|
from typing import Tuple |
|
|
|
from transformers import ViTImageProcessor |
|
from transformers.image_processing_utils import BatchFeature |
|
from transformers.image_utils import ImageInput |
|
|
|
|
|
class AdaptFormerImageProcessor(ViTImageProcessor): |
|
r""" |
|
Constructs a AdaptFormer image processor. |
|
|
|
Args: |
|
do_resize (`bool`, *optional*, defaults to `True`): |
|
Whether to resize the image's (height, width) dimensions to the specified `(size["height"], |
|
size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method. |
|
size (`dict`, *optional*, defaults to `{"height": 224, "width": 224}`): |
|
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess` |
|
method. |
|
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): |
|
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the |
|
`preprocess` method. |
|
do_rescale (`bool`, *optional*, defaults to `True`): |
|
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` |
|
parameter in the `preprocess` method. |
|
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): |
|
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the |
|
`preprocess` method. |
|
do_normalize (`bool`, *optional*, defaults to `True`): |
|
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` |
|
method. |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): |
|
Mean to use if normalizing the image. This is a float or list of floats the length of the number of |
|
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): |
|
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the |
|
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
def preprocess( |
|
self, |
|
images: Tuple[ImageInput, ImageInput], |
|
**kwargs, |
|
) -> BatchFeature: |
|
""" |
|
Preprocess an image or batch of images. |
|
|
|
Args: |
|
images (`Tuple[ImageInput, ImageInput]`): |
|
Image Tuple to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If |
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`. |
|
do_resize (`bool`, *optional*, defaults to `self.do_resize`): |
|
Whether to resize the image. |
|
size (`Dict[str, int]`, *optional*, defaults to `self.size`): |
|
Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after |
|
resizing. |
|
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`): |
|
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has |
|
an effect if `do_resize` is set to `True`. |
|
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): |
|
Whether to rescale the image values between [0 - 1]. |
|
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): |
|
Rescale factor to rescale the image by if `do_rescale` is set to `True`. |
|
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): |
|
Whether to normalize the image. |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): |
|
Image mean to use if `do_normalize` is set to `True`. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): |
|
Image standard deviation to use if `do_normalize` is set to `True`. |
|
return_tensors (`str` or `TensorType`, *optional*): |
|
The type of tensors to return. Can be one of: |
|
- Unset: Return a list of `np.ndarray`. |
|
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. |
|
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. |
|
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. |
|
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. |
|
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): |
|
The channel dimension format for the output image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- Unset: Use the channel dimension format of the input image. |
|
input_data_format (`ChannelDimension` or `str`, *optional*): |
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred |
|
from the input image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. |
|
""" |
|
imagesA, imagesB = images |
|
feature_A = super().preprocess(imagesA, **kwargs) |
|
feature_B = super().preprocess(imagesB, **kwargs) |
|
|
|
data = { |
|
"pixel_valuesA": feature_A["pixel_values"], |
|
"pixel_valuesB": feature_B["pixel_values"], |
|
} |
|
return BatchFeature(data=data, tensor_type=kwargs.pop("return_tensors", None)) |
|
|