cdp-multi-classifier-weighted

This model is a fine-tuned version of alex-miller/ODABert. It achieves the following results on the evaluation set:

  • Loss: 0.8564
  • Accuracy: 0.9716
  • F1: 0.8484
  • Precision: 0.7788
  • Recall: 0.9316

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.0497 1.0 11302 1.5640 0.9621 0.8011 0.7244 0.8958
0.9103 2.0 22604 1.4417 0.9663 0.8203 0.7522 0.9021
0.7629 3.0 33906 0.9562 0.9661 0.8235 0.7406 0.9272
0.6321 4.0 45208 0.9106 0.9697 0.8376 0.7720 0.9153
0.5464 5.0 56510 0.9811 0.9705 0.8419 0.7760 0.9200
0.5043 6.0 67812 0.9484 0.9700 0.8409 0.7677 0.9296
0.4647 7.0 79114 0.8569 0.9713 0.8465 0.7781 0.9281
0.4215 8.0 90416 0.8620 0.9703 0.8430 0.7682 0.9338
0.3794 9.0 101718 0.8569 0.9704 0.8437 0.7682 0.9357
0.344 10.0 113020 0.8305 0.9708 0.8448 0.7720 0.9328
0.3247 11.0 124322 0.7900 0.9707 0.8446 0.7709 0.9338
0.3159 12.0 135624 0.7838 0.9711 0.8463 0.7734 0.9344
0.3166 13.0 146926 0.8381 0.9710 0.8462 0.7727 0.9351
0.279 14.0 158228 0.8694 0.9718 0.8487 0.7821 0.9277
0.281 15.0 169530 0.8564 0.9716 0.8484 0.7788 0.9316

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.0.1
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
168M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for devinitorg/cdp-multi-classifier-weighted

Finetuned
(21)
this model