Fine-tuning This model for my dataset consisting of question and SQL.

#44
by PratikJadon - opened

For the training purpose i am using this prompt:
input_prompt = f"""Task Generate a SQL query to answer the question using the given Tenant ID.
Tenant ID: {tenant}
[QUESTION]{q}[/QUESTION]

SQL Query
[SQL][/SQL]"""

label = f"""Task Generate a SQL query to answer the question using the given Tenant ID.
Tenant ID: {tenant}
[QUESTION]{q}[/QUESTION]
SQL Query
[SQL]{sql}[/SQL]"""

inputs.append(input_prompt)
labels.append(label)

# Tokenize the inputs
model_inputs = tokenizer(inputs, max_length=512, truncation=True, padding="max_length", return_tensors="pt")
model_labels = tokenizer(labels, max_length=512, truncation=True, padding="max_length", return_tensors="pt")

model_inputs["labels"] = model_labels["input_ids"]

I am using these inputs prompt and label and then using their tokens to train my model but its not getting me any accuracy.

Your need to confirm your account before you can post a new comment.

Sign up or log in to comment