lewtun's picture
lewtun HF staff
Add evaluation results on the squad_v2 config of squad_v2
9307bcf
|
raw
history blame
4.68 kB
---
datasets:
- squad_v2
license: cc-by-4.0
model-index:
- name: deepset/xlm-roberta-base-squad2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- name: Exact Match
type: exact_match
value: 74.0354
verified: true
- name: F1
type: f1
value: 77.1833
verified: true
---
# Multilingual XLM-RoBERTa base for QA on various languages
## Overview
**Language model:** xlm-roberta-base
**Language:** Multilingual
**Downstream-task:** Extractive QA
**Training data:** SQuAD 2.0
**Eval data:** SQuAD 2.0 dev set - German MLQA - German XQuAD
**Code:** See [example](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py) in [FARM](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py)
**Infrastructure**: 4x Tesla v100
## Hyperparameters
```
batch_size = 22*4
n_epochs = 2
max_seq_len=256,
doc_stride=128,
learning_rate=2e-5,
```
Corresponding experiment logs in mlflow: [link](https://public-mlflow.deepset.ai/#/experiments/2/runs/b25ec75e07614accb3f1ce03d43dbe08)
## Performance
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
```
"exact": 73.91560683904657
"f1": 77.14103746689592
```
Evaluated on German MLQA: test-context-de-question-de.json
"exact": 33.67279167589108
"f1": 44.34437105434842
"total": 4517
Evaluated on German XQuAD: xquad.de.json
"exact": 48.739495798319325
"f1": 62.552615701071495
"total": 1190
## Usage
### In Transformers
```python
from transformers.pipelines import pipeline
from transformers.modeling_auto import AutoModelForQuestionAnswering
from transformers.tokenization_auto import AutoTokenizer
model_name = "deepset/xlm-roberta-base-squad2"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
### In FARM
```python
from farm.modeling.adaptive_model import AdaptiveModel
from farm.modeling.tokenization import Tokenizer
from farm.infer import Inferencer
model_name = "deepset/xlm-roberta-base-squad2"
# a) Get predictions
nlp = Inferencer.load(model_name, task_type="question_answering")
QA_input = [{"questions": ["Why is model conversion important?"],
"text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}]
res = nlp.inference_from_dicts(dicts=QA_input, rest_api_schema=True)
# b) Load model & tokenizer
model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
tokenizer = Tokenizer.load(model_name)
```
### In haystack
For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/):
```python
reader = FARMReader(model_name_or_path="deepset/xlm-roberta-base-squad2")
# or
reader = TransformersReader(model="deepset/roberta-base-squad2",tokenizer="deepset/xlm-roberta-base-squad2")
```
## Authors
Branden Chan: `branden.chan [at] deepset.ai`
Timo M枚ller: `timo.moeller [at] deepset.ai`
Malte Pietsch: `malte.pietsch [at] deepset.ai`
Tanay Soni: `tanay.soni [at] deepset.ai`
## About us
![deepset logo](https://workablehr.s3.amazonaws.com/uploads/account/logo/476306/logo)
We bring NLP to the industry via open source!
Our focus: Industry specific language models & large scale QA systems.
Some of our work:
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
- [FARM](https://github.com/deepset-ai/FARM)
- [Haystack](https://github.com/deepset-ai/haystack/)
Get in touch:
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
By the way: [we're hiring!](http://www.deepset.ai/jobs)