|
--- |
|
tags: autotrain |
|
language: unk |
|
widget: |
|
- text: "I love AutoTrain 🤗" |
|
datasets: |
|
- deepesh0x/autotrain-data-bert_wikipedia_sst_2 |
|
co2_eq_emissions: 16.686945384446037 |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Binary Classification |
|
- Model ID: 1034235513 |
|
- CO2 Emissions (in grams): 16.686945384446037 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.14450643956661224 |
|
- Accuracy: 0.9527839643652561 |
|
- Precision: 0.9565852363250132 |
|
- Recall: 0.9588767633750332 |
|
- AUC: 0.9872179498202862 |
|
- F1: 0.9577296291373122 |
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/deepesh0x/autotrain-bert_wikipedia_sst_2-1034235513 |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("deepesh0x/autotrain-bert_wikipedia_sst_2-1034235513", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("deepesh0x/autotrain-bert_wikipedia_sst_2-1034235513", use_auth_token=True) |
|
|
|
inputs = tokenizer("I love AutoTrain", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |