metadata
language: en
license: cc-by-4.0
datasets:
- squad_v2
model-index:
- name: deepset/bert-base-uncased-squad2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- type: exact_match
value: 75.6529
name: Exact Match
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTY2YmQ0ZDFjMjRlZWRiZWQ2YWQ4MTM0ODkyYTQ0NmYwMzBlNWViZWQ0ODFhMGJmMmY4ZGYwOTQyMDAyZGNjYyIsInZlcnNpb24iOjF9.UyqonQTsCB0BW86LfPy17kLt3a4r3wMeh04MDam5t_UhElp6N02YpiKOqcb1ethNHjAR0WGyxrcV3TI4d-wFAQ
- type: f1
value: 78.6191
name: F1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWRkZWVjMDU2YTcxYWVkZTU1YmUzY2FkNWI5NDJkM2YwMjFmMmE0Njc3MjI5N2Q0NDdhZDNkZWNjMWE5YTRmZiIsInZlcnNpb24iOjF9.ol0Zacd9ZryXazXjgVssGFYG4s5FzbhGGaj1ZEDLVN2ziyzx23bo4GH9PSuGTFxRK2BO5_dxvDupLRqJOF59Bg
bert-base-uncased for QA
Overview
Language model: bert-base-uncased
Language: English
Downstream-task: Extractive QA
Training data: SQuAD 2.0
Eval data: SQuAD 2.0
Infrastructure: 1x Tesla v100
Hyperparameters
batch_size = 32
n_epochs = 3
base_LM_model = "bert-base-uncased"
max_seq_len = 384
learning_rate = 3e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride=128
max_query_length=64
Performance
"exact": 73.67977764676156
"f1": 77.87647139308865
Authors
- Timo M枚ller:
timo.moeller [at] deepset.ai
- Julian Risch:
julian.risch [at] deepset.ai
- Malte Pietsch:
malte.pietsch [at] deepset.ai
- Michel Bartels:
michel.bartels [at] deepset.ai
About us
We bring NLP to the industry via open source!
Our focus: Industry specific language models & large scale QA systems.
Some of our work:
- German BERT (aka "bert-base-german-cased")
- GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")
- FARM
- Haystack
Get in touch: Twitter | LinkedIn | Discord | GitHub Discussions | Website
By the way: we're hiring!