PII-Detection-V2.1

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0331
  • Overall Precision: 0.9482
  • Overall Recall: 0.9574
  • Overall F1: 0.9528
  • Overall Accuracy: 0.9926
  • Accountname F1: 0.9939
  • Accountnumber F1: 0.9879
  • Buildingnumber F1: 0.8059
  • City F1: 0.9729
  • Companyname F1: 0.9773
  • County F1: 0.9463
  • Creditcardcvv F1: 0.8970
  • Creditcardissuer F1: 0.9565
  • Creditcardnumber F1: 0.8770
  • Email F1: 0.9981
  • Firstname F1: 0.9324
  • Fullname F1: 0.9851
  • Iban F1: 0.9834
  • Lastname F1: 0.8744
  • Middlename F1: 0.8390
  • Name F1: 0.9972
  • Number F1: 0.9684
  • Phonenumber F1: 0.9788
  • Pin F1: 0.9017
  • Secondaryaddress F1: 0.9892
  • State F1: 0.9421
  • Street F1: 0.8617
  • Streetaddress F1: 0.7533
  • Url F1: 0.9977
  • Username F1: 0.9654

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Overall Precision Overall Recall Overall F1 Overall Accuracy Accountname F1 Accountnumber F1 Buildingnumber F1 City F1 Companyname F1 County F1 Creditcardcvv F1 Creditcardissuer F1 Creditcardnumber F1 Email F1 Firstname F1 Fullname F1 Iban F1 Lastname F1 Middlename F1 Name F1 Number F1 Phonenumber F1 Pin F1 Secondaryaddress F1 State F1 Street F1 Streetaddress F1 Url F1 Username F1
0.0445 1.0 2031 0.0375 0.8924 0.9268 0.9093 0.9885 0.9781 0.9675 0.7260 0.9391 0.9347 0.8747 0.8221 0.8962 0.8239 0.9948 0.8764 0.9804 0.9528 0.7683 0.6548 0.9889 0.8223 0.9277 0.7938 0.9853 0.8633 0.7646 0.4597 0.9937 0.9427
0.0266 2.0 4062 0.0296 0.9245 0.9455 0.9349 0.9908 0.9900 0.9810 0.7546 0.9639 0.9574 0.9085 0.8370 0.9375 0.8809 0.9979 0.9094 0.9824 0.9785 0.8299 0.8111 0.9938 0.9247 0.9523 0.8640 0.9826 0.9163 0.7605 0.6372 0.9977 0.9599
0.0148 3.0 6093 0.0277 0.9414 0.9529 0.9471 0.9921 0.9948 0.9863 0.7876 0.9689 0.9624 0.9324 0.8883 0.9537 0.8795 0.9979 0.9252 0.9849 0.9840 0.8515 0.8310 0.9946 0.9506 0.9675 0.8685 0.9875 0.9325 0.8355 0.7560 0.9973 0.9685
0.0095 4.0 8124 0.0301 0.9438 0.9536 0.9487 0.9921 0.9913 0.9859 0.8018 0.9742 0.9652 0.9443 0.8982 0.9508 0.8784 0.9986 0.9281 0.9842 0.9828 0.8584 0.8294 0.9952 0.9681 0.9629 0.8889 0.9875 0.9374 0.8430 0.7522 0.9980 0.9457
0.0038 5.0 10155 0.0331 0.9482 0.9574 0.9528 0.9926 0.9939 0.9879 0.8059 0.9729 0.9773 0.9463 0.8970 0.9565 0.8770 0.9981 0.9324 0.9851 0.9834 0.8744 0.8390 0.9972 0.9684 0.9788 0.9017 0.9892 0.9421 0.8617 0.7533 0.9977 0.9654

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.2.0
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
30
Safetensors
Model size
66.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for deepaksiloka/PII-Detection-V2.1

Finetuned
(7187)
this model