|
|
|
|
|
|
|
|
|
import flatbuffers |
|
from flatbuffers.compat import import_numpy |
|
np = import_numpy() |
|
|
|
class PodNerModel(object): |
|
__slots__ = ['_tab'] |
|
|
|
@classmethod |
|
def GetRootAsPodNerModel(cls, buf, offset): |
|
n = flatbuffers.encode.Get(flatbuffers.packer.uoffset, buf, offset) |
|
x = PodNerModel() |
|
x.Init(buf, n + offset) |
|
return x |
|
|
|
@classmethod |
|
def PodNerModelBufferHasIdentifier(cls, buf, offset, size_prefixed=False): |
|
return flatbuffers.util.BufferHasIdentifier(buf, offset, b"\x54\x43\x32\x20", size_prefixed=size_prefixed) |
|
|
|
|
|
def Init(self, buf, pos): |
|
self._tab = flatbuffers.table.Table(buf, pos) |
|
|
|
|
|
def TfliteModel(self, j): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4)) |
|
if o != 0: |
|
a = self._tab.Vector(o) |
|
return self._tab.Get(flatbuffers.number_types.Uint8Flags, a + flatbuffers.number_types.UOffsetTFlags.py_type(j * 1)) |
|
return 0 |
|
|
|
|
|
def TfliteModelAsNumpy(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4)) |
|
if o != 0: |
|
return self._tab.GetVectorAsNumpy(flatbuffers.number_types.Uint8Flags, o) |
|
return 0 |
|
|
|
|
|
def TfliteModelLength(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4)) |
|
if o != 0: |
|
return self._tab.VectorLen(o) |
|
return 0 |
|
|
|
|
|
def TfliteModelIsNone(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4)) |
|
return o == 0 |
|
|
|
|
|
def WordPieceVocab(self, j): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6)) |
|
if o != 0: |
|
a = self._tab.Vector(o) |
|
return self._tab.Get(flatbuffers.number_types.Uint8Flags, a + flatbuffers.number_types.UOffsetTFlags.py_type(j * 1)) |
|
return 0 |
|
|
|
|
|
def WordPieceVocabAsNumpy(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6)) |
|
if o != 0: |
|
return self._tab.GetVectorAsNumpy(flatbuffers.number_types.Uint8Flags, o) |
|
return 0 |
|
|
|
|
|
def WordPieceVocabLength(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6)) |
|
if o != 0: |
|
return self._tab.VectorLen(o) |
|
return 0 |
|
|
|
|
|
def WordPieceVocabIsNone(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6)) |
|
return o == 0 |
|
|
|
|
|
def LowercaseInput(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(8)) |
|
if o != 0: |
|
return bool(self._tab.Get(flatbuffers.number_types.BoolFlags, o + self._tab.Pos)) |
|
return True |
|
|
|
|
|
def LogitsIndexInOutputTensor(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(10)) |
|
if o != 0: |
|
return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos) |
|
return 0 |
|
|
|
|
|
def AppendFinalPeriod(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(12)) |
|
if o != 0: |
|
return bool(self._tab.Get(flatbuffers.number_types.BoolFlags, o + self._tab.Pos)) |
|
return False |
|
|
|
|
|
def PriorityScore(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(14)) |
|
if o != 0: |
|
return self._tab.Get(flatbuffers.number_types.Float32Flags, o + self._tab.Pos) |
|
return 0.0 |
|
|
|
|
|
def MaxNumWordpieces(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(16)) |
|
if o != 0: |
|
return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos) |
|
return 128 |
|
|
|
|
|
def SlidingWindowNumWordpiecesOverlap(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(18)) |
|
if o != 0: |
|
return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos) |
|
return 20 |
|
|
|
|
|
def Labels(self, j): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(22)) |
|
if o != 0: |
|
x = self._tab.Vector(o) |
|
x += flatbuffers.number_types.UOffsetTFlags.py_type(j) * 4 |
|
x = self._tab.Indirect(x) |
|
from libtextclassifier3.PodNerModel_.Label import Label |
|
obj = Label() |
|
obj.Init(self._tab.Bytes, x) |
|
return obj |
|
return None |
|
|
|
|
|
def LabelsLength(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(22)) |
|
if o != 0: |
|
return self._tab.VectorLen(o) |
|
return 0 |
|
|
|
|
|
def LabelsIsNone(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(22)) |
|
return o == 0 |
|
|
|
|
|
def MaxRatioUnknownWordpieces(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(24)) |
|
if o != 0: |
|
return self._tab.Get(flatbuffers.number_types.Float32Flags, o + self._tab.Pos) |
|
return 0.1 |
|
|
|
|
|
def Collections(self, j): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(26)) |
|
if o != 0: |
|
x = self._tab.Vector(o) |
|
x += flatbuffers.number_types.UOffsetTFlags.py_type(j) * 4 |
|
x = self._tab.Indirect(x) |
|
from libtextclassifier3.PodNerModel_.Collection import Collection |
|
obj = Collection() |
|
obj.Init(self._tab.Bytes, x) |
|
return obj |
|
return None |
|
|
|
|
|
def CollectionsLength(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(26)) |
|
if o != 0: |
|
return self._tab.VectorLen(o) |
|
return 0 |
|
|
|
|
|
def CollectionsIsNone(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(26)) |
|
return o == 0 |
|
|
|
|
|
def MinNumberOfTokens(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(28)) |
|
if o != 0: |
|
return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos) |
|
return 1 |
|
|
|
|
|
def MinNumberOfWordpieces(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(30)) |
|
if o != 0: |
|
return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos) |
|
return 1 |
|
|
|
def PodNerModelStart(builder): builder.StartObject(14) |
|
def PodNerModelAddTfliteModel(builder, tfliteModel): builder.PrependUOffsetTRelativeSlot(0, flatbuffers.number_types.UOffsetTFlags.py_type(tfliteModel), 0) |
|
def PodNerModelStartTfliteModelVector(builder, numElems): return builder.StartVector(1, numElems, 1) |
|
def PodNerModelAddWordPieceVocab(builder, wordPieceVocab): builder.PrependUOffsetTRelativeSlot(1, flatbuffers.number_types.UOffsetTFlags.py_type(wordPieceVocab), 0) |
|
def PodNerModelStartWordPieceVocabVector(builder, numElems): return builder.StartVector(1, numElems, 1) |
|
def PodNerModelAddLowercaseInput(builder, lowercaseInput): builder.PrependBoolSlot(2, lowercaseInput, 1) |
|
def PodNerModelAddLogitsIndexInOutputTensor(builder, logitsIndexInOutputTensor): builder.PrependInt32Slot(3, logitsIndexInOutputTensor, 0) |
|
def PodNerModelAddAppendFinalPeriod(builder, appendFinalPeriod): builder.PrependBoolSlot(4, appendFinalPeriod, 0) |
|
def PodNerModelAddPriorityScore(builder, priorityScore): builder.PrependFloat32Slot(5, priorityScore, 0.0) |
|
def PodNerModelAddMaxNumWordpieces(builder, maxNumWordpieces): builder.PrependInt32Slot(6, maxNumWordpieces, 128) |
|
def PodNerModelAddSlidingWindowNumWordpiecesOverlap(builder, slidingWindowNumWordpiecesOverlap): builder.PrependInt32Slot(7, slidingWindowNumWordpiecesOverlap, 20) |
|
def PodNerModelAddLabels(builder, labels): builder.PrependUOffsetTRelativeSlot(9, flatbuffers.number_types.UOffsetTFlags.py_type(labels), 0) |
|
def PodNerModelStartLabelsVector(builder, numElems): return builder.StartVector(4, numElems, 4) |
|
def PodNerModelAddMaxRatioUnknownWordpieces(builder, maxRatioUnknownWordpieces): builder.PrependFloat32Slot(10, maxRatioUnknownWordpieces, 0.1) |
|
def PodNerModelAddCollections(builder, collections): builder.PrependUOffsetTRelativeSlot(11, flatbuffers.number_types.UOffsetTFlags.py_type(collections), 0) |
|
def PodNerModelStartCollectionsVector(builder, numElems): return builder.StartVector(4, numElems, 4) |
|
def PodNerModelAddMinNumberOfTokens(builder, minNumberOfTokens): builder.PrependInt32Slot(12, minNumberOfTokens, 1) |
|
def PodNerModelAddMinNumberOfWordpieces(builder, minNumberOfWordpieces): builder.PrependInt32Slot(13, minNumberOfWordpieces, 1) |
|
def PodNerModelEnd(builder): return builder.EndObject() |
|
|