Encoder-Decoder model with DeBERTa encoder

pre-trained models

  • deliciouscat/deberta-v3-base-encoder-decoder-v0.2

-> 297511524(298M) params

Data used

  • HuggingFaceFW/fineweb

  • AiHub ko-en translation corpus (English part)

  • Some papers that I kept

Training hparams

  • optimizer: AdamW, lr=3e-5, betas=(0.875, 0.997)

  • batch size: 12

-> training on denoising objective (BART), 29523 step

How to use

from transformers import AutoTokenizer, EncoderDecoderModel

model = EncoderDecoderModel.from_pretrained("deliciouscat/deberta-v3-base-encoder-decoder-v0.3")
tokenizer = AutoTokenizer.from_pretrained("deliciouscat/deberta-v3-base-encoder-decoder-v0.3")

Future work!

  • train more scientific data

  • fine-tune on keyword extraction task

Downloads last month
2
Safetensors
Model size
298M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train deliciouscat/deberta-v3-base-encoder-decoder-v0.3