|
""" AdaptFormer model configuration""" |
|
|
|
from transformers import PretrainedConfig |
|
|
|
|
|
class AdaptFormerConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`AdaptFormerForChangeDetection`]. |
|
It is used to instantiate an AdaptFormer model according to the specified arguments, |
|
defining the model architecture. Instantiating a configuration with the defaults will yield a similar |
|
configuration to that of the AdaptFormer |
|
[deepang/adaptformer-LEVIR-CD](https://huggingface.co/deepang/adaptformer-LEVIR-CD) |
|
architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
num_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
num_classes (`int`, *optional*, defaults to 2): |
|
The number of classes. |
|
embed_dims (`List[int]`, *optional*, defaults to `[64, 128, 256]`): |
|
Dimension of each of the encoder blocks. |
|
num_heads (`List[int]`, *optional*, defaults to `[1, 2, 4]`): |
|
Number of attention heads for each attention layer in each block of the encoder. |
|
mlp_ratios (`List[int]`, *optional*, defaults to `[4, 4, 4]`): |
|
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the |
|
encoder blocks. |
|
depths (`List[int]`, *optional*, defaults to `[3, 3, 3]`): |
|
The number of layers in each encoder block. |
|
semantic_loss_ignore_index (`int`, *optional*, defaults to 255): |
|
The index that is ignored by the loss function of the semantic segmentation model. |
|
semantic_loss_weight (`List[float]`, *optional*, defaults to `[0, 0, 0.8, 1]`): |
|
The weight of the semantic segmentation loss. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoModel, AutoConfig |
|
|
|
>>> # Initializing a AdaptFormer |
|
>>> configuration = AutoConfig.from_pretrained("deepang/adaptformer-LEVIR-CD") |
|
|
|
>>> # Initializing a model from the deepang/adaptformer-LEVIR-CD style configuration |
|
>>> model = AutoModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "adaptformer" |
|
|
|
def __init__( |
|
self, |
|
num_channels=3, |
|
num_classes=2, |
|
embed_dims=[64, 128, 256], |
|
num_heads=[1, 2, 4], |
|
mlp_ratios=[4, 4, 4], |
|
depths=[3, 3, 3], |
|
semantic_loss_ignore_index=255, |
|
semantic_loss_weight=[0, 0, 0.5, 1], |
|
initializer_range=0.02, |
|
**kwargs, |
|
): |
|
self.num_channels = num_channels |
|
self.embed_dims = embed_dims |
|
self.num_heads = num_heads |
|
self.num_heads = num_heads |
|
self.mlp_ratios = mlp_ratios |
|
self.depths = depths |
|
self.num_classes = num_classes |
|
self.semantic_loss_ignore_index = semantic_loss_ignore_index |
|
self.semantic_loss_weight = semantic_loss_weight |
|
self.initializer_range = initializer_range |
|
|
|
super().__init__(**kwargs) |
|
|