File size: 7,538 Bytes
1dbe1ab
68c640e
91eb295
68c640e
 
fc342dd
 
 
 
 
 
 
 
 
 
 
 
91eb295
fc342dd
91eb295
fc342dd
91eb295
 
fc342dd
91eb295
fc342dd
91eb295
42f0f7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dbe1ab
46f6aef
0a489d6
46f6aef
 
 
ebfdac2
46f6aef
 
 
 
 
0a489d6
46f6aef
 
 
 
0a489d6
 
46f6aef
0a489d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46f6aef
0a489d6
46f6aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a489d6
46f6aef
 
 
 
 
 
 
 
 
0a489d6
46f6aef
 
0a489d6
 
 
46f6aef
 
 
 
 
 
 
0a489d6
46f6aef
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
---
language: en
license: cc-by-4.0
datasets:
- squad_v2
model-index:
- name: deepset/bert-large-uncased-whole-word-masking-squad2
  results:
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad_v2
      type: squad_v2
      config: squad_v2
      split: validation
    metrics:
    - type: exact_match
      value: 80.8846
      name: Exact Match
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2E5ZGNkY2ExZWViZGEwNWE3OGRmMWM2ZmE4ZDU4ZDQ1OGM3ZWE0NTVmZjFmYmZjZmJmNjJmYTc3NTM3OTk3OSIsInZlcnNpb24iOjF9.aSblF4ywh1fnHHrN6UGL392R5KLaH3FCKQlpiXo_EdQ4XXEAENUCjYm9HWDiFsgfSENL35GkbSyz_GAhnefsAQ
    - type: f1
      value: 83.8765
      name: F1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGFlNmEzMTk2NjRkNTI3ZTk3ZTU1NWNlYzIyN2E0ZDFlNDA2ZjYwZWJlNThkMmRmMmE0YzcwYjIyZDM5NmRiMCIsInZlcnNpb24iOjF9.-rc2_Bsp_B26-o12MFYuAU0Ad2Hg9PDx7Preuk27WlhYJDeKeEr32CW8LLANQABR3Mhw2x8uTYkEUrSDMxxLBw
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad
      type: squad
      config: plain_text
      split: validation
    metrics:
    - type: exact_match
      value: 85.904
      name: Exact Match
    - type: f1
      value: 92.586
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: adversarial_qa
      type: adversarial_qa
      config: adversarialQA
      split: validation
    metrics:
    - type: exact_match
      value: 28.233
      name: Exact Match
    - type: f1
      value: 41.170
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad_adversarial
      type: squad_adversarial
      config: AddOneSent
      split: validation
    metrics:
    - type: exact_match
      value: 78.064
      name: Exact Match
    - type: f1
      value: 83.591
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squadshifts amazon
      type: squadshifts
      config: amazon
      split: test
    metrics:
    - type: exact_match
      value: 65.615
      name: Exact Match
    - type: f1
      value: 80.733
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squadshifts new_wiki
      type: squadshifts
      config: new_wiki
      split: test
    metrics:
    - type: exact_match
      value: 81.570
      name: Exact Match
    - type: f1
      value: 91.199
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squadshifts nyt
      type: squadshifts
      config: nyt
      split: test
    metrics:
    - type: exact_match
      value: 83.279
      name: Exact Match
    - type: f1
      value: 91.090
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squadshifts reddit
      type: squadshifts
      config: reddit
      split: test
    metrics:
    - type: exact_match
      value: 69.305
      name: Exact Match
    - type: f1
      value: 82.405
      name: F1
---

# bert-large-uncased-whole-word-masking-squad2 for Extractive QA

This is a berta-large model, fine-tuned using the SQuAD2.0 dataset for the task of question answering.

## Overview
**Language model:** bert-large  
**Language:** English  
**Downstream-task:** Extractive QA  
**Training data:** SQuAD 2.0  
**Eval data:** SQuAD 2.0  
**Code:**  See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline)  

## Usage

### In Haystack
Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents. 
To load and run the model with [Haystack](https://github.com/deepset-ai/haystack/):
```python
# After running pip install haystack-ai "transformers[torch,sentencepiece]"

from haystack import Document
from haystack.components.readers import ExtractiveReader

docs = [
    Document(content="Python is a popular programming language"),
    Document(content="python ist eine beliebte Programmiersprache"),
]

reader = ExtractiveReader(model="deepset/bert-large-uncased-whole-word-masking-squad2")
reader.warm_up()

question = "What is a popular programming language?"
result = reader.run(query=question, documents=docs)
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}
```
For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline).

### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline

model_name = "deepset/bert-large-uncased-whole-word-masking-squad2"

# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```

## About us

<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
    <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
         <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
     </div>
     <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
         <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
     </div>
</div>

[deepset](http://deepset.ai/) is the company behind the production-ready open-source AI framework [Haystack](https://haystack.deepset.ai/).

Some of our other work: 
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2)
- [German BERT](https://deepset.ai/german-bert), [GermanQuAD and GermanDPR](https://deepset.ai/germanquad), [German embedding model](https://huggingface.co/mixedbread-ai/deepset-mxbai-embed-de-large-v1)
- [deepset Cloud](https://www.deepset.ai/deepset-cloud-product), [deepset Studio](https://www.deepset.ai/deepset-studio)

## Get in touch and join the Haystack community

<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>. 

We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>

[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai)

By the way: [we're hiring!](http://www.deepset.ai/jobs)