End of training
Browse files- README.md +28 -14
- model.safetensors +1 -1
README.md
CHANGED
@@ -18,13 +18,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
# cdp-multi-classifier-weighted
|
20 |
|
21 |
-
This model is a fine-tuned version of [alex-miller/ODABert](https://huggingface.co/alex-miller/ODABert) on
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss:
|
24 |
-
- Accuracy: 0.
|
25 |
-
- F1: 0.
|
26 |
-
- Precision: 0.
|
27 |
-
- Recall: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -44,23 +44,37 @@ More information needed
|
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
- learning_rate: 1e-06
|
47 |
-
- train_batch_size:
|
48 |
-
- eval_batch_size:
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
-
- num_epochs:
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
-
| Training Loss | Epoch | Step
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
### Framework versions
|
62 |
|
63 |
-
- Transformers 4.40.
|
64 |
-
- Pytorch 2.
|
65 |
- Datasets 2.19.0
|
66 |
- Tokenizers 0.19.1
|
|
|
18 |
|
19 |
# cdp-multi-classifier-weighted
|
20 |
|
21 |
+
This model is a fine-tuned version of [alex-miller/ODABert](https://huggingface.co/alex-miller/ODABert) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.8564
|
24 |
+
- Accuracy: 0.9716
|
25 |
+
- F1: 0.8484
|
26 |
+
- Precision: 0.7788
|
27 |
+
- Recall: 0.9316
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
- learning_rate: 1e-06
|
47 |
+
- train_batch_size: 24
|
48 |
+
- eval_batch_size: 24
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 15
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
57 |
+
|:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|
|
58 |
+
| 1.0497 | 1.0 | 11302 | 1.5640 | 0.9621 | 0.8011 | 0.7244 | 0.8958 |
|
59 |
+
| 0.9103 | 2.0 | 22604 | 1.4417 | 0.9663 | 0.8203 | 0.7522 | 0.9021 |
|
60 |
+
| 0.7629 | 3.0 | 33906 | 0.9562 | 0.9661 | 0.8235 | 0.7406 | 0.9272 |
|
61 |
+
| 0.6321 | 4.0 | 45208 | 0.9106 | 0.9697 | 0.8376 | 0.7720 | 0.9153 |
|
62 |
+
| 0.5464 | 5.0 | 56510 | 0.9811 | 0.9705 | 0.8419 | 0.7760 | 0.9200 |
|
63 |
+
| 0.5043 | 6.0 | 67812 | 0.9484 | 0.9700 | 0.8409 | 0.7677 | 0.9296 |
|
64 |
+
| 0.4647 | 7.0 | 79114 | 0.8569 | 0.9713 | 0.8465 | 0.7781 | 0.9281 |
|
65 |
+
| 0.4215 | 8.0 | 90416 | 0.8620 | 0.9703 | 0.8430 | 0.7682 | 0.9338 |
|
66 |
+
| 0.3794 | 9.0 | 101718 | 0.8569 | 0.9704 | 0.8437 | 0.7682 | 0.9357 |
|
67 |
+
| 0.344 | 10.0 | 113020 | 0.8305 | 0.9708 | 0.8448 | 0.7720 | 0.9328 |
|
68 |
+
| 0.3247 | 11.0 | 124322 | 0.7900 | 0.9707 | 0.8446 | 0.7709 | 0.9338 |
|
69 |
+
| 0.3159 | 12.0 | 135624 | 0.7838 | 0.9711 | 0.8463 | 0.7734 | 0.9344 |
|
70 |
+
| 0.3166 | 13.0 | 146926 | 0.8381 | 0.9710 | 0.8462 | 0.7727 | 0.9351 |
|
71 |
+
| 0.279 | 14.0 | 158228 | 0.8694 | 0.9718 | 0.8487 | 0.7821 | 0.9277 |
|
72 |
+
| 0.281 | 15.0 | 169530 | 0.8564 | 0.9716 | 0.8484 | 0.7788 | 0.9316 |
|
73 |
|
74 |
|
75 |
### Framework versions
|
76 |
|
77 |
+
- Transformers 4.40.1
|
78 |
+
- Pytorch 2.0.1
|
79 |
- Datasets 2.19.0
|
80 |
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 672711684
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27cc7e3b5605768fb04386171067ededcbf1701fc7719694946d788638e4fb21
|
3 |
size 672711684
|