bert-f1-durga-muhammad-c

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001
  • Accuracy: 1.0
  • Precision: 1.0
  • Recall: 1.0
  • F1: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1000

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.0245 1.0 42 0.0241 0.995 0.995 0.995 0.995
0.0032 2.0 84 0.0081 0.999 0.999 0.999 0.999
0.0011 3.0 126 0.0075 0.999 0.999 0.999 0.999
0.0008 4.0 168 0.0068 0.999 0.999 0.999 0.999
0.0006 5.0 210 0.0078 0.999 0.999 0.999 0.999
0.0012 6.0 252 0.0063 0.999 0.999 0.999 0.999
0.0022 7.0 294 0.0015 1.0 1.0 1.0 1.0
0.0004 8.0 336 0.0031 0.999 0.999 0.999 0.999
0.0003 9.0 378 0.0002 1.0 1.0 1.0 1.0
0.0002 10.0 420 0.0002 1.0 1.0 1.0 1.0
0.0002 11.0 462 0.0001 1.0 1.0 1.0 1.0
0.0002 12.0 504 0.0001 1.0 1.0 1.0 1.0
0.0002 13.0 546 0.0001 1.0 1.0 1.0 1.0
0.0001 14.0 588 0.0001 1.0 1.0 1.0 1.0
0.0001 15.0 630 0.0001 1.0 1.0 1.0 1.0
0.0001 16.0 672 0.0001 1.0 1.0 1.0 1.0
0.0001 17.0 714 0.0001 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
178M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for devagonal/bert-f1-durga-muhammad-c

Finetuned
(646)
this model

Space using devagonal/bert-f1-durga-muhammad-c 1