True) |
|
|
|
batch_time = AverageMeter() |
|
top1 = AverageMeter() |
|
top5 = AverageMeter() |
|
end = time.time() |
|
for i, (input, target) in enumerate(loader): |
|
|
|
caffe2_in = input.data.numpy() |
|
workspace.FeedBlob(input_blob, caffe2_in, device_opts) |
|
workspace.RunNet(model.net, num_iter=1) |
|
output = workspace.FetchBlob(output_blob) |
|
|
|
|
|
prec1, prec5 = accuracy_np(output.data, target.numpy()) |
|
top1.update(prec1.item(), input.size(0)) |
|
top5.update(prec5.item(), input.size(0)) |
|
|
|
|
|
batch_time.update(time.time() - end) |
|
end = time.time() |
|
|
|
if i % args.print_freq == 0: |
|
print('Test: [{0}/{1}]\t' |
|
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}, {rate_avg:.3f}/s, {ms_avg:.3f} ms/sample) \t' |
|
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' |
|
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( |
|
i, len(loader), batch_time=batch_time, rate_avg=input.size(0) / batch_time.avg, |
|
ms_avg=100 * batch_time.avg / input.size(0), top1=top1, top5=top5)) |
|
|
|
print(' * Prec@1 {top1.avg:.3f} ({top1a:.3f}) Prec@5 {top5.avg:.3f} ({top5a:.3f})'.format( |
|
top1=top1, top1a=100-top1.avg, top5=top5, top5a=100.-top5.avg)) |
|
|
|
|
|
def accuracy_np(output, target): |
|
max_indices = np.argsort(output, axis=1)[:, ::-1] |
|
top5 = 100 * np.equal(max_indices[:, :5], target[:, np.newaxis]).sum(axis=1).mean() |
|
top1 = 100 * np.equal(max_indices[:, 0], target).mean() |
|
return top1, top5 |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|