|
--- |
|
library_name: transformers |
|
pipeline_tag: translation |
|
tags: |
|
- transformers |
|
- translation |
|
- pytorch |
|
- russian |
|
- kazakh |
|
|
|
license: apache-2.0 |
|
language: |
|
- ru |
|
- kk |
|
datasets: |
|
- issai/kazparc |
|
--- |
|
|
|
# kazRush-ru-kk |
|
|
|
kazRush-ru-kk is a translation model for translating from Russian to Kazakh. The model was trained with randomly initialized weights based on the T5 configuration on the available open-source parallel data. |
|
|
|
## Usage |
|
|
|
Using the model requires `sentencepiece` library to be installed. |
|
|
|
After installing necessary dependencies the model can be run with the following code: |
|
|
|
```python |
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer |
|
import torch |
|
|
|
device = 'cuda' |
|
model = AutoModelForSeq2SeqLM.from_pretrained('deepvk/kazRush-ru-kk').to(device) |
|
tokenizer = AutoTokenizer.from_pretrained('deepvk/kazRush-ru-kk') |
|
|
|
@torch.inference_mode |
|
def generate(text, **kwargs): |
|
inputs = tokenizer(text, return_tensors='pt').to(device) |
|
hypotheses = model.generate(**inputs, num_beams=5, **kwargs) |
|
return tokenizer.decode(hypotheses[0], skip_special_tokens=True) |
|
|
|
print(generate("Как Кока-Кола может помочь автомобилисту?")) |
|
``` |
|
|
|
You can also access the model via _pipeline_ wrapper: |
|
```python |
|
>>> from transformers import pipeline |
|
|
|
>>> pipe = pipeline(model="deepvk/kazRush-ru-kk") |
|
>>> pipe("Мама мыла раму") |
|
[{'translation_text': 'Анам жақтауды сабындады'}] |
|
``` |
|
|
|
## Data and Training |
|
|
|
This model was trained on the following data (Russian-Kazakh language pairs): |
|
|
|
| Dataset | Number of pairs | |
|
|-----------------------------------------|-------| |
|
| [OPUS Corpora](<https://opus.nlpl.eu/results/ru&kk/corpus-result-table>) | 718K | |
|
| [kazparc](<https://huggingface.co/datasets/issai/kazparc>) | 2,150K | |
|
| [wmt19 dataset](<https://statmt.org/wmt19/translation-task.html#download>) | 5,063K | |
|
| [TIL dataset](<https://github.com/turkic-interlingua/til-mt/tree/master/til_corpus>) | 4,403K | |
|
|
|
Preprocessing of the data included: |
|
1. deduplication |
|
2. removing trash symbols, special tags, multiple whitespaces etc. from texts |
|
3. removing texts that were not in Russian or Kazakh (language detection was made via [facebook/fasttext-language-identification](<https://huggingface.co/facebook/fasttext-language-identification>)) |
|
4. removing pairs that had low alingment score (comparison was performed via [sentence-transformers/LaBSE](<https://huggingface.co/sentence-transformers/LaBSE>)) |
|
5. filtering the data using [opusfilter](<https://github.com/Helsinki-NLP/OpusFilter>) tools |
|
|
|
Model was trained for 56 hours on 2 GPUs NVIDIA A100 80 Gb. |
|
|
|
## Evaluation |
|
|
|
Current model was compared to another open-source translation model, [NLLB](<https://huggingface.co/docs/transformers/model_doc/nllb>). We compared our model to all version of NLLB, excluding nllb-moe-54b due to its size. |
|
The metrics - BLEU, chrF and COMET - were calculated on `devtest` part of [FLORES+ evaluation benchmark](<https://github.com/openlanguagedata/flores>), most recent evaluation benchmark for multilingual machine translation. |
|
Calculation of BLEU and chrF follows the standart implementation from [sacreBLEU](<https://github.com/mjpost/sacrebleu>), and COMET is calculated using default model described in [COMET repository](<https://github.com/Unbabel/COMET>). |
|
|
|
| Model | Size | BLEU | chrF | COMET | |
|
|-----------------------------------------|-------|-----------------------------|------------------------|--------| |
|
| [nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) | 600M | 13.8 | 48.2 | 86.8 | |
|
| [nllb-200-1.3B](https://huggingface.co/facebook/nllb-200-1.3B) | 1.3B | 14.8 | 50.1 | 88.1 | |
|
| [nllb-200-distilled-1.3B](https://huggingface.co/facebook/nllb-200-distilled-1.3B) | 1.3B | 15.2 | 50.2 | 88.4 | |
|
| [nllb-200-3.3B](https://huggingface.co/facebook/nllb-200-3.3B) | 3.3B | 15.6 | 50.7 | **88.9** | |
|
| This model | 197M | **16.2** | **51.8** | 88.3 | |
|
|
|
## Examples of usage: |
|
|
|
```python |
|
>>> print(generate("Каждый охотник желает знать, где сидит фазан.")) |
|
Әрбір аңшы ғибадатхананың қайда отырғанын білгісі келеді. |
|
|
|
>>> print(generate("Местным продуктом-специалитетом с защищённым географическим наименованием по происхождению считается люнебургский степной барашек.")) |
|
Шығу тегі бойынша қорғалған географиялық атауы бар жергілікті мамандандырылған өнім болып люнебургтік дала қошқар болып саналады. |
|
|
|
>>> print(generate("Помогите мне удивить девушку")) |
|
Қызды таң қалдыруға көмектесіңіз |
|
``` |
|
|
|
## Citations |
|
|
|
``` |
|
@misc{deepvk2024kazRushrukk, |
|
title={kazRush-ru-kk: translation model from Russian to Kazakh}, |
|
author={Lebedeva, Anna and Sokolov, Andrey}, |
|
url={https://huggingface.co/deepvk/kazRush-ru-kk}, |
|
publisher={Hugging Face}, |
|
year={2024}, |
|
} |
|
``` |